

Potentials for Different Length and Time Scales RU							
⇒ PES is the central quantity for atomistic simulations							
	Method	Atoms	Simulation Time				
Accuracy Efficiency	CI, CC, MP2, MP4,	10 - 100	0				
	Density Functional Theory	100 - 1000	100 ps				
	Semiempirical Methods Tight Binding	1000 - 10 000	1 ns				
	"Reactive Potentials" EAM, Tersoff,	1000 - 100 000	10 ns				
	Classical Force Fields (LJ, harmonic, Coulomb)	1 000 000	1 ms				
Jörg Behler				Kiel 2023			
4							

Symmetry Functions: Combinatorial Growth					RUB		
For an N element system, there are N separate atomic NN types \Rightarrow no significant increase in complexity							
For earline \Rightarrow inc	For each radial function there are N functions for the possible neighboring elements \Rightarrow increase in complexity						
For each \Rightarrow stress	For each angular function there are $N(N+1)/2$ functions for the neighboring elements \Rightarrow strong increase in complexity						
	Elements	atomic NNs	multiplier radial/angular symmetry functions	typical total number of symmetry functions			
	1	1	1/1	6 + 25			
	2	2	2/3	12 + 75			
	3	3	3/6	18 + 150			
	4	4	4 / 10	24 + 250			
Often	Often, a reduction is possible, if only some compositions or structures are relevant						
Jörg Behler K					Kiel 2023		
22							

Multistep Quality Control	RUB
1. Generate reasonable initial training set ⇒ preliminary NN potential	
2. Check for extrapolation ⇒ extend sampled "volume" in configuration space	-
 3. Use a validation set ("Early Stopping Method") ⇒ estimate accuracy for <u>similar</u> structures not included in the training set 	
4. Check for "holes in the training set" \Rightarrow add structures in poorly sampled regions (iteratively)	
5. Check robustness of the results \Rightarrow repeat simulations with independent NN potentials	<i>E</i> , <i>F</i> , <i>g</i> (<i>r</i>),
Jörg Behler	Kiel 2023

Materials Science: Crystal Structure Prediction

Summary: Four Generations of Neural Network Potentials					
First-Generation Neural Network Potentials					
Global description ⇒ low-dimensional systems					
Second-Generation Neural Network Potentials					
Short-range: yes Long-range: no Non-local: no J. Behler, M. Parrinello, Phys. Rev. Lett. <u>98</u> (2007) 146401. 146401. 146401. 146401.	Spin: yes				
Third-Generation Neural Network Potentials					
Short-range: yes Non-local: no N. Artrith, T. Morawietz and J. Behler, Phys. Rev. B 83 (2011) 153101. 153101.	Spin: yes				
Fourth-Generation Neural Network Potentials					
Short-range: yes Non-local: yes T. W. Ko, J. A. Finkler, S. Goedecker, J. Behler, Nature Commun. <u>12</u> (2021) 398.	Spin: yes				
Jörg Behler	Kiel 2023				
71					

