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Classical MD (MC) simulations

• Classical interparticle potential φ(r)

• Interaction energy and pressure can be easily calculated:
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Entropy can not be calculated directly, one should apply special approaches.
This is the problem for quantum computations.



Quantum molecular dynamics 
(QMD) simulation

G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993); 49, 14251 (1994).
G. Kresse and J. Furthmuller,  Phys. Rev. B 54, 11169 (1996). 

• Adiabatic approximation

• Electrons are quantum and described by 
the density functional theory (DFT)

• Ions are classical and move under the 
forces from the electrons, described by 
Newton's equations

Parameters of QMD calculations:

• GGA with PBE corrections for exchange-
correlation functional

• PAW potentials with 6 valence electrons

• Γ-point, Baldereschi, grids up to 4x4x4 
were used to obtain convergence

• QMD simulations were performed for 
54-128 atoms (W), NVT ensemble 
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Motivation and goal

Paradoxical situation: Entropy of a quantum system of 
interacting electrons is easier to calculate than entropy of a 
classical system!

Motivation: fast method of entropy evaluation of a classical 
system from a single MD (MC) run

Goal: Non-empirical calculation of phase diagrams of elements 
and compounds (melting and evaporation curves)
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Entropy in average atom models
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T enters into Fermi-Dirac 
distribution

Density:

• Explicit expression for a thermodynamic potential 
(Helmholtz free energy or grand canonical)
• Finite-temperature Thomas-Fermi 

(semiclassical)
• Hartree-Fock-Slater (one-electron wave 

functions, occupancies,…)

• In some average atom model the expression for F
or Ω is inconsistent; in this case entropy is a key 
value (fi – occupancies):

P and E can be found through entropy



Density functional theory: entropy
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«First-principle» density functional theory is based on the Levy-Lieb formulation
(1983). The theory is based on two assumptions (Kohn-Sham ansatz, [Kohn and 
Sham, 1965]):
• A system of interacting particles is replaced by a system of non-interacting 

particles with some effective potential. It is assumed, that the density of the 
ground state for both systems is the same.

• The Hamiltonian of a system of non-interacting particles contains a common 
operator of kinetic energy and a local potential, acting on the electron with spin  
at a point r. The locality greatly simplifies calculations but is not necessary.

• There is a generalization for finite temperatures

Kohn-Sham functional:

At T > 0 free energy functional is considered:



Density functional theory: entropy
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Kohn-Sham equations: one-particle equations with a local potential:

From the solution we obtain occupancies fi and wave functions ψi(r),

Entropy is calculated through one-particle occupancies:



PIMC: currently no acceptable 
way of entropy estimation
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Classical systems: crystals
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For a crystal in the quasiharmonic approximation:

harmonic 
oscillator

vibrational
density of
state

Entropy:

Weighting function:

Typical vibrational DOS

S.-T. Lin, M. Blanco, W.A. Goddard, J. Chem. Phys. 119 (22) (2003) 11792– 11805



Widom’s test particle method (1963)
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• Applicable only for unordered systems
• Additional particle is inserted into the system and interaction 

energy of this particle with other particles is calculated
• Allows to calculate chemical potential of species i:

Here ψi – the interaction energy of an inserted particle with other particles 

The method allows to restore thermodynamic potential and entropy

Problems:
- time-consuming; 
- bad convergence for dense systems



Thermodynamic integration
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The method calculates the difference in free energy between two given states 
with potential energies UA and UB:

Free energy difference is calculated by integrating over ensemble-averaged 
enthalpy changes along the path between the states A and B:

The method is exact but requires multiple simulations at each λ
Time-consuming for quantum computations
Convergence should be checked

Kirkwood, John G. (1935). J. Chem. Phys. 3 (5): 300–313



Example: simulation of melting using 
thermodynamic integration
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Copper, one point at the melting curve
DFT for the solid phase, QMD for the liquid
Two fitted EAM potentials (ref1 for solid, ref2 for liquid) 

Zhu et al. PRB 96, 224202 (2017)

Calculation of the free 
energy of liquid from the 
free energy of solid: 5-
stage procedure!



Simulation of melting: Lindemann 
criterion
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• Only solid phase is considered (DFT + phonons)
• Lindemann melting criterion:

L – Lindemann parameter, 
dnn – average interatomic distance
u2(T) – from phonon DOS g(ω):

Reference melting temperature is required
to determine L

Melting curve of copper

Minakov et al. PRB 92, 224102 (2015)

Method is inapplicable for compounds



Evolution of pressure in QMD

Moving average 1000 steps

Statistical error of average pressure

Estimation of evaporation curve

• We used 128 atoms for ρ > 7 g/cm3 and 54 atoms for ρ < 7 g/cm3

• Trajectory length was chosen to provide the statistical error for pressure less 
than 1 kbar (5000-10000 steps)
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Supercritical isotherms of tungsten

Monte-Carlo 
procedure (2 000+ 
tries):

- approximation of 
isochores taking 
into account 
statistical error

- Calculations of 
isotherms, search 
for the inflection 
point:

Minakov D.V. et al. Phys. Rev. B 97, 024205 (2018) 
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The procedure is the generalization 
of the method from

Miljacic L. et al. Calphad 51, 133 (2015)

13.5 kK

13.0 kK

12.25 kK

12.5 kK

Isochore approximation



Monte-Carlo procedure (2 000+ tries):
• Approximation of isochores taking into account statistical error
• Calculations of isotherms, search for inflection point

Demonstration of Monte-Carlo 
procedure
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Monte-Carlo procedure (2 000+ tries):
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Monte-Carlo procedure (2 000+ tries):
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Monte-Carlo procedure (2 000+ tries):
• Approximation of isochores taking into account statistical error
• Calculations of isotherms, search for inflection point

Demonstration of Monte-Carlo 
procedure
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Critical point:

Tc = 12.2 ± 0.2 kK;

Pc = 6.0 ± 0.9 kbar;

ρc = 4.2 ± 0.9 g/cm3;

Zc = 0.26 ± 0.7 g/cm3

Monte-Carlo procedure (2 000+ tries):
• Approximation of isochores taking into account statistical error
• Calculations of isotherms, search for inflection point

Estimation of critical point parameters 20



Phase diagram of tungsten at low densities 21

Our calculations are 
close to the data by by 
• Seydel and Berthault

in the solid phase 
• by Hüpf and Hess in 

the liquid phase

Our critical parameters 
are close to the 
prediction made from 
Likalter’s similarity 
relation, 
PRB 53, 4386 (1996)

Minakov D.V. et al. Phys. Rev. B 97, 024205 (2018) 



Problem: we need an (approximate) 
method of entropy estimation from 
one MD (or MC) run
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Two-phase model. Vibrational DOS 
decomposition

S.-T. Lin, M. Blanco, W.A. Goddard, J. Chem. Phys. 119 (22) (2003) 11792– 11805

Gas phase has 3fN degrees of 
freedom, crystal phase - 3(1 - f)N

N particles

Vibrational DOS is represented as 
a sum gas a solid contributions: 

Fg(0) is connected with the 
self-diffusion coefficient



Hard-spheres model for the gas phase

Velocity autocorrelation function for hard spheres:

- Enkcog friction coefficient 

- number of hard spheres

f – fraction of gas phase



Entropy calculation

Sionic= Ss + Sg

Weighted sum of solid and gas contributions:



Comparison of VDOS for Na

M.P. Desjarlais, Phys. Rev. E 88 (2013) 062145

Vibrational DOS for Na at T = 723 K and normal pressure

The slope of the VDOS tail is incorrect



Velocity autocorrelation function as 
a memory function

M.P. Desjarlais, Phys. Rev. E 88 (2013) 062145K. S. Singwi and M. P. Tosi, Phys. Rev. 157, 153 (1967)

Laplace transform 

Complementary
error function

Agreement with hard-sphere model at low ν

- velocity autocorrelation function

- temporal series expansion (moments)



Memory function vs. hard spheres

Memory function with 2 or 4 moments changes the slope of the tail



Entropy for liquid metals: comparison

Fe

M.P. Desjarlais, Phys. Rev. E 88 (2013) 062145

Problems:
- hard-sphere potential has only one fitting 

parameter;
- memory function can give several solutions;
- Bad results for refractory metals 



Soft-sphere potential for entropy 
evaluation
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Uniform potential, all properties depend only on one parameter: 

- soft-sphere potential

Potential parameters ε, σ, n are 
determined from structure factor 
fitting at given T and ρ:

Re, 16.7 g/cm3, 4.9 kK

QMD
soft spheres

Structure factor for rhenium



Vibrational density of states, 
comparison
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Entropy for rhenium, comparison
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Conclusions

• Method of entropy estimation of a classical system from a 
single MD (MC) run is still needed

• Two-phase approach is approximate and have limitations

• New approaches based upon microcanonical ensemble 
(Jarzynski equality, density of states estimation) should be 
checked

• Entropy calculation in PIMC is still missing – very important for 
liquid-liquid phase transition

• My best wishes to Michael!
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