Ab initio PIMC approach to the dynamic properties of warm dense electrons

Workshop: Ab initio simulations of correlated fermions

Paul Hamann, Tobias Dornheim[†], Jan Vorberger^{*}, Zhandos Moldabekov^{**}, Michael Bonitz

Institute of Theoretical Physics and Astrophysics, Kiel University [†] Center for Advanced Systems Understanding, * Helmholtz-Zentrum Dresden ** Al Farabi University, Almaty, Kazakhstan

July 8th, 2020

Introduction: warm dense matter

Warm dense matter (WDM):

- Nearly classical ions
- Degenerate non-ideal electrons
- Coupling parameter:

$$r_{s}=rac{ar{r}}{a_{
m B}}\sim 0.1\dots 10$$

Degeneracy parameter:

 $\theta = T/T_{\rm F} \sim 0.1 \dots 10$

 Temperature, degeneracy and coupling effects equally important
 No small parameters

Figure: From T. Dornheim, S. Groth, and M. Bonitz, *Physics Reports* **744**, 1-86 (2018)

Perturbation theory and ground-state approaches fail

Ab initio dynamic (ω -dependent) results for the warm dense UEG

Key quantity: dynamic structure factor

$$S(\mathbf{q},\omega) := \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathrm{d}t \underbrace{\langle \hat{n}_{\mathbf{q}}(t) \hat{n}_{\mathbf{q}}^{\dagger}(0) \rangle}_{:=F(\mathbf{q},t)} e^{i\omega t}$$

- \rightarrow Directly measured in scattering experiments
- Chihara decomposition applies for non-collective scattering:

$$\begin{split} & S(\mathbf{q},\omega) = S_{\text{b-b}}(\mathbf{q},\omega) + S_{\text{b-f}}(\mathbf{q},\omega) + S_{\text{f-f}}(\mathbf{q},\omega) \\ & \rightarrow S_{\text{f-f}}(\mathbf{q},\omega) \sim S^{\text{UEG}}(\mathbf{q},\omega) \end{split}$$

Practical example: Fit model for S(q, ω; T_e) to spectrum to determine electron temperature T_e

Figure: Scattering spectrum of isochorically heated graphite at LCLS. Taken from D. Kraus *et al.*, *Plasma Phys. Control. Fusion* (2019)

Investigation of dynamic quantities

$$S(\mathbf{q},\omega) := rac{1}{2\pi} \int_{-\infty}^{\infty} \mathrm{d}t \; \underbrace{\langle \hat{n}_{\mathbf{q}}(t) \hat{n}_{\mathbf{q}}^{\dagger}(0)
angle}_{:=F(\mathbf{q},t)} \; e^{i\omega t}$$

 \rightarrow requires real time-dependent simulations

 \rightarrow Rigorous treatment of correlations in general not feasible

Investigation of dynamic quantities

$$S(\mathbf{q},\omega) := rac{1}{2\pi} \int_{-\infty}^{\infty} \mathrm{d}t \; \underbrace{\langle \hat{n}_{\mathbf{q}}(t) \hat{n}^{\dagger}_{\mathbf{q}}(0)
angle}_{:=F(\mathbf{q},t)} \; e^{i\omega t}$$

 \rightarrow requires real time-dependent simulations \rightarrow Rigorous treatment of correlations in general not feasible

Alternative: analytic continuation $t \rightarrow -i\tau$

$$m{F}(\mathbf{q}, au) = \int_{-\infty}^{\infty} \mathsf{d}\omega \; m{S}(\mathbf{q},\omega) m{e}^{- au\omega} \; orall \, au \in [0,eta]$$

Advantage:

 $F(\mathbf{q}, \tau)$ accessible within **PIMC** simulations **thermodynamic equilibrium** \rightarrow *ab initio* feasible

Investigation of dynamic quantities

$$S(\mathbf{q},\omega) := rac{1}{2\pi} \int_{-\infty}^{\infty} \mathrm{d}t \; \underbrace{\langle \hat{n}_{\mathbf{q}}(t) \hat{n}_{\mathbf{q}}^{\dagger}(0) \rangle}_{:=F(\mathbf{q},t)} \; e^{i\omega t}$$

 \rightarrow requires real time-dependent simulations \rightarrow Rigorous treatment of correlations in general not feasible

Alternative: analytic continuation $t \rightarrow -i\tau$

$${m F}({f q}, au) = \int_{-\infty}^\infty {f d}\omega \; {m S}({f q},\omega) {m e}^{- au\omega} \; orall \; au \in [0,eta]$$

Advantage:

 $F(\mathbf{q}, \tau)$ accessible within **PIMC** simulations thermodynamic equilibrium \rightarrow *ab initio* feasible

Disadvantage:

 $S(\mathbf{q}, \omega)$ requires inverse Laplace transform ill-posed problem \rightarrow sensitive to statistical errors in *F* $\overline{(\theta = 1, r_{s} = 4, N = 66)}$ 0.8 0.6 $q/q_{F} = 2.36$ F(q,τ) 0.4 $q/q_F = 3.48$ 0.2 $q/q_{F} = 6.03$ 0 0.2 0 0.4 0.6 0.8 τ/β

Imaginary-time density-density correlation function:

The reconstruction problem

$${m F}({f q}, au)=\int_{-\infty}^\infty {f d}\omega\; {m S}({f q},\omega) {m e}^{- au\omega}\; orall\; au\in [0,eta]$$

Known frequency moments: $\langle \omega^{-1} \rangle$, $\langle \omega^{0} \rangle$, $\langle \omega^{1} \rangle$, $\langle \omega^{3} \rangle$

$$\langle \omega^k \rangle = \int_{-\infty}^{\infty} \mathrm{d}\omega \; \omega^k \mathcal{S}(\mathbf{q}, \omega)$$

Spectrum which minimizes deviation from QMC results may not be the most desirable.

Two general approaches:

Introduce additional criteria, by which to select a most "physical" solution

 \rightarrow maximum entropy, ...

Stochastically sample set of all spectra reproducing $\{F(\tau), \langle \omega^k \rangle\}$ within accuracy limits, extract common features by averaging \rightarrow genetic algorithm (GIFT)¹, ...

¹E. Vitali et al., Phys. Rev. B 82, 174510 (2010)

The reconstruction problem

$$m{F}(\mathbf{q}, au) = \int_{-\infty}^{\infty} \mathsf{d}\omega \; m{S}(\mathbf{q},\omega) m{e}^{- au\omega} \; orall \, au \in [0,eta]$$

Known frequency moments: $\langle \omega^{-1} \rangle$, $\langle \omega^{0} \rangle$, $\langle \omega^{1} \rangle$, $\langle \omega^{3} \rangle$

$$\langle \omega^k \rangle = \int_{-\infty}^{\infty} \mathrm{d}\omega \; \omega^k \mathcal{S}(\mathbf{q}, \omega)$$

GIFT and ML spectra reproduce correct F and $\langle \omega^{-1} \rangle - \langle \omega^3 \rangle$

Too much ambiguity \Rightarrow Knowledge of F and $\langle \omega^{-1} \rangle - \langle \omega^3 \rangle$ not sufficient to determine S

¹E. Vitali et al., Phys. Rev. B 82, 174510 (2010)

Incorporating additional information on $S(\mathbf{q}, \omega)$ via dielectric formulation

Fluctuation-dissipation theorem:

$$S(\mathbf{q},\omega) = -rac{{
m Im}\chi(\mathbf{q},\omega)}{\pi n(1-e^{-eta\omega})}$$

Express response function χ via ideal response function χ₀ and dynamic local field correction G:

$$\chi(\mathbf{q},\omega) = \frac{\chi_0(\mathbf{q},\omega)}{1 - v_q [1 - G(\mathbf{q},\omega)]\chi_0(\mathbf{q},\omega)}$$

• Random phase approximation (RPA): $G \equiv 0$

Make ansatz and optimize $G(q, \omega)$ instead of $S(q, \omega)$

Dynamic structure factor of the UEG: $(\theta = 1, r_s = 10, N = 34, k = 0.63k_F)$

The Static Local Field Correction

static limit $G(\mathbf{q}, \omega = 0)$ is connected to static density response $\chi(\mathbf{q})$:

$$G(\mathbf{q}) = 1 - rac{1}{v_q} \left(rac{1}{\chi_0(\mathbf{q},0)} - rac{1}{\chi(\mathbf{q})}
ight)$$

The Static Local Field Correction

static limit $G(\mathbf{q}, \omega = 0)$ is connected to static density response $\chi(\mathbf{q})$:

$$G(\mathbf{q}) = 1 - rac{1}{v_q} \left(rac{1}{\chi_0(\mathbf{q},0)} - rac{1}{\chi(\mathbf{q})}
ight)$$

• can be directly obtained from $F(\mathbf{q}, \tau)$:

$$\chi(\mathbf{q}) = -n \int_0^eta \mathrm{d} au \ F(\mathbf{q}, au)$$

 \rightarrow Full $\mathbf{q}\text{-dependence}$ from a single simulation of the $\mathbf{unperturbed}$ UEG

The Static Local Field Correction

static limit $G(\mathbf{q}, \omega = 0)$ is connected to static density response $\chi(\mathbf{q})$:

$$G(\mathbf{q}) = 1 - \frac{1}{\nu_q} \left(\frac{1}{\chi_0(\mathbf{q}, 0)} - \frac{1}{\chi(\mathbf{q})} \right)$$

• can be directly obtained from $F(\mathbf{q}, \tau)$:

$$\chi(\mathbf{q}) = -n \int_0^eta \mathrm{d} au \ F(\mathbf{q}, au)$$

 \rightarrow Full $\mathbf{q}\text{-dependence}$ from a single simulation of the $\mathbf{unperturbed}$ UEG

Stochastic sampling of the Dynamic Local Field Correction

<u>Source:</u> S. Groth, et al., *Phys. Rev. B* **99**, 235122 (2019)

lncorporating all knowledge about $G(\mathbf{q}, \omega)$, make ansatz

$$\operatorname{\mathsf{Im}} G(\mathbf{q},\omega) = \frac{a_0\omega + a_1\omega^3 + a_2\omega^5 + \cdots}{\left(b_0 + b_1\omega^2\right)^c}$$

Kramers-Kronig:

$$\operatorname{\mathsf{Re}} G(\mathbf{q},\omega) - \operatorname{\mathsf{Re}} G(\mathbf{q},\infty) = rac{1}{\pi} \operatorname{P.V.} \int\limits_{-\infty}^{\infty} rac{\operatorname{\mathsf{Im}} G(\mathbf{q},\omega')}{\omega'-\omega} \mathrm{d}\omega'$$

randomly generate coefficients over many orders of magnitude
 store trial solutions that match F(q, τ) and (ω^k)

 $q \approx 1.98 q_F$, $r_s = 6$, $\theta = 1$

Stochastic sampling of the Dynamic Local Field Correction

lncorporating all knowledge about $G(\mathbf{q}, \omega)$, make ansatz

$$\operatorname{Im} G(\mathbf{q},\omega) = \frac{a_0\omega + a_1\omega^3 + a_2\omega^5 + \cdots}{(b_0 + b_1\omega^2)^c}$$

Kramers-Kronig:

$$\operatorname{\mathsf{Re}} G(\mathbf{q},\omega) - \operatorname{\mathsf{Re}} G(\mathbf{q},\infty) = \frac{1}{\pi} \operatorname{P.V.} \int_{-\infty}^{\infty} \frac{\operatorname{\mathsf{Im}} G(\mathbf{q},\omega')}{\omega' - \omega} \mathrm{d}\omega$$

Imaginary time density-density correlation function

 $r_s = 4, \theta = 1, q/q_F \approx 0.63$

Correlation effects in the dispersion relation: $\theta = 1$, $r_s = 2$

T. Dornheim, S. Groth, J. Vorberger, and M. Bonitz, Phys. Rev. Lett. 121, 255001 (2018)

Correlation effects in the dispersion relation: $\theta = 1$, $r_s = 6$

T. Dornheim, S. Groth, J. Vorberger, and M. Bonitz, Phys. Rev. Lett. 121, 255001 (2018)

- Slight correlation induced redshift for intermediate q (at small r_s)
- Pronounced redshift and broadening with increasing r_s

Correlation effects in the dispersion relation: $\theta = 1$, $r_s = 10$

T. Dornheim, S. Groth, J. Vorberger, and M. Bonitz, Phys. Rev. Lett. 121, 255001 (2018)

- Peak position and FWHM: Dynamic structure factor of the UEG: 124 QMC RPA 3.5 $10 \cdot$ 3 8 2.5 ω/ω_P q/q_F 6 $\mathbf{2}$ 4 1.5QMC $\mathbf{2}$ 1 RPA 0 0.5 -2.57.55 100 3 ω/ω_P q/q_F
- Slight correlation induced redshift for intermediate q (at small r_s)
- Pronounced redshift and broadening with increasing r_s
- Negative dispersion for large r_s around $q = 2q_F$
- dispersion and S(q, ω) serve as rigorous benchmark for models

Dynamic structure factor of the UEG

T. Dornheim, S. Groth, J. Vorberger, and M. Bonitz, Phys. Rev. Lett. 121, 255001 (2018)

10/16

Dynamic structure factor of the UEG

Dynamic density response function

fluctuation-dissipation theorem

$$\mathcal{S}(\mathbf{q},\omega) = -rac{{
m Im}\chi(\mathbf{q},\omega)}{\pi n(1-e^{-eta\omega})}$$

• obtain results for Re χ

 $\chi(\mathbf{q},\omega) = \frac{\chi_0(\mathbf{q},\omega)}{1 - v_q [1 - G(\mathbf{q},\omega)] \chi_0(\mathbf{q},\omega)}$

LFC leads to different low frequency behaviour

 $(r_s = 10, \, q/q_F \approx 1.88)$

Dynamic density response function

fluctuation-dissipation theorem

$$S(\mathbf{q},\omega) = -rac{\mathrm{Im}\chi(\mathbf{q},\omega)}{\pi n(1-e^{-eta\omega})}$$

• obtain results for Re χ

 $\chi(\mathbf{q},\omega) = \frac{\chi_0(\mathbf{q},\omega)}{1 - v_q [1 - G(\mathbf{q},\omega)] \chi_0(\mathbf{q},\omega)}$

- LFC leads to different low frequency behaviour
- deviations remain at weaker coupling

Dynamic dielectric function

Dynamic dielectric function: ($\theta = 1, r_s = 6$)

obtained from response function

 $\epsilon(\mathbf{q},\omega)^{-1} = 1 + v_q \chi(\mathbf{q},\omega)$

 r_s = 6: agreement with RPA only for ω > ω_P

Dynamic dielectric function

Dynamic dielectric function: ($\theta = 1, r_s = 10$)

obtained from response function

 $\epsilon(\mathbf{q},\omega)^{-1} = 1 + v_q \chi(\mathbf{q},\omega)$

r_s = 6: agreement with RPA only for ω > ω_P

 $r_s = 10$: negative static limit

Dielectric function: plasmons

 existence of longitudinal plasma oscillations follows from zeroes of the dielectric function

 $\operatorname{Re} \epsilon = \operatorname{Im} \epsilon = 0$

- undampened solutions only at T = 0
- ▶ poles of the response function at complex frequencies $z = \omega i\gamma$

$$\delta(z-z') \leftrightarrow e^{i\omega t}e^{-\gamma t}$$

show up as peaks in $S(\mathbf{q}, \omega)$

small damping approximation:

$$\operatorname{Re} \epsilon(\mathbf{q}, \omega) = 0$$

 $\gamma(\mathbf{q}) = rac{\operatorname{Im} \epsilon[\omega(\mathbf{q}), \mathbf{q}]}{rac{\partial}{\partial \omega} \operatorname{Re} \epsilon[\omega(\mathbf{q}), \mathbf{q}]}, \quad |\gamma(\mathbf{q})| \ll \omega(\mathbf{q})$

 $r_{s} = 2, \theta = 1$ Reε Imε -Ime-RPA SLFC $q = 0.3 q_{F}$ $q = 0.5 q_F$

 ω/ω_{P}

2

12

10

8

6

4

2

0

4

з.

2

Dielectric function: plasmons

Dielectric function: plasmons

1.6

1.4

1.2

1.0

0.6

0.4

0.2

0.0

0.0

 $\omega/\omega_{\rm pl}$ 0.8

Retarded dielectric function (RPA) in the complex plane:

 $\mathrm{Im}\varepsilon$ $-\operatorname{Re}\varepsilon$ 0.10.20.3 0.40.50.6 0.70.8 $\gamma/\omega_{\rm pl}$ 0 2 ω/ω_{P}

Dynamic Conductivity

Dynamic conductivity of the UEG: $\theta = 1, r_s = 10$ 0.0060.010 0.004 $q/q_F \approx 0.63$ $\mathrm{Re}\sigma$ $q/q_F \approx 1.25$ 0.0050.0020.000 0.000 2 2 3 0.0040.0050.002 $\mathrm{Im}\sigma$ 0.000 0.000 -0.002-0.0052 2 3 0 ω/ω_p ω/ω_p

related to dielectric function

$$\epsilon(q,\omega) = 1 + rac{4\pi i}{\omega}\sigma(q,\omega)$$
 .

 proof of concept for applications to two-component systems

Summary

- ab-initio results for dynamic properties of the warm dense electron gas
- static LFC nearly exact for $r_s \lesssim 5$ (neural net parametrization available!)
- significant improvement compared to RPA
- apply method to QMC results for two-component systems
- investigate other imaginary-time correlation functions

Thank you for your attention!

Questions?