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Question

Problem:

Have some training data (X1, Y1), . . . , (Xm, Ym).

Want to find some function f from some class F so that for
new observed X and unknown Y we have f(X) ≈ Y .

Questions:
F?

How to find suitable f ∈ F?

≈?
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Framework

Our model is given by

domain set X (the set of objects we may wish to label),
usually represented by a vector of features;
label setM, e.g. {0, 1} orM = Rp ,

random variables (X,Y ) : Ω → X ×M, having (unknown)
distribution D under P
a (known) training set
(X1, Y1), . . . , (Xm, Ym) : Ω → X ×M of (i.i.d.?) random
variables having the same distribution as (X,Y ),

Write S = (X1, Y1, . . . , Xm, Ym) for short.
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Definition
A hypothesis is a mapping f : X → M.

prediction rule (also called predictor, classifier)

f = f· : X × Y → M, (x, s) 7→ fs(x).

The (quadratic) risk of f·

R(fS) = E[|fS(X)− Y |2
∣∣S],

empirical risk of h:

R̂(f) =
1

m

m∑
i=1

|f(Xi)− Yi|2

Learning paradigm
For a hypothesis set F , use the empirical risk minimizer
f̂ ∈ argminf∈F R̂(f).
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No-free-lunch-Theorem

"Theorem"
For each non-trivial domain set X and for each prediction rule f·,
there is a distribution of (Xi, Yi) such that the risk of f· is high
with probability bounded away from 0.

1st Idea
There is no universal learner.
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Error decomposition

R(fS)− inf
f∈F

R(f) ≤ R̂(fS)− inf
f∈F

R̂(f) + 2 sup
f∈F

|R(f)− R̂(f)|

R(fS) ≤ inf
f∈F

R(f) + R̂(fS)− inf
f∈F

R̂(f) + 2 sup
f∈F

|R(f)− R̂(f)|

inff∈F R(f): approximation error

R̂(fS)− inff∈F R̂(f): optimization error

supf∈F |R(f)− R̂(f)|: generalization / statistical error
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Statistical error supf∈F |R(f)− R̂(f)|

Classical bound (for classification)
With probability ≥ 1− δ

statistical error ≤
√

VCdim(F) + log(1/δ)

m

^

✓ Erinner

4¥
Model
Empleiity

2nd Idea
Remember Occam’s Razor.
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On the optimization error R̂(fS)− inff∈F R̂(f)

Main idea: gradient decent (w.r.t. a parameterized version of f )

R̂(fa) =
1

m

m∑
i=1

|fa(Xi)− Yi|2 → min
a

!

m large! → stochastic gradient decent

usually not convex (as a function of the parameters)!

3rd Idea
There are some convergence guarantees, but under strong
assumptions, e.g. , convexity.
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Artificial neural networks (ANN)

ANNs are inspired by the structure of the (human) brain

in biology, a neuron is an electrically excitable cell that
communicates with other cells via specialized connections
called synapses
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Neural networks

flexible function class for approximation of continuous
functions

incorporates some of the properties of biological neurons

: Source: Michael B. Wolf: “Mathematical Foundations of Supervised
Learning”

can be used for classification and regression problems
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Illustration of neural networks

any g ∈ F(L,p) is built by alternating matrix-vector
multiplications with the action of the non-linear activation
function σ

in any step, the initial value x(0) = x ∈ Rd is updated via

x(ℓ) = σ
(
v(ℓ) +W (ℓ) · x(ℓ−1)

)
, ℓ = 1, 2, . . . , L

in the final step: output y = g(x) = W (L+1)x(L)
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Special types of neural networks

f(x) = ρWLσvL
WL−1σvL−1

· · · W1σv1
W0x

network is called sparse if the matrices Wi are sparse

the i-th layer is fully connected if Wi is dense (typically, all
entries are non-zero)

for L = 1, the network (ρ the identity) coincides with shallow
networks

if L > 1, the network is called deep
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Graph representation
In computer science, neural networks usually are introduced via
some graph representation:

nodes in the graph (also called units) are arranged in layers,
where the first layer is called input layer, the last layer
output layer, and layers that lie in between are referred to as
hidden layers
number of hidden layers corresponds to L, number of units in
each layer generates the width vector p

each node/unit in the graph representation stands for the
operation σ(a⊤ ·+b)

: Source: Johannes Schmidt-Hieber, Statistics for deep neural networks
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Universal approximation property

Theorem
Feedforward networks with a single layer are dense in the set of
continuous functions on compacts (but the layer may be infeasibly
large).

4th Idea
For complex enough ANN, the approximation error inff∈F R(f)
small. (But keep 2nd idea in mind!)
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Classical approaches

Overparameterization: Today, ANNs with > 108 parameters
are used.

huge VC-dimension!
usually: theoretical empirical minimum inff∈F R̂(f) = 0 with
many minimizers.

Non-convexity: Many local minima
Usually very suboptimal solutions

high dimensional spaces: Often dim(X ) > 104

No guarantee for small approximation error inff∈F R(f)

deep networks: Often deep networks are used (> 100 hidden
layers)

Classical theory cannot explain why this is beneficial.
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(Very partial) mathematical results

Stochastic gradient decent seems to prefer nice optima
(effectively smaller hypothesis set).

Despite high-dimensional spaces, the relevant information for
typical learning situations seems to be stored in a
low-dimensional submanifold.
Relevant lass of functions represented by the neural network
increases exponentially in depth, but only linearly in width
(in some sense).

...
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