Solving the Many-Electron Schrödinger Equation with Deep Neural Networks

W.M.C. Foulkes¹ David Pfau² James S. Spencer² Alexander G. de G. Matthews²

> ¹Department of Physics, Imperial College London ²DeepMind, 6 Pancras Square, London

Workshop on Ab Initio Simulations of Correlated Fermions Kiel University, Germany 8th–9th July 2020

Results

Summary and Outlook

- 2 Variational Quantum Monte Carlo
- 3 Fermi Net

Results

To get chemistry right at room temperature, we need total energies to better than

Chemical Accuracy

1 kcal/mole \approx 43 meV/particle \approx 1.6 mHartree/particle

Results

To get chemistry right at room temperature, we need total energies to better than

Chemical Accuracy

1 kcal/mole \approx 43 meV/particle \approx 1.6 mHartree/particle

• At room temperature, $k_BT \approx 25$ meV.

Results

To get chemistry right at room temperature, we need total energies to better than

Chemical Accuracy

1 kcal/mole \approx 43 meV/particle \approx 1.6 mHartree/particle

- At room temperature, $k_B T \approx 25$ meV.
- Energy differences between competing structures can be < 10 meV.

Results

To get chemistry right at room temperature, we need total energies to better than

Chemical Accuracy

1 kcal/mole \approx 43 meV/particle \approx 1.6 mHartree/particle

- At room temperature, $k_B T \approx 25$ meV.
- Energy differences between competing structures can be < 10 meV.
- Energy differences between different magnetic structures and different correlated states can be much smaller again.

Results

Summary and Outlook

Our Grand Unified Theory

The Many-Electron Schrödinger Hamiltonian

$$\sum_{i} -\frac{1}{2} \nabla_{i}^{2} - \sum_{i} \sum_{l} \frac{Z_{l} e^{2}}{|\textbf{\textit{r}}_{i} - \textbf{\textit{d}}_{l}|} + \sum_{i > j} \frac{e^{2}}{|\textbf{\textit{r}}_{i} - \textbf{\textit{r}}_{j}|} + \sum_{l > J} \frac{Z_{l} Z_{J} e^{2}}{|\textbf{\textit{d}}_{l} - \textbf{\textit{d}}_{J}|}$$

The many-electron Schrödinger equation is NP-hard, so the best we can realistically hope for are approximate results.

Summary and Outlook

Energy and Length Scales

Energy scales

Total electronic	> 10 ² eV
Chemical bond	few eV
Chemical reaction	10 ⁻¹ eV
Correlations and magnetism	$< 10^{-2} { m eV}$

Summary and Outlook

Energy and Length Scales

Energy scales

Total electronic	$> 10^{2} { m eV}$
Chemical bond	few eV
Chemical reaction	10 ⁻¹ eV
Correlations and magnetism	$< 10^{-2} { m eV}$

Length scale for accuracy of 0.1 eV

$$E/E_F = 10^{-2}$$

 $\lambda/\lambda_F pprox 10$
 $\lambda \sim 20 \text{ Å}$

Density Functional Theory

can sometimes achieve chemical accuracy — if you choose the right functional. But how can you tell in advance?

Perturbation Theory

works well for weakly-correlated materials. But what about strong correlations and non-Fermi-liquid ground states?

Guessing the Wavefunction

was the method responsible for most of our few successes in understanding strongly-correlated non-Fermi-liquid systems:

- BCS
- FQHE
- Bethe Ansatz
- ...

Parameterized wavefunction guessing

- Hartree-Fock
- Configuration interation
- Slater-Jastrow
- Coupled cluster
- RVB/Pfaffian/geminal
- DMRG, matrix product states, tensor product states
- RPA
- . . .

Results

Summary and Outlook

2 Variational Quantum Monte Carlo

3 Fermi Net

Results

Summary and Outlook

Variational Quantum Monte Carlo

$$E_{T}[\Psi_{T}] = \int \Psi_{T}^{*}(\boldsymbol{R}) \hat{H} \Psi_{T}(\boldsymbol{R}) d\boldsymbol{R}$$
$$= \int \left(\frac{\hat{H} \Psi_{T}(\boldsymbol{R})}{\Psi_{T}(\boldsymbol{R})}\right) |\Psi_{T}(\boldsymbol{R})|^{2} d\boldsymbol{R}$$

using Monte Carlo integration.

• Adjust Ψ_T to minimise $E_T[\Psi_T]$.

The Slater-Jastrow Trial Wavefunction

remains the most popular guess for large three-dimensional systems:

$$\Psi_{T}(\boldsymbol{R}) = \exp\left(-\sum_{i>j} u(\boldsymbol{r}_{ij})\right) D$$
$$D = \begin{vmatrix} \psi_{1}(\boldsymbol{r}_{1}) & \psi_{1}(\boldsymbol{r}_{2}) & \dots & \psi_{1}(\boldsymbol{r}_{N}) \\ \psi_{2}(\boldsymbol{r}_{1}) & \psi_{2}(\boldsymbol{r}_{2}) & \dots & \psi_{2}(\boldsymbol{r}_{N}) \\ \vdots & \vdots & \ddots & \vdots \\ \psi_{N}(\boldsymbol{r}_{1}) & \psi_{N}(\boldsymbol{r}_{2}) & \dots & \psi_{N}(\boldsymbol{r}_{N}) \end{vmatrix}$$

It works surprisingly well in weakly-correlated Fermi-liquid-like solids. Systems of thousands of electrons can be studied.

Exchange-correlation hole in sine-wave jellium

Limitations

- VMC with a SJ trial function is not normally capable of chemical accuracy, even in weakly correlated systems. (DMC is much better.)
- How to extend the SJ form when it doesn't work?
 - Linear combinations of determinants are often used, but this approach does not scale well.
 - No help when Fermi-liquid physics is very wrong.

Summary and Outlook

Observation 1

Artificial neural networks are flexible and efficient function approximators.

Observation 1

Artificial neural networks are flexible and efficient function approximators.

Neural QMC

Perhaps we can represent $\Psi(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N)$ as a deep neural network?

Observation 2

• Nothing requires the orbitals in a Slater determinant

$$D = \begin{vmatrix} \psi_1(\mathbf{r}_1) & \psi_1(\mathbf{r}_2) & \dots & \psi_1(\mathbf{r}_N) \\ \psi_2(\mathbf{r}_1) & \psi_2(\mathbf{r}_2) & \dots & \psi_2(\mathbf{r}_N) \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \psi_N(\mathbf{r}_1) & \psi_N(\mathbf{r}_2) & \dots & \psi_N(\mathbf{r}_N) \end{vmatrix}$$

to be functions of the coordinates of a single electron.

The only requirement is that exchanging any two input variables, r_i and r_i, exchanges two columns.

Introduction

Fermi Net

 This allows us to replace the single-electron orbitals ψ_i(r_j) by multi-electron functions

$$\psi_i(\mathbf{r}_j; \mathbf{r}_1, \ldots, \mathbf{r}_{j-1}, \mathbf{r}_{j+1}, \ldots, \mathbf{r}_N) = \psi_i(\mathbf{r}_j; \{\mathbf{r}_{j}\})$$

D remains antisymmetric as long as \u03c6_i(r_j; {r_j}) is invariant under any change in the order of the arguments after r_j:

$$D = \begin{vmatrix} \psi_1(\mathbf{r}_1, \{\mathbf{r}_{/1}\}) & \psi_1(\mathbf{r}_2, \{\mathbf{r}_{/2}\}) & \dots & \psi_1(\mathbf{r}_N, \{\mathbf{r}_{/N}\}) \\ \psi_2(\mathbf{r}_1, \{\mathbf{r}_{/1}\}) & \psi_2(\mathbf{r}_2, \{\mathbf{r}_{/2}\}) & \dots & \psi_2(\mathbf{r}_N, \{\mathbf{r}_{/N}\}) \\ \vdots & \vdots & \ddots & \vdots \\ \psi_N(\mathbf{r}_1, \{\mathbf{r}_{/1}\}) & \psi_N(\mathbf{r}_2, \{\mathbf{r}_{/2}\}) & \dots & \psi_N(\mathbf{r}_N, \{\mathbf{r}_{/N}\}) \end{vmatrix}$$

 This allows us to replace the single-electron orbitals ψ_i(r_j) by multi-electron functions

$$\psi_i(\mathbf{r}_j; \mathbf{r}_1, \ldots, \mathbf{r}_{j-1}, \mathbf{r}_{j+1}, \ldots, \mathbf{r}_N) = \psi_i(\mathbf{r}_j; \{\mathbf{r}_{j}\})$$

D remains antisymmetric as long as ψ_i(r_j; {r_j}) is invariant under any change in the order of the arguments after r_j:

$$D = \begin{vmatrix} \psi_1(\mathbf{r}_1, \{\mathbf{r}_{/1}\}) & \psi_1(\mathbf{r}_2, \{\mathbf{r}_{/2}\}) & \dots & \psi_1(\mathbf{r}_N, \{\mathbf{r}_{/N}\}) \\ \psi_2(\mathbf{r}_1, \{\mathbf{r}_{/1}\}) & \psi_2(\mathbf{r}_2, \{\mathbf{r}_{/2}\}) & \dots & \psi_2(\mathbf{r}_N, \{\mathbf{r}_{/N}\}) \\ \vdots & \vdots & \ddots & \vdots \\ \psi_N(\mathbf{r}_1, \{\mathbf{r}_{/1}\}) & \psi_N(\mathbf{r}_2, \{\mathbf{r}_{/2}\}) & \dots & \psi_N(\mathbf{r}_N, \{\mathbf{r}_{/N}\}) \end{vmatrix}$$

Fermi Net

The construction of these permutation-equivariant functions with a neural network is the main innovation of Fermi Net

Results

Summary and Outlook

2 Variational Quantum Monte Carlo

Results

Summary and Outlook

Neural Network Wavefunction

$$\boldsymbol{h}^{\ell+1} = f(\boldsymbol{W}^{\ell}\boldsymbol{h}^{\ell} + \boldsymbol{b}^{\ell})$$

Learn network parameters using automatic differentiation and back propagation.

Neural Network Wavefunction

One Slater Determinant

$$\Psi(\mathbf{r}_1,\mathbf{r}_2) = \begin{vmatrix} \phi_1(\mathbf{r}_1) & \phi_1(\mathbf{r}_2) \\ \phi_2(\mathbf{r}_1) & \phi_2(\mathbf{r}_2) \end{vmatrix}$$

Results

Summary and Outlook

Fermi Net Wavefunction

- h_i^0 is a vector with elements $r_i d_l$ and $|r_i d_l|$ (for all ions *l*).
 - The elements of h_i^0 depend on r_i only.
 - Including |*r_i d_i*| helps the network learn the electron-nuclear cusps.

- h_i^0 is a vector with elements $r_i d_l$ and $|r_i d_l|$ (for all ions *l*).
 - The elements of h_i^0 depend on r_i only.
 - Including |*r_i d_i*| helps the network learn the electron-nuclear cusps.
- As data propagates through the network

$$\boldsymbol{h}_{i}^{0}
ightarrow \boldsymbol{h}_{i}^{1}
ightarrow \ldots
ightarrow \boldsymbol{h}_{i}^{L}$$

information about the positions of other electrons is mixed in such that

$$\boldsymbol{h}_i^L = \boldsymbol{h}_i^L(\boldsymbol{r}_i, \{\boldsymbol{r}_{/i}\})$$

Permutation Equivariant Coupling

Neural QMC

- Sample points *R* = (*r*₁, *r*₂, ..., *r_N*) from current |Ψ_T(*R*)|² using the Metropolis algorithm.
- Use values of Ψ_T and its derivatives at the sampled points to estimate

$${\cal E}_{{\cal T}}[\Psi_{{\cal T}}] = \int \left(rac{\hat{H}\Psi_{{\cal T}}({m R})}{\Psi_{{\cal T}}({m R})}
ight) |\Psi_{{\cal T}}({m R})|^2 \, d{m R}$$

and its first derivatives.

• Adjust network parameters to lower $E_T[\Psi_T]$.

Results

Kronecker-Factored Approximate Curvature

(approximates Natural Gradient Descent/Stochastic Reconfiguration)

Results

Summary and Outlook

- 2 Variational Quantum Monte Carlo
- 3 Fermi Net

Results

Summary and Outlook

Single Determinant

Backflow captures a large fraction of the remaining correlation energy.

Results

Summary and Outlook

Single Determinant

Backflow captures a large fraction of the remaining correlation energy.

Neural networks offer more flexible functional forms.

Results

Summary and Outlook

Single Determinant

Backflow captures a large fraction of the remaining correlation energy.

Neural networks offer more flexible functional forms.

Fermi Net substantially reduces the error.

Adding Determinants

- Fermi Net converges quite rapidly with the number of determinants.
- Substantially easier to optimise than Slater-Jastrow and Slater-Jastrow-Backflow networks.

Results

Summary and Outlook

Learning the Cusps

- Fermi Net: 16 determinants.
- VMC, DMC: 50–100 configuration state functions. SJB wavefunction.
- Fermi Net outperforms conventional VMC and DMC.
- Consistently captures 99.7% of correlation energy.

VMC, DMC: P. Seth, P.L. Ríos and R.J. Needs, J. Chem. Phys. **134**, 084105 (2011). Exact: Chakravorty *et al.*, Phys. Rev. B **47**, 3649 (1993).

Summary and Outlook

Molecules

- Fermi Net outperforms CCSD(T) in QZ, 5Z basis sets.
- Accuracy degrades (smoothly) as number of electrons increases:
 - Fixed network configuration?
 - Optimisation?

 N_2

.

 H_{10}

Results

Summary and Outlook

- 2 Variational Quantum Monte Carlo
- 3 Fermi Net

Positives

- Fermi Net is *way* better than any other form of VMC applicable to real molecules with more than a couple of atoms.
- Fermi Net rivals coupled cluster for equilibrium geometries and outperforms it for molecules with a strong multi-determinant nature.
- The Fermi Net wavefunction can serve as a trial function for DMC and other projector methods.
- We have only just begin. Coupled cluster and SJ VMC have a fifty-year start.

Questions

- How general is the Fermi Net wavefunction?
- Can we really get away with only a few determinants?
- Limits to accuracy?
- Solids?
- Size extensivity? (SJ VMC is extensive)
- Scaling? (SJ VMC scales very well)

Results

Summary and Outlook

Range of Ideas and Approaches

	Systems	Parameterisation	Optimisation	Accuracy
NNB: Luo, Clark, PRL 122 , 226401 (2019)	Hubbard	backflow	first order	beats conventional backflow
PauliNet: Hermann et al., arXiv:1909.08423	molecules continuum	Jastrow + backflow	ADAM	Boron: 97.3% c.e. H ₁₀ : 90–97% c.e.
NQS: Choo et al.,	molecules	map to spin system;	stochastic	< 1mH relative to
Nat. Commun. 11, 2360 (2020)	basis	approximate as RBM	reconfiguration	FCI in STO-3G
Fermi Net : Pfau <i>et al.</i> , arXiv:1909.02487	molecules continuum	Everything	KFAC	Boron: 99.8% c.e. H ₁₀ : 98.5–99.3% c.e.

Summary and Outlook

Scaling

 H_4

