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Why?

To get chemistry right at room temperature, we need total
energies to better than

Chemical Accuracy
1 kcal/mole ≈ 43 meV/particle ≈ 1.6 mHartree/particle

At room temperature, kBT ≈ 25 meV.
Energy differences between competing structures can be
<10 meV.
Energy differences between different magnetic structures
and different correlated states can be much smaller again.
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Our Grand Unified Theory

The Many-Electron Schrödinger Hamiltonian
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i −
∑
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ZIe2

|ri − dI |
+
∑

i>j

e2

|ri − rj |
+
∑

I>J

ZIZJe2

|dI − dJ |

The many-electron Schrödinger equation is NP-hard, so the
best we can realistically hope for are approximate results.
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Energy and Length Scales

Energy scales

Total electronic > 102 eV
Chemical bond few eV
Chemical reaction 10−1 eV
Correlations and magnetism < 10−2 eV

Length scale for accuracy of 0.1 eV

E/EF = 10−2

λ/λF ≈ 10

λ ∼ 20 Å
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Density Functional Theory
can sometimes achieve chemical accuracy — if you
choose the right functional. But how can you tell in
advance?
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Perturbation Theory
works well for weakly-correlated materials. But what
about strong correlations and non-Fermi-liquid ground
states?
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Guessing the Wavefunction
was the method responsible for most of our few
successes in understanding strongly-correlated
non-Fermi-liquid systems:

BCS
FQHE
Bethe Ansatz
. . .
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Parameterized wavefunction guessing
Hartree-Fock
Configuration interation
Slater-Jastrow
Coupled cluster
RVB/Pfaffian/geminal
DMRG, matrix product states, tensor product
states
RPA
. . .
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Variational Quantum Monte Carlo

Guess ΨT (r1, r2, . . . , rN) = ΨT (R).
Evaluate

ET [ΨT ] =

∫
Ψ∗T (R)ĤΨT (R) dR

=

∫ (
ĤΨT (R)

ΨT (R)

)
|ΨT (R)|2 dR

using Monte Carlo integration.
Adjust ΨT to minimise ET [ΨT ].
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The Slater-Jastrow Trial Wavefunction

remains the most popular guess for large three-dimensional
systems:

ΨT (R) = exp


−

∑

i>j

u(rij)


D

D =

∣∣∣∣∣∣∣∣∣∣

ψ1(r1) ψ1(r2) . . . ψ1(rN)
ψ2(r1) ψ2(r2) . . . ψ2(rN)
. . . . . .
. . . . . .

ψN(r1) ψN(r2) . . . ψN(rN)

∣∣∣∣∣∣∣∣∣∣

It works surprisingly well in weakly-correlated Fermi-liquid-like
solids. Systems of thousands of electrons can be studied.
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Exchange-correlation hole in sine-wave jellium
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Limitations

VMC with a SJ trial function is not normally capable of
chemical accuracy, even in weakly correlated systems.
(DMC is much better.)
How to extend the SJ form when it doesn’t work?

Linear combinations of determinants are often used, but
this approach does not scale well.
No help when Fermi-liquid physics is very wrong.
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Observation 1

Artificial neural networks are flexible and efficient function
approximators.

Neural QMC
Perhaps we can represent Ψ(r1, r2, . . . , rN) as a deep
neural network?
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Observation 2

Nothing requires the orbitals in a Slater determinant

D =

∣∣∣∣∣∣∣∣∣∣
ψ1(r1) ψ1(r2) . . . ψ1(rN)
ψ2(r1) ψ2(r2) . . . ψ2(rN)
. . . . . .
. . . . . .

ψN(r1) ψN(r2) . . . ψN(rN)

∣∣∣∣∣∣∣∣∣∣
to be functions of the coordinates of a single electron.

The only requirement is that exchanging any two input variables, ri and
rj , exchanges two columns.
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This allows us to replace the single-electron orbitals ψi(rj) by
multi-electron functions

ψi(rj ; r1, . . . , rj−1, rj+1, . . . , rN) = ψi(rj ; {r/j})

D remains antisymmetric as long as ψi(rj ; {r/j}) is invariant under any
change in the order of the arguments after rj :

D =

∣∣∣∣∣∣∣∣∣∣
ψ1(r1, {r/1}) ψ1(r2, {r/2}) . . . ψ1(rN , {r/N})
ψ2(r1, {r/1}) ψ2(r2, {r/2}) . . . ψ2(rN , {r/N})

. . . . . .

. . . . . .
ψN(r1, {r/1}) ψN(r2, {r/2}) . . . ψN(rN , {r/N})

∣∣∣∣∣∣∣∣∣∣

Fermi Net
The construction of these permutation-equivariant functions with a neural
network is the main innovation of Fermi Net
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Neural Network Wavefunction

h`+1 = f (W `h` + b`)

Learn network
parameters using
automatic
differentiation and
back propagation.

r

Input
layer

Hidden
layer

Hidden
layer

ϕ(r)

Output
layer
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Neural Network Wavefunction

e− riI

riI

ϕ(ri)

Hidden
layer

Hidden
layer

Input
layer

Output
layer
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One Slater Determinant

e−

e−

riI

riI

ϕ1(ri)

ϕ2(ri)

Hidden
layer

Hidden
layer

Input
layer

Output
layer

Ψ(r1, r2) =

∣∣∣∣
φ1(r1) φ1(r2)
φ2(r1) φ2(r2)

∣∣∣∣
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Fermi Net Wavefunction
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h0
i is a vector with elements ri − dI and |ri − dI | (for all ions I).

The elements of h0
i depend on ri only.

Including |ri − dI | helps the network learn the electron-nuclear
cusps.

As data propagates through the network

h0
i → h1

i → . . .→ hL
i

information about the positions of other electrons is mixed in
such that

hL
i = hL

i (ri , {r/i})



Introduction Variational Quantum Monte Carlo Fermi Net Results Summary and Outlook

h0
i is a vector with elements ri − dI and |ri − dI | (for all ions I).

The elements of h0
i depend on ri only.

Including |ri − dI | helps the network learn the electron-nuclear
cusps.

As data propagates through the network

h0
i → h1

i → . . .→ hL
i

information about the positions of other electrons is mixed in
such that

hL
i = hL

i (ri , {r/i})



Introduction Variational Quantum Monte Carlo Fermi Net Results Summary and Outlook

Permutation Equivariant Coupling
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Neural QMC

Sample points R = (r1, r2, . . ., rN) from current |ΨT (R)|2
using the Metropolis algorithm.
Use values of ΨT and its derivatives at the sampled points
to estimate

ET [ΨT ] =

∫ (
ĤΨT (R)

ΨT (R)

)
|ΨT (R)|2 dR

and its first derivatives.
Adjust network parameters to lower ET [ΨT ].
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Kronecker-Factored Approximate Curvature
(approximates Natural Gradient Descent/Stochastic Reconfiguration)
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Single Determinant

Backflow captures a
large fraction of the
remaining correlation
energy.
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Single Determinant

Backflow captures a
large fraction of the
remaining correlation
energy.

Neural networks offer
more flexible functional
forms.

Fermi Net substantially
reduces the error.
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Adding Determinants

Fermi Net converges quite rapidly with the number of determinants.

Substantially easier to optimise than Slater-Jastrow and
Slater-Jastrow-Backflow networks.
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Learning the Cusps

He2+

x

He2+

θ

∂ ln |Ψ|
∂r1

∣∣∣∣
r1=0

= −1.9979(4),
∂ ln |Ψ|
∂r12

∣∣∣∣
r12=0

= 0.4934(1).
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Atoms

Fermi Net: 16 determinants.

VMC, DMC: 50–100 configuration state functions. SJB wavefunction.

Fermi Net outperforms conventional VMC and DMC.

Consistently captures 99.7% of correlation energy.

VMC, DMC: P. Seth, P.L. Ríos and R.J. Needs, J. Chem. Phys. 134, 084105 (2011).
Exact: Chakravorty et al., Phys. Rev. B 47, 3649 (1993).
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Molecules

Fermi Net outperforms CCSD(T) in QZ, 5Z basis sets.

Accuracy degrades (smoothly) as number of electrons increases:
Fixed network configuration?
Optimisation?
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N2

N N
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H10
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Positives

Fermi Net is way better than any other form of VMC
applicable to real molecules with more than a couple of
atoms.
Fermi Net rivals coupled cluster for equilibrium geometries
and outperforms it for molecules with a strong
multi-determinant nature.
The Fermi Net wavefunction can serve as a trial function
for DMC and other projector methods.
We have only just begin. Coupled cluster and SJ VMC
have a fifty-year start.
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Questions

How general is the Fermi Net wavefunction?
Can we really get away with only a few determinants?
Limits to accuracy?
Solids?
Size extensivity? (SJ VMC is extensive)
Scaling? (SJ VMC scales very well)
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Range of Ideas and Approaches

Systems Parameterisation Optimisation Accuracy
NNB: Luo, Clark,
PRL 122, 226401 (2019) Hubbard backflow first order beats conventional

backflow
PauliNet: Hermann et al.,
arXiv:1909.08423

molecules
continuum Jastrow + backflow ADAM Boron: 97.3% c.e.

H10: 90–97% c.e.
NQS: Choo et al.,
Nat. Commun. 11, 2360 (2020)

molecules
basis

map to spin system;
approximate as RBM

stochastic
reconfiguration

< 1mH relative to
FCI in STO-3G

Fermi Net: Pfau et al.,
arXiv:1909.02487

molecules
continuum Everything KFAC Boron: 99.8% c.e.

H10: 98.5–99.3% c.e.
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Scaling
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