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Introduction

Ill-posed problems

Consider the following process:

f : Rn → Rm, x → y ,

where the calculation of y for a given x is straight forward.
What about the inverse function

g = f −1 : Rm → Rn, y → x?

In the general case it is not trivial to deduce x from y even if
the forward process is known.
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Introduction

Ill-posed problems

If for example the intrinsic dimension k of y is smaller than
the nominal dimension n of x

→ Information is lost during the forward process

→ Any y may be assigned a large number of di�erent x

⇒ The problem is ill-posed

However this situation is actually quite common in physics:

A set of quantities is measured/numerically obtained (y)

From this the hidden variables of a model (f (x)) are to
be inferred

But the inverse calculation is expensive, di�cult or not
even known
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Introduction

Analytic continuation

An example from statistical mechanics

QMC calculations yield values of dynamic correlation functions
at discrete imaginary times τm
These G (τm) (imaginary time Green function) relates to
di�erent spectral functions A(ω) via

G (τm) =

∫ ∞

−∞
K(τm, ω)A(ω)dω,

which is called a Fredholm integral equation of the �rst kind
The kernel K is known and depends on the speci�c G ,A

Example:

K(τm, ω) = − exp(−τmω)

exp(−βω)± 1
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Introduction

Analytic continuation

While forward process A(ω) → G (τm) hard but doable, inverse
is very complicated
In fact: naive solution by least squares �t yields

Figure: Red line: �t; Blue dashed line: actual spectrum (Andrey
S. Mishchenko, 2012)
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Introduction

Analytic continuation

Of course there exists a multitude of methods
(see Andrey S. Mishchenko (2012) for overview):

Tikhonov-Phillips regularization method

Maximum entropy method

Stochastic optimization method

However in the following we will discuss

Invertable Neural Networks (INN)
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Invertible neural networks

Idea

Construct a NN which architecture allows for trivial
inversion

Train the INN on the known and simple forward process
as well as the inverse

Record lost information in the forward process via a latent
variable

→Ardizzone et al. (2018)
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Invertible neural networks

Problem speci�cation

What is known

measurement: y ∈ Rm, system state: x ∈ Rn,
theoretical model: y = f (x)

As the model f (x) imposes an information loss, we seek the
conditional probability distribution p(x |y)

A mathematical derivation is not feasible

What is done

The actual probability density is instead approximated by
q(x |y) using a neural network trained on an arbitrary amount
of (x , f (x)) with a suitable prior for x
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Invertible neural networks

Problem speci�cation

Training

Given x the network computes y ∗

Given y the network computes q(x |y)
Both results are then evaluated and the network is updated

correspondingly

Latent variable

While training the forward process:
Latent variable z is randomly drawn from normal distribution
to encode lost information
This ensures that the inverse process is a deterministic
function g(y , z) = x

Thus all hidden parameters can be recovered
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Invertible neural networks

Problem speci�cation

Figure: Schematic visualization
(Ardizzone et al., 2018)
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Invertible neural networks

Architecture

Figure: Forward process

V 1 = U1 ⊙ exp[s2(U2)] + t2(U2)

V 2 = U2 ⊙ exp[s1(V 1)] + t1(V 1)

U2 = [V 2 − t1(V 1)]⊙ exp[−s1(V 1)]

U1 = [V 1 − t2(U2)]⊙ exp[−s2(U2)]
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Invertible neural networks

Architecture

Figure: Inverse process
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Invertible neural networks

Architecture

Figure: Both processes
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Invertible neural networks

Architecture

The functions s1,2 and t1,2

Arbitrarily complex functions

Encode the Neural Network part

s,t

Input Output
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Figure: Representation of s, t
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Invertible neural networks

Architecture

Recap

Network is made up of interconnected modules

Each module guarantees invertibility

Within those modules: classical NN

Fully connected NN with width n and depth m

Training changes parameters in s, t
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Invertible neural networks

Examples

Gaussian Mixture Model (GMM)

Figure: Representation of a GMM with 3 components
[Carrasco (2019)] 13



Invertible neural networks

Examples

Gaussian Mixture Model (GMM)

Figure: Di�erent INN trained on GMM with 8 components and
4 labels [Ardizzone et al. (2018)]
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Invertible neural networks

Examples

Oxygen saturation of living tissue

The re�ective spectrum of tissue depends on:

oxygen saturation sO2

blood volume fraction νhb

scattering magnitude amie

anisotropy g

tissue layer thickness d

sO2
→ Tumor detection
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Invertible neural networks

Examples

Oxygen saturation of living tissue

Figure: Results of INN compared to competitors [Ardizzone et al.
(2018)] 14



Invertible neural networks

Examples

Star cluster evolution

Simulation of a star cluster

At each time step calculation of spectra y

As well as:

Ionizing Luminosity
Ionizing Emission Rate
Cloud Density
Expansion Velocity
Age of cluster

⇒ E�ect on surrounding gas cloud
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Invertible neural networks

Examples

Star cluster evolution

Figure: Parameters of a speci�c time step in a simulation
[Ardizzone et al. (2018)]
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Conclusion

In science ill posed problems are faced

They are di�cult to solve with high ambiguity

Speci�c architectures allow for invertibility in NN

This can be used to train a NN on the forward and
inverse process simultaneously

Combined with a latent variable, multimodalities,
correlations and unrecoverable variables can be identi�ed

⇒ As a next step, apply this procedure to analytic
continuation
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