Schnelle Verfahren für Vielteilchensysteme Seminar "Vielteilchensysteme"

Steffen Börm

University of Kiel, Germany

1. November 2022

Ziel: Auswertung der Coulomb-Kräfte, die auf geladene Teilchen wirken.

$$f_{ij} = q_i q_j g(x_i, y_j),$$
 $g(x, y) = c \frac{y_j - x_i}{\|y_i - x_i\|^3},$

Ziel: Auswertung der Coulomb-Kräfte, die auf geladene Teilchen wirken.

$$f_{ij} = q_i q_j g(x_i, y_j), \qquad g(x, y) = c \frac{y_j - x_i}{\|y_j - x_i\|^3}, \ f_i = q_i \sum_{i=1}^n q_i g(x_i, y_i)$$

Ziel: Auswertung der Coulomb-Kräfte, die auf geladene Teilchen wirken.

$$f_{ij}=q_i\,q_j\,g(x_i,y_j), \qquad \qquad g(x,y)=crac{y_j-x_i}{\|y_j-x_i\|^3}, \ f_i=q_i\sum_{i=1}^nq_j\,g(x_i,y_j) \qquad \qquad ext{für alle } i\in[1:n].$$

Problem: Aufwand wächst quadratisch mit der Anzahl der Teilchen.

Ziel: Auswertung der Coulomb-Kräfte, die auf geladene Teilchen wirken.

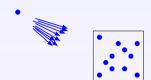
$$f_{ij}=q_i\,q_j\,g(x_i,y_j), \qquad \qquad g(x,y)=crac{y_j-x_i}{\|y_j-x_i\|^3}, \ f_i=q_i\sum_{i=1}^nq_j\,g(x_i,y_j) \qquad \qquad ext{für alle } i\in[1:n].$$

Problem: Aufwand wächst quadratisch mit der Anzahl der Teilchen.

Einfache Lösungsansätze:

- Vektorisierung (beispielsweise vier Kräfte simultan mit AVX),
- Parallelisierung (beispielsweise auf Mehrkernprozessoren),
- verteiltes Rechnen (beispielsweise ein Computer pro Teilgebiet).

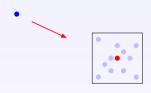
Ersatzteilchen



Idee: Weit entfernte Ansammlungen von Teilchen können durch ein einziges Teilchen ersetzt werden, das ungefähr dasselbe Kraftfeld hervorruft.

Dadurch lässt sich der Rechenaufwand spürbar reduzieren.

Ersatzteilchen



Idee: Weit entfernte Ansammlungen von Teilchen können durch ein einziges Teilchen ersetzt werden, das ungefähr dasselbe Kraftfeld hervorruft.

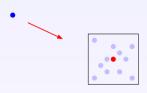
Dadurch lässt sich der Rechenaufwand spürbar reduzieren.

3 / 19

Berechnung vereinfacht sich zu

$$\sum_{j=1}^n q_j g(x_i, y_j) \approx \underbrace{\sum_{j=1}^n q_j}_{=:\hat{a}} g(x_i, \hat{y}) = \hat{q} g(x_i, \hat{y}).$$

Ersatzteilchen



Idee: Weit entfernte Ansammlungen von Teilchen können durch ein einziges Teilchen ersetzt werden, das ungefähr dasselbe Kraftfeld hervorruft.

Dadurch lässt sich der Rechenaufwand spürbar reduzieren.

3 / 19

Berechnung vereinfacht sich zu

$$\sum_{j=1}^n q_j g(x_i, y_j) \approx \underbrace{\sum_{j=1}^n q_j}_{=:\hat{q}} g(x_i, \hat{y}) = \hat{q} g(x_i, \hat{y}).$$

Genauigkeit lässt sich abschätzen durch

$$\|g(x_i,y_j)-g(x_i,\hat{y})\|\lesssim rac{\mathsf{diam}(s)}{\mathsf{dist}(x_i,s)^3}, \qquad s ext{ ist eine Kugel um } \hat{y} ext{ mit } \{y_1,\ldots,y_n\}\subseteq s.$$

Ziel: Höhere Genauigkeit ohne deutlich höheren Rechenaufwand.

Ansatz: Mehrere Ersatzteilchen anstelle eines einzigen.

Konstruktion: Interpolation der Funktion $y\mapsto g(x_i,y)$ in s. Interpolationspunkte $(\xi_{s,\nu})_{\nu\in M}$, Lagrange-Polynomen $(\ell_{s,\nu})_{\nu\in M}$.

$$g(x,y) \approx \sum_{\nu \in M} \ell_{s,\nu}(y) g(x,\xi_{s,\nu}).$$

Ziel: Höhere Genauigkeit ohne deutlich höheren Rechenaufwand.

Ansatz: Mehrere Ersatzteilchen anstelle eines einzigen.

Konstruktion: Interpolation der Funktion $y \mapsto g(x_i, y)$ in s. Interpolationspunkte $(\xi_{s,\nu})_{\nu \in M}$, Lagrange-Polynomen $(\ell_{s,\nu})_{\nu \in M}$.

$$g(x,y) \approx \sum_{\nu \in M} \ell_{s,\nu}(y) g(x,\xi_{s,\nu}).$$

$$f_i = q_i \sum_{j=1}^n q_j g(x_i, y_j)$$

Ziel: Höhere Genauigkeit ohne deutlich höheren Rechenaufwand.

Ansatz: Mehrere Ersatzteilchen anstelle eines einzigen.

Konstruktion: Interpolation der Funktion $y\mapsto g(x_i,y)$ in s. Interpolationspunkte $(\xi_{s,\nu})_{\nu\in M}$, Lagrange-Polynomen $(\ell_{s,\nu})_{\nu\in M}$.

$$g(x,y) \approx \sum_{\nu \in M} \ell_{s,\nu}(y) g(x,\xi_{s,\nu}).$$

$$f_i = q_i \sum_{j=1}^n q_j g(x_i, y_j) \approx q_i \sum_{j=1}^n q_j \sum_{\nu \in M} \ell_{s,\nu}(y_j) g(x_i, \xi_{s,\nu})$$

Ziel: Höhere Genauigkeit ohne deutlich höheren Rechenaufwand.

Ansatz: Mehrere Ersatzteilchen anstelle eines einzigen.

Konstruktion: Interpolation der Funktion $y\mapsto g(x_i,y)$ in s. Interpolationspunkte $(\xi_{s,\nu})_{\nu\in M}$, Lagrange-Polynomen $(\ell_{s,\nu})_{\nu\in M}$.

$$g(x,y) \approx \sum_{\nu \in M} \ell_{s,\nu}(y) g(x,\xi_{s,\nu}).$$

$$egin{aligned} f_i &= q_i \sum_{j=1}^n q_j \, g(x_i, y_j) pprox q_i \sum_{j=1}^n q_j \sum_{
u \in M} \ell_{s,
u}(y_j) \, g(x_i, \xi_{s,
u}) \ &= q_i \sum_{
u \in M} \left(\sum_{j=1}^n q_j \, \ell_{s,
u}(y_j)
ight) g(x_i, \xi_{s,
u}) \end{aligned}$$

Ziel: Höhere Genauigkeit ohne deutlich höheren Rechenaufwand.

Ansatz: Mehrere Ersatzteilchen anstelle eines einzigen.

Konstruktion: Interpolation der Funktion $y\mapsto g(x_i,y)$ in s. Interpolationspunkte $(\xi_{s,\nu})_{\nu\in M}$, Lagrange-Polynomen $(\ell_{s,\nu})_{\nu\in M}$.

$$g(x,y) \approx \sum_{\nu \in M} \ell_{s,\nu}(y) g(x,\xi_{s,\nu}).$$

$$egin{aligned} f_i &= q_i \sum_{j=1}^n q_j \, g(x_i, y_j) pprox q_i \sum_{j=1}^n q_j \sum_{
u \in M} \ell_{s,
u}(y_j) \, g(x_i, \xi_{s,
u}) \ &= q_i \sum_{
u \in M} \left(\sum_{j=1}^n q_j \, \ell_{s,
u}(y_j)
ight) g(x_i, \xi_{s,
u}) = q_i \sum_{
u \in M} \hat{q}_{s,
u} \, g(x_i, \xi_{s,
u}). \end{aligned}$$

Zulässigkeit

Problem: Die Genauigkeit der Interpolation hängt von

$$\eta := \frac{\mathsf{diam}(s)}{\mathsf{dist}(x_i, s)}$$

ab, dem Verhältnis zwischen Durchmesser und Abstand.

Zulässigkeit

Problem: Die Genauigkeit der Interpolation hängt von

$$\eta := \frac{\mathsf{diam}(s)}{\mathsf{dist}(x_i, s)}$$

ab, dem Verhältnis zwischen Durchmesser und Abstand. Für den Interpolationfehler *m*-ten Grades gilt die Abschätzung

$$\|f_i - \tilde{f}_i\| \lesssim \frac{1}{\operatorname{dist}(x_i, s)^2} \left(\frac{\eta}{\eta + 1}\right)^m.$$

Zulässigkeit

Problem: Die Genauigkeit der Interpolation hängt von

$$\eta := \frac{\mathsf{diam}(s)}{\mathsf{dist}(x_i, s)}$$

ab, dem Verhältnis zwischen Durchmesser und Abstand. Für den Interpolationfehler *m*-ten Grades gilt die Abschätzung

$$\|f_i - \tilde{f}_i\| \lesssim \frac{1}{\operatorname{dist}(x_i, s)^2} \left(\frac{\eta}{\eta + 1}\right)^m.$$

Konsequenz: Wir können die Kräfte nicht global approximieren, sondern nur in einem gewissen Abstand von x_i .

Idee: Wir zerlegen den Raum in Teilgebiete und prüfen deren Zulässigkeit.

Rekursion:

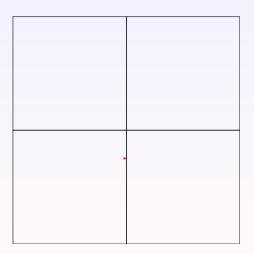
- Falls ein Teilgebiet zulässig ist, benutzen wir Interpolation.
- Ansonsten wird es weiter zerlegt.

Idee: Wir zerlegen den Raum in Teilgebiete und prüfen deren Zulässigkeit.

Rekursion:

- Falls ein Teilgebiet zulässig ist, benutzen wir Interpolation.
- Ansonsten wird es weiter zerlegt.

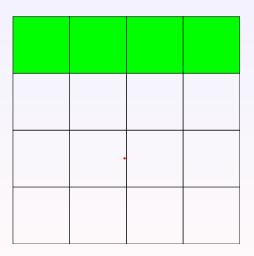
Idee: Wir zerlegen den Raum in Teilgebiete und prüfen deren Zulässigkeit.



Rekursion:

- Falls ein Teilgebiet zulässig ist, benutzen wir Interpolation.
- Ansonsten wird es weiter zerlegt.

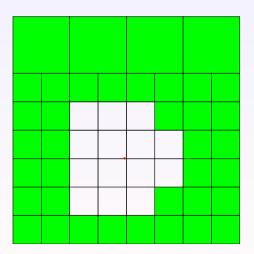
Idee: Wir zerlegen den Raum in Teilgebiete und prüfen deren Zulässigkeit.



Rekursion:

- Falls ein Teilgebiet zulässig ist, benutzen wir Interpolation.
- Ansonsten wird es weiter zerlegt.

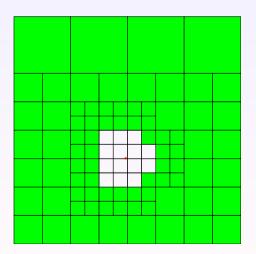
Idee: Wir zerlegen den Raum in Teilgebiete und prüfen deren Zulässigkeit.



Rekursion:

- Falls ein Teilgebiet zulässig ist, benutzen wir Interpolation.
- Ansonsten wird es weiter zerlegt.

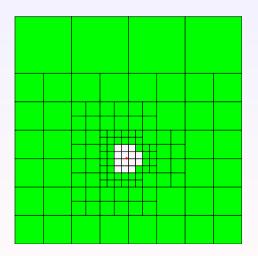
Idee: Wir zerlegen den Raum in Teilgebiete und prüfen deren Zulässigkeit.



Rekursion:

- Falls ein Teilgebiet zulässig ist, benutzen wir Interpolation.
- Ansonsten wird es weiter zerlegt.

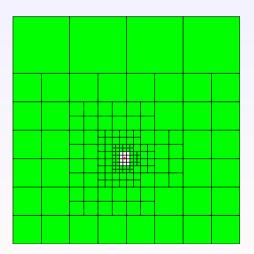
Idee: Wir zerlegen den Raum in Teilgebiete und prüfen deren Zulässigkeit.



Rekursion:

- Falls ein Teilgebiet zulässig ist, benutzen wir Interpolation.
- Ansonsten wird es weiter zerlegt.

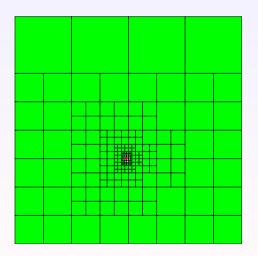
Idee: Wir zerlegen den Raum in Teilgebiete und prüfen deren Zulässigkeit.



Rekursion:

- Falls ein Teilgebiet zulässig ist, benutzen wir Interpolation.
- Ansonsten wird es weiter zerlegt.

Idee: Wir zerlegen den Raum in Teilgebiete und prüfen deren Zulässigkeit.



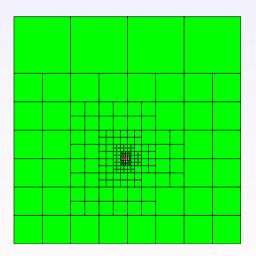
Rekursion:

- Falls ein Teilgebiet zulässig ist, benutzen wir Interpolation.
- Ansonsten wird es weiter zerlegt.

6 / 19

 Hinreichend kleine Teilgebiete können wir direkt behandeln.

Idee: Wir zerlegen den Raum in Teilgebiete und prüfen deren Zulässigkeit.

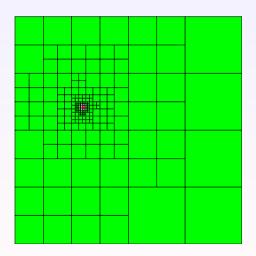


Rekursion:

- Falls ein Teilgebiet zulässig ist, benutzen wir Interpolation.
- Ansonsten wird es weiter zerlegt.
- Hinreichend kleine Teilgebiete können wir direkt behandeln.

Komplexität: Aufwand $\mathcal{O}(m^2 \log(\frac{H}{h}))$ für die Auswertung in einem Punkt x_i .

Idee: Wir zerlegen den Raum in Teilgebiete und prüfen deren Zulässigkeit.

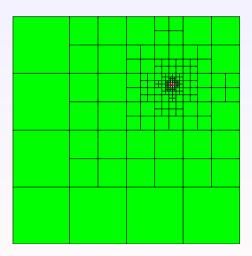


Rekursion:

- Falls ein Teilgebiet zulässig ist, benutzen wir Interpolation.
- Ansonsten wird es weiter zerlegt.
- Hinreichend kleine Teilgebiete können wir direkt behandeln.

Komplexität: Aufwand $\mathcal{O}(m^2 \log(\frac{H}{h}))$ für die Auswertung in einem Punkt x_i .

Idee: Wir zerlegen den Raum in Teilgebiete und prüfen deren Zulässigkeit.



Rekursion:

- Falls ein Teilgebiet zulässig ist, benutzen wir Interpolation.
- Ansonsten wird es weiter zerlegt.
- Hinreichend kleine Teilgebiete können wir direkt behandeln.

Komplexität: Aufwand $\mathcal{O}(m^2 \log(\frac{H}{h}))$ für die Auswertung in einem Punkt x_i .

Problem: Um das Kraftfeld in unterschiedlichen Punkten auszuwerten, benötigen wir Interpolationskoeffizienten auf unterschiedlichen Gebieten.

Idee: Wir berechnen alle Koeffizienten für eine Hierarchie von Teilgebieten im Voraus.

Problem: Um das Kraftfeld in unterschiedlichen Punkten auszuwerten, benötigen wir Interpolationskoeffizienten auf unterschiedlichen Gebieten.

Idee: Wir berechnen alle Koeffizienten für eine Hierarchie von Teilgebieten im Voraus.

Rekursion: Falls wir für alle Gebiete denselben Polynomgrad verwenden, gilt

$$\ell_{\mathbf{s},
u} = \sum_{
u' \in \mathbf{M}} \ell_{\mathbf{s},
u} (\xi_{\mathbf{s}',
u'}) \, \ell_{\mathbf{s}',
u'}.$$

Falls s in disjunkte Teilgebiete s' zerlegt wird, folgt

$$\hat{q}_{oldsymbol{s},
u} = \sum_{oldsymbol{y}_i \in oldsymbol{s}} q_j \, \ell_{oldsymbol{s},
u}(oldsymbol{y}_j)$$

Problem: Um das Kraftfeld in unterschiedlichen Punkten auszuwerten, benötigen wir Interpolationskoeffizienten auf unterschiedlichen Gebieten.

Idee: Wir berechnen alle Koeffizienten für eine Hierarchie von Teilgebieten im Voraus.

Rekursion: Falls wir für alle Gebiete denselben Polynomgrad verwenden, gilt

$$\ell_{\mathbf{s},
u} = \sum_{
u' \in \mathbf{M}} \ell_{\mathbf{s},
u} (\xi_{\mathbf{s}',
u'}) \, \ell_{\mathbf{s}',
u'}.$$

Falls s in disjunkte Teilgebiete s' zerlegt wird, folgt

$$\hat{q}_{\boldsymbol{s},\nu} = \sum_{\boldsymbol{y}_j \in \boldsymbol{s}} q_j \, \ell_{\boldsymbol{s},\nu}(\boldsymbol{y}_j) = \sum_{\boldsymbol{s}' \subseteq \boldsymbol{s}} \sum_{\boldsymbol{y}_j \in \boldsymbol{s}'} q_j \sum_{\nu' \in \boldsymbol{M}} \ell_{\boldsymbol{s},\nu}(\xi_{\boldsymbol{s}',\nu'}) \, \ell_{\boldsymbol{s}',\nu'}(\boldsymbol{y}_j)$$

Problem: Um das Kraftfeld in unterschiedlichen Punkten auszuwerten, benötigen wir Interpolationskoeffizienten auf unterschiedlichen Gebieten.

Idee: Wir berechnen alle Koeffizienten für eine Hierarchie von Teilgebieten im Voraus.

Rekursion: Falls wir für alle Gebiete denselben Polynomgrad verwenden, gilt

$$\ell_{\mathbf{s},
u} = \sum_{
u' \in \mathbf{M}} \ell_{\mathbf{s},
u} (\xi_{\mathbf{s}',
u'}) \, \ell_{\mathbf{s}',
u'}.$$

Falls s in disjunkte Teilgebiete s' zerlegt wird, folgt

$$\hat{q}_{s,\nu} = \sum_{y_j \in s} q_j \, \ell_{s,\nu}(y_j) = \sum_{s' \subseteq s} \sum_{y_j \in s'} q_j \sum_{\nu' \in M} \ell_{s,\nu}(\xi_{s',\nu'}) \, \ell_{s',\nu'}(y_j) = \sum_{s' \subseteq s} \sum_{\nu' \in M} \ell_{s,\nu}(\xi_{s',\nu'}) \, \hat{q}_{s',\nu'}.$$

Problem: Um das Kraftfeld in unterschiedlichen Punkten auszuwerten, benötigen wir Interpolationskoeffizienten auf unterschiedlichen Gebieten.

Idee: Wir berechnen alle Koeffizienten für eine Hierarchie von Teilgebieten im Voraus.

Rekursion: Falls wir für alle Gebiete denselben Polynomgrad verwenden, gilt

$$\ell_{\mathbf{s},
u} = \sum_{
u' \in \mathbf{M}} \ell_{\mathbf{s},
u} (\xi_{\mathbf{s}',
u'}) \, \ell_{\mathbf{s}',
u'}.$$

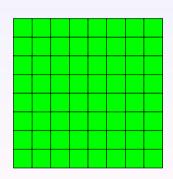
Falls s in disjunkte Teilgebiete s' zerlegt wird, folgt

$$\hat{q}_{s,\nu} = \sum_{y_j \in s} q_j \, \ell_{s,\nu}(y_j) = \sum_{s' \subseteq s} \sum_{y_j \in s'} q_j \sum_{\nu' \in M} \ell_{s,\nu}(\xi_{s',\nu'}) \, \ell_{s',\nu'}(y_j) = \sum_{s' \subseteq s} \sum_{\nu' \in M} \ell_{s,\nu}(\xi_{s',\nu'}) \, \hat{q}_{s',\nu'}.$$

Wir können also die Koeffizienten für s aus denen für die Teilgebiete s' berechnen.

Vorbereitungsphase

Aufgabe: Alle Koeffizienten $\hat{q}_{s,\nu}$ für alle Teilgebiete sind zu berechnen.

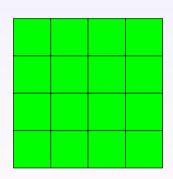


Kleinste Gebiete: Wir berechnen direkt

$$\hat{q}_{s,\nu} = \sum_{j \in s} \ell_{s,\nu}(y_j) \, q_j.$$

Vorbereitungsphase

Aufgabe: Alle Koeffizienten $\hat{q}_{s,\nu}$ für alle Teilgebiete sind zu berechnen.



Kleinste Gebiete: Wir berechnen direkt

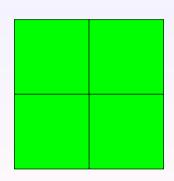
$$\hat{q}_{s,
u} = \sum_{j \in s} \ell_{s,
u}(y_j) \, q_j.$$

Größere Gebiete: Wir berechnen rekursiv

$$\hat{q}_{s,
u} = \sum_{s' \subset s} \sum_{
u' \in M} \ell_{s,
u}(\xi_{s',
u'}) \, \hat{q}_{s',
u'}.$$

Vorbereitungsphase

Aufgabe: Alle Koeffizienten $\hat{q}_{s,\nu}$ für alle Teilgebiete sind zu berechnen.



Kleinste Gebiete: Wir berechnen direkt

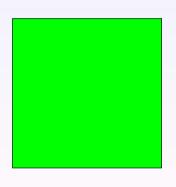
$$\hat{q}_{oldsymbol{s},
u} = \sum_{j \in oldsymbol{s}} \ell_{oldsymbol{s},
u}(oldsymbol{y}_j) \, q_j.$$

Größere Gebiete: Wir berechnen rekursiv

$$\hat{q}_{s,
u} = \sum_{s' \subset s} \sum_{
u' \in M} \ell_{s,
u}(\xi_{s',
u'}) \, \hat{q}_{s',
u'}.$$

Vorbereitungsphase

Aufgabe: Alle Koeffizienten $\hat{q}_{s,\nu}$ für alle Teilgebiete sind zu berechnen.



Kleinste Gebiete: Wir berechnen direkt

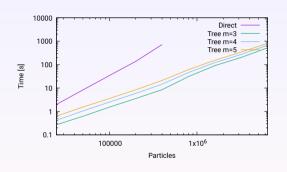
$$\hat{q}_{oldsymbol{s},
u} = \sum_{j \in oldsymbol{s}} \ell_{oldsymbol{s},
u}(oldsymbol{y}_j) \, q_j.$$

Größere Gebiete: Wir berechnen rekursiv

$$\hat{q}_{s,
u} = \sum_{s' \subset s} \sum_{
u' \in M} \ell_{s,
u}(\xi_{s',
u'}) \, \hat{q}_{s',
u'}.$$

8 / 19

Experiment: Baumalgorithmus

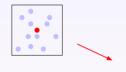


Teilchen	Direkt	Vorw.	Kopplung	Fehler
25 000	1.99	0.05	0.37	7.71_{-6}
50 000	8.29	0.11	0.93	6.52_{-6}
100 000	33.99	0.23	2.26	5.18_{-6}
200 000	137.32	0.46	5.40	4.50_{-6}
400 000	720.17	0.93	13.70	4.18_{-6}
800 000		1.87	43.86	
1 600 000		3.83	118.10	
3 200 000		7.77	264.24	
6 400 000		15.61	661.20	

Ersatzziele

Bisher: Die Auswertung für einen Punkt benötigt $\sim m^2 \log(\frac{H}{h})$ Operationen.

Ziel: Aufwand weiter reduzieren, um größere Systeme rechnen zu können.



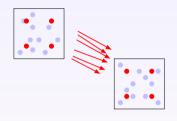
Ansatz: Falls ein zweiter Punkt x_k nahe an x_i liegt, werden auf ihn ungefähr dieselben Kräfte wirken wie auf x_i .

- ightarrow Es sollte genügen, diese Kräfte nur einmal zu berechnen.
- Realisierung: Wir ersetzen auch die Zielpunkte x_i in Teilgebieten t durch "Ersatzziele", aus denen wir die wirkenden Kräfte näherungsweise rekonstruieren können.

10 / 19

Symmetrische Interpolation

Ziel: Höhere Genauigkeit der Approximation.



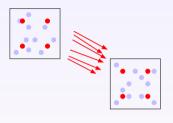
Ansatz: Interpolation in beiden Variablen.

$$g(x,y) pprox \sum_{
u \in M} \sum_{\mu \in M} \ell_{t,
u}(x) \, g(\xi_{t,
u}, \xi_{s,\mu}) \, \ell_{s,\mu}(y)$$

gültig für Quellen in s und Ziele in t.

Symmetrische Interpolation

Ziel: Höhere Genauigkeit der Approximation.



Ansatz: Interpolation in beiden Variablen.

$$g(x,y) pprox \sum_{
u \in M} \sum_{\mu \in M} \ell_{t,
u}(x) \, g(\xi_{t,
u}, \xi_{s,\mu}) \, \ell_{s,\mu}(y)$$

gültig für Quellen in s und Ziele in t.

Zulässigkeitsbedingung muss verschärft werden zu

$$\max\{\operatorname{diam}(t),\operatorname{diam}(s)\} \leq \eta \operatorname{dist}(t,s),$$

um schnelle Konvergenz garantieren zu können.

Rückwärtstransformation

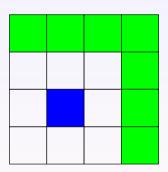
Erinnerung: Bei der Vorwärtstransformation haben wir die Koeffizienten auf einem größeren Gebiet s aus den Koeffizienten auf Teilgebieten $s' \subseteq s$ zusammengesetzt:

$$\hat{q}_{s,
u} = \sum_{s' \subseteq s} \sum_{
u' \in M} \ell_{s,
u}(\xi_{s',
u'}) \, \hat{q}_{s',
u'}.$$

Kräfte können in die entgegengesetzte Richtung weitergegeben werden. Falls wir die Kräfte $\hat{f}_{t,\mu}$ für ein größeres Gebiet t kennen, erhalten wir für ein Teilgebiet $t' \subseteq t$

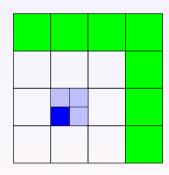
$$\hat{f}_{t',\mu'} = \sum_{\mu \in \mathcal{M}} \ell_{t,\mu}(\xi_{t',\mu'}) \, \hat{f}_{t,\mu}.$$

Idee: Wir verwenden hierarchisch unterteilte Teilgebiete sowohl für die Quellen als auch für die Ziele.



Kräfte werden für Interpolationspunkte in zulässigen Paare von Quell- und Zielgebieten berechnet.

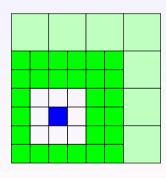
Idee: Wir verwenden hierarchisch unterteilte Teilgebiete sowohl für die Quellen als auch für die Ziele.



Kräfte werden für Interpolationspunkte in zulässigen Paare von Quell- und Zielgebieten berechnet.

Transfer: Auf größeren Gebieten berechnete Kräfte können auf kleineren interpoliert und so "vererbt" werden.

Idee: Wir verwenden hierarchisch unterteilte Teilgebiete sowohl für die Quellen als auch für die Ziele.

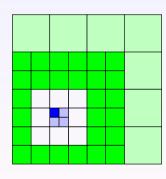


Kräfte werden für Interpolationspunkte in zulässigen Paare von Quell- und Zielgebieten berechnet.

Transfer: Auf größeren Gebieten berechnete Kräfte können auf kleineren interpoliert und so "vererbt" werden.

Akkumulation: Kräfte für kleinere Teilgebiete werden den "geerbten" Kräften hinzugefügt.

Idee: Wir verwenden hierarchisch unterteilte Teilgebiete sowohl für die Quellen als auch für die Ziele.

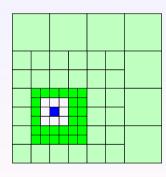


Kräfte werden für Interpolationspunkte in zulässigen Paare von Quell- und Zielgebieten berechnet.

Transfer: Auf größeren Gebieten berechnete Kräfte können auf kleineren interpoliert und so "vererbt" werden.

Akkumulation: Kräfte für kleinere Teilgebiete werden den "geerbten" Kräften hinzugefügt.

Idee: Wir verwenden hierarchisch unterteilte Teilgebiete sowohl für die Quellen als auch für die Ziele.

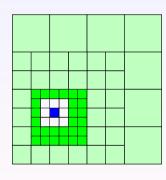


Kräfte werden für Interpolationspunkte in zulässigen Paare von Quell- und Zielgebieten berechnet.

Transfer: Auf größeren Gebieten berechnete Kräfte können auf kleineren interpoliert und so "vererbt" werden.

Akkumulation: Kräfte für kleinere Teilgebiete werden den "geerbten" Kräften hinzugefügt.

Idee: Wir verwenden hierarchisch unterteilte Teilgebiete sowohl für die Quellen als auch für die Ziele.



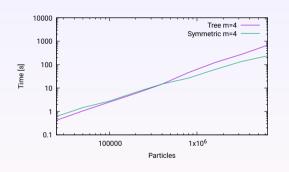
Kräfte werden für Interpolationspunkte in zulässigen Paare von Quell- und Zielgebieten berechnet.

Transfer: Auf größeren Gebieten berechnete Kräfte können auf kleineren interpoliert und so "vererbt" werden.

Akkumulation: Kräfte für kleinere Teilgebiete werden den "geerbten" Kräften hinzugefügt.

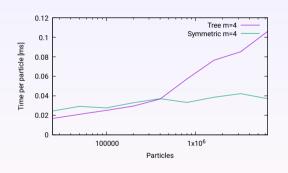
Ergebnis: Bei geeigneter Wahl der Rekursionstiefe genügen $\mathcal{O}(m^2n)$ Operationen.

Experiment: Symmetrischer Algorithmus



Teilchen	Baum	Fehler	Symm	Fehler
25 000	0.42	7.71_{-6}	0.61	5.64_{-6}
50 000	1.04	6.52_{-6}	1.45	5.84_{-6}
100 000	2.49	5.18_{-6}	2.74	6.67_{-6}
200 000	5.86	4.50_{-6}	6.55	6.40_{-6}
400 000	14.63	4.18_{-6}	14.76	6.34_{-6}
800 000	45.73		26.43	
1 600 000	121.93		61.32	
3 200 000	272.01		134.28	
6 400 000	676.81		235.21	

Experiment: Symmetrischer Algorithmus



Teilchen	Baum	Fehler	Symm	Fehler
25 000	0.42	7.71_{-6}	0.61	5.64_6
50 000	1.04	6.52_{-6}	1.45	5.84_{-6}
100 000	2.49	5.18_{-6}	2.74	6.67_{-6}
200 000	5.86	4.50_{-6}	6.55	6.40_{-6}
400 000	14.63	4.18_{-6}	14.76	6.34_{-6}
800 000	45.73		26.43	
1 600 000	121.93		61.32	
3 200 000	272.01		134.28	
6 400 000	676.81		235.21	

Verteiltes Rechnen

Problem: Falls wir sehr viele Teilchen berechnen wollen, ist der Rechenaufwand auch mit dem symmetrischen Verfahren noch recht hoch.

Ansatz: Wir beschäftigen mehrere Computer, von denen jeder für ein einziges oder mehrere Teilgebiete zuständig ist.

Algorithmus:

- Vorwärtstransformation auf jedem Computer für sein Teilgebiet.
- Berechnung der Kräfte in den Interpolationspunkten.
- Rückwärtstransformation auf jedem Computer für sein Teilgebiet.

Verteiltes Rechnen

Problem: Falls wir sehr viele Teilchen berechnen wollen, ist der Rechenaufwand auch mit dem symmetrischen Verfahren noch recht hoch.

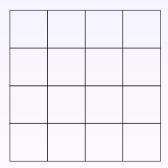
Ansatz: Wir beschäftigen mehrere Computer, von denen jeder für ein einziges oder mehrere Teilgebiete zuständig ist.

Algorithmus:

- Vorwärtstransformation auf jedem Computer für sein Teilgebiet.
- 2 Austausch der Koeffizienten zwischen den Computern.
- Berechnung der Kräfte in den Interpolationspunkten.
- Rückwärtstransformation auf jedem Computer für sein Teilgebiet.

Aufgabe: Jeder Computer muss wissen,

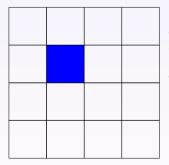
- welche Daten er von anderen Computern empfangen wird und
- welche Daten er ihnen senden muss.



Ausgangspunkt: Zerlegung des gesamten Raums in Teilgebiete.

Aufgabe: Jeder Computer muss wissen,

- welche Daten er von anderen Computern empfangen wird und
- welche Daten er ihnen senden muss.

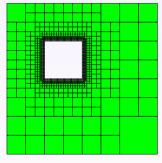


Ausgangspunkt: Zerlegung des gesamten Raums in Teilgebiete.

Verteiltes Rechnen: Jeder Computer ist für ein Teilgebiet zuständig.

Aufgabe: Jeder Computer muss wissen,

- welche Daten er von anderen Computern empfangen wird und
- welche Daten er ihnen senden muss.

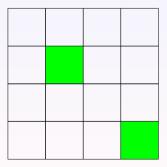


Ausgangspunkt: Zerlegung des gesamten Raums in Teilgebiete.

Verteiltes Rechnen: Jeder Computer ist für ein Teilgebiet zuständig.

Aufgabe: Jeder Computer muss wissen,

- welche Daten er von anderen Computern empfangen wird und
- welche Daten er ihnen senden muss.

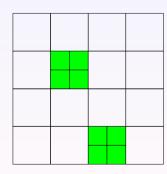


Ausgangspunkt: Zerlegung des gesamten Raums in Teilgebiete.

Verteiltes Rechnen: Jeder Computer ist für ein Teilgebiet zuständig.

Aufgabe: Jeder Computer muss wissen,

- welche Daten er von anderen Computern empfangen wird und
- welche Daten er ihnen senden muss.

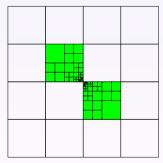


Ausgangspunkt: Zerlegung des gesamten Raums in Teilgebiete.

Verteiltes Rechnen: Jeder Computer ist für ein Teilgebiet zuständig.

Aufgabe: Jeder Computer muss wissen,

- welche Daten er von anderen Computern empfangen wird und
- welche Daten er ihnen senden muss.

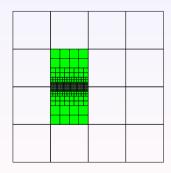


Ausgangspunkt: Zerlegung des gesamten Raums in Teilgebiete.

Verteiltes Rechnen: Jeder Computer ist für ein Teilgebiet zuständig.

Aufgabe: Jeder Computer muss wissen,

- welche Daten er von anderen Computern empfangen wird und
- welche Daten er ihnen senden muss.



Ausgangspunkt: Zerlegung des gesamten Raums in Teilgebiete.

Verteiltes Rechnen: Jeder Computer ist für ein Teilgebiet zuständig.

Zusammenfassung

Interpolation: Wir ersetzen die Quellen des Felds durch "Ersatzquellen" in Interpolationspunkten, die ungefähr dasselbe Feld erzeugen.

$$\sum_{y_j \in s} q_j \, g(x, y_j) \approx \sum_{\nu \in M} \hat{q}_{s,\nu} \, g(x, \xi_{s,\nu}).$$

Zulässigkeitskriterium $diam(s) \le \eta \operatorname{dist}(x_i, s)$ garantiert die Genauigkeit und führt zu einer Zerlegung des Raums in Teilgebiete.

Symmetrische Interpolation führt zu linearer, also optimaler Komplexität.

Verteiltes Rechnen ermöglicht die Behandlung auch sehr großer Aufgaben.

Zusammenfassung

Interpolation: Wir ersetzen die Quellen des Felds durch "Ersatzquellen" in Interpolationspunkten, die ungefähr dasselbe Feld erzeugen.

$$\sum_{y_j \in s} q_j \, g(x, y_j) \approx \sum_{\nu \in M} \hat{q}_{s,\nu} \, g(x, \xi_{s,\nu}).$$

Zulässigkeitskriterium diam $(s) \le \eta$ dist (x_i, s) garantiert die Genauigkeit und führt zu einer Zerlegung des Raums in Teilgebiete.

Symmetrische Interpolation führt zu linearer, also optimaler Komplexität.

Verteiltes Rechnen ermöglicht die Behandlung auch sehr großer Aufgaben.

Verfeinerungen: Multipolentwicklung oder Quadraturformeln statt Interpolation, Interpolation variabler Ordnung, algebraische Rekompression.

Literatur

Ursprünge:

- V. Rokhlin: Rapid solution of integral equations of classical potential theory
 J. Comp. Phys. 60:187–207 (1985)
- W. Hackbusch, Z. P. Nowak: On the fast matrix multiplication in the boundary element method by panel clustering Numer. Math. 54(4):463–491 (1989)

Verfeinerungen:

- L. Greengard, V. Rokhlin: A fast algorithm for particle simulations
 J. Comp. Phys. 73:325–348 (1987)
- C. R. Anderson: An implementation of the fast multipole method without multipoles SIAM J. Sci. Stat. Comp. 13:923–947 (1992)
- S. Börm, M. Löhndorf, J. M. Melenk: Approximation of integral operators by variable-order interpolation Numer. Math. 99(4):605–643 (2005)

Literatur

Hybride Verfahren:

- S. Börm: Approximation of integral operators by \mathcal{H}^2 -matrices with adaptive bases Computing 74:249–271 (2005)
- S. Börm, C. Börst: Hybrid matrix compression for high-frequency problems SIAM J. Mat. Anal. Appl. 41(4):1704–1725 (2020)

Hierarchische Matrizen:

- W. Hackbusch: Hierarchical Matrices: Algorithms and Analysis Springer (2015)
- S. Börm: Efficient Numerical Methods for Non-local Operators: \mathcal{H}^2 -Matrix Compression, Algorithms and Analysis EMS Tracts in Mathematics 14 (2010)
- M. Faustmann, J. M. Melenk, D. Praetorius: H-matrix approximability of the inverses of FEM matrices Numer. Math. 131(4):615–642 (2015)