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|9 Motivation for modeling plasma catalysis

Catalysis
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Possible synergy! » Origins??

Plasma catalysis accepted as field

Neyts et al.,, Chem. Rev. 115 (2015) 13408 , , ,
on its own by larger chemical community




|9 Motivation for modeling plasma catalysis

Gas cleaning: Gas conversion:
Toluene decomposition CH4 / CO; reforming
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C. Whitehead, Pure Appl. Chem. 82 (2010) 1329

Clear interplay of catalyst and plasma

Mechanism?

A. Zhang et al, Chem. Eng. J.156 (2010) 601



|9 Motivation for modeling plasma catalysis
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Clear reversible interplay of catalyst and plasma

Mechanism?

J. Kim, ACS Energy Lett. 1 (2016) 96



|9~ Manyfold of individual processes

Plasma ............................................. -.

° Nz. H,, O,, CO,, cn‘. H0..:
Pollutants
i VOCs, NO,, Tars..
\ o wens -
~
Interface Plasma-catalyst interactions
L-H " IM \/" Electrical field
Products <=+ M' .., S enhancement
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Catalyst .. _
3 Micro-discharge

vacancy

IMs = Intermediates © Electrons @ Radicals L-H = Langmuir-Hinshelwood

* = Adsorbed state "0\\ Excited species . lons (+/-) E-R = Eley-Rideal

A. Bogaerts et al., J. Phys. D: Appl. Phys. 53 (2020) 443001



|9~ Plasma catalysis # plasma + catalysis
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|9 From experiment to modeling

~ experiments ~ simulations

“traditional” catalysis

- radicals,

hv lons excited speci
disentangle ‘u’ m l

catalyst surface E—) support

Modeling allows a bottom-up approach

to disentangle the process

Typical: Start off with plasma, then add catalyst

Proposal: Start off with thermal catalysis,
add plasma-factors one by one
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|9~ Macroscale modeling
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Plasma models use microscale knowns (rates, processes)
to predict macroscopic unknowns

But: microscopic processes at the catalyst are not known!

Zhang, Bogaerts, Neyts, Plasma Sources Sci. Technol. 27 (2018) 055008



|9 Microscale modeling

Non-oxidative coupling of methane
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Microscopic kinetic models use thermodynamics and kinetics
of individual reactions to understand interplay of processes

But: Atomic scale processes at the catalyst are not known!

Engelmann, et al., ACS Sustainable Chem. Eng. 8 (2020) 6043



|9 Atomic scale modeling

We need more fundamental information

— Atomistic simulations:  classical MD — requires appropriate force field
DFT / ab initio  — limited in (time & length) scales
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|9~ Radicals and excited species

The plasma supplies radicals and excited species. These are more reactive and
react through new, faster pathways.

THE PLASMA ACTS AS AN ADDITIONAL CATALYST
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Radicals are fairly easy! nickel surface

Effects well-known for material growth, surface modification, ...

Usually included in standard atomistic models
MD simulations of CH, impact on Ni

Radical sticking is basically spontaneous, even at 400 K

Exothermic adsorption induces further reaction

W. Somers et al. J. Phys. Chem. C 116, 20958 (2012).



| no further reaction
100 - I cleavage of one C-H bond
“Aa I cleavage of both C-H bonds, without H, formation

__ | [l cleavage of both C-H bonds, with H, formation
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Ni(111) Ni(100)  sNi(111)s1  sNi(111)s2

Radicals are fairly easy!

Effects well-known for material growth, surface modification, ...

Usually included in standard atomistic models
MD simulations of CH, impact on Ni

Radical sticking is basically spontaneous, even at 400 K

Exothermic adsorption induces further reaction

W. Somers et al. J. Phys. Chem. C 116, 20958 (2012).
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DFT calculation on TiO, anatase

Lifetimes of species can be computed (using realistic densities)
Treshold temperature for dry reforming is lowered

Pathways to methanol formation are opened

S. Huygh et al. J. Phys. Chem. C 122, 9389 (2018).
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|9 Vibrationally excited species
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Vibrationally excited states are overpopulated
Mehta et al. proposed a simple microkinetic model to test their effect
Ground state NH; synthesis rates from literature

Excited state rates through simple additive rules

E ;‘orward

E;‘orward + E ;everse

Fridman-Macheret E.-aE,

(FM model)

B

K, ~ exp(— j with a =

P. Mehta et al. Nat. Catal. 1, 269 (2018)



|9 Vibrationally excited species
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Preference shifts towards weaker-binding catalysts and rate increases

Experiments sort of agree

P. Mehta et al. Nat. Catal. 1, 269 (2018)



|9 Vibrationally excited species

Terrace

Step

T T T T
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This model is not atomistic and relies on rather crude approximations

Perform explicitly atomistic simulations to verify the microkinetic model:
Background thermostat keeping all modes at temperature T...
... except around a frequency w which is at a higher Ty,



|9 Vibrationally excited species
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Approach works well for gas-phase reactions

=> Attempt to apply to surface reactions as well
K. M. Bal, et al., JCPL 11 (2020) 401



|9 Vibrationally excited species
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K. M. Bal, et al., J. Phys. D: Appl. Phys. 54 (2021) 394004



U- Approach
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L9 Modeling charges

Electron mobility » ion mobility

= natural negative surface charging
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¢ Total energy of the surface
—o— Carbon dioxide adsorption energy

10

Computationally:

1.65

1 1.60

1 1.55

1.50

CO, adsorption energy (eV)

Define a H-atom in gas phase, but don't associate wavefunction with it
=> electron localises in surface, with H* as gas phase counter ion
=> avoids divergence of energy, and corresponds to reality



|9 Modeling charges in plasma-catalysis

Electronic structure is key

What happens when charge is added?

Might the plasma modify the catalyst electronic structure
and thereby enhance chemical processes?

*=0-9

almost no binding (vdW only)

K. M. Bal, E. C. Neyts, PCCP 20 (2018) 8456



|- Surface charging - metal chemisorption
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Surface charge of -0.06 C.m-2 destabilizes metal atom
Decrease in adsorption energy, due to
decrease in substrate electron affinity

K. M. Bal, E. C. Neyts, PCCP 20 (2018) 8456



|9 Surface charging - CO; chemisorption
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CO, Adsorption Energy (eV) ©

Support Ti Ni
Adsorbent

Significant increase in CO,
adsorption energy

K. M. Bal, E. C. Neyts, PCCP 20 (2018) 8456



U- Surface charglng CO, chemisorption
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Significant increase in CO,
adsorption energy...

K. M. Bal, E. C. Neyts, PCCP 20 (2018) 8456

. due to lowering

of bonding states



|9 Surface charging - CO; dissociation

Upon surface charging,
CO,, dissocation becomes
(much) less endothermic!

K. M. Bal, E. C. Neyts, PCCP 20 (2018) 8456



|9 Surface charging - CO; dissociation

So far: thermodynamics. Are kinetics affected as well?
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1.2 A

17 -0.40 eV -0.43 eV
-0.13 eV
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0.6 A

Energy barrier (eV)

0.4 A

0.2 A

Ti | Ni | Cu
CO; splitting barrier is lowered by up to ~0.4 eV

(@500K: increase in rate by 4 orders of magnitude...)

K. M. Bal, E. C. Neyts, PCCP 20 (2018) 8456



|9 Dynamics

Can hyperdynamics* simulations add additional insight?

0 ps 4.07 uys + 0.5 ps 4.07 ps + 2.6 ps

Ni
h

0.14ns + 93 fs

On Ti: direct splitting (at 400 K) - elementary process
On Ni: proton-mediated splitting - concerted mechanism

Dynamic atomistic simulations allow to directly observe the mechanism

K. M. Bal, E. C. Neyts, PCCP 20 (2018) 8456
* K. M. Bal, E. C. Neyts, J. Chem. Theory Comput. 11 (2015) 4545



|9 Approach

Plasma supplies
new reactants and
pathways

Plasma modifies
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Surface reaction .
Other effects? Eley-Rideal

mechanisms




|9 Introducing Eley-Rideal

O

Eley-Rideal "hot atom" Langmuir-Hinshelwood



|9~ How important is Eley-Rideal?

Where does an incoming H-atom end up?

hep-top-fecec C* at Ni
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On C*: H (unsurprisingly) adds to the C-atom => ER is possible



|9~ How important is Eley-Rideal?

Where does an incoming H-atom end up?

CH* at Ni
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On CH*: H (surprisingly) DOES NOT adds to the CH-fragment
=> ER is not possible (Similar results on CH, and CH3)



|9~ How important is Eley-Rideal?

Where does an incoming H-atom end up?

fee-top-hep CO* at Ni
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On CO*: Barrier to form ER-product COH => ER is rather unlikely



How far should we re-entangle?

co, Plasma co co,

¢
H w2 .

" e
H,0 H
2 co, ,CO ¢ &
Co, \Incoming Flux[ H, /
¢
. s 8

Outgoing Flux i

0=C=
No g™ ~—

* Collision "\'
4 N — nj -

Desorption
Surface Reactions

HCOOH » HCO
/oou
| : .

COH

Adsorption

Reality is highly complex,
due to cross-interactions

Current models are very simple
cross-interactions are absent

Bridge gap with experiments



|9 Annex: plasma-surface astrochemistry




U- Plasmas are not confined to earth...

Eagle Nebula Pillars of Creation Evaporating Gaseous
Globules

Partially ionized gases

Despite extreme conditions: bunch of interesting chemistry!



U- Plasmas are not confined to earth...
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S. Yamamoto, “Introduction to astrochemistry”, Springer (2017)



|9 Chemistry in the interstellar medium (ISM)

Gas phase reactions

i : low energy electrons
barrierless exothermic gy /

ions / cosmic radiation
not efficient molecule formation
adsorption §
‘.

Gas-surface reactions

“catalyse” the reaction surface

" T : diffusi ¢
¢4
critically depend on binding energies ¢;.("/

H,0 5 7%

Dust particles Size range: nm ~ um €
silicates & amorphous carbon core des;rption
in molecular clouds: ice mantle (ASW)

may be charged

How does charge affect binding energies?
How does the plasma affect how and which molecules are formed?




U- Neutral ASW

CO: dipole moment
neutral: 1975 £ 195K

CHgs: no dipole, no H-bonds %:;0
neutral: 1306 = 123 K @ 5000 ¥ Neutral
tén 4000
E 3000
NHs: dipole, H-bonds 2000
neutral: 6150 * 278 K 1000 ' .
° o, N,

DFT calculations; PBEO functional + D3 dispersion
42 data points per molecule



|9 Neutral vs Charged ASW

CO: dipole moment
neutral: 1975+ 195K
charged: 7749 = 472 K

9000

8000

7000

D
o
o
o

CHgs: no dipole, no H-bonds %
neutral: 1306 = 123 K @ 5000 ¥ Neutral
charged: 1586 + 104 K £ 4o = Charged
o 3000
NHs: dipole, H-bonds 2000
neutral: 6150 + 278 K 1000
charged: 5360 = 276 K ° CH.

Charge does have a significant effect on at least some molecules
=> affect surface reaction rates
=> plasma determines which, why and how molecules are formed in space
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