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Calculation of the dielectric function for a semi-infinite crystal
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Calculation of the surface dielectric function~DF! is an important issue for a proper description of many
experiments. In this work we present a method for evaluating the DF in half-space geometry avoiding slab or
supercell approximations. The method is based on Green’s functions and requires no explicit knowledge of
wave functions and energies. We test our method by calculating the DF of GaAs~110! and show results for the
reflection anisotropy spectroscopy signal.
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In most experiments aiming at the electronic structure o
surface system, a photon field is involved. In addition,
newer pure optical methods such as reflection anisotr
spectroscopy~RAS! or reflection difference spectroscop
~RDS!, there are the classical photoemission~PE! and in-
verse photoemission~IPE! experiments to name. A theoret
cal description of these requires the consideration of sur
effects on the photon field, which means calculation of
surface dielectric function DF. So far, the surface DF w
determined in the supercell approximation.1–3 In particular
for PE a proper description of the underlying bulk ba
structure is mandatory, however. In the following we pres
a method for evaluating the surface DF for a semi-infin
crystal, which is the most realistic model for a surface.


We calculate the electronic structure within densi
fuctional theory ~DFT! in its local-density approximation
~LDA !. The exchange-correlation potential is due to Cep
ley and Alder4 as parametrized by Perdew and Zunge5


Wave functions are expanded into linear combinations
atomiclike orbitals~LCAO!. For open structures, such a
zinc blende, the quality of the basis can be greatly enhan
by additional functions located between the atoms. Th
off-site functions are necessary to give a good descriptio
the wave function in the interstitial and in the vacuum
gion. Because of the LCAO ansatz, all-electron calculati
pose no problems.


The integrals for the Hamilton and overlap matrix a
done by direct integration in real space over the unit c
This approach has several advantages. First, no expansi
the potential and charge density into auxiliary functions
necessary. Second, it allows for a very flexible basis set,
extension by plane waves, free Slater or Gaussian orbita
easily possible. Finally, implementation is very easy and
convergence is controlled by a single parameter, namely,
number of integration points. The unit cell is divided in
spheres surrounding the atoms and the remaining inters
region. Transformation to spherical coordinates within
spheres allows treatment of the singular potential and hig
fluctuating core wave functions. For both regions integrat
is done with a number-theoretical method that traces bac
Ellis and Painter6 and Zunger and Freeman.7 The actual in-
tegration points are so-called good lattice points,8 which are
superior to the earlier methods.


The electronic structure of the half-space is determined
calculating the Green’s functionG(r,r8,v) with a renormal-
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ization algorithm.9,10 This algorithm is based on the laye
doubling method for inverting a semi-infinite band-diagon
matrix. Thus only localized basis functions are allowed
expanding the half-space wave functions. FromG the density
of states~DOS! and with it the Fermi energy are accessib
The surface band structure shows up in the peak disper
of the ki-resolved DOS. The charge density is calculat
from G via a contour integration technique.11 We solve
the Poisson equation in a special supercell-like geometry
cording to Ref. 12. In contrast to the wave functio
the potential reaches the bulk values very close beneath
surface. Thus, the supercell approximation is much be
justified for calculating the Hartree potential than that f
the wave functions. In this way an efficient and accur
self-consistent procedure has been established, leading t
potential, charge density, and band structure of the se
infinite crystal.


For calculating the dielectric function~DF! a new method
had to be developed that accounts for the broken periodi
of the surface system. The usual Adler-Wiser formula,13,14


which is the basis for almost all atomistic calculations
optical properties, has to be modified in two ways: First,
cannot expand the DFe in a plane-wave basis because th
would impose a three-dimensional periodicity. Instead,
expand the DF into the same basis of localized functions
we do for the wave functions. This approach was tested
validated for bulk crystals.15. Second,e must be calculated
from the Green’s functionG(r,r8,v) instead of wave func-
tions cnki


(r). This can be achieved by a contour integrati
in the complex energy plane. With the help of the identity16


f nki


Enki
2En8ki8


2v22ih


5
1


2p i RC


dv8


~v82Enki
!~v82En8ki8


2v22ih!
, ~1!


we are able to reformulate the Adler-Wiser formula in term
of the Green’s function


G~r,r8,v!5(
nki


cnki
~r!cnki


* ~r8!


v2Enki
1 ih sgn ~Enki


2EF!
. ~2!
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Here, f nki
P$0,1% denotes the zero-temperature Fermi oc


pation number,h a small positive constant, andEF the Fermi
energy. The contourC encloses all poles at energiesEnki


below EF . Poles atEn8ki8
1v12ih are outside the integra


tion contour. The remaining real-space integral is given
the vector-valued matrix elements in LCAO representatio


Ai j
sqi~ki8 ,ki!5E d3rw iki8


* ~r!w j ki
~r!Fsqi


* ~r!. ~3!


LCAO basis functions are given byw iki
(r) with i ~as well as


j ands) a multi-index denoting position and kind of the ato
and orbital quantum numbers. The so-called orbital field
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Fsqi
~r!52“E d3r 8


wsqi
~r8!


ur82ru
~4!


can be calculated by an Ewald technique similar to
method described in Ref. 15. The integral forAi j


sqi over the
unit rod is done numerically. Because of the localization
the layer Bloch sumsw iki


(r) and the orbital fieldFsqi
(r) in


the z direction the integration volume can be restricted to
finite range.


Eventually, we arrive at an expression for the DF~in
LCAO representation!, which is suitable for a practica
implementation:

e
↔


st~qi ,v!5Sst~qi! 1
↔


1
i


4p2 (
ki


1st SBZ


TrF R
C
dv8Asqi~ki2qi ,ki!G~ki ,v8! ^ @Atqi~ki2qi ,ki!#


1G~ki2qi ,v82v22ih!


2 R
C8


dv8Asqi(ki2qi ,ki)G(ki ,v81v12ih) ^ [Atqi(ki2qi ,ki)]
1G~ki2qi ,v8!G . ~5!
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Here, 1J denotes the unit tensor,̂ the dyadic product of two
vectors, and 1st SBZ the first surface Brillouin zone. T
contourC8 is the complex conjugate ofC. The overlap ma-
trix is given by S(qi) depending on the external two
dimensional wave vectorqi . Due to the localization of the
basis functions theA matrix is band diagonal in the lowe
indices~like the Hamilton and overlap matrix!. Additionally,
A has only a finite number of nonvanishing entries beca
of the finite range of the orbital field. Thus, multiplications
all these infinite-dimensional matrices can be performed.
matrix of the DF itself is also band diagonal from physic
reasons but with a large bandwidth. Practically, we incre


the number of evaluated elements ofeJst until the final results
are converged.


The LCAO representation of the DF is well suited f
usage in subsequent calculations but not for comparison
experimental results such as RAS signals. Therefore,
necessary to change to Fourier space. Because of the
dimensionality this means switching to the Laue represe
tion. The transformation from the LCAO-DFeJst(qi ,v) to
the Laue-DFeJGiGi8


(qi ,z,z8,v) can be achieved by matri


multiplications


e
↔


GiGi8
~qi ,z,z8,v!5$SFL~qi ,z!S21~qi! e


↔
~qi ,v!S21~qi!


3@SFL~qi ,z8!#1%Gi ,Gi8
. ~6!


Here,


SGis
FL ~qi ,z!5E ei (Gi1qi)•ri8d~z2z8!wsqi


~r8!d3r 8 ~7!

e


e


e
l
e


th
is
o-


a-


denotes the overlap matrix between a Laue basis func
and a LCAO function. The inversion of the overlap matr
S(qi) is done with the same renormalization procedure as
use for calculating the Green’s function.


Our approach aims at the longitudinal-longitudinal DF.
proper description of the excitations with a transversal el
tromagnetic field, such as light, is only possible for a vani
ing wave vectorqi . For optical experiments, this is indee
fulfilled because the wave vector is much smaller than
typical diameter of the Brillouin zone. Thus, we choose
small value forqi and interpret the direction ofqi as the
polarization direction.


According to Ref. 1 the surface contributionDRa(v) to
the reflectivity for normal incident light is given by


DRa~v!


R0~v!
5


4v


c
Im


Deaa~v!


ebulk~v!21
. ~8!


Here, c is the speed of light,R0(v) the classical Fresne
reflectivity, andebulk(v) the macroscopic DF of the bulk. I
we neglect off-diagonal elements of the dielectric tens
Deaa(v) is related to the macroscopic DF of the surfa


eJ(z,z8,v) by the definition


Deaa~v!5E dzE dz8@eaa~z,z8,v!2d~z2z8!e0~z,v!#.


~9!


If we assume that the vacuum is in the regionz.0 and the
crystal belowz50, then


e0~z,v!5ebulk~v!u~2z!1u~z! ~10!


is the DF of the sharp crystal-vacuum interface. We appro
mate the macroscopic surface DF by theGi5Gi850 element
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of the Laue representation of the DF. Thus, we neglect lo
field effects~LFE! although one would expect a strong infl
ence of LFE at the surface because of the abrupt chang
the density. But as was shown in Ref. 3 LFE do not hav
pronounced effect on the RAS signal of Si~110!. We assume
that this will also be the case for GaAs~110!, which we take
as a test case.


The RAS-signal is given by the difference of thex andy
component of the above defined reflectivity:


DRx~v!2DRy~v!


R0~v!
5


4v


c
Im


Dexx~v!2Deyy~v!


ebulk~v!21
~11!


5
4v


c
Im


exx~v!2eyy~v!


ebulk~v!21
. ~12!


We calculate the tensor elementsexx(v) and eyy(v) from
the Laue DF:


e
↔


~v!5E dzE dz8 e
↔


GiGi8
~qi ,z,z8,v! ~13!


by integrating out thez dependence and takingGi andGi8 to
be zero. This can be viewed as a Fourier transformationz
andz8 for vanishing wave vectorsq' andq'8 . According to
Eq. ~6! the z integration is only affected by the overlap m
trix SGi i


FL (qi ,z), which can then be analytically reduced to


one-dimensional integral. The parallel wave vectorqi is
taken to be very small and pointing in thex direction for
exx(v) and in they direction foreyy(v).


As a prototype system we choose the relaxed~110! sur-
face of GaAs. It shows no reconstruction and the electro
and optical properties have already been investigated. Th
fore, it is well suited to test our newly developed formula f
the DF. We performed two calculations of the electron
structure. For the first one, we choose a large basis set
sisting of the atomic 4s, 4p, and 4d orbitals of As and Ga
and off-site functions ofs, p, andd types in the interstitial
and the vacuum. This leads to the surface band struc
depicted by circles in Fig. 1. It is in good agreement w
earlier calculations done within the superc
approximation.17 The theoretical work function of 5.47 eV i
very close to the experimental value of 5.5 eV. The sec
calculation is done with the minimal basis, which mea
only the occupied 4s and 4p orbitals of As and Ga are taken
The resulting band structure is depicted by crosses. All
main features, in particular the surface states, are reprod
by the second calculation. Above, say, 5 eV our calculat
with the small basis set cannot be trusted.


In order to keep the computational load on a tracta
level we evaluated Eq.~5! for the DF with the smaller basi
set. The necessary number of integration points for theki and
energy integration is determined by the value ofh. We found
36 ki points in the surface Brillouin zone and 1400 ener
points in the complex plane to be sufficient for a calculat
of the DF with h50.05 eV. The convergence behavior
the energy integration is very erratic. The error is rather la
before convergence is achieved and very small thereafte
smoother convergence might be possible with the met
described in Ref. 16 at the cost of a further broadening of
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DF. The matrix dimensions correspond to three unit ce
with 12 atoms~one As and one Ga atom per layer and tw
layers per cell!. In order to determine the RAS signal from
the DF, the numerical real-space integration of the ma
elements has to be done very precisely. We locate 73
integration points in the topmost three unit cells and
vacuum. This is about three times more than is needed f
pure band structure calculation. Still, small inaccuracies
the x andy component of theA matrix lead to an incorrec
onset of the RAS signal below the gap energy.


Because of the additional energy integral~which can be
done analytically in the bulk case! and the large matrix di-
mensions, the numerical effort is considerably high. In or
to reduce central processing unit~CPU! times, we make
an approximation to the dielectric matrix. We found th
to a very high degree of accuracy all off-diagonal mat


elements of the LCAO-DFeJ can be neglected if none o


the both indices denote an orbital withs symmetry. This also
holds if orbitals ofd symmetry are considered. The reason
not yet understood.


From the dielectric matrix the RAS signal is calculat
according to Eqs.~6! and ~11! by simple matrix multiplica-
tions. In Fig. 2 we compare our result with an experimen
curve by Esseret al.18 The rather jagged behavior of ou
result in the higher-energy region is probably due to a
small number ofki points, which makes it difficult to asso
ciate the experimentalE08 maximum with theory. However
this behavior did not show up in the DF itself. We shifted o
curve by 0.34 eV to higher energies to cure the LDA ba
gap problem. Then, the first three features at 2.7 eV, 2.9
and 3.4 eV are in good correspondence. The following pe
are too low in energy in our spectrum. We identify the e
perimental minimum at 3.8 eV with the sharp dip at 3.6 e
in our calculation. The shoulder at 4.7 eV~experiment! can
be seen in our curve at 4.4 eV. At higher energies we do


FIG. 1. Surface band structure of GaAs~110!. The shaded area
denotes the projected bulk band structure that is calculated b
bulk version of the LCAO program.
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expect good agreement because of the small basis set
limited basis is also the reason for the small intensity of
RAS signal. Test calculations with a larger basis set~includ-
ing d orbitals! yield an intensity three times higher. Becau
of the computational load we were not able to achieve
satisfactory energy resolution with this basis.


In total, we find a rather good agreement between
calculated and measured RAS signal of GaAs~110!. The
quality is comparable to supercell calculations that are a


FIG. 2. RAS signal of GaAs~110!.
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within the random-phase approximation~RPA!.2 For a better
description of the relative intensities, excitonic effects ha
to be taken into account.3,19A better reproduction of the pea
positions may be achieved with a larger basis set. The
rection of the LDA band energies within a quasipartic
scheme leads to an approximate rigid shift of the RAS sig
to higher energies and improves agreement with the m
sured peak positions.22 In comparison with supercell calcu
lations we do not have convergence problems regarding
thickness of atom and vacuum layers. This problem
adressed in a tight-binding calculation by Del Sole a
Onida,20 which shows that around 30 atomic layers are n
essary. Whatever method is used, it is difficult to calculat
RAS signal that is converged in all parameters.


In summary, we developed anab initio, self-consistent
program for calculating the electronic structure of a sem
infinite crystal. Because of the physically meaningful LCA
basis we are able to perform very accurate or less accu
very fast calculations. We demonstrate this by the comp
son of two band structures of the relaxed GaAs~110! surface.
In order to determine the optical properties of a half spa
we designed a formula for calculating the DF in the LCA
representation in terms of the Green’s function. In this w
the broken periodicity of the half space is fully taken in
account. As a test case we calculated the DF and RAS si
of GaAs~110!. In spite of the existing theoretical work on th
half-space DF,21,23 to our knowledge, numerical results hav
not been reported before. Our approach leads to similar
sults as supercell calculations. The comparison with exp
ment shows common characteristic features. It is still ha
pered due to the numerical effort.


We believe that the half-space geometry is the best mo
of reality and more work should be concentrated in this
rection. In particular, the calculation of optical properti
brings the usual slab or supercell approaches to their lim
Our work might be a good starting point for further improv
ments.


This work was supported by the Deutsche Forschungs
meinschaft under Contract No. Scha 360/19.
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