

Entropy evaluation in atomistic simulations

Pavel Levashov

Joint Institute for High Temperatures RAS Moscow, Russia

Workshop «Ab initio simulations of correlated fermions» devoted to the 60th anniversary of Prof. Michael Bonitz July 8-9, 2020

Classical MD (MC) simulations

• Classical interparticle potential $\varphi(r)$

• Interaction energy and pressure can be easily calculated:

$$E = E_{id} + \sum_{1 \le i < j \le N} \phi(r_{ij})$$

$$P = P_{id} - \frac{1}{3V} \left\langle \sum_{1 \le i < j \le N} r_{ij} \frac{d\phi(r)}{dr} \right\rangle$$

Entropy can not be calculated directly, one should apply special approaches. This is the problem for quantum computations.

Quantum molecular dynamics (QMD) simulation

- Adiabatic approximation
- Electrons are quantum and described by the density functional theory (DFT)
- Ions are classical and move under the forces from the electrons, described by Newton's equations

Parameters of QMD calculations:

- GGA with PBE corrections for exchangecorrelation functional
- PAW potentials with 6 valence electrons
- Γ-point, Baldereschi, grids up to 4x4x4 were used to obtain convergence
- QMD simulations were performed for 54-128 atoms (W), NVT ensemble

G. Kresse and J. Hafner, Phys. Rev. B **47**, 558 (1993); **49**, 14251 (1994). G. Kresse and J. Furthmuller, Phys. Rev. B **54**, 11169 (1996). **Paradoxical situation:** Entropy of a quantum system of interacting electrons is easier to calculate than entropy of a classical system!

Motivation: fast method of entropy evaluation of a classical system from a single MD (MC) run

Goal: Non-empirical calculation of phase diagrams of elements and compounds (melting and evaporation curves)

Entropy in average atom models

Density:

$$\frac{1}{3}\rho r_{0}^{3}n =$$

T enters into Fermi-Dirac distribution

- Explicit expression for a thermodynamic potential (Helmholtz free energy or grand canonical)
 - Finite-temperature Thomas-Fermi (semiclassical)
 - Hartree-Fock-Slater (one-electron wave functions, occupancies,...)

$$S = -\left(\frac{\partial F}{\partial T}\right)_T; \ S = -\left(\frac{\partial \Omega}{\partial T}\right)_V$$

In some average atom model the expression for *F* or Ω is inconsistent; in this case entropy is a key value (f_i – occupancies):

$$S = -\left[\sum_{i} f_{i} \ln f_{i} + \sum_{i} (1 - f_{i}) \ln(1 - f_{i})\right]$$

P and E can be found through entropy

Density functional theory: entropy

«First-principle» density functional theory is based on the Levy-Lieb formulation (1983). The theory is based on two assumptions (Kohn-Sham ansatz, [Kohn and Sham, 1965]):

- A system of interacting particles is replaced by a system of non-interacting particles with some effective potential. It is assumed, that the density of the ground state for both systems is the same.
- The Hamiltonian of a system of non-interacting particles contains a common operator of kinetic energy and a local potential, acting on the electron with spin at a point **r**. The locality greatly simplifies calculations but is not necessary.
- There is a generalization for finite temperatures

Kohn-Sham functional:

$$E_{\rm KS}[n] = \underbrace{T_s[n]}_{+} + \int V_{\rm ext}(\mathbf{r})n(\mathbf{r})\,d\mathbf{r} + E_{\rm Hartree}[n] + \underbrace{E_{xc}[n]}_{+}$$

non-inter. part.

 $E_0 = \min_n \min_{\psi \to n} \langle \psi | \hat{H} | \psi \rangle$

At T > 0 free energy functional is considered: $F[n] = E_{KS}[n] - TS[n]$

ex.-corr. functional

Density functional theory: entropy

Kohn-Sham equations: one-particle equations with a local potential:

$$\left(-\frac{1}{2}\nabla^2 + V_{\text{ext}}(\mathbf{r}) + V_{\text{Hartree}}(\mathbf{r}) + V_{xc}(\mathbf{r}) - \varepsilon_i\right)\psi_i(\mathbf{r}) = 0$$

From the solution we obtain occupancies f_i and wave functions $\psi_i(\mathbf{r})$,

$$n(\mathbf{r}) = \sum_{i} f_i |\psi_i(\mathbf{r})|^2$$

Entropy is calculated through one-particle occupancies:

$$S = -\left[\sum_{i} f_{i} \ln f_{i} + \sum_{i} (1 - f_{i}) \ln(1 - f_{i})\right]$$

PIMC: currently no acceptable way of entropy estimation

Classical systems: crystals

Typical vibrational DOS

Weighting function:

$$W_S = \frac{\beta h\nu}{\exp(h\nu) - 1} - \ln[1 - \exp(-\beta h\nu)]$$

S.-T. Lin, M. Blanco, W.A. Goddard, J. Chem. Phys. 119 (22) (2003) 11792- 11805

Widom's test particle method (1963)

- Applicable only for unordered systems
- Additional particle is inserted into the system and interaction energy of this particle with other particles is calculated
- Allows to calculate chemical potential of species *i*:

$$\mu_i = T \ln(\rho_i \lambda^3) - T \ln\left(\left\langle \exp\left(-\frac{\psi_i}{T}\right)\right\rangle\right) = \mu_{id} + \mu_{ex}$$

Here ψ_i – the interaction energy of an inserted particle with other particles

The method allows to restore thermodynamic potential and entropy

Problems:

- time-consuming;
- bad convergence for dense systems

Thermodynamic integration

The method calculates the difference in free energy between two given states with potential energies U_A and U_B :

$$U(\lambda) = U_A + \lambda (U_B - U_A)$$

Free energy difference is calculated by integrating over ensemble-averaged enthalpy changes along the path between the states A and B:

$$\Delta F(A \to B) = \int_{0}^{1} \left\langle \frac{\partial U_{\lambda}}{\partial \lambda} \right\rangle d\lambda$$

The method is exact but requires multiple simulations at each λ Time-consuming for quantum computations Convergence should be checked

Example: simulation of melting using thermodynamic integration

12

Copper, one point at the melting curve DFT for the solid phase, QMD for the liquid Two fitted EAM potentials (ref1 for solid, ref2 for liquid)

Simulation of melting: Lindemann criterion

- Only solid phase is considered (DFT + phonons)
- Lindemann melting criterion:

$$\sqrt{\langle u^2(T_m) \rangle} = Ld_{nn}$$

L – Lindemann parameter, d_{nn} – average interatomic distance $u^{2}(T)$ – from phonon DOS $g(\omega)$:

$$\langle u^2(T) \rangle = \frac{\hbar}{2M_a} \int_0^\infty \frac{d\omega}{\omega} g(\omega) \coth \frac{\hbar\omega}{2T}$$

Reference melting temperature is required to determine *L*

Method is inapplicable for compounds

Minakov et al. PRB 92, 224102 (2015)

Estimation of evaporation curve

- We used 128 atoms for ρ > 7 g/cm³ and 54 atoms for ρ < 7 g/cm³
- Trajectory length was chosen to provide the statistical error for pressure less than 1 kbar (5000-10000 steps)

Supercritical isotherms of tungsten

Monte-Carlo procedure (2 000+ tries):

- approximation of isochores taking into account statistical error
- **Calculations** of isotherms, search for the inflection point:

 ∂P

 $\overline{\partial \rho}$

 $\partial^2 P$

 $\partial \rho^2$ The procedure is the generalization of the method from

Miljacic L. et al. Calphad **51**, 133 (2015)

Minakov D.V. et al. Phys. Rev. B 97, 024205 (2018)

Demonstration of Monte-Carlo

- Approximation of isochores taking into account statistical error
- Calculations of isotherms, search for inflection point

Demonstration of Monte-Carlo

- Approximation of isochores taking into account statistical error
- Calculations of isotherms, search for inflection point

Demonstration of Monte-Carlo

- Approximation of isochores taking into account statistical error
- Calculations of isotherms, search for inflection point

EDemonstration of Monte-Carlo

- Approximation of isochores taking into account statistical error
- Calculations of isotherms, search for inflection point

Estimation of critical point parameters

- Approximation of isochores taking into account statistical error
- Calculations of isotherms, search for inflection point

Phase diagram of tungsten at low densities

Problem: we need an (approximate) method of entropy estimation from one MD (or MC) run

Two-phase model. Vibrational DOS decomposition

N particles

Gas phase has 3fN degrees of freedom, crystal phase - 3(1 - f)N

Vibrational DOS is represented as a sum gas a solid contributions:

$$F(\nu) = F^s(\nu) + F^g(\nu)$$

F^{*g*}(0) is connected with the self-diffusion coefficient

S.-T. Lin, M. Blanco, W.A. Goddard, J. Chem. Phys. 119 (22) (2003) 11792– 11805

Hard-spheres model for the gas phase

Velocity autocorrelation function for hard spheres:

$$c^{\rm HS}(t) = c^{\rm HS}(0)\exp(-\alpha t) = \frac{3kT}{m}\exp(-\alpha t)$$

 α - Enkcog friction coefficient

 $F^{HS}(\nu) = \frac{4}{kT} \int_{0}^{\infty} \sum_{i=1}^{N^{g}} \sum_{k=1}^{3} m_{j}c_{j}^{k}(t)\cos(2\pi\nu t)dt$ f – fraction of gas phase $=\frac{12N^g\alpha}{\alpha^2+4\,\pi^2\,\nu^2},$ $F^{HS}(\nu) = \frac{F'(0)}{1 + \left[\frac{\pi F(0)\nu}{6fN}\right]^2}$

 $N^g = fN$ - number of hard spheres

Entropy calculation

Weighted sum of solid and gas contributions:

$$S_{ionic} = S_s + S_g$$

$$S_{s} = k_{B} \int_{0}^{\infty} (F(\nu) - F^{HS}(\nu)) W_{S}(\nu) d\nu, \quad F^{HS}(\nu) = \frac{F(0)}{1 + \left[\frac{\pi F(0)\nu}{6fN}\right]^{2}}$$
$$S_{g} = k_{B} \int_{0}^{\infty} F^{HS}(\nu) W_{g}^{HS}(\nu) d\nu,$$

$$S_{\rm e} = -k \left\langle \sum_i [f_i \ln f_i + (1 - f_i) \ln(1 - f_i)] \right\rangle$$

Comparison of VDOS for Na

Vibrational DOS for Na at T = 723 K and normal pressure

M.P. Desjarlais, Phys. Rev. E 88 (2013) 062145

Velocity autocorrelation function as a memory function

$$\frac{d\Phi_g(t)}{dt} = -\int_0^t K_g(\tau)\Phi_g(t-\tau)d\tau \quad \text{-velocity autocorrelation function}$$

$$\Phi(t) = \sum_{n=0}^{\infty} (-1)^n \frac{M_{2n}}{(2n)!} t^{2n} \quad \text{-temporal series expansion (moments)}$$

$$F_g(v) = \frac{1}{2} \left[\frac{1}{\hat{K}_g(i2\pi\nu) + i2\pi\nu} + \frac{1}{\hat{K}_g(-i2\pi\nu) - i2\pi\nu} \right] \quad \begin{array}{c} \text{Complementary} \\ \text{error function} \end{array}$$

$$K_g(\tau) = A_g e^{-B_g \tau^2} \quad \hat{K}_g(s) = A_g \sqrt{\frac{\pi}{4B_g}} \exp\left[\frac{s^2}{4B_g}\right] \operatorname{Erfc}\left[\frac{s}{2\sqrt{B_g}}\right]$$

$$\operatorname{Laplace transform}$$

$$F_g(0) = \frac{1}{\hat{K}_g(0)} = \frac{1}{A_g} \sqrt{\frac{4B_g}{\pi}} = \frac{F(0)}{f_g}$$

$$A_g = 4B_g / \left[2 + \sqrt{\pi(1 + 4B_g/\alpha^2)}\right] \quad \text{Agreement with hard-sphere model at low } \nu$$

K. S. Singwi and M. P. Tosi, Phys. Rev. 157, 153 (1967)

M.P. Desjarlais, Phys. Rev. E 88 (2013) 062145

Memory function vs. hard spheres

Memory function with 2 or 4 moments changes the slope of the tail

Entropy for liquid metals: comparison

M.P. Desjarlais, Phys. Rev. E 88 (2013) 062145

Soft-sphere potential for entropy evaluation

 $\phi(r) = \varepsilon \left(\frac{\sigma}{r}\right)^n$ - soft-sphere potential

Uniform potential, all properties depend only on one parameter:

 $\zeta = \frac{\pi}{6} \left(\frac{\varepsilon}{T}^{3/n} \rho \sigma^3 \right)$

Potential parameters ε , σ , n are determined from structure factor fitting at given T and ρ :

$$S(k) = 1 + 4\pi\rho \int_{0}^{\infty} [g(r) - 1]r \frac{\sin(kr)}{k} dr$$

Vibrational density of states, comparison

Soft-sphere potential gives better agreement with QMD VDOS tail

Entropy for rhenium, comparison

Soft-sphere potential gives promising results for entropy

Conclusions

- Method of entropy estimation of a classical system from a single MD (MC) run is still needed
- Two-phase approach is approximate and have limitations
- New approaches based upon microcanonical ensemble (Jarzynski equality, density of states estimation) should be checked
- Entropy calculation in PIMC is still missing very important for liquid-liquid phase transition
- My best wishes to Michael!