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Abstract

This thesis is devoted to the description of correlated finite lattice systems under nonequi-

librium conditions. In this context, the lack of small parameters in the corresponding

standard many-body equations makes it difficult to construct suitable approximations

for theoretical tools, which renders the computation of relevant observables numerically

costly and impractical. At the same time, rigorous predictions for the ultrafast dynamics

in correlated lattices are highly valuable for the understanding of many state-of-the-art

experiments. The nonequilibrium Green functions (NEGF) technique is particularly well-

suited to meet the challenging demands that come with the description of the nontrivial

interplay between quantum correlations and nonequilibrium effects in excited lattice sys-

tems. However, in order to apply the approach on a practically relevant scale, several

methodological improvements come to be indispensable. The present thesis contains these

theoretical advances of the NEGF method, alongside with—thus accessible—applications

to ultracold atoms in optical lattices and excited finite graphene nanostructures.

On a fundamental level, the NEGF foundation is improved by deriving time-

reversibility conditions for the underlying equations and by establishing time-reversal

symmetry as a numerical stability test. This technique is used to clarify a recent contro-

versy about unphysical attractor-like behavior in NEGF calculations by showing that the

observations in question have been caused by insufficient numerical integration methods

and time steps. Furthermore, the accuracy of the NEGF description of finite lattice

systems is brought to proof in a comprehensive benchmark study with density-matrix-

renormalization-group results for moderately-sized 1D and 2D clusters.

Many-body approximations are introduced to the NEGF formalism via the single-

particle selfenergy. Here, more sophisticated approximations are reflected as generally more

accurate but computationally demanding selfenergy schemes. The publications in this

thesis demonstrate how such higher-order approaches are made accessible for practically

relevant systems. Additionally, a specific characterization of the respective applicabil-

ity ranges is given. Beyond that, the third-order approximation (TOA) is established

and shown to be accurate for a large range of system parameters. In this thesis, the

partial-summation schemes of different selfenergy approximations are further analyzed

with respect to the satisfaction of physical conservation laws.

The theoretical capstone of this thesis is the development of the G1–G2 scheme. It is

a set of coupled time-diagonal differential equations that follow from a reformulation of

basic NEGF relations. As a result, the G1–G2 scheme exhibits a time-linear computational

scaling as opposed to the generally cubic and for some cases quadratic time scaling of

previous NEGF approaches. This remarkable result leads to accessible speed-up factors

of up to 104 in practice. The G1–G2 scheme is generalized to higher-order selfenergy
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approximations to describe dynamical screening and many-body scattering effects. The

G1–G2 formulation of the TOA scheme is included as original content within this thesis.

Based on these methodological advances, the NEGF formalism is applied to different

ultrafast many-body-dynamics scenarios. In a first study, it is used to predict the expansion

dynamics of initially confined fermion clouds in multi-dimensional lattice systems. Here,

the dynamical separation between single particles and coupled particle pairs (doublons)

is observed. This behavior was also found in recent optical-lattice experiments. A direct

comparison reveals an unprecedented agreement between the measurements and NEGF

predictions for the expansion velocity.

Beyond that, the NEGF technique is applied to ion-stopping dynamics in finite

graphene-type lattices. In several studies, the interaction processes are analyzed in large

detail. The results suggest a strong influence of electronic correlations in the target

material onto the energy loss of the incident ion. Furthermore, it is observed that the

ion-impact process induces the formation of stable doublons in the lattice. This effect

can be amplified by multiple excitations, which constitutes an important insight for ion-

sputtering experiments, as well as plasma–solid interface scenarios. Moreover the NEGF

approach is used to analyzed Auger effects in irradiated graphene nanoribbons (GNRs).

The thesis is concluded with a brief outlook to ion-stopping simulations with the

new-found G1–G2 scheme and a generalization of the approach to the Pariser–Parr–Pople

model to describe excited GNR heterostructures.
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Kurzfassung

Die vorliegende Arbeit ist der Beschreibung von korrelierten endlichen Gittersystemen

im Nichtgleichgewicht gewidmet. In diesem Fall ist es schwierig, geeignete Näherungen

für theoretische Methoden zu konstruieren, weil in den entsprechenden Gleichungen

der Vielteilchen-Theorie keine Parameter vernachlässigt werden können. Dadurch wird

die Berechnung von relevanten Observablen numerisch anspruchsvoll und schwer umset-

zbar. Gleichzeitig werden akkurate Beschreibungen der Ultrakurzzeit-Effekte in korre-

lierten Gittersystemen für das Verständnis vieler moderner Experimente benötigt. Die

Nichtgleichgewichts-Greenfunktionen-Methode (NEGF) ist in besonderer Weise geeignet,

das Zusammenspiel von Quantenkorrelationen und Nichtgleichgewichtseffekten in an-

geregten Gittersystemen zu beschreiben. Jedoch sind für die direkte Anwendung auf

experimentell relevante Systeme einige methodische Verbesserungen unabdingbar. Diese

Arbeit enthält die entsprechenden theoretischen Weiterentwicklungen, sowie die dadurch

ermöglichten Anwendungen auf ultrakalte Atome in optischen Gittern und angeregte finite

Graphen-Nanostrukturen.

Zur Verbesserung der theoretischen Grundlage der NEGF-Methode wird eine Bedin-

gung für Zeitumkehrsymmetrie in den zugrundeliegenden Gleichungen hergeleitet. Die

simulierte Verifikation dieser Symmetrie wird als ein numerischer Stabilitätstest etabliert.

Mithilfe dieser Technik wird eine Kontroverse über unphysikalisches attraktorartiges Verhal-

ten in NEGF-Berechnungen aufgeklärt, indem die entsprechenden Beobachtungen zweifels-

frei einer unzureichenden numerischen Integrationstechnik zugeordnet werden. Darüber

hinaus wird die Genauigkeit der NEGF-Beschreibung von endlichen Gittersystemen in einer

umfassenden Benchmark-Studie mit Ergebnissen der Dichtematrix-Renormierungsgruppen-

Methode für mittelgroße 1D- und 2D-Cluster nachgewiesen.

Im NEGF-Formalismus werden Vielteilchen-Näherungen durch die Einteilchen-

Selbstenergie dargestellt. Dabei zeigen sich aufwendigere Näherungen in Form von allge-

mein genaueren, aber rechenintensiveren Selbstenergieschemata. In den Veröffentlichungen

dieser Arbeit wird demonstriert, wie solche Näherungen höherer Ordnung für experimentell

relevante Systeme anwendbar gemacht werden. Zusätzlich wird jeder dieser Selbsten-

ergienäherungen ein entsprechender Anwendbarkeitsbereich zugewiesen. Darüber hinaus

wird die dritte-Ordnung-Näherung (TOA) etabliert und gezeigt, dass diese innerhalb eines

großen Parameterbereichs genaue Resultate hervorbringt. Im Rahmen dieser Arbeit werden

einige Selbstenergienäherungen unter dem Gesichtspunkt physikalischer Erhaltungssätze

weiter analysiert.

Das bedeutendste theoretische Ergebnis dieser Arbeit ist die Entwicklung des G1–

G2-Schemas. Dieses besteht aus zwei gekoppelten zeitdiagonalen Differentialgleichun-

gen, welche aus einer Umformulierung elementarer NEGF-Gleichungen hervorgehen. In-
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folgedessen weist das G1–G2-Schema eine zeitlineare numerische Skalierung auf, im Kon-

trast zu der gemeinhin kubischen und in einigen Fällen quadratischen Zeitskalierung

vorheriger NEGF-Ansätze. Dieses bemerkenswerte Ergebnis führt zu praktisch erreich-

baren Beschleunigungsfaktoren von bis zu 104. Das G1–G2-Schema wird um Selbsten-

ergienäherungen höherer Ordnung ergänzt, um dynamische Abschirmung und Vielteilchen-

Streuungseffekte beschreiben zu können. Die G1–G2-Formulierung des TOA-Schemas wird

im Rahmen dieser Arbeit hergeleitet.

Aufbauend auf diesen methodischen Weiterentwicklungen wird der NEGF-Formalismus

auf die Ultrakurzzeitdynamik unterschiedlicher Vielteilchensysteme angewandt. Eine erste

Studie behandelt die Expansionsdynamik von anfänglich eingeschlossenen Fermionen in

mehrdimensionalen Gittersystemen. Dabei kann die dynamische Aufspaltung in effektive

Einteilchen und gekoppelte Teilchenpaare (Doublons) beobachtet werden. Dieses Ver-

halten wurde ebenfalls in kürzlich durchgeführten Experimenten mit optischen Gittern

gefunden. Der direkte Vergleich zwischen den Messungen und den NEGF-Vorhersagen für

die Expansionsgeschwindigkeit zeigt eine zuvor unerreichte Übereinstimmung.

Darüber hinaus wird die NEGF-Technik auf endliche graphenartige Gitter ange-

wandt, welche von energetischen Ionen angeregt werden. In mehreren Studien werden die

Wechselwirkungsprozesse detailliert analysiert. Die Ergebnisse deuten an, dass die elek-

tronischen Korrelationen im Targetmaterial einen starken Einfluss auf den Energieverlust

des einfallenden Ions haben. Weiterhin kann beobachtet werden, dass der Durchstoß des

Ions die Bildung von stabilen Doublons im Gitter induziert. Dieser Effekt kann durch

Mehrfachanregungen verstärkt werden. Die Erkenntnisse sind wichtig für das Verständnis

von Ionen-Sputter-Experimenten sowie für Plasma–Festkörper-Grenzflächenszenarien im

Allgemeinen. Außerdem wird der NEGF-Ansatz zur Analyse von Auger-Effekten in be-

strahlten Graphen-Nanobändern (GNRs) verwendet.

Die Arbeit schließt mit einem kurzen Ausblick auf Simulationen von Ionen-

Abbremsungsprozessen mit dem G1–G2-Schema und einer Verallgemeinerung des Ansatzes

auf das Pariser–Parr–Pople Modell zur Beschreibung angeregter GNR-Heterostrukturen.
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Chapter 1

Introduction

Nature has found remarkable ways to arrange the microscopic constituents of matter into

the forms and shapes that make up the macroscopic world.

On the one hand, there is the way studied in chemistry and molecular biology, where

atoms are combined to molecules, organic compounds, polypeptides, oligomers, and com-

plex macromolecules, such as proteins, lipids and DNA, all of which are interconnected

in numerous layers of complexity and self-organization that interfuse and transcend each

other—thereby giving rise to the wonders of metabolism as the foundation of life itself.

On the other hand, atoms can directly form uniform macroscopic units. This is the

realm of statistical physics.

There are good reasons to study the latter. Many-body systems represent a capital

fraction of all visible matter in the universe. Huge accumulated clouds of gas form the

basis of the interstellar medium. Gravity-bound plasma clouds collapse to luminous

spheroids all over the night sky. Even more exotic forms, such as nuclear matter in neutron

stars and the primordial quark–gluon plasma are highly relevant for the understanding

of astrophysical concepts. In addition, a plethora of technological advances is based on

many-body systems, with conductors and semiconductors leading the way to the current

information age. At the same time, the uniformity of many-body systems can have fasci-

nating implications. One example is that microscopic quantum effects on the nanoscale can

manifest—bypassing multiple orders of magnitude—as macroscopic phenomena, such as

Bose–Einstein condensation, superconductivity, or superfluidity. This holds a tantalizing

promise to theorists: a comprehensive description on the fundamental level of interaction

between particles allows one to draw conclusions about the full many-body aggregate.

In thermodynamic equilibrium, there has indeed been made tremendous progress

in predicting and understanding collective physics over the last decades. Several break-

throughs have led to a near-complete picture in the description of fluid systems [1–3]

(with state-of-the-art applications in battery technology [4, 5] or photovoltaics [6, 7]),

plasma physics [8] and warm dense matter [9–11] (with paramount importance for nuclear

fusion [12, 13]), or condensed-matter phenomena, such as the Kondo effect [14–16] or the

quantum Hall effect [17, 18]. This sheer abundance of achievements has been rendered

possible by the remarkable strength of statistical physics. The guiding principle of this

concept is to disregard the individual information of each particle in favor of more insightful

average quantities. Particularly the ensemble-averaged density operator is a key quantity
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for probabilistic approaches. With its help, statistical physics has done an excellent job

in deriving the basic thermodynamic laws from microscopic equations (see Ref. [19] for

a recent discussion). There are several theoretical difficulties in the corresponding de-

scription of many-body systems, such as the representation of many-body correlations, i.e.

inter-particle interaction effects that are not captured within a mean-field picture. Beyond

that, fundamentally different statistical tools are needed to describe collective quantum

behavior. For equilibrium situations, these barriers have been overcome to astonishing

degree.

However, the assumption of equilibrium is an idealization. Since the universe itself is

in a nonequilibrium state, so is ultimately every many-body system in it. The incorporation

of nonequilibrium does not only drastically enlarge the space of possible many-body states

but also constitutes a conceptual increase of dimensionality—as it is inherently connected

to the evolution in time. For quantum systems, time dependence is particularly difficult

to theoretically consider and involves propagating the time-dependent Schrödinger or

von Neumann equation1 for a potentially time-dependent Hamiltonian. For sufficiently

small external perturbations it is possible to approximate the time-resolved response of

the excited system by using equilibrium information via linear-response theory [20]. This

approach becomes increasingly inaccurate the more the system is driven out of equilib-

rium. Only by means of time-dependent quantum ensemble averages [21, 22] it becomes

possible (and feasible) to predict the dynamics of large quantum many-body systems in

general nonequilibrium states. It should be noted that each system in the ensemble is

propagated as an isolated system by this approach [23]. The coupling to the environ-

ment is considered through the initial state. The time-dependent statistical approach

allows one to take on the extremely rich field of nonequilibrium physics. This includes

nonadiabatic and non-Born–Oppenheimer processes [24, 25], such as photoionization,

charge transfer, photodissociation of molecules, and collective dynamical correlation effects

like, e.g., dynamical-screening processes and Auger effects. Nonequilibrium phenomena

are of great importance for various practical applications. In particular, they dominate

the short-time behavior following external excitations. This is highly relevant for, e.g.,

time-resolved, angle-resolved photoemission spectroscopy [26–29] (trARPES) and other

laser experiments involving solid materials [30–35], as well as laser heating in plasmas [36,

37]. Likewise, the exposure to ionic radiation can cause intriguing short-time dynamics

in, e.g., correlated solids [38–41]. Almost arbitrary nonequilibrium states are regularly

generated in experiments with ultracold atoms in optical lattice systems [42–45].

In order to theoretically predict nonequilibrium phenomena, a large number of statis-

tical tools has been developed. An overview is given in the subsequent section followed by

a brief introduction to the method at the heart of this thesis—the nonequilibrium Green

functions (NEGF) method.

1The Schrödinger equation for the time-dependent wavefunction is applied for pure-state descriptions.

The von Neumann equation, however, can also be used to propagate statistical ensembles, which allows

one to describe systems that are coupled to an environment.
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1.1 Methods and Theoretical Description

In the classical regime, i.e. when quantum effects are negligible, there exists a variety of

frameworks to simulate nonequilibrium many-body systems. To name a few, there are

generalizations of molecular-dynamics2 approaches [50–52], various techniques based on

the Boltzmann equation [53, 54], as well as the particle-in-cell (PIC) method [36, 49],

which holds a significant share of state-of-the-art high-performance computing capacity [37,

55–63].

For quantum systems in nonequilibrium states most computational methods can

be ascribed to one of two basic strategies. The first strategy relies on finding exact or

approximate solutions for the time-dependent wavefunction. This includes the coupled-

cluster method [64, 65], configuration interaction [66, 67] and the active-space restricted

variants [68–70], multi-configurational time-dependent Hartree–Fock [71–74], as well as

density-matrix-renormalization-group (DMRG) approaches [75–78]. These methods inherit

their numerical scaling behavior from the dimension and size of the N -particle wavefunction

and its explicit information. The resulting linear time scaling is highly beneficial for the

description of long-time simulations. Beyond that, wavefunction-based approaches remain

valid for arbitrary degrees of nonequilibrium and coupling, by construction. However,

setting up the wavefunction object becomes increasingly intricate for large many-body

systems, which leads to an inevitable exponential scaling with the particle number. This

unpleasant fact restricts the applicability of the methods of the first strategy to mostly

few-particle systems of picayune practical value [69, 70, 79]. Moreover, wavefunction

objects are limited to the representation of pure states. Statistical ensembles of pure states

(mixed states) cannot be accounted for within theoretical approaches based on a single

wavefunction. For the second strategy, the explicit N -particle information is omitted in

favor of the direct propagation of time-dependent ensemble-averaged observables. By this

procedure, the time-dependent simulation of larger many-body systems becomes computa-

tionally feasible. Commonly used methods following this approach are time-dependent

density-functional theory [49, 80–83] (TDDFT), real-time quantum Monte Carlo [84,

85] (RTQMC) and diagrammatic Monte Carlo [86–89] (DiagMC), dynamical mean-field

theory [90–93] (DMFT), the framework of reduced density operators [49, 94–100] (RDO),

and NEGF theory [23, 101]. TDDFT has a broad, universal applicability and constitutes

a valuable tool for systems in the regime of moderate interaction strengths and benign

excitations. However, due to the adiabatic approximations within its framework TDDFT

is incapable of describing strong nonequilibrium situations. Furthermore, TDDFT lacks a

systematic way to accurately treat strong non-local correlation effects. Dynamical Monte

Carlo approaches such as DiagMC and RTQMC excel in accuracy for time propagations

where numerical ergodicity can be ensured. Particularly for fermions, these Monte Carlo

methods are, however, severely hampered by the fermion sign problem and the additional

dynamical sign problem. This currently limits the practical utility to very short dynamical

simulations. DMFT exactly describes the limits of the interactions strength for vanishing

and infinite coupling. Specifically, the many-body problem is mapped to a local impurity

2For completeness, it is mentioned that there have been efforts to extend molecular dynamics to the

quantum realm [46–49].
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model. This local description fails to represent strong nonequilibrium situations for in-

termediate interaction strengths. Beyond that, DMFT is generally constructed for the

thermodynamic limit, making it unsuited to describe low-dimensional setups and, most

notably, finite systems.

The difficult requirements for an accurate description of correlated nonequilibrium

scenarios in finite systems are met by the RDO and NEGF method, which are closely

related and introduce quantum kinetic equations. Both approaches exhibit polynomial

numerical scalings with the number of time steps and the size of the single-particle basis.

As both methods are derived in and inherent to the occupation-number representation

they involve a computational effort that does not depend on the particle number—in stark

contrast to the tools of the first strategy. Together with the general rise of computer

power in the last decades, these properties allow RDO and NEGF schemes to be applied

for experimentally relevant time scales and system sizes. One of the key advantages of

the quantum kinetic approaches is the unrestricted capability to portray nonequilibrium

processes, since they preserve the full generality of time-dependence from the Schrödinger

and Heisenberg equation. The NEGF and RDO frameworks both rely on hierarchies

of equations of motion (EOMs). While the Bogoliubov–Born–Green–Kirkwood–Yvon

(BBGKY) hierarchy for the density operators does only depend on a single time argument,

the Martin–Schwinger hierarchy for the Green functions has a more complex time structure

with multiple coupled arguments. This conceptual distinction directly causes the main

performance differences between both approaches. As such, the numerical scaling with

respect to the basis size is superior for the NEGF scheme, whereas the RDO approach can

be expressed in a time-linear form—unachievable within conventional NEGF theory. With

its more sophisticated time structure, the Green-functions scheme, however, provides a

more consistent way to account for dynamical correlations. Furthermore, the NEGF-rooted

selfenergy diagram technique constitutes a powerful and highly approachable method

to systematically describe correlation effects in general. For this reasons, the NEGF

framework is used to describe the correlated nonequilibrium dynamics of finite lattice

systems in this thesis.

1.1.1 Basics of the NEGF Technique

The method of nonequilibrium Green functions was established in the 1960s by Schwinger,

Keldysh, Kadanoff, Baym and others (cf. Refs. [21, 22, 102, 103]) as an attempt to gener-

alize successful concepts from equilibrium theory to kinetic transport phenomena [104,

105]. It builds up upon groundstate Green-function theory and the Feynman diagram

technique by Schwinger, Dyson, and Feynman, as well as the respective generalization

to arbitrary thermodynamic equilibrium by Matsubara, Kubo and others [105]. Being

more of theoretical interest at first, NEGF theory was primarily used to derive and en-

hance Boltzmann-type kinetic equations. This changed in the 1980s, when Danielewicz

demonstrated that the NEGF equations can themselves be efficiently used for more precise

computer simulations [106]. Another major improvement has been the introduction of the

generalized Kadanoff–Baym ansatz (GKBA) by Lipavský et al. in 1986 [107], with the
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help of which the time scaling can be reduced by one order of magnitude. On this footing,

the NEGF technique has developed into a flourishing, productive field and a keystone for

the elucidation of nonequilibrium phenomena [41, 108–114].

NEGF theory is formulated in second quantization.3 In this picture, only the occu-

pation numbers of the underlying single-particle orbitals are considered to describe the

system’s many-body state. The natural choice to modify the states in this regard are the

canonical creation (ĉ†i) and annihilation (ĉi) operators that add a particle to or remove

a particle from the single-particle orbital i. By convention, these operators are defined

in such a way, that the quantum statistics for bosons and fermions are automatically

accounted for, which constitutes an enormous advantage compared to the behavior of

many-body wave functions. In second quantization, any operator can be expressed as a

product of a matrix element in the single-particle basis and a series of canonical operators.

Regarding the description of closed systems, physical processes are obliged to preserve

particle-number conservation. It is, thus, convenient to define symmetric products of

canonical operators as scaffoldings and building blocks for arbitrary operators and ob-

servables. The nonequilibrium Green function is the most general form of these operator

products. The single-particle and two-particle nonequilibrium Green functions are defined

as

Gij(z, z
′) =

1

i~

〈
T̂ C
{
ĉi (z) ĉ†j (z′)

}〉
and (1.1)

G
(2)
ijkl(z1, z2, z

′
1, z
′
2) =

1

(i~)2

〈
T̂ C
{
ĉi (z1) ĉj (z2) ĉ†l (z′2) ĉ†k (z′1)

}〉
, (1.2)

respectively. Within these definitions, two concepts are introduced:

• The statistical averaging is denoted by 〈·〉. It corresponds to the average of an

ensemble of identical isolated quantum systems. The averaging process is carried

out using the trace over the single-particle basis and the density matrix operator.

• The time-ordering operator T̂ C {·} is a superoperator acting on its arguments by

arranging them according to the positioning of the contour times z on the time

contour C (see Fig. 1.1). The idea of the time contour goes back to Schwinger [21]

and Keldysh [102]. By this procedure, it is possible to describe dynamical quantum

expectation values in a most concise formulation.

The single-particle Green function of Eq. (1.1) is a two-time generalization of the density

matrix from RDO theory, the information of which is contained as the equal-time limit.4

By its two-time structure, the Green function additionally contains spectral information

and dynamical correlations. From the Heisenberg equation one can derive the EOMs for

the canonical operators and eventually for the Green functions. Due to the structure

of the Hamiltonian in second quantization the resulting equations for the single-particle

3At this point, only a brief overview of the central NEGF equations is given and formal details are spared

out to improve the comprehensibility. A thorough introduction to the topic can be found in Sec. 2.1.
4Broadly speaking, the single-particle Green function [cf. Eq. (1.1)] can be considered as the formal-

ized manifestation of a particle’s lifespan, from the time and space of its creation [ĉ†j (z′)] to its

annihilation [ĉi (z)].
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t0 tz1

z2 C

Figure 1.1 – Illustration of a general time contour C. It consists of a causal and an

anticausal branch clinging to the real-time axis. In the depicted example, the time z2

is later than z1, despite their respective real-time projections being in reverse order.

Green function couple to the two-particle Green function of Eq. (1.2). This behavior

continues for all higher-order equations corresponding to the respective N -particle Green

functions, defined analogously to Eqs. (1.1) and (1.2). The arising system of coupled

equations is known as the Martin–Schwinger hierarchy [115]. It is an exact reformulation

of the time-dependent Schrödinger equation in terms of nonequilibrium Green functions.

Due to the increasing complexity with each order of the hierarchy, it is unfeasible to

solve the system of equations directly. Instead, one focuses on the first-order hierarchy

equations and introduces an auxiliary quantity to formally decouple the time evolution of

the single-particle Green function from all higher-order equations:

∑

l

[
i~

d

dz
δil − h

(0)
il (z)

]
Glj(z, z

′) = δijδC(z, z
′)± i~

∑

lmn

∫

C
dz̄ wilmn(z, z̄)G

(2)
mnjl(z, z̄, z

′, z̄+)

=: δijδC(z, z
′) +

∑

l

∫

C
dz̄Σil(z, z̄)Glj(z̄, z

′) . (1.3)

Here, w and h(0) are the matrix elements of the interaction and the single-particle Hamil-

tonian. The symbols
∫
C and δC correspond to integration5 along the time contour C and

the Dirac delta function on C. The quantity Σ in Eq. (1.3) is called the (single-particle)

selfenergy. It provides the starting point for the introduction of many-body approximations

to NEGF theory. Eq. (1.3) and its adjoint are the well-known Keldysh–Kadanoff–Baym

equations (KBE). Before discussing the selfenergy and the most common ways to close

the KBE for the single-particle Green function, a few observations are made:

• In the noninteracting limit, the last term of Eq. (1.3) vanishes and only the delta-

term remains on the right-hand side of the equation. In that case, G (or G0 to

indicate the ideal equation) acts as the inverse of the operator
[
i~ d

dz
δ − h(0)

]
. The

resulting equation is precisely of the form that was introduced by George Green

in the 1820s [116], with G0 playing the role of the mathematical Green function.

This similarity is indeed the origin of the name Green function for the quantities of

Eqs. (1.1) and (1.2).

• The appearance of three different time arguments in Eq. (1.3) has two important

5The superscript of the contour time ẑ+ indicates an infinitesimally larger value to ensure the correct

operator ordering by T̂ C .
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implications. First, it is a manifestation of the memory structure that is included in G

(and also Σ). By this explicit consideration of memory effects the NEGF technique

fundamentally differs from Markovian methods, such as traditional Boltzmann-

equation approaches. Secondly, the times indicate a cubic scaling with respect to

the number of time steps for numerical implementations of the KBE.

• By using the ideal Green function G0 and its property as the inverse of
[
i~ d

dz
δ − h(0)

]
,

the KBE can be transformed to the following Dyson form:

Gij(z, z
′) = G0,ij(z, z

′) +
∑

kl

∫

C
dz̄d¯̄z G0,ik(z, z̄)Σkl(z̄, ¯̄z)Glj( ¯̄z, z′) . (1.4)

This relation has the same structure as the commonly used Dyson equation from

equilibrium Green-functions theory [23, 117],

GR
ij(ω) = GR

0,ij(ω) +
∑

kl

GR
0,ik(ω)ΣR

kl(ω)GR
lj(ω) , (1.5)

to which it is easily transformed by taking the real-time components and performing

a Fourier transform with respect to the time difference. Eq. (1.5) and derivational

relations are widely used to describe correlated plasmas (for an introductory overview

see., e.g., Ref. [117]) and also finite nanostructures have recently been investigated

within this approach [118, 119].

The selfenergy Σ in principle contains the full many-body information of the considered

system encapsulated in a single-particle quantity. As the computation of the exact selfen-

ergy is practically impossible for larger systems, efficient and suitable approximations are

generally required. In NEGF theory, there exist remarkably powerful ways to systemati-

cally derive many-body approximations in the form of Hedin’s equations for the screened

vertex [23, 79, 120], an equivalent scheme for the bare interaction [79, 121], as well as the

direct derivation from the Martin–Schwinger hierarchy [23, 122]. All three approaches

rely on (but are not limited to) perturbation expansions with respect to the interaction

matrix element. The best-established selfenergy approximations can be classified into two

categories. The first category consists of approximations that straightforwardly involve all

terms up to a given interaction order. This includes the (first-order) Hartree–Fock (HF)

approximation describing many-body effects on a mean-field level. The second-order

Born approximation (SOA or 2B) incorporates the first terms to capture correlation

effects. The more involved third-order approximation (TOA) can be used to describe

even moderate to strong coupling. The second category features the so-called resummation

approaches. Here, specific classes of physical processes can be included in the descrip-

tion by use of iterative relations. Due to this procedure, the resulting selfenergy terms

are not restricted to a finite interaction order. One of these resummation approaches

is the T -matrix or ladder approximation (TMA). It can be constructed to account

for scattering processes in the particle–particle channel (TPP) or the particle–hole

channel (TPH). The resummation of terms describing dynamical-screening effects into a

renormalized effective interaction tensor leads to the well-known GW approximation

(GWA). Additionally, there are ways to combine these approaches into collective selfenergy
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approximations. One example of this kind is the fluctuating-exchange approximation

(FLEX).

The GKBA [107] is an approximation that employs a different idea. It does not apply

to the selfenergy but, instead, to the time structure of the KBE. Overall, the GKBA

is an attempt to reduce the number of time integrals during the propagation. This is

achieved by adapting Eq. (1.3) only for its time-diagonal limit (z = z′) and reconstruct all

off-diagonal values of the Green function by the following approximate formula,

G≷
ij(t, t

′) = i~
∑

k

[
GR
ik(t, t

′)G≷
kj(t

′)−G≷
ik(t)G

A
kj(t, t

′)
]
. (1.6)

This equation relates the real-time components of G, which result from mapping the

contour times (cf. Fig. 1.1) back to the real-time branch. The single-time-dependent

G≷(t) denotes the equal-time limit and is therefore directly connected to the density

matrix. In order to close the system of equations, one needs to find explicit expressions for

the propagators GR/A. For the particular example of propagators in HF approximation

(HF-GKBA) in combination with a SOA selfenergy, the computation of the GKBA can be

realized with a quadratic time scaling, as opposed to the cubic scaling of the two-time

KBE [cf. Eq. (1.3)].

The structure of the central equations in NEGF theory not only makes for the

advantageous properties regarding the application to correlated nonequilibrium dynamics,

but also causes the general limitations of the method. Eq. (1.3) scales with O (N3
bN

3
t ) with

respect to the basis size Nb and the number of time steps Nt. This polynomial scaling

allows one to describe small and mesoscopic systems but prohibits the direct application to

the macroscopic limit. Likewise, NEGF simulations are limited to short-time propagations,

not exceeding the femtosecond time scale. This is not only caused by the cubic (or

quadratic for GKBA) time scaling, but also by the general absence of system–environment

interaction. For larger time scales, the proper treatment of the coupling to the environment

is essential to describe relaxation and energy dissipation [23]. Lastly, the NEGF technique

fails to describe systems in the strong-coupling limit, due to the perturbative nature of

selfenergy approximations.6

Before the author has commenced his PhD research, there has been a shift of interest

within a large fraction of the NEGF community. While previous investigations focused on

spatially continuous systems, such as atoms and molecules [124–126] or quantum wells [127–

129], several authors started to address discrete finite lattice systems instead [109, 130–135].

These systems proved to be a controllable setting for methodological analyses regarding

finite-size effects in NEGF approaches. An important observation was made by von Friesen

et al. in Refs. [109] and [130]. They demonstrated that solving the KBE for strongly

excited finite systems can result in an unphysical damping of the density dynamics. The

authors explained this behavior as being caused by the interplay between the selfconsistent

character of the KBE and the partial summation of scattering terms in the selfenergy.

By construction, the GKBA significantly reduces the degree of selfconsistency in the

EOMs. For this reason, the method was a suited candidate to approach this artificial

behavior. Indeed, Sebastian Hermanns and others could show in Ref. [136] that the GKBA

6For completeness, it is mentioned that the TPP selfenergy becomes exact in the limit of full/empty

bands, regardless of the interaction strength [123].
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completely removes the artificial damping property. This publication was also the first to

which the author of the present thesis contributed during his early master’s studies. In

close collaboration with Sebastian Hermanns and later Jan-Philip Joost, the author further

developed the NEGF approach to finite lattice systems and provided the application to

highly topical experimental concepts.

1.2 Relevant Systems

In this thesis, the NEGF technique is applied to ultracold atoms in optical lattices, as well

as finite graphene nanostructures irradiated by ions and laser light. Both system stand out

due to the importance of nonequilibrium effects on a short-time scale and the significance

of many-body correlations.

The idea to use laser-cooled neutral atoms in artificial light-induced lattice potentials

in order to generate a strongly interacting quantum system was introduced in 1998 in

Ref. [137]. The ensuing decades have established this concept as a full-fledged and highly

successful experimental field (see, e.g., the review articles of Refs. [42–45]). As the basic

principle behind this approach, one utilizes the fact that counterpropagating laser beams

create a standing wave that contains regular, periodic potential extrema, which act as

microtraps for the cold atoms. Due to the high fidelity of laser optics in general, these

optical lattices have particularly advantageous characteristics with respect to variability,

accuracy, and detection possibilities. One example is the capacity to realize lattice systems

in 1D [138, 139], 2D [140, 141] and 3D [142, 143]. Especially the experiments with ultracold

fermionic atoms have aroused broader interest, because—depending on the spin states

of the atoms—the artificial lattices can be considered a model setup for the electrons in

condensed-matter systems. The high controllability allows one to drive the many-body

systems to extreme conditions and to design various dynamical excitations [45]. Single-

atom resolution has been achieved with the developments of the so-called quantum-gas

microscopes for bosons [144, 145] and fermions [146–150]. Thus, optical-lattice experiments

provide excellent conditions for comparison with theoretical predictions.

The advent of optical-lattice research has opened up new avenues to study nonequilib-

rium phenomena in quantum lattice systems (for an overview see Ref. [45]). A particularly

interesting example is the expansion of initially confined particle clouds [140, 151–154].

Here, the dynamical behavior strongly depends on the coupling between the particles. In

the experiments, the interaction strength can be arbitrarily tuned in a procedure that

utilizes Feshbach resonances. Particularly in the regime of moderate and strong coupling

strength, the incipient correlated expansion dynamics features a complex interplay of

nonequilibrium effects and quantum many-body correlations. A phenomenon that arises

under such conditions is, e.g., the quantum distillation [155], i.e., the dynamical separation

between uncorrelated single particles and coupled particle pairs. Reliable theoretical de-

scriptions of these scenarios are valuable for benchmark purposes, as well as to identify and

explain the underlying mechanisms. While for one-dimensional systems such predictions

are provided, e.g., by DMRG calculations [154, 156], 2D and 3D dynamics are out of reach

for most theoretical approaches.
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Graphene was the first stable two-dimensional material that could be isolated in

experiments [157], which was honored with the 2010 Nobel prize in physics [158]. It consists

of sp2-hybridized carbon atoms, arranged in a hexagonal, planar configuration. After its

discovery, it was shown that the exceptional structure of graphene results in rather exotic

behavior, such as the relativistic linear dispersion relation around the K points [159, 160]

and the strikingly high carrier mobility [161]. Furthermore, graphene exhibits interesting

optical properties that qualify for applications in ultrafast photodetectors [162] and even

photovoltaic devices [163–166]. In its planar configuration, graphene is a zero-band-gap

semiconductor with the valence and conduction band meeting at the K points. In order

to harvest the full potential of graphene in nanoelectronics, great efforts have been put

in to induce a finite gap to the material. These attempts utilize the interaction with a

suitable substrate [167, 168], the effects of strain to the graphene sheet [169, 170], or

stacking two graphene layers to a bilayer aggregate [171]—a path that culminated in

the acclaimed recent trend of twisted bilayer graphene [172]. Another very promising

method to manufacture a band gap to graphene monolayers is the lateral confinement

in finite nanostructures [173, 174]. This perspective has directed much attention to the

analysis of such finite graphene fragments [175–179]. Furthermore, novel synthesization

methods for, e.g., graphene nanoribbons (GNRs) have been developed recently [173, 174,

180–185], which allow for a precise control over size and shape of the products. Due to

these advantageous properties, graphene nanostructures are a promising candidate for the

application in next-generation nanoelectronics [186–188].

Nonequilibrium situations in graphene typically induce a unique dynamic response

behavior that is governed by the high carrier mobility and the 2D connectivity structure.

As a result, graphene-based structures feature a remarkable resilience, due to the ultrafast

redistribution of local energy excesses. This is, e.g., vividly demonstrated in Ref. [39] for

the extremely strong and localized electric fields of highly charged ions. On the other

hand, high-energetic ion sputtering is a frequently used method to break the graphene

structure and cut finite fragments [189–191]. These conceptually different behaviors give

room for an interesting intermediate domain of nonequilibrium physics. Apart from that,

graphene-type materials are in the focus of many experiments invoking optical excita-

tions [192–195]. Here, the electrons are driven out of equilibrium by energetic photons,

leading to spatial or spectral carrier redistributions. Especially in regard to applications

in photodetectors or solar cells, the proper understanding of the peculiarities of graphene

is crucial. Studying the nonequilibrium dynamics is particularly interesting for finite

graphene nanostructures, where the quantum confinement causes a significant interparticle

coupling. The multilayered synergy of correlations and nonequilibrium then fosters the

emergence of, e.g., Auger effects, such as the multiplication of excited electrons [33, 35].

Due to the inherent complexity and the lack of small parameters, such processes constitute

a delicate objective for any theoretical description.
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1.3 Goals and Application

The overall ambition of this thesis is the investigation of correlated nonequilibrium phe-

nomena in ultracold-atom systems and graphene-type nanostructures by means of the

NEGF method. In practice, the application of Green functions in this regard constitutes

a formidable challenge due to the concrete limitations of the approach. There are three

major obstacles that hamper the direct implementation of the method.

To begin with, the theoretical foundation of NEGF theory itself has not been in a

sufficient state to enter the uncharted territory of the desired modern applications. This

shows in the fact that there has been no concrete evidence for the accuracy of the approach

especially in the context of experimentally relevant lattice systems. While the identification

of certain scattering-process classes with different many-body approximations has been

established on an abstract level, no specific predictions to the actual performance could be

made. Furthermore, the NEGF method was short in testing procedures for the numerical

stability with mainly energy-conservation checks used in practice. Beyond that, recent

observations suggest to fundamentally question the validity of the theoretical build-up: in

many cases solution multiplicity was reported for Green-functions techniques [196–201] and

a recent paper by Adrian Stan claimed the existence of an unphysical attractor inherent

to NEGF theory [202].

Another momentous hurdle stems from the circumstance that the dominant majority

of all practically applied NEGF studies does not exceed the second-order level for the

selfenergy. Higher-order approximations, such as GWA and TMA were (if at all) only ap-

plied for conceptual analyses and toy-model systems (see, e.g., Refs. [109], [130] and [136]).

This is by no means surprising, because the implementation of such schemes is quite

cumbersome and elaborate. In order to approach the correlated dynamics present in

cold-atom experiments or excited finite graphene clusters, these more advanced selfenergies

are, however, essential to account for the interparticle coupling. Prior to this thesis, it

has not been investigated how the higher-order approximations are set up and efficiently

implemented for these applications.

Arguably, the most severe obstacle of applied NEGF theory is the overall cubic time

scaling of the KBE [cf. Eq. (1.3)]. It renders the implementation of long-time simulations

increasingly costly. In this regard, the special case of GKBA+SOA calculations using HF

propagators has a striking advantage as these simulations can be executed with O (N2
t )

scaling [101]. For the more accurate (and much needed) higher-order selfenergies, however,

no such scaling improvement is generated by the GKBA. Naturally, there have been

efforts to enhance the technique while maintaining the favourable quadratic time scaling.7

Nevertheless, these approaches remained unsuited to tackle the strong-coupling situations

present in the systems that are described in Sec. 1.2. With the desired scaling aspiration

of O (N2
t ), improving the NEGF method even beyond that barrier was considered an

insurmountable task.

In the present thesis, the aforementioned obstacles are directly addressed and success-

fully overcome by the following three major methodological advances:

7An interesting example is described in Ref. [203], where static correlations on the second-order level are

included for the propagators.
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(I) The theoretical foundation of the NEGF technique is significantly im-

proved. This is achieved by a thorough benchmark analysis for practically relevant

systems that brings the accuracy of the method to proof (Sec. 4.1), by establishing

time reversibility as a numerical stability check (Sec. 3.2), by discussing and resolving

solution multiplicity on a specific example (Sec. 3.3), and by a scrupulous scrutiny

of Ref. [202] that deprives the basis for its far-reaching claims (Sec. 4.1).

(II) The higher-order selfenergies are rendered practically accessible. This

is achieved by deriving applied equations for the TPP, TPH, GWA, and FLEX

selfenergies and proposing efficient numerical solution techniques (Sec. 2.1). Addi-

tionally, the novel TOA selfenergy is established and successfully applied (Secs. 2.1.2

and 4.1). These important outcomes are made accessible to the community in two

extensive review papers (Sec. 2.1).

(III) NEGF theory is brought to the ultimate time-scaling limit. This is achieved

by deriving the G1–G2 scheme—an exact reformulation of the HF-GKBA that is

based on the time-diagonal elements of the single-particle and two-particle Green

functions and scales linearly in time (Sec. 3.1). This scaling is universal for all

described selfenergy approximations and allows one to combine the resummation

approaches on a deeper, and more systematic level.

Only by conceiving and implementing the above methodological improvements became it

possible to apply the NEGF approach to lattice-excitation scenarios on an experimentally

relevant length and time scale. This has been indispensable to obtain the key results of

the present thesis.

For ultracold atoms in optical lattices, the NEGF technique is used to predict the

expansion dynamics of confined fermionic particle clouds, modeled via the Hubbard

Hamiltonian [204] in 1D, 2D and 3D. Here, the simulation results show an unprecedented

agreement with recent experiments using ultracold fermionic potassium [140]. As part of

that, the correct expansion behavior is reproduced on a large range of interaction strengths

from strongly attractive to heavily repulsive. Furthermore, the analysis sheds light on

the time- and space-resolved build-up of quantum correlations in the system—a hitherto

inaccessible perspective for large two-dimensional lattices (Sec. 4.2).

In order to describe finite graphene nanostructures, the NEGF method and exact

solving procedures (where applicable) are applied to Hubbard-based hexagonal lattice

models. Particularly, the impact of energetic ions piercing through the lattice is analyzed.

In such a situation, the electronic redistribution in the target leads to the build-up of

net charges that, in turn, influence the incident ions. The simulations evince that typical

finite-graphene correlations significantly affect the ion’s kinetic-energy progression—in

a way that cannot be captured by mean-field approaches. Beyond that, a fascinating

novel phenomenon is observed for specific projectile energies: the ion impact induces the

formation of stable correlated electron pairs (doublons). By multiple excitation, this effect

is suited as an efficient doublon-generation protocol (Secs. 2.2 and 4.3). The importance of

nonequilibrium correlation effects in graphene is further confirmed in an additional study

of Auger processes in laser-excited GNRs (Sec. 5.1).
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The new-found G1–G2 scheme is in itself a central practical outcome of the author’s

PhD studies. The innovative reformulation idea lifts the NEGF technique onto the level of

time-linear evaluation—the scaling capstone for quantum time-evolution methods. With

this advantageous numerical behavior, it is possible to achieve speed-up factors of O (104)

in practice. In addition, it is demonstrated that even the precise higher-order many-

body approximation are straightforwardly implemented into the G1–G2 scheme, without

changing the beneficial time scaling. The new method is set up in a general single-particle

basis and adapted for the Hubbard model and the homogeneous electron gas to allow for

the investigation of correlated nonequilibrium phenomena on a next level (Sec. 3.1). The

development of the G1–G2 formalism has already had seminal impact on the activities of

the NEGF community [205, 206].

1.4 Outline: How To Read This Thesis

The present cumulative thesis contains all of the author’s publications that are relevant to

its scope (a complete list can be found in Sec. 1.5). In order to achieve the most logical

structure and the best readability, the respective papers are not included in chronological

order, but they are grouped together regarding their topical context. The most important

results of this thesis are presented in Chpts. 2 – 4. Chpt. 2 contains three comprehensive

review articles that include a detailed introduction to NEGF theory and give an accurate

picture of the majority of the key results of this thesis. In Chpt. 3, the theoretical

advancements achieved by the author are included, which are crucial to approach modern

lattice-dynamics applications. Chpt. 4 contains numerical studies of the NEGF method, as

well as the numerical results for ultracold atoms in optical lattices and ion-impact-driven

finite graphene clusters. At the beginning of each section, a brief introduction is given to

outline the key results of each publication, and to put them into the broader context of

this thesis.

For specific papers, the author has included complementing information after the

article. These passages contain original results of the present thesis that have not been

published before. Concretely, this applies to Secs. 2.1.3 and 2.1.4, which discuss the topic

of exchange terms and conserving approximations, as well as to Secs. 3.1.1 and 3.1.2, in

which the G1–G2 scheme is further investigated. One important outcome of this original

content is the proof of the satisfaction of physical conservation laws for the TOA selfenergy

in Sec. 2.1.4. Beyond that, it is demonstrated that the TPH selfenergy is generally not

conserving if it is applied with exchange contributions. Another considerable result is

presented in Sec. 3.1.2, where the G1–G2 scheme is generalized to the TOA and FLEX

approaches.

• Chapter 2: Review Articles

Three extensive review papers cover the NEGF method and its application to corre-

lated finite systems out of equilibrium. Sec. 2.1 focuses on the theoretical foundation

and utilization details. Here, Ref. [122] recovers the derivation of the KBE, centers

on the TMA scheme, and reviews numerical results in the context of optical-lattice
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experiments. Ref. [79] focuses on the derivation and adaptation of efficient selfenergy

approximations and discusses their application in practice. Following the article,

the author has included a clarification for different uses of the interaction tensor,

as well as the additional discussion about conserving approximations, including the

important consequences for the TPH selfenergy. Sec. 2.2 contains Ref. [207], a topical

review that concentrates on the simulation of ion-impact scenarios on solid surfaces,

as well as the GKBA and its recent developments.

• Chapter 3: Theoretical Developments of the NEGF Formalism

This chapter contains all publications that advance individual theoretical topics.

Sec. 3.1 deals with the formulation of single-time equations for NEGF. Ref. [114]

establishes the G1–G2 scheme by deriving the equations for SOA and GWA and

demonstrates the profound numerical advantages. In Ref. [208], the previous deriva-

tions are redone in more detail and the scheme is generalized to TPP and TPH. As

a combination of these higher-order contributions, the dynamically-screened-ladder

(DSL) approximation for Green functions is proposed. Subsequent to the article, the

author included a clarification of the handling of exchange terms within the scheme.

Furthermore, the generalization of the G1–G2 scheme to TOA and FLEX is shown.

Sec. 3.2 is about the derivation of time-reversibility conditions in quantum-kinetic

equations. This is published in Ref. [209] for the NEGF method, and in Ref. [210]

for the RDO technique. Sec. 3.3 includes Ref. [118], an investigation of a specific

example of solution multiplicity in the context of Hubbard-type lattice systems.

Here, the observation of a so-called Löwdin symmetry dilemma is reported.

• Chapter 4: Applications to Correlated Lattice Systems Out of Equilibrium

This chapter contains the numerical results of this thesis. In Sec. 4.1, the predictive

power of the NEGF method is numerically confirmed. Ref. [211] is written as comment

to the recent publication by Adrian Stan [202], in which he seriously questioned

the inherent numerical consistency and validity of the basic NEGF equations. The

foundation of these claims is thoroughly investigated and unambiguously refuted,

being caused by technical errors in the implementation. Ref. [212] is a benchmark

analysis in the scope of practically relevant lattice systems that compares the NEGF

method with DMRG calculations. Sec. 4.2 contains Ref. [213], an NEGF study of

fermionic expansion dynamics in 2D and 3D. The simulations predict the dynamical

build-up of correlations and exhibit an unprecedented agreement with experimental

measurements for ultracold atoms in 2D optical lattices [140]. Sec. 4.3 deals with

the stopping dynamics of energetic ions in hexagonal lattices. In Ref. [214], the

influence of electronic lattice correlations on the energy loss of incident hydrogen

and helium ions is investigated via the NEGF technique and the model is tested

against experimentally supported graphene data. Ref. [41] predicts the ion-induced

production of stable double occupation in finite graphene fragments and comparable

hexagonal materials. Ref. [215] complements the previous findings by analyzing the

different time-dependent energy contributions of the ion–target system in a combined

study with TDDFT simulations of proton stopping on an aluminum surface.
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• Chapter 5: Other Works

This chapter contains an additional publication that is relevant for this thesis.

Ref. [216] is an NEGF study of laser-excited GNRs that focuses on the analysis of

Auger processes.

• Chapter 6: Summary and Outlook

This chapter contains a summary and discussion regarding all theoretical improve-

ments and practical applications. Subsequently, an overview of possible future

applications of the NEGF method is given. Particularly the G1–G2 scheme fea-

tures promising possibilities. Preliminary G1–G2 results for ion-stopping in more

realistic systems are included. Finally, the G1–G2 scheme is generalized to the

Pariser–Parr–Pople model and first test results for laser-excited GNRs are presented.
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The following list contains all publications that are included in this work in chronological

order. The contributions of the author to each paper are explicitly stated below the
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the author names.
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• The author contributed 45% to this work by deriving the majority of all

equations, implementing the code, creating all figures in collaboration with

J.-P.J. and writing substantial parts of the text. This publication is included
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Chapter 2

Review Articles

During his PhD studies, the author had the opportunity to participate in several extensive

review papers that cover the topic of Green functions in the context of finite correlated

systems out of equilibrium. The original content in these works aims to improve the

accessibility of higher-order selfenergies (II) and to support the theoretical foundation of

the NEGF method in general (I).

2.1 Advances in NEGF Theory

The topic of NEGF theory with many-body approximations is a multifarious and content-

rich field in the description of quantum many-body physics. There are several text books

that capture the theory—from the basic concepts to its advanced applications [23, 101,

103, 117, 217]. The following review articles,1,2 Refs. [122] and [79], aim to profoundly

deepen specific topics and to expand the existing instructional literature by adding new

perspectives.

2.1.1 The T -Matrix Approach to Optical Lattices

Ultracold atoms in optical lattices are of great importance due to their unique property

to mirror charge carriers in a condensed-matter state in a controllable way. In recent

years, there have been several important experimental breakthroughs in this field (see, e.g.,

Ref. [42–45]). However, a proper theoretical description especially for 2D and 3D setups

was completely missing [44, 140, 218]. This has been changed due to new advances and

adaptions of the NEGF method that have been achieved by the author. In this course, it

was possible to obtain remarkable agreement between theory and experiment for fermionic

1N. Schlünzen and M. Bonitz, Contrib. Plasma Phys., 56, 5 (2016). Copyright Wiley-VCH Verlag GmbH

& Co. KGaA. Reproduced with permission.
2N. Schlünzen, S. Hermanns, M. Scharnke, and M. Bonitz, J. Phys. Condens. Matter, 32, 103001 (2020),

reproduced under the Creative Commons Attribution 3.0 licence.

https://doi.org/10.1002/ctpp.201610003
https://doi.org/10.1088/1361-648X/ab2d32
http://creativecommons.org/licenses/by/3.0
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expansion in 2D, for the first time. Therefore, the author was in the unique position

to provide a comprehensive review of the theoretical framework supporting the applied

NEGF approach. This resulted in Ref. [122]—a selfcontained, in-depth review that covers

the derivation of the Kadanoff–Baym equations from basic quantum-dynamical relations,

focuses on the (particle–particle) T -matrix approximation, and concludes with applications

to ultracold atoms in optical lattices.

After beginning with a broad motivation and an overview of the available quantum-

dynamics methods, first, a general introduction to the second quantization and the contour

formalism is given (p. 7 ff. in Ref. [122]). Starting from the Heisenberg equation for the

canonical operators, next a cohesive derivation of the Martin–Schwinger hierarchy for

the N -particle Green function is given in a fully specified, general single-particle basis

(p. 13 ff. in Ref. [122]). The truncation of the hierarchy on the one-particle level results

in the KBE—the equations of motion for single-particle Green function. Subsequently,

the concept of the selfenergy is described and the TPP selfenergy—representing the sum

of all ladder diagrams in the particle–particle channel—is motivated from the hierarchy

and derived in detail (p. 17 ff. in Ref. [122]). The TPP approximation has proven very

successful for the description of expansion dynamics in lattice systems [213]. The theo-

retical part is closed with the mapping of contour-time quantities to their corresponding

real-time components and a motivation and discussion of the generalized Kadanoff–Baym

ansatz—an approximation to the time structure of the KBE (p. 23 ff. in Ref. [122]). For

the numerical evaluation of the KBE the GKBA can reduce the computational scaling by

one order which is highly relevant for practical applications that would be out of reach,

otherwise.

The next part is devoted to experiments with ultracold atoms in optical lattices with

a particular focus on recent fermionic-expansion results for two-dimensional systems (p.

29 ff. in Ref. [122]). Afterwards, the Hubbard model is introduced and the corresponding

single-particle basis is applied to the central equations of the NEGF approach (p. 35 ff. in

Ref. [122]). The following section focuses on the numerical implementation of the NEGF

equations and gives practical details about numerical integration and propagation schemes

(p. 42 ff. in Ref. [122]). Subsequently, different applications of the NEGF method to the

Hubbard model are reviewed (p. 59 ff. in Ref. [122]). Of particular importance is the

description of expansion setups of ultracold atoms in two-dimensional optical lattices [213],

where an unprecedented agreement with the experiments was achieved. This breakthrough

was possible thanks to the theoretical developments by the author and is discussed in

more detail in Sec. 4.2.

In summary, Ref. [122] gives a comprehensible overview of the foundation and imple-

mentation of the central NEGF equations and their application to lattice systems, which

is an important outcome of the author’s master’s- and early PhD studies.
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Quantum dynamics in strongly correlated systems are of high current interest in many fields including dense
plasmas, nuclear matter and condensed matter and ultracold atoms. An important model case are fermions
in lattice systems that is well suited to analyze, in detail, a variety of electronic and magnetic properties of
strongly correlated solids. Such systems have recently been reproduced with fermionic atoms in optical lattices
which allow for a very accurate experimental analysis of the dynamics and of transport processes such as
diffusion. The theoretical analysis of such systems far from equilibrium is very challenging since quantum
and spin effects as well as correlations have to be treated non-perturbatively. The only accurate method that
has been successful so far are density matrix renormalization group (DMRG) simulations. However, these
simulations are presently limited to one-dimensional (1D) systems and short times. Extension of quantum
dynamics simulations to two and three dimensions is commonly viewed as one of the major challenges in this
field. Recently we have reported a breakthrough in this area [N. Schlünzen et al., Phys. Rev. B (2016)] where
we were able to simulate the expansion dynamics of strongly correlated fermions in a Hubbard lattice following
a quench of the confinement potential in 1D, 2D and 3D. The results not only exhibited excellent agreement with
the experimental data but, in addition, revealed new features of the short-time dynamics where correlations and
entanglement are being build up. The method used in this work are nonequilibrium Green functions (NEGF)
which are found to be very powerful in the treatment of fermionic lattice systems filling the gap presently left
open by DMRG in 2D and 3D.

In this paper we present a detailed introduction in the NEGF approach and its application to inhomogeneous
Hubbard clusters. In detail we discuss the proper strong coupling approximation which is given by T -matrix
selfenergies that sum up two-particle scattering processes to infinite order. The efficient numerical implemen-
tation of the method is discussed in detail as it has allowed us to achieve dramatic performance gains. This
has been the basis for the treatment of more than 100 particles over large time intervals. The numerical results
presented in this paper concentrate on the diffusion in 1D to 3D lattices. We find that the expansion dynamics
consist of three different phases that are linked with the build-up of correlations. In the long time limit, a univer-
sal scaling with the particle number is revealed. By extrapolating the expansion velocities to the macroscopic
limit, the obtained results show excellent agreement with recent experiments on ultracold fermions in optical
lattices. Moreover we present results for the site-resolved behavior of correlations and entanglement that can
be directly compared with experiments using the recently developed atomic microscope technique.

c⃝ 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

Transport processes in strongly correlated quantum systems, including carriers of charge, momentum and energy,
are of growing interest in the fields of condensed matter [1–3], dense plasmas [4] and, in particular, ultracold
gases [5–7]. Many of today’s most exciting phenomena in physics, such as high-temperature superconductivity,
superfluidity and quantum-Hall physics, to name a few, are driven by quantum transport. While many issues
of correlated quantum transport out of equilibrium are still poorly understood, much progress can be made for
model systems, most importantly, lattice models. These models, such as the Hubbard model, have been developed
to approximately capture the physics of solid-state systems and revealed many robust predictions for the phase
diagram and, more recently, also for the transport behavior and nonequilibrium dynamics.

∗ Corresponding author. E-mail: bonitz@physik.uni-kiel.de

c⃝ 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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While lattice models often constitute only a rough picture of real condensed matter systems, these models have
been accurately realized in experiments with ultracold atoms in optical lattices [5, 6, 8–21] and allow for the in-
situ study of correlated quantum systems. There is a large body of experimental studies of traditional condensed
matter phenomena with optical lattices with an impressive amount of novel predictions. At the same time, there
is a striking mismatch on the theory side as most of these predictions (in particular, beyond one-dimensional
systems) can currently not be described with ab initio quantum methods.

The theoretical description of correlated quantum dynamics is a challenging task which requires the proper
simultaneous treatment of nonequilibrium, strong coupling and dimensionality effects. Since the exact solu-
tion of the Schrdinger equation scales exponentially with the particle number N [22], one has to find reliable
approximations that accurately describe the governing processes. A possible approach is given by the density
matrix renormalization group (DMRG) method [23] which has been successfully applied to one-dimensional
bosonic [6] and fermionic [7] lattice systems. It is an iterative, variational approach that reduces the size of the
Hilbert space to the most relevant effective space. This first-principle method has been generalized to describe
time-dependent processes, resulting in the time-dependent DMRG (t-DMRG) and the time evolving block dec-
imation (TEBD) [7, 24]. These methods are constructed to describe one-dimensional lattice systems. While the
generalization to two-dimensional systems is a subject of current research [24], the description of higher dimen-
sion is out of reach.
Another possible approach which is applicable regardless of the dimensionalityD, is given by the time-dependent
density functional theory [25] (TDDFT). It is supported by the Hohenberg–Kohn theorem [26] which states that
in equilibrium, all observables are functionals of the single-particle density matrix, and can be generalized to
nonequilibrium. TDDFT has been applied to fermionic lattice systems of up to three dimensions [27, 28], how-
ever, its validity crucially depends on the choice of the exchange-correlation potential vxc which is, in general,
unknown. The dynamics in quantum lattice systems can also be described by the dynamical mean-field the-
ory [29] (DMFT). In this approach, the lattice is mapped to a local impurity model. The DMFT becomes exact in
the limit of infinitely large interaction strengths. For medium coupling, due to the local character of the method,
the description of nonequilibrium processes becomes erroneous.
For the low coupling limit, quantum transport can also be described e.g. by multi-configurational time-dependent
Hartree–Fock [30] (MCTDHF) approaches or the coupled cluster theory [31]. However, they fail to describe
strong correlations that are of central interest in the following. In this work, we also briefly discuss a model based
on the semi-classical Boltzmann equation in relaxation time approximation as it was recently used to simulate
fermionic transport [5,21,32]. However, since it provides a description under the assumption of local equilibrium
it exhibits fundamental problems and large quantitative deviations if applied to nonequilibrium systems.

To overcome the problems of the above-mentioned approaches, in this paper, the nonequilibrium Green func-
tions (NEGF) method is used. The NEGF framework is an ab-initio method that is applicable to bosonic and
fermionic systems out of equilibrium, regardless of the dimensionality. It can treat arbitrary external fields and
excitations and, since the NEGF method is a statistical description, it is applicable to the ground state, to fi-
nite temperatures and to arbitrary nonequilibrium situations. The approach is based on the many-particle Green
function G(n) which contains the full information on the system and gives rise to a hierarchy of equations (the
Martin–Schwinger hierarchy) for all lower order Green functions. The lowest order is given by the Keldysh-
Kadanoff–Baym equations (KBE) for the single-particle Green function G which are formally closed by intro-
duction of the selfenergy Σ which accounts for correlation effects. The problem of conserving approximations
has been analyzed in great detail in recent years. Here we demonstrate that, for strongly correlated Hubbard clus-
ters out of equilibrium the proper choice of the selfenergy can be derived from a truncation of the hierarchy at the
second order in the interaction strength. This provides a set of equations which is solved by the T -matrix, a quan-
tity that sums up scattering processes to infinite order. The corresponding selfenergy in T -matrix approximation
(TMA) is analyzed in detail for the Hubbard model and a highly efficient implementation is presented. Fur-
thermore, we analyze the generalized Kadanoff–Baym ansatz (GKBA) that was proposed by Lipavský et al. [33].
This ansatz has recently attracted growing attention [34–37] since it provides a way to reduce the numerical effort
of the computation of the time propagation, while still accurately accounting for correlations. In the GKBA, the
general two-time Green function is approximately reconstructed from its time-diagonal value.

In the present paper, the NEGF approach with TMA is applied to inhomogeneous, finite fermionic lattice
systems of dimension D = 1, 2, 3 whereby, both, the full two-time propagation and the GKBA are being used.

c⃝ 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.cpp-journal.org
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A special focus lies on the investigation of diffusion processes where we follow the ideas originally presented
in Ref. [37]. Here we substantially extend this analysis of diffusion processes, including the classification with
respect to the evolution of correlations, and the dependencies on the particle number, the interaction strength and
the dimension. Using the example of the diffusion in two-dimensional fermionic lattices, the NEGF approach
with T -matrix approximation allows for comparisons with experimental results of ultracold quantum gases [5].
As was first shown in Refs. [38, 39], NEGF-TMA simulations are perfectly capable to treat strongly correlated
fermionic lattice systems, including 2D and 3D and, thus, provide the until now missing ab inito quantum method.

The remainder of this his paper is organized as follows. In section 2 the theoretical foundations of the NEGF
formalism are described in detail. After a short overview of the second quantization, which is the underly-
ing description of quantum systems, the concept of the time contour is introduced which allows for a simple
description of time dependence and statistical averaging. The Martin–Schwinger hierarchy, which determines
the many-particle Green function, is derived and the first equations—the KBE—are decoupled to focus on the
single-particle Green function. By truncation of the hierarchy, the T -matrix is derived which allows to treat strong
correlations. The representation via real-time components, which map the contour quantities back to real space,
is described. Finally, the closed time propagation and the related GKBA are derived, whereby, for the latter,
the Hartree–Fock propagators are introduced. Section 3 gives a brief introduction in experiments with ultracold
atoms in optical lattices. The practical steps to generate potential lattices and to control the interaction between
the atoms and underlying physical effects are briefly discussed. Afterwards, diffusion results for an ultracold
fermionic gas in a two-dimensional optical lattice are presented.

Section 4 reviews the basics of the Hubbard model, and discusses the physical properties, for simple limiting
cases. Furthermore, the particular case of the Hubbard Hamiltonian is used in the formulation of the NEGF
framework, providing useful simplifications. Section 5 presents details on the numerical solution of the KBE
including higher order integration methods and the time propagation algorithm including the selfconsistent, it-
erative computation of the T -matrix. The different methods for the generation of the initial state are described
and the evaluation of the physical quantities during the propagation is shown. Additionally, the computational
demands and the performance of the algorithm and the parallelization on graphics processing units (GPUs) are
discussed. Section 6 contains the numerical results for fermionic Hubbard clusters. After performing accuracy
tests for small one-dimensional systems, the approach is used to predict diffusion processes for Hubbard lattices
of large size in all dimensions. A special focus lies on the classification of the short-time dynamics and the ex-
pansion in the long time limit. For the latter, a universal scaling with the particle number is revealed, which is
used to extrapolate the expansion velocities to the macroscopic limit, where comparisons with experimental data
are possible. The paper concludes with a discussion of the results and outlook in section 7.

2 Nonequilibrium Green functions approach

Before describing the nonequilibrium Green functions formalism and, in particular, the T -matrix approximation,
first, a short overview of the second quantization—the underlying description of quantum systems—is given. For
a more detailed introduction, the reader is referred to e.g. Ref. [40].

2.1 Second quantization

The second quantization provides a natural formalism to describe quantum particles by transforming the full in-
formation of the many-particle state to the occupation numbers of the respective underlying orbitals. It exhibits an
inherent description to account for the symmetry of the bosonic and the antisymmetry of fermionic wavefunction,
which are caused by the indistinguishability of particles in quantum mechanics. It is called second quantization
in reference to the formalism of the Schrdinger equation (SE), which is a quantized field-theory itself. The SE
determines the wave function | ψ⟩ that describes the full many-body state and its dynamics in a Hilbert space H
while each observable O is represented by a corresponding operator Ô : H → H. In contrast, in second quan-
tization, the system state is described in a more abstract space F that is called Fock space. This representation
allows to describe also processes, where the particle numbers of the initial state and the final state differ. For each
observable O, the corresponding Fock space operator ÔF : F → F determines the corresponding expectation
values.

www.cpp-journal.org c⃝ 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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2.1.1 Relation to the Schrödinger equation formalism

To elucidate the connection between the SE and the second quantization formalism and how the respective op-
erators transform, it is convenient to restrict the system to a fixed particle number N0. If every quantum particle
is described by a wave function, each is defined on the same Hilbert space H, due to the indistinguishability of
fermions and bosons. The full many-body state |ψN0⟩ is, in this case, defined on

HN0
= span

{
|ϕ⟩i1⊗ |ϕ⟩i2 ⊗ · · · ⊗ |ϕ⟩iN0

| (i1, . . . , iN0
) ∈ IN0

}
. (1)

Here, {| ϕ⟩i|i ∈ I} specifies a basis set of H. I (IN0 ) denotes an index set of cardinality dimH (dimHN0
).

In the many-particle state the characteristics of indistinguishable particles are fully taken into account because
each state constitutes a superposition of corresponding states that would exist in the case of distinguishable
particles. This is formally ensured by the exchange symmetry (antisymmetry) of bosonic (fermionic) states
which leads to a smaller Fock space FN0 ⊂ HN0 [41]. The resulting state is uniquely defined by the occupation
numbers {ni|i ∈ I,

∑
i ni = N0} of the single-particle states | ϕ⟩i. Therefore, the N0-particle state | ψ⟩N0 can

be expressed as [42]

|ψN0⟩ :=| n1, n2, . . .⟩ . (2)

The full Fock space F , regarding states of all possible particle numbers, emerges as the direct orthogonal sum of
all respective Fock spaces of fixed particle number FN0 [43], i.e. F =

⊕
N0∈N FN0 .

Since each state in F is completely determined by the occupation number, every Fock operator ÔF can only act
as an occupation change. Thus, a very useful basis to define those operators is given by the canonical creation
(annihilation) operators ĉ†i (ĉi). The action of these operators on a Fock state is defined as the insertion or extrac-
tion of a single particle in the state |ϕ⟩i. Hence, they connect the N -particle subspace of F with the (N + 1)- or
the (N − 1)- particle subspace. In detail, the definition of the actions reads

ĉ†i |n1, n2, . . . , ni, . . .⟩ = (±1)α
√
ni + 1 |n1, n2, . . . , ni + 1, . . .⟩ ·

{
1 for bosons
δn1,0 for fermions

,

ĉi |n1, n2, . . . , ni, . . .⟩ = (±1)α√
ni |n1, n2, . . . , ni − 1, . . .⟩ ·

{
1 − δni,0

for bosons
δn1,1 for fermions

,

(3)

with α =
∑i−1

j=1 nj . The upper (lower) sign corresponds to bosons (fermions). From these relations, one can
easily derive the commutator relations of the canonical operators for bosons and the anticommutator relations for
fermions, respectively,

[
ĉ†i , ĉ

†
j

]
∓

= 0 ,
[
ĉi, ĉj

]
∓

= 0 ,
[
ĉi, ĉ

†
j

]
∓

= δi,j . (4)

The creation operator can be used to construct any state |n1, n2, . . .⟩ from the vacuum Fock state |0⟩ which is
defined as the state, where no orbitals are occupied, i.e. |0⟩ := |n1 = 0, n2 = 0, . . .⟩,

|n1, n2, . . .⟩ =

(∏

i

1√
ni!

)(
ĉ†1

)n1
(
ĉ†2

)n2

. . . |0⟩ . (5)

The Fock operators can now be expressed in terms of the canonical creator and annihilator. By basis transforma-
tion of the SE operators, for the single-particle operators Ô1 and the two-particle operators Ô2, the corresponding
second quantized quantities become

ÔF1 =
∑

i,j

⟨
i
∣∣∣Ô1

∣∣∣ j
⟩
ĉ†i ĉj =:

∑

i,j

Oij ĉ
†
i ĉj , (6)

ÔF2 =
∑

i,j,k,l

⟨
ij
∣∣∣Ô2

∣∣∣ kl
⟩
ĉ†i ĉ
†
j ĉlĉk =:

∑

i,j,k,l

Oijklĉ
†
i ĉ
†
j ĉlĉk , (7)

with the matrix elements Oij and Oijkl. The ordering of the canonical operators in the two-particle equation
ensures a correct description of bosonic as well as fermionic particles.
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2.1.2 Time evolution

Transport processes in quantum systems and, furthermore, dynamics in general, are inextricably linked with an
evolution in time, which can only be described by time-dependent observables O(t) (cf. Eq. (15)). In quantum
mechanics, there are three widely used formalisms to treat time evolution: the Schrdinger picture, the Heisenberg
picture and the Dirac picture. All formulations lead to the same expectation values for the observables but differ in
the attribution of time dependence. In the Schrdinger picture, the entire time information is assigned to the states,
i.e. d

dt |nS⟩ ̸= 0, whereas the operators remain constant: d
dt ÔS ≡ 0. In the Heisenberg picture, the operators carry

the time dependence, i.e. d
dt ÔH ̸= 0, while the states are constants of motion: d

dt |nH⟩ ≡ 0. The Dirac picture
(or interaction picture) is a formulation, where both operators and states are allowed to be time-dependent, i.e.
d
dt ÔD ̸= 0, d

dt |nD⟩ ̸= 0. All formalisms are equivalent and also apply for operators in second quantization.
The transformation between the introduced pictures can be a by the use of time evolution operators. From the
Schrdinger picture to the Heisenberg picture, the states and operators transform as

|nH⟩ = Û(t0, t) |nS(t)⟩ , ÔH(t) = Û(t0, t)ÔSÛ(t, t0) , (8)

with the time evolution operator [44]

Û(t, t0) :=





T
{

e−
i
~

∫ t
t0

dt̄ Ĥ(t̄)
}

if t ≥ t0

T̄
{

e+ i
~

∫ t0
t dt̄ Ĥ(t̄)

}
if t < t0 .

(9)

for the, in general, time-dependent Hamiltonian Ĥ(t). Here, T denotes the causal time-ordering operator which
sorts operators in chronological order according to their time arguments t1 ≤ t2 ≤ . . . ≤ tk,

T
{
Ô(tP (k))Ô(tP (k−1)) . . . Ô(tP (1))

}
= Ô(tk)Ô(tk−1) . . . Ô(t1) . (10)

This relation holds for all permutations P of N≤k. T is is not connected to an observable in the quantum
mechanical sense, but it is a superoperator1. Analogously, T̄ denotes the anticausal time-ordering operator which
also obeys Eq. (10) (if inserted for T ), but for times t1 ≥ t2 ≥ . . . ≥ tk. It is easy to see that the time evolution
operator obeys the relations

Û(t1, t2)Û(t2, t3) = Û(t1, t3) and

Û(t1, t2)Û(t2, t1) = Û(t1, t1) = 1 .
(12)

Thus, since Û is unitary,
(
Û(t1, t2)

)†
= Û(t2, t1). In the Dirac picture, the Hamiltonian is split into a time-

dependent and a static part. The formally transformation depends on the particular choice how the time depen-
dence is attributed.
While the time evolution in the Schrdinger picture is described by the SE, operators in the Heisenberg picture
obey the Heisenberg equation (HE) [45],

dÔH(t)

dt
=

i
~

[
ĤH(t), ÔH(t)

]
−

+
∂ÔH(t)

∂t
, (13)

where ĤH(t) is the time-dependent Hamiltonian in the Heisenberg picture.

1 To understand the action of T in Eq. (9), it is essential to define the operator action of the exponential function by the associated Taylor
expansion expression,

T
{

e− i
~

∫ t
t0

dt̄ Ĥ(t̄)
}

:=

∞∑

n=0

(− i
~ )n

n!

∫ t

t0

dt1

∫ t

t0

dt2 . . .

∫ t

t0

dtn T
{

Ĥ(t1)Ĥ(t2) . . . Ĥ(tn)
}

. (11)

On the right-hand side, the sorting of T is well-defined.
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2.1.3 Statistical averaging

In order to obtain statistical averaged expectation values of observables, it is required to define a statistical en-
semble, the averaging acts on. In second quantization one has to ensure a correct description of the creation
and annihilation processes, which directly demands an ensemble which allows the particle number to vary, if the
processes are not balanced. Therefore, the grand canonical ensemble is a convenient choice. It is characterized
by the temperature T , the volume V and the chemical potential µ of the system. These three quantities determine
the macrostate of the system (T, V, µ). The quantum statistical ensemble is described by the density operator
ρ̂ : F → F . It can be expressed, e.g. in the Heisenberg picture, in spectral representation [46],

ρ̂H =
∑

n

pn |nH⟩ ⟨nH| with (14)

Tr (ρ̂H) = 1 , pn ∈ [0, 1] ,
∑

n

pn = 1 ,

where ρ̂H is time-independent. Here, the |nH⟩ are the microstates of the system and also eigenstates of the density
operator. The trace over F is denoted by Tr (·). This density operator allows for statistical averaging of operators
in the Heisenberg picture. Thus, the expectation value of an observable becomes

O(t) = Tr
(
ρ̂HÔH(t)

)
. (15)

Note that the density operator can also be defined in the Schrdinger picture or the Dirac picture.

2.2 The time contour

The purpose of the following section is to show how statistical averaging of a many-body state and the subsequent
time evolution can be combined to a unified description which implies the introduction of a time contour for the
evaluation of time-dependent expectation values. The idea of this contour was first presented by Schwinger [47]
and Keldysh [48]. In this work, a few steps of the derivation are partly skipped to focus on the most important
relations. For a more detailed introduction, the reader is referred to e.g. Ref. [44].

Starting from the time-dependent matrix element of a chosen microstate n, according to Eq. (8), one has

O(n)(t) =
⟨
nH

∣∣∣Û(t0, t)ÔSÛ(t, t0)
∣∣∣nH

⟩
. (16)

Here, one denotes ⟨nH| =: ⟨nt0 |, |nH⟩ =: |nt0⟩ and ÔS =: Ôt, not to indicate time dependence, but to assign the
attributed time of the evolution, leading to

O(n)(t) =
⟨
nt0

∣∣∣T̄
{

e−
i
~

∫ t0
t dt̄ Ĥ(t̄)

}
ÔtT

{
e−

i
~

∫ t
t0

dt̄ Ĥ(t̄)
}∣∣∣nt0

⟩
, (17)

where the definition of Û(t, t0) in Eq. (9) is used. One way to interpret the sequence of the operators in Eq. (17)
is the identification with two time branches, a causal and an anticausal one with respect to the time direction. The
connection of the two branches leads to a first time contour C. This idea is illustrated in Fig. 1. To distinguish
time arguments in the real time space and on C, contour times are denoted z ∈ C. With this definition, identifying
C− with the forward branch and C+ with the backward one, Eq. (17) can be rewritten,

O(n)(t) =

⟨
nt0

∣∣∣∣TC
{

e
− i

~
∫
C+

dz̄ Ĥ(z̄)
}
Ôt±TC

{
e
− i

~
∫
C−

dz̄ Ĥ(z̄)
}∣∣∣∣nt0

⟩
. (18)

Here, TC is the time ordering operator on the contour, obeying

TC
{
Ô(zP (k))Ô(zP (k−1)) . . . Ô(zP (1))

}
= (−1)

FP Ô(zk)Ô(zk−1) . . . Ô(z1) , (19)

for contour times z1 ≤ z2 ≤ . . . ≤ zk. FP is the number of exchanged fermionic operators of the permutation
P and originates from the fermionic commutator relation. The value of O(n)(t) is equal for the insertion of both
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t0 tz1

z2 C

Fig. 1 Illustration of the time branches: the contour C on the real-time axis consists of a causal branch and an anticausal
branch. On C, the time z2 is later than z1, although their projections on the real time axis are arranged oppositely.

Ôt+ (on C+) and Ôt− (on C−). Since the times on C+ are entirely later than the ones on C−, and, moreover, inside
the TC sign, operators can be treated as commuting operators [44], one arrives at

O(n)(t) =
⟨
nt0

∣∣∣TC
{

e−
i
~

∫
C dz̄ Ĥ(z̄)Ôt±

}∣∣∣nt0

⟩
. (20)

It is convenient to extend the contour C to +∞, to make it universal and independent of the choice of t. This
does not change the form of Eq. (20). Since Ôt± is not explicitly time-dependent (cf. Eq. (16)) one can safely
write Ôt± = Ôt. Furthermore, one can also apply Eq. (20) to contour times z,

O(n)(z) =
⟨
nt0

∣∣∣TC
{

e−
i
~

∫
C dz̄ Ĥ(z̄)Ôz

}∣∣∣nt0

⟩
. (21)

At this point, the question arises, how ensemble averaging can be combined with the presented time structure.
In general, this is achieved by applying the trace over all microstates with the density operator, as shown in Eq.
(15). Together with the findings of Eq. (21), the ensemble expectation value for a given observable reads

O(z) = Tr
(
ρ̂HTC

{
e−

i
~

∫
C dz̄ Ĥ(z̄)Ôz

})
, (22)

with the density operator ρ̂H = e−βĤ(z)

Z and the partition function Z = Tr
(

e−βĤ(z)
)

. In this work, there are two
different ways to treat this ensemble averaging concerning the different system setups that are investigated. In
general, one has to compute a nontrivial interacting ground state from which to start the time evolution. Under
certain conditions, this can be achieved by the use of the so-called adiabatic switching method, which is presented
in the following section2. The Hamiltonian of a quantum system in second quantization in the Schrdinger picture
generally reads (cf. Eq. (6) and Eq. (7))

Ĥ(t) = Ĥ0 + Ŵ + F̂ (t) , with (23)

Ĥ0 =
∑

i,j

h
(0)
ij ĉ
†
i ĉj and Ŵ =

1

2

∑

i,j,k,l

Wijklĉ
†
i ĉ
†
j ĉlĉk , (24)

Ĥ0 being the single-particle Hamiltonian, Ŵ the interaction part and F̂ (t) a general excitation with F̂ (t) ≡ 0 for
t < t0. For the adiabatic switching method, this Hamiltonian is generalized to

ĤAS(t) = Ĥ0 + fAS(t)
(
Ŵ + F̂ (t)

)
, (25)

where fAS(t) denotes an adiabatic switching function to switch on the interaction. This monotonically increasing
function, fAS : R → [0, 1], has to obey the following relations,

lim
t→−∞

fAS(t) = 0 and fAS(t) = 1 for all t ≥ t0 . (26)

2 The ensemble averaging and the preparation of the interacting initial state can also be done by including a vertical branch into the
contour C, describing the imaginary time. This solution is not part of the present work and can be looked up e.g. in Ref. [44]
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12 N. Schlünzen and M. Bonitz: Nonequilibrium Green functions approach to strongly correlated fermions

According to the modified Hamiltonian ĤAS(t), one can define a corresponding time evolution operator ÛAS(t, t0)
similar to Eq. (9). Now the fully interacting density operator can be expressed in the following way,

ρ̂H = ÛAS(t0,−∞)ρ̂0ÛAS(−∞, t0) , (27)

where ρ̂0 denotes the non-interacting single-particle density operator corresponding to Ĥ0. This is the main
assumption of the adiabatic switching method. It is mathematically supported by the Gell-Mann–Low theorem
[49, 50] that requires the existence of a nondegenerate ground state of Ĥ0. Furthermore, the state of the system
after the switch-on is not necessarily the interacting ground state, but an eigenstate of Ĥ(t) [51]. In practice,
the switch-on via fAS(t) has to be performed sufficiently slow to ensure that a nonfluctuating fully interacting
state is approached. It has to be checked whether this state is the ground state. It is noteworthy that, in principle,
the interaction and excitation Hamiltonian has to be switched off for t → ∞ in a similar way for the adiabatic
assumption to be valid. This, however, can be neglected for all practical purposes, since it does not affect the
preceding evolution.
Combining Eq. (22) and Eq. (27), one arrives at

O(z) = Tr
(
ρ̂0ÛAS(−∞, t0)TC

{
e−

i
~

∫
C dz̄ Ĥ(z̄)Ôz

}
ÛAS(t0,−∞)

)
. (28)

Here, the cyclic property of the trace has been used. This equation can be simplified by the introduction of a new
time contour which extends C to −∞. It is illustrated in Fig. 2.

ρ̂0

−∞ ∞

t0

CAS

Fig. 2 Time contour for the adiabatic switching method: the contour starts at −∞ with the noninteracting ground state of
the system. The interaction is switched on before t0. The two branches are similar to the ones in Fig. 1.

From now on, C denotes this generalized adiabatic switching time contour CAS, when the system is prepared
in the interacting ground state. Inserting CAS into Eq. (28) leads to the following simplification,

O(z) = Tr
(
ρ̂0TCAS

{
e−

i
~

∫
CAS

dz̄ ĤAS(z̄)
Ôz

})
, (29)

where TCAS is now evaluated on the adiabatic switching contour CAS.
Many of the systems which are studied in this paper, start from a setup with a substantially lower degree of
complexity. For instance, the initial state of the systems presented in Sec. 6.2.4 is exactly described by an ideal
state (cf. Sec. 5.3.1). In this case, it is not necessary to generate an interacting ground state by adiabatic switching
and the time contour can be reduced to two positive branches. This is illustrated in Fig. 3.

When no ground state preparation by adiabatic switching is performed, from now on, C denotes this reduced
time contour Cid. The ensemble average from equation Eq. (22) reduces to

O(z) = Tr
(
ρ̂idTCid

{
e−

i
~

∫
Cid

dz̄ Ĥ(z̄)
Ôz

})
, (30)

ρ̂id being the density operator of the ideal state (cf. Sec. 5.3) and TCid the time ordering operator on Cid.
Summarizing, the time contour is a very useful and universal description that combines time evolution and en-
semble averaging in a simple way. The specific choice of C, however, depends on the properties of the system.
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t0

∞Cid

Fig. 3 Time contour for the ideal initial state: the contour C is only defined for times t ≥ t0. The two branches correspond
to the ones in Fig. 1.

2.3 The many-particle Green function and the Martin–Schwinger hierarchy

The derivation of the Martin–Schwinger hierarchy, a coupled system of integro-differential equations which
describe the motion of a system in terms of all N -particle Green functions, with N ∈ N, can only briefly
discussed here, for a more detailed introduction see e.g. Refs. [43, 44, 52]. The next important step is the time
evolution of the canonical operators in the Heisenberg picture obtained from the Heisenberg equation, e.g. [43]

i~
dĉi(z)

dz
=

∑

j

h
(0)
ij (z)ĉj(z) +

∑

j,k,l

Wijkl(z)ĉ
†
j(z)ĉl(z)ĉk(z) , (31)

−i~
dĉ†i (z)

dz
=

∑

j

ĉ†j(z)h
(0)
ji (z) +

∑

j,k,l

ĉ†j(z)ĉ
†
k(z)ĉl(z)Wjkil(z) , (32)

for contour times z (for simplicity, the excitation part F̂ (t) of the Hamiltonian is omitted, but this derivation can
easily be generalized accordingly). The main question which remains after studying the contents of Sec. 2.2, is
how O(z) is calculated in particular and, especially, how the exponentials in Eqs. (29) and (30) are evaluated.
Since in second quantization, each operator can be expressed in terms of the creation and annihilation operators,
it is convenient to introduce the N -particle correlator Ĝ(N) in the following way,

Ĝ
(N)
i1...iN j1...jN

(z1, . . . , zN , z
′
1, . . . , z

′
N ) :=

1
(i~)N TC

{
ĉi1(z1) . . . ĉiN

(zN )ĉ†jN
(z′N ) . . . ĉ†j1(z

′
1)
}
. (33)

A solution for the evolution of Ĝ(N) immediately enables the evaluation of any operator Ô(z)3

TC
{
Ô1(z1) . . . Ôk(zk)

}
=

∑
P (±1)

P
Θ

(k)
C
(
zP (1), . . . , zP (k)

)
ÔP (1)(zP (1)) . . . ÔP (k)(zP (k)) . (34)

Here, Θ(k)
C (z1, . . . , zk) = ΘC(z1, z2)ΘC(z2, z3) . . .ΘC(zk−1, zk) is the generalized theta function, ΘC(z1, z2) :={

1 if z1 > z2

0 otherwise
being the Heaviside step function on the contour C. The time derivative of the N -particle corre-

lator becomes
d

dzk
Ĝ

(N)
i1...iN j1...jN

(z1, . . . , zN , z
′
1, . . . , z

′
N ) =

1
(i~)N

{(
d

dzk
Θ

(2N)
C

)∏
i ĉi
∏

j ĉ
†
j + TC

(
d

dzk

∏
i ĉi
∏

j ĉ
†
j

)}
, (35)

with z ∈ {z, z′} and the symbolic objects
(

d
dzk

Θ
(2N)
C

)∏

i

ĉi

∏

j

ĉ†j :=
∑

P (±1)P
(

d
dzk

Θ
(2N)
C

(
zP (1), . . . , zP (2N)

))

âiP (1)
(zP (1)) . . . âiP (2N)

(z′P (2N)) , (36)

3 The canonical operators in Eq. (33) are, in general, not time-dependent, since most operators are integrals of motion.
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14 N. Schlünzen and M. Bonitz: Nonequilibrium Green functions approach to strongly correlated fermions

and

TC


 d

dzk

∏

i

ĉi

∏

j

ĉ†j


 :=





TC
{
ĉi1(z1) . . .

(
d

dzk
ĉik

(zk)
)
. . . ĉiN

(zN )ĉ†jN
(z′N ) . . . ĉ†j1(z

′
1)
}

if z = z

TC
{
ĉi1(z1) . . . ĉiN

(zN )ĉ†jN
(z′N ) . . .

(
d

dz′k
ĉ†jk

(z′k)
)
. . . ĉ†j1(z

′
1)
}

if z = z′
.

(37)

In Eq. (36) the operators âi and the times zi are defined such that

âim(zm) :=

{
ĉim

(zm) if m ∈ {1, . . . , N}
ĉ†j2N−m+1

(z′2N−m+1) if m ∈ {N + 1, . . . , 2N} . (38)

Eq. (36) can be rearranged by the use of time ordering of permutations and the (anti)commutator expressions of
the canonical operators, resulting in [44]

(
d

dzk
Θ

(2N)
C

)∏

i

ĉi

∏

j

ĉ†j =





∑N
l=1(±1)k+lδ

ik,jl
δC(zk,z′l) ·

TC
{

ĉ
i1

(z1)...���ĉ
ik

(zk)...ĉ
iN

(zN )ĉ†
jN

(z′N )...���ĉ†
jl

(z′l)...ĉ
†
j1

(z′1)
} if z = z

−∑N
l=1(±1)k+lδ

il,jk
δC(zl,z

′
k) ·

TC
{

ĉ
i1

(z1)...���ĉ
il

(zl)...ĉiN
(zN )ĉ†

jN
(z′N )...���ĉ†

jk
(z′k)...ĉ†

j1
(z′1)

} if z = z′
.

(39)

Here, δC(z, z′) denotes the Dirac distribution acting on contour times. Eq. (39) shows that the respective time
ordering operators including the subsequent canonical operators can be identified with aN−1-particle correlator
according to Eq. (33). This is an important finding, because it allows to solve the evolution equations recursively.
The time derivatives occurring in Eq. (37) can be replaced by the relations in Eqs. (31) and (32). Due to the
structure of the operators therein, one can easily see that in this case an N -particle correlator for the single-
particle part and a N + 1-particle correlator for the interaction part can be identified. This leads to the simple
hierarchic equations,

∑

l

[
i~

d
dzk

δik,l − h
(0)
ikl(zk)

]
Ĝ

(N)
i1...l...iN j1...jN

(z1, . . . , zN , z
′
1, . . . , z

′
N )

= ± i~
∑

l,m,n

∫

C
dz̄ wiklmn(zk, z̄)Ĝ

(N+1)
i1...m...iN nj1...jN l(z1, . . . , zN , z̄, z

′
1, . . . , z

′
N , z̄

+)

+
N∑

p=1

(±1)k+pδik,jp
δC(zk, z

′
p)Ĝ

(N−1)

i1...�ik...iN j1...�jp...jN
(z1, . . . ,��zk, . . . , zN , z

′
1, . . . ,��z

′
p, . . . , z

′
N ) ,

(40)

∑

l

Ĝ
(N)
i1...iN j1...l...jN

(z1, . . . , zN , z
′
1, . . . , z

′
N )


−i~

←
d

dz′k
δl,jk

− h
(0)
ljk

(z′k)




= ± i~
∑

l,m,n

∫

C
dz̄ Ĝ(N+1)

i1...iN nj1...l...jN m(z1, . . . , zN , z̄
−, z′1, . . . , z

′
N , z̄)wlmjkn(z̄, z′k)

+

N∑

p=1

(±1)k+pδip,jk
δC(zp, z

′
k)Ĝ

(N−1)

i1...�ip...iN j1...�jk...jN
(z1, . . . ,��zp, . . . , zN , z

′
1, . . . ,��z

′
k, . . . , z

′
N ) .

(41)

In these equations, the interaction obeys Wijkl(z) =
∫
C dz̄ wijkl(z, z̄), with

wijkl(z, z̄) := Wijkl(z)δC(z, z̄) . (42)
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This additional time dependence allows to include the canonical operators naturally into the correlators. The idea
causes also the times z± = z ± ϵ, ϵ ≪ 1 which are defined as infinitesimally larger or smaller to ensure the

correct operator ordering. The arrow in
←
d

dz′k
denotes an acting of the differential operator to its left.

Finally, one can define the N -particle nonequilibrium Green function including the ensemble averaging (cf. Eqs.
(29) and (30)),

G
(N)
i1...iN j1...jN

(z1, . . . , zN , z
′
1, . . . , z

′
N ) :=

Tr
(
ρ̂0/id Ĝ

(N)
i1...iN j1...jN

(z1, . . . , zN , z
′
1, . . . , z

′
N )
)
, (43)

where ρ̂0/id depends on the choice of the time contour. By applying the trace to Eqs. (40) and (41), one can easily
see that the N -particle Green function formally obeys the same equations as the N -particle correlator. This leads
to the well-known Martin–Schwinger hierarchy [53],

∑

l

[
i~

d
dzk

δik,l − h
(0)
ikl(zk)

]
G

(N)
i1...l...iN j1...jN

(z1, . . . , zN , z
′
1, . . . , z

′
N )

= ± i~
∑

l,m,n

∫

C
dz̄ wiklmn(zk, z̄)G

(N+1)
i1...m...iN nj1...jN l(z1, . . . , zN , z̄, z

′
1, . . . , z

′
N , z̄

+)

+
N∑

p=1

(±1)k+pδik,jp
δC(zk, z

′
p)G

(N−1)

i1...�ik...iN j1...�jp...jN
(z1, . . . ,��zk, . . . , zN , z

′
1, . . . ,��z

′
p, . . . , z

′
N ) ,

(44)

∑

l

G
(N)
i1...iN j1...l...jN

(z1, . . . , zN , z
′
1, . . . , z

′
N )


−i~

←
d

dz′k
δl,jk

− h
(0)
ljk

(z′k)




= ± i~
∑

l,m,n

∫

C
dz̄ G(N+1)

i1...iN nj1...l...jN m(z1, . . . , zN , z̄
−, z′1, . . . , z

′
N , z̄)wlmjkn(z̄, z′k)

+

N∑

p=1

(±1)k+pδip,jk
δC(zp, z

′
k)G

(N−1)

i1...�ip...iN j1...�jk...jN
(z1, . . . ,��zp, . . . , zN , z

′
1, . . . ,��z

′
k, . . . , z

′
N ) .

(45)

This hierarchy can, in principle, be solved exactly, starting from the zero-particle Green functionG(0) := 1. How-
ever, since it is, in general, a large (for a macroscopic system, infinitely large) set of coupled integro-differential
equations one has to find approximate solutions by truncation of the hierarchy at a certain order.
The N -particle Green function obeys a number of boundary conditions in time which are readily obtained. Let
zs (ze) be the starting (ending) time of a contour C. By using the definition in Eq. (43) and Eq. (33), respectively
and considering the acting of the time ordering operator of Eq. (34), one finds

G
(N)
i1...iN j1...jN

(z1, . . . , zs, . . . , zN , z
′
1, . . . , z

′
N ) = ±G(N)

i1...iN j1...jN
(z1, . . . , ze, . . . , zN , z

′
1, . . . , z

′
N )

G
(N)
i1...iN j1...jN

(z1, . . . , zN , z
′
1, . . . , z

′
s, . . . , z

′
N ) = ±G(N)

i1...iN j1...jN
(z1, . . . , zN , z

′
1, . . . , z

′
e, . . . , z

′
N ) .

(46)

These equations are known as the Kubo–Martin–Schwinger (KMS) relations [53, 54].
In order to find equations of motion which are easier to handle than the full hierarchy equations, it is convenient to
focus on the first one, describing the motion of the single-particle nonequilibrium Green function, G(1)

ij (z, z′) =:

Gij(z, z
′), which, from now on, is simply called the Green function,

∑

l

[
i~

d
dz
δi,l − h

(0)
il (z)

]
Glj(z, z

′) = δi,jδC(z, z
′) (47)

± i~
∑

l,m,n

∫

C
dz̄ wilmn(z, z̄)G

(2)
mnjl(z, z̄, z

′, z̄+) ,
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∑

l

Gil(z, z
′)


−i~

←
d

dz′
δl,j − h

(0)
lj (z′)


 = δi,jδC(z, z

′) (48)

± i~
∑

l,m,n

∫

C
dz̄ G(2)

inlm(z, z̄−, z′, z̄)wlmjn(z̄, z′) .

Equations 47 and 48 are the well-known Keldysh-Kadanoff–Baym equations (KBE) [55]. Due to the structure
of the hierarchy, they are coupled to the two-particle Green function. In the same manner, one can also find the
hierarchy equations for G(2)

i1i2j1j2
(z1, z2, z

′
1, z
′
2),

∑

l

[
i~

d
dz1

δi1,l − h
(0)
i1l (z1)

]
G

(2)
li2j1j2

(z1, z2, z
′
1, z
′
2) = (49)

δi1,j1
δC(z1, z

′
1)Gi2j2(z2, z

′
2) ± δi1,j2

δC(z1, z
′
2)Gi2j1(z2, z

′
1)

±i~
∑

l,m,n

∫

C
dz̄ wi1lmn(z1, z̄) G

(3)
mi2nj1j2l(z1, z2, z̄, z

′
1, z
′
2, z̄

+) ,

∑

l

[
i~

d
dz2

δi2,l − h
(0)
i2l (z2)

]
G

(2)
i1lj1j2

(z1, z2, z
′
1, z
′
2) = (50)

δi2,j2
δC(z2, z

′
2)Gi1j1(z1, z

′
1) ± δi2,j1

δC(z2, z
′
1)Gi1j2(z1, z

′
2)

±i~
∑

l,m,n

∫

C
dz̄ wi2lmn(z2, z̄) G

(3)
i1mnj1j2l(z1, z2, z̄, z

′
1, z
′
2, z̄

+) ,

∑

l

G
(2)
i1i2lj2

(z1, z2, z
′
1, z
′
2)


−i~

←
d

dz′1
δl,j1 − h

(0)
lj1

(z′1)


 = (51)

δi1,j1
δC(z1, z

′
1)Gi2j2(z2, z

′
2) ± δi2,j1

δC(z2, z
′
1)Gi1j2(z1, z

′
2)

±i~
∑

l,m,n

∫

C
dz̄ G(3)

i1i2nlj2m (z1, z2, z̄
−, z′1, z

′
2, z̄)wlmj1n(z̄, z′1) ,

∑

l

G
(2)
i1i2j1l(z1, z2, z

′
1, z
′
2)


−i~

←
d

dz′2
δl,j2 − h

(0)
lj2

(z′2)


 = (52)

δi2,j2
δC(z2, z

′
2)Gi1j1(z1, z

′
1) ± δi1,j2

δC(z1, z
′
2)Gi2j1(z2, z

′
1)

±i~
∑

l,m,n

∫

C
dz̄ G(3)

i1i2nj1lm (z1, z2, z̄
−, z′1, z

′
2, z̄)wlmj2n(z̄, z′2) ,

which are coupled to G and G(3).
Finally, since it will become important in the derivation of the T -matrix [cf. Sec. 2.4], we give the second

hierarchy equation for the three-particle Green function

∑

l

[
i~

d
dz2

δi2,l−h
(0)
i2l (z2)

]
G

(3)
i1li3j1j2j3

(z1, z2, z3, z
′
1, z
′
2, z
′
3) =

± δi2,j1
δC(z2, z

′
1)G

(2)
i1i3j2j3

(z1, z3, z
′
2, z
′
3)

+ δi2,j2
δC(z2, z

′
2)G

(2)
i1i3j1j3

(z1, z3, z
′
1, z
′
3)

± δi2,j3
δC(z2, z

′
3)G

(2)
i1i3j1j2

(z1, z3, z
′
1, z
′
2)

± i~
∑

l,m,n

∫

C
dz̄ wi2lmn(z2, z̄)G

(4)
i1mi3nj1j2j3l(z1, z2, z3, z̄, z

′
1, z
′
2, z
′
3, z̄

+) ,

(53)
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which couples to the two-particle Green function and the four-particle Green function. Due to the explicit ap-
pearance of w in Eqs. (44) and (45), the hierarchy provides a systematic starting point to apply perturbation
expansions in terms of the interaction as will be discussed in the following section.

2.4 The selfenergy and the T -matrix

The standard decoupling of the hierarchy in NEGF theory is achieved by introducing the single-particle selfenergy
[43, 44, 52, 56] Σ which fulfills the following relations,

±i~
∑

l,m,n

∫

C
dz̄ wilmn(z, z̄)G

(2)
mnjl(z, z̄, z

′, z̄+) =:
∑

l

∫

C
dz̄Σil(z, z̄)Glj(z̄, z

′) , (54)

±i~
∑

l,m,n

∫

C
dz̄ G(2)

inlm(z, z̄−, z′, z̄)wlmjn(z̄, z′) =:
∑

l

∫

C
dz̄ Gil(z, z̄)Σlj(z̄, z

′) . (55)

By applying these definitions to Eqs. (47) and (48) one arrives at the formally closed KBE,
∑

l

[
i~

d
dz
δi,l − h

(0)
il (z)

]
Glj(z, z

′) = δi,jδC(z, z
′) (56)

+
∑

l

∫

C
dz̄Σil(z, z̄)Glj(z̄, z

′) ,

∑

l

Gil(z, z
′)


−i~

←
d

dz′
δl,j − h

(0)
lj (z′)


 = δi,jδC(z, z

′) (57)

+
∑

l

∫

C
dz̄ Gil(z, z̄)Σlj(z̄, z

′) .

In this form, the non-Markovian structure of the equations becomes visible, since the Green function depends on
its own history in the integral expression. Equations 56 and 57 are exact, if the selfenergy Σ would be exactly
known. In practice, however, one has to use approximate expressions which follow from approximations for the
two-particle Green function. In the following we discuss important approximations and how they account for
quantum correlations.

2.4.1 The Hartree–Fock selfenergy

It is easy to check that in Eqs. (49) to (52), the first two lines of each equation, which only contain the single-
particle Green functions on the right hand site, are fulfilled by

G
(2),HF
i1i2j1j2

(z1, z2, z
′
1, z
′
2) = Gi1j1(z1, z

′
1)Gi2j2(z2, z

′
2) ±Gi1j2(z1, z

′
2)Gi2j1(z2, z

′
1) . (58)

Replacing the two-particle Green function by G(2),HF in Eqs. (47) and (48) leads to the so-called Hartree–
Fock approximation. In terms of a perturbative expansion, it corresponds to a truncation at the first order in the
interaction w, since all terms originating from the three-particle Green function in Eqs. (49) to (52) are at least of
second order in w in the Kadanoff–Baym equations. While generally, the two-particle Green function describes
the evolution of two particles, which are “inserted” at times z′1 and z′2 and removed at times z1 and z2, in the
Hartree–Fock approximation, this process is described by the evolution of two independent particles (mean-field
approximation). The first KBE in Hartree–Fock approximation attains the following form,

∑

l

[
i~

d
dz
δi,l − h

(0)
il (z)

]
Glj(z, z

′) = δi,jδC(z, z
′)

± i~
∑

l,m,n

∫

C
dz̄d ¯̄z δC(z, ¯̄z)wilmn(z, z̄)Gnl(z̄, z̄

+)Gmj( ¯̄z, z
′)

+ i~
∑

l,m,n

∫

C
dz̄ wilmn(z, z̄)Gml(z, z̄

+)Gnj(z̄, z
′) .

(59)
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By comparison with Eq. (56), one can identify the Hartree–Fock selfenergy,

ΣHF
ij (z, z′) = ±i~δC(z, z′)

∑

k,l

∫

C
dz̄ wikjl(z, z̄)Glk(z̄, z̄+) + i~

∑

k,l

wiklj(z, z
′)Glk(z, z′+) . (60)

(the same expression is found starting from the second KBE, cf. Eqs. (48) and (57)) the Feynman diagrams of
which are shown in Fig. 4. The first diagram corresponds to the so-called Hartree (mean-field) term, whereas the
second accounts for exchange processes (Fock term).

Fig. 4 Diagrammatic representation of the Hartree–Fock selfenergy, Eq. (60).
Solid lines correspond to Green functions and wiggly lines to interactions. The
empty dots represent the external time indices (z, z′), whereas the filled dots
stand for intermediate time points (z̄).

The Hartree–Fock approximation is widely used in many-body physics, however, it has been shown frequently
(see e.g. Refs. [34,57,58]) that it severely differs from exact results and often fails to capture important qualitative
features. This deviation is the manifestation of the omission of correlation effects, so it is necessary to search for
a higher order truncation of the hierarchy equations.

2.4.2 The T -matrix. Derivation from the hierarchy

The natural generalization of the expression of the two-particle Green function beyond Hartree-Fock is given by

G
(2)
i1i2j1j2

(z1, z2, z
′
1, z
′
2) =: G

(2),HF
i1i2j1j2

(z1, z2, z
′
1, z
′
2) + Υi1i2j1j2(z1, z2, z

′
1, z
′
2) , (61)

which is exact if the two-particle correlation function Υ ofG(2) contains the full hierarchy information. To derive
an equation of motion for Υ, one has to evaluate

∑

l

[
i~

d
dz1

δi1,l − h
(0)
i1l (z1)

]
Υli2j1j2(z1, z2, z

′
1, z
′
2)

=
∑

l

[
i~

d
dz1

δi1,l − h
(0)
i1l (z1)

]{
G

(2)
li2j1j2

(z1, z2, z
′
1, z
′
2)

−Glj1(z1, z
′
1)Gi2j2(z2, z

′
2) ∓Glj2(z1, z

′
2)Gi2j1(z2, z

′
1)

}

(49)
(47)
= ± i~

∑

l,m,n

∫

C
dz̄ wi1lmn(z1, z̄)G

(3)
mi2nj1j2l(z1, z2, z̄, z

′
1, z
′
2, z̄

+)

∓ i~Gi2j2(z2, z
′
2)
∑

l,m,n

∫

C
dz̄ wi1lmn(z1, z̄)G

(2)
mnj1l(z1, z̄, z

′
1, z̄

+)

− i~Gi2j1(z2, z
′
1)
∑

l,m,n

∫

C
dz̄ wi1lmn(z1, z̄)G

(2)
mnj2l(z1, z̄, z

′
2, z̄

+) .

(62)

Still, all terms in Eq. (62) are of the same order in the interaction. Therefore, one evaluates
∑

k

[
i~

d
dz2

δi2,k − h
(0)
i2k(z2)

]∑

l

[
i~

d
dz1

δi1,l − h
(0)
i1l (z1)

]
Υlkj1j2(z1, z2, z

′
1, z
′
2) , (63)
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instead. The added operator only acts on the three-particle Green function and on the single-particle Green
functions. With the first and third hierarchy equations, Eq. (47) and Eq. (53), we obtain

∑

k

[
i~

d
dz2

δi2,k − h
(0)
i2k(z2)

]∑

l

[
i~

d
dz1

δi1,l − h
(0)
i1l (z1)

]
Υlkj1j2(z1, z2, z

′
1, z
′
2)

=i~
∑

m,n

wi1i2mn(z1, z2)G
(2)
mnj1j2

(z1, z2, z
′
1, z
′
2)

+ (i~)
2

∑

l,m,n,p,q,r

∫

C
dz̄d ¯̄z wi1lmn(z1.z̄)wi2pqr(z2, ¯̄z)

{
G

(4)
mqnrj1j2lp(z1, z2, z̄, ¯̄z, z

′
1, z
′
2z̄

+, ¯̄z+)

−G
(2)
mnj1l(z1, z̄, z

′
1, z̄

+)G
(2)
qrj2p(z2, ¯̄z, z

′
2, ¯̄z

+) ∓G
(2)
mnj2l(z1, z̄, z

′
2, z̄

+)G
(2)
qrj1p(z2, ¯̄z, z

′
1, ¯̄z

+)

}
.

(64)

In this equation, only one term is of first order in the interaction, while the other ones are of higher order. Thus,
at this point, it is reasonable to use a higher order truncation of the hierarchy. Let ΥT (0)

and G(2),T (0)

be an
approximate correlation function and two-particle Green function obeying

∑

k

[
i~

d
dz2

δi2,k − h
(0)
i2k(z2)

]∑

l

[
i~

d
dz1

δi1,l − h
(0)
i1l (z1)

]
ΥT (0)

lkj1j2(z1, z2, z
′
1, z
′
2)

= i~
∑

m,n

wi1i2mn(z1, z2)G
(2),T (0)

mnj1j2
(z1, z2, z

′
1, z
′
2) , (65)

where the superscript T (0) denotes that this equation is related to the T (0)-matrix approximation, see below. To
find an expression for G(2),T (0)

, we introduce the non-interacting Green function, Gij,0 which obeys [cf. Eqs.
(47) and (48)]

∑

l

[
i~

d
dz
δi,l − h

(0)
il (z)

]
Glj,0(z, z

′) = δi,jδC(z, z
′) , (66)

∑

l

Gil,0(z, z
′)


−i~

←
d

dz′
δl,j − h

(0)
lj (z′)


 = δi,jδC(z, z

′) , (67)

and allows us to simplify expressions such as the left-hand side of Eq. (65). In detail, this is done for a reduced
term in the following way,

∑

l,m

∫

C
dz̄ Gi1m,0(z1, z̄)

[
i~

d
dz̄
δm,l − h

(0)
ml(z̄)

]
Υlkj1j2(z̄, ¯̄z, z

′
1, z
′
2)

= −
∑

l,m

∫

C
dz̄ Gi1m,0(z1, z̄)h

(0)
ml(z̄)Υlkj1j2(z̄, ¯̄z, z

′
1, z
′
2)

+ i~
∑

l

∫

C
dz̄ Gi1l,0(z1, z̄)

d
dz̄

Υlkj1j2(z̄, ¯̄z, z
′
1, z
′
2)

(∗)
= −

∑

l,m

∫

C
dz̄ Gi1m,0(z1, z̄)h

(0)
ml(z̄)Υlkj1j2(z̄, ¯̄z, z

′
1, z
′
2)

+ i~
∑

l




[
Gi1l(z1, z̄)Υlkj1j2(z̄, ¯̄z, z

′
1, z
′
2)
]z̄=ze

z̄=zs

−
∫

C
dz̄ Gi1l(z1, z̄)

←
d

dz̄
Υlkj1j2(z̄, ¯̄z, z

′
1, z
′
2)
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(∗∗)
=
∑

l,m

∫

C
dz̄ Gi1m,0(z1, z̄)


−i~

←
d

dz̄
δm,l − h

(0)
ml(z̄)


Υlkj1j2(z̄, ¯̄z, z

′
1, z
′
2)

(∗∗∗)
=
∑

l

∫

C
dz̄ δi1,lδC(z1, z̄)Υlkj1j2(z̄, ¯̄z, z

′
1, z
′
2) = Υi1kj1j2(z1, ¯̄z, z

′
1, z
′
2) ,

(68)

where (∗) follows from partial integration, (∗∗) holds since the integrated term vanishes due to the KMS relations
Eq. (46), and (∗∗∗) is obtained from Eq. (67). Similarly, one arrives at

∑

k,l,m,n

∫

C
dz̄d ¯̄z Gi1m,0(z1, z̄)Gi2n,0(z2, ¯̄z)

[
i~

d
d ¯̄z
δn,k − h

(0)
nk ( ¯̄z)

] [
i~

d
dz̄
δm,l − h

(0)
ml(z̄)

]
ΥT (0)

lkj1j2(z̄, ¯̄z, z
′
1, z
′
2)

=ΥT (0)

i1i2j1j2(z2, z2, z
′
1, z
′
2) .

(69)

Combining Eqs. (65) and (69) leads to the integral expression for ΥT (0)

,

ΥT (0)

i1i2j1j2(z2, z2, z
′
1, z
′
2) =

i~
∑

k,l,m,n

∫

C
dz̄d ¯̄z Gi1k,0(z1, z̄)Gi2l,0(z2, ¯̄z)wklmn(z̄, ¯̄z)G

(2),T (0)

mnj1j2
(z̄, ¯̄z, z′1, z

′
2) . (70)

By inserting back the two-particle Green function of Eq. (61), one finds an expression for G(2),T (0)

,

G
(2),T (0)

i1i2j1j2
(z1, z2, z

′
1, z
′
2) = G

(2),HF
i1i2j1j2

(z1, z2, z
′
1, z
′
2) (71)

+i~
∑

k,l,m,n

∫

C
dz̄d ¯̄z Gi1k,0(z1, z̄)Gi2l,0(z2, ¯̄z)wklmn(z̄, ¯̄z)G

(2),T (0)

mnj1j2
(z̄, ¯̄z, z′1, z

′
2) .

Eq. (71) is the two-particle equivalent to the Born series of nonequilibrium many-body theory. It is formally
equivalent to the Bethe–Salpeter equation in the particle-particle channel [52],

G
(2)
i1i2j1j2

(z1, z2, z
′
1, z
′
2) = G

(2),HF
i1i2j1j2

(z1, z2, z
′
1, z
′
2) (72)

+
∑

k,l,m,n

∫

C
dz̄1dz̄2dz̄3dz̄4Gi1k(z1, z̄1)Gi2l(z2, z̄2)Kklmn(z̄1, z̄2, z̄3, z̄4)G

(2)
mnj1j2

(z̄3, z̄4, z
′
1, z
′
2) .

Here, K is an integration kernel which sums up all irreducible diagrams in the particle-particle channel. Eq. (71)
results from Eq. (72) by inserting

Ki1i2j1j2(z1z2, z
′
1z
′
2) = i~wi1i2j1j2(z1, z2)δC(z1, z

′
1)δC(z2, z

′
2) , (73)

except for the single-particle Green functions which are non-interacting in Eq. (71). The particle-particle channel
can be understood as the restriction to processes where two particles are created and removed simultaneously.
The opposite extreme is the particle-hole channel, in which creation and annihilation of single particles occur
simultaneously, i.e. a particle and a hole have a coinciding lifetime. It should be mentioned that the particle-
particle channel is no additional restriction in the present derivation, since Eq. (71) naturally follows from the
truncation of the hierarchy. The particle-hole channel and the associated T -matrix are not discussed in this paper,
see e.g. Ref. [59].
Returning to Eq. (71), we define the two-particle Green function in a slightly different way4,

G
(2),T
i1i2j1j2

(z1, z2, z
′
1, z
′
2) := G

(2),HF
i1i2j1j2

(z1, z2, z
′
1, z
′
2) (74)

+i~
∑

k,l,m,n

∫

C
dz̄d ¯̄z Gi1k(z1, z̄)Gi2l(z2, ¯̄z)wklmn(z̄, ¯̄z)G

(2),T
mnj1j2

(z̄, ¯̄z, z′1, z
′
2) ,

4 In general, an approximate two-particle Green function provides a conserving scheme, if the corresponding Green function fulfills
both KBE and obeys the symmetry G

(2)
ijkl(t1, t2, t3, t4) = G

(2)
jilk(t2, t1, t4, t3) [56]. In the present case, both conditions are fulfilled by

construction.
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where the noninteracting Green functions have been replaced by interacting ones. A closer look at Eq. (74)
reveals that the recursive structure of the two-particle Green function can be transferred to an auxiliary quantity, T

G
(2),T
i1i2j1j2

(z1, z2, z
′
1, z
′
2) =: G

(2),HF
i1i2j1j2

(z1, z2, z
′
1, z
′
2) (75)

±i~
∑

k,l,m,n

∫
C dz̄1dz̄2dz̄3dz̄4Gi1k(z1, z̄1)Gi2l(z2, z̄2)Tklmn(z̄1, z̄2, z̄3, z̄4)G

(2),HF
mnj1j2

(z̄3, z̄4, z
′
1, z
′
2) ,

the T -matrix in the particle-particle channel. Insertion of Eq. (75) into Eq. (74) leads to

G
(2),T
i1i2j1j2

(z1, z2, z
′
1, z
′
2) = G

(2),HF
i1i2j1j2

(z1, z2, z
′
1, z
′
2) (76)

+i~
∑

k,l,m,n

∫

C
dz̄1dz̄2Gi1k(z1z̄1)Gi2l(z2, z̄2)wklmn(z̄1, z̄2)G

(2),HF
mnj1j2

(z̄1z̄2, z
′
1z
′
2)

± (i~)
2

∑

k,l,m,n,p,q,r,s

∫

C
dz̄1dz̄2dz̄3dz̄4dz̄5dz̄6Gi1k(z1z̄1)Gi2l(z2, z̄2)wklmn(z̄1, z̄2)

Gmp(z̄1, z̄3)Gnq(z̄2, z̄4)Tpqrs(z̄3z̄4, z̄5z̄6)G
(2),HF
rsj1j2

(z̄5z̄6, z
′
1z
′
2) .

Finally, comparing with Eq. (75), we identify an expression for the T -matrix,

Tijkl (z1z2, z3z4) = ±wijkl(z1, z2)δC(z1, z3)δC(z2, z4) (77)

+i~
∑

m,n,p,q

∫

C
dz̄1dz̄2 wijmn(z1, z2)Gmp(z1, z̄1)Gnq(z2, z̄2)Tpqkl(z̄1, z̄2, z3, z4) .

In a similar manner, one finds that, in the case of the noninteracting Green functions, Eq. (71) and the equivalent
to Eq. (75) are fulfilled by

T
(0)
ijkl (z1z2, z3z4) = ±wijkl(z1, z2)δC(z1, z3)δC(z2, z4) (78)

+i~
∑

m,n,p,q

∫

C
dz̄1dz̄2 wijmn(z1, z2)Gmp,0(z1, z̄1)Gnq,0(z2, z̄2)T

(0)
pqkl(z̄1, z̄2, z3, z4) ,

which is the origin of the naming in Eq. (65).
The name T -matrix originates from scattering theory. A two-particle scattering state of energy E and the relative
momentum operator p̂ with the eigenvalue k is described by the Lippmann–Schwinger equation [44],

|ψ⟩ = |k⟩ +
1

E − p̂2/m± iη
v(r̂) |ψ⟩ , (79)

with m = m1 = m2 being the mass of the particles and η an infinitesimally small parameter. The v(r̂) denotes
the interaction, evaluated at the relative spatial coordinate r̂. This equation is formally equivalent to Eq. (74).
The problem is usually solved by introducing the so-called transfer matrix T̂ (T -operator) in the following way,

|ψ⟩ = |k⟩ +
1

E − p̂2/m± iη
T̂ |k⟩ . (80)

This equation corresponds to Eq. (75) where T̂ obeys

T̂ = v(r̂) + T̂
1

E − p̂2/m± iη
v(r̂) , (81)

which is similar to Eq. (77). T̂ is called transfer matrix, because it transforms the free scattering-state |k⟩ into
the interacting scattering-state |ψ⟩,

T̂ |k⟩ = v(r̂) |ψ⟩ . (82)

Aside from this close analogy, there are qualitative differences. In contrast to scattering theory which considers
an isolated pair of two particles the present theory is far more general. First, in the present case our particles are
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not necessarily in a pure state. We allow for mixed states which is captured by the involved density matrix and the
Green functions derived from it. Second, we consider a many-particle system where the scattering process of two
particles is substantially influenced by the surrounding particles. The latter may modify the effective interaction
of the pair and, furthermore, limit the available space of scattering states, e.g. by Pauli blocking. Third, the
present theory allows for arbitrary non-equilibrium situations given, e.g., by time-dependent fields. Therefore,
also the scattering process may change in time. All these effects are captured by the NEGF and their associated
equations of motion. For a more detailed discussion see e.g. Refs. [60–63].

2.4.3 The T -matrix selfenergy

The selfenergy in T -matrix approximation is obtained by inserting the two-particle Green function of Eq. (75)
into the selfenergy definition, Eq. (54), while the Hartree–Fock part is already solved by ΣHF, so we define
Σij(z, z

′) =: ΣHF
ij (z, z′) + ΣT

ij(z, z
′) and consider only the remaining part, in the following. After relabeling of

indices, we arrive at
∑

k

∫

C
dz̄ ΣT

ik(z, z̄)Gkj(z̄, z
′) = (83)

(i~)
2

∑

k,l,m,n,p,q,r

∫

C
dz̄dz̄1dz̄2dz̄3dz̄4 wilmn(z, z̄3)Gmp(z, z̄1)Gnq(z̄3, z̄2)

[
Tpqkr(z̄1, z̄2, z̄, z̄4) ± Tpqrk(z̄1, z̄2, z̄4, z̄)

]
Grl(z̄4, z̄3)Gkj(z̄, z

′) ,

which implicitly defines

ΣT
ik(z, z̄) = (i~)

2
∑

l,m,n,p,q,r

∫

C
dz̄1dz̄2dz̄3dz̄4 wilmn(z, z̄3)Gmp(z, z̄1)Gnq(z̄3, z̄2)

[
Tpqkr(z̄1, z̄2, z̄, z̄4) ± Tpqrk(z̄1, z̄2, z̄4, z̄)

]
Grl(z̄4, z̄3) . (84)

At this point, the T -matrix and the corresponding selfenergy are well-defined. However, it is convenient to
simplify the expressions. To avoid singularities [64, 65] such as the one in Eq. (77), we define

T̃ ijkl(z1, z2, z3, z4) :=Tijkl(z1, z2, z3, z4) ∓ wijkl(z1, z2)δC(z1, z3)δC(z2, z4)

=i~
∑

m,n,p,q

∫

C
dz̄1dz̄2 wijmn(z1, z2)Gmp(z1, z̄1)Gnq(z2, z̄2)

[
T̃ pqkl(z̄1, z̄2, z3, z4) ± wpqkl(z̄1, z̄2)δC(z̄1, z3)δC(z̄2, z4)

]

= ± i~
∑

m,n,p,k

wijmn(z1, z2)Gmp(z1, z3)Gnq(z2, z4)wpqkl(z3, z4)

+ i~
∑

m,n,p,q

∫

C
dz̄1dz̄2 wijmn(z1, z2)Gmp(z1, z̄1)Gnq(z2, z̄2)

T̃ pqkl(z̄1, z̄2, z3, z4) .

(85)

Further, the selfenergy, Eq. (84), suggests to introduce the (anti-)symmetrized T -matrix,

T̃
±
ijkl(z1, z2, z3, z4) :=T̃ ijkl(z1, z2, z3, z4) ± T̃ ijlk(z1, z2, z4, z3)

= ± i~
∑

m,n,p,q

wijmn(z1, z2)Gmp(z1, z3)Gnq(z2, z4)wpqkl(z3, z4)

+ i~
∑

m,n,p,q

wijmn(z1, z2)Gmp(z1, z4)Gnq(z2, z3)wpqlk(z4, z3)

+ i~
∑

m,n,p,q

∫

C
dz̄1dz̄2 wijmn(z1, z2)Gmp(z1, z̄1)Gnq(z2, z̄2)

T̃
±
pqkl(z̄1, z̄2, z3, z4) ,

(86)
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and replace the original T -matrix in Eq. (84),

ΣT
ik(z, z̄) = (i~)

2
∑

l,m,n,p,q,r

∫

C
dz̄1dz̄2dz̄3dz̄4 wilmn(z, z̄3)Gmp(z, z̄1)Gnq(z̄3, z̄2)

[
T̃ pqkr(z̄1, z̄2, z̄, z̄4) ± wpqkr(z̄1, z̄2)δC(z̄1, z̄)δC(z̄2, z̄4)

± T̃ pqrk(z̄1, z̄2, z̄4, z̄) + wpqrk(z̄1, z̄2)δC(z̄1, z̄4)δC(z̄2, z̄)
]
Grl(z̄4, z̄3) .

= ± (i~)
2

∑

l,m,n,p,q,r

∫

C
dz̄1dz̄2 wilmn(z, z̄1)Gmp(z, z̄)Gnq(z̄1, z̄2)wpqkr(z̄, z̄2)Grl(z̄2, z̄1)

+ (i~)
2

∑

l,m,n,p,q,r

∫

C
dz̄1dz̄2 wilmn(z, z̄1)Gmp(z, z̄2)Gnq(z̄1, z̄)wpqrk(z̄2, z̄)Grl(z̄2, z̄1)

+ (i~)
2

∑

l,m,n,p,q,r

∫

C
dz̄1dz̄2dz̄3dz̄4 wilmn(z, z̄1)Gmp(z, z̄3)Gnq(z̄1, z̄4)

T̃
±
pqkr(z̄3, z̄4, z̄, z̄2)Grl(z̄2, z̄1) .

(87)

Comparison with Eq. (86), reveals that the selfenergy simplifies to

ΣT
ik(z, z̄) = i~

∑

m,n

∫

C
dz̄1dz̄2 T̃

±
imkn(z, z̄1, z̄, z̄2)Gnm(z̄2, z̄1) . (88)

Eqs. (86) and (88) provide an iterative scheme to construct the selfenergy in terms of the T -matrix up to arbitrary
order which is visualized by Feynman diagrams in Fig. 5. As one can see, there are two types of diagrams –
direct ones (first and third) and exchange diagrams (second and fourth). The diagrams illustrate that the T -matrix
includes scattering processes of infinite order.

· · ·

Fig. 5 Diagrammatic representation of the selfenergy in T -matrix approximation: the diagrams which are generated by Eqs.
(86) and (88) are shown up to the third order in the interaction (cf. Fig. 4).

The first two lines in Eq. (87) (first two diagrams in Fig. 5) are referred to as second order Born approximation
which treat pair interactions up to the second order. This approximation is appropriate for weak to moderate
coupling as will be confirmed below.

2.5 The real-time components of contour quantities

In order to map contour quantities5 onto a scheme which is accessible to numerical calculations, it is useful to
introduce the real-time components of two-time contour quantities such as G and Σ. This procedure does not
depend on the particular choice of C, because both CAS and Cid lead to the same ordering of contour times (cf.
Figs. 2 and 3). It can also be seen that T̃

±
in Eq. (86) is a two-time contour quantity, by replacing the interaction

5 The term “contour quantity” is used, if a quantity obeys the Eqs. (101) and (104), or the corresponding equivalent for its tensor rank.
This is not true for arbitrary quantities but holds for the T -matrix by construction.
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with its definition in Eq. (42),

T̃
±
ijkl(z1, z2, z3, z4) = ±i~δC(z1, z2)δC(z3, z4)

∑

m,n,p,q

Wijmn(z1)Gmp(z1, z3)Gnq(z2, z4)Wpqkl(z3)

+ i~δC(z1, z2)δC(z4, z3)
∑

m,n,p,q

Wijmn(z1)Gmp(z1, z4)Gnq(z2, z3)Wpqlk(z4)

+ i~δC(z1, z2)
∑

m,n,p,q

∫

C
dz̄1dz̄2Wijmn(z1)Gmp(z1, z̄1)Gnq(z2, z̄2)T̃

±
pqkl(z̄1, z̄2, z3, z4) .

(89)

In this form, one can easily check that in each iteration of T̃
±

also the last two time arguments of the T -matrix
become equal, so it is convenient to define the two-time T -matrix,

T̃
±
ijkl(z1, z2, z3, z4) =: δC(z1, z2)δC(z3, z4)Tijkl(z1, z3) , (90)

which obeys

Tijkl(z, z
′) = ±i~

∑

m,n,p,q

Wijmn(z)GH
mnpq(z, z

′)Wpqkl(z
′) (91)

+i~
∑

m,n,p,q

Wijmn(z)GH
mnpq(z, z

′)Wpqlk(z′)

+i~
∑

m,n,p,q

∫

C
dz̄ Wijmn(z)GH

mnpq(z, z̄)Tpqkl(z̄, z
′) ,

with the Hartree-type two-particle Green function GH
ijkl(z, z

′) := Gik(z, z′)Gjl(z, z
′). In this notation, the

selfenergy of Eq. (88) can be written as a simple matrix multiplication,

ΣT
ij(z, z

′) = i~
∑

k,l

Tikjl(z, z
′)Glk(z′, z) . (92)

On the time contour, there are four different ways to order two time arguments, which is shown in Fig. 6.

∞C

c

a

z1 z2

<

>

Fig. 6 Illustration of the time ordering on the contour: Two time arguments can either be both placed on the same branch,
which leads to causal component (indicated with “c”) and the anticausal component (indicated with “a”), or they lie on
different branches, which results in the greater component (red), if z1 (z2) is on the anticausal (causal) branch, and in the less
component (blue) otherwise.

This suggests to represent a two-time contour quantity by its four corresponding real-time components that
can be combined into a matrix. Using, as an example, the Green function,

Gij(t1, t2) =

(
Gc

ij(t1, t2) G<
ij(t1, t2)

G>
ij(t1, t2) Ga

ij(t1, t2)

)
. (93)
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Here, the components are defined in the following way6,

Gc
ij(t1, t2) =

1

i~

⟨
T
{
ĉi(t1)ĉ

†
j(t2)

}⟩
, (94)

G<
ij(t1, t2) = ± 1

i~

⟨
ĉ†j(t2)ĉi(t1)

⟩
, (95)

G>
ij(t1, t2) =

1

i~

⟨
ĉi(t1)ĉ

†
j(t2)

⟩
, (96)

Ga
ij(t1, t2) =

1

i~

⟨
T̄
{
ĉi(t1)ĉ

†
j(t2)

}⟩
. (97)

Of this set only two components are independent, in non-equilibrium [66]. In this work, the following set of three
components is used, as it was suggested in Ref. [67] resulting in the Green function matrix7,

Gij(t1, t2) =

(
GR

ij(t1, t2) G<
ij(t1, t2)

0 GA
ij(t1, t2)

)
, (98)

with GR
ij(t1, t2) and GA

ij(t1, t2) being the retarded and advanced Green functions, which obey

GR
ij(t1, t2) := Gc

ij(t1, t2) −G<
ij(t1, t2) = G>

ij(t1, t2) −Ga
ij(t1, t2)

GA
ij(t1, t2) := Gc

ij(t1, t2) −G>
ij(t1, t2) = G<

ij(t1, t2) −Ga
ij(t1, t2) .

(99)

These components can be expressed in a more compact way [44],

G
R/A
ij (t1, t2) = Gδ

ij(t1)δ(t1, t2) + Θ(t1/2, t2/1)
(
G

≷
ij(t1, t2) −G

≶
ij(t1, t2)

)
, (100)

where Θ is the Heaviside step function with Θ(t1, t2) = 1, if t1 > t2, and Θ(t1, t2) = 0 otherwise, and δ denotes
the Dirac distribution. Gδ is the time-diagonal contribution. Furthermore, the retarded and advanced components
are connected via conjugation

GR
ij(t1, t2) =

[
GA

ji(t2, t1)
]∗
, (101)

which accounts for the overcompleteness. Note that for the particular case of the Green function, the Gδ compo-
nent vanishes [44].
For the case of two two-time contour quantities, B and C, the matrix representation allows for a straightforward
calculation of the components of their product,

(
BR B<

0 BA

)
·
(
CR C<

0 CA

)
=

(
BRCR BRC< +B<CA

0 BACA

)
, (102)

which are the so-called Langreth–Wilkins rules [67]. It should be noted that Eq. (102) is a symbolic notation. In
detail, e.g. the less component transforms as follows8,

{∑

k

∫

C
dz̄ Bik(z, z̄)Ckj(z̄, z

′)

}≷

=
∑

k

∫ ∞

ts

dt̄ BR
ik(t, t̄)C

≷
kj(t̄, t

′) (103)

+
∑

k

∫ ∞

ts

dt̄ B≷
ik(t, t̄)CA

kj(t̄, t
′) ,

for rank two tensors B and C. The general structure for e.g. the T -matrix in Eq. (91) depends on the form of the
initial product on the contour C. The time ts corresponds to the starting point zs on C. It is either equal to t0 or,

6 The average ⟨·⟩ = Tr
(
ρ̂0/id·

)
denotes the trace in the Fock space F (cf. Eq. (15)) with the respective density operator, corresponding

to the choice of the contour C.
7 It can be obtained by doing a linear transformation of the form Gij 7→ MσzGijM−1 with

M =

(
1 0
1 1

)
and σz =

(
1 0
0 −1

)
.

8 The greater component also obeys Eq. (103). This is not derived here, but it can be found in an analogous consideration.
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for the adiabatic switching case, in principle, equal to −∞.
For all two-time contour quantities B, the components obey the following relation [56],

B
≷
ij(t1, t2) = −

[
B

≷
ji(t2, t1)

]∗
, (104)

for any two basis indices, whereas the Green functions obey, in addition,

nij(t) = ±i~G<
ij(t, t

+) , (105)

G>
ij(t, t) −G<

ij(t, t) = ± i
~
δi,j , (106)

with nij(t) being the (i, j) density matrix element at time t, i.e. nij(t) =
⟨
ĉ†j(t)ĉi(t)

⟩
, which directly follows

from the definitions in Eqs. (95) and (96).

2.6 Time propagation and the generalized Kadanoff–Baym ansatz

With the equations of motion Eqs. (56) and (57), the T -matrix of Eq. (91), the corresponding selfenergy, Eq. (92),
(or another many-body approximation such as the second Born approximation) and the mapping of all quantities
from the time contour onto real-time components, it is straightforward to calculate the interacting ground state of
a quantum system and, subsequently, propagate it in time. In this paper, also a second time propagation method
is discussed—the generalized Kadanoff–Baym ansatz (GKBA) that reduces the propagation to the time-diagonal
part.

To understand the GKBA in detail, it is convenient to start with Eqs. (56) and (57) in real-time components.
From Eq. (103), one gets

∑

l

[
i~

d
dt
δi,l − h

(0)
il (t)

]
G

≷
lj(t, t

′) =
∑

l

∫ ∞

ts

dt̄
{

ΣR
il(t, t̄)G

≷
lj(t̄, t

′) + Σ
≷
il (t, t̄)G

A
lj(t̄, t

′)
}
, (107)

∑

l

G
≷
il (t, t

′)


−i~

←
d

dt′
δl,j − h

(0)
lj (t′)


 =

∑

l

∫ ∞

ts

dt̄
{
GR

il(t, t̄)Σ
≷
lj(t̄, t

′)+G≷
il (t, t̄)Σ

A
lj(t̄, t

′)
}
. (108)

Here, it is used that for the greater and less component the contour times {z, z′} are located on different branches,
i.e. z ̸= z′. Thus, the time-diagonal part vanishes. For the retarded and advanced components, the equations
become

∑

l

[
i~

d
dt
δi,l − h

(0)
il (t)

]
G

R/A
lj (t, t′) = δijδ(t, t

′) +
∑

l

∫ ∞

ts

dt̄ΣR/A
il (t, t̄)G

R/A
lj (t̄, t′) (109)

and

∑

l

G
R/A
il (t, t′)


−i~

←
d

dt′
δl,j − h

(0)
lj (t′)


 = δijδ(t, t

′) +
∑

l

∫ ∞

ts

dt̄ GR/A
il (t, t̄)Σ

R/A
lj (t̄, t′) . (110)

In Eqs. (109) and (110), the time-diagonal part does not vanish. In order to isolate the time diagonal properties,
one can define

R≷
ij(t1, t2) := Θ̃(t1, t2)G

≷
ij(t1, t2) , (111)

A≷
ij(t1, t2) := −Θ̃(t2, t1)G

≷
ij(t1, t2) . (112)

so that

G
≷
ij(t1, t2) = R≷

ij(t1, t2) − A≷
ij(t1, t2) . (113)
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The modified Heaviside function Θ̃ is defined in the way that Θ̃(t1, t2) = 1 if t1 ≥ t2 and Θ̃(t1, t2) = 0
otherwise.
With these relations, it becomes possible to evaluate the following expression,

∑

k

∫ ∞

ts

dt̄1GR
ik(t1, t̄1)Ωkj(t̄1, t2)

:=
∑

k,l

∫ ∞

ts

dt̄1dt̄2GR
ik(t1, t̄1)

{
δ(t̄1, t̄2)

[
i~

d
dt̄2

δk,l − h
(0)
kl (t̄2)

]
− ΣR

kl(t̄1, t̄2)

}
R≷

lj(t̄2, t2)

=R≷
ij(t1, t2) .

(114)

This can be seen in the same way as in Eq. (68) together with Eq. (110). The enclosed quantity Ω can be
evaluated to

∑

l

∫ ∞

ts

dt̄2

{
δ(t̄1, t̄2)

[
i~

d
dt̄2

δk,l − h
(0)
kl (t̄2)

]
− ΣR

kl(t̄1, t̄2)

}
R≷

lj(t̄2, t2)

(∗)
=

∑

l

∫ ∞

ts

dt̄2

{
δ(t̄1, t̄2)i~δk,l

(
δ(t̄2, t2)G

≷
lj(t̄2, t2) + Θ̃(t̄2, t2)

d
dt̄2

G
≷
lj(t̄2, t2)

)

− δ(t̄, t̄2)h
(0)
kl (t̄2)Θ̃(t̄2, t2)G

≷
lj(t̄2, t2)

}

−
∑

l

∫ ∞

ts

dt̄2 Θ̃(t̄2, t2)Σ
R
kl(t̄1, t̄2)G

≷
lj(t̄2, t2)

(∗∗)
= i~δ(t̄1, t2)G≷

kj(t̄1, t2) + Θ̃(t̄1, t2)
∑

l

[
i~

d
dt̄1

δk,l − h
(0)
kl (t̄1)

]
G

≷
lj(t̄1, t2)

−
∑

l

∫ t̄1

t2

dt̄2 ΣR
kl(t̄1, t̄2)G

≷
lj(t̄2, t2)

(107)
= i~δ(t̄1, t2)G≷

kj(t̄1, t2)

+ Θ̃(t̄1, t2)
∑

l

∫ ∞

ts

dt̄2
{

ΣR
kl(t̄1, t̄2)G

≷
lj(t̄2, t2) + Σ

≷
kl(t̄1, t̄2)G

A
lj(t̄2, t2)

}

−
∑

l

∫ t̄1

t2

dt̄2 ΣR
kl(t̄1, t̄2)G

≷
lj(t̄2, t2)

(∗∗∗)
= i~δ(t̄1, t2)G≷

kj(t̄1, t2) + Θ̃(t̄1, t2)
∑

l

∫ t2

ts

dt̄2 ΣR
kl(t̄1, t̄2)G

≷
lj(t̄2, t2)

+ Θ̃(t̄1, t2)
∑

l

∫ t2

ts

dt̄2 Σ
≷
kl(t̄1, t̄2)G

A
lj(t̄2, t2) .

(115)

In (∗), the definition in Eq. (111), the product rule and the relation d
dt Θ̃(t, t′) = δ(t, t′) are used. In (∗∗), the

Dirac distributions are evaluated and the Heaviside functions of the last term cut the integration boundaries (cf.
Eq. (100)). In (∗∗∗), again the Heaviside functions are evaluated and the mutual integration part cancels. Bringing
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these results together with Eq. (114), one finds

R≷
ij(t1, t2) = ±

∑

k

GR
ik(t1, t2)n

≷
kj(t2) (116)

+
∑

k,l

∫ t1

t2

dt̄1

∫ t2

ts

dt̄2GR
ik(t1, t̄1)Σ

R
kl(t̄1, t̄2)G

≷
lj(t̄2, t2)

+
∑

k,l

∫ t1

t2

dt̄1

∫ t2

ts

dt̄2GR
ik(t1, t̄1)Σ

≷
k,l(t̄1, t̄2)G

A
lj(t̄2, t2) .

In agreement with Eqs. (105) and (106), n≷ are defined as

n<
ij(t) = nij(t) and n>

ij(t) = nij(t) − δi,j . (117)

Similarly, one finds for A<, in combination with the advanced component of the less Green function,

A≷
ij(t1, t2) = ±

∑

k

n
≷
ik(t1)G

A
kj(t1, t2) (118)

−
∑

k,l

∫ t1

ts

dt̄1

∫ t2

t1

dt̄2G
≷
ik(t1, t̄1)Σ

A
kl(t̄1, t̄2)G

A
lj(t̄2, t2)

−
∑

k,l

∫ t1

ts

dt̄1

∫ t2

t1

dt̄2GR
ik(t1, t̄1)Σ

≷
k,l(t̄1, t̄2)G

A
lj(t̄2, t2) .

Finally, by applying Eq. (113), one obtains an expression for the less Green function that explicitly depends on
the values on the time diagonal,

G
≷
ij(t1, t2) = ±

∑

k

[
GR

ik(t1, t2)n
≷
kj(t2) − n

≷
ik(t1)G

A
kj(t1, t2)

]
(119)

+
∑

k,l

∫ t1

t2

dt̄1

∫ t2

ts

dt̄2GR
ik(t1, t̄1)Σ

R
kl(t̄1, t̄2)G

≷
lj(t̄2, t2)

+
∑

k,l

∫ t1

t2

dt̄1

∫ t2

ts

dt̄2GR
ik(t1, t̄1)Σ

≷
k,l(t̄1, t̄2)G

A
lj(t̄2, t2)

+
∑

k,l

∫ t1

ts

dt̄1

∫ t2

t1

dt̄2G
≷
ik(t1, t̄1)Σ

A
kl(t̄1, t̄2)G

A
lj(t̄2, t2)

+
∑

k,l

∫ t1

ts

dt̄1

∫ t2

t1

dt̄2GR
ik(t1, t̄1)Σ

≷
k,l(t̄1, t̄2)G

A
lj(t̄2, t2) .

Neglect of the integral terms leads to the generalized Kadanoff–Baym ansatz (GKBA) [33],

G
≷
ij(t1, t2) ≈ ±

∑

k

[
GR

ik(t1, t2)n
≷
kj(t2) − n

≷
ik(t1)G

A
kj(t1, t2)

]
. (120)

By applying this equation, one is able to reconstruct the non-time-diagonal values of the Green function from the
density matrix n of the system and the propagator functions GR/A. The GKBA obeys particle number conserva-
tion and exhibits an inherently causal structure. Furthermore, it is also a full nonequilibrium approach, as it has
been shown in Ref. [68].
We underline that this result differs from the original Kadanoff–Baym ansatz which is exact in equilibrium [56,68]

G<
ij(t1, t2) ≈ ±

∑

k

fik

(
t1 + t2

2

)(
GR

kj(t1, t2) −GA
kj(t1, t2)

)
, (121)
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with f being the Wigner distribution function. In systems far from equilibrium, this ansatz fails because f only
depends on the “center-of-mass” time, which violates causality.
In order to use the GKBA, Eq. (120), to calculate the Green function one has to make a choice for the propagators
GR/A. Generally, these functions obey Eqs. (109) and (110), the solution of which is of the same complexity
as the full propagation equation of G≷. To overcome this bottleneck, a further approximation is introduced. In
this paper, the propagators are chosen to obey the KBE in Hartree–Fock approximation, Eq. (60), leading to the
expressions,

GHF,R
ij (t1, t2) = −iΘ(t1, t2)

[
exp

(
− i

~

∫ t1

t2

dt̄ heff(t̄)

)]

ij

,

GHF,A
ij (t1, t2) = +iΘ(t2, t1)

[
exp

(
− i

~

∫ t1

t2

dt̄ heff(t̄)

)]

ij

,

(122)

that depend on the effective Hartree–Fock Hamiltonian heff which, in turn, only depends on the time-dependent
density matrix n9. Together with Eq. (120), the non-time-diagonal part of G≷ can now be reconstructed solely
from n. Using the HF propagators the resulting KBE preserve total energy conservation if the selfenergy of the
full two-time KBE was conserving, as was shown in Ref. [34].

To summarize the theoretical part of this paper, the main approximation in this work is the selfenergy of the
Kadanoff–Baym equations, cf. Eqs. (56) and (57). In this paper the selfenergy is mainly evaluated in T -matrix
approximation, Eqs. (91) and (92). While in most cases we will perform full two-time calculations, in some case,
we will compare to the Hartree-Fock GKBA, Eq. (120) with Hartree–Fock propagators, Eq. (122).

3 Experiments with ultracold atoms in optical lattices

The main results of the present paper concern the dynamics of fermionic lattice systems. These are, by construc-
tion, model systems for solid state physics. However, the behaviour of quantum particles in lattices can also be
directly observed in experiments which is the topic of ultracold atoms in optical lattices.
At very low temperatures, of the order of nanokelvin, atoms reveal their full quantum properties. When the
atomic de-Broglie wavelength exceeds the interparticle distance, the quantum statistics govern the behaviour of
the system. That is why the experiments in the field of ultracold atoms are of growing interest in the past 20
years [8, 12, 16]. Even so, the physics of ultracold atoms constitute a comparatively young research field. Due
to the very challenging experimental realization, the breakthrough was not before 1995, when the observation of
Bose–Einstein condensation in ultracold gases became possible [9–11]. The study of ultracold gases requires a
trapping of the (neutral) atoms, which, in the early stage, was mainly achieved by magnetic traps. The main idea
of such a trap, is to apply an inhomogeneous magnetic field to atoms that causes a splitting of the spectral lines
due to the Zeeman effect. The shift in the energy actuates the weak-field-seekers10 to drift toward the minima in
the field. Since this affects only a small subset of the atoms, the use of the alternative optical dipole traps has
soon become popular. The concept of optical traps is discussed in Sec. 3.1. With these traps, it became possible
to generate lattice systems of ultracold atoms. Since then, a variety of experimental results for both bosonic and
fermionic atoms in optical lattices has been published [5, 6, 13–15, 17]. The main advantage of this method is
given by the large degree of control over the system. Today, one is able to manipulate the interaction strength
between the particles [5,6] and the potential depth of the lattice sites [13,14,17]. Even inhomogeneous and time-
dependent potentials on the lattice can be realized [5,6]. This is the reason why ultracold atoms in optical lattices
are well suited to study transport and diffusion processes. In addition, the detection techniques have been steadily
improving [8]. By reaching the single-site resolution [5], the accuracy of the observations became precise enough
to allow for comparisons with theoretical predictions for lattice systems.

9 There are also other choices for GR/A. For instance, damped propagators have been tested in Refs. [43, 69] and it was shown that
they violate total energy conservation. Recently, the authors of Ref. [35] presented propagators that are connected to the second order Born
approximation.

10 Atoms with total spin S, so that the change in the energy ∆EB = −gSµBS ·B < 0 are called weak-field-seekers [18]. Here, gS is the
Land g-factor, µB is the Bohr magneton and B is the magnetic field. This leads to an effective spatial potential, in which weak-field-seekers
drift to minima of the field.
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3.1 Realization of optical lattices

When the oscillating electric light field provided by a laser interacts with an atom, it induces an alternating dipole
moment in it. At the same time, this dipole moment interacts with the electric field itself. This fact is used in
the so-called optical dipole trap. The time-dependent electric field of a laser E(r, t), in the presence of an atom,
leads to the induced dipole moment [16]

di(t) =
∑

j=x,y,z

αij(ωL)Ej(r, t) , (123)

following the oscillations of the laser field. Here, ωL is the laser frequency and αij(ωL) denotes the matrix
element of the polarizability tensor of the atom. Eq. (123) only holds, if ωL is far away from an atomic resonance
frequency. Due to the standard quadratical Stark effect, the electronic energy of the atom undergoes a shift of the
form ∆E = −d · E. Because of the spatial inhomogeneity, an effective optical potential arises,

Vdip(r) = −d · E ∝ |E(r)|2 . (124)

These are the basic physical processes to trap neutral atoms in laser fields. By overlapping two counter-propagating
laser beams, an optical standing wave emerges. In this way, the spatial positions of the field minima become time-
independent. Thus, the atoms in this system form a static, one-dimensional chain, which represents the simplest
optical lattice, where the static field minima correspond to the lattice sites as is schematically depicted in Fig. 7
on the left.

Fig. 7 Optical lattice systems in D = 1, 2: The left (right) figure shows a schematic illustration of a one-(two-)dimensional
optical lattice. The points represent the ultracold atoms, whereas the line (surface) corresponds to the optical potential Vdip in
Eq. (124). The graphics are taken from Ref. [8].

Adding more laser fields of the same frequency allows to generate two- (see right part of Fig. 7) and three-
dimensional lattices.
The bottom-up generation of an ultracold atom arrangement exhibits a multitude of manipulation possibilities.
The amplitude of the laser wave directly enters the lattice potential depth. Thus, by modifying the amplitude, one
can control the probability of the atoms to hop between the sites. The lattice depth is usually given in units of the
recoil energy Er = ~2|kL|2

2m , m being the mass of a neutral atom and kL the wave vector of the laser light [8]. The
frequency of the electric field ωL determines the interparticle distance in the lattice and by overlapping different
frequencies, it becomes possible to construct additional inhomogeneous potentials. The effective wavelength of
the standing wave can, e.g., be enlarged by interfering two laser beams at an angle less than 180◦. Even the
interaction strength of the atoms can be controlled via magnetically tuned Feshbach resonances [12].
Feshbach resonances can occur during the scattering process of two atoms, if the energy of a bound molecular
state is close to the free atom energy. The physical origin can be understood from Fig. 8. Let Vbg(R) be the
background potential, describing the potential of the scattering between two initially free atoms depending on
the interparticle distance R. Vc(R) is the potential curve of a bound molecular state between the atoms. Both
potentials exhibit the shape of an anharmonic oscillator. Considering a collision process with the relatively small
energy E, Vbg(R) acts as an energetically open channel, since the energy is large enough to leave the potential.
Vc(R) is referred to as closed channel, since in a bound state the particles with energy E cannot escape from the
minimum. A Feshbach resonance occurs when the scattering state in the open channel is energetically close to
a bound molecular state in the closed channel. In this case, a strong coupling between the two channels sets in,
which changes the effective scattering length.
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Fig. 8 Basic two-channel model for a Feshbach resonance: The black curve corresponds to the background potential, while
the red curve describes the potential of the bound state. Colliding atoms with energy E can resonantly couple to a molecular
bound state with energy Ec. The graphic is taken from Ref. [12].

Fig. 9 Connection between the scattering length and the magnetic field: The red curve corresponds to the scattering length
of Eq. (125). The graphic is taken from Ref. [12].

The energy position of the channels can be controlled by applying a magnetic field to the system that causes
a shift in the energy levels due to the Zeeman effect. If the corresponding magnetic moments of the atoms are
different, it is possible to regulate the energy difference between the channels. Thus, the scattering length changes
with varying magnetic field. This effect is called magnetically tuned Feshbach resonance. The connection
between the magnetic field B and the scattering length a can be described by a simple formula [19],

a(B) = abg

(
1 − ∆

B −B0

)
. (125)

Here, abg is the scattering length corresponding to Vbg(R), the parameter ∆ is called resonance width and B0

is the magnetic field associated with the Feshbach resonance, where the scattering length diverges. Eq. (125) is
illustrated in Fig. 9. As one can see, a(B) approaches the background scattering length for B → ±∞, diverges
at B = B0 with a sign flip and crosses zero at B = B0 + ∆. Since the scattering length a corresponds the
interaction strength between the atoms, one can achieve perfect interaction control by modulating the magnetic
field.

www.cpp-journal.org c⃝ 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



32 N. Schlünzen and M. Bonitz: Nonequilibrium Green functions approach to strongly correlated fermions

The purpose of the next section is to show some measurements of transport properties of ultracold fermionic
atoms in two-dimensional optical lattices that have been published by Schneider et al. [5]. These results are
representative for the wide range of experiments with quantum gases in lattices.

3.2 Diffusion results for fermions in two-dimensional lattices

Spatially inhomogeneous density setups provide a suitable way to trigger transport processes and, in particular,
diffusive expansion. Therefore, Schneider et al. [5] used a strong circular harmonic trap to confine fermions in
the center of a two-dimensional optical lattice. By switching off the potential, the particles begin to expand in
the lattice. This is schematically illustrated in Fig. 10. The diffusive expansion results in different geometric
structures depend on the strength of the interaction between the particles.

Fig. 10 Schematic illustration of the expansion setups: Initially confined fermionic clouds expand freely in the lattice after
the switch-off of the confinement potential. Different interaction strengths lead to stable cores of varying degree and dissimilar
geometric shapes of the expanding clouds. The graphic is taken from Ref. [5].

In detail, to experimentally simulate electronic properties, they used a balanced spin mixture of the two lowest
hyperfine states of fermionic potassium 40K. These states can be described by |F,mF ⟩ = |9/2,−9/2⟩ and
|9/2,−7/2⟩, F being the quantum number of the total angular momentum and mF the corresponding magnetic
quantum number. In total, each experiment involved N = 2 − 3 · 105 atoms at an initial temperature of T/TF =
0.13, TF being the Fermi temperature. The Feshbach resonance for the used spin states is parameterized by
B0 = 202.1 G and the resonance width ∆ = (7.0 ± 0.2) G.
This experimental setup is very well suited to investigate the effects of the interaction strength. In Fig. 11,
the resulting density distributions in the lattice after a certain expansion time (25 ms) are shown for different
interaction strengths.

Here, U and J denote the interaction strength and hopping amplitude of the corresponding Hubbard descrip-
tion (see Sec. 4). The occupation of the lattice sites varies from large (red) to small (blue). One can see that,
in general, the density expands toward a square shape due to the square symmetry of the lattice. However, for
increasing interaction strength, the core of the particle cloud remains stable in its initial, circular shape. Schnei-
der et al. [5] pointed out that this bimodal behaviour of the expansion goes together with ballistic particles in the
outer region and highly interacting atoms in the center of the lattice. The interesting, nontrivial expansion of the
core has been analyzed in more detail by measuring the so-called “core expansion velocity”, cf. Sec. 6.2.4 which
is depicted in Fig. 12.

As one can see, the core expansion velocity has a positive maximum for U/J = 0 and decreases rapidly for
increasing positive or negative interaction strength11. It even reveals a zero-crossing toward slightly negative core

11 The symmetric behaviour with respect to attractive and repulsive interaction is a nontrivial property of the Hubbard model. For more
information, the reader is referred to Refs. [5, 20]
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expansion velocities, which corresponds to a shrinking of the core, whereupon it slowly converges to zero. The
core shrinking can be understood as the consequence of an effectively frozen, strongly interacting core that “[. . . ]
dissolves by emitting ballistic particles [. . . ], similarly to a melting ball of ice.” [5]. The influence of the lattice
potential depth seems not to systematically affect the expansion.

Fig. 11 Resulting density distributions for different interaction strengths: From upper left to lower right, the density profiles
after 25 ms of expansion in the lattice are shown for U/J = 0, 0.5, 1.3, 3, 9, 12. The color scheme corresponds to the density
on the lattice sites, where red (blue) denotes large (small) occupation. While the shape of the outer region is constantly squared
through all setups, the core varies from a squared shape for vanishing interaction to a circular shape at larger interaction
strengths. The graphic is taken from Ref. [5].

3.3 Simulation results of the fermion diffusion using a relaxation-time model

As mentioned in the introduction, until recently, there were no accurate quantum simulations available that would
be able to describe the experimental expansion results in a two-dimensional optical lattice. Various models have
been applied and a comparison to the experiments is of high interest as it reveals the applicability limits of various
theoretical approaches. The red curve in Fig. 12 corresponds to the theoretical prediction of a semi-classical
Markovian Boltzmann equation in relaxation time approximation (RTA) that is described in Refs. [5, 21, 32],

∂tfk + ∇kϵk∇r + F (r)∇kfk = − 1

τ(n)

(
fk − f0

k(n)
)
. (126)

Here, fk denotes the nonequilibrium distribution function, f0
k is the Fermi function in equilibrium, ϵk denotes the

dispersion relation of the non-interacting Hubbard model (cf. Eq. (137)) and F (r) is an external field. The time τ
is the so-called relaxation time. Eq. (126) accounts for a drift, an external field and the scattering, whereby for the
latter, in general, the full collision integral has to be solved. In the described approach, Eq. (126) is solved in two
steps. First, the equation is linearized, which is only valid if the system is in local equilibrium [21], and second,
using a variational method, the effective diffusion coefficient is calculated which determines the value of the
relaxation time τ [5,21]. As one can see, the approach captures the qualitative behaviour of the experiments—the
reduction of the fermion expansion speed with the interaction strength.
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Fig. 12 Dependence of the core expansion velocity: The core expansion velocities are shown for different interaction
strengths U/J ∈ [−15, 15]. The blue colors correspond to different lattice potential depths from 7Er to 12Er. The red
line shows the predicted results, provided by a semiclassical Boltzmann equation simulation in relaxation time approxima-
tion. The graphic is taken from Ref. [5].

However, this semiclassical approach exhibits substantial quantitative deviations: it systematically underes-
timates the core expansion velocity in the low-coupling regime and even fails to reproduce the ideal system
(U = 0). At the same time, this model overestimates the expansion velocity for larger interaction strengths,
and it cannot reproduce the zero crossing of the core expansion velocity. This rather poor agreement is, of
course, not surprising [5] given the approximations involved in deriving the semi-classical Boltzmann equation,
e.g. Ref. [43]: This model completely neglects quantum effects in the dynamics (classical limit for the external
force), and it is dissipative (irreversible) whereas the experimental system is almost perfectly isolated and should
exhibit unitary time-reversible dynamics. Further, the RTA collision term violates total energy conservation and
forces, by construction, relaxation to the equilibrium momentum distribution of an ideal Fermi gas – in striking
contrast to the behavior of strongly correlated fermions. Finally, the RTA ansatz assumes validity of linear re-
sponse, i.e. it can only describe the final stage of the dynamics where correlations are being build up already and
the system is close to equilibrium.

The present non-equilibrium Green functions approach allows us to systematically overcome all these defi-
ciencies. In fact, the KBE constitute generalized quantum kinetic equations that are unitary (time-reversible),
conserve total energy and fully capture quantum dynamics effects. The semi-classical Boltzmann equation is
readily derived from the KBE with a number of drastic (but well controlled) additional approximations that re-
veal the applicability limits of the Boltzmann equation, e.g. Refs. [43, 55]. It is, therefore, of high interest to
apply the KBE to the experimental setup and perform a detailed comparison. Thereby, good agreement is not
obvious from the beginning since the KBE simulations involve an approximation for the correlation effects (via
the selfenergy) and they treat only a finite system that is much smaller than the experimental setup. We will show
in Sec. 6 that the T-matrix selfenergy is, in fact, the proper many-body approximation that allows us to capture the
interaction effects governing the experiment. We will further see that the issue of the limited particle number in
the simulation can be efficiently overcome by analyzing the scaling of the collective properties with the particle
number and performing an extrapolation to the macroscopic limit. A key to the realization of this procedure is a
highly efficient computational scheme which we discuss in Sec. 5.

To tackle the experimental setup with NEGF simulations we first need to apply the Green functions formalism
to the fermionic Hubbard model since this model was found to accurately describe fermionic ultra-cold atom
ensembles in optical lattices [6, 8, 16]. Before developing the NEGF approach to transport processes in Hubbard
lattice systems we recall, in the next section, several basic properties of this model.
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4 The Hubbard model

The purpose of this section is to introduce the Hubbard model, to discuss its main properties and to specify the
relevant quantities of the NEGF approach, introduced in Sec. 2, to the context of the Hubbard Hamiltonian. This
model was proposed in 1963 in Ref. [70] with the goal to describe fundamental correlation effects in solid state
physics in a simplified way. The model has been applied to a variety of systems and processes and provides a
deep understanding of many properties of lattice systems and the underlying processes. It correctly predicts the
existence of the so-called Mott insulator, where electrical conduction is suppressed by the strong repulsion be-
tween the electrons, and the model can be straightforwardly generalized [71–73]. The simplicity of the Hubbard
model allows for a study with a multitude of analytical techniques, but exact solutions can only be found for
systems of low dimensions and small particle numbers.
The basic concept of the Hubbard model is illustrated in Fig. 13. When identical atoms with non-degenerate
orbitals form a solid state lattice, the outermost orbitals overlap significantly and produce a single band, in which
the electrons can move. In the low energy regime, the orbitals of the inner shells can be considered frozen, since
the overlap with the orbitals of other atoms vanishes. Electrons in the corresponding shells mainly modify the ef-
fective potential of the nucleus by screening effects. The Hubbard model focuses on the description of the (small)
overlap between the outermost shells which results in a tunneling between the atoms. The resulting system can be
described by lattice sites at the atomic positions that can be occupied by only two electrons each, corresponding
to one electronic orbital. The tunneling probability shows up as a hopping amplitude for the electrons describing
their transitions from one lattice sight to the next. In the Hubbard model, the interaction is considered to be on-
site, i.e. only electrons at the same lattice site can interact. The contrast to the long-range Coulomb interaction
can be justified by assuming that the electrons of the inner shells shield the potential of the active electron. Thus,
an effectively screened potential emerges that can be considered fallen off at all lattice sites in the vicinity (ex-
tensions to interaction between electrons on different sites are straightforward, but will not be considered here).

Fig. 13 Illustration of the assumptions of the Hubbard model: a) A single atom with multiple electrons in nondegenerate
orbitals. b) Identical atoms form a solid state lattice. The overlap of the outermost orbitals generates a single band, in which
the electrons become itinerant. c) Electrons on the inner orbitals are considered localized at the atom positions and only show
up as an effective screened potential, while the electrons of the outermost shell have a non-negligible possibility to tunnel
between the atoms. d) The system reduces to effective lattice sites, with a single electronic orbital each site. Electrons can
only interact at the same site and the tunneling is considered as a hopping between the atom positions. The graphic is taken
from Ref. [74].
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4.1 The Hubbard Hamiltonian

With the assumptions presented in the preceding section, the Hubbard Hamiltonian in second quantization is
determined by the matrix elements of the single-particle and interaction part (cf. Eqs. (23) to (24)). Therefore,
one has to decouple the spatial and spin coordinates, {i} → {i, σ}, with the lattice site position i and the
electronic spin σ ∈ {↑, ↓}, leading to

h
(0)
ij,αβ = −Jδ⟨i,j⟩δα,β and Wijkl,αβγδ = Uδi,jδi,kδi,lδα,γδβ,δ δ̄α,β . (127)

Here, δ̄α,β := 1 − δα,β and δ⟨i,j⟩ := 1 if the sites i, j are neighboring sites and δ⟨i,j⟩ := 0 otherwise. In Eq.
(127), J denotes the hopping amplitude and U is the on-site interaction strength. The full Hamiltonian (without
excitation) becomes,

Ĥ = −J
∑

i,j

∑

α,β

δ⟨i,j⟩δα,β ĉ
†
i,αĉj,β +

U

2

∑

i,j,k,l

∑

α,β,γ,δ

δi,jδi,kδi,lδα,γδβ,δ ĉ
†
i,αĉ
†
j,β ĉl,δ ĉk,γ δ̄α,β

= −J
∑

⟨i,j⟩

∑

α

ĉ†i,αĉj,α +
U

2

∑

i

∑

α ̸=β

ĉ†i,αĉ
†
i,β ĉi,β ĉi,α , (128)

∑
⟨i,j⟩ being a short notation for the summation over all neighboring sites i, j. The summation of the interaction

part can be further reduced to
∑

i

∑

α ̸=β

ĉ†i,αĉ
†
i,β ĉi,β ĉi,α =

∑

i

{
ĉ†i,↑ĉ

†
i,↓ĉi,↓ĉi,↑ + ĉ†i,↓ĉ

†
i,↑ĉi,↑ĉi,↓

}

= 2
∑

i

ĉ†i,↑ĉi,↑ĉ
†
i,↓ĉi,↓ = 2

∑

i

n̂↑i n̂
↓
i , (129)

where, for the second line, the last anticommutator relation for fermions in Eq. (4) is used, which gives zero for
different spin indices. Having this, Eq. (128) can be written in the form

Ĥ = −J
∑

⟨i,j⟩

∑

α

ĉ†i,αĉj,α + U
∑

i

n̂↑i n̂
↓
i , (130)

which is known as the Hubbard Hamiltonian. To account for time-dependent single-particle excitations (cf. Eq.
(23)), it useful to introduce a generalized time-dependent Hubbard Hamiltonian,

Ĥ(t) = −J
∑

⟨i,j⟩

∑

α

ĉ†i,αĉj,α + U
∑

i

n̂↑i n̂
↓
i +

∑

i,j

∑

α,β

Fij,αβ(t)ĉ†i,αĉj,β . (131)

Moreover, if the Hubbard system is solved with the aforementioned NEGF approach (see Sec. 2), one has to
consider the adiabatic switching in the Hamiltonian (cf. Eq. (25)). Thereto, one defines a time-dependent
interaction12

U(t) := fAS(t)U , (132)

leading to

Ĥ(t) = −J
∑

⟨i,j⟩

∑

α

ĉ†i,αĉj,α + U(t)
∑

i

n̂↑i n̂
↓
i +

∑

i,j

∑

α,β

Fij,αβ(t)ĉ†i,αĉj,β . (133)

When applied to a solid state system, as motivated in Sec. 4, the Hubbard Hamiltonian is not valid, if the width
of the conduction band is too large, so that the electrons are not mainly localized at the atomic orbitals. It
is not valid, if there is a significantly large percentage of hopping processes with a greater displacement than
between neighboring sites. It is also not valid, if the interaction has a long effective range, so that the interaction
between particles on different sites cannot be neglected. When applied to an ultracold atom system on an optical
lattice, the Hubbard Hamiltonian is not valid, if the lattice potential depth is too small (see Sec. 3.1), leading to

12 In the case of an excitation, this is also possible, because fAS = 1 for all t ≥ t0 and Fij,αβ(t) = 0 for all t < t0.
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large on-site displacement and to more than two particles per site. It is also not valid, if the laser amplitude is
inhomogeneous, which manifests as a position-dependent hopping amplitude. Finally, if there is hopping with a
large displacement, which can occur for too small wavelengths, the Hubbard Hamiltonian also fails to describe
the system accurately.
To get a better insight into the properties of the Hubbard model, it is useful to discuss a few special cases. In Sec.
4.2, the limiting cases for U = 0 and J = 0 are studied and the two-site Hubbard model is discussed in Sec. 4.3.

4.2 Limiting cases

If one considers a Hubbard system with vanishing interaction strength U and without external excitation, the
Hamiltonian transforms into (cf. Eq. (133))

ĤU=0 = −J
∑

⟨i,j⟩

∑

α

ĉ†i,αĉj,α . (134)

The problem is usually solved in the reciprocal space. The transformation of the canonical operators reads [75],

ĉ†i,σ =
1√∏D

d=1Nd

∑

i

e−ik·iĉ†k,σ , ĉi,σ =
1√∏D

d=1Nd

∑

i

eik·iĉk,σ . (135)

Assuming periodic boundary conditions in every Cartesian direction d, the quasi-momentum kd takes the values
kd = 2πnd

Nd
− π, with nd ∈ {0, 1, . . . , Nd − 1}, Nd being the number of lattice sites in the direction d. Thus, the

Hamiltonian of Eq. (134) in a D-dimensional system becomes,

ĤU=0 = −J
∑

⟨i,j⟩

∑

σ

ĉ†i,σ ĉj,σ = − J
∏D

d=1Nd

∑

k,k′

∑

⟨i,j⟩

∑

σ

e−ik·ieik′·j ĉ†k,σ ĉk′,σ

= − J
∏D

d=1Nd

∑

k,k′

∑

i

∑

σ

ĉ†k,σ ĉk′,σ

eik·i
D∑

d=1

(
e−i(k′1i1+...+k′d(id−1)+...+k′DiD) + ei(k′1i1+...+k′d(id+1)+...+k′DiD)

)

= −J
∑

k,k′

∑

σ

ĉ†k,σ ĉk′,σ

D∑

d=1

(
e−ik′d + eik′d

) 1
∏D

d=1Nd

∑

i

e−ii·(k−k′)

︸ ︷︷ ︸
δ

k,k′

=
∑

k

∑

σ

−Jn̂σ
k

D∑

d=1

(2 cos (kd)) =
∑

k

∑

σ

ϵkn̂
σ
k , (136)

where

ϵk := −2J

D∑

d=1

cos (kd) (137)

is the dispersion relation for the energy for discrete k. The structure of these expressions leads to the conclusion
that the electrons behave like free waves in the lattice. This is exactly the result that one obtains in the tight-
binding approximation. Having the dispersion relation for D-dimensional Hubbard system, one can define the
energy bandwidth. Since cos : [−π, π) → [−1, 1], the full range of possible energies for dimension D becomes

b(D) = 4JD . (138)

This definition of the bandwidth is usually taken as a reference value to compare systems of different dimensions,
even in the interacting case, where the actual bandwidth values can slightly differ, cf. Sec. 4.3.
The other extreme case of the Hubbard model corresponds to vanishing hopping amplitude. In this case, there is
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no process that couples the different lattice sites. Thus, each site can be considered separately with the resulting
single-site Hamiltonian

ĤJ=0 = Un̂↑n̂↓ . (139)

On each site, four different spin states can be realized, σ ∈ {|0⟩ , |↑⟩ , |↓⟩ , |↑↓⟩}. These states are eigenstates of
ĤJ=0. In the grand canonical ensemble with inverse temperature β = 1/kBT , the partition function is given by

Z = Tr
(

e−β[ĤJ=0−µ(n̂↑+n̂↓)]
)

=
∑

σ

⟨
σ
∣∣∣e−β[ĤJ=0−µ(n̂↑+n̂↓)]

∣∣∣σ
⟩

= 1 + 2eβµ + e2βµ−βU , (140)

where, for the trace Tr (·), the eigenstates of n̂↑ and n̂↓ were used. A characteristic behaviour of the Hubbard
model can be found by considering the average occupation ⟨n̂⟩ =

⟨
n̂↑ + n̂↓

⟩
,

⟨n̂⟩ =
1

Z

∑

σ

⟨
σ
∣∣∣
(
n̂↑n̂↓

)
e−β[ĤJ=0−µ(n̂↑+n̂↓)]

∣∣∣σ
⟩

=
2

Z

(
eβµ + e2βµ−βU

)
.

For U = 1, this expression is graphically shown in Fig. 14 for different inverse temperatures β. One can see
the so-called Hubbard gap, which accounts for the fact that the energy gain for adding a particle into the system
becomes more and more step-like, the higher β.

0.0 0.5 1.0 1.5 2.0 2.5

µ

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

〈n̂
〉

Hubbard gap ≈ U

β = 1

β = 10

β = 50

Fig. 14 Illustration of the Hubbard gap for U = 1: The average occupation ⟨n̂⟩ in the J = 0 limit of the Hubbard model
is shown for varying chemical potential µ and different values of the inverse temperature β = 1, 10, 50. If the temperature
approaches zero, ⟨n̂⟩ becomes a step function that corresponds to the energy U gained when a particle is added into the
system.

4.3 The Hubbard dimer

After discussing the limiting cases of the Hubbard model, it is useful, to study a simple system that includes
both nonvanishing hopping and interaction. Therefore, one can consider the Hubbard dimer, which is a two-site
Hubbard chain. As an example, the case of half-filling (N = 2) with N↑ = N↓ = 1 is chosen. The possible
states in this system read

|↑, ↓⟩ = ĉ†2,↓ĉ
†
1,↑ |0⟩ ,

|↓, ↑⟩ = ĉ†1,↓ĉ
†
2,↑ |0⟩ ,

|↓↑, ·⟩ = ĉ†1,↓ĉ
†
1,↑ |0⟩ ,

|·, ↓↑⟩ = ĉ†2,↓ĉ
†
2,↑ |0⟩ .

(141)
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With this basis set, the Hamiltonian of Eq. (130) attains the form

H =




0 0 −J −J
0 0 +J +J

−J +J U 0
−J +J 0 U


 . (142)

This Hamiltonian can be solved by diagonalization, which yields four energy eigenvalues and the corresponding
eigenvectors,

E± =
U

2
±

√
U2 + 16J2

2
, ψ± =

± (|↓, ↑⟩ − |↑, ↓⟩) + E±

2J (|↓↑, ·⟩ + |·, ↓↑⟩)√
2 + 1

2

(
E±
J

)2
,

E0 = 0 , ψ0 =
|↑, ↓⟩ + |↓, ↑⟩√

2
,

EU = U , ψU =
|·, ↓↑⟩ − |↓↑, ·⟩√

2
.

(143)

The U -dependence of the obtained energies is depicted in Fig. 15. As one can see, for U = 0, the energy range is
exactly the bandwidth for a one-dimensional setup from Eq. (138) and grows with increasing interaction strength.
In the limit U → ∞, the four energies become pairwise degenerate, i.e. E− goes to zero and E+ approaches
EU .
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Fig. 15 Energies of the Hubbard dimer: The eigenenergies of the half-filled, two-site Hubbard system of Eq. (143) are shown
for varying interaction strength U . In the strong interaction limit, E+ approaches EU and E− goes to E0.

4.4 Application of NEGF to the Hubbard model

To apply the NEGF approach to finite Hubbard clusters in non-equilibrium, one has to replace the interaction
according to Eq. (127). Doing so, the T -matrix of Eq. (91) becomes (again with decoupled spatial and spin
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coordinates)

Tijkl,αβγδ(z, z
′)

= − i~
∑

m,n,p,q

∑

ε,ϑ,κ,λ

U(z)δi,jδi,mδi,nδα,εδβ,ϑδ̄α,βG
H
mnpq,εϑκλ(z, z′)U(z′)δp,qδp,kδp,lδκ,γδλ,δ δ̄κ,λ

+ i~
∑

m,n,p,q

∑

ε,ϑ,κ,λ

U(z)δi,jδi,mδi,nδα,εδβ,ϑδ̄α,βG
H
mnpq,εϑκλ(z, z′)U(z′)δp,qδp,lδp,kδκ,δδλ,γ δ̄κ,λ

+ i~
∑

m,n,p,q

∑

ε,ϑ,κ,λ

∫

C
dz̄ U(z)δi,jδi,mδi,nδα,εδβ,ϑδ̄α,βG

H
mnpq,εϑκλ(z, z̄)Tpqkl,κλγδ(z̄, z

′)

= − i~U(z)δi,j δ̄α,βG
H
iikk,αβγδ(z, z

′)U(z′)δk,lδ̄γ,δ + i~U(z)δi,j δ̄α,βG
H
iikk,αβδγ(z, z′)U(z′)δk,lδ̄γ,δ

+ i~
∑

p,q

∑

κ,λ

∫

C
dz̄ U(z)δi,j δ̄α,βG

H
ijpq,αβκλ(z, z̄)Tpqkl,κλγδ(z̄, z

′) .

(144)

The Hubbard Hamiltonian does, in general, not allow for spin flips. This can especially be seen in the single-
particle Hamiltonian in Eq. (127). Therefore, every Green function has to conserve spin, i.e. Gij,αβ(z, z′) =

Gij,αα(z, z′)δα,β . By applying this relation to Eq. (92), i.e.

ΣT
ij,αβ(z, z′) = i~

∑

k,l

∑

γ,δ

Tikjl,αγβδ(z, z
′)Glk,δδ(z

′, z)δδ,γ

= i~
∑

k,l

∑

γ

Tikjl,αγβγ(z, z′)Glk,γγ(z′, z) , (145)

it is obvious that the T -matrix has only nonvanishing contributions for equal second and fourth spin arguments.
For the two-particle Hartree Green function, spin conservation results in GH

ijkl,αβγδ(z, z
′) = GH

ijkl,αβαβ(z, z′)

δα,γδβ,δ . Thus, Eq. (144) transforms into

Tijkl,αβγβ(z, z′) = −i~U(z)δi,j δ̄α,βG
H
iikk,αβαβ(z, z′)δα,γU(z′)δk,l

+i~U(z)δi,j δ̄α,βG
H
iikk,αβαβ(z, z′)δα,βU(z′)δk,l δβ,γ δ̄γ,β︸ ︷︷ ︸

=0

+i~
∑

p,q

∫

C
dz̄ U(z)δi,j δ̄α,βG

H
ijpq,αβαβ(z, z̄)Tpqkl,αβγβ(z̄, z′)

= δi,j δ̄α,β

(
− i~U(z)GH

iikk,αβαβ(z, z′)δα,γU(z′)δk,l

+i~
∑

p,q

∫

C
dz̄ U(z)GH

ijpq,αβαβ(z, z̄)Tpqkl,αβγβ(z̄, z′)

)
. (146)

Hence, the full series of exchange diagrams from the T -matrix does not contribute for the Hubbard model. From
Eq. (146), one can see that, for each iteration, also k = l and γ = α are fulfilled. Therefore, it is convenient to
introduce a reduced T -matrix,

Tijkl,αβγβ(z, z′) =: Tik,αβ(z, z′)δi,jδk,lδα,γδβ,δ δ̄α,β , (147)

with

Tij,αβ(z, z′) = −i~U(z)GH
ij,αβ(z, z′)U(z′)

+i~
∑

k

∫

C
dz̄ U(z)GH

ik,αβ(z, z̄)Tkj,αβ(z̄, z′) . (148)
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Finally, since

GH
ij,↑↓(z, z

′) = Gij,↑↑(z, z
′)Gij,↓↓(z, z

′) = Gij,↓↓(z, z
′)Gij,↑↑(z, z

′)

= GH
ij,↓↑(z, z

′) (149)

and, therefore, also

Tij,↑↓(z, z
′) = Tij,↓↑(z, z

′) , (150)

it is convenient to define

GH
ij(z, z

′) := GH
ij,↑↓(z, z

′) and Tij(z, z
′) := Tij,↑↓(z, z

′) , (151)

leading to

Tij(z, z
′) = −i~U(z)GH

ij(z, z
′)U(z′) + i~

∑

k

∫

C
dz̄ U(z)GH

ik(z, z̄)Tkj(z̄, z
′) . (152)

This is the definition of the T -matrix in the Hubbard model. With the last definitions, Gσ
ij(z, z

′) := Gij,σσ(z, z′)
and Σσ

ij(z, z
′) := Σij,σσ(z, z′), one can simplify the selfenergy of Eq. (145) to

Σ
T,↑(↓)
ij (z, z′) = i~Tij(z, z

′)G↓(↑)ji (z′, z) . (153)

Since in Eq. (152) the T -matrix is a matrix with two indices, one can obtain the corresponding real-time compo-
nents in exactly the same way as for G or Σ. In order to obtain a structure which only depends on single-particle
contour quantities, it is appropriate to define

Φij(z, z
′) := i~GH

ij(z, z
′) , (154)

which obeys the symmetry relations of the Eqs. (101) and (104). Thus, Eq. (152) attains the form

Tij(z, z
′) = −U(z)Φij(z, z

′)U(z′) +
∑

k

∫

C
dz̄ U(z)Φik(z, z̄)Tkj(z̄, z

′) . (155)

By applying Eqs. (102) and (103), one finds

T
R/A
ij (t, t′) = −U(t)Φ

R/A
ij (t, t′)U(t′)

+
∑

k

∫ ∞

ts

dt̄ U(t)Φ
R/A
ik (t, t̄)T

R/A
kj (t̄, t′) , (156)

T
≷
ij (t, t′) = −U(t)Φ

≷
ij(t, t

′)U(t′)

+
∑

k

∫ ∞

ts

dt̄ U(t)ΦR
ik(t, t̄)T

≷
kj(t̄, t

′)

+
∑

k

∫ ∞

ts

dt̄ U(t)Φ
≷
ik(t, t̄)TA

kj(t̄, t
′) . (157)

The real-time components of the quantity Φ, related to the two-particle Hartree Green function become, by
definition13 in Eq. (100)

Φ
≷
ij(t, t

′) = i~G↑,≷ij (t, t′)G↓,≷ij (t, t′),

ΦR
ij(t, t

′) = Θ (t, t′)
[
Φ>

ij(t, t
′) − Φ<

ij(t, t
′)
]
,

ΦA
ij(t, t

′) = Θ (t′, t)
[
Φ<

ij(t, t
′) − Φ>

ij(t, t
′)
]
.

(158)

13 The time-diagonal component Φδ vanishes due to Gδ = 0 [44].
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Because of the order of the time arguments [67], we obtain for the selfenergy

Σ
T,↑(↓),≷
ij (t, t′) = i~T≷

ij (t, t′)G↓(↑),≶ji (t′, t) , (159)

for the less and greater components, which will be used in Sec. 5. Finally, we formulate the KBE for the
Hubbard case. For the greater and less components of Eqs. (107) and (108) together with Eq. (127), we arrive at
(the selfenergy also contains the Hartree–Fock contribution)

∑

l

[
i~

d
dt
δi,l + Jδ⟨i,l⟩

]
G

σ,≷
lj (t, t′) =

∑

l

∫ ∞

ts

dt̄
{

Σσ,R
il (t, t̄)G

σ,≷
lj (t̄, t′) + Σ

σ,≷
il (t, t̄)Gσ,A

lj (t̄, t′)
}
, (160)

∑

l

G
σ,≷
il (t, t′)


−i~

←
d

dt′
δl,j + Jδ⟨l,j⟩


 =

∑

l

∫ ∞

ts

dt̄
{
Gσ,R

il (t, t̄)Σ
σ,≷
lj (t̄, t′)+Gσ,≷

il (t, t̄)Σσ,A
lj (t̄, t′)

}
. (161)

In order to describe the dynamics of the considered systems, we want to solve the Eqs. (160) and (161) for the
Green functions. To this end, at each time step, we need to evaluate the integrals on the right-hand side, which
require the knowledge of the selfenergy of Eq. (159) and thus the T -matrix. The latter is obtained by solving
the Eqs. (156) and (157). Special care must be taken here since the T -matrix depends on itself. To account for
this, we compute the advanced, the less and the greater component of T in an iterative procedure that leads to
convergence.

5 Numerical algorithms and implementation details

This section is devoted to the presentation of the numerical algorithms that are used to solve the dynamics of
Hubbard models within the introduced NEGF approach with the needed efficiency. Before discussing the de-
tails of the numerical propagation, it is convenient to look at numerical integration methods to keep the large
computational effort manageable.

5.1 Numerical integration

The numerical implementation of the NEGF approach is governed by the numerical evaluation of time integrals,
as one can see in Eqs. (160), (161), (156) and (157). For the evaluation of integral expressions, a variety of
numerical methods exists but the structure of the time propagation (cf. Sec. 5.2) requires a restriction to methods
with equidistant stepping. A convenient higher order integration scheme is given by the so-called Newton–Cotes
formulas that are briefly summarized below, for a detailed derivation, see Apps. A to E.

Assuming a function f : [a, b] → C, x 7→ f(x) with a, b ∈ R, the one-dimensional integration problem starts
with the integral expression

I(f) =

∫ b

a

dx f(x) . (162)

With Newton–Cotes integration, I(f) can be approximated by an expression that only depends on values for
discrete sampling points fi := f(xi) with xi = a+ i b−a

n , n ∈ N, i ∈ [0, n],

I(f) ≈ nh
n∑

i=0

fiw
n
i with wn

i :=

∫ 1

0

dx̂
n∏

j=0
j ̸=i

nx̂− j

i− j
, (163)

where h := xn−x0

n (see App. A for a derivation). The wn
i , which only depend on the order n, are the so-called

universal weight factors for the closed Newton–Cotes formulas. They can be calculated analytically, which is
shown in App. B. The resulting weights for chosen orders n are listed in Tab. 1. The error of Eq. (163) is
of the order O

(
hn+2

∣∣f (n+1)
∣∣), if n is odd and of the order O

(
hn+3

∣∣f (n+2)
∣∣), if n is even. In principle, it

is always possible to integrate over n sampling points with n-th order integration. Practically, it turns out that
the weight factors for n ≥ 8 become progressively negative. To avoid numerical cancellation effects that can
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occur by summation with alternating sign [76], it is convenient not to use these higher order formulas. Instead,
integration with a large number of sampling points {x0, . . . , xN}, N ∈ N can be achieved by combining blocks
of lower order integration.
If N = kn, k ∈ N for a chosen n, the integration can easily be done by combining only segments of the
integration order n. In general, this is not possible, so that one has to mix blocks of different order. In every case,
one can define the number of blocks aN (ñ) that attributes a number of segments to the integration order ñ. In
this work, the function f and its derivatives are considered to be of similar shape throughout [x0, xN ]. Therefore,
it is convenient to arrange the aN (ñ) blocks in such a way that the points [x∑n

n̂=ñ+1 aN (n̂)·n̂, x∑n
n̂=ñ aN (n̂)·n̂] are

integrated in ñ-th order, if aN (ñ) > 0, i.e. the first points are integrated with the highest order and so forth. In
total, the full integral can be expressed in the following way (see App. C),

I(f) ≈
n∑

ñ=1

ñh

[
f∑n

n̂=ñ+1 aN (n̂)·n̂w
ñ
0 + f∑n

n̂=ñ aN (n̂)·n̂w
ñ
ñ

+

aN (n̂)·n̂−1∑

i=1

fi+
∑n

n̂=ñ+1 aN (n̂)·n̂
(
wñ

i mod ñ + δi mod ñw
ñ
ñ

)
]
. (164)

The correctness of the numerical integration is crucially depending on the choice of the segmentation, i.e. on
aN (ñ). As an example, if one treats as many points as possible with n-th order integration, i.e. aN (n) =

⌊
N
n

⌋14

and the remaining points with ñ = N mod n, i.e. aN (N mod n) = 1 (in the following referred to as primitive
scheme), one gets an inhomogeneous error order for consecutive N , due to the last block that has an arbitrary
integration order. A better scheme to choose the aN (ñ) is given by

aN (ñ) =




⌊(
N

ñ−1 −
⌊

N
ñ

⌋
− 1
)

(ñ− 1)
⌋
,
⌊

N
ñ−1

⌋
>
⌊

N
ñ

⌋
∧N mod ñ ̸= 0 ∧ (aN (ñ+ 1) = 0 ∨ ñ = n)

N
ñ ,

⌊
N

ñ−1

⌋
>
⌊

N
ñ

⌋
∧N mod ñ = 0 ∧ (aN (ñ+ 1) = 0 ∨ ñ = n)

N−(ñ+1)aN (ñ+1)
ñ , aN (ñ+ 1) ̸= 0 ∧ (aN (ñ+ 2) = 0 ∨ ñ+ 1 = n)

0, otherwise

.
(165)

Fig. 16 Higher order integration scheme comparison: For an exemplary setup with N = 10 and n = 3, the block structure
of the primitive- (top) and optimal order-scheme (bottom) are schematically illustrated.

14 Here, ⌊a⌋ denotes the so-called floor function, i.e. ⌊a⌋ = max {â ∈ Z|â ≤ a}.
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It can be called optimal order scheme. The difference between the two schemes is illustrated in Fig. 16.
Considering the example for n = 3 and N = 10, in the primitive scheme (top), one treats the points x0 . . . x9

(blue area) via integration for ñ = 3. The remaining points x9 . . . x10 (red area) can only be integrated with
ñ = 1, which leads to the unfavorable low integration order O

(
h3 |f ′′|

)
. In the optimal order scheme (bottom),

only the points x0 . . . x6 are integrated with ñ = 3, although one could include more points in this area. The
advantage of this procedure arises from the circumstance that the remaining points x6 . . . x10 (green area) fit the
ñ = 2 type integration, which gives the maximum possible total order O

(
h5
∣∣f (4)

∣∣). In general, for sufficiently
large N , the order of the error becomes homogeneous in the optimal order scheme, since only blocks with ñ = n
or ñ = n− 1 are included. In detail, for odd n, it becomes O

(
hn+2

∣∣f (n+1)
∣∣) and for even n, it varies between

O
(
hn+3

∣∣f (n+2)
∣∣) and O

(
hn+1

∣∣f (n)
∣∣) for N ≥ NFO

n = (n− 1) (n− 2) (see App. D).
The dissimilar quality of the introduced higher order integration schemes becomes apparent in Fig. 17, where

the test function f(x) = sin (x) is integrated in the way F (x) :=
∫ x

0
ds f(s) = 1 − cos (x) for n = 1, 2, 3, 4, 5.

The total deviation

∆F (x) :=
∣∣Inum

n (N) − F (x)
∣∣ (166)

and the estimated error are shown depending on the integration boundary x, which corresponds to the number of
sampling points N + 1. As one can easily see, in the primitive scheme, the errors are strongly inhomogeneous in
the whole range. In the optimal order scheme, however, the errors converge especially for odd n. Therefore, the
latter is clearly superior and favorable.

Fig. 17 Errors for different integration orders: The total deviation ∆F is plotted as a function of x with logarithmically scaled
ordinate and the resolution step h = π

30
. The solid lines correspond to the deviation, whereas the dashed lines belong to the

estimated error terms according to Eq. (285). The blue (red, green, magenta, cyan) curve corresponds to n = 1(2, 3, 4, 5).
The upper graph is calculated using the primitive scheme of higher order integration, while the lower one is calculated via the
optimal order scheme.

In this paper, it is required to numerically calculate the integrals for a given resolution which is defined by the
propagation structure (see Sec. 5.2). This can, of course, be achieved by application of the introduced optimal
order scheme. It is not always necessary to integrate with the accuracy obtained for a high integration order n
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with respect to the resolution h. In these cases, one can decide not to use every sampling point for the integration,
thus, to increase the resolution step h to reduce the numerical effort of the calculation. However, the integral
boundaries still correspond to the stepping of high resolution. For that purpose, one needs to generalize the
integration scheme to time points that do not match the equidistant raster. Therefore, it is convenient, to consider
integration on [a, b] while a < x0 and/or b > xN . The values f(a) and f(b) are also known. If one considers, for
instance, the case a < x0, the integral between a and x0 can be numerically approximated by (see App. E for a
derivation)

I(f)
∣∣∣
x0

a
≈ h

(
f(a)wn,gr

a +
n−1∑

i=0

fiw
n,gr
i

)
, (167)

with the generalized raster weight factors

wn,gr
i =

d

h

∫ 1

0

dx̄
x̄

ih
d + 1

n−1∏

j=0
j≠i

d
h (x̄− 1) − j

i− j
, wn,gr

a =
d

h

∫ 1

0

dx̄
n−1∏

j=0

(
1 − x̄

j h
d + 1

)
.(168)

Here, d is defined as d := x0 − a. The resulting values of the generalized raster weights for selected values of n
and d can be found in Tab. 3. For the case b > xN , the same weight factors apply.

a x sample
0 x sample

1 x sample
2 x sample

3 b

point sampling scheme

Fig. 18 Point sampling in the generalized raster integration: For a setup with rsample = 3, a = xsample
0 −h and b = xsample

3 +2h,
the generalized raster scheme is illustrated schematically. The blue area corresponds to the closed optimal order integration,
whereas the red and the green area belong to margin integration. The yellow marked points are actually used as sampling
points.

The obtained generalized integration rules can now be used to increase the resolution step. Let rsample define
the chosen points in the way that xsample

i = x0 + irsampleh (i.e. use every rsample-th old sampling point). If
the integration boundaries a and b are not contained in the xsample

i , the remaining margin integrals are treated
according to Eq. (167). This is illustrated in Fig. 18 for the example rsample = 3, a = xsample

0 − h and b =

xsample
3 + 2h. The blue region is integrated with the standard optimal order scheme of closed integration for

the respective n, but with the resolution step rsample · h = 3h. The yellow marked points denote the sampling
points actually used. The red and the green area are treated with generalized raster integration for the respective
n according to Eq. (167). In this case that means that for the interval

[
a, xsample

0

]
(red) the weight factors for

the resolution step 3h are calculated for d
3h = 1

3 . For the interval
[
xsample

3 , b
]

(green), the weight factors are

calculated for d
3h = 2

3 . In principle, one can also think about an extrapolation of the margin points, but it turns
out that this would provide larger error terms [65] (of the same order).

To illustrate the obtained efficiency inherent in the introduced approach, the CPU runtime for the evaluation of
F (x) =

∫ x

0
ds sin(s) is analyzed for two different test cases. The first setup belongs to the primitive first order

integration with no use of an enlarged sampling ratio rsample, i.e. n = 1 and rsample = 1. In the second setup,
however, integration is done with n = 5, rsample = 10 and the optimal order- as well as the generalized raster-
scheme. The deviations for these setups are shown in Fig. 19 in the upper graph. For small x, one can see that
the actual deviation as well as the error estimation are higher for the more sophisticated approach (red), which is
due to the small amount of sampling points. But once the final integration order is reached, the deviations of the
efficient approach are constantly below the results of the primitive integration (blue), although almost every tenth
sampling point is included in the calculation. Therefore, the introduced approach provides very accurate results.
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Fig. 19 Comparison between primitive and improved integration: In the top graph, the deviations for n = 1, rsample = 1
(blue) and n = 5, rsample = 10 (red) are plotted in the same way as in Fig. 17. In the bottom graph, the CPU runtime is shown
as a function of x. The dots belong to measured runtimes, whereas the dashed lines correspond to linear fits. For both setups,
the step width is h = π

100
.

Obviously, the periodicity of the deviations is due to the periodicity of the test function f(x) = sin(x). In the
lower graph, the actual CPU runtime (dots) is plotted for both setups. The dashed lines correspond to linear fits.
One can easily see that the improved algorithm provides a runtime that scales much better than the primitive one.
For obvious reasons, the speed-up of the improved algorithm is of the order of the sampling ratio rsample, because
only every rsample-th sampling point is used. Thus, in this example, not only the integration quality is improved,
but also the CPU runtime scaling is optimized significantly.

5.2 Time propagation algorithms

In this section, for both the full propagation and the time-diagonal propagation according to the GKBA, the
respective algorithm for a numerical solution of the equations of motion is described. To start with, there are two
more simplifications that are used in this work. Considering the selfenergy in Hartree–Fock approximation of
Eq. (60) for the Hubbard case (Eq. (127) and Gij,αβ(t, t′) = Gij,αα(t, t′)δα,β),

ΣHF
ij,αβ(z, z′) = −i~δC(z, z′)

∑

k,l

∑

γ,δ

∫

C
dz̄ U(z)δC(z, z̄)δi,kδi,jδi,lδα,βδγ,δ δ̄α,γGlk,δγ(z̄, z̄+)

+i~
∑

k,l

∑

γ,δ

U(z)δC(z, z
′)δi,kδi,lδi,jδα,δδγ,β δ̄α,γδδ,γGlk,δγ(z, z′+)

= −i~δC(z, z′)δi,jδα,β

∑

γ

U(z)δ̄α,γGii,γγ(z, z+)

+i~δC(z, z′)δi,j δ̄α,βδα,β︸ ︷︷ ︸
=0

U(z)Gii,αβ(z, z′+) , (169)
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one can see that the exchange Fock term cancels again (cf. Eq. (146)). Therefore, one can replace ΣHF
ij,αβ(z, z′) =:

δC(z, z′)δi,jδα,βΣHF,α
i (z), with

Σ
HF,↑(↓)
i (z) = −i~U(z)G

↓(↑)
ii (z, z+) . (170)

Since this is no longer a two-time quantity, it can be directly written in the real-time space,

Σ
HF,↑(↓)
i (t) = U(t)n

↓(↑)
i (t) , (171)

where nσ
i (t) := nσ

ii(t) (cf. Eq. (105)). Due to its very simple structure, it can be accounted by introducing an
effective single-particle Hamiltonian,

heff
ij,αβ(t) = −Jδ⟨i,j⟩δα,β + δi,jδα,βU(t)

∑

γ

δ̄α,γn
γ
i (t) (172)

that can be further simplified by heff
ij,αβ(t) =: heff,α

ij (t)δα,β with

h
eff,↑(↓)
ij (t) = −Jδ⟨i,j⟩ + δi,jU(t)n

↓(↑)
i (t) . (173)

Using this modified single-particle Hamiltonian, the new equations of motion of Eqs. (160) and (161) become
∑

l

[
i~

d
dt
δi,l − heff,σ

il (t)

]
G

σ,≷
lj (t, t′) = (174)

∑

l

∫ ∞

ts

dt̄
{

Σσ,R
il (t, t̄)G

σ,≷
lj (t̄, t′) + Σ

σ,≷
il (t, t̄)Gσ,A

lj (t̄, t′)
}
,

∑

l

G
σ,≷
il (t, t′)


−i~

←
d

dt′
δl,j − heff,σ

lj (t′)


 = (175)

∑

l

∫ ∞

ts

dt̄
{
Gσ,R

il (t, t̄)Σ
σ,≷
lj (t̄, t′) +G

σ,≷
il (t, t̄)Σσ,A

lj (t̄, t′)
}
,

where the selfenergy Σ only contains contributions beyond Hartree–Fock level.
The second simplification concerns the spin subspace. Apparently, neither the Hamiltonian (cf. Eq. (133)) nor
Eqs. (174) and (175) provide a special treatment for any spin orientation σ. In other words, if the initial state is
symmetric with respect to spin-up (↑) and spin-down (↓) particles, this symmetry will be retained for all times
and spatial positions, i.e.

G
↑,≷
ij (t, t′) = G

↓,≷
ij (t, t′) ∀i, j, t, t′ . (176)

Since, in this work, only systems and setups with spin symmetry are studied (cf. Sec. 6), it is convenient to
neglect the spin indices and define

G
≷
ij(t, t

′) := G
↑,≷
ij (t, t′) = G

↓,≷
ij (t, t′) , (177)

which only depend on the Hubbard site indices and the times. Consequently, all other quantities can be expressed
in a spin-independent way, too.

5.2.1 Computation of the time propagators

For the numerical solution of the propagation problem, it is essential to compute time propagators, to couple
quantities of successive time steps (see Sec. 5.2.2). Additionally, those directly enter the evaluation of the
Hartree–Fock propagators introduced in Sec. 2.6. The description is based on Ref. [77]. Assuming a time T and
a small time step ∆ ≪ 1, one can define the time propagator to connect T with T + ∆ (cf. Eq. (9)),

Xij(T + ∆, T ) :=

[
exp

(
− i

~

∫ T+∆

T

dt̄ heff(t̄)

)]

ij

≈
[
exp

(
− i

~
heff(T )∆

)]

ij

=: Uij(T ) .
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Here, heff is assumed approximately not to change between T and T + ∆. For the other time direction, one
obtains

X∗ij(T, T + ∆) :=

[
exp

(
i
~

∫ T

T+∆

dt̄ heff(t̄)

)]

ij

≈
[
exp

(
− i

~
heff(T )∆

)]

ij

= Uij(T ) .

To find the matrix elements of the exponential, one can use the fact that the exponential of a diagonal matrix is
given by the diagonal matrix of the exponentials of the diagonal elements [78]. Furthermore, for two quadratic,
invertible matrices A and B, the relation eBAB−1

= BeAB−1 holds [78]. Therefore, if
[
− i

~h
eff(T )∆

]
is diago-

nalized by B
[
− i

~h
eff(T )∆

]
B−1 =: D, the exponential is given by

Uij(T ) =
[
B−1D

(
eD11 , eD22 , . . . , eDNsNs

)
B
]
ij
, (178)

where Ns is the number of Hubbard sites and D is defined as

D (a1, a2, . . . , an) :=




a1 0 · · · 0
0 a2 · · · 0
...

...
. . .

...
0 0 · · · an


 . (179)

In the same manner, one finds that

Vij(T ) :=

[(
heff(T )

)−1
(

1 − exp

(
− i

~
heff(T )∆

))]

ij

(180)

can be evaluated via

Vij(T ) =

[
B−1D

(
1 − eD11

D11
,
1 − eD22

D22
, . . . ,

1 − eDNsNs

DNsNs

)
B

]

ij

. (181)

The propagation quantities U and V are both used in Sec. 5.2.2. By comparison with Eq. (122), one finds that
the Hartree–Fock propagators can be expressed via

GHF,R
ij (t1, t2) = −iΘ(t1, t2)Xij(t1, t2) , GHF,A

ij (t1, t2) = +iΘ(t2, t1)Xij(t1, t2) . (182)

In the propagation scheme using the GKBA, they are evaluated for Xij(t̄, T ) with t̄ ≤ T . This quantity can be
transformed as

Xij(t̄, T ) =

[
exp

(
− i

~

∫ t̄

T

dt heff(t)

)]

ij

=

[
exp

(
i
~

∫ T−∆

t̄

dt heff(t) +
i
~

∫ T

T−∆

dt heff(t)

)]

ij

=

[
exp

(
− i

~

∫ t̄

T−∆

dt heff(t)

)
exp

(
i
~
heff(T )∆

)]

ij

+ O
(
∆2
)

≈
∑

k

Xik(t̄, T − ∆)U∗kj(T ) . (183)

Here, again, ∆ ≪ 1 is assumed. By this scheme, it can be avoided to diagonalize for every t̄ in each propagation
step T . Furthermore, by iterative insertion of Eq. (183), the time ordering is fulfilled, which is essential for the
algorithm.
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5.2.2 Time-stepping algorithm

To find an algorithm to propagate the equations of motion of Eqs. (174) and (175), one needs to compute the
expressions appearing in the collision integral that contain the selfenergy. If one writes the Kadanoff–Baym
equations as

∑

l

[
i~

d
dt
δi,l − heff

il (t)

]
G<

lj(t, t
′) = I

(1),<
ij (t, t′) , (184)

∑

l

G>
il (t, t

′)


−i~

←
d

dt′
δl,j − heff

lj (t′)


 = I

(2),>
ij (t, t′) , (185)

the collision integrals I(1),< and I(2),> obey

I
(1),<
ij (t, t′) :=

∑

l

∫ ∞

ts

dt̄
{

ΣR
il(t, t̄)G

<
lj(t̄, t

′) + Σ<
il (t, t̄)G

A
lj(t̄, t

′)
}
,

I
(2),>
ij (t, t′) :=

∑

l

∫ ∞

ts

dt̄
{
GR

il(t, t̄)Σ
>
lj(t̄, t

′) +G>
il (t, t̄)Σ

A
lj(t̄, t

′)
}
.

(186)

It should be noted that the relations above are formulated for special cases. Due to the relation of Eq. (104), i.e.

G
≷
ij(t, t

′) = −
[
G

≷
ji(t
′, t)
]∗

, one only needs to solve one equation per real-time component. Furthermore, it is

sufficient to compute I(1),<
ij (t, t′) for t < t′ (denoted as I(1),<

ij (t < t′)) and I(2),>
ij (t, t′) for t > t′ (denoted as

I
(2),>
ij (t > t′)). The Green function for switched time arguments is obtained from the symmetry relation.

Following Ref. [64], for given G<
ij(t < T ), G>

ij(T > t′) and G<
ij(T, T ), the values after a small time step ∆ can

be obtained in a simple scheme via three propagation equations that agree with Eqs. (184) and (185),

G<
ij(t < T + ∆) =

∑

l

{
G<

il (t < T )U∗jl(T ) − I
(1),<
il (t < T )V∗jl(T )

}
, (187)

G>
ij(T + ∆ > t′) =

∑

l

{
Uil(T )G>

lj(T > t′) − Vil(T )I
(2),>
lj (T > t′)

}
, (188)

G<
ij(T + ∆, T + ∆) =

∑

lm

{
Uil(T )

[
G<

lm(T , T ) + Wlm(T )
]
U∗jm(T )

}
, (189)

where

Wlm(T ) :=

∞∑

n=0

w
(n)
lm (T ) , w

(n)
lm (T ) :=

i∆
n+ 1

[[
heff(T ), w(n−1)(T )

]
−

]

lm

,

w
(0)
lm (T ) := i∆

(
I
(1),<
lm (T, T ) − I

(2),>
lm (T, T )

) (190)

and U , V are obtained from Eqs. (178) and (181). These equations are provided by an explicit Euler integration
[65]. In Sec. 5.1, it has been shown that for the numerical evaluation of integrals, not every sampling point must
be used. In Eqs. (187) and (188), t and t′ denote times with a larger time step, i.e. ti+1 − ti = rsample∆. This
procedure also allows to store the Green function only for times t, t′. In W , the summation can be truncated at
any n, leading to an error of the order O(∆n+2). In this work, only the leading term is considered. The three
propagation equations lead to a simple, causal propagation stepping scheme that is illustrated in Fig. 20. Starting
from G≷(ts, ts), one can consecutively obtain G≷ in the full two-time plane.
Due to their appearance in Eqs. (187) and (188), one has to express the collision integral contributions of Eq.
(186) only in terms of G<

ij(t1 < t2) and G>
ij(t1 > t2). By replacing the retarded and advanced components by
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their definition in Eq. (100), one has

I
(1),<
il (t < T ) :=

∑

k

Gδ
ik(t)Σ<

kl(t < T ) −
∑

k

G<
ik(t < T )Σδ

kl(T )

+

∫ t

ts

d̄t
∑

k

{(
G>

ik(t > t̄) −G<
ik(t > t̄)

)
Σ<

kl(̄t < T )
}

+

∫ T

ts

d̄t
∑

k

{
G<

ik(t, t̄)
(
Σ<

kl(̄t < T ) − Σ>
kl(̄t < T )

)}
,

I
(2),>
lj (T > t′) :=

∑

k

Σδ
lk(T )G>

kj(T > t′) −
∑

k

Σ>
lk(T > t′)Gδ

kj(t
′)

+

∫ T

ts

d̄t
∑

k

{(
Σ>

lk(T > t̄) − Σ<
lk(T > t̄)

)
G>

kj (̄t, t
′)
}

+

∫ t′

ts

d̄t
∑

k

{
Σ>

lk(T > t̄)
(
G<

kj (̄t < t′) −G>
kj (̄t < t′)

)}
.

(191)

The time-diagonal component Σδ can always be expressed in terms of Gδ which is equal to zero as already
mentioned in Sec. 2.5. Therefore, the first lines of Eq. (191) vanish. In order to force the time order, one can
split the integration, yielding

I
(1),<
il (t < T ) =

∫ t

ts

d̄t
∑

k

{(
G>

ik(t > t̄) −G<
ik(t > t̄)

)
Σ<

kl(̄t < T )
}

+

∫ t

ts

d̄t
∑

k

{
G<

ik(t > t̄)
(
Σ<

kl(̄t < T ) − Σ>
kl(̄t < T )

)}

+

∫ T

t

d̄t
∑

k

{
G<

ik(t < t̄)
(
Σ<

kl(̄t < T ) − Σ>
kl(̄t < T )

)}
,

I
(2),>
lj (T > t′) =

∫ t′

ts

d̄t
∑

k

{(
Σ>

lk(T > t̄) − Σ<
lk(T > t̄)

)
G>

kj (̄t < t′)
}

∫ T

t′
d̄t
∑

k

{(
Σ>

lk(T > t̄) − Σ<
lk(T > t̄)

)
G>

kj (̄t > t′)
}

+

∫ t′

ts

d̄t
∑

k

{
Σ>

lk(T > t̄)
(
G<

kj (̄t < t′) −G>
kj (̄t < t′)

)}
.

(192)

Cancelling out the terms appearing twice leads to

I
(1),<
il (t < T ) =

∫ t

ts

d̄t
∑

k

{
G>

ik(t > t̄)Σ<
kl(̄t < T ) −G<

ik(t > t̄)Σ>
kl(̄t < T )

}

+

∫ T

t

d̄t
∑

k

{
G<

ik(t < t̄)Σ<
kl(̄t < T ) −G<

ik(t < t̄)Σ>
kl(̄t < T )

}
,

I
(2),>
lj (T > t′) =

∫ t′

ts

d̄t
∑

k

{
Σ>

lk(T > t̄)G<
kj (̄t < t′) − Σ<

lk(T > t̄)G>
kj (̄t < t′)

}

+

∫ T

t′
d̄t
∑

k

{
Σ>

lk(T > t̄)G<
kj (̄t < t′) − Σ>

lk(T > t̄)G>
kj (̄t < t′)

}
.

(193)
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Fig. 20 Propagation stepping overview: The three direc-
tions of propagation are illustrated in the two-time plane.
The upper left propagation for G< corresponds to Eq.
(187), while the lower right propagation for G> corre-
sponds to Eq. (188). The time diagonal time stepping is
given by Eq. (189). The graphic is taken from Ref. [64].

By using the symmetry relations of Eq. (104), one arrives at

I
(1),<
il (t < T ) =

∫ t

ts

d̄t
∑

k

{
G>

ik(t > t̄)Σ<
kl(̄t < T ) −

(
G<

ki(̄t < t)Σ>
lk(T > t̄)

)∗ }

+

∫ T

t

d̄t
∑

k

{
G<

ik(t < t̄)Σ<
kl(̄t < T ) +G<

ik(t < t̄)
(
Σ>

lk(T > t̄)
)∗ }

,

I
(2),>
lj (T > t′) =

∫ t′

ts

d̄t
∑

k

{
Σ>

lk(T > t̄)G<
kj (̄t < t′) −

(
Σ<

kl(̄t < T )G>
jk(t′ > t̄)

)∗ }

+

∫ T

t′
d̄t
∑

k

{
Σ>

lk(T > t̄)G<
kj (̄t < t′) + Σ>

lk(T > t̄)
(
G>

jk(t′ > t̄)
)∗ }

,

(194)

which only depends on quantities of known time order. Therefore, the propagation is closed, if Σ<
ij(t1 < t2) and

Σ>
ij(t1 > t2) only depend on G<

ij(t1 < t2) and G>
ij(t1 > t2).

For the time-diagonal time stepping in Eq. (189), in a similar manner, one obtains

I
(1),<
il (T, T ) =

∫ T

ts

d̄t
∑

k

{
G>

ik(T > t̄)Σ<
kl(̄t < T ) −

(
G<

ki(̄t < T )Σ>
lk(T > t̄)

)∗ }
,

I
(2),>
lj (T, T ) =

∫ T

ts

d̄t
∑

k

{
Σ>

lk(T > t̄)G<
kj (̄t < T ) −

(
Σ<

kl(̄t < T )G>
jk(T > t̄)

)∗ }

= −
(
I
(1),<
jl (T, T )

)∗
,

(195)

leading to G<
ij(T + ∆, T + ∆). The value for G>

ij(T + ∆, T + ∆) can be obtained by the symmetry on the time
diagonal of Eq. (106).
In the case of the GKBA, one only needs to propagate along the time diagonal, i.e. one needs to solve Eqs. (189),
(190) and (195). The Green functions on the full two-time plane can be reconstructed via (cf. Eqs. (120) and
(182))

G<
ij(t < T ) = ~

∑

k

G<
ik(t, t)Xkj(t < T ) ,

G>
ij(T > t′) = ~

∑

k

(Xki(t
′ < T ))

∗
G>

kj(t
′, t′) ,

(196)

where t1, t2 ∈ {T, t, t′, t̄}.
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5.2.3 Calculation of the selfenergy

The validity of the propagation stepping scheme from the last section crucially depends on the correct evaluation
of the selfenergy. Due to the appearance in Eqs. (194) and (195), Σ is only required for Σ<

kl(̄t < T ) and
Σ>

lk(T > t̄). In the case of the T -matrix selfenergy of Eq. (159), one arrives at

ΣT,<
kl (̄t < T ) = i~T<

kl (̄t < T )G>
lk(T > t̄)

ΣT,>
lk (T > t̄) = −i~

(
T>

kl (̄t < T )
)∗
G<

kl(̄t < T ) .
(197)

Here, the symmetry relation for the T -matrix of Eq. (104) is applied15. The T -matrix is given by (cf. Eq. (157))

T
≷
kl (̄t < T ) = − U (̄t)Φ

≷
kl(̄t < T )U(T )

+
∑

m

∫ t̄

ts

d̄t2 U (̄t)ΦR
km(̄t > t̄2)T

≷
ml(̄t2 < T )

+
∑

m

∫ T

ts

d̄t2 U (̄t)Φ
≷
km(̄t, t̄2)T

A
ml(̄t2 < T ) .

(198)

Again, by splitting the integration, one can find a form in which every time order is unique,

T<
kl (̄t < T ) = − U (̄t)Φ<

kl(̄t < T )U(T )

+
∑

m

∫ t̄

ts

d̄t2 U (̄t)ΦR
km(̄t > t̄2)T

<
ml(̄t2 < T )

−
∑

m

∫ t̄

ts

d̄t2 U (̄t)
(
Φ<

mk (̄t2 < t̄)
)∗
TA

ml(̄t2 < T )

+
∑

m

∫ T

t̄

d̄t2 U (̄t)Φ<
km(̄t < t̄2)T

A
ml(̄t2 < T ) ,

T>
kl (̄t < T ) =U (̄t)

(
Φ>

lk(T > t̄)
)∗
U(T )

+
∑

m

∫ t̄

ts

d̄t2 U (̄t)ΦR
km(̄t > t̄2)T

>
ml(̄t2 < T )

+
∑

m

∫ t̄

ts

d̄t2 U (̄t)Φ>
km(̄t > t̄2)T

A
ml(̄t2 < T )

−
∑

m

∫ T

t̄

d̄t2 U (̄t)
(
Φ>

mk (̄t2 > t̄)
)∗
TA

ml(̄t2 < T ) .

(199)

For the contour quantity of the Hartree Green function, one has, cf. Eq. (158),
(
Φ<

mk (̄t2 < t̄)
)∗

= (i~)
∗ (
G<

mk (̄t2 < t̄)
)∗ (

G<
mk (̄t2 < t̄)

)∗

= (−i~)
(
−G<

km(̄t > t̄2)
) (

−G<
km(̄t > t̄2)

)
= −Φ<

km(̄t > t̄2) ,

which is used in Eq. (199). The retarded and advanced components of Φ can also be obtained from Eq. (158),

ΦR
ij(t > t′) = i~Θ(t, t′)

[
G>

ij(t > t′)G>
ij(t > t′) −

(
G<

ji(t
′ < t)

)∗ (
G<

ji(t
′ < t)

)∗ ]
,

ΦA
ij(t < t′) = i~Θ(t′, t)

[
G<

ij(t < t′)G<
ij(t < t′) −

(
G>

ji(t
′ > t)

)∗ (
G>

ji(t
′ > t)

)∗ ]
.

(200)

Both components of the T -matrix—less and greater—depend on TA
ml(̄t2 < T ). From Eq. (156), one gets

TA
ml(̄t2 < T ) = −U (̄t2)Φ

A
ml(̄t2 < T )U(T )

+
∑

n

∫ T

t̄2

d̄t3 U (̄t2)Φ
A
mn(̄t2 < t̄3)T

A
nl(̄t3 < T ) . (201)

15 It should be noted that T >
kl (̄t < T ) is used instead of T >

lk (T > t̄). This is advantageous in the following transformations.
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At this point, all appearing quantities are already contained in the propagation approach. The T -matrix, however,
depends on itself in all components. Therefore, one has to develop a scheme to solve the equations iteratively.
As a starting point, the advanced T -matrix is a convenient choice, since it only depends on G, U and itself. The
time-diagonal value can immediately be found,

TA
ml(T, T ) = −U(T )ΦA

ml(T, T )U(T ) , (202)

since the integral term vanishes. Let ∆̄ := rsample∆ be the enlarged time step due to the integration scheme of
Sec. 5.1. To ensure that, in each propagation step, the same sampling points are used, one has to compute
TA

ml(t
max < T ) first, with tmax := ⌊ T

rsample
⌋rsample. Therefore, one can set T = tmax and solve

T
A,(N+1)
ml (T < T ) = −U(T)ΦA

ml(T < T )U(T ) (203)

+
∑

n

∫ T

T

d̄t3 U(T)ΦA
mn(T < t̄3)T

A,(N)
nl (̄t3 < T )

via numerical integration. In doing so, the sampling points for TA
ml(T, T ) and TA,(N)

nl (T < T ) appear. The first
is already obtained from Eq. (202) and the latter can be solved by iteration over N . Let ϵ ≪ 1 be a threshold
accuracy. One can consider the iteration process converged if

∑

ml

∣∣∣TA,(N)
ml (T < T ) − T

A,(N−1)
ml (T < T )

∣∣∣ < ϵ . (204)

For the next time step, T is set to T → T − ∆̄ and, again, Eq. (204) is solved by iteration. This scheme has to be
continued until T = ts.
A very similar process can be applied to the less and greater components of the T -matrix. Starting from

T<
kl (ts < T ) = − U(ts)Φ

<
kl(ts < T )U(T )

+
∑

m

∫ T

ts

d̄t2 U(ts)Φ
<
km(ts < t̄2)T

A
ml(̄t2 < T ) ,

T>
kl (ts < T ) =U(ts)

(
Φ>

lk(T > ts)
)∗
U(T )

−
∑

m

∫ T

ts

d̄t2 U(ts)
(
Φ>

mk (̄t2 > ts)
)∗
TA

ml(̄t2 < T ) ,

(205)

one can set T = ts + ∆̄ and iterate the following equations,

T
<,(N+1)
kl (T < T ) = − U(T)Φ<

kl(T < T )U(T )

+
∑

m

∫ T

ts

d̄t2 U(T)ΦR
km(T > t̄2)T

<,(N)
ml (̄t2 < T )

−
∑

m

∫ T

ts

d̄t2 U(T)
(
Φ<

mk (̄t2 < T)
)∗
TA

ml(̄t2 < T )

+
∑

m

∫ T

T

d̄t2 U(T)Φ<
km(T < t̄2)T

A
ml(̄t2 < T ) ,

T
>,(N+1)
kl (T < T ) =U(T)

(
Φ>

lk(T > T)
)∗
U(T )

+
∑

m

∫ T

ts

d̄t2 U(T)ΦR
km(T > t̄2)T

>,(N)
ml (̄t2 < T )

+
∑

m

∫ T

ts

d̄t2 U(T)Φ>
km(T > t̄2)T

A
ml(̄t2 < T )

−
∑

m

∫ T

T

d̄t2 U(T)
(
Φ>

mk (̄t2 > T)
)∗
TA

ml(̄t2 < T ) ,

(206)
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until T≷ is converged, i.e.
∑

kl

∣∣∣T≷,(N)
kl (T < T ) − T

≷,(N−1)
kl (T < T )

∣∣∣ < ϵ . (207)

Subsequently, T is set to T → T+∆̄ to proceed with Eq. (206). This scheme has to be continued, until T = tmax.
In the final step, T is set to T → T and, again, Eq. (206) has to be iterated.
In this way, the less and greater components of the T -matrix can be computed, leading to a selfenergy according
to Eq. (197) that can be included in the collision integral, as shown in Sec. 5.2.2. Finally, it should be noted that
the second order Born approximation is recovered, if T< and T> are set equal to the first lines in Eq. (206).

5.2.4 Overview of propagation algorithms

Bringing the considerations of the last three sections together, there are several important quantities and compu-
tation steps that have to be regarded in each propagation step. If the quantities are only used in the full two-time
propagation, the step is shown in blue and for quantities that are merely used for the GKBA, the step is shown in
red. Mutual steps are shown in black.

• compute U(T ) from G<(t, t), t ∈
{
ts, ts + ∆̄, . . . , tmax

}
according to Eq. (178)

• compute V(T ) from G<(t, t), t ∈
{
ts, ts + ∆̄, . . . , tmax

}
according to Eq. (181)

• compute X(t, T ) from U(T ) for all t ∈
{
ts, ts + ∆̄, . . . , tmax

}
according to Eq. (183)

• compute G<(t < T ) and G>(T > t) from X(t, T ) for all t ∈
{
ts, ts + ∆̄, . . . , tmax

}
according to Eq. (196)

• compute TA(T < T ) iteratively for T ∈
{
T, tmax, tmax − ∆̄, . . . , ts

}
from G≷ according to Eq. (204)

• compute T≷(T < T ) iteratively for T ∈
{
ts, ts + ∆̄, . . . , tmax, T

}
from TA(T < T ) and G≷ according to

Eq. (206)

• compute ΣT,<(̄t < T ) and ΣT,>(T > t̄) for t̄ ∈
{
ts, ts + ∆̄, . . . , tmax, T

}
fromG<(̄t < T ),G>(T > t̄) and

T≷(T < T ) according to Eq. (197)

• compute the collision integrals I(1),<(t < T ) and I(2),>(T > t′) for t, t′ ∈
{
ts, ts + ∆̄, . . . , tmax

}
from

ΣT,<(̄t < T ), ΣT,>(T > t̄) and G≷ according to Eq. (194)

• compute the collision integral I(1),<(T, T ) from ΣT,<(̄t < T ), ΣT,>(T > t̄), G<(̄t < T ) and G>(T > t̄)
according to Eq. (195)

• compute the Green functions G<(t < T + ∆) and G>(T + ∆ > t′) for t, t′ ∈
{
ts, ts + ∆̄, . . . , tmax

}
from

U(T ), V(T ), I(1),<(t < T ), I(1),>(T > t′), G<(t < T ) andG>(T > t′) according to Eqs. (187) and (188)

• compute the Green function G<(T + ∆, T + ∆) from U(T ), I(1),<(T, T ) and G<(T, T ) according to Eqs.
(189) and (190)

• save the Green function G<(T + ∆, T + ∆), if ⌊T+∆
rsample

⌋rsample = T + ∆

• save G<(t < T + ∆) and G>(T + ∆ > t′) (G<(t < T ) and G>(T > t′)), if ⌊T+∆
rsample

⌋rsample = T + ∆

(⌊ T
rsample

⌋rsample = T )

5.3 Generation of the initial state

In this section, the generation of the initial state is discussed. The details about the adiabatic switching method
that was presented in Sec. 2 are described in Sec. 5.3.2. The generation of the Hartree–Fock state that leads to the
noninteracting ground state, in the case of the adiabatic switching, and to the ideal state, for full doubly occupied
setups, is discussed in Sec. 5.3.1.
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5.3.1 Generation of the Hartree–Fock state

The underlying ensemble in the NEGF approach can be considered to have a fixed particle number, since it is
conserved by all approximations of Secs. 2 and 5.1 [44,68]. In the noninteracting limit, this would correspond to
a canonical ensemble that is described by the density operator

ρ̂0 =
e−βĤ0

Tr
(

e−βĤ0

) , (208)

β being the inverse temperature. However, a fixed particle number cannot allow for the natural action of the
canonical operators which connect the N -particle space with the (N ± 1)-particle space. Therefore, one can use
the grand-canonical ensemble, instead. In this choice of an ensemble, the properties are determined by β and
the chemical potential µ. To nevertheless achieve a subspace with a constant particle number, one can choose
µ in such a way that, in the ground state, the average particle number ⟨N⟩0 is equal to the desired N . This
corresponds to an effective canonical ensemble, at least for sufficiently large β. To allow for the generation of
interacting ground states, one can generalize the ensemble to the effective Hartree–Fock Hamiltonian of Eq. (173)
that depends on the density itself. To find the initial density matrix, one can apply the iterative scheme that is
presented below. To find the density matrix for theM -th step, one has to diagonalize the Hamiltonian heff,(M)

ij (ts)

that depends on n(M)
i (ts) to get the eigenbasis. If D(M) is a diagonal matrix with

D(M) = B(M)h
eff,(M)
ij (ts)

(
B(M)

)−1

, (209)

then D(M)
11 , D

(M)
22 , . . . , D

(M)
NsNs

are the eigenvalues of heff,(M)
ij (ts). At this point, one can choose the chemical

potential µ such that

N (β, µ,D) =
∑

k

f(D
(M)
kk − µ) (210)

is equal to the desired particle number. Here, f(D
(M)
kk − µ) =

(
exp

(
β(D

(M)
kk − µ)

)
+ 1
)−1

is the Fermi–Dirac
distribution. Having found the matching µ, one obtains the corresponding density matrix in the Hubbard basis by

ñ
(M+1)
ij (ts) =

[(
B(M)

)−1

D(f(D
(M)
11 − µ), f(D

(M)
22 − µ), . . . , f(D

(M)
NsNs

− µ))B(M)

]

ij

. (211)

The iterative procedure can be started from an arbitrary density matrix n(0)
ij (ts). It is convenient to not directly

use ñ(M+1)
ij (ts) for the next iteration, but to mix the density matrices as follows

n
(M+1)
ij (ts) = αn

(M)
ij (ts) + (1 − α)ñ

(M+1)
ij (ts) , (212)

where, α ∈ [0, 1) denotes a mixing parameter that accelerates the convergence. The iteration process can be
considered converged, if

∑

ij

∣∣∣n(M)
ij (ts) − n

(M−1)
ij (ts)

∣∣∣ < ϵ . (213)

After convergence, the time propagation can be started by setting G<
ij(ts, ts) = i

~nij(ts), cf. Eq. (105).
In the case of U = 0, the resulting density matrix corresponds to the noninteracting ground state, from which the
interacting ground state can be generated by adiabatic switching (see Sec. 5.3.2). In principle, it is also possible
to start the time propagation of any setup from the Hartree–Fock state that, in general, differs from the exact
interacting ground state. Furthermore, one can include additional potential terms into the Hamiltonian to realize,
e.g., a harmonic confinement.
In this paper, mainly setups that are initially completely determined by the occupation of a smaller subsystem are
considered. In these cases, the above-mentioned procedure can be applied for this subset of Hubbard sites and the
density matrix can be augmented to the full size by adding zero in all unknown matrix elements afterwards. This
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corresponds to an excitation of the form of a confinement quench, since the restriction on the subset is equivalent
to an infinitely strong potential on the unoccupied sites. Depending on the density of the initially occupied sites,
the Hartree–Fock solution can lead to an approximative result, or, for exclusively doubly occupied sites, to an
exact density matrix. This is the case, because the Hartree–Fock state gives the exact total energy for this setup.

5.3.2 Realization of the adiabatic switching

As was shown in Sec. 2.2, the generation of an interacting initial state can be achieved by the adiabatic switching
method. According to Eq. (132), this leads to an effectively time-dependent interaction strength U(t) = UfAS(t).
In general, the switch-on procedure has to start from ts = −∞, to ensure that no additional energy is transferred
to the system. In practice, ts has to be made finite, which is justified, if the resulting additional energies are
sufficiently small. Also, in general, fAS(t) has to fulfill the adiabatic condition, i.e.

f−1
AS
∂fAS

∂t
= const , (214)

which leads to the expression [44] fAS(t) = exp (−(t− t0)). For numerical reasons, one has to ensure that the
total change of fAS is small for t → ts and t → t0, to avoid artificial fluctuations caused by the integration
procedures due to a gap at ts and a kink at t0. These conditions are precisely fulfilled by the choice [79]

fτ,tH
AS (t) = exp

{
− Aτ

tH

t/ (2tH)
exp

(
Bτ

tH

t/ (2tH) − 1

)}
,

Bτ
tH

:=
tH

τ ln(2)
− 1

2
, Aτ

tH
:=

ln(2)

2
e2Bτ

tH ,

(215)

where tH := t0−ts
2 and τ is a free parameter to control the slope of the function. The shape of fτ,tH

AS for different
τ is shown in Fig. 21. It should be noted that the function is asymmetric with respect to tH unlike e.g. the
Fermi–Dirac distribution.
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Fig. 21 Illustration of the adiabatic switching function: The shape of fτ,tH
AS in Eq. (215) is shown for τ

tH
= 1, 1

2
, 1

4
. The

functions go to zero for t → ts and to one for t → t0. The functions are asymmetric with respect to tH.

We underline that the adiabatic switching method is well-tested, see e.g Refs. [77, 80] and allows for reliable
and accurate simulations.

5.4 Evaluation of physical observables

During the propagation, one has access to the full Green function and to the different collision integrals. From
these quantities, one can compute many relevant physical observables. The most important one, for the study of
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nonequilibrium transport processes, is the time-dependent single-particle density matrix

n
↑(↓)
ij (t) = −i~G<

ij(t, t) . (216)

It should be noted that n↑(↓)i (t) gives the density for spin-up or spin-down particles. The total occupation is given
by ni(t) := n↑i (t)+n

↓
i (t). Almost the entire transport analysis is based on nij(t) and ni(t) = nii(t) in particular.

The energy contributions that sum up to the total energy can also be obtained. They are given by

• the kinetic energy Ekin(t) that corresponds to Ĥ0,

Ekin(t) = ℜ
[
Tr
(
h(0)n(t)

)]
, (217)

• the potential energy Epot(t) that corresponds to the excitation of the system F̂ (t),

Epot(t) = ℜ [Tr (F (t)n(t))] , (218)

• the Hartree–Fock energy EHF(t) that corresponds to the Hartree–Fock selfenergy ΣHF(t),

EHF(t) =
1

2
ℜ
[
Tr
(
ΣHF(t)n(t)

)]
, (219)

• the correlation energy Ecorr(t) which can be obtained from the time-diagonal collision integral I(1),<(t, t),

Ecorr(t) =
1

2
ℑ
[
Tr
(
I(1),<(t, t)

)]
. (220)

Consequently, the total energy Etot(t) is given by

Etot(t) = Ekin(t) + Epot(t) + EHF(t) + Ecorr(t) . (221)

A very interesting quantity that provides insight into the correlations and quantum behaviour of the particles is
the local entanglement entropy [81, 82]

Si(t) = − 2

(
ni(t)

2
− n

(2)
ii (t)

)
log2

(
ni(t)

2
− n

(2)
ii (t)

)
− n

(2)
ii (t) log2n

(2)
ii (t)

−
(
1 − ni(t) + n

(2)
ii (t)

)
log2

(
1 − ni(t) + n

(2)
ii (t)

)
,

(222)

where n(2)
ii (t) is the double occupation of site i that is accessible in the NEGF approach according to

n
(2)
ii (t) =

1

2U(t)

(
ℜ
[
ΣHF

i (t)ni(t)
]
+ ℑ

[
I
(1),<
ii (t, t)

])
. (223)

Si(t) can be understood as a measure of the complexity of the many-body state. It quantifies the overlap of
particles at site i with particles on all other sites. The total entanglement entropy can be found by applying the
trace,

S(t) :=
∑

i

Si(t) . (224)

The single-particle part, Ssp, follows from the replacement n(2)
ii (t) → n↑i (t)n

↓
i (t) =

(
ni(t)

2

)2

, in Eq. (222). This

is obtained from Eqs. (171) and (223) with the assumption that I(1),<
ii (t, t) = 0. Thus, Ssp becomes

Ssp(t) :=
∑

i

[
− 2

(
ni(t)

2
−
(
ni(t)

2

)2
)

log2

(
ni(t)

2
−
(
ni(t)

2

)2
)

−
(
ni(t)

2

)2

log2

(
ni(t)

2

)2

−
(

1 − ni(t) +

(
ni(t)

2

)2
)

log2

(
1 − ni(t) +

(
ni(t)

2

)2
)]

.

(225)
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Consequently, one can define the correlation part of the entanglement entropy Scorr according to

Scorr(t) := S(t) − Ssp(t) . (226)

Although the factorization of the two-particle density yields the formally non-interacting result, n↑i (t)n
↓
i (t), the

single-particle densities are computed from the full Green functions. Therefore, this expression and, also the
corresponding entropy, Ssp(t), contain interaction effects [38].
Another quantity that is studied in this work is the occupation in the quasi-momentum space nk(t) which is
obtained by a discrete Fourier transform [44, 65] (k is the quasi-momentum),

nk(t) =
1

Ns

∑

ij

e−ikieikjnij(t) . (227)

5.5 Computational demands and parallelization

We now briefly discuss computational aspects. In particular, it is crucial to know how the required computer mem-
ory CPU time scale with the basis size Ns and the number of propagation steps Nt. Furthermore, we discuss how
the code can be accelerated by massive parallelization. The required main memory of KBE calculations is domi-
nated by the storage of the less and greater Green functions, both depending on two times arguments, as shown in
Sec. 5.2.4. Since one has to store onlyG<

ij(t < t′) andG>
ij(t > t′), the required memoryMrsample(Ns, Nt) reduces

to (assuming double-precision complex numbers, i.e. 16 Bytes)

Mrsample(Ns, Nt) = 16 Bytes · 2 · 1

2
·N2

s ·
(

Nt

rsample

)2

. (228)

Here, the factor 2 corresponds to the two components and the factor 1
2 accounts for the triangular matrix structure

of the time arguments. Note that, compared to a primitive integration scheme, the memory is reduced by a factor
r−2

sample, cf. Sec. 5.1.
The scaling of the CPU time can be estimated from the number of coupled integrations/summations in the prop-
agation scheme of Sec. 5.2.4. In all cases, the leading contribution arises from the evaluation of the T -matrix

which scales with O
(
N3

s ·
(

Nt

rsample

)2
)

, leading to a total performance Prsample(Ns, Nt) scaling of the order

Prsample(Ns, Nt) ∝ O
(
N3

s ·Nt

(
Nt

rsample

)2
)
. (229)

Again, the CPU time is reduced by a factor r−2
sample, with the improved integration scheme16 Note that neither the

memory demand nor the performance scheme depends on the particle number N .
The complex algorithms introduced in the present section constitute a large number of independent computational
steps. For example, each matrix multiplication of the form

Cij(t, t
′) =

∑

k

∫ t2

t1

dt̄ Aik(t, t̄)Bkj(t̄, t
′) (230)

can be parallelized with respect to i, j, t, t′ leading to a massive speed-up when executed on an appropriate
architecture. In this work, all simulation were performed on graphics processing units (GPUs) provided by
accelerator cards of the types

• NVIDIA R⃝Tesla R⃝K20m

16 It should be noted that in the case of the second order Born approximation combined with a propagation scheme according to the
GKBA, the memory and performance scaling are further reduced to

MSBA
rsample

(Ns, Nt) =16 Bytes · N2
s · Nt

rsample
and P SBA

rsample
(Ns, Nt) ∝ O

(
N3

s · Nt
Nt

rsample

)
.
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• NVIDIA R⃝GeForce R⃝GTX TITAN

• NVIDIA R⃝GeForce R⃝GTX TITAN Black.

The above-mentioned properties and the use of parallelization allow us to access a broad parameter range in
terms of Ns and Nt that is sketched in Fig. 22. The grey dots correspond to actual simulations which have been
performed. The blue area shows where calculations are possible within the introduced approach. It can be seen
that it is possible to perform simulations with up to several hundreds of Hubbard sites or propagation times up to
T/J−1 = O(103).
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Fig. 22 Illustration of the accessible parameter space: The parameter space spanned by the length of the time propagation
T = Nt∆ and the number of Hubbard sites Ns is shown. The grey dots correspond to actual calculations and the blue area
denotes the accessible parameter space for runtimes up to one week.

To summarize the numerical and computational details of this paper, the presented algorithms start with the
generation of an initial state by diagonalization of the effective Hartree–Fock Hamiltonian and a possible adiabatic
switch-on of the interaction which is followed by the time propagation. It is dominated by the evaluation of the
T -matrix and the collision integral, to propagate in the full two-time plane or only on the time-diagonal for the
GKBA. The computation is facilitated by an efficient higher order integration scheme and massive parallelization
on GPUs. Eventually, during the propagation, access to many nontrivial physical observables is achieved.

6 Numerical Results from NEGF simulations

In this section, the introduced NEGF approach is applied to the Hubbard model and studied for a variety of setups.
In particular the dependence of the dynamics on the interaction strength U , the particle numberN and the system
dimensionality D is analyzed. Our T -matrix calculations are compared to exact results (where available), mean-
field calculations and other many-body approximations. A special focus lies on the quantification of transport
processes in Hubbard systems, in particular, on the diffusion in two-dimensional fermionic lattice systems. Here
we will observe excellent agreement with experimental results for ultra-cold atoms which confirms the quality
of our NEGF results and gives us confidence about their predictive capability for new results that have not yet
been accessible to experiments. In the first part of this section we test our NEGF approach for simple systems
comparing to other methods considering, both, the ground state and the dynamics following an excitation.
The main part of the results is devoted to the analysis of nonequilibrium diffusion processes in lattices that are
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triggered by an inhomogeneous initial state, in which the density is confined either on the edge or at the center
of the system. The resulting diffusive expansion is studied in a large parameter range with respect to interaction
strength and particle number. For the case of diffusion from the center, also the effects of the dimensionality are
considered. Due to its efficient computation, the approach allows us to analyze systems up to mesoscopic size on
the order of NS = 100 lattice sites.
For all results shown below we set ~ → 1. Furthermore, the interaction strength U and the hopping amplitude J
are combined to a normalized interaction strength U → U

J . Similarly, all energies and the time t will be given in
units of J and J−1, respectively. In all our calculations, the total energy and the particle number are conserved
within the numerical precision which is guaranteed by choosing the time step ∆ sufficiently small. All systems
are considered at zero temperature.

6.1 Validity tests of the approach

In order to apply the introduced approach to large systems that are out of reach for ab-initio methods, it is essential
to first check the validity of the used approximations. A suitable test case are small one-dimensional Hubbard
chain for which exact results provided by the configuration interaction method [22] (CI) are available the CPU
effort of which, however, scales exponentially with the particle number.

6.1.1 Comparison of ground state results

The simplest test case is the Hubbard dimer (Ns = 2) which, in equilibrium, can be solved analytically, cf.
Sec. 4.3. Using the NEGF approach, the interacting ground state for N↑ = N↓ = 2 is obtained via adiabatic
switching, cf. Sec. 5.3.2, and the accuracy is evaluated via the total energy of the ensuing state EGS := Etot(t0),
which approaches the ground state energy. The results of the corresponding calculations are depicted in Fig. 23
for U ∈ [0.5, 4] and different many-body approximations.

Fig. 23 Comparison of the ground state energies for the Hubbard dimer: The obtained ground state energies after the adiabatic
switching are shown for varying interaction strength U and different many-body approximations. The exact solution (black)
corresponds to E− of Eq. (143).

The exact ground state energy (E−) of Eq. (143) (black) and the Hartree–Fock (HF, gray) solution increasingly
differ with U while the results for the T -matrix approximation (TMA), the second order Born approximation
(SBA) and theGW -approximation (GWA)17 lie in-between. Interestingly, the exact energy is best approached by
the GKBA+SBA result which shows a very good agreement within the whole range of U . The energies obtained
by the full two-time calculation combined with the second Born selfenergy are slightly higher for large interaction

17 The GWA is the simplest possibility to include an effective screening [44] in the interaction of quantum particles. For more information
about the approximation, the reader is referred to Refs. [44, 57, 58].
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strengths. The calculations using the TMA and the GWA provide almost identical results for both the full and the
GKBA propagation.
To understand this unexpected ordering of the various approximate results, one has to focus on the differences of
the selfenergies. Up to the second order in the interaction, TMA, GWA and SBA provide the same expressions
which causes the qualitatively better solutions compared to HF which neglects correlations. However, in the
third order, there are differences, as shown by the Feynman diagrams in Fig. 24. The first one is contained in
our (particle-particle) T -matrix selfenergy, cf. Fig. 5, whereas the second one corresponds to the particle-hole
channel [59]. In the particular case of half-filling, due to the particle-hole symmetry the two diagrams give
exactly the same contribution but with opposite sign [83], thus the sum over all third order Hubbard diagrams
vanishes. Therefore, the second Born approximation is effectively of third order in the interaction. Therefore,
in the case of the present T -matrix implementation where only one of these diagrams is considered, the leading
term beyond second Born gives an unbalanced contribution which explains the behaviour in Fig. 23. In the case
of the GWA, the included diagram of the third order is unphysical in the Hubbard model due to the contradictory
spin properties of the interactions [39, 44]

Fig. 24 Third order diagrams of the Hubbard model: The left diagram is contained in the particle-particle channel, while
the right one corresponds to the particle-hole channel. For half-filling and a symmetric setup, the sum of both contributions
vanishes. Only the left diagram is contained in the T -matrix description.

This example demonstrates that for very small systems and, in particular, at half filling, series-based many-
body approximations such as the T -matrix have to be used with care, or the set of diagrams has to be properly
expanded. With increasing system size and away from half-filling, i.e. in the low (or high) density limit [58], in
contrast, the present T -matrix approximation yields excellent results. This can be seen in Sec. 6.1.2. As a final
remark we note that that the GKBA and the full two-time propagation provide results of comparable accuracy,
cf. Fig. 23, which confirms the validity of the former [68]. For more tests of the GKBA, see Ref. [34]. A
more detailed insight into the general performance and accuracy of the NEGF approach with TMA is gained by
considering non-equilibrium processes and dynamics which is the subject of the next section.

6.1.2 Excitation dynamics of small Hubbard clusters

To initiate nontrivial dynamics we consider a sudden potential switch on the first Hubbard site, i.e. an excitation
of the form

F̂ (t) =
∑

i,j

∑

α,β

Fw0

ij,αβ(t)ĉ†i,αĉj,β with Fw0

ij,αβ(t) = δi,1δj,1δα,βΘ (t− t0)w0 . (231)

The relaxation of a half-filled Hubbard dimer following a strong quench with a large amplitude w0 = 8 is
shown in Fig. 25 for different many-body approximations [57]. The initial state is prepared using adiabatic
switching. The results are compared to exact diagonalization results (black line) that exhibit strong undamped
oscillations. While for all methods the density on the first site oscillates, in the cases of full two-time propagations,
it subsequently exhibits damping toward a constant value. This is observed for the Born approximation (orange)
as well as for the T -matrix (red dashed line) where the latter is in perfect agreement with earlier independent
TMA results from Ref. [57] which gives strong confirmation for the correctness of our implementation.
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This unphysical damping is not observed for the Hartree-Fock-GKBA propagations. The reason for the ar-
tificial steady state is expected to lie in the self-consistency, which leads to unphysical additional peaks in the
spectral function, in the case of small systems. This has been studied in more detail in Refs. [34, 57, 58]. This
explanation is confirmed by the present findings, since the GKBA provides a significantly lower degree of self-
consistency by construction. From Fig. 25 one can also see that the GKBA+TMA result is superior to all other
approximative methods. This is not contradictory to the considerations of Sec. 6.1.1, since the symmetry of
the system and also the particle-hole symmetry is broken due to the local excitation. Therefore, the third order
diagrams do not vanish any longer.
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Fig. 25 Nonlinear response of a Hubbard dimer with U = 1: the evolution of the density on the first site is shown for a very
strong excitation at t = 0, according to Eq. (231) with w0 = 8. The initial state is prepared by adiabatic switching. The exact
solution (black) is obtained from CI calculations. The blue line corresponds to the TMA calculation with full propagation in
Ref. [57].

In the following, we test the reliability of the approach for systems with larger interaction strength U = 4 and
varying filling n := N

Ns
= 1

2 ,
1
6 for the case of a six-site Hubbard chain and two excitation strengths: w0 = 1

and w0 = 5, cf. Fig. 26. In all cases, the first site is initially depopulated, due to the on-site potential, and
subsequently oscillates. The highest frequency is found for strong excitation and low density. One can see that
the T -matrix based methods provide the best agreement with the exact results. Especially the GKBA propagation
with T -matrix selfenergy provides a density evolution that is very close to the exact one, whereas the results from
HF and GKBA+SBA fail to describe the evolution for large interaction and strong excitation in particular.
As already explained in Sec. 6.1.1, the T -matrix performs best in the low density regime which is confirmed
by the results of Fig. 26. The higher accuracy of the GKBA+TMA approach for short times is again explained
by the lower degree of selfconsistency, cf. Sec. 6.1.1. Note that the T -matrix performs significantly better than
the GWA, which is also a series-based many-body approximation. This indicates that the predominant physical
processes in this system are better described by the diagrams of Fig. 5. The GW -approximation which is
constructed to describe dynamical screening effects of the interaction is not well suited for the Hubbard model,
where the interaction acts locally.

To summarize, the T -matrix provides an accurate description of many-body processes, in particular in the
regime of low or high density. The GKBA and the full two-time propagation are, in general, of comparable
accuracy. These findings allow us to apply the introduced approach to larger systems in order to describe transport
processes.
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Fig. 26 Nonlinear response of the six-site Hubbard chain: the evolution of the density on the first site after the excitation
from Eq. (231) is shown for different many-body approximations and U = 4. Top: w0 = 1, n = 1/6; Center: w0 = 5,
n = 1/6; Bottom: w0 = 5, n = 1/2. All simulations start from the adiabatic switching ground state. The exact solutions are
provided by CI calculations. The results for GWA and HF are taken from Ref. [57].

6.2 Transport results in one, two and three dimensions

The theoretical description of nonequilibrium quantum transport processes in lattice systems has attained growing
interest in the last years, since recent experiments with ultracold atoms have provided accurate data (see Sec. 3).
In this paper, the evolution of initially confined fermions is considered. To quantitatively describe the time-
dependent transport of the particles, it is useful to introduce a few physical quantities which are all calculated
from the single-particle density n(t). We define all transport quantities in a general way such that they apply to
all dimensions D = 1, 2, 3. Therefore, the index of each Hubbard site is expressed as a D-dimensional vector.

6.2.1 Nonequilibrium transport quantities

The collective drift of the particle “cloud” is measured by the motion of the center-of-mass position s(t) which
is defined as

s(t) =
1

N

∑

i

ni(t)i . (232)
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To quantify the expansion of the particle cloud, it is useful to compute the time-dependent mean squared dis-
placement R2(t) in the following way,

R2(t) =
1

N

∑

i

ni(t)∥i − s(t)∥2 . (233)

To find a comparable measure for particle clouds of different sizes we define the cloud diameter d(t) adjusted for
the initial width R2(t0),

d(t) =
√
R2(t) −R2(t0) . (234)

Finally, the expansion velocity vexp(t) is identified with the time derivative of the diameter,

vexp(t) =
d
dt
d(t) . (235)

6.2.2 Simple limiting cases of diffusion processes

Before proceeding with the computational analysis of diffusion in finite Hubbard clusters let us recall two limiting
cases. The first is the case of a classical system. If the particles are non-interacting they move on straight
trajectories with constant speed and linearly growing coordinates (ballistic motion), as a single free particle
would. In other words, the square of the distance from any initial point r(t0) grows quadratically with time. In an
interacting classical system, this distance is averaged over all particles, and the diffusion processes is described
by the mean squared displacement (MSD) [84, 85]

⟨|r(t) − r(t0)
2|⟩ = 2DDt . (236)

Collisions reduce the mobility of the particles, leading to a characteristic linear scaling of the MSD with time,
where D is the diffusion coefficient. This is an equilibrium result following from the Green-Kubo relations. Al-
ternatively one can follow the nonequilibrium process of the expansion of an inhomogeneous density distribution
by solving the diffusion equation

∂n

∂t
= D∆n . (237)

For an initially strongly localized density the solution is a Gaussian with a time-dependent width (variance)
that exactly reproduces the result (236). While this linear scaling of the MSD with t is usually derived within
gasdynamic or hydrodyanamic models, it can be extended to strongly interacting systems by means of computer
simulations (molecular dynamics). Then the above results remain valid, but the diffusion coefficient rapidly
decreases with the coupling strength, e.g. Refs. [86, 87]. At the same time, if their exist large-scale collective
modes in the system, diffusion can be “anomalous”, i.e. the MSD scales faster or slower than t, corresponding to
“superdiffusion” or “subdiffusion”, respectively, cf. e.g. Ref. [88] and references therein.

A second well known solvable example is the case of a single free quantum particle. If the particle is modelled
by a Gaussian wave packet in momentum space,

ψ(k) = C exp

{
−σ2

4
(k − k0)

2

}
, (238)

quantum dynamics yields the well-known expansion of this wave packet where the width in coordinate space
(coordinate variance, MSD) grows in time according to

σ2
x(t) =

σ2

4
+

~2

m2σ2
t2. (239)

Thus for non-interacting quantum particles the MSD grows, for long time, proportional to t2, exactly like in the
classical ballistic case. For short times, deviations occur that are due to the Heisenberg uncertainty.

For the case of finite Hubbard cluster, the cloud diameter, d(t), introduced above, corresponds to the square
root of the MSD, i.e. to σx(t). We will see in Secs. 6.2.3 and 6.2.4 that d(t) also approaches a linear in t

c⃝ 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.cpp-journal.org



Contrib. Plasma Phys. 56, No. 1 (2016) / www.cpp-journal.org 65

growth, for sufficiently long time. This corresponds to a constant expansion velocity which, however, depends
in a nontrivial way on the interaction strength U and the system dimensionality. With increasing coupling the
particle mobility (and the effective diffusion coefficient) are reduced, as in the classical case (see above). In the
case of quantum particles on a lattice, here an additional effect is possible that is related to the formation of
fermion pairs (doublons) the propagation of which may decouple from the mean expansion velocity.

6.2.3 Diffusion in an inhomogeneously filled Hubbard chain

To test the applicability of the NEGF approach to the description of transport processes, it is convenient to
consider a Hubbard chain, where the density is initially localized in one half (e.g. the leftmost sites) whereas the
remaining sites are empty. From this non-equilibrium state, the propagation starts and diffusion sets in. For the
following simulations, the GKBA+TMA method is used, cf. Ref. [37].

1 2 3 4 5 6
site i

0.0

0.5

1.0

1.5

2.0

n
i(
t 0

=
0
)

N=2

N=4

N=6

N=8

U = 0.1

U = 1.5

Fig. 27 Illustration of the initial setups for the diffusion for the one-dimensional Hubbard chain: the initial density of the
leftmost six sites is shown for different particle numbers and interaction strengths. The orange (green, red, blue) symbols
correspond to N = 8(6, 4, 2). The circles denote the results for U = 0.1 and the triangles correspond to U = 1.5. The initial
state is obtained from a Hartree–Fock calculation. The graphic is taken from Ref. [37].

In all calculations, the system consists of Ns = 18 Hubbard sites, and the expansion is analyzed for different
fillings of the initial state and varying interaction strength U . All simulations start from the interacting Hartree–
Fock state, cf. Sec. 5.3.1, which is shown in Fig. 27 for several cases. The occupation at the beginning of
the propagation (t = t0 = 0) is depicted for the leftmost six lattice sites. As one can see, for half-filling (red)
and doubly occupied sites (orange), the density shape is homogeneous which is explained by the particle-hole
symmetry in the latter case. However, the densities reveal a concave shape for N = 6 (green), and a convex
shape for N = 2 (blue). This is a finite-size effect that is caused by the restricted mobility on the particles on
the outermost sites. The density distributions are almost independent of the interaction strength. The curved
occupation shape is slightly more pronounced for the weak interaction U = 0.1 (circles) than for U = 1.5
(triangles). This is caused by the repulsive character of the interaction.
The choice of the Hartree–Fock ground state which is assumed to be sufficiently accurate for small interaction
strengths U ≤ 2, allows for a longer effective propagation time, since the adiabatic switching can be omitted.
The evolution of the density is depicted in Fig. 28 for four cases. The occupation corresponds to the color scheme
that shows the evolution in time (abscissa) for all lattice sites (ordinate). The upper graphs describe the density
for the small particle number N = 2 with U = 0.1 (left) and U = 1.5 (right), while the lower ones correspond to
the initially doubly-occupied setup (N = 8). In all cases, the evolution can be described by two different regimes.
The first one which corresponds to small occupation (violet), reveals a “light-cone” like density spreading in time
which is unchanged in all considered setups.
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Fig. 28 Illustration of the expansion: the time evolution of the square root of the density
√

ni(t) (color scheme) is shown
for consecutively numbered Hubbard sites (ordinate). The upper graphs show the low-density results (N = 2) for U = 0.1
(left) and U = 1.5 (right). The lower graphs show high-density results (N = 8). The graphic is taken from Ref. [37].

The second regime belongs to the regions of large density which is shown in red/orange. It is much more
pronounced in the lower cases with large filling. While the second regime remains almost unchanged for N = 2
with respect to the interaction strength, it provides a significantly slower evolution in the U = 1.5 case for
the larger particle number. The different velocities of the regimes for large interaction and filling suggests to
identify the first regime with effective single-particles and the second regime with an effective double-occupation
state. This corresponds to the appearance of so-called doublons which appear for very large interaction strengths
[89, 90]. The electrons of doubly occupied sites are forced to form a stable bosonic quasiparticle due to strong
interactions. This behaviour can be explained with the specific energy structure of the Hubbard model. The
large total energy of a system which contains doubly occupied sites could not be conserved, if the electrons
would separate, since the kinetic energy gain could not compensate the energy loss. Formally, the behaviour is
explained by the effective doublon Hamiltonian [89, 91]

ĤD =
J2

U

∑

⟨i,j⟩
ĉ†i,↑ĉ

†
i,↓ĉj,↑ĉj,↓ +

∑

i,j

Vij ĉ
†
i,↑ĉ
†
i,↓ĉi,↑ĉi,↓ĉ

†
j,↑ĉ
†
j,↓ĉj,↑ĉj,↓ , (240)

where Vij =

{
∞ if i = j

−J2

U otherwise
. It can be found by expanding the Hubbard Hamiltonian of Eq. (130) in

terms of U−1 and neglecting terms of the order O(U−2). The doublon Hamiltonian does not couple to states
with different number of doubly-occupied sites which explains the stability. Furthermore the effective hopping
amplitude is proportional to 1

U which is the reason for the reduced velocity for increasing interaction strength.
The same underlying processes apply for the setups of Fig. 28 for smaller U .
To quantify the observed processes in detail, the introduced transport quantities of Sec. 6.2.1 are computed. The
results are shown in Figs. 29 and 30 for a small parameter study. In both figures, the evolution of the center-of-
mass position sx(t) of Eq. (232) (top row), the cloud diameter d(t) of Eq. (234) (middle row) and the expansion
velocity vexp(t) (top row) are depicted. In Fig. 29 the results are shown for different N while the columns
correspond to U = 0.1 (left) and U = 1.5.
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Fig. 29 Time evolution of the transport quantities for different particle numbers: center-of-mass (top row), cloud diameter
(middle row) and expansion velocity (bottom row) following the initial states of Fig. 27 are shown for N = 2, 4, 6, 8. The
left (right) column corresponds to U = 0.1 (U = 1.5).
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Fig. 30 Evolution of the transport quantities for different interactions strengths: The same quantities as in Fig. 29 are shown
for U = 0.1, 0.5, 1, 1.5, 2. The first column corresponds to N = 2 and the second to N = 8. The graphic is taken from
Ref. [37].

The columns in Fig. 30 belong to N = 2 (left) and N = 8 (right) while the colors denote the values of U ,
respectively. It can be seen that for all cases, the center-of-mass position increases in time which is caused by the
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reflection at the wall, due to the missing hopping term at the first site. Likewise, the cloud diameter increases for
all setups which corresponds to a diffusive expansion of the particles. The expansion velocity initially decreases,
for all cases, and saturates afterwards with small fluctuations. The decrease is caused by the ongoing reflections
at the wall and ends when all particles drift in the same direction (cf. Fig. 28). It can also be seen that the diameter
growth approaches a linear curve, for all cases. This corresponds to a mean squared displacement which scales
quadratically in time, in contrast to the classical case, cf. Eq. (236).

These simulations reveal the following general observations regarding the dependence on the particle number
and the interaction strength:

(i) For small U , the diffusion quantities only depend on the initial state.

(ii) For U = 1.5 the quantities are in a nontrivial order with respect to N .

(iii) For small density, the expansion is nearly unaffected by the interaction.

(iv) For N = 8, the transport coefficients decrease with increasing interaction strength.

For noninteracting particles, it does not matter how large the density on adjacent sites is. Therefore, when initially
the density in the outer region is higher than in the inner region, the particles are more likely to move along the
Hubbard chain and vice versa, which is the reason for (i). For U = 1.5 the above-mentioned behaviour is in
competition with the lowered expansion velocity, for large N , due to the doublon-like behaviour, cf. Eq. (240),
which explains (ii). It is apparent that, for small densities, interactions become less important, which is the origin
of (iii). Finally, (iv) corresponds again to the effective doublon velocity which decreases with increasing U .
In order to quantitatively explain the initial values of the expansion velocities, we compute the free expansion
velocity v(0)

exp of Hubbard systems that is obtained from the dispersion relation for the noninteracting case, Eq.
(137). The general group velocity of a wave is given by [84]

vg =
dω
dk

=
1

~
dϵk
dk

. (241)

With vg, the free expansion velocity becomes

v(0)
exp =

√⟨
v2

g

⟩
=

√√√√
⟨(

1

~
dϵk
dk

)2
⟩

=
2J

~

√√√√
⟨

D∑

d=1

sin2 (kd)

⟩

=
2J

~

√√√√ 1

2π

D∑

d=1

∫ π

−π

dkd sin2 (kd) =
2J

~

√
D

2
=
J

~
√

2D .

(242)

Therefore, the free expansion velocity is equal to v(0)
exp =

√
2. Due to the geometry of the setup, this value is

reduced to vexp(t0 = 0) = 1, for setups with an initially homogeneous density distribution, after which the
interaction further reduces vexp. Due to the inhomogeneous initial state, for N = 2 and N = 6, the value differs.

The results of the last section have shown that the introduced NEGF approach with TMA is well suited to
describe transport processes in Hubbard lattices. Furthermore, it predicts reasonable physical behaviour which
agrees with the theoretical expectations, in limiting cases. Therefore, it is applicable also for larger systems and
higher dimensions.

6.2.4 Diffusion from the lattice center for 1D, 2D and 3D

This section is devoted to a detailed study of diffusion and expansion processes in large Hubbard lattice systems.
The NEGF approach with TMA is used to simulate the evolution of circularly confined fermions Ref. [38]. The
effects of different particle numbers and varying interaction strengths are analyzed for dimensionsD = 1, 2, 3. A
special focus lies on the two-dimensional results since here experimental results are available [5] that have been
reviewed in Sec. 3.2.
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Diffusion setups
All considered setups start from a state in which all initially occupied lattice sites are doubly-occupied. The
corresponding particles are arranged within a (D−1)-sphere for each dimension, i.e. for D = 1, the central sites
are occupied, for D = 2, the particles form a circle and for D = 3, they form a sphere. This corresponds to an
initial potential V R

i and the excitation, cf. Eq. (133),

Fij,αβ(t) = δi,jV
R
i (t) , (243)

where V R
i (t) = Θ (t0, t)

{
0 if |i − s(t0)| < R

∞ otherwise
. Due to the lattices, the projection of the (D − 1)-spheres

onto the square geometry are not perfectly continuous for finite particle numbers. In Fig. 31, the density distribu-
tions of typical systems forD = 1 (left), D = 2 (middle) andD = 3 (right) are illustrated. The above-mentioned
shapes of the initial occupations are shown in the first row. The second row shows possible density distributions
after chosen evolution times. It can be seen that the particles symmetrically expand from the central confinement
toward the periphery of the systems.

Fig. 31 Illustration of the expansion processes for all dimensions: The density distribution in a typical one- (left column),
two- (middle) and three-dimensional (right) system. The upper row corresponds to the initial state whereas the lower row
shows density shape after a certain propagation time. All simulations start from circularly confined fermion pairs at the center
of the lattice. The results are obtained from TMA calculations with full two-time propagation.

Since a state containing only doubly-occupied sites is exactly described by ideal particles, the initial state is
directly obtained from calculating the Hartree–Fock state of the occupied sub-system, as was discussed in Sec.
5.3.1. The expansion, following the confinement quench, is simulated using our NEGF approach with the T -
matrix selfenergy and both time propagation schemes. In order to study the dependence on the particle number,
the radius R of the initial particle clouds is varied. Additionally, the expansion is studied for different U . All in
all, the systems are considered for setups of particle numbers in the range N ∈ [2, 114] and interaction strengths
in the range U ∈ [0, 8]. For systems of dimension D = 1, a Hubbard chain of 65 sites is used. In the case
D = 2 (D = 3) the Hubbard lattice consists of 19 × 19 = 361 (9 × 9 × 9 = 729) sites. Using the example of
two-dimensional systems, in Fig. 32 the density evolution of selected systems is shown. The columns from left
to right correspond to the time evolution with the step ∆t = 1. In the three rows, the expansion is shown for three
particle numbers, N = 2, 26, 72, for U = 1, while the last row corresponds to N = 72 and U = 4. As one can
see, the expansion toward the periphery of the system is governed by the transition from the circular distribution
to a squared density shape which is due to the geometry of the lattice. The smaller the particle number N the
more “fractal” is the distribution of the particles which is a finite-size effect. In the case of strong interaction
(U = 4), the core region of the density remains almost constant in the circular shape.
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The general trends of the expansion are in agreement with the obtained results of Sec. 6.2.3. The stability of
the central region for strong interaction corresponds to the identification with effective doublons, according to Eq.
(240). Furthermore, the obtained density evolutions are in very good qualitative agreement with the experimental
results of Fig. 11. Apparently, the expansion processes start from a universal phase in which the diffusion is only
possible for the particles at the edge of the cloud since the fermions at the center are initially effectively frozen
due to Pauli blocking [7, 34, 92]. With ongoing evolution, the expansion processes become more complex and
exhibit nontrivial dependencies on N and U . To quantify those, the diffusion quantities of Sec. 6.2.1 are applied.

The expansion processes
For illustration, in the following, the results for 2D systems are shown. Considering the simplest setup with a
single initially doubly-occupied site, i.e. N = 2, allows to compare the expansion results with the exact solution
which is obtained from CI calculations. In Fig. 33, the evolution of the diameter (top) of Eq. (234) and the
expansion velocity (bottom) of Eq. (235) are shown18 for U = 0.1, 1, 2, 3, 4. The short dashed lines belong to the
full propagation with TMA, the long dashed lines to the GKBA propagation with TMA and the solid line to the
exact results. As one can see, for all interaction strengths, the expansion starts with the free expansion velocity
v
(0)
exp = 2, cf. Eq. (242). Both quantities share a common initial phase, for all U . After a short time, the quantities

begin to deviate, for the different U , which goes together with a decrease in vexp. Subsequently, the diameters
approach a linear increase with t reflecting a constant expansion velocity.

Fig. 32 Illustration of the different 2D setups: The time evolution of the density is shown for representative systems from
left to right in steps of ∆t = 1. The first three rows correspond to U = 1 and different particle numbers N = 2, 26, 72. The
last row belongs to N = 72 and U = 4. For all setups, the evolution starts from initially circularly confined fermions in a
two-dimensional 19 × 19 Hubbard lattice. The color code corresponds to the square root of the density

√
ni(t). The results

are obtained from two-time TMA calculations.

18 Due to the symmetry of the setup, the center-of-mass position s has to be time-independent which is fulfilled within numerical
precision.
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The decrease of the expansion velocities with U is caused by the reduced mobility of interacting fermions
which form a correlated many-body state at the center of the system. This corresponds to the effective doublons
which are discussed in Sec. 6.2.3. Regarding the accuracy of the different methods, one notices that for U ≤ 2
the results obtained by TMA and GKBA+TMA calculations and the exact solution are almost indistinguishable.
For the largest considered interaction strength, all obtained results lie within a range of 10%. This accounts for
the high accuracy of the introduced approach and, in particular, of the T -matrix approximation. Furthermore,
it confirms the findings of the former sections since on all sites, the density is predominantly either near double
occupation or very low, i.e. away from half-filling [58].
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Fig. 33 Time evolution of two fermions in a two-dimensional lattice: The upper graph shows the time-dependent behaviour
of the diameter for N = 2 according to Eq. (234). The corresponding expansion velocity of Eq. (235) is depicted in the
lower graph. The solid lines belong to the exact solution obtained from CI calculations. The short dashed lines are obtained
from NEGF calculation with TMA and full propagation while the long dashed lines correspond to the GKBA propagation.
The results for U = 0.1 (1, 2, 3, 4) are shown in red (orange, green, brown, blue).

The shape of the expansion velocities is in agreement with the results of the previous section. To understand
the underlying processes that cause the change in the expansion in more detail, it is helpful to look at the evolution
of the energies and entanglement entropies of the systems. For the N = 2 setup with the interaction strength
U = 4, the dynamics of Esp := EHF, Ecorr, Ssp and Scorr (cf. Eqs. (219), (220), (225) and (226)) are shown in the
left graph of Fig. 34. The depicted results belong to a TMA simulation with full propagation. The evolution of
the energy and entropy contributions suggests the identification with three different time phases. The first phase is
governed by the build-up of the single-particle entropy and the decrease of Esp, while Scorr and Ecorr are equal to
zero. This leads to a decrease in the expansion velocity vexp (cf. the right graph of Fig. 34). Since Ssp starts from
zero, the build-up corresponds to a transition from a state of independent particles to an interacting many-body
state. The inflection time τsp of Ssp can be used as a representative time for the first phase. It followed by a second
phase, in which the single-particle quantities start to saturate, which causes the vexp to converge, and Ecorr and
Scorr are build up instead. This build-up partly prolongs the saturation of Esp/Ssp and determines the final value
of the expansion velocity. A characteristic time for the time scale of the second phase is given by the inflection
point τcorr of Scorr Subsequently, in a third phase, the correlation quantities and vexp are saturated, whereas Ssp
(Esp) continues to increase (decrease) until Esp = 0.
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For the considered two-dimensional systems with N = 2, the characteristic times τsp and τcorr are depicted in
the right graph of Fig. 34 for varying interaction strength. It can be seen that all τsp coincide with the reflection
points of the expansion velocity. Furthermore, all τcorr correspond to the onset of convergence which confirms
the suggestions above. One can also see that the positions of all τ depend on the value of U . To analyze
this dependence in more detail and also consider the effects of different particle numbers N , the characteristic
times τ are computed within the whole parameter range. In Fig. 35, τsp (τcorr) is shown in the full (N,U)-
plane in the upper (lower) color map. The graphs in the upper and lower left and in the middle correspond to
sections for U = 1 and N = 74. As one can see, both τsp and τcorr increase for increasing particle number
and decreasing interaction strength. Additionally, for N and U , τcorr is one order of magnitude larger than τsp,
which is remarkable since it contrasts the observations in equilibrium where the correlation time is always small
compared to the single-particle time scale [43]. The long characteristic time τcorr in the present case results from
the ongoing formation of the diffusion front which only allows for the build-up of correlations.
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Fig. 34 Illustration of the expansion phases: the left graph shows the evolution the single-particle energy Esp = EHF and
entanglement entropy Ssp (red), as well as the correlation energy Ecorr and entanglement entropy −10 × Scorr (green), for a
setup of N = 2, D = 2 and U = 4. The circle (diamond) denotes the inflection time of the single-particle (correlation)
entanglement entropy. The quantities are obtained from a TMA calculation with full propagation. The three gray shades
mark the different expansion phases. The right graph shows the expansion velocities for the setup of N = 2 and D = 2
similar to the bottom graph of Fig. 33. Additionally, the inflection times of the corresponding single-particle and correlation
entanglement entropy are shown in a similar way as in the left graph. The inflection times correspond to the full two-time
TMA calculation.

The dependence of τsp and τcorr on the particle number can be understood from the local build-up of energy and
entanglement entropy. Since, at the start of the expansion, the particles can only move at the edge of the fermionic
cloud, the local entanglement entropy (cf. Eq. (222)) is first produced in this region. During the ongoing ex-
pansion the outer doubly occupied sites are depopulated which causes a further build-up of entanglement toward
the center of the cloud. For small particle numbers N , these entropy regions quickly overlap which obstructs
the further production of entanglement entropy and, thus, causes a small inflection time τ . The dependence of
both characteristic times τ on the interaction strength is explained by the increased effective scattering length for
increasing U . This causes a faster build-up of entanglement and energy and results in a smaller τ . The given
description of the underlying physical processes is also valid for systems of dimension D = 1 and D = 3.
It is also instructive to compare the T -matrix results with the findings of other many-body approximations. In
Fig. 36, the evolution of the expansion velocity is shown for a typical two-dimensional setup of N = 58 and
U = 2.5. The orange curve corresponds to a Hartree–Fock calculation. The red and green curves belong to
T -matrix calculations for a full propagation and using the GKBA. The blue and brown curves are calculated
using the second order Born approximation, while for the latter, the GKBA is applied. It can be seen that for
all methods, the expansion velocity starts from the free value v(0)

exp . In the case of the Hartree–Fock calculation,
vexp only slightly decreases and quickly converges. The correlated methods, however, accordantly continue to
decay. Subsequently, vexp divides with respect to the selfenergy into a branch with second Born based methods
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and a branch with T -matrix based ones. With ongoing expansion, each branch further divides with respect to the
propagation type. Interestingly, for SBA, GKBA+SBA and TMA, the final value of vexp differs by less than 10%
while the GKBA+TMA result is slightly lower. The strong deviation of the HF solution shows that a reliable
description of diffusion processes requires a proper treatment of correlations. By comparison with the behaviour
for N = 2 in Fig. 33, where the exact solution is possible, one can conclude that the T -matrix based methods
approach provide reliable results which approach the exact solutions for small to medium times best. At the time
scale of the convergence the full two-time propagation seems to be slightly favorable.
From Figs. 33 and 36 one finds that the expansion velocities converge to constant values for all considered setups.
This is, in particular, in agreement with the results of Sec. 6.2.3. The asymptotic values of vexp can be used to
describe the expansion in the long time limit.
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Fig. 35 Illustration of the representative times τ in the full (N, U)-plane for D = 2: the upper color map shows the
dependence of the inflection time of single-particle entropy τsp in the (N, U)-plane while the lower one belongs to τcorr. For
selected N and U which are marked in the color maps the corresponding sections are depicted logarithmically in the upper
left, the middle and the lower left graph. For U = 1, τsp (τcorr) shown for varying N in the upper (lower) left graph. In
the middle graph τsp (green) and τcorr (red) are depicted for N = 74 and varying U . The results are obtained using the full
propagation with the TMA.

The long time limit and the universal scaling
In order to describe processes on an experimentally accessible time scale [5], it is required to extrapolate vexp(t).
Let v∞exp be the asymptotic expansion velocity with

v∞exp := lim
t→∞

vexp(t) . (244)

It can be computed from the time evolution of the expansion velocity vexp by averaging over all values after a
certain time tavg, where vexp(t > tavg) remains constant. Numerically, this time tavg can be found by applying a
condition to the relative change of vexp which reads

∣∣∣∣
1

vexp(t)
· dvexp

dt
(t)

∣∣∣∣ < ϵ , (245)
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for all t > tavg. Here, ϵ denotes a small parameter (ϵ ≪ 1) to allow for deviations that are caused by numerical
fluctuations. For a perfectly converged expansion velocity the condition is satisfied for ϵ = 0. In practice, ϵ is
typically of the order ∼ O(10−3). The estimator for v∞exp on a discretized time space is given by

v∞exp =
1

Navg

∑

t>tavg

vexp(t) , (246)

where Navg is the number of time steps with t > tavg. This procedure is schematically illustrated in Fig. 37,
where a typical shape of vexp is depicted (red) and the considered values to calculate v∞exp are marked in blue. The
final value of the asymptotic expansion velocity is shown as the black dashed line. To quantify the error of v∞exp,
the standard deviation σ

(
v∞exp

)
of the averaging process is used [78].
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Fig. 36 Comparison of the different many-body approximations: the evolution of the expansion velocity vexp is depicted for a
typical setup of N = 58, D = 2 and U = 2.5. The Hartree–Fock result is shown in orange. The blue (red) curve corresponds
to a full two-time propagation with a selfenergy in second Born (T -matrix) approximation. The brown and green lines belong
to a GKBA propagation with SBA and TMA.
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Fig. 37 Schematic illustration of the estimation of the asymptotic expansion velocity: The red curve corresponds to vexp for
a typical system with N = 58, U = 2 and D = 2. The region in which vexp fulfills the condition of Eq. (245) is shown in
blue, resulting in the value for v∞

exp (black) according to Eq. (246). The results are obtained from a full propagation using the
TMA.

The dynamics of the long time limit result from the initial behaviour which is shown in the previous section.
Hence, the dependencies on N and U of the initial expansion phases manifest also in v∞exp. In the following, the
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influences of the finite particle number are analyzed. Additionally, the effects of the dimension of the system
are studied. In the left graph of Fig. 38, the asymptotic expansion velocity is shown for varying N−1/2 and
different interaction strengths and dimensions. The colors correspond to the values of U = 1, 2, 3, whereas the
dimensions D = 1, 2, 3 are labelled in the figure. As one can see, v∞exp decreases with increasing (decreasing)
particle number (N−1/2) and with increasing interaction strength. The results for the three-dimensional systems
exhibit the largest asymptotic expansion velocities, while for D = 1, the values of v∞exp become the smallest.
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Fig. 38 Dependencies of the asymptotic expansion velocity: the left graph shows v∞
exp for varying particle numbers N−1/2.

The colors and symbols correspond to different interactions strengths U = 1, 2, 3, where the errors are smaller than the
symbol size. The results for different system dimensions D = 1, 2, 3 are labelled in the figure. The lines correspond to
linear fits according to Eq. (247). The right graph shows the dependence of the slope χ of Eq. (247) for varying bandwidth-
normalized interaction strengths and different dimensions. All results are obtained from TMA calculations with the full
two-time propagation. The graphic is taken from Ref. [38].

The behaviour for varying interaction strength is in agreement with the previous findings and caused by the
various mobility of the interacting, correlated central fermions. The increase of v∞exp with respect to the dimension
D is due to the enlarged number of degrees of freedom, which can also be seen from the free expansion velocity
v
(0)
exp of Eq. (242) which increases with D. The dependence on the particle number reveals a very interesting be-

haviour. For all dimensions and all interaction strengths, v∞exp exhibits a linear scaling with N−1/2 for sufficiently
large N . In detail, this scaling is described by

v∞exp(U,N,D) − Vexp(U,D) = χ(U,D)N−1/2 , (247)

where Vexp and χ no longer depend on the particle number. This is a striking observation, as it is a nontrivial
property of the Hubbard model. By performing fits for the asymptotic expansion velocities in the full parameter
space according to Eq. (247) and using Vexp and χ as free parameters19, one obtains linear fit curves which are
depicted in the left graph of Fig. 38. The fit procedure provides estimations for the slope χ and Vexp which is the
macroscopic expansion velocity. Thus, it is possible to extrapolate the expansion velocities to the macroscopic
limit. This extrapolation is part of Sec. 6.2.4.
The slope χ exhibits an interesting behaviour with respect to the interaction strength and the dimension. Its
behaviour is depicted in the right graph of Fig. 38. For a better comparability, χ is shown for varying bandwidth-
normalized interaction strengths U

b/2 (cf. Eq. (138)). The red (orange, brown) curve corresponds to D = 1 (2,3).
As one can see, for all dimensions the slope χ vanishes for U = 0 and increases to a maximum below U = b/2.
For further increasing interaction strength, χ again decreases. The behaviour in the noninteracting limit is a

19 The error terms σ(v∞
exp) are also included in the fit process, resulting in error expressions for the slope χ and the macroscopic expansion

velocity Vexp.
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consequence of the ballistic expansion of independent particles. Thus, in this case, v∞exp does not depend on the
particle number. In the limit U → ∞, all particles are effectively frozen in a stable doublon cloud, which means
that the particles do not expand at all. Thus, v∞exp vanishes for all N which explains the behaviour of the slope.
The behaviour between these limits is quantitatively similar for all dimensionsD when the bandwidth-normalized
interaction strength is considered.
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Fig. 39 Dependence of the quasi-momentum distribution on the particle number: the occupation probability p(k) in the quasi-
momentum space is shown at t = 9.5 for a one-dimensional system with U = 3 (top) and U = −3 (bottom) for different
particle numbers N = 2, . . . , 42 (colors). The dashed line corresponds to the initial distribution p0(k) which is constant for
all N . The insets show the amplitude a of the distribution for varying particle number N−1/2 and U = 2, 3, 4(−3). The
symbols correspond to actual results, whereas the lines denote linear fits. All results are obtained from a TMA calculation
with full propagation. The graphic is taken from Ref. [38].

The obtained universal scaling with the particle number (see Eq. (247)) is not only visible in the asymptotic
expansion velocity. It can also be seen from the density in the quasi-momentum space (cf. Eq. (227)). It
corresponds to a Hamiltonian of the form [44]

H̃(t) =
∑

k

∑

σ=↑,↓
ϵk ĉ
†
k,σ ĉk,σ +

∑

k,p

∑

σ=↑,↓
Ṽ R

kp(t)ĉ†k,σ ĉp,σ

+
U

Ns

∑

k,p,q

ĉ†p+q,↑ĉ
†
k−q,↓ĉp,↑ĉk,↓ ,

(248)
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where ϵk is the dispersion relation of Eq. (137) and V R
kp is the transform of V R

s (t) (cf. Eq. (243)). Let p be the
quasi-momentum occupation probability which is defined by

p(k, t) :=
nk(t)

N
. (249)

In Fig. 39, p(k) := p(k) is shown for a one-dimensional system with U = 3 (top) and U = −3 (bottom) at
the time t = 9.5 for different particle numbers N = 2, . . . , 42 which are represented by the color scheme. The
dashed line corresponds to the initial distribution p0(k). The time is chosen in such a way that for all considered
setups, the expansion velocity is converged. As one can see, for all N the distribution oscillates around p0. The
favoured occupation for large k can be described by a thermal distribution at effectively negative temperatures
for positive U and vice versa (see Refs. [5, 20, 21] for further information). The amplitudes a of the oscillations
monotonically decrease with the particle number. For sufficiently large N , one observes that the occupation
probabilities obey

p(k) =
1

Ns
− a cos (k) . (250)

By performing a fit, one can compute values of the amplitude a. The resulting dependence on U and N is
illustrated in the insets of Fig. 39, where a is shown for varying N−1/2. It can be seen that for all interaction
strengths U , the amplitude a exhibits a linear scaling. The recovery of the scaling of Eq. (247) in the quasi-
momentum distribution again confirms its universality.

Extrapolation and comparison with experiments
The inherent scaling of the asymptotic expansion velocity with the particle number can be used to extrapolate
it to the macroscopic limit. From Eq. (247), one obtains the macroscopic expansion velocity Vexp. Using the
example of two-dimensional systems, the resulting dependence on the interaction strength is shown in Fig. 40.
The colors correspond to different many-body approximations. Again, the decreasing mobility of the particles
in an interacting many-body state for increasing U is observed. The ordering of the different methods is in
agreement to the findings of Fig. 36 and shows again that a proper treatment of correlations is essential for the
description of diffusion processes in quantum systems.
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Fig. 40 U -dependence of the asymptotic expansion velocity: the obtained Vexp of Eq. (247) is shown for two-dimensional
systems of varying interaction strengths U . The resulting behaviour is depicted for different many-body approximations.

Since the introduced approach is capable of reliably describing macroscopic transport processes, this allows
to compare with experimental results of observations on ultracold atoms in optical lattices. In particular the
fermionic diffusion in two-dimensional lattices which has been measured by Schneider et al. [5] (cf. Sec. 3.2)
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is well suited for comparisons. The setups of Sec. 6.2.4 are very similar to the ones studied in Ref. [5]. They
only slightly differ in the choice of the initial confinement20. In the experiments, Schneider et al. [5] used a strong
harmonic trap, whereas the confinement provided by V R

i (cf. Eq. (243)) is infinitely strong. Therefore, it is
necessary to study the influence of the initial state on the asymptotic expansion.
Similar to V R

i , one can define the harmonic confinement as

V k
i (t) = Θ (t0, t) γk |i − s(t0)|2 , (251)

with the curvature γk. To ensure comparability for different particle numbers, one can choose

γk(N) =
k

N
(252)

which results in similar shapes of the density distributions. To test the influence of the confinement, the NEGF
approach with GKBA and SBA is used for one-dimensional systems. Since the initial states in a harmonic
trap are not ideal, the adiabatic switching method is used to prepare the interacting ground state. The resulting
asymptotic expansion velocities v∞exp for U = 1 are shown in Fig. 41 for varying particle number N−1/2. The
colors correspond to four different choices for k. The brown circles belong to the infinitely strong confinement
V R

i , whereas the red (orange, green) circles correspond to k = 3 (5,10). The insets show the density distributions
of the initial states for N = 26. As one can see, even though the density profiles are affected by the differently
strong confinements, the asymptotic expansion velocities only slightly change. Furthermore, the universal scaling
with the particle number applies also for lower k which is illustrated by linear fits in Fig. 41. The macroscopic
expansion velocity Vexp changes by less than 10% in the considered setups. Thus, one finds that the asymptotic
expansion only slightly depends on the initial confinement. This has also been seen by the authors of Ref. [93].
Since Schneider et al. [5] used very strong harmonic traps to initially confine the particles, the description with
V R

i is justified.
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Fig. 41 Illustration of the asymptotic expansion for different initial confinements: for one-dimensional systems with U = 1,
the obtained v∞

exp are depicted for varying particle numbers N−1/2. The colors correspond to differently strong harmonic
traps for the initial state. The circles denote results from GKBA+SBA calculations. The interacting ground state is prepared
by adiabatic switching. The lines correspond to linear fits. The insets show the density distributions of the initial states for
N = 26, according to the confinement of Eq. (251). The graphic is taken from Ref. [38].

Unfortunately, Vexp has not been directly measured in the experiments but the very closely related core ex-
pansion velocity Cexp. In agreement with Ref. [5], it is calculated in the following way. For two-dimensional

20 The temperature of T/TF = 0.13 in the experiments is sufficiently low to simulate the ground state at T = 0 (cf. Sec. 3.2) which is
considered in this work.

c⃝ 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.cpp-journal.org



Contrib. Plasma Phys. 56, No. 1 (2016) / www.cpp-journal.org 79

systems, for each time step, the density profile is averaged azimuthally. From the resulting effectively one-
dimensional density distribution, half width at half maximum RHWHM(t) is used as a measure of the core width.
The asymptotic core expansion velocity c∞exp is obtained by fitting RHWHM(t) to (cf. Eqs. (234) and (235))

RHWHM(t) =

√
(R0

HWHM)
2

+
(
c∞expt

)2 (253)

for all t > tavg (cf. Eq. (245)). Here, the initial core width R0
HWHM and c∞exp denote free fitting parameters.

From the experimental findings of Fig. 12 and from the results of Fig. 42, one finds that the core of the density
distribution starts to shrink for large U . In these cases one applies

RHWHM(t) =

√
(R0

HWHM)
2 −

(
c∞expt

)2
(254)

instead. The resulting c∞exp is then considered the speed of contraction of the core region. Due to its very close
resemblance to v∞exp, c∞exp reveals the same scaling with N−1/2 which allows for an extrapolation to the macro-
scopic core expansion velocity Cexp according to Eq. (247).
For the T -matrix based methods, the resulting Cexp for two-dimensional systems as well as the experimental
results of Schneider et al. [5] (cf. Fig. 12) are shown in Fig. 42 for varying interaction strengths U . The TMA
(GKBA+TMA) calculation is shown in red (green), the plus-signs correspond to the experimental results for dif-
ferent lattice depths and the dashed, gray curve belongs to the results of Boltzmann equation in relaxation time
approximation (cf. Sec. 3.2). In fact, the NEGF results exhibit a surprisingly good agreement with the experiment
data in the full interaction range. Even the mentioned zero-crossing at U ≈ 3,−3 is accurately described. As al-
ready discussed in Sec. 3.2, the core shrinking corresponds to a strongly interacting fermionic cloud which emits
ballistic single-particles. Since the finite lattice depth seems not to systematically affect the resulting expansion
velocities, this dependence can be neglected. Regarding the accuracy of the two propagation methods, the full
two-time calculation seems to be slightly favorable for medium to large U .
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Fig. 42 Comparison with experimental results: the macroscopic core expansion velocity Cexp is shown for varying interaction
strengths. The red (green) circles and error bars correspond to TMA calculations with full (GKBA) propagation. The plus-
signs belong to the experimental results of Schneider et al. [5] (cf. Fig. 12) for different lattice depths. The dashed, gray curve
corresponds to the results of the Boltzmann equation in relaxation time approximation which is discussed in Sec. 3.2. The
black line is a fit through the experimental points to guide the eye.

Compared to the results of the RTA approach, the T -matrix results show a way better agreement with the ex-
periments, especially for the zero-crossing which is predicted for significantly lower interaction strengths in RTA.
This deviation accounts for the strong nonequilibrium situation of the systems, which is governed by the compe-
tition and interplay between ballistic, independent single-particles and strongly interacting, correlated fermions
that form a complex many-body state. Due to the linearization of the Boltzmann equation in RTA, only systems
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in local equilibrium can be described [21], whereas in the NEGF approach, the mentioned processes are fully
taken into account.

7 Conclusions & Outlook

Summary

In this paper, the nonequilibrium Green functions (NEGF) method with the T -matrix approximation (TMA) for
the selfenergy has been used to describe the dynamics of fermionic lattice systems. The main goal was to present
theoretical and computational details of the recently reported simulations [38]. We have given a selfcontained
introduction into the method of NEGF and derived their equations of motion—the Keldysh–Kadanoff Baym
equations (KBE). We then discussed in detail relevant approximations for the selfenergy and concentrated on the
derivation of the T-matrix selfenergy that is appropriate to model fermions on a Hubbard lattice.

Using the generalized Kadanoff–Baym ansatz [33] (GKBA), the less component of the Green function for
different times G<(t, t′) which, in general, is the solution of the full KBE, is approximately expressed by the
density matrix and the propagators GR/A. For the latter, the Hartree–Fock propagators GHF,R/A, have been used.
Despite its simplicity, the GKBA provides a full nonequilibrium description [68] which is often comparable in
accuracy to the full two-time approach.

After the theoretical derivations we demonstrated how to efficiently realize NEGF simulations on modern com-
puter hardware. We discussed optimized integration and time propagation schemes, together with parallelization
approaches. All these recent advances have made it possible to perform NEGF-TMA simulations for rather large
Hubbard systems that were recently far out of reach. With these optimizations we can now treat Hubbard clusters
of several hundred sites of any dimensionality for rather long times, although a compromise between the number
of sites and propagation time has to be made.

We have presented numerical results for transport processes in finite Hubbard systems. These include the
diffusion from the boundary of one-dimensional Hubbard chains and diffusion from a doubly occupied central
region. The latter case was of particular interest since this setup was studied in recent 2D experiments of ultracold
fermionic atoms [5], where a potential quench was applied. We investigated this scenario for all dimensions, par-
ticle numbers in the range 2 ≤ N ≤ 114 and interaction strengths of 0 ≤ U ≤ 8. These system sizes are out of
reach for most correlated ab-initio methods. Studying the short-time dynamics suggests to identify three phases
which are linked to the build-up of entanglement. In particular, the correlation time scale is observed for signifi-
cantly larger times than the single-particle time scale which is in striking contrast to homogeneous systems [43].
In the long time limit, the expansion velocities reveal a universal scaling with the particle number—independent
of the interaction strength and the dimensionality. This has allowed us to extrapolate the expansion velocities to
the macroscopic limit and to directly compare the experimental results. The experimental core expansion velocity
could be reproduced with surprising accuracy in the whole range of coupling strengths, including the position of
its zero-crossing.

Aside from reproducing the experimental results for the final stage of the expansion, our simulations have also
revealed many details that have not been reported in experiments before. One example is the short-time behavior
of the pair correlations and the entanglement in the system. Another prediction can be made for the details of the
spatial formation of the correlations.

Single-site-resolved results

The present NEGF simulations are performed for a fully inhomogeneous case. Unlike hydrodynamic approaches,
here no spatial averaging is performed, so the full microscopic spatial resolution is retained. While the dynamics
of simple one-particle observables, such as the density, has been studied in detail before, the simulations also
give access to other quantities that are directly sensitive to pair correlations. These quantities include the double
occupations, the local entropy and the pair correlation function, δn↑↓s = n↑↓s −n↑sn↓s. An example of the dynamics
of these quantities is shown in Fig. 43 [38]. Studying these quantities promises much deeper insight in the physics
of strongly correlated fermions on all time scales. Moreover, recently site-resolved measurements on fermionic
Hubbard lattices became possible [...] which can be directly compared to these simulations.
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Fig. 43 Time and lattice site resolved fermion expansion dynamics in a 2D Hubbard lattice with 19× 19 sites at U = 4. Top
row: square root of density ns for N = 74. Rows 2 − 4: square root of double occupation, entropy density Ss and the pair
correlation function, δn↑↓

s = n↑↓
s − n↑

sn↓
s. The graphic is taken from Ref. [38].

Outlook

As we demonstrated, the presented NEGF approach is perfectly applicable to a variety of problems of strong
correlation physics in condensed matter systems and, equivalently, to fermionic atoms in optical lattices. In
particular, situations far from equilibrium, including various quenches or excitation by electromagnetic radiation,
can be accurately studied. Possible topics of the future research include

• Regarding the description of ultracold atoms in lattice systems, the NEGF framework can be used to compute
other important transport quantities, such as the electrical- and the heat conductivity, as well as magnetic
properties. Furthermore, the initial state, the system geometry and the dimension can be varied to investigate
interesting nonequilibrium behaviour.

• An interesting question for future analysis is the behavior of correlated fermions on longer time scales and
the approach of the asymptotic state. Whether this state coincides with a thermodynamic equilibrium state
and what the relevant time scales and dominant collective modes are, is interesting from a fundamental and
applied point of view.

• Since the NEGF approach is universal, it is possible to generalize the method to the description of bosons,
in particular in lattice systems, for which many experimental results for ultracold atoms have been published
whereas ab-initio quantum simulations for higher dimensions are still missing. To this end, one has to regard
the right spin properties of the Bose–Hubbard interaction, which result in nonvanishing exchange diagrams.
Furthermore, the bosonic sign in the NEGF theory and the Bose–Einstein statistics in the generation of the
Hartree–Fock state have to be considered. Finally, to describe Bose-Einstein condensation one has to include
anomalous propagators.
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• The NEGF framework can also be generalized to more realistic lattice models such as the extended Hubbard
model and the Pariser–Parr–Pople model [44], where interaction between particles on different lattice sites
is considered, or to models with next-nearest neighbor hopping.

This work was motivated by the impressive progress in the field of strongly correlated fermionic lattice sys-
tems out of equilibrium. In particular, recent experiments with ultracold fermionic atoms in optical lattices open
new prospects for studying correlation phenomena with unprecedented space and time resolution. The experi-
mental advances have led to a growing need for accurate theoretical models that are capable to treat the quantum
dynamics in two and three dimensions for sufficiently long times. While exact diagonalization methods can treat
only very small systems other ab initio methods, such as DMRG, are currently limited to one-dimensional setups.

This striking mismatch between experiment and theory that is frequently being re-iterated in the experimental
literature has now been removed. As was demonstrated in this paper, with nonequilibrium Green functions it is
now possible to study experimentally relevant situations and achieve surprisingly close agreement.
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Appendix

A Derivation of the closed Newton–Cotes formulas

Starting from the integral expression of Eq. (162), one has to find a numerical expression which only depends on
f(x). Since for all polynomials

p : [a, b] → R, x 7→
N∑

i=0

aix
i, N ∈ N , (255)

the integration can easily be carried out analytically, it is convenient to express f(x) approximately by such a
polynomial.

To find an approximate expression for f(x), in this work, equidistant sampling points are used, xi ∈ [a, b] , i ∈
[0, n] , n ∈ N, for which f produces the values fi := f(xi). For these pairs of values {xi, fi} there is a
unique polynomial of degree at most n that interpolates the points fi. This polynomial is called the Lagrange
polynomial [65]

Ln(x) =

n∑

i=0

fili(x) , with (256)

li(x) =

n∏

j=0
j ̸=i

x− xj

xi − xj
. (257)
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If the function f is n+ 1 times continuously differentiable on [a, b], there exists ξ ∈ [a, b] such that

Ln(x) − f(x) =
f (n+1)(ξ)

(n+ 1)!

n∏

i=0

(x− xi) (258)

for all x ∈ [a, b] [94, 95]. This equation can be used to estimate the error of the polynomial interpolation. Since
the relation

max
χ∈[a,b]

{∣∣∣f (n+1) (χ)
∣∣∣
}

≥ fn+1 (ξ) (259)

holds, one can define the maximum error ∆L̃n(x, a, b),

Ln(x) − f(x) ≤ ∆L̃n(x, a, b) := max
χ∈[a,b]

{∣∣∣f (n+1) (χ)
∣∣∣
} ∏n

i=0 (x− xi)

(n+ 1)!
. (260)

Assuming x0 = a and xn = b, one obtains the closed Newton–Cotes formulas by simply integrating over the
respective Lagrange polynomials. Consequently, one approximates the integral

I(f) ≈ I(Ln) =

∫ b

a

dxLn(x)

=

∫ xn

x0

dx
n∑

i=0

fi

n∏

j=0
j ̸=i

x− xj

xi − xj

=
n∑

i=0

fi

∫ xn

x0

dx
n∏

j=0
j ̸=i

x− xj

xi − xj

= (xn − x0)
n∑

i=0

fi

∫ 1

0

dx̂
n∏

j=0
j ̸=i

x̂− x̂j

x̂i − x̂j
, (261)

with x̂ = x−x0

xn−x0
and x̂i = xi−x0

xn−x0
. Since the xi are assumed to be equidistant, i.e. xi = x0 + ih with the step

width h = xn−x0

n , one obtains

x̂i =
i

n
and

x̂− x̂j

x̂i − x̂j
=
x̂− j

n
i
n − j

n

=
nx̂− j

i− j
. (262)

Eq. (261) can be written in the form

I(Ln) = nh

n∑

i=0

fiw
n
i , with (263)

wn
i :=

∫ 1

0

dx̂
n∏

j=0
j ̸=i

nx̂− j

i− j
. (264)

To estimate the validity of these formulas, one can consider Eqs. (258) and (260), from which one can easily
see that the errors of the closed Newton–Cotes formulas are given by integration over the error of the respective
Lagrange polynomial, i.e.

∫ b

a

dxLn(x) −
∫ b

a

dx f(x) ≤
∫ b

a

dx∆L̃n(x, a, b) =: ∆Ln(a, b) . (265)

www.cpp-journal.org c⃝ 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



84 N. Schlünzen and M. Bonitz: Nonequilibrium Green functions approach to strongly correlated fermions

The so-defined integration error ∆Ln(a, b) can be simplified using the substitution s = n
(

x−x0

xn−x0
− 1

2

)
,

∆Ln(a, b) = max
χ∈[a,b]

{∣∣f (n+1) (χ)
∣∣

(n+ 1)!

}∫ xn

x0

dx
n∏

i=0

(x− xi) (266)

= max
χ∈[a,b]

{∣∣f (n+1) (χ)
∣∣

(n+ 1)!

}
hn+2

∫ n
2

−n
2

ds

n
2∏

i=−n
2

(s− i) . (267)

Therefore, the error ∆Ln(a, b, h) is of the order ∼ O(hn+2
∣∣f (n+1)

∣∣).
For the function g(s) =

∏n
2

i=−n
2

(s− i), there exist two different symmetry relations. For odd n the relation
g(−s) = g(s) holds, while for even n one obtains g(−s) = −g(s). Since the integral boundaries in Eq. (267)
are also symmetric, the integration error term vanishes for even n. Since this formula only calculates the leading
error term, this means that one has to estimate the error for even n with the interpolation error for n + 1, which
is ∆L̃n+1(a, b, h). Finally, ∆Ln(a, b, h) becomes

∆Ln(a, b, h) =





maxχ∈[a,b]

{∣∣f (n+1) (χ)
∣∣} hn+2

(n+1)!

∫ n
2

−n
2

ds
∏n

2

i=−n
2

(s− i) , n odd

maxχ∈[a,b]

{∣∣f (n+2) (χ)
∣∣} hn+3

(n+2)!

∫ n
2

−n
2

ds
∏n

2

i=−n
2−1 (s− i) , n even

,

(268)

or

∆Ln(a, b, h) =

{
O
(
hn+2

∣∣f (n+1)
∣∣) , n odd

O
(
hn+3

∣∣f (n+2)
∣∣) , n even

, (269)

respectively. The resulting weights and error terms of the closed Newton–Cotes formulas up to the order n = 6
are listed in Tab. 1.

Table 1 Weight factors and error terms of the closed Newton–Cotes formulas: The weight factors wn
i of Eq. (163) and the

error terms ∆Ln(x, a, b) according to Eq. (268) are listed up to the order n = 6.

n wn
i ∆Ln

1 1
2

1
2 − 1

12h
3 maxχ∈[a,b] {|f ′′ (χ)|}

2 1
6

4
6

1
6 − 1

90h
5 maxχ∈[a,b]

{∣∣f (4) (χ)
∣∣}

3 1
8

3
8

3
8

1
8 − 3

80h
5 maxχ∈[a,b]

{∣∣f (4) (χ)
∣∣}

4 7
90

32
90

12
90

32
90

7
90 − 8

945h
7 maxχ∈[a,b]

{∣∣f (6) (χ)
∣∣}

5 19
288

75
288

50
288

50
288

75
288

19
288 − 275

12096h
7 maxχ∈[a,b]

{∣∣f (6) (χ)
∣∣}

6 41
840

216
840

27
840

272
840

27
840

216
840

41
840 − 9

1400h
9 maxχ∈[a,b]

{∣∣f (8) (χ)
∣∣}

B Analytical computation of polynomial integrals

For the numerical solution of integrals with the use of Newton–Cotes formulas, it is necessary to compute ex-
pressions of the form,

∫ 1

0

da
n∏

i=0

(a− bi) . (270)
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To make such a term accessible to calculations on a computer, one can perform the following transformations,
n∏

i=0

(a− bi) = (a− b0) (a− b1) . . . (a− bn) (271)

= an+1 − an (b0 + · · · + bn)

+an−1 (b0b1 + · · · + b0bn + b1b2 + · · · + b1bn + · · · + bn−1bn)

+ . . .

+(−1)
n+1

a0 (b0b1 · · · bn) (272)

= (−1)
0
an+1 1

0!
+ (−1)

1
an 1

1!

n∑

k0=0

bk0

+(−1)
2
an−1 1

2!

n∑

k0 ̸=k1

bk0bk1 + . . .

+(−1)
n+1

a0 1

(n+ 1)!

n∑

k0 ̸=k1
̸=···≠kn

bk0bk1 . . . bkn (273)

=
n+1∑

i=0

(−1)
n+1−i

ai 1

(n+ 1 − i)!

n∑

k0 ̸=k1 ̸=...
̸=kn−i




n−i∏

j=0

bkj


 . (274)

In this form, the integration can easily be done,

∫ 1

0

da
n∏

i=0

(a− bi) =




n+1∑

i=0

(−1)
n+1−i 1

i+ 1
ai+1 1

(n+ 1 − i)!

n∑

k0 ̸=k1 ̸=...
̸=kn−i




n−i∏

j=0

bkj







1

0

(275)

=
n+1∑

i=0

(−1)
n+1−i

i+ 1

1

(n+ 1 − i)!

n∑

k0 ̸=k1 ̸=...
̸=kn−i




n−i∏

j=0

bkj


 . (276)

The last expression can be evaluated numerically which is readily implemented.

C The extended integration formulas

The closed Newton–Cotes formulas of degree n can only include n + 1 sampling points. The easiest way to
include more points is to separate the interval into regions with n + 1 points. With N = kn, k ∈ N and
x0 = a, xN = b, one can split the integral in the following way,

I(f) =

∫ b

a

dx f(x) =

∫ xn

x0

dx f(x) +

∫ x2n

xn

dx f(x) + . . .

+

∫ x(k−1)n

x(k−2)n

dx f(x) +

∫ xN

x(k−1)n

dx f(x) . (277)

Each of the resulting integration terms can be approximated by a closed Newton–Cotes formula, as shown in
App. A. Therefore, one obtains

I(f) ≈ nh
k∑

j=1

n∑

i=0

f(j−1)n+iw
n
i

= nh

[
f0w

n
0 + fNw

n
n +

N−1∑

i=1

fi (wn
i mod n + δi mod nw

n
n)

]
. (278)
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Here, δm is defined as δm =

{
1, m = 0

0, m ̸= 0
.

Considering, e.g., n = 1, one obtains the extended trapezoidal rule,

I(f) ≈ h


f0 + fN

2
+

N−1∑

j=1

fj


 . (279)

Since the integral term can be divided into several terms as shown in Eq. (277), the respective error can be
expressed in the same way. Using the error formula for a single Newton–Cotes integration of Eq. (268), one
obtains the error of the extended Newton–Cotes formulas ∆Lext

n (a, b, h,N),

k∑

j=1

∆Ln(x(j−1)n, xjn, h)
(∗)
≤ k∆Ln(x0, xN , h) =

N

n
∆Ln(a, b, h) =: ∆Lext

n (a, b, h,N) . (280)

The relation (∗) holds because

max
χ∈[a,b]

{∣∣∣f (m) (χ)
∣∣∣
}

≥ max
χ∈[x(j−1)n,xjn]

{∣∣∣f (m) (χ)
∣∣∣
}

(281)

for all m ∈ N, j ≤ k.
∆Lext

n (a, b, h,N) can be written as

∆Lext
n (a, b, h,N) =





maxχ∈[a,b]

{∣∣f (n+1) (χ)
∣∣} Nhn+2

n(n+1)!

∫ n
2

−n
2

ds
∏n

2

i=−n
2

(s− i) , n odd

maxχ∈[a,b]

{∣∣f (n+2) (χ)
∣∣} Nhn+3

n(n+2)!

∫ n
2

−n
2

ds
∏n

2

i=−n
2−1 (s− i) , n even

,

(282)

or

∆Lext
n (a, b, h,N) =

{
O
(
Nhn+2

∣∣f (n+1)
∣∣) , n odd

O
(
Nhn+3

∣∣f (n+2)
∣∣) , n even

. (283)

Since the extended Newton–Cotes formulas of Eq. (278) are only applicable for a fitting number of sampling
points (i.e. N = kn, k ∈ N), it is useful to develop a scheme that enables integration for all N ∈ N. Therefore,
the number of blocks aN (ñ) for the respective order ñ ≤ n is introduced. Since, in this paper, f and its derivatives
are considered to be of similar shape throughout [x0, xN ], it is convenient to arrange the blocks as presented in
Sec. 5.1, i.e. the points [x∑n

n̂=ñ+1 aN (n̂)·n̂, x∑n
n̂=ñ aN (n̂)·n̂] are treated via the extended Newton–Cotes formula

for ñ, if aN (ñ) > 0. For the total integral, that means (Eq. (278))

I(f) ≈ Iclosed
n (aN )

:=
n∑

ñ=1

ñh

[
f∑n

n̂=ñ+1 aN (n̂)·n̂w
ñ
0 + f∑n

n̂=ñ aN (n̂)·n̂w
ñ
ñ

+

aN (n̂)·n̂−1∑

i=1

fi+
∑n

n̂=ñ+1 aN (n̂)·n̂
(
wñ

i mod ñ + δi mod ñw
ñ
ñ

)
]
. (284)

The error that results from this procedure can be estimated using Eq. (282) and demanding ∆Lext
n (x, x, h, 0) = 0:

∆Lext
n (x0, xN , h,N) =

n∑

ñ=1

∆Lext
ñ (x∑n

n̂=ñ+1 aN (n̂)·n̂, x∑n
n̂=ñ aN (n̂)·n̂, h, aN (ñ) · ñ)

(∗∗)
≤

n∑

ñ=1

∆Lext
ñ (x0, xN , h, aN (ñ) · ñ) . (285)
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Table 2 Final order check: The adjacent points of NFO
n , their block structure and their respective answer to the question,

whether the final order is achieved are listed.

N aN (n) aN (n− 1) aN (n− 2) final order achieved

NFO
n − 1 0 n− 3 1 no

NFO
n 0 n− 2 0 yes

NFO
n + 1 1 n− 3 0 yes

...
...

...
...

...

NFO
n + n− 2 n− 2 0 0 yes

NFO
n + n− 1 0 n− 1 0 yes

...
...

...
...

...

Here, the relation (∗∗) holds because

max
χ∈[x0,xN ]

{∣∣∣f (m) (χ)
∣∣∣
}

≥ max
χ∈[xp,xq ]

{∣∣∣f (m) (χ)
∣∣∣
}

(286)

for all m ∈ N and p, q ∈ [0, N ]. Notice that Eq. (285) gives the correct error for any choice of aN (ñ).

D Details on the optimal order scheme

The integration order of the optimal order scheme that is introduced in Sec. 5.1 can be found by combining Eqs.
(282) and (285). It is evident that for a consecutive series of N , the error terms are of the same order, once the
point is reached, where there are enough sampling points to integrate only with ñ = n and ñ = n− 1.
In general, a homogeneous order for increasing N can only be achieved by choosing an odd n. In this case,
it becomes O

(
hn+2

∣∣f (n+1)
∣∣). For even n, however, the arising order varies between O

(
hn+3

∣∣f (n+2)
∣∣) and

O
(
hn+1

∣∣f (n)
∣∣). The minimum value for N , where integration solely with ñ = n and ñ = n − 1 is possible,

and thus the final order is reached, is given by

NFO
n = (n− 1) (n− 2) . (287)

To show this, one has to discuss the different adjacent cases. As mentioned before, the final order is achieved, if

(
aN (n) ̸= 0 ∨ aN (n− 1) ̸= 0

)
∧
(
aN (ñ) = 0 ∀ ñ ≤ n− 2

)
. (288)

By applying Eq. (165) to N , one gets the aN (ñ) that are listed in Tab. 2. It turns out that for any n, NFO
n exactly

gives the minimum value for N , so that the final order of integration is ensured.

E Integration with generalized raster boundaries

Based on the Lagrange polynomial in Eqs. (256) and (257), one can find an expression that estimates the integral
between the border (a or b) and the first or last sampling point (x0 or xN ). Considering, e.g., a < x0 and b = xN ,
then the closed integration is done for [x0, xN ] as shown in Sec. 5.1 and the interval [a, x0] is left. In this instance,
the Lagrange polynomial, build up from the points a, x0 . . . xn−1 can be integrated from a to x0. Let d denote
the length of this interval, d = x0 − a. In analogy to App. A, the resulting weight factors can be calculated as
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follows:

I(f)
∣∣∣
x0

a
≈ I(Ln)

∣∣∣
x0

a
=

∫ x0

a

dx


fa

n−1∏

j=0

x− xj

a− xj
+

n−1∑

i=0

fi
x− a

xi − a

n−1∏

j=0
j ̸=i

x− xj

xi − xj


 (289)

= fa

∫ x0

x0−d

dx
n−1∏

j=0

x− xj

x0 − d− xj

+
n−1∑

i=0

fi

∫ x0

x0−d

dx
x− x0 + d

xi − x0 + d

n−1∏

j=0
j ̸=i

x− xj

xi − xj
(290)

= dfa

∫ 1

0

dx̄
n−1∏

j=0

(
1 − x̄

x̄j

)

+d

n−1∑

i=0

fi

∫ 1

0

dx̄
x̄

x̄i

n−1∏

j=0
j ̸=i

x̄− x̄j

x̄i − x̄j
, (291)

with x̄ = x−x0

d + 1 and x̄i = xi−x0

d + 1. Assuming, again, equidistant xi, i.e. xi = x0 + ih, one obtains

x̄i = i
h

d
+ 1 and

x̄− x̄j

x̄i − x̄j
=

d
h (x̄− 1) − j

i− j
. (292)

Eq. (291) can be written in the form

I(Ln)
∣∣∣
x0

a
= h

(
f(a)wn,gr

a +
n−1∑

i=0

fiw
n,gr
i

)
, (293)

with the generalized raster weight factors

wn,gr
i =

d

h

∫ 1

0

dx̄
x̄

ih
d + 1

n−1∏

j=0
j ̸=i

d
h (x̄− 1) − j

i− j
, (294)

wn,gr
a =

d

h

∫ 1

0

dx̄
n−1∏

j=0

(
1 − x̄

j h
d + 1

)
. (295)

For n up to the order n = 4, the resulting weights as well as the respective error terms (see below) are shown
in Tab. 3. Due to symmetry reasons, the same weight factors are obtained for a = x0 and b > xN , but in
reverse order. An error estimation can be found by integration over the corresponding error term of the Lagrange
polynomial (cf. Eq. (260)),

∆Lgr
n

(
a, b, h,

d

h

)
:=

∫ x0

a

dx max
χ∈[a,b]

{∣∣∣f (n+1) (χ)
∣∣∣
} (x− a)

∏n−1
i=0 (x− xi)

(n+ 1)!

= max
χ∈[a,b]

{∣∣∣f (n+1) (χ)
∣∣∣
} hn+2

(n+ 1)!

(
d

h

)2 ∫ 1

0

dx̄ x̄
n−1∏

i=0

[
d

h
(x̄− 1) − i

]
.

(296)

To estimate the total error of the integration in [a, b] for, e.g., a < x0 and b > xN , one can separate the error term
in the same way as the integral,

∫ b

a

dx f(x) =

∫ x0

a

dx f(x) +

∫ xN

x0

dx f(x) +

∫ b

xN

dx f(x) (297)
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and the respective numerical expression

Inum
n (N) := I (Ln)

∣∣∣
x0

a
+ Iclosed

n (aN ) + I (Ln)
∣∣∣
b

xN

(298)

into three parts,

∆Lext,gr
n (a, b, h,N) := ∆Lgr

min(N−1,n)

(
a, xN , h,

x0 − a

h

)
+ ∆Lext

n (x0, xN , h,N)

+∆Lgr
min(N−1,n)

(
x0, b, h,

b− xN

h

)
(299)

≤ ∆Lgr
min(N−1,n)

(
a, b, h,

x0 − a

h

)
+ ∆Lext

n (a, b, h,N)

+∆Lgr
min(N−1,n)

(
a, b, h,

b− xN

h

)
. (300)

The final order for the complete integration is obtained when N ≥ NFO
n ∧N ≥ n+1. Therefore, it is convenient

to define the new NFO,gr
n ,

NFO,gr
n = max

(
NFO

n , n+ 1
)
. (301)

Table 3 Weight factors of the generalized raster integration: For n up to n = 4 and d = 1
2

, the generalized raster weight
factors of Eq. (168) and the respective error terms according to Eq. (296) are listed.

n d
h wn,gr

a wn,gr
i ∆Lgr

n

0 1
2

1
2 - 1

8h
2 maxχ∈[a,b] {|f ′ (χ)|}

1 1
2

1
4

1
4 − 1

96h
3 maxχ∈[a,b] {|f ′′ (χ)|}

2 1
2

16
72

21
72 − 1

72
5

1152h
4 maxχ∈[a,b]

{∣∣f (3) (χ)
∣∣}

3 1
2

40
192

61
192 − 6

192
1

192 − 113
46080h

5 maxχ∈[a,b]

{∣∣f (4) (χ)
∣∣}

4 1
2

40192
201600

68005
201600 − 10255

201600
3423

201600 − 565
201600

41
25600h

6 maxχ∈[a,b]

{∣∣f (5) (χ)
∣∣}

If N > NFO,gr
n , the resulting total error is of the order

∆Lext,gr
n (a, b, h,N) = O

(
hn+2

∣∣∣f (n+1)
∣∣∣
)

+ O
(
hn+2

∣∣∣f (n+1)
∣∣∣
)

+ O
(
hn+2

∣∣∣f (n+1)
∣∣∣
)

= O
(
hn+2

∣∣∣f (n+1)
∣∣∣
)

(302)

for odd n and varies between

∆Lext,gr
n (a, b, h,N) = O

(
hn+2

∣∣∣f (n+1)
∣∣∣
)

+ O
(
hn+1

∣∣∣f (n)
∣∣∣
)

+ O
(
hn+2

∣∣∣f (n+1)
∣∣∣
)

= O
(
hn+1

∣∣∣f (n)
∣∣∣
)

(303)

and ∆Lext,gr
n (a, b, h,N) = O

(
hn+2

∣∣∣f (n+1)
∣∣∣
)

+ O
(
hn+3

∣∣∣f (n+2)
∣∣∣
)

+ O
(
hn+2

∣∣∣f (n+1)
∣∣∣
)

= O
(
hn+2

∣∣∣f (n+1)
∣∣∣
)

(304)

for even n.
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2.1.2 Efficient Selfenergy Approximations for Correlated Systems

The astonishing advance of computer power in the last decades has proved to be a

godsend for numerical applications. At the same time, increasingly precise experimental

measurements have demonstrated the importance of nontrivial quantum correlations

in condensed-matter systems (see, e.g., Ref. [140, 154, 192–195]). While the accurate

description of correlated setups is heavily demanding for most quantum-simulation tools,

NEGF theory provides an eminently suitable way to systematically incorporate correlation

effects by the choice of the selfenergy. The author’s group has demonstrated that more

complex and accurate selfenergy approximations have come within reach for experimentally

relevant systems through massive parallelization on computing clusters and GPUs [212,

213]. This involvement in these theoretical advances has made it possible to provide a

consistent and comprehensive review that makes this challenging topic accessible even to

non-experts. In this sense, Ref. [79] is an extensive review article with a twofold purpose:

to give an overview of recent applications of NEGF approaches, and to shed light on the

selfenergy and its many-body approximations—from the derivations to their application

in different single-particle bases.

The introductory part summarizes the developments regarding strongly correlated

quantum systems, applicable theoretical methods to describe correlated dynamics, and

the NEGF method in particular. Following this, the theoretical foundation of Green

functions is presented, covering second quantization, different single-particle basis choices,

the contour formalism, and the Martin–Schwinger hierarchy (p. 4 ff. in Ref. [79]). After

the selfenergy and its equations of motion are introduced (p. 12 ff. in Ref. [79]) two

equivalent schemes for the derivation of selfenergy approximations are presented: Hedin’s

equations for the dynamically screened vertex, and the counterpart set of equations for the

bare vertex (p.14 ff.). Afterwards, important resulting approximations for the selfenergy

are summarized and the GKBA is discussed (p. 16 ff. in Ref. [79]).

In the next part, several applications for NEGF approaches are reviewed and the

different performances of the selfenergy approximations are compared, starting with

groundstate energies and spectra for Hubbard systems (p. 20 ff. in Ref. [79]). Subsequently,

various nonequilibrium-dynamics setups are discussed (p. 26 ff. in Ref. [79]), which

feature prominently in the publications included in the present thesis—among others,

one-dimensional relaxation dynamics from nonequilibrium initial states (see Sec. 4.1), two-

dimensional expansion of fermionic particle clouds that lead to the build-up of doublons

(see Sec. 4.2), and the electronic response following a charged-particle impact in hexagonal

lattices (see Sec. 4.3).

The last and central part addresses the selfenergy and its different flavors, mirroring

the pool of diagrammatic many-body approximations (p. 36 ff. in Ref. [79]). Successively,

each selfenergy variant is derived in an instructive and highly ostensive way, where the

formal relations and their diagrammatic illustrations are presented side by side to achieve

maximal comprehensibility. This is followed, individually, by the respective specification

of the final selfenergy in a general single-particle basis, a diagonal basis, and the Hubbard

basis for bosons and fermions. Ensuing the above-mentioned scheme based on Hedin’s

equations, the Hartree–Fock approximation (p. 36 ff. in Ref. [79]), the second-order terms
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(p. 38 ff. in Ref. [79]), the third-order contributions (p. 41 ff. in Ref. [79]), and the GW

approximation are described (p. 55 ff. in Ref. [79]). The bare-vertex iteration scheme leads

to the particle–particle T matrix (p. 61 ff. in Ref. [79]) and to the related particle–hole

T -matrix approximation (p. 72 ff. in Ref. [79]).

In a nutshell, Ref. [79] is meant as instructional material and reference work for the

selfenergy in NEGF theory, discusses its approximations in theory and application, and

summarizes some of the key results of the present thesis.
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Abstract
This article presents an overview on recent progress in the theory of nonequilibrium Green 
functions (NEGF). We discuss applications of NEGF simulations to describe the femtosecond 
dynamics of various finite fermionic systems following an excitation out of equilibrium. This 
includes the expansion dynamics of ultracold atoms in optical lattices following a confinement 
quench and the excitation of strongly correlated electrons in a solid by the impact of a charged 
particle. NEGF, presently, are the only ab initio quantum approach that is able to study the 
dynamics of correlations for long times in two and three dimensions. However, until recently, 
NEGF simulations have mostly been performed with rather simple selfenergy approximations 
such as the second-order Born approximation (SOA). While they correctly capture the 
qualitative trends of the relaxation towards equilibrium, the reliability and accuracy of these 
NEGF simulations has remained open, for a long time.

Here we report on recent tests of NEGF simulations for finite lattice systems against exact-
diagonalization and density-matrix-renormalization-group benchmark data. The results confirm 
the high accuracy and predictive capability of NEGF simulations—provided selfenergies are 
used that go beyond the SOA and adequately include strong correlation and dynamical-screening 
effects. With an extended arsenal of selfenergies that can be used effectively, the NEGF approach 
has the potential of becoming a powerful simulation tool with broad areas of new applications 
including strongly correlated solids and ultracold atoms. The present review aims at making 
such applications possible. To this end we present a selfcontained introduction to the theory 
of NEGF and give an overview on recent numerical applications to compute the ultrafast 
relaxation dynamics of correlated fermions. In the second part we give a detailed introduction 
to selfenergies beyond the SOA. Important examples are the third-order approximation, the GW  
approximation, the T-matrix approximation and the fluctuating-exchange approximation. We 
give a comprehensive summary of the explicit selfenergy expressions for a variety of systems of 
practical relevance, starting from the most general expressions (general basis) and the Feynman 
diagrams, and including also the important cases of diagonal basis sets, the Hubbard model 
and the differences occuring for bosons and fermions. With these details, and information on 
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the computational effort and scaling with the basis size and propagation duration, readers will 
be able to choose the proper basis set and straightforwardly implement and apply advanced 
selfenergy approximations to a broad class of systems.

Keywords: nonequilibrium Green functions (NEGF), strongly correlated materials, Hubbard 
model, seflenergy, T matrix, GW approximation

S  Supplementary material for this article is available online

(Some figures may appear in colour only in the online journal)
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1. Introduction

Strong correlation effects, arising when the interaction energy 
of a many-particle system exceeds the single-particle energy, 
are ubiquitous in nature and laboratory systems. Examples 
are the interior of dwarf stars or giant planets, the quark–
gluon plasma, e.g. [1, 2] or electrons in strongly correlated 
mat erials, e.g. [3]. In classical systems strong correlations 
exist e.g. in electrolytes [4], in ultracold plasmas [5, 6], or in 
complex plasmas where they lead to fluid-like or crystalline 
behavior of charged particles, for an overview see [7]. Even 
though there exist many similarities in the static and dynamic 
properties between classical and quantum systems [8], the lat-
ter have a number of peculiarities and require dedicated theor-
etical approaches. Therefore, in the present article, we will 
concentrate only on quantum systems.

1.1. Strong correlations in quantum systems

In recent years strong correlations in quantum systems have 
come into the focus in a variety of fields. The first example 
are dense plasmas as they exist in the interior of giant plan-
ets, dwarf stars or neutron stars. Similar conditions are also 
generated in the laboratory by compression of matter by 
means of shock waves, ion beams or high-intensity lasers 
[9, 10]. This typically leads to situations where the electrons 
are quantum degenerate whereas the heavy particles exhibit 
only weak quantum behavior. This peculiar state of highly 
excited nonideal matter has been termed ‘warm dense mat-
ter’ or high-energy density matter, e.g. [11]. The range of 
electron densities where correlation effects are important is 
characterized by values of the Brueckner parameter exceeding 
unity, i.e. rs = r̄/aB > 1, where r̄  denotes the mean interpar-
ticle distance and aB the Bohr radius. In warm dense matter 
in thermodynamic equilibrium, temperatures are in the range 

of 0.1 � Θ = T
TF

� 10 (with the Fermi temperature TF) which 
means that electrons are highly excited and ground-state 
approaches fail. Here, the method of choice are first-principle 
approaches such as path-integral Monte Carlo simulations 
[12–14], for a recent overview, see [15].

The second example are condensed-matter systems where 
strong electronic correlations are of high importance in many 
materials, e.g. [3, 16]. Examples are transition metals and 
their oxids, rare-earth metals or cuprate superconductors. 
Here the standard mean-field description fails and correlated 
approaches such as dynamical mean-field theory [16] or 
Hubbard-type model Hamiltonians, e.g. [17] are being used.

The third example of strong correlation effects are ultra-
cold fermionic and bosonic atoms. In particular ultracold 

atoms in optical lattices have allowed one to study correlation 
effects experimentally with unprecedented accuracy, e.g. [18]. 
Moreover, with the advent of atomic microscopes even single-
site spatial resolution has been achieved [19–21].

In Hubbard-type systems, the coupling strength is given by 
the ratio of the on-site interaction to the hopping amplitude, 
U/J. In the present paper we consider ratios in the range from 
zero (ideal system) to five. The latter will be referred to as 
strongly correlated system even though much larger values are 
also being studied [22–24].

1.2. Nonequilibrium correlation dynamics following rapid 
external excitation

There is a large variety of excitation scenarios that drive a 
many-body system rapidly out of equilibrium. This includes 
excitation by laser pulses—from the infrared, over the opti-
cal and ultraviolet to the x-ray range. Time-resolved opti-
cal diag nostics (pump–probe spectroscopy) has evolved as 
a powerful experimental tool to probe the time evolution of 
atoms, molecules and materials that has been covered in many 
textbooks. Another method that provides spatially localized 
excitations is the impact of charged particles that may lead 
to surface modifications, heating or excitations of the elec-
tronic degrees of freedom, e.g. [25–27]. For correlated atoms 
in optical lattices, additional excitation schemes have been 
developed. This includes rapid changes of confinement poten-
tials (confinement quench) [23, 28], rapid changes of the pair 
interaction (interaction quench) via Feshbach resonance [29] 
or periodic modulation of the lattice depth (lattice-modulation 
spectr oscopy), e.g. [30–32].

All these methods have seen a rapid development in recent 
years and allow for accurate diagnostic of the time evolution of 
many-body systems. This, on the other hand, requires exten-
sive theory developments in order to achieve detailed com-
parisons with and explanation of experimental observations.

1.3. Theoretical approaches to computing nonequilibrium 
dynamics in correlated quantum systems

The theoretical approaches that have been applied most 
extensively in the field of correlated lattice systems are exact 
diagonalization (CI) [33–35], density-matrix renormalization 
group (DMRG) methods [36–38], diagrammatic Monte Carlo 
[39–41], real-time quantum Monte Carlo (RTQMC) [42, 43], 
reduced-density-matrix approaches [44–46], and time-depen-
dent density-functional theory (TDDFT) [47–51]. However, 
each of these methods has fundamental problems and limita-
tions. CI faces an exponential increase of the CPU time with 
the system size and applies only for small systems. RTQMC 
can only treat short evolution times due to the dynamic fer-
mion sign problem. DMRG is accurate at strong coupling but 
has difficulties at moderate and weak coupling and is, more-
over, restricted to 1D systems, e.g. [22]. Finally, TDDFT has 
no dimensional restrictions, but it is not able to accurately 
treat electronic correlations in a systematic way. Besides, 
the simulations usually involve the adiabatic approximation 
which neglects memory effects and may make the results 
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unreliable. Presently, there are intense activities underway to 
improve each of these approaches.

1.4. Nonequilibrium Green functions (NEGF)

There exists an independent approach to the dynamics of cor-
related systems that originates in quantum-field theory. It is 
based on nonequilibrium Green functions (NEGF) that were 
introduced by Keldysh [52] and Baym and Kadanoff [53]. 
This approach has been extremely successful and extensively 
applied in many fields of physics, including semiconductor 
optics [54–57], semiconductor quantum transport [58–61], 
nuclear physics [62–64], laser plasmas [65, 66], high-energy 
physics [67–69], and small atoms and molecules [70–72]. For 
text-book discussions, see [54, 55, 73–75].

NEGF have only recently been applied to finite correlated 
lattice systems out of equilibrium [51, 74, 76, 77]. This method 
is not suffering from most of the limitations of the other 
approaches and has achieved remarkable results. Benchmarks 
against CI simulations for small systems, cold-atom experi-
ments [28] and DMRG data [22] have shown impressive 
accuracy of the approach for many observables, for details see 
section 3. Of course there is a price to pay: NEGF methods 
are complicated and computationally very expensive. A recent 
overview on the NEGF results for the dynamics of fermionic 
lattice systems can be found in [78], and a recent overview on 
different NEGF applications is given in [79].

At this point it is useful to have a look at the conceptual 
basis of nonequilibrium Green functions. This approach 
is internally consistent. It obeys conservation laws and the 
dynamics are time-reversible [80]. NEGF simulations depend 
on a single input quantity—the selfenergy Σ (this is analogous 
to DFT which depends only on the accuracy of the exchange–
correlation potential). Would Σ be known exactly, the NEGF 
method would be exact. In practice, of course, aside from a 
few model cases, the exact Σ is not known and one has to 
resort to approximations. In the majority of applications to 
closed correlated many-body systems (neglecting the cou-
pling to phonons or other bosonic degrees of freedom) just 
two approximations are used: the Hartree–Fock selfenergy 
and the second-order Born approximation that incorporates 
correlations to lowest order. These approximations are well 
studied and their numerical application can be considered 
routine.

At the same time, the excellent quantitative agreement 
with benchmark data that was mentioned above could only 
be achieved by applying more complex selfenergy approx-
imations that adequateley take into account both, the coupling 
strength and the filling (density) of the system. However, even 
though a number of improved approximations such as the 
T-matrix selfenergy, that describes strong coupling and bound-
state formation, or the GW  approximation, that describes 
dynamical screening, are known for more than half a century, 
their application is often still very challenging. Unfortunately, 
in most publications the presentation of these approximations 
is rather sketchy, and often does not include all details about 
the spin degrees of freedom or general basis representations. 
Moreover, there is a high need for additional approximations, 

for instance, selfenergies that couple dynamical screening 
and strong coupling (including the FLEX approximation) or 
perturbation results that go beyond the second-Born approx-
imation that have occasionally been used in the literature, but 
usually not under nonequilibrium conditions.

Thus, limited availability of a broad class of selfenergy 
approximations, including their representations for commonly 
used situations, can be considered a major bottleneck for fur-
ther progress in nonequilibrium Green functions and their 
applications to many fields of many-body physics. It is a goal 
of the present review, to fill this gap.

1.5. Outline of this review

This article is organized as follows. In section 2 we present 
a brief but selfcontained introduction into the concepts of 
nonequilibrium Green functions including the equations  of 
motion for the NEGF—the Keldysh–Kadanoff–Baym equa-
tions. This is followed by an introduction to the Hubbard 
model for strongly correlated systems and the transforma-
tion of the NEGF into a Hubbard basis. We then introduce 
the selfenergy Σ and the two main approaches for deriving 
approx imations for Σ: the first is based on an expansion in 
terms of the bare pair interaction whereas the second uses the 
screened interaction, as the basic ingredient (Hedin’s equa-
tions). We then present an overview of the main selfenergy 
approx imations that follow from those two schemes. This is 
followed, in section 3, by a summary of representative numer-
ical applications to the dynamics of strongly correlated fermi-
ons under various excitation conditions which illustrate the 
performance of the different approximations for Σ. In the sec-
ond part of the review that contains sections 4 and 5 we return 
to the governing equations for the selfenergy where the for-
mer (latter) is devoted to the expansion in terms of unscreened 
(screened) pair potentials. In each of the two sections the rel-
evant approximations for Σ will be presented first in the most 
general form (general basis) which is then specified to various 
practically relevant representations including the basis where 
the interaction potential is diagonal and the Hubbard basis. 
Finally, a summary and outlook is presented in section 6.

2. Basics of nonequilibrium Green functions

This section gives an overview about the theoretical founda-
tions of the NEGF method and focuses on the interconnec-
tion between and classification of common approximation 
schemes. As far as we are aware, it provides the first com-
prehensive overview of the relevant equations in a fully gen-
eral basis representation3. From this, the common cases of a 
diagonal basis such as the coordinate basis and the Hubbard 
basis for fermions and bosons are deduced. Alongside the 
development of the theory, the numerical scaling of the dif-
ferent approximation techniques will be detailed to enable a 
suitable choice with respect to the achievable simulation dura-
tion and basis size. In section 2.1, the representation of states 

3 For the particle–particle T-matrix approximation, a thorough derivation for 
a general basis set was presented in [78].
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of indistinguishable quantum particles such as electrons in the 
so-called Fock space is discussed. The underlying notion of 
the second quantization allows for a suitable description of the 
dynamics for these particles in terms of canonical operators 
which perform the creation and annihilation in a chosen basis 
comprised of single-particle orbitals. Section  2.2 explores 
several possible sets of basis functions and their numerical 
suitability for different classes of systems. As a special case, 
the description of bosons and fermions in the basis set of the 
Hubbard model [81] is described.

For general time-dependent problems, it turns out to be 
advantageous to work on a complex time-contour (Schwinger–
Keldysh contour), that is introduced in section 2.4. The central 
quantity on the time-contour—the single-particle Green func-
tion—which gives access to all single-particle observables, the 
single-particle spectrum and some two-particle quantities, is 
defined in section 2.5. The equations of motion for the Green 
functions are a set of integro-differential equations, which are 
mutually coupled, constituting a hierarchy between Green 
functions of different particle number, the Martin–Schwinger 
hierarchy (MSH). A suitable reformulation of the MSH has 
been given in [82], where a set of five contour quantities is 
introduced, which also obey coupled equations of motion, the 
solutions of which yield the same Green function as the solu-
tion of the MSH. The representations of these equations in a 
general basis set are given in section 2.8. Since the exact solu-
tion of either set of equations  is numerically impossible for 
most realistic systems, approximation techniques have to be 
employed. The approaches presented in this work are based 
on the common building block of the so-called selfenergy the 
purpose of which is to capture all relevant many-body effects. 
How it can be approximately determined using both perturba-
tive and non-perturbative methods is detailed at the end of this 
section.

2.1. Dynamics of indistinguishable quantum particles  
in second quantization

The physical properties of all quantum particles are deter-
mined by their nature as excitations of an underlying field. 
These fields are quantized, i.e. they can only accommodate 
an integral number of elementary excitations, which are iden-
tified with the quantum particles. If only a single particle 
is excited, its state can be described by a wavefunction |Ψ〉 
defined on a single-particle Hilbert space H over the field of 
complex numbers C, which is assumed to be of finite dimen-
sion4. For excitations of more than one particle, the indistin-
guishability of quantum particles has to be taken into account 
properly. Experimentally, it has been found that quantum 
particles either carry bosonic or fermionic statistics, i.e. obey 
either the Fermi–Dirac [83, 84] or the Bose–Einstein [85] dis-
tribution. The group of fermions, which all have half-integer 
spin, contains the quarks and leptons, such as the electron, 
whereas phonons, W- and Z gauge-particles, gluons and the 

recently experimentally verified Higgs particle are bosons. 
Particles that are composed of elementary fermions or bosons 
can be of either bosonic5 (e.g. mesons, pions, kaons, exci-
tons, biexcitons) or fermionic (baryons [69], nucleons, trions 
etc) type, depending on the number of fermions involved. In 
the theoretical description, the spin statistics amounts to the 
many-body wavefunction being totally symmetric, for bosons, 
or totally anti-symmetric, for fermions with respect to inter-
change of two particles. How these statistics are conveniently 
built into the description of the many-body system, is detailed 
in the following.

To be able to treat states of varying particle number on an 
equal footing, it is convenient to define the so-called Fock 

space FH
σ

 induced by the single-particle Hilbert space H as 
the (completion—indicated as overline—of the) direct sum of 
(anti-)symmetrized n-fold tensor products of H,

FH
σ

=
∞⊕

n=0

S
σ
H⊗n = C ⊕ H ⊕ S

σ
(H ⊗ H) ⊕ . . ., (1)

with (N0 being the natural numbers with zero)

H⊗n =
n times︷ ︸︸ ︷

H ⊗ H ⊗ · · · ⊗ H for all n ∈ N0. (2)

The operator S
σ
 symmetrizes or anti-symmetrizes tensors for 

bosonic (σ = +) or fermionic (σ = −) particles. To define its 
action, it is suitable to fix a single-particle orbital basis of H,

Bsp =
{

|bi〉, i ∈ I
}

, (3)

for an index set I of cardinality dimH. With this, for every 
n ∈ N0 and basis elements |b1〉, . . . , |bn〉 ∈ Bsp, the action of 
S

σ
 on the standard tensor product is given by

S+

(
|b1〉 ⊗ . . . ⊗ |bn〉

)

=
1

√
n!

∏∞
p=0 np!

∑

s∈Sym
n

|bs(1)〉 ⊗ . . . ⊗ |bs(n)〉 =: |b1〉 ◦ . . . ◦ |bn〉

 

(4)

and

S−

(
|b1〉 ⊗ . . . ⊗ |bn〉

)

=
1

√
n!

∑

s∈Sym
n

sign
(

s
)

|bs(1)〉 ⊗ . . . ⊗ |bs(n)〉 =: |b1〉 ∧ . . . ∧ |bn〉,

 

(5)

for bosons and fermions, respectively. Here, Symn denotes the 
n-body permutation group (or symmetric group), which per-
forms a permutation among the state labels bi. The np  is the 
total number of particles in state p  (note that for fermions the 
occupation is forced to np   =  0,1 due to the Pauli exclusion and 
thus np !  =  1). Note that it is sufficient to define the (anti-)sym-
metrization operator only for basis elements, since it is linear. 
For example, a general fermionic anti-symmetrized state |Ψ−

2 〉 
on the two-fold tensor product H ⊗ H is of the form

4 In practice, this does not constitute a restriction, since the Hilbert space is 
either already of finite dimension or has to be approximated as such anyway 
to make a numerical treatment possible.

5 Note that the Bose character is only approximate, and deviations may  
appear on short length scales on the order of the interparticle distance.
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|Ψ−
2 〉 =

∑

i<j∈I

cij |bi〉 ∧ |bj〉 for |bi〉, |bj〉 ∈ Bsp, (6)

for cij ∈ C. Here, the antisymmetric tensor product |bi〉 ∧ |b j〉 
is given in terms of the standard tensor product as

|bi〉 ∧ |b j〉 = 1√
2

(
|bi〉 ⊗ |b j〉 +

(
−1

)
|b j〉 ⊗ |bi〉

)
. (7)

Note that |bi〉 ∧ |bi〉 = 0, which reflects that, due to the Pauli 
exclusion principle, no two fermions can occupy the same 

state. With this, a general state in the Fock space FH
σ

, a Fock 
state |Ψσ〉, which is a superposition of states with a different 
number of particles, can be written as

|Ψσ〉 = c0 |0〉 ⊕
∑

i∈I

ci |bi〉 ⊕
∑

i�j∈I

cij |bi〉 ⊗
σ

|bj〉 ⊕ . . . , (8)

for c0, ci, cij ∈ C, where the short-hand notation

⊗
σ

=
{

◦ for bosons,

∧ for fermions,
 (9)

has been introduced. The first state, |0〉, is the vacuum state, 
which is the state of zero physical particles and of the lowest 
possible energy, Evac—in the context of this article, Evac = 0 
is assumed6.

With the concept of Fock states that are suitable to describe 
systems with a varying particle number, it is most natural 

to define operators7 that create 
(

ĉ†
[
|bi〉

]
=: ĉ†

i

)
 or remove (

ĉ
[
|bi〉

]
=: ĉi

)
 a particle in a given single-particle orbital |bi〉. 

To characterize their action, it is sufficient to define the action 
on all (anti-)symmetrized n-particle subspaces of FH

σ
 defined 

in a fashion similar to equation (2),

H⊗
σ

n =

n times︷ ︸︸ ︷
H ⊗

σ
H ⊗

σ
. . . H,

 (10)

as

ĉ†
i

∈H
⊗

σ
n

︷ ︸︸ ︷(
|b1〉 ⊗

σ
. . . ⊗

σ
|bn〉

)
=

∈H
⊗

σ
n+1

︷ ︸︸ ︷
|bi〉 ⊗

σ
|b1〉 ⊗

σ
. . . ⊗

σ
|bn〉

and

ĉi

∈H
⊗

σ
n

︷ ︸︸ ︷(
|b1〉 ⊗

σ
. . . ⊗

σ
|bn〉

)

=

∈H
⊗

σ
n−1

︷ ︸︸ ︷∑

k∈I

σk〈bi |bk〉|b1〉 ⊗
σ

. . .�����⊗
σ
|bk〉⊗σ

. . . ⊗
σ

|bn〉 .

 

(11)

Note that, for the case of fermions, action of the operators 
ĉi (ĉ

†
i ) on an n-particle state may give rise to a sign change 

depending on the location of the orbital ‘i’ in the state. This 
depends on the choice of ordering of single-particle orbitals in 
the n-particle state. This will be made explicit for the example 
of occupation-number representation presented below.

With these equations, the (anti-)commutator between 
the creation operators and annihilation operators as well as 
between one creation and one annihilation operator for fermi-
ons (bosons) is easily worked out,

[
ĉ†

i , ĉ†
j

]
∓

= 0,
[

ĉi , ĉ j

]
∓

= 0,
[

ĉi , ĉ†
j

]
∓

= 〈bi|bj〉.

 (12)

Here, 
[

a , b
]

∓
 denotes the commutator (ab − ba) for bosons 

and the anti-commutator (ab + ba) for fermions. Note that we 
used a general description that allows for a non-orthogonal 
set, {|bi〉}, of single-particle basis states. In the special case 

of an orthonormal basis, 〈bi|bj〉 = δij, and one recovers, in the 
final expression δij which is familiar from many text books.

Now we make a transition from the abstract representation 
of n-particle states to the occupation-number representation 
that is commonly used in the literature. First, the general sin-
gle-particle orbitals are replaced by (orthogonal) eigenfunc-
tions of the one-particle Hamiltonian Ĥ

0
, |bi〉 → |i〉 where 

Ĥ
0|i〉 = εi|i〉 and εi−1 � εi � εi+1 for all i. Together with the 

occupation ni of the ith orbital, the n-particle state (see equa-
tions (4) and (5)) can then be written as

|n1, n2, . . .〉 := |1〉 ⊗
σ

|2〉 ⊗
σ

. . .

and represents the bosonic (fermionic) permanents (Slater 
determinants) of single-particle orbitals. Having that, the 
actions of the creation and annihilation operators (now with 
(n ± 1)-particle states sorted by energy) is then given by

ĉ†
i |n1, n2, . . . , ni, . . .〉 = σα

√
ni + 1|n1, n2, . . . , ni + 1, . . .〉 ·

{
1 for bosons

δn10 for fermions
,

ĉi|n1, n2, . . . , ni, . . .〉 = σα√
ni|n1, n2, . . . , ni − 1, . . .〉 ·

{
1 for bosons

δn11 for fermions
,

with α =
∑i−1

j=1 nj accounting for the fermionic sign change 
due to the resorting of orbitals. Note that the Kronecker-delta 
terms for the fermionic cases again account for the Pauli 
exclusion principle. The above canonical operators again ful-
fill the (anti-)commutation relations from equation (12) for an 

orthogonal basis set, i.e. with 
[

ĉi , ĉ†
j

]
∓

= δij.

The creation and annihilation operators form a basis for 

all operators acting on the space FH
σ

. For instance, general 
single-particle and two-particle operators Ô

(1)
, Ô

(2) are given 
as linear superpositions8

Ô
(1) =

∑

mn

o(1)
mn ĉ†

mĉn, (13)

8 From now on, if not stated otherwise, all sums run over the complete basis 
set.

6 In quantum chromodynamics and quantum electrodynamics, the lowest en-
ergy state may not have zero energy and allow for quantum fluctuations [86].
7 As the notation indicates, ĉ† and ĉ are indeed pairwise conjugated opera-

tors, i.e. ĉ† =
[
ĉ
]†

.
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Ô
(2) =

∑

mnpq

o(2)
mnpq ĉ†

mĉ†
nĉ pĉq, (14)

where the matrix elements are

o(1)
mn =

〈
bm

∣∣∣ô(1)
∣∣∣bn

〉
, o(2)

mnpq =
〈

bmbn

∣∣∣ô(2)
∣∣∣bpbq

〉
. (15)

As a special case, the Hamiltonian, which carries the specific 
geometries of the studied systems as well as any external 
(time-dependent) potentials and forces driving the dynamics 
transforms to

 (16)

containing the single-particle part Ĥ
0
, the interaction  and 

the time-dependent single-particle excitation part . Since 
all quantities discussed in this section are formulated in terms 
of the single-particle basis Bsp (see equation (3)), its suitable 
choice is vital for the numerical implementation to achieve the 
best possible performance. A strategy for the selection of a set 
of basis functions is detailed in the next section.

2.2. Choice of the one-particle basis

Selecting a single-particle basis (see equation  (3)) consti-
tutes the first step in the process of the theoretical model-
ing of a system. With this basis Bsp or an equivalent choice 

Csp =
{

|c j〉, j ∈ J
}

, elements |Ψ〉 of the single-particle 

Hilbert space H can be expanded as

|Ψ〉 =
∑

i∈I

bi|bi〉 =
∑

j∈J

cj|cj〉, (17)

where I (J) is an index set of cardinality dimH. For Hilbert 
spaces of infinite dimension, I has to be substituted by a finite 
set I′ to make a numerical treatment possible, which renders 
equation (17) only approximately valid. For the formulation 
of the Hamiltonian, according to equation (16), the matrix ele-

ments hkm, wklmn, fkm

(
t
)
 have to be specified. Once they are 

given in the natural basis of the studied system, they can be 
transformed into another single-particle basis Csp by

hC
km =

dimH∑

r=1

dimH∑

s=1

b∗
rk

hB
rsbsm , (18)

with the expansion of the new basis functions |ci〉 in terms of 
the old |bi〉 given as

〈ci| =
dimH∑

r=1

b∗
ri

〈br|, (19)

|ci〉 =
dimH∑

s=1

|bs〉bsi , (20)

with the transformation matrix elements

bsi = 〈bs|ci〉, b∗
ri = 〈br|ci〉∗. (21)

With these transformations, the basis can be chosen to suit 
the numerical needs. To this end, two criteria can be form-
ulated which characterize how well numerically tractable a 
set of basis functions is. First, it should consist of as few basis 
functions as possible to achieve the accuracy demanded, i.e. it 
describes single-particle orbitals that are as close as possible 
to the true orbitals occupied by the particles. To work out the 
other criterion, one notices that, according to equation (16), 
the interaction—a central quantity in any exact treatment as 
well as the selfenergy approximations discussed later in this 
article—is represented by a fourth-order tensor wklmn  in a gen-
eral basis. This structure is numerically prohibitive since it 

involves at least a scaling of O
(

N4
b

)
, where Nb is the dimen-

sion of the basis set. Fortunately, the interaction tensor can be 
brought into a diagonal representation, where it is character-
ized by a second-order tensor, i.e. is of the structure

wklmn = δknδlmwkl. (22)

In practice, this diagonalization can be achieved by choosing 
a quadrature rule for the integrals involved in the computa-
tion of the interaction matrix elements (see equation (15)) and 
construction of a (finite-element) discrete variable representa-
tion upon it [74, 87, 88]. For details, the reader is referred to  
[71, 89], where various aspects of different choices of quad-
ratures and their implementation are discussed. Accordingly, 
the second criterion is that the basis functions are chosen such 
that the interaction matrix elements are (approximately) diag-
onal in the sense of equation (22). Unfortunately, both criteria 
are often ‘orthogonal’ to each other, and the user has to choose 
between them. While physically motivated basis sets achieve 
a good representation with only a small number of basis func-
tions, they entail a dense fourth-order tensorial structure of 
the interaction matrix elements. In contrast, discrete-variable-
representation basis sets provide the latter in diagonal form, 
but the basis functions are ‘general purpose’ and the worse 
representation of physical states requires their number to be 
comparably large. As a rule of thumb, it can be stated that, 
for small systems, which require only few basis functions, 
physical basis sets are preferable while, for large systems, for 
instance in the description of photoemission experiments on 
atoms, molecules or solids [88, 90, 91], a grid-based approach 
is often favorable. In both cases, a close look at the structure 
of the equations at hand provides a more thorough basis for 
the decision. As an example, looking ahead to equations (189) 
and (190) versus equations (176) and (183), the index struc-
ture of the selfenergy—the central quantity in Green function 
based calculations—for example, in the important second-
order Born (2B) approximation, looks like (omitting time 
arguments and scalar factors)

Σ(2),diagonal
ij ∼

∑

np

GinwipGnpG pjwnj ±
∑

pr

GijwipGrpG prwrj,

 (23)
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Σ(2)
ij ∼

∑

mnpqrs

GmnwipqmGspGqr

(
wnrjs ± wrnjs

)
,

 
(24)

in a diagonal basis versus general basis representation. At first 
glance, the diagonal case of equation (23) suggests a scaling 

of O
(

N4
b

)
 stemming from the two external indices i, j and the 

summation over the two internal indices, whereas in the case 
of full interaction, according to equation (24), the summation 
over six internal indices (m, n, p, q, r, s) prompts a scaling of 

O
(

N8
b

)
, which would strongly favor the former over the lat-

ter. A quick reordering, though, lets one rewrite equations (23) 
and (24) as

Σ(2),diagonal
ij ∼

∑

n

Ginwnj

∑

p

wipGnpG pj ± Gij

∑

p

wip

∑

r

G prGrpwrj,

 (25)

Σ(2)
ij ∼

∑

mpq

wipqm

∑

s

Gsp

∑

r

Gqr

∑

n

Gmn

(
wnrjs ± wrnjs

)
.

 (26)

This elucidates that, for diagonal interaction, Σ(2),diagonal
ij  

indeed scales as O
(

N4
b

)
+ O

(
N3

b

)
= O

(
N4

b

)
, whereas, Σ(2)

ij  

scales as O
(

N5
b

)
+ O

(
N5

b

)
+ O

(
N5

b

)
+ O

(
N5

b

)
= O

(
N5

b

)
, 

in contrast9. Thus, the preferable basis choice strongly depends 
on the respective basis sizes needed.

2.3. The Hubbard model

Since it plays an important role underlying the applications in 
section 3, the special case of the Hubbard basis and the asso-
ciated Hubbard model is briefly discussed here. The Hubbard 
model has been introduced by John Hubbard, a British physi-
cist, in 1963 [81] to describe the physics—especially the 
transition between conducting and insulating behavior—of 
electrons in narrow energy bands of solid-state systems such 
as transition-metal oxides. At the heart of the Hubbard model 
is the observation that, in narrow d- and f -bands, the electrons 
are mostly located at the nuclei—where they interact—and 
only rarely move between different positions on the lattice. 
Therefore, Hubbard proposed to describe these systems in 
terms of ‘sites’ between which the electrons ‘hop’ with a given 
amplitude J. At each site, which, in the model, contains one 
orbital for spin-up and one orbital for spin-down orientation, 
the electrons experience a repulsion by electrons in the other 
orbital of strength U. Accordingly, the Hubbard model can 
be described by the generic Hamiltonian, see equation (16), 
with matrix elements (written in the representation in terms of 
spin-orbitals |iα〉, with site i and spin α),

hiαjβ = −Jδ〈ij〉δαβ
− µδijδαβ

ĉ†
iαĉiα, (27)

wiαjβkγlδ = Uδilδαδ
δ jkδβγ

δij, (28)

fiαjβ

(
t
)

= δijδαβ
fiα

(
t
)

, (29)

where δ〈ij〉 = 1, exactly if the sites i, j are nearest neighbors. 
The term

−µδijδαβ
ĉ†

iαĉiα (30)

describes the chemical energy induced by a chemical poten-

tial µ. The time-dependent excitation matrices fiαjβ

(
t
)
 for all 

processes considered in this work are both, on-site 
(

δij

)
 and 

spin-conserving 
(

δ
αβ

)
. Inserting equations (27)–(29) into the 

general form of equation (16), one arrives at

Ĥ
(

t
)

= −J
∑

mεnζ

δ〈mn〉δεζ
ĉ†

mε
ĉnζ

+ U
2

∑

mεnζpηqθ

δmqδ
εθ

δnpδ
ζη

δmnĉ†
mε

ĉ†
nζ

ĉ pη
ĉqθ

+
∑

mεnζ

δmnδ
εζ

fmεnζ

(
t
)

ĉ†
mε

ĉnζ
− µ

∑

mε

ĉ†
mε

ĉmε

= −J
∑

〈m,n〉

∑

ε

ĉ†
mε

ĉnε
+ U

2

∑

m

∑

εζ

ĉ†
mε

ĉ†
mζ

ĉmζ
ĉmε

+
∑

mε

fmε

(
t
)

ĉ†
mε

ĉmε
− µ

∑

mε

ĉ†
mε

ĉmε
.

 

(31)

Here, 〈m, n〉 denotes the summation over nearest-neighbor 
sites.

The formal derivation of the Hubbard Hamiltonian [81] 
starts with the continuous-space Hamiltonian for a periodic 
solid-state system for which the wavefunctions attain the form 
of Bloch waves. These Bloch functions can be expanded in 
the basis of Wannier functions which are spatially localized. 
For the resulting atomic orbitals, to recover equation  (31), 
now only overlap between neighboring atoms and interac-
tion between on-atom orbitals are assumed. The Hubbard 
basis, which formally is a set of Wannier states, can thus be  
understood as set of localized on-site orbitals with a short-
range overlap to the nearest neighbors. For more details see, 
e.g. [92, 93] for bosons and [94] for fermions.

The following results differ for the cases of fermions and 
bosons, respectively, so we provide both cases separately. 
With the canonical commutation relations, see equation (12), 
for bosons, the interaction term can be rewritten as

Ŵ
Hubbard
bosons = U

2

∑

m

∑

εζ

ĉ†
mε

ĉ†
mζ

ĉmζ
ĉmε

= U
2

∑

m

∑

εζ

ĉ†
mε

ĉ†
mζ

ĉmε
ĉmζ

= U
2

∑

m

∑

εζ

ĉ†
mε

ĉmε
ĉ†

mζ
ĉmζ

− U
2

∑

m

∑

ε

ĉ†
mε

ĉmε

=:
U
2

∑

m

∑

εζ

n̂mε
n̂mζ

− U
2

∑

m

∑

ε

n̂mε

= U
2

∑

m

∑

ε�=ζ

n̂mε
n̂mζ

+ U
2

∑

m

∑

ε

n̂mε

(
n̂mε

− 1
)

.

 (32)
The special case of spin-0 bosons results in the Bose–Hubbard 
interaction,

Ŵ
Hubbard
bosons,0 = U

2

∑

m

n̂m

(
n̂m − 1

)
,

 

(33)

and the corresponding Bose–Hubbard Hamiltonian (without 
time-dependent excitation),

9 As one notices, the ordering of the terms in equations (25) and (26) is not 
unique but there exists no ordering which results in a better scaling.
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Ĥ
Bose–Hubbard
spin-0 = −J

∑

〈m,n〉
ĉ†

mĉn + U
2

∑

m

n̂m

(
n̂m − 1

)
− µ

∑

m

n̂m.

 
(34)

Next consider fermions. Now, due to the Pauli exclusion prin-
ciple, equation (28) can be rewritten as

wiαjβkγlδ = Uδilδαδ
δ jkδβγ

δijδ̄αβ , (35)

with δ̄αβ = 1 − δ
αβ

. Consequently, the interaction part Ŵ  of 
the Hamiltonian becomes

Ŵ
Hubbard
fermions = U

2

∑

m

∑

ε�=ζ

ĉ†
mε

ĉ†
mζ

ĉmζ
ĉmε

= −U
2

∑

m

∑

ε�=ζ

ĉ†
mε

ĉ†
mζ

ĉmε
ĉmζ

= U
2

∑

m

∑

ε�=ζ

ĉ†
mε

ĉmε
ĉ†

mζ
ĉmζ

= U
2

∑

m

∑

ε�=ζ

n̂mε
n̂mζ

.

 

(36)

For the special case of spin-1
2 fermions, this expression simpli-

fies to

Ŵ
Hubbard
fermions,1/2 = U

2

∑

m

(
n̂m↑n̂m↓ + n̂m↓n̂m↑

)
= U

∑

m

n̂m↑n̂m↓

 (37)
and the (Fermi–)Hubbard Hamiltonian (again without time-
dependent excitation) is given by

Ĥ
Fermi–Hubbard
spin-1/2 = −J

∑

〈m,n〉

∑

ε∈{↑,↓}
ĉ†

mε
ĉnε

+U
∑

m

n̂m↑n̂m↓−µ
∑

m

(
n̂m↑ + n̂m↓

)
.

One notices that the Hubbard interaction wiαjβkγlδ is highly 
diagonal, which is very advantageous for the numerical treat-
ment—a property which has contributed greatly to the recur-
ring popularity of the Hubbard model in computational physics 
in the last decade, e.g. [28, 51, 77, 95–98]. Accordingly, for 
the example of the second-order selfenergy that was presented 
above in equation (23) and which will be treated in full detail 
in section 4, the expression in the Hubbard basis reads, see 
equation (198),

Σ(2),2,0,Hubbard,f,1/2
i↓(↑)j↓(↑)

(
z1, z2

)
= ±

(
i�

)2
Gi↓(↑)j↓(↑)

(
z1, z2

)

U
(

z1

)
Gi↑(↓)j↑(↓)

(
z1, z2

)
G j↑(↓)i↑(↓)

(
z2, z1

)
U

(
z2

)
.

 (38)
This expression only scales as O

(
N2

b

)
, since it involves no 

matrix multiplications, compared to the scaling for a gen-

eral basis, with O
(

N5
b

)
, and of O

(
N4

b

)
, in a diagonal basis. 

Here, the arguments z1,2 denote times that are situated on  
the Schwinger–Keldysh contour that naturally emerges in 
nonequilibrium quantum statistics and which we introduce 
next.

2.4. Time-dependence of observables  
and the Schwinger–Keldysh time-contour

The purpose of the formalism of second quantization, intro-
duced in the last section, is to provide a suitable framework 
for the description of quantum many-particle systems, in 
particular, for time-dependent processes. Here, one is mostly 
interested in the expectation values of operators of the form 

of equations  (13) and (14), at any given time t. With the 
time-dependent many-particle wavefunction, |Ψ

(
t
)

〉, i.e. 

the solution of the time-dependent Schrödinger equation, the 
expectation value can be computed as

O(t) =
〈

Ψ
(

t
)∣∣∣Ô

(
t
)∣∣∣Ψ

(
t
)〉

=
〈

Ψ0

∣∣∣∣∣T̂a

{
exp

(
1

i�

∫ t
0

t
dt̄ Ĥ

(
t̄
))}

Ô
(

t
)

T̂c

{
exp

(
− 1

i�

∫ t
0

t
dt̄ Ĥ

(
t̄
))}∣∣∣∣∣Ψ0

〉
,

 

(39)

where the operators 
(

T̂a

)
T̂c are the (anti)-chronological 

time-ordering superoperators, which rearrange the operators 

acted on such that the latest (earliest) times are moved to the 
left-hand side to account for (anti-)causality. A more concise 
form ulation can be achieved by introducing an oriented con-
tour C which starts from t0, extends to the turning point t and 
then reaches back to t0,

C =
(

t0, t
)

︸ ︷︷ ︸
C−

⊕ (
t, t0

)

︸ ︷︷ ︸
C+

,
 (40)

with a forward branch C− and a backward branch C+, depicted 
in figure 1. Henceforth, a general time on the contour C will 
be denoted as z and z± to refer to a time lying on one of the 
branches. Accordingly, an operator Ô can be extended to the 
contour, having possibly different values on both branches,

Ô
(

z
)

=





Ô−
(

z
)

if z ∈ C−

Ô+

(
z
)

if z ∈ C+
. (41)

With this definition, one can define a contour time-ordering 
superoperator T̂C which moves operators at later contour times 
ahead of operators at earlier contour times. As a consequence, 
its action agrees with that of T̂c, for all times z− ∈ C−, and 

with that of T̂a, for all times z+ ∈ C+. Furthermore, time int-
egrals are extended in a natural way to the contour by defining

∫ z
2

z
1

dz̄ Ô
(

z̄
)

:=





∫ t
2

t
1

dt̄ Ô−
(

t̄
)

if z1, z2 ∈ C−

∫ t

t
1

dt̄ Ô−
(

t̄
)

+
∫ t

2

t
dt̄ Ô+

(
t̄
)

if z1 ∈ C−, z2 ∈ C+

∫ t
2

t
1

dt̄ Ô+

(
t̄
)

if z1, z2 ∈ C+

,

assuming z1 is later than z2. Using the contour integral, one 
can reformulate equation  (39) for operators which have the 
same value on both branches, i.e. Ô− = Ô+ =: Ô±, as

O(t) =
〈

Ψ0

∣∣∣∣∣T̂C

{
exp

(
1

i�

∫

C+
dz̄ Ĥ

(
z̄
))

Ô±
(

t
)

exp
(

1

i�

∫

C−
dz̄ Ĥ

(
z̄
))}∣∣∣∣∣Ψ0

〉
,

 (42)
which, taking into account the action T̂C, can be further sim-
plified to

O(t) =
〈

Ψ0

∣∣∣∣∣T̂C

{
exp

(
1

i�

∫

C
dz̄ Ĥ

(
z̄
))

Ô±
(

t
)}∣∣∣∣∣Ψ0

〉
.

 (43)
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On both branches, the contour Hamiltonian Ĥ
(

z̄
)
 is set equal 

to its definition in equation  (16) for the corresponding real-
time argument.

An undesirable feature of the introduced contour is that it 
seemingly depends on the value of t. This can be remedied by 
extending the contour to t → ∞, for which the above expres-
sions, in particular equation (43), hold again, since the addi-
tional two integral parts cancel. The corresponding contour is 
depicted in figure 2. Finally, one notices that equation (43) is 
also true for all contour times z,

O(z) =
〈

Ψ0

∣∣∣∣∣T̂C

{
exp

(
1

i�

∫

C
dz̄ Ĥ

(
z̄
))

Ô
(

z
)}∣∣∣∣∣Ψ0

〉
.

 (44)

It should be noted that in equation  (44) the operator Ô
(

z
)
 

might not bare an explicit time dependence. The indication 
of the time argument is, however, useful to ensure the correct 
placement during the time-ordering process of T̂C.

The contour C was introduced by Keldysh in 1964 [52] 
who showed that, with this modified time axis all expressions 
of ground-state and thermodynamic Green functions, includ-
ing Feynman’s diagram technique, are naturally transferred to 
arbitrary nonequilibrium situations. The historical context of 
the development of this method of real-type (Keldysh) Green 
functions has been reviewed by Keldysh himself, for details 
see [99].

2.5. Nonequilibrium Green functions and their equations  
of motion

To compute time-dependent operator expectation values, 
there are two immediate choices at hand, following equa-
tion  (39): one can either solve the first or the second line. 
The first option requires the solution of the equation  of 

motion for the time-dependent wavefunction |Ψ
(

t
)

〉, which 

is the Schrödinger equation. This is the road taken by wave-
function-based methods like full configuration interaction  
[100, 101], multiconfigurational time-dependent Hartree–Fock 

[89, 102, 103], generalized active-space configuration inter-
action [91, 104], exact diagonalization [95], coupled-cluster 
methods [105] and density-matrix renormalization group 
based approaches [106–111].

The other way is to follow the second line and to work with 
the (known) initial wavefunction |Ψ0〉10 and develop an equa-
tion of motion for the term

T̂C

{
exp

(
1

i�

∫

C
dz̄ Ĥ

(
z̄
))

Ô
(

z
)}

, (45)

according to equations (43) and (44), respectively. Approaches 
relying on this method are, among others, time-dependent 
Hartree–Fock [112], reduced-density-matrix theory [44, 113], 
density-functional theory [51, 114–116], dynamical mean-field 
theory (DMFT) [117–120] and the method of Green functions 
[28, 71, 72, 77, 78, 96, 98, 121–129], which is the topic of this 
article. In principle, both approaches are equivalent and yield 
the same results. The main difference is the set of available 
approximation techniques and, foremost, the numerical scaling 
behavior with respect to the maximal simulation time, particle 
number, basis size and interaction strength. The wavefunction-
based methods, in general, can cope with huge basis sets with 
a number of basis functions, depending on the system at hand, 
ranging from thousands to millions and interaction strengths 
from weak to strong coupling. Additionally, they offer a linear 
scaling of the numerical effort with the simulation time. The 
trade-off is the exponential scaling of the numerical effort with 
the particle number rendering the simulation of systems with 
more than a few particles impossible [91, 104].

In contrast, the second group of methods, which relies 
on the equation of motion for the creation and annihilation 
operators, are not limited by the particle number. The scaling 
with the basis size is worse compared to the other group but 
still polynomial and the scaling with the total simulation time 
is at least quadratic for methods going beyond Hartree–Fock 
(which has a linear scaling). Apart from DMFT, which is 
also good for very strong interactions but can simulate only 

Figure 1. Schwinger–Keldysh contour C. The forward-branch C− extends from the initial time t0 to the current time t, bends and leads back 
to t0 along the backward C+-branch. Note that the projections of the contour times z1 < z2 on the real axis obey the inverse relationship 
t1 > t2.

Figure 2. Schwinger–Keldysh contour C extended to ∞. The forward-branch C− spans from the initial time t0 to ∞, bends and leads back 
to t0 along the backward C+-branch.

10 It will be shown in section 2.11 that, actually, the knowledge of the ideal, 
i.e. non-interacting, initial state is sufficient.

J. Phys.: Condens. Matter 32 (2020) 103001



Topical Review

11

short time-spans, all methods of the second group, includ-
ing Green functions, are mostly suited for small interaction 
strengths. In the following, the theory behind the Green 
functions method will be summarized. For a more in-detail 
derivation, see, e.g. [73, 74]. In the following section, the 
definition of the Green functions, their equations of motion 
and the determination of time-dependent observables from 
them will be discussed.

The direct computation of the time-dependent values of 
operators according to equation (44) involves the evaluation 
of the time-ordered exponential, which is impractical apart 
from very small basis sizes due to the dimensionality of the 
Hamiltonian. One strategy to bypass the direct evaluation of 
the exponential is to introduce the contour Heisenberg picture, 
which will be described in the following. Similar as for stand-

ard time, one can define the time-evolution operator Û
(

z2, z1

)
 

on the contour,

Û
(

z2, z1

)
=





T̂C

{
exp

(
1
i�

∫ z
2

z
1

dz̄ Ĥ
(

z̄
))}

if z2 later than z1,

T̂ a
C

{
exp

(
− 1

i�

∫ z
1

z
2

dz̄ Ĥ
(

z̄
))}

if z2 earlier than z1,

 (46)
where, in the second line, the anti-chronological time-ordering 

operator T̂ a
C  has been introduced, which places operators with 

later contour times to the right. The contour time-evolution 
operator has the usual properties, i.e. fulfills

i� d

dz1

Û
(

z1, z0

)
= Ĥ

(
z1

)
Û

(
z1, z0

)
, (47)

i� d

dz1

Û
(

z0, z1

)
= −Û

(
z0, z1

)
Ĥ

(
z1

)
. (48)

With this, equation (44) can be cast into the form

O(z1) =
〈

Ψ0

∣∣∣Û
(

z0+ , z0−

)
Û

(
z0− , z1

)
Ô

(
z1

)
Û

(
z1, z0−

)∣∣∣Ψ0

〉
,

 (49)
where z0− and z0+ represent the start (end) of the contour. 
Equation  (49) suggests to introduce the contour Heisenberg 
picture

ÔH

(
z1

)
:= Û

(
z0− , z1

)
Ô

(
z1

)
Û

(
z1, z0−

)
, (50)

with the equation of motion

i� d

dz1

ÔH

(
z1

)
=

[
ÔH

(
z1

)
, ĤH

(
z1

) ]
−

+ ∂z
1
ÔH

(
z1

)
. (51)

Using the commutator relations, see equation  (12), the con-
tour equations of motion for the canonical creation and anni-
hilation operators for systems described by the Hamiltonian in 
equation (16) are readily found,

i� d

dz1

ĉi

(
z1

)
=

∑

n

(
hin

(
z1

)
+ fin

(
z1

))
ĉn

(
z1

)

+
∑

npq

winpq

(
z1

)
ĉ†

n

(
z1

)
ĉ p

(
z1

)
ĉq

(
z1

)
,

 

(52)

−i� d

dz1

ĉ†
i

(
z1

)
=

∑

m

ĉ†
m

(
z1

)(
hmi

(
z1

)
+ fmi

(
z1

))

+
∑

mnp

ĉ†
m

(
z1

)
ĉ†

n

(
z1

)
ĉ p

(
z1

)
wmnpi

(
z1

)
,

 

(53)

where

ĉ
(

z1

)
:= ĉH

(
z1

)
, ĉ†

(
z1

)
:= ĉ†

H

(
z1

)
. (54)

These equations can be used to derive equations for operator 
correlators, such as already encountered in equation (44). For 
N operators, they are of the form

k̂
(

z1 . . . zN

)
= T̂C

{
Ô1

(
z1

)
. . . ÔN

(
zN

)}
. (55)

Remembering that any operator can be expressed in terms of 
the canonical operators, a special role is played by the cor-
relators of these operators. From equations  (13) and (14), it 
is evident that especially those with the same number of cre-
ation and annihilation operators are of interest, since they give 
direct access to observables. Thus it is useful to define the 
correlator of N annihilation and creation operators,

Ĝ
(N)
i1...iN j1...jN

(
z1 . . . zN , z′

1 . . . z′
N

)

:= 1
(

i�
)N T̂C

{
ĉi1

(
z1

)
. . . ĉiN

(
zN

)
ĉ†

j1

(
z′

1

)
. . . ĉ†

jN

(
z′

N

)}
,

 

(56)

with 2N contour time arguments. Using some contour calcu-
lus, not repeated here (for details see [73, 78]), and the con-
tour Heisenberg equations, one can derive their equations of 
motion, which couple the N-particle correlator to the (N − 1)- 
and (N + 1)-particle correlators,

∑

l

[
i� d

dzk

δikl − hikl

(
zk

)]
Ĝ

(N)
i1...l...iN j1...jN

(
z1 . . . zN , z′

1 . . . z′
N

)

= ±i�
∑

lmn

∫

C
dz̄ wiklmn

(
zk, z̄

)
Ĝ

(N+1)
i1...m...iN n j1...jN m

(
z1 . . . zN , z̄, z′

1 . . . z′
N , z̄

)

+
∑

p

(
±

)k+p
δikjp

δC

(
zk, z′

p

)

Ĝ
(N−1)
i1...�ik...iN j1...�jp...jN

(
z1 . . . ��zk . . . zN , z′

1 . . .
�
�z′
p . . . z′

N

)
,

 

(57)

∑

l

Ĝ
(N)
i1...iN j1...l...jN

(
z1 . . . zN , z′

1 . . . z′
N

)[
−i�

←
d

dz′
k

δljk
− hljk

(
z′

k

)]

= ±i�
∑

lmn

∫

C
dz̄ Ĝ

(N+1)
i1...iN n j1...l...jN m

(
z1 . . . zN , z̄, z′

1 . . . z′
N , z̄

)
wlmjkn

(
z̄, z′

k

)

+
∑

p

(
±

)k+p
δipjk

δC

(
z p, z′

k

)

Ĝ
(N−1)
i1...�ip...iN j1...�jk...jN

(
z1 . . .

�
�z p . . . zN , z′

1 . . . ��z
′
k . . . z′

N

)
.

 

(58)

Here, the crossed-out indices (times) have to be omitted for 
the respective (N − 1)-particle correlators. The expectation 
value of the operator Ĝ

(N)
 in the initial state Ψ0 yields the 

N-particle Green function G(N)
,
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G(N) =
〈

Ψ0

∣∣∣Ĝ(N)∣∣∣Ψ0

〉
. (59)

Note that in equations  (57) and (58), the bare interaction is 
written as a two-time quantity—a generalization that would 
become important e.g. in the context of retarded and advanced 
relativistic potentials. However, in this work, the bare interac-
tion is always considered single-time-dependent, i.e.

wijkl

(
z1, z2

)
= δC

(
z1, z2

)
wijkl

(
z1

)
. (60)

Nevertheless, the two-time structure of w is often used for the 
illustration via Feynman diagrams (see section 2.8).

The equations  of motion for the Green functions are 
directly generated from the equations for the underlying oper-
ators by taking the expectation value, which corresponds to 
replacing all correlator operators in equations (57) and (58) by 
the respective Green functions,

Ĝ
(N) −→ G(N). (61)

These mutually coupled equations  form a hierarchy, the 
Martin–Schwinger hierarchy [130]. The solution of the full 
hierarchy gives access to all observables of the studied sys-
tem and, by virtue of the connections to the (N − 1)-particle 
and (N + 1)-particle spaces, also spectral information is avail-
able. Thus, as a subset, the solution of the hierarchy incor-
porates the solution of the N-particle Schrödinger equation. 
Unfortunately and as expected, the effort for the full solution 
of the hierarchy also scales exponentially with the particle 
number. For the one-particle Green function G(1), which will 
be simply called the Green function G  in the following, the 
equations of motion, the Keldysh–Kadanoff–Baym equations 
(KBE), read

∑

l

[
i� d

dz1

δil − hil

(
z1

)]
Glj

(
z1, z2

)

= δC

(
z1, z2

)
δij ± i�

∑

lmn

wilnm

(
z1

)
G(2)

mnjl

(
z1, z1, z2, z1+

)
,

 

(62)

∑

l

Gil

(
z1, z2

)[
−i�

←
d

dz2

δlj − hlj

(
z2

)]

= δC

(
z1, z2

)
δij ± i�

∑

lmn

G(2)
inlm

(
z1, z2− , z2, z2

)
wlmnj

(
z2

)
.

 

(63)

Note that the short-hand notation z± := z ± ε (ε → +0) has 
been introduced here to facilitate the correct ordering of the 
operators under T̂C. One notices that even the determination 
of the one-particle Green functions requires the solution of 
all other hierarchy equations as well, due to the coupling to 
the two-particle Green function (which, in turn couples to the 
three-particle Green function, and so on).

2.6. Definition of the selfenergy

To decouple the Martin–Schwinger hierarchy, approximations 
are necessary. This requires to find a functional relation of 
G(n) in terms of G(n−1) that is based on physical considerations 

about the dominant processes. Alternatively, one can apply 
perturbation theory in terms of the particle interaction. If the 
knowledge of the single-particle Green function is sufficient 
for the physical problem at hand, it is suitable to introduce 
the so-called single-particle selfenergy Σ, which allows one 
to (formally) decouple the time-evolution of the Green func-
tion from those of the (N > 1)-particle Green functions and 
obtain a closed equation for the one-particle Green function. 
The selfenergy is implicitly defined as

± i�
∑

lmn

wilnm

(
z1

)
G(2)

mnjl

(
z1, z1, z2, z1+

)

=:
∑

l

∫

C
dz3 Σil

(
z1, z3

)
Glj

(
z3, z2

)
,

 

(64)

± i�
∑

lmn

G(2)
inlm

(
z1, z2− , z2, z2

)
wlmnj

(
z1

)

=:
∑

l

∫

C
dz3 Gil

(
z1, z3

)
Σlj

(
z3, z2

)
.

 

(65)

Note that the Σ resulting from the first definition (equation 
(64)) also fulfills equation  (65) and vice versa. This fea-
ture is not self-evident but follows from the built-in proper-
ties of the KBE and, in particular, the two-particle Green 
function (see, e.g. [73]). With this, equations (62) and (63) 
transform into

∑

l

[
i� d

dz1

δil − hil

(
z1

)]
Glj

(
z1, z2

)

= δC

(
z1, z2

)
δij +

∑

l

∫

C
dz3 Σil

(
z1, z3

)
Glj

(
z3, z2

)
,

 

(66)

∑

l

Gil

(
z1, z2

)[
−i�

←
d

dz2

δlj − hlj

(
z2

)]

= δC

(
z1, z2

)
δij +

∑

l

∫

C
dz3 Gil

(
z1, z3

)
Σlj

(
z3, z2

)
.

 

(67)

These equations  contain the two main quantities in Green 
functions theory, both depending on two contour times z1, z2: 

the (single-particle) selfenergy Σ
(

z1, z2

)
 and the (single-par-

ticle) Green function G
(

z1, z2

)
 itself.

It is apparent from equations (64) and (65) that Σ directly 
follows from the functional form of the two-particle Green 
function G(2). It can be shown from the functional-derivative 
technique [53, 73, 131] that

G(2)
ijkl

(
z1, z2, z3, z2+

)
= Gik

(
z1, z3

)
G jl

(
z2, z2+

)
±

∂Gik

(
z1, z3

)

∂Ujl

(
z2

) ,

where U is a small perturbation of the Hamiltonian. From 
this, it can be seen that the exact G(2) can always be writ-
ten as a functional of G  and, thus, also the exact selfenergy 
Σ. Similarly, for every conserving approximation of G(2) one 

obtains Σ
[
G

]
.

J. Phys.: Condens. Matter 32 (2020) 103001



Topical Review

13

Before turning to the self-consistent determination of Σ
[
G

]
 

in section 2.8, and several approximation strategies thereof in 
section  4, a mapping technique for single-particle contour 
quantities onto real-time quantities is detailed in section 2.7.

2.7. Keldysh–Kadanoff–Baym equations (KBE)

For the actual computation of expressions containing int-
egrals and products of contour quantities, a mapping to ordi-
nary real-time quantities has to be used. A suitable technique 
has been provided by Langreth and Wilkins [132]. Since, in 
this work, only single-particle correlators like the (single-par-
ticle) Green function and selfenergy are of concern, the fol-
lowing technique will only deal with terms of the form (see 
equation (55)),

k (z1, z2) =
〈

Ψ0

∣∣∣T̂C
{

Ô1

(
z1

)
Ô2

(
z2

)}∣∣∣Ψ0

〉
, (68)

with the restriction that the operators have to obey

Ô− = Ô+, (69)

i.e. they have the same values for contour arguments on the 
upper and lower branch. The appearance of the contour-order-
ing operator T̂C in equation (68) suggest to split k into

k (z1, z2) = δC

(
z1, z2

)
kδ(z1) + ΘC

(
z1, z2

)
k> (z1, z2)

+ ΘC

(
z2, z1

)
k< (z1, z2) ,

 

(70)

with

k> (z1, z2) =
〈

Ψ0

∣∣∣Ô1

(
z1

)
Ô2

(
z2

)∣∣∣Ψ0

〉
, (71)

k< (z1, z2) = ±
〈

Ψ0

∣∣∣Ô2

(
z2

)
Ô1

(
z1

)∣∣∣Ψ0

〉
, (72)

where the ± stands for bosonic/fermionic operators. Both 
functions, ‘<’ and ‘>’, obey

k≷ (z1+, z2) = k≷ (z1−, z2) ,

k≷ (z1, z2+) = k≷ (z1, z2−) ,
 (73)

where z1/2± = t1/2± are the projections on the backward/for-
ward branch of the contour, and the relations are depicted in 
figure 3. With that, only two linearly independent quantities 
remain and it is thus natural to define the so-called real-time 
‘<’ and ‘>’ Keldysh components

k>
(

t1, t2
)

:= k (t1+, t2−) = k>
(

t1+ , t2−

)
, (74)

k<
(

t1, t2
)

:= k (t1−, t2+) = k<
(

t1− , t2+

)
 (75)

and the δ component

kδ
(

t1
)

:= k (t1−, t1−) = k (t1+, t1+)

= kδ
(

t1+ , t1+

)
= kδ

(
t1− , t1−

)
.

 
(76)

For convenience, two more (redundant) components, the 
retarded and advanced component, can be defined as

kR
(

t1, t2
)

= δ
(

t1, t2
)

kδ
(

t1
)

+ Θ
(

t1, t2
)[

k>
(

t1, t2
)

− k<
(

t1, t2
)]

,
 

(77)

kA
(

t1, t2
)

= δ
(

t1, t2
)

kδ
(

t1
)

+ Θ
(

t2, t1
)[

k<
(

t1, t2
)

− k>
(

t1, t2
)]

.
 (78)
With these components, the real-time expressions for two 
common concatenations of Keldysh functions, i.e. functions 
satisfying equations  (70) and (73), the convolution and the 
product, can be worked out. For the convolution

c
(

z1, z2

)
=

∫

C
dz3 a

(
z1, z3

)
b
(

z3, z2

)
, (79)

one has

c≷
(

t1, t2
)

=
∫ t

1

t
0

dt3 aR
(

t1, t3
)

b≷
(

t3, t2
)

+
∫ t

2

t
0

dt3 a≷
(

t1, t3
)

bA
(

t3, t2
)

 (80)
and

cR
(

t1, t2
)

=
∫ t

1

t
2

dt3 aR
(

t1, t3
)

bR
(

t3, t2
)

, (81)

cA
(

t1, t2
)

=
∫ t

2

t
1

dt3 aA
(

t1, t3
)

bA
(

t3, t2
)

. (82)

For the product of type

c
(

z1, z2

)
= a

(
z1, z2

)
b
(

z2, z1

)
, (83)

with aδ = 0 = bδ, one arrives at

c≷
(

t1, t2
)

= a≷
(

t1, t2
)

b≶
(

t2, t1
)

 (84)

Figure 3. Subordinated Green functions on C with the forward branch C− and the backward branch C+. The positions of the two time 

arguments of G
(

z1, z2

)
 for the ‘≷ ’ components, which can lie an both parts of the contour, are depicted.
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and

cR/A
(

t1, t2
)

= aR/A
(

t1, t2
)

b<
(

t2, t1
)

+ a<
(

t1, t2
)

bA/R
(

t2, t1
)

= aR/A
(

t1, t2
)

b>
(

t2, t1
)

+ a>
(

t1, t2
)

bA/R
(

t2, t1
)

,
 

(85)
while for the product of type

c
(

z1, z2

)
= a

(
z1, z2

)
b
(

z1, z2

)
, (86)

with aδ = 0 = bδ, one has

c≷
(

t1, t2
)

= a≷
(

t1, t2
)

b≷
(

t1, t2
)

 (87)

and

cR/A
(

t1, t2
)

= aR/A
(

t1, t2
)

b<
(

t1, t2
)

+ a>
(

t1, t2
)

bR/A
(

t1, t2
)

= aR/A
(

t1, t2
)

b>
(

t1, t2
)

+ a<
(

t1, t2
)

bR/A
(

t1, t2
)

.
 (88)
With these definitions, the KBE in component representation 
read

∑

l

[
i� d

dt1
δil − hil

(
t1

)]
G≷

lj

(
t1, t2

)

=
∑

l

∫ t
1

t
0

dt3 ΣR
il

(
t1, t3

)
G≷

lj

(
t̄, t′

)
+

∫ t
2

t
0

dt3 Σ≷
il

(
t1, t3

)
GA

lj

(
t̄, t′

)

=
∑

l

∫ t
1

t
0

dt3
(

Σ>
il

(
t1, t3

)
− Σ<

il

(
t1, t3

))
G≷

lj

(
t̄, t′

)

+
∑

l

∫ t
2

t
0

dt3 Σ≷
il

(
t1, t3

)(
G<

lj

(
t̄, t′

)
− G>

lj

(
t̄, t′

))

 

(89)

and

∑

l

G≷
il

(
t1, t2

)[
−i�

←
d

dt2
δlj − hlj

(
t2

)]

=
∑

l

∫ t
1

t
0

dt3 GR
il

(
t1, t3

)
Σ≷

lj

(
t3, t2

)
+

∫ t
2

t
0

dt3 G≷
il

(
t1, t3

)
ΣA

lj

(
t3, t2

)

=
∑

l

∫ t
1

t
0

dt3
(

G>
il

(
t1, t3

)
− G<

il

(
t1, t3

))
Σ≷

lj

(
t3, t2

)

+
∑

l

∫ t
2

t
0

dt3 G≷
il

(
t1, t3

)(
Σ<

lj

(
t3, t2

)
− Σ>

lj

(
t3, t2

))
.

 

(90)

Note the missing δC in the ‘≷ ’ components of equations (89) 
and (90) compared to equations (66) and (67), which, as it is a 
time-diagonal function, only enters the retarded and advanced 
components.

11 Although, to the knowledge of the authors, no strict proof exists that shows the equivalence of the solutions for G of Hedin’s equation versus that from the 
Martin–Schwinger hierarchy, both approaches agree for all practically relevant approximations. It is, however, worth mentioning that it is proven, e.g. in [73] 
that the original variational approach of Hedin and the diagrammatic techniques are fully equivalent.

2.8. Basic equations for deriving selfenergy approximations

In this brief section, a coupled set of equations of motions for 
five dynamical quantities, two of which are the Green func-
tion and the selfenergy, is summarized. It has been first pre-
sented by Lars Hedin in 1965 [82] in association with the GW  
method, which will be discussed in more detail in section 5. 
If solved exactly, the set of Hedin’s equations yields the same 
G as the solution of the Martin–Schwinger hierarchy11 and 
provides multiple starting points for approximate solution 

schemes. To determine the solution for G
(

z1, z2

)
, its equa-

tions of motion, the KBE, see equations (66) and (67), have to 
be solved. This can be either done directly in their differential 
form, or in the integral form, which reads

Gij

(
z1, z2

)
= G(0)

ij

(
z1, z2

)

+
∫

C
dz3dz4

∑

mn

G(0)
im

(
z1, z3

)
Σmn

(
z3, z4

)
Gnj

(
z4, z2

)
,

 

(91)

with the reference Green function G(0) that is the solution of 
the ideal pair of equations

∑

l

[
i� d

dz1

δil − hil

(
z1

)]
Glj

(
z1, z2

)
= δC

(
z1, z2

)
δij, (92)

∑

l

Gil

(
z1, z2

)[
−i�

←
d

dz2

δlj − hlj

(
z2

)]
= δC

(
z1, z2

)
δij. (93)

Note that G(0) does not refer to zero particles, but to the prop-
erty that it is of zeroth order with respect to the interaction w.

At this point, a more compact notation is introduced that 
focuses on the time structure of the upcoming quantities and 
uses the corresponding Feynman diagrams to exemplify the 
underlying connections. Thereto, the basis indices are skipped 
and the contour-time arguments are replaced by bare numbers 
(z1 �→ 1). The occuring integrations are implicitly determined 
by times, the corresponding vertices of which are fully con-
nected (i.e. two Green functions and one interaction or an 
equivalent connectivity state). As it is usually done in the 
context of Feynman diagrams the bare interaction is used as 
a two-time quantity, see equation (60). This notation will be 
used extensively in sections 4 and 5 to simplify the derivations 
of the selfenergy approximations. For equation (91) this nota-
tion reads as follows,

 

(94)
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Equation (91) (and (94), respectively) is referred to as 
the Dyson equation for the one-particle Green function. 
Comparing the KBE, see equations (66) and (67), to the Dyson 
equation, see equation  (91), the question may arise whether 
the solution of one or the other is numerically more favorable. 
Realizing that the determination of G(0) via equations  (92) 

and (93) is of O
(

N2
b

)
 and O

(
N2

t

)
, whereas the solution of 

the full G via equation (91) involves two separable time inte-

grations and matrix multiplications, it is of order O
(

N3
b

)
 and 

O
(

N3
t

)
, which is the same scaling as the solution of the KBE, 

although the prefactors are higher for the Dyson equation. In 
section 4, though, it will be shown that in an expansion of Σ 
and, particularly, G  with respect to the order of the interac-
tion, only the Dyson equation  allows for a strict order-per-
order expansion scheme.

Both, the Dyson equation  and the KBE, depend on the 
knowledge of the selfenergy Σ. It can be decomposed into 
two parts12,

Σij

(
z1, z2

)
= ΣH

ij

(
z1, z2

)
+ Σxc

ij

(
z1, z2

)
, (95)

12 The same decomposition is used in density-functional theory.

with the (static) time-diagonal Hartree part, ΣH,

ΣH
ij

(
z1, z2

)
= ±i�δC

(
z1, z2

) ∑

mn

wmijn

(
z1

)
Gnm

(
z1, z1+

)
,

 (96)
and the exchange–correlation part, Σxc. To determine 
Σxc, there exist two commonly used equivalent formally exact 
approaches. Approach I regards the selfenergy as a functional 
of the bare interaction, Σxc = Σxc [w], whereas approach II 
treats it as a functional of the screened interaction W , i.e. 
Σxc = Σxc [W], where the screening arises from the dynamic 
redistribution of the other particles in the system. Both tech-
niques rely on a so-called vertex function, named either Λ or 
Γ, in the two cases, which involves the derivatives of either 

Σ or Σxc with respect to G  to determine the vertex function 
and, with it, Σxc. With the coupled equations for Σxc and the 
vertex function, both approaches yield a systematic means to 
generate all selfenergy terms by iteration. We now summarize 
both approaches.

 (I).  With the bare interaction, w, one has

Σxc
ij

(
z1, z2

)
= i�

∑

mpq

wipqm

(
z1

) ∫

C
dz3

∑

n

Gmn

(
z1, z3

)
Λnqpj

(
z3, z2, z1

)
.

 (97)
  The bare vertex Λ is self-consistently given as the solu-

tion of

Λijkl

(
z1, z2, z3

)
= δC

(
z1, z2+

)
δC

(
z3, z2

)
δikδ jl

+
∫

C
dz4dz5

∑

mn

δΣil

(
z1, z2

)

δGmn

(
z4, z5

)
∫

C
dz6

∑

p

Gmp

(
z4, z6

)

∫

C
dz7

∑

q

Gqn

(
z7, z5

)
Λ pjkq

(
z6, z7, z3

)
.

 

(98)

  In the compact notation this set of equations becomes,

 

(99)

 

(100)

 (II).  Using the screened interaction, W , as a basis for the 
expansion, the exchange–correlation selfenergy reads, 
see equation (97),

Σxc
ij

(
z1, z2

)
= i�

∫

C
dz3

∑

mpq

Wipqm

(
z1, z3

)

×
∫

C
dz4

∑

n

Gmn

(
z1, z4

)
Γnqpj

(
z4, z2, z3

)
,

 

(101)

  where W  obeys

Wijkl

(
z1, z2

)
= Wbare

ijkl

(
z1, z2

)
+ Wns

ijkl

(
z1, z2

)
, (102)

  with the bare interaction

Wbare
ijkl

(
z1, z2

)
= δC

(
z1, z2

)
wijkl

(
z1

)
, (103)
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  and the non-singular (ns) induced part

Wns
ijkl

(
z1, z2

)
=

∑

mn

wimnl

(
z1

) ∫

C
dz3

∑

pq

Pnqpm

(
z1, z3

)
W pjkq

(
z3, z2

)
.

 (104)
The occurring polarizability P  is given by

Pijkl

(
z1, z2

)
= ±i�

∫

C
dz3

∑

m

Gim

(
z1, z3

)

×
∫

C
dz4

∑

n

Gnl

(
z4, z1

)
Γmjkn

(
z3, z4, z2

)
.

 

(105)

  The screened vertex function Γ—which Σxc and P  
depend on—is governed by

Γijkl

(
z1, z2, z3

)
= δC

(
z1, z2+

)
δC

(
z3, z2

)
δikδ jl

+
∫

C
dz4dz5

∑

mn

δΣxc
il

(
z1, z2

)

δGmn

(
z4, z5

)
∫

C
dz6

∑

p

Gmp

(
z4, z6

)

∫

C
dz7

∑

q

Gqn

(
z7, z5

)
Γ pjkq

(
z6, z7, z3

)
.

 

(106)

  To summarize, Hedin’s equations  are repeated in the 
compact notation,

 

(107)

  

 

(108)

 

(109)

  

 

(110)

2.9. Summary of selfenergy approximations

We now list the selfenergies that will be discussed in this 
paper and briefly summarize their respective strengths and 
weaknesses. For approach I.) that starts with the bare interac-
tion, equation (97), we will consider:

 –  The particle–particle T-matrix approximation (TPP)
  The TPP selfenergy sums up the diagrams of the Born 

series. This process is computationally expensive, 
which, therefore, restricts the applicability range of the 
approximation to systems of moderate basis size. The 
TPP is a moderate- to strong-coupling approximaton, 
that becomes exact in the limit of low (large) density. It, 
thus, performes best away from half-filling.

 –  The particle–hole T-matrix approximation (TPH)
  The TPH selfenergy sums up a series of particle–hole 

diagrams, which is of comparable numercial complexity 
as the TPP. It is specifically designed to describe sys-
tems around half-filling, i.e. where the particle and 
hole densities are close to each other. For these cases, it 
provides accurate results for moderate to strong interac-
tion strengths. For the application to electronic Hubbard 
systems, the TPH will later be called electron–hole 
T-matrix approximation (TEH).
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For approach (II.) that starts with the screened interaction, 
equation (101), we will consider:

 –  The Hartree–Fock (HF) approximation
  The HF selfenergy results from a perturbative expansion 

up to first order in the interaction. It is equivalent to a 
description on the mean-field level. Due to its simplicity, 
it is numerically easy to use and applicable to large sys-
tems and long simulation times. However, it only gives 
accurate results in the weak-coupling regime.

 –  The second-order (Born) approximation (SOA)
  The SOA selfenergy consists of all diagrams up to second 

order in the interaction. It provides the easiest way to 
include correlation effects in a NEGF calculation. Due 
to its basic structure, the combination with the GKBA 
(see section 2.10) leads to a favorable numerical scaling, 
which opens its applicability to a wide range of systems. 
The SOA gives accurate results for weak to moderate 
coupling strengths.

 –  The third-order approximation (TOA)
  The TOA selfenergy combines all possible selfenergy 

contributions up to third order in the interaction. It is 
much more involved than the SOA rendering the simula-
tions numerically costly. Thus, the applicability range of 
the TOA is restricted to problems with a moderate basis 
size. In return, the TOA remains accurate even in the 
regime of moderate to strong coupling.

 –  The GW  approximation (GWA)
  The GW  selfenergy provides the easiest way to decribe 

dynamical-screening effects by summing up the polari-
zation-bubble diagram series. The resummation process 
is computationally demanding which narrows the class of 
the systems that can be treated, although there are some 
scaling advantages for problems that require a diagonal 
(i.e. with a two-index interaction matrix, see equation 
(22)) basis set. The GWA can be considered a moderate- 
to strong-coupling approximation, which is particularly 
accurate around half filling, where the contributions of 
particles and holes coincide.

Finally, a combination of some of the above results leads to:

 –  The fluctuating-exchange approximation (FLEX)
  The FLEX selfenergy merges the diagram series of the 

TPP, the TPH and the GWA. It, therefore, has the highest 
computational demands of the presented selfenergy 
approximations. By combining the advantages of its 
ingredients, it is applicable for all filling factors and up to 
strong interaction strengths.

An overview of the selfenergies and the abbreviations that 
are being used is given in table 1. The respective applicability 
ranges are schematically illustrated in figure  4. The shown 
results are motivated from experience with lattice calcul-
ations but are expected to be qualitatively valid also in a more 
general context. The illustration demonstrates a fundamental 
difference between perturbative approximations (HF, SOA, 
TOA) on the one hand and partial diagram summations (GW, 
TPP, TEH), on the other. While the former are not intrinsi-
cally density dependent, the latter show (by construction) 
very specific application scopes with respect to the filling. 
FLEX is not shown but should be qualitatively equivalent to 
the unification of GWA/TEH/TPP. It has not yet been tested 
extensively and is, therefore, skipped here. The detailed der-
ivation of the selfenergy expressions will be given later in 
sections  4 and 5. A thorough comparison of the respective 
performance of the presented selfenergy approximations is 
given in section 3.

2.10.The generalized Kadanoff–Baym Ansatz

To compute the time-dependent single-particle Green func-
tions, either the KBE, see equations  (66) and (67), or the 
Dyson equation, see equation (91) have to be solved, which 
both scale cubically with respect to the time duration. An 
approximate way to transform the scaling to a quadratic one, 
has been proposed by Lipavský et al and was named gener-
alized Kadanoff–Baym ansatz (GKBA), for details about the 
derivation see [133] by Lipavský et  al and [125, 127, 128, 
134]. The approximation starts from an exact reformulation of 
the Dyson equation, the ‘<’ component of which reads

G<
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∑
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(111)

Table 1. Main selfenergy approximations, abbreviations and 
section where the approximation is being introduced and discussed.

Abbreviation Selfenergy

HF Hartree–Fock approximation:  

Σ = ΣH + ΣF
Section 4.1

SOA Second-order approximation: Σ = Σ(2) Section 4.2

TOA Third-order approximation: Σ = Σ(3) Section 4.3

GWA GW  approximation: Σ = ΣGW Section 5.2
TPP Particle–particle T-matrix 

approximation: Σ = ΣTpp
Section 5.3

TPH Particle–hole T-matrix approximation: 

Σ = ΣTph

Section 5.3

FLEX Fluctuating-exchange approximation: 
Σ = ΣFLEX

Section 5.5
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and analogously for the ‘>’ component. The GKBA approxi-
mates these terms by only retaining the non-integral contributions, 
which can be considered a simultaneous perturbative expansion 
of G with respect to Σ and to the spectral structure conveyed by 
the off-diagonal elements of both quantities. It reads,

G≷
ij

(
t1, t2

)
= −i�

∑

k

{
GR

ik

(
t1, t2

)
G≷

kj

(
t2, t2

)
+ G≷

ik

(
t1, t1

)
GA

kj

(
t1, t2

)}

=
∑

k

Aik

(
t1, t2

) {
Θ

(
t1, t2

)
G≷

kj

(
t2, t2

)
+ Θ

(
t2, t1

)
G≷

kj

(
t1, t1

)}
,

 (112)
where, in the second line, the spectral function

Aij

(
t1, t2

)
= i�

{
G>

ij

(
t1, t2

)
− G<

ij

(
t1, t2

)}
, (113)

has been introduced. The approximated ‘≷ ’ components are 
used in the right-hand sides of the KBE which, thereby, need 
to be propagated only along the time diagonal. To achieve the 
overall reduction to a quadratic scaling, though, the GKBA has 
to be accompanied by a second-order selfenergy and another 
approximation concerning the retarded and advanced comp-
onents, which, unapproximated, obey equations of similar com-
plexity as the original KBE, i.e. with cubic scaling. In this work, 
the propagators, and with that the spectral function, will be 
approximated on the HF level. Another possibility, employed 
in [135], is to use approximate correlated propagators. The 
GKBA has several important benefits: It preserves the causal 
structure of the KBE and it conserves important constants of 
motion, whenever the chosen selfenergy approximation does 
[98]. Further, it cures certain damping-induced artifacts for 
small systems [77, 122], an example of which will be further 
explored in section 3.4. For a recent discussion, see [27].

2.11. Interacting initial state

To compute the time evolution of the single-particle Green 
function according to equations (66) and (67), the initial state 

represented by G
(

t0, t0
)
 has to be calculated. It is determined 

by the environment of the system. If the system is isolated, i.e. 

is described by a pure state, G
(

t0, t0
)
 is the fully interacting 

initial state. For a system embedded into a bath with which 
it exchanges particles or energy, the initial state is strongly 
influenced by the equilibrium between degrees of freedom 
of the system and the bath. Under the assumption that the 
interaction between both is weak and dominantly uncorre-
lated a suitable ensemble, for instance the canonical or grand-
canonical ensemble, determines the occupation of the energy 
levels in the initial state of the system. For both cases of 
systems, whether connected to a bath or isolated, there exist 
several methodologies to generate the interacting initial state, 
some of which will be detailed in the next sections including 
the method of adiabatic switch-on of the interaction in sec-
tion 2.11.2, which is used throughout this work.

2.11.1. Extension of the contour to finite temperatures. One 
possibility to include the description of the interacting initial 
state, in equilibrium with a bath or isolated, is to augment 
the original contour, comprised of a forward and a back-
ward branch C+, C−, by a ‘vertical’ branch CM of complex 
time arguments ranging along the imaginary axis from z0 to 
z0 − i�β. Here β is the inverse temperature of the bath (or 
equal to ∞ for an isolated system at zero temperature). The 
reasoning behind this can be understood by considering the 
following observations for quantum systems in contact with an 
environment. The simplest way to treat the interaction of the 
system with the environment is statistically, i.e. by assigning 
bath-induced weights wn (i.e. probabilities, with 0 � wn � 1 

and 
∑

n wn = 1) of finding the system in one of its eigenstates 

|n〉. With this, the ensemble average of an observable Ô
(

t0
)
 in 

such a mixed state is defined as

O(t0) =
∑

n

wn

〈
n
∣∣∣Ô

(
t0

)∣∣∣n
〉

. (114)

Figure 4. Illustration of the applicability ranges of the considered selfenergy approximations. The colored areas schematically demonstrate 
the parameter ranges—with respect to the density and the interaction strength—where the respective approximations give reliable results. 
*The empty–full symmetry is a property of the Hubbard model.
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Note that equation (114) is a natural generalization of a pure 
state |n〉 = |Ψk〉, to which it reduces if wn = δk,n. With equa-
tion  (114), the statistical density-matrix operator ρ̂  can be 
defined13,

ρ̂ =
∑

n

wn|n〉〈n|, (115)

with which equation (114) can be rewritten as

O(t0) = Tr
[
ρ̂Ô

(
t0

)]
. (116)

The trace Tr  is to be understood as acting on the full Fock 

space FH
σ

. For the grand-canonical ensemble (GCE), which 
describes a system which exchanges energy (characterized 
by inverse temperature β) and particles (characterized by the 
chemical potential µ) with its environment, the density-matrix 
operator ρ̂  reads

ρ̂ =
exp

(
−βĤM

)

ZGCE , (117)

with the corresponding Hamiltonian, ĤM = Ĥ − µN̂ , and the 

partition function ZGCE = Tr
[
exp

(
−βĤM

)]
. For the GCE, 

equation (116) becomes

O(t0) =
Tr

[
exp

(
−βĤM

)
Ô

(
t0

)]

ZGCE . (118)

With this result, equation (44) can be specialized to

O(z) =
Tr

[
exp

(
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)
T̂C

{
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z
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−βĤM

)] .

 (119)
Using

T̂C

{
exp

(
1

i�

∫

C
dz3 Ĥ

(
z3

))}
= 1̂, (120)

and introducing the vertical part of the contour CM running 
from z0 to z0 − i�β with the identity

exp
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)
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, (121)

we arrive at
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 (122)
From this structure, the contour extension idea can be directly 
derived. If one defines

Ĥ
∣∣
CM ≡ ĤM, Ô

∣∣
CM ≡ Ô

(
t0

)
 (123)

and redefines the contour C as

C = C− ⊕
C+

⊕
CM, (124)

so that every point on the vertical track is defined as ‘later’ 
than all points on the forward and backward branches, equa-
tion (122) can be recast as

O(z) =
Tr

[
T̂C

{
exp

(
− i

�

∫

C
dz3 Ĥ

(
z3

))
Ô

(
z
)}]

Tr

[
T̂C

{
exp

(
− i

�

∫

C
dz3 Ĥ

(
z3

))}] . (125)

The corresponding contour is depicted in figure 5. With this, 
definition (125) correctly reproduces the time-dependent 
expectation values in accordance with equation  (44) for 
z ∈ C− ⊕ C+ and the ensemble average for z ∈ CM, agreeing 
with equation  (118). Note though that this treatment of the 
system-bath interaction is only valid for times smaller than its 
relaxation time as the bath only directly influences the initial 
state and not any time-dependent excitations during the propa-
gation [73].

2.11.2. Adiabatic switch-on of interactions. If one is 
mainly interested in the evolution of isolated systems 

Figure 5. Schwinger–Keldysh contour C extended to the imaginary axis. The forward-branch C− spans from the initial time t0 to ∞, bends 
and leads back to t0 along the backward C+-branch. Then it continues along the imaginary branch CM to t0 − i�β , where β is the inverse 
temperature.

13 The concept of the density operator was introduced by Landau and von 
Neumann. For a general nonequilibrium approach, see [136].
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described by a pure state, a suitable procedure is the gen-
eration of the non-interacting state of the system, which 
is known for most systems and a subsequent sufficiently 
slow ramp-up of the interaction strength from zero to the 
desired value. Provided the Gell-Mann–Low theorem holds 
[137], which assures the existence of some limites, and the 
non-interacting ground state is non-degenerate, it follows 
that the state of the system after switch-on of the interac-
tion is an eigenstate of the fully interacting Hamiltonian. 
It remains to be checked—e.g. by comparison with other 
methods—that it is the ground state. Under the adiabatic-
switching protocol, the Hamiltonian of equation  (16) is 
replaced by

 

(126)

where the monotonically increasing switching function 

f AS : R −→ [0, 1] satisfies

lim
t→−∞

f AS
(

t
)

= 0, f AS
(

t
)

= 1, for t � t0. (127)

To achieve a high fidelity of the final state the switch-on pro-
cess has to be performed slow enough and as smooth as pos-
sible. Here, the use of the function [138]
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(128)

is superior compared to an approach based on a Fermi func-
tion, since it provides a very small relative change for values 
near the beginning and the end of the switch-on process. The 
free parameters τ  and tH, the halftime (chosen as tH = t0/2 

for t ∈
[
0, t0

]
), control the steepness and the duration of the 

switch-on. Using the adiabatic-switching methodology, the 
time-contour attains the form depicted in figure 6.

A third option to include initial correlation is via an addi-
tional collision integral or selfenergy term [27, 136, 139, 140]. 
For completeness, we also mention that similar problems arise 
by use of the GKBA [136].

3. Applications: numerical results for fermionic  
lattice systems

This section discusses some applications of the approx imation 
strategies detailed in the previous section. All simulations 
described in this section  have been performed for spin-1/2 
fermions in the Hubbard model, see section  2.3, for zero 
temper ature. After providing an overview of the algorithm for 
the numerical solution of the KBE in section 3.1, results for 
the correlated ground state of Hubbard nano-clusters are pre-
sented in section  3.3. The ground-state energy and spectral 
function are used as benchmarks to compare the performance 
of the selfenergy approximations listed in section 2.9 for dif-
ferent filling factors and interaction strengths. Subsequently, 
in section  3.4, the behavior of the approximation strategies 
in the simulation of the time-dependent response of Hubbard 
clusters to external excitations is studied. A special focus 
lies on excitations that strongly drive the system out of equi-
librium. There, the occurrence of a particular weakness of 
selfconsistent approaches, the so-called correlation-induced 
damping [122], is analyzed for all approximations and it is 
demonstrated how it can be overcome to a large extent by 
application of the GKBA, in section 3.4.

3.1. Algorithm for the solution of the Keldysh–Kadanoff–Baym 
equations (KBE)

This section gives an overview of the algorithm to calculate 
the solution of the KBE, see equations  (89) and (90), for 
spin-1/2 fermions. Both equations need to be equipped with 

the initial value G≷
(

t0, t0
)
, which are the Green functions of 

the—in general, correlated—initial state. These Green func-
tions are, in turn, generated from the ones of the ideal ground 
state, G(0),≷, via the adiabatic-switching method described in 
section 2.11.2. The ‘≷ ’ components of the ideal Green func-
tion directly follow from the ideal one-particle density matrix 
n(0) via the relations

G(0),<
ij = − 1

i�
n(0)

ji , (129)

G(0),>
ij = 1

i�

(
δij − n(0)

ji

)
, (130)

where the second follows from the more general relation for 
an arbitrary time t,

G>
ij

(
t, t

)
= 1

i�
δij + G<

ij

(
t, t

)
. (131)

Since, here, only zero-temperature applications are con-
sidered, the ideal fermionic density matrix can be found by 

Figure 6. Schwinger–Keldysh contour CAS with adiabatic switch-on of the interactions. The starting and end point is now −∞.
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diagonalization of the single-particle part of the Hamiltonian, 

Ĥ
0
, see equation (16). The density matrix n

Ĥ0

 in the eigenba-

sis of Ĥ
0
 is diagonal and, for N particles, reads (sorted by the 

eigenvalues, starting from the smallest one)

n
Ĥ0

ij = δij

{
1, if i � N

0, else
. (132)

After transformation into the Hubbard basis, this yields the 

ideal density matrix n(0)
ji  and, via equations (129) and (130), 

the components of the ideal Green function. Using G(0),≷
ij  as 

initial values, following equation  (126), the KBE are prop-
agated along both time-directions simultaneously switching 
on the interaction with the switching function, see equa-
tion (128), i.e. the solutions of

∑
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and
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(134)

for all values t1, t2 ∈
[
ts, t0

]
, are computed, where ts is the 

starting time of the adiabatic switching. The interaction matrix 
in the selfenergy terms for the chosen approximation, on the 
right-hand sides are replaced by (see sections 4 and 5)

wijkl −→ f
τ ,t

H
AS

(
t
)

wijkl, (135)

where the switching parameters tH and τ  are chosen such 
that the resulting state is converged with respect to the rel-
evant observables. In practice, values of τ = 19.0 J−1 and 
tH = 25.0 J−1 have been found sufficient for all calculations. 
After the switching is completed, the system is in the corre-

lated ground state14 described by G≷
(

t0, t0
)
. The information 

about the correlations in the system is encoded in the values of 
the Green functions for all time-points during the switching. 
That is why all integrals occurring in the solution of the KBE 
for physically relevant times have to extend along the whole 

time-plane including the adiabatic-switching part, i.e. equa-
tions (133) and (134) have to be used also for t1, t2 > t0 . It has 
to be noted that any time-dependent excitation of the system 
has to occur after the switching is finished and that the values 
of G  with at least one argument in the switching region can-
not be used for the determination of observables, as detailed 
in section 3.2.

For the numerical solution of the KBE, standard approaches 
for the solution of ordinary differential equations  (ODEs), 
such as Runge–Kutta methods [141], can be employed upon 
appropriately discretizing the two-time plane. Thereto, a time-
stepping scheme has to be used to propagate the Green func-

tion starting from G≷
(

t0, t0
)
 along both time directions in the 

two-time plane and along the time diagonal (for more details, 
see, e.g. [70, 78]). Further, an integration routine for the right-
hand sides of equations (133) and (134) is required. Here, the 
approach detailed in [78] has been employed for all calcul-
ations. As a general note, the use of higher-order methods for 
the solution of the ODEs and the integrals, i.e. methods where 
the error scales with a high power of the time step such that 
time steps of the order of 10−2J−1–10−1J−1 are possible, is 
especially advisable to achieve performance and accuracy, 
since the right-hand sides of the KBE are numerically very 
expensive. The accuracy of the simulations can be monitored 
by verifying the conservation laws, in particular of the density 
and total energy [142] and time-reversibility [80]. Needless 
to say, these accuracy tests are compulsory to ensure the 
generation of reasonable and physical results; the numerical 
behavior that follows from a violation of these laws can easily 
get uncontrolled and strongly depends on the choice of the 
numerical methods [142]. More details to a proper numerical 
treatment in the context of nonequilibrium Green functions 
are given, e.g. in [74, 78, 136, 143].

During the evaluation of the selfenergy, for the resumma-
tion approaches presented in section  2.9, one has to face a 
specific type of equations—namely, the Volterra equations of 
the second kind. In the case of the GW  approximation, one 
has the Dyson-type equation for the screened interaction (see 
equations  (102)–(104)), whereas for the T-matrix approx-
imations, one gets the respective Lippmann–Schwinger equa-
tions (see equations (345) and (383)). There are two general 
procedures to solve these equations. We demonstrate both on 
the example of the screened interaction. From equation (309) 
(advanced components for spin-0 bosons) one gets

Wns,b,0,A
ij

(
t1, t2

)
= ΦGW,b,0,A

ij

(
t1, t2

)

+ U
(

t1
) ∫ t

2

t
1

dt3
∑

p

GF,A
ipip

(
t1, t3

)
Wns,b,0,A

pj

(
t3, t2

)
.

For the first procedure, the equation is solved by iteration. For 
that, one uses Φ as a starting value for W  by inserting it into the 
integral term to calculate a refined W  (which can then be used 
as the next starting value). This procedure is repeated until 

the change 
∣∣∣W(n) − W(n−1)

∣∣∣ (with the number of iterations n) 

falls below a chosen threshold and W  can be considered to be 
converged. This algorithm is explained in more detail, e.g. in 

14 As already pointed out in section 2.11.2, it has to be checked externally, 
e.g. by comparison with other methods, that the final state of the adiabatic 
switching is indeed the ground state.

J. Phys.: Condens. Matter 32 (2020) 103001



Topical Review

22

[78] for the particle–particle T matrix. The second procedure 
to solve the equation is done via inversion. After applying the 
inverse Fock Green function from the left and some resorting 
of terms, the equation takes the following form,

Wns,b,0,A
ij

(
t1, t2

)
=

{[(
GF,A

)−1
− U

(
t1

)]−1
}

ij

(
t1, t2

)
× U

(
t1

)
U

(
t2

)
.

With that, there is no longer a time integration or an index 
sum to be done, but, instead, two numerical inversions on the 
full two-time plane have to be calculated. More details to the 
inversion scheme for time-dependent Green functions can be 
found, e.g. in [144]. Both procedures have upsides and draw-
backs. For the iteration scheme, it can become increasingly 
numerically tough to achieve convergence during the propa-
gation, while for the inversion scheme, the computations on 
the two-time plane can become very resource-demanding. For 
most results in this paper, the iteration procedure is used.

It should be mentioned that, instead of using the KBE, 
the numerical solution of the Dyson equation (equation (91)) 
gives an equivalent way to propagate the Green functions. 
This can also be achieved either via iteration or inversion (see, 
e.g. [144] for details).

3.2. Important time-dependent observables

This section briefly describes how important physical observ-
ables can be obtained from the time-dependent Green func-
tions and additionally from the right-hand sides of the KBE, 
see equations  (133) and (134), the so-called collision int-
egrals. As detailed in the equation  (129), the ‘<’ comp-
onent of the Green function of the interacting ground state 
is directly linked to the density matrix. This relation also 

holds true for the time-dependent density matrix nij

(
t
)
, which 

describes the single-particle response of the system subject to 

a  time-dependent excitation, reading

G<
ij

(
t, t

)
= − 1

i�
n ji

(
t
)

. (136)

Apart from the time-dependent occupations of the Hubbard 
sites, which are given by the diagonal elements of the time-
dependent density matrix, the latter also permits the calcul-
ation of several energy contributions:

 –  the kinetic energy,

Ekin

(
t
)

= Re

(∑

mn

hmnnnm

(
t
))

, (137)

 –  the energy induced by a time-dependent excitation 

fmn

(
t
)
,

Eex

(
t
)

= Re

(∑

mn

fmn

(
t
)

nnm

(
t
))

. (138)

 –  The mean interaction energy is also available. Its calcul-
ation requires knowledge of the two-particle Green 
function and is given by (with contour times)

Eint

(
z1

)
= ±i�

∑

klmn

wklnm

(
z1

)
G(2)

mnkl

(
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)

=
∑

kl

∫

C
dz3 Σkl

(
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)
Glk

(
z3, z1

)
.

  It is, thus, the trace over the time-diagonal contribution 
of the collision integral. The real-time expression for 
the interaction energy can then be found by performing 
the trace over the right-hand side of equation  (89) and 
includes—in contrast to equations (137) and (138)—the 
full two-time Green functions,

Eint

(
t
)

= −
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2
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.

 

(139)

The possibility to compute the interaction energy (a two-
particle quantity) from a single-particle function is a unique 
feature of the Green functions approach (in contrast, in 
reduced-density-operator theory this requires the two-particle 
density operator [136]).

The availability of information off the time diagonal in 
the one-particle Green function allows, furthermore, to gain 
insight into the (N + 1)- and (N − 1) particle spaces by means 
of the single-particle spectral function, already encountered 
in equation (113). If an N-particle system is prepared in the 

ground state |Ψ(N)
0 〉 with energy E(N)

0  (or any other N-particle 

energy eigenstate), e.g. via adiabatic switching, and after-
wards propagated without additional excitations, the ‘≷ ’  
components of the two-time Green functions obey

G<
ji

(
t1, t2

)
= ∓i�

∑

m

Qm(j)Q∗
m(i)exp

(
1

i�

(
E(N−1)

m − E(N)
0

)(
t2 − t1

))
,

 (140)
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= i�
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Pm(j)P∗
m(i)exp

(
1
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m − E(N)
0

)(
t1 − t2

))
,
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where the amplitudes Qm(i), Pm(i) are defined as

Pm(i) =
〈

Ψ(N)
0

∣∣∣ĉi

∣∣∣Ψ(N+1)
m

〉
, (142)

Qm(i) =
〈

Ψ(N−1)
m

∣∣∣ĉi

∣∣∣Ψ(N)
0

〉
. (143)

They are the overlap matrix elements of the (N − 1)- and 
(N + 1)-particle states of energy Em  with the state which 
originates from removing/adding one particle in the ith basis 
state from/to the N-particle state. By Fourier transforming and 

via the knowledge of E(N)
0 , the (N − 1)- and (N + 1)-particle 

energies can be determined from the propagation of the two-
time Green function of the N-particle system. In other words, 
the correlation function G< contains information about the 
occupied states of the N-particle system and the transition 
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energies to the N  −  1-particle system. In contrast, G> con-
tains information about the unoccupied states (‘holes’) of the 
N-particle system and the transition energies to the N  +  1-par-
ticle system when one of the unoccupied states is being filled.

The combination of both functions directly yields the spec-
tral function,

Aji(t1, t2) = i�
{

G>
ji

(
t1, t2

)
− G<

ji

(
t1, t2

)}
. (144)

Aside from the two-particle energy, see equation  (139), 
the single-particle Green function gives also access to another 
two-particle quantity—the local two-particle density. Indeed, 
via the collision integral, the time-dependent double-occu-

pations, n(2)
i

(
t
)

= 〈n̂i↑(t)n̂i↓(t)〉, i.e. the probability that one 
electron with spin up and another with spin down simultane-
ously occupy the same spatial orbital on a Hubbard site ‘i’, 
can be computed as

n(2)
i

(
t
)

= 1

2U

∑
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∫ t

t
0

dt̄
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il
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(
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)
− Σ<
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(
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)
G>
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(
t̄, t

)}
,

 (145)
which becomes obvious when taking into account the relation 
between the selfenergy and the two-particle Green function, 
see equations  (64) and (65). Further, the two-particle local 
density correlation (pair-correlation function) can be com-
puted by subtracting the uncorrelated (mean-field) expression 
of the two-particle density which (for the Hubbard model) is 
nothing but the product of two single-particle densities,

δn(2)
i (t) = n(2)

i (t) − ni↑(t)ni↓(t). (146)

This quantity is identical to zero if the system is uncorrelated 
and thus directly measures effects beyond Hartree–Fock. A 
quantity that also measures the space-resolved correlations in 
a many-body system is the local entanglement entropy [28],

Si(t) = −2
(ni

2
− n(2)

i

)
log2

(ni

2
− n(2)

i

)
− n(2)

i log2 n(2)
i

−
(

1 − ni + n(2)
i

)
log2

(
1 − ni + n(2)

i

)
.

 

(147)

We now turn to a survey of recent computational results 
that were obtained with the involvement of (some of) the 
authors. Our focus is on comparison of different selfenergy 
approximations and on tests of their accuracy.

3.3. Numerical results for the correlated ground state

In this section, numerical results for the interacting ground-
state energies are presented. As an example, we consider a six-
site Hubbard model for which exact results can be obtained. 
Our main interest is to test the performance of the different 
selfenergy approximation schemes introduced in sections  4 
and 5 with respect to filling level n (i.e. density) and interac-
tion strength, U/J, of the system, by comparison with exact 
calculations.

Following the adiabatic-switching algorithm of sec-
tion  2.11.2, the system is initially prepared in the non-
interacting ground state for N↑ = N↓ = 1, 2, 3 particles, 

i.e. filling levels n  =  1/6, n  =  1/3 and n  =  0.5. Using the 
switching function (128) with parameters τ = 19.0 J−1 and 
tH = 25.0 J−1, ensuing, the interaction U is ramped up to the 
final values U = 0.1, 0.5, 1.0 and 2.0. In table 1, we list the 
selfenergy approximations that are being used and compared.

3.3.1. Results for the ground-state energy. We begin with a 
detailed analysis of the ground-state energy to understand the 
quality of the different selfenergy approximation, in depend-
ence on the coupling strength and the filling. Starting with 
U  =  0.1J, which is very close to an ideal system, the results 
for N↑ = N↓ = 1, 2, 3 are listed in the second columns of 
tables 2–4, respectively.

For all three filling factors, the Hartree results differ from 
the exact results in the third decimal place, while all meth-
ods beyond Hartree agree up to the fourth decimal place. This 
can be explained by the fact that the Hartree approximation 
is only correct up to the first order in the interaction strength, 
while all other methods agree up to the second order in the 
interaction with each other and the exact solution. For both 
smaller-than-half-filling factors, the results of the non-Hartree 
methods behave similarly. The best results, which agree up to 
at least 5 decimal places with the exact result, are achieved by 
the third-order and the FLEX approximations, which are both 
correct up the third order in the interaction strength.

On the other hand, when only one of the two third-order 
selfenergy contributions is included, the particle–particle and 
electron–hole T-matrix approximations (TPP, TEH), do not 
improve the result significantly compared to the second-order 
approximation (SOA) for n  =  1/3, although, for n  =  1/6, 
the particle–particle T matrix performs better than the elec-
tron–hole T matrix, since the latter contributes less as the 
electronic density is comparatively small. For U  =  0.1J, the 
GW approximation shows no difference to the SOA results, 
since both approximations only differ in the fourth order, as 
the GWA has no third-order diagram, see equation (316). For 
half filling, n  =  0.5, all correlated methods (i.e. all methods 
except Hartree), apart from the T matrices, agree with each 
other and with the exact solution up to 5 decimal places. This 
is explained by the so-called particle–hole symmetry in the 
Hubbard model [145], which only occurs at half filling. In this 
particular case there is an exact cancellation of all electron–
hole and particle–particle T-matrix terms of odd orders in the 
interaction and equality of all even order terms. Therefore, 
for half filling, SOA and TOA yield exactly the same results 
and agree with GWA and FLEX up to the fourth order in the 
interaction.

For the increased but still small interaction strength 
U  =  0.5J, the results for N↑ = N↓ = 1, 2, 3 (n = 1/6, 1/3, 0.5) 
are shown in the third columns of tables  2–4, respectively. 
Here, the Hartree results differ from the exact result already 
in the second decimal place. In contrast, all correlated meth-
ods agree with the exact result in the second decimal place. 
Compared to the U  =  0.1J results, only the TOA remains close 
to the exact solution whereas all other methods show more 
pronounced deviations. For n  =  1/6, FLEX and TPP yield 
comparably good results. Further, TEH is worse compared 
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to its particle–particle counterpart, and GWA is worse than 
the SOA. For n  =  1/3, FLEX becomes better than TPP, show-
ing the increasing importance of the third-order electron–hole 
contribution. For half filling, the GWA result is the closest 
to the exact solution, closely followed by the equal results of 
the SOA and TOA. This gives a first hint that, at U  =  0.5J, 
the fourth- and possibly higher-order terms gain influence, 
although among the approximations containing fourth-order 
and higher terms, only the GWA gives improved energies 
compared to second-/third-order perturbative results.

For the higher interaction strengths U/J  =  1.0 and 
U/J  =  2.0, the results are shown in the fourth and fifth col-
umns of tables 2–4, respectively. Compared to the results for 
U  =  0.5J, the relative order of the performance of the differ-
ent selfenergy approximations remains the same, but the abso-
lute differences to the exact results increase. Summarizing the 
results for the ground-state energies, it is evident that, away 
from half filling, the TOA outperforms all other perturbative 
and non-perturbative selfenergy approximations, at least in 
the covered range of coupling parameters U/J = 0.1 . . . 2.0. 
For half filling, on the other hand, the best results are obtained 
from the GW approximation.

3.3.2. Results for the spectral function in the ground 
state. Let us now consider another important quantity of the 
correlated ground state, which goes beyond the description of 

the lowest energy level: the single-particle spectral function, 
that was introduced in section 3.2. For an N-particle system, it 
shows the transition energies into the (N − 1)-particle as well 
as the (N + 1)-particle system, i.e. the single-particle removal 
and addition energies. The removal energies are carried by the 
off-timediagonal values of G<, while the addition energies are 
similarly encoded in G>. They can be made visible by trans-
forming into relative and center-of-mass time and, afterwards, 
Fourier transforming with respect to the relative time. Com-
paring with equations (140) and (141), one expects peaks at 
the energy levels of (N ± 1)-particle systems shifted by the 
ground-state energy of the N-particle system.

For the six-site Hubbard system of interaction strength 
U  =  1J, the performance of the different selfenergy approx-
imations is studied for the three filling factors n = 1/6, 1/3 
and 1/2. The results are compared with exact excitation spec-
tra of the relevant (N ± 1)-particle systems, which in turn are 
generated by excitation with a δ-kick and subsequent Fourier 
transform of the time-dependent density evolution.

For n  =  1/6, the results are shown in figure  7. The fre-
quency axis of the spectrum is shifted such that all removal 
energies, corresponding to G<, have negative values while the 
addition energies, corresponding to G>, have positive ener-
gies. Since the spectrum of the (N − 1)-particle system only 
contains one spin-up or spin-down particle15 it has no interac-
tion effects and, thus, is ideal. This corresponds to the ‘<’-part 
of the spectrum having only one spectral line which matches 
the exact result (blue line) for every approx imation includ-
ing Hartree(–Fock). Analyzing the ‘>’ part of the spectrum 
which belongs to the system with two particles of one spin-
direction and one particle of the other, one can separate two 
sets of spectral lines. The three spectral lines belonging to the 
lowest addition energies are in exact agreement throughout all 
approximations including Hartree and, thus, indicate mostly 
uncorrelated states. The position of the peak for the next higher 
addition energy begins to differ between the approximations. 
The best agreement with the exact solution is reached by the 

Table 2. Ground-state energies, Egs/J , for Ns = 6 sites and 1/6 
filling, i.e. N↑ = N↓ = 1, for different couplings and for different 
selfenergy approximations. Approximations are ordered by Egs for 
the smallest U. In each column, the two results that are closest to 
the exact one are typed bold.

Σ U/J  =  0.1 U/J  =  0.5 U/J  =  1.0 U/J  =  2.0

H −0.533 604 −0.449 56 −0.347 18 −0.149 39
TPP − 0.534 067 −0.459 81 −0.382 91 −0.263 19
Exact − 0.534 073 − 0.460 65 − 0.388 10 − 0.288 20
TOA − 0.534 075 − 0.460 48 −0.385 45 − 0.267 38
FLEX −0.534 076 − 0.461 29 −0.396 85 −0.360 59
SOA −0.534 084 −0.461 64 − 0.394 72 − 0.325 14
GWA −0.534 084 −0.461 81 −0.397 23 −0.350 68
TEH −0.534 093 −0.462 93 −0.405 35 −0.390 65

Table 3. Ground-state energies, Egs/J , for Ns = 6 sites and 1/3 
filling, i.e. N↑ = N↓ = 2, for different couplings and for different 
selfenergy approximations. Approximations are ordered by Egs for 
the smallest U. In each column, the two results that are closest to 
the exact one are typed bold.

Σ U/J  =  0.1 U/J  =  0.5 U/J  =  1.0 U/J  =  2.0

H −2.642 487 −2.359 48 −2.009 67 −1.318 91
TPP − 2.643 354 −2.379 63 −2.083 69 −1.573 67
Exact − 2.643 367 − 2.381 07 − 2.093 67 − 1.633 42
TOA − 2.643 367 − 2.380 93 − 2.091 82 − 1.614 55
FLEX −2.643 368 − 2.381 74 −2.104 24 –1.761 67
SOA −2.643 376 −2.382 08 − 2.100 58 − 1.670 92
GWA −2.643 376 −2.382 26 −2.103 57 −1.713 03
TEH −2.643 390 −2.384 00 −2.117 46 −1.803 34

Table 4. Ground-state energies, Egs/J , for Ns = 6 sites, and half 
filling, i.e. N↑ = N↓ = 3, for different couplings and for different 
selfenergy approximations. Approximations are ordered by Egs for 
the smallest U. In each column, the two results that are closest to 
the exact one are typed bold.

Σ U/J  =  0.1 U/J  =  0.5 U/J  =  1.0 U/J  =  2.0

H −6.837 918 −6.237 92 −5.487 91 −3.987 91
TPP − 6.839 299 −6.269 49 −5.601 73 −4.368 96
Exact − 6.839 331 − 6.273 22 − 5.628 89 − 4.546 31
TOA − 6.839 331 −6.272 85 −5.623 56 −4.485 69
SOA −6.839 331 − 6.272 85 − 5.623 56 − 4.485 69
GWA −6.839 331 − 6.273 47 − 5.632 59 − 4.586 04
FLEX −6.839 334 −6.274 71 −5.649 23 −4.716 30
TEH −6.839 363 −6.277 41 −5.661 04 −4.735 47

15 As the fermionic Hubbard Hamiltonian contains no terms which are 
different for up or down spin-orientation, a system with N  spin-up and M 
spin-down particles behaves like the system with M spin-up particles and N  
spin-down particles.

J. Phys.: Condens. Matter 32 (2020) 103001



Topical Review

25

GWA followed by SOA, TEH and HF. The positions for TPP 
and FLEX are slightly shifted to lower energies. For TOA, the 
peak position cannot be easily distinguished with the shown 
spectral resolution, but the knee-structure within the left 
slope of the peak for the next higher energy suggests that the 
accuracy is comparable to that of the other approximations. 
Unlike any other tested approx imation, though, the TOA is 
able to show the energy level just above ω/J ≈ 3. The next-
higher energy level at ω/J ≈ 3.3 is best captured by the FLEX 
approximation followed by TPP, which slightly shifts to lower 
energies. The SOA, GWA and the TEH show this peak shifted 
to higher energies. For the TOA, it remains questionable if 

the peak at ω/J ≈ 3.8 is to be attributed to exact energy level 
at ω/J ≈ 3.3 or if it shows the energy level at ω/J ≈ 3.9. The 
level just above ω/J ≈ 4 is only shown by the TPP and FLEX 
approximations, which indicates that these states embody a 
high degree of correlation. Summing up the findings for one-
sixth filling, the best overall results are achieved by the TPP 
and FLEX approximation, with the latter performing slightly 
better. In addition, the TOA shows energy levels which are not 
captured by any other approximation.

For n  =  0.33, the results are shown in figure  8. Two 
removal energy levels with a large amplitude and one with a 
small amplitude are visible. It is noteworthy that the removal 
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Figure 7. Six-site Hubbard cluster with U  =  J at one-sixth filling. Spectral function generated from different selfenergy approximations: 
brown full line: third-order approximation (TOA), crimson dashed line: second-order approximation (SOA), green dashed line: particle–
particle T matrix (TPP), yellow dashed line: electron–hole T matrix (TEH), blue dashed line: GW  approximation (GWA), purple semi-
dashed line: fluctuating-exchange approximation (FLEX), gray full line: Hartree–Fock approximation (HF). For comparison: Exact 
excitation spectra of the systems with N↑ = 1, N↓ = 0 (blue) and N↑ = 2, N↓ = 1 (red). The spectra are shifted such that E  =  0 lies in the 
center between the highest removal energy and the lowest addition energy.
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Figure 8. Six-site Hubbard cluster with U  =  J at one-third filling. Spectral function generated from different selfenergy approximations: 
brown full line: third-order approximation (TOA), crimson dashed line: second-order approximation (SOA), green dashed line: particle–
particle T matrix (TPP), yellow dashed line: electron–hole T matrix (TEH), blue dashed line: GW approximation (GWA), purple semi-
dashed line: fluctuating-exchange approximation (FLEX), gray full line: Hartree–Fock approximation (HF). For comparison: Excitation 
spectra of the systems with N↑ = 2, N↓ = 1 (blue) and N↑ = 3, N↓ = 2 (red). The spectra are shifted such that E  =  0 lies in the center 
between the highest removal energy and the lowest addition energy.
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energies of the one-third filled Hubbard cluster connect to, i.e. 
that of two and one particle of both spin-directions, respec-
tively, is the same the addition energies of the one-sixth filled 
cluster connect to. Comparing with the right part of figure 7, 
one immediately recognizes that the shown energy levels are 
not the same. For n  =  1/3, the destination energy levels are 
levels 1, 2 and 6, while, for n  =  1/6, the levels 1, 3, 6 and higher 
levels are reached. Thus, the combined information of both 
fillings can be used to gain insight into the energy spectrum 
of the intermediate system that differs by one particle to both. 
Concerning the quality of the approximations for the removal 
energy levels, all approximation agree with each other and 
with the exact solution, indicating that the states belonging to 
the removal energies are mainly uncorrelated. For the addition 
energies, the same is true for the first two levels. Starting from 
just above ω/J ≈ 2, there are many close-lying energy levels 
in the range up to ω/J ≈ 4, which renders an attribution to 
the different approximations difficult. In general, confirming 
the trend found for n  =  1/6, the FLEX approximation yields 
results which very well agree with the exact energy levels, 
while the TOA reveals correct energy levels not found with 
the other approximations.

Turning to the results for half filling, shown in figure 9, one 
immediately recognizes two peculiarities of this setup. First, 
the removal and addition part of the spectrum is symmetric 
with respect to E  =  0. This is, again, due to the occurrence of 
particle–hole symmetry [145]. Second, comparing the quality 
of the different approximations, one can discern only minor 
differences at energy levels farther away from E  =  0, which 
are most pronounced for the FLEX approximation. As a special 
note, the good performance of the Hartree approximation for 
the spectral function indicates that the use of the GKBA with 
Hartree propagators is justified for half filling and explains the 
excellent results that could be achieved [77, 128, 146].

Summarizing the ability of NEGF methods to describe the 
spectral function of Hubbard clusters, one can state that the 
overall agreement for small to medium interaction strength 
is good and especially via combination of different approx-
imation methods as well as probing from both systems with 
adjacent number of particles, one can gain a large part of the 
spectral information.

3.4. Time evolution following an external excitation

After analyzing simulation results for the correlated ground 
state and the quality of different selfenergy approximations, 
we now turn to time-dependent simulations. Thereby the 
ground-state data serve as the initial condition of the system 
prior to the excitation. The dynamics of the system which is 
driven out of equilibrium by an external excitation are studied 
numerically using the correlated selfenergy approximations 
that were described in sections  4 and 5. Thereby we focus 
on separate dynamics studies following different types of 
excitations.

Again, the motivation here is to analyze the accuracy of 
different approximations by performing tests against bench-
mark data. These include exact-diagonalization (CI) calcul-
ations that are possible for small systems; examples are given 
in sections 3.4.4 and 3.4.5. For larger systems, comparisons 
with time-dependent density-matrix renormalization group 
(DMRG) simulations can be performed, (see sections  3.4.1 
and 3.4.2) which, however, are restricted to one-dimensional 
systems, due to the present limitations of DMRG. Finally, 
comparisons can be made to experiments with ultracold 
atoms, see section 3.4.1.

3.4.1. Time evolution following a confinement quench. A 
rather simple excitation of a finite system is to start with a 

Figure 9. Six-site Hubbard cluster with U  =  J at half filling. Spectral function generated from different selfenergy approximations: brown 
full line: third-order approximation (TOA), crimson dashed line: second-order approximation (SOA), green dashed line: particle–particle 
T matrix (TPP), yellow dashed line: electron–hole T matrix (TEH), blue dashed line: GW approximation (GWA), purple semi-dashed line: 
fluctuating-exchange approximation (FLEX), gray full line: Hartree–Fock approximation (HF). For comparison: Excitation spectra of the 
systems with N↑ = 3, N↓ = 2 (blue) and N↑ = 4, N↓ = 3 (red). The spectra are shifted such that E  =  0 lies in the center between the 
highest removal energy and the lowest addition energy.
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spatially localized configuration that is achieved by a strong 
confinement potential and then to rapidly remove the confine-
ment at some time t  =  0. This resembles classical diffusion 
experiments where a localized particle density expands into 
vacuum. Such a configuration of a quantum system is straight-
forwardly realized with ultracold atoms in a trap or an optical 
lattice. An example of a rapid expansion of cold fermionic 
atoms was presented by Schneider et al in [147].

With the NEGF approach it is fairly straightforward to 
simulate such an expansion scenario of atoms on an optical 
lattice because the latter accurately reproduces the Hubbard 
Hamiltonian (27) with onsite interaction. In the present exper-
iment a two-dimensional geometry was used. Before pre-
senting NEGF results for this setup we focus on benchmark 
calculations where comparison with DMRG simulations were 
performed. In [22], expansion simulations for N  =  34 fermi-
ons in a one-dimensional configuration of 75 Hubbard sites 
have been carried out. Initially, the 17 central sites were dou-
bly occupied whereas the outer sites were empty, see the bot-
tom row (left column) of figure 10. The expansion dynamics 
are quite interesting and differ significantly from the classical 
case due to the rectangular shape of the initial density profile. 
Furthermore, the expansion of fermions is constrained by the 
Pauli principle, i.e. the innermost particles cannot move until 
the fermions at the edge have (partially) emptied their sites.

In figure 10 three sets of simulations are presented. The full 
lines are time-dependent DMRG results, see [22] for details. 
In addition, the authors show NEGF results with particle–par-
ticle T-matrix selfenergies (here TMA) in order to accurately 

simulate strong-correlation effects. One set of results is from 
a full two-time simulation (TMA, green dashes), the other 
one, from a single-time approximation using the GKBA 
with Hartree–Fock propagators (HF-GKBA+TMA, yellow 
dashes). In the present simulations the coupling was mod-
erate, U/J  =  1 and, not surprisingly, the agreement of the 
NEGF results for the density profile with DMRG is excel-
lent. An interesting observation is that the two-time simula-
tions show a faster dynamics than the one-time approximation 
(HF-GKBA).

A more sensitive quantity than the density is the local dou-
blon number, equation (145), which is plotted in the right col-
umn of figure 10. Here the agreement with the DMRG data 
is similar. While the two-time result for ds(t) shows stronger 
deviations than the single-particle density, the HF-GKBA 
exhibits the same high accuracy for both quantities. A very 
interesting observation is that the exact (DMRG) result is 
enclosed by the two-time and GKBA results. This behavior 
was confirmed for a broad range of coupling parameters, self-
energy approximations and in many other setups as well, e.g. 
[22]. This has important implications for the use of NEGF 
simulations for more complex systems where independent 
benchmark data are not available.

Returning to the physics of the expansion of fermions—
one of the most interesting questions is how the expansion 
speed depends on the interaction strength U/J (i.e. on the cor-
relations in the system). A particularly interesting theoretical 
prediction was [95] that fermions that are in doubly occupied 
lattice sites (‘doublons’) should expand slower compared to 

Figure 10. Symmetric 1D sudden expansion of a Hubbard chain of N  =  34 fermions at U  =  J. Time evolution of (a) density ns and (b) 
double occupancy ds for six times (from bottom to top): tJ = 0, 2, 4, 6, 8, 10. Solid lines: DMRG, long dashes: TMA (two-time NEGF with 
T-matrix selfenergy), dashed lines: T matrix with HF-GKBA. From [22].
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singly occupied sites (‘singlons’) giving rise to a spatial sepa-
ration of the two components (‘quantum distillation’). A first 
test can be made by comparing the two columns of figure 10. 
There, indeed, the doublon expansion is slightly slower than 
that of the total density, in particular, for the initial time frames 
(see the lowest three rows). Here, however, the interaction is 
comparably weak and the effect is small.

Such a peculiar separated expansion of doublons and sin-
glons was, in fact, observed experimentally for strongly corre-
lated fermionic atoms in [147]. They demonstrated that, when 
the system is initially in a fully doubly occupied configura-
tion, after removal of the confinement, doublons remain domi-
nantly in the trap center. Moreover, the expansion speed of this 
central part (‘core’) decreases when the coupling strength U/J 
increases. The experimental results for the ‘core expansion 
velocity’ Cexp are reproduced in figure  11 by the full black 
line. Interestingly, Cexp even becomes negative which means 
that the ‘core shrinks’. Furthermore, the result is exactly the 
same for attractive and repulsive interaction (negative and 
positive U, respectively), which is an exact property of the 
Hubbard model.

Figure 11 also contains results from a semiclassical kinetic 
simulation in relaxation-time approximation (grey dashed 
curve [147]) which reproduces the overall trend but exhibits 
very strong deviations, for most values of U. It is, therefore, 
of high interest to apply the NEGF approach to this problem 
since, due to the 2D geometry, DMRG simulations are not 
possible. Such NEGF simulations were developed by three 
of the present authors and published in [28]. To correctly 
describe strong-coupling effects, the second-Born approx-
imation cannot be applied. Instead, T-matrix selfenergies were 
used. An advantage in these simulations is that the initial state 
is uncorrelated (it is an Hartree–Fock state), so no adiabatic 
switching needs to be done. This is particularly important 
since the simulations have to be sufficiently long to reach the 
regime where the expansion velocity approaches a constant 
value (‘hydrodynamic stage’).

The present NEGF simulations with particle–particle 
T-matrix selfenergies were carried out for a broad range of 
particle numbers, up to about N  =  100 particles on a 2D lat-
tice of 19 × 19 sites. It turned out that the expansion veloc-
ity shows a simple scaling with N, so an extrapolation to the 
thermodynamics limit, N → ∞ (the experiments used several 
hundred thousands of atoms) was possible. At the same time, 
the statistical error of the extrapolation provides a measure 
of the numerical uncertainty of the macroscopic results [78]. 
These results are also included in figure 11 by the red dots and 
the associated error bars. Obviously, the agreement with the 
experiment, over the whole range of coupling parameters, is 
impressive. These have been the first and so far the only quant-
um-dynamics simulations that allow for a direct comparison 
with cold-atom experiments in two dimensions. Moreover, in 
[28] results for three-dimensional lattice configurations were 
presented and the dependence of the expansion velocity on the 
dimensionality was analyzed.

The time-dependent NEGF simulations provide extensive 
additional information on the expansion dynamics. From 
the nonequilibrium Green functions it is straightforward to 
obtain full space (site)-resolved information. An example 
is shown in figure 12 where the time evolution of various 
quantities with single-site resolution is presented [28]. This 
includes the density (first three rows), the doublon density 
(row 4, equation  (145)), the doublon correlation function, 
(equation (146)) and the entanglement entropy, (equation 
(147)). The latter two quantities are of particular interest, as 
they allow to separate the effect of the buildup of correla-
tions in the system: as mentioned above, the initial state is 
uncorrelated, and with removal of the confinement correla-
tions start to form at the cluster edge and then spread in and 
outward. These simulation results can be directly compared 
to experiments with ultracold atoms where single-site res-
olution has been achieved with quantum-gas microscopes 
[19–21]. More details on the present simulations can be 
found in [78].

Figure 11. Asymptotic core (half width at half maximum of the density) expansion velocity Cexp. Plus signs: experimental results for 
different lattice depths in units of the recoil energy Er; gray dashed line: relaxation-time approximation model of [147]; red circles: two-
time NEGF results with T-matrix selfenergies, the error bars denote the statistical uncertainty due to the extrapolation with respect to time 
and particle number (see text). The black line is a fit through the experimental points to guide the eye. From [28].
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Concluding this section, we note that the present NEGF 
simulations with T-matrix selfenergies are rather costly and 
require large computer resources. In particular, simulations 
for large U become increasingly difficult which explains 
the choice of the maximum U-values displayed in  figure 11. 
To reach large coupling values, improved computational 
approaches and, possibly, further improved selfenergy 
approximations, have to be developed.

3.4.2. Time evolution starting from a charge-density-wave 
state. Next, we focus on the time evolution of correlated 
electrons after a confinement quench starting from a dif-
ferent initial state than before. In [22] the authors consid-
ered a state of alternating doubly occupied and empty sites 
which will be called ‘charge-density-wave state’ (CDW). 
After removal of the confinement density can spread to the 
originally empty sites. To compare with benchmark data 
from DMRG simulations the simulations are limited to 1D 
geometry. In [22] extensive NEGF–DMRG comparisons 

have been carried out. Here we show some typical results, 
see figure 13.

The first question to answer for the NEGF simulations is 
again the proper choice of the selfenergy. Since, again, cor-
relation effects and, in particular, large values of U/J are of 
interest, the second-Born approximation is not appropriate. 
The particle–particle T matrix that showed impressive results 
in the diffusion setup of section 3.4.1 is not expected to work 
well here. The reason is that the T-matrix selfenergy treats 
interaction effects accurately on the two-particle level but 
neglects three-particle effects. It is, therefore, expected to be 
adequate for low densities. In application to Hubbard systems, 
this corresponds to low (or, due to particle–hole symmetry, 
high) filling factors. In the diffusion setup, the filling factor is 
low, except for the initial dynamics in the core region.

In contrast, in the present CDW setup the entire system 
is initially at half filling and remains at half filling. There, 
the particle–particle T matrix is inaccurate. At half filling we 
found in section 3.3 that the third-order approximation (TOA) 

Figure 12. Site-resolved expansion dynamics in a 2D 19 × 19 Hubbard lattice at U/J  =  4 for four times (in units of J−1). Top three rows: 
square root of density ns for N  =  2, N  =  26, and N  =  74, respectively. Rows 4–6: square root of double occupation, local entanglement 
entropy Ss, equation (147), and the pair-correlation function δn↑↓

s = δn(2)
s , equation (146). From [28].

J. Phys.: Condens. Matter 32 (2020) 103001



Topical Review

30

provides much more accurate data for the ground-state energy. 
It is, therefore, expected that also the dynamics will be treated 
more accurately within TOA selfenergies. Consequently, 
this selfenergy is being used, in addition to applying the 
HF-GKBA. The results are shown in figure 13 for two values 
of the coupling strength and five different chain lengths, in 
the range of L  =  6 and L  =  36. Note that we do not show the 
dynamics of the densities—there the agreement is excellent—
but we focus on the more sensitive double occupations, equa-
tion (145), summed over the entire cluster.

For moderate coupling, U/J  =  1, left column, the NEGF 
results are practically indistinguishable from the DMRG data. 
Only for the smallest system and for long times, small devia-
tions are visible. For the case of larger coupling U/J  =  4 sig-
nificantly larger deviations are observed. While the overall 
trends, such as the mean value of the total double occupation, 
d(t), is well reproduced for the initial time interval, the oscil-
lations of d(t) occur with a slightly modified frequency, and 
the amplitude of the HF-GKBA results is substantially larger 
than in the DMRG data. Also, the ‘density revival’ seen in 
small systems at weak coupling (bottom curve of left column) 
which seems to be present also at larger coupling (bottom 
right DMRG curve) seems to be amplified by the HF-GKBA. 
Most interestingly, the agreement of the NEGF data with the 
DMRG systematically improves with increasing system size. 
For more details, the reader is referred to [22].

3.4.3. Time evolution following a charged-particle impact. Let 
us now consider a very different type of excitation that is 
caused by the impact of an energetic projectile in a correlated 
Hubbard cluster. The interaction of the projectile with the 
electrons of the cluster is particularly strong for a charged par-
ticle. This type of excitation differs from the quenches above 
by its strongly localized character: typically only the few near-
est neighbors of the impact point will be strongly affected. 
Depending on the velocity of the projectile, the interaction is 

also localized in time where the interaction duration is con-
trolled by the initial velocity of the projectile.

The associated energy loss of the projectile (‘stopping 
power’) has been studied experimentally and theoretically 
for many years, for an overview see e.g. [148], and broad 
purpose numerical simulation tools (e.g. SRIM) were devel-
oped, e.g. [149]. These models are based on extensive aver-
ages and experimental input. Moreover, they assume that the 
solid can be treated as following the excitation adiabatically. 
More recently, time-dependent simulations have provided 
very detailed information on the complex physical processes. 
This mostly concerns time-dependent DFT simulations, e.g. 
[150, 151]. At the same time, TD-DFT does not allow one to 
reliably describe electronic correlation effects and the dynam-
ics of correlations. Therefore, NEGF simulations are of high 
interest.

Time-dependent NEGF simulations of ion stopping were 
first presented by Balzer et  al in [26]. Here we summarize 
a few representative results. To investigate electronic corre-
lation effects one can apply an NEGF–Ehrenfest approach 
where the dynamics of the projectile are treated classically. 
The corresponding electronic Hamiltonian is given by

Ĥe = − J
∑
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2
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2
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(148)

which, in addition to the standard Hubbard Hamiltonian, now 
includes the Coulomb interaction between a Zp -fold charged 
ion and all electrons of the target. The trajectory of the projec-
tile, �rp(t), is obtained by solving Newton’s equation where the 
force is given by the total force from the interaction with all 
electrons. By solving the coupled Keldysh–Kadanoff–Baym 
equations  for the electrons and Newton’s equation  for the 
projectile one obtains the time-dependent energy exchange 

Figure 13. Charge-density wave excitation (the initial state conists of alternating doubly occupied and empty lattice sites): time evolution 
of the total double occupation, see equation (145) for two coupling strengths and five different systems sizes, L = 6, . . . 36. Comparison of 
DMRG (full lines) and NEGF with third-order selfenergies within the single-time HF-GKBA scheme. 
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between the ion and the electrons. The energy loss of the pro-
jectile follows from the asymptotic values for long times after 
and before the impact,

Se[Ekin] = mp
ṙ2

p(t → −∞)
2

− mp
ṙ2

p(t → +∞)
2

. (149)

Before starting the time-dependent simulations, again, the 
initial state has to be generated. Here two approximations are 
considered: (A) the initial state is a Hartree–Fock state and 
(B) the initial state is correlated and generated by adiabatic 
switching. From a computational stand point, (A) is advanta-
geous, whereas (B) is more accurate but requires a substanti-
ally increased total computation duration.

The dependence of the energy loss on the initial kinetic 
energy, Ekin, of the projectile is plotted in figure 15 and show 
the characteristic single-peak behavior. For very fast projec-
tiles, the interaction duration vanishes, and so does the energy 
exchange. On the other hand, for very slow projectiles, the 
initial kinetic energy is small. Therefore, obviously, a max-
imum exists, for an optimal choice of Ekin. For the present 
honeycomb clusters (see figure 14) this peak is in the range 
of 10 keV.

Since no spatial homogeneity is assumed, the energy 
loss can be compared in finite clusters of different size. In 
 figure 15 Balzer et al [26] compare the energy loss of a proton 
of the same energy in two clusters (see the sketch in figure 14) 
of size L  =  24 (inner cluster) and L  =  54 (complete cluster). 
Clearly, the energy loss increases with cluster size because 
more electrons are being excited by the projectile.

Next, the role of interaction effects in the substrate on the 
stopping power is analyzed. This can be achieved by compar-
ing mean-field (Hartree) simulations with different coupling 
parameters U/J as well as Hartree simulations to correlated 
NEGF results. Obviously, one should expect that interac-
tion effects will be of minor importance at large projecticle 
energies because, in this case, the kinetic energy exceeds the 
interaction energy (weak coupling). This is indeed observed 
in all simulations shown in figure 15. At energies exceeding 
200 keV the differences between different approximations 
quickly vanish. In contrast, for lower impact energies and, in 
par ticular, for energies below the peak energy (moderate to 
strong coupling), strong deviations are observed. The general 

trend is that, with increasing U/J the stopping power decreases, 
regardless of the chosen selfenergy approximation. A compar-
ison of Hartree and correlated simulations reveals that correla-
tions, at large energies, tend to make the system ‘more rigid’ 
which reduces the stopping power. Interestingly, at low impact 
energies, Ekin � 3 keV the situation changes and correlation 
effects lead to an increase of the stopping power. The explana-
tion is that for slow projectiles the excitation energy can be 
resonant with electronic transitions in the material and lead, in 

Figure 14. Sketch of the lattice structure of circular honeycomb 
clusters with L  =  24 (black) and L  =  54 sites (blue). The green 
point indicates the position where the projectile hits the lattice 
plain. From [26].

Figure 15. Energy loss Se, equation (149), for protons passing 
through the honeycomb clusters of figure 14 of size L  =  54 (panels 
(a) and (b)) and L  =  24 (panel (c)). In all panels, the value of the 
onsite interaction U/J is encoded in the line style, the symbols 
correspond to NEGF results, and the black lines indicate the 
results of the Hartree approximation. The shortcuts stand for 
2B (3rd order): second-order Born (third-order) approximation, 
TM: particle–particle T matrix, local: local approximation of the 
selfenergy, Σij → Σiiδij. From [26].
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particular, to the excitation of doublons (see equation (145)) 
which is not possible in a mean-field description [152].

Let us now discuss the influence of different selfenergy 
approximations. Figure 15 contains a large variety of approx-
imations. Note, however, that these calculations are quite 
expensive and become increasingly more difficult when the 
impact energy decreases because then the required simula-
tion duration grows. Therefore, most results were obtained for 
large impact energies where the differences between different 
approximations are small. In [26] the authors performed simu-
lations using second-order Born (2B), third-order and parti-
cle–particle T-matrix (TM) selfenergies. The differences are 
small with the T matrix yielding the largest stopping power. 
Comparing two-time simulations and single-time simulations 
within the HF-GKBA (top two frames of figure 15), the GKBA 
leads to a slight reduction of the stopping power. However, 
this comparison has only been done for a few cases, and more 
simulations are required to obtain a systematic picture. Also, 
the effect of initial correlations has not yet been fully clarified.

More recently, a special correlation effect has been inves-
tigated: the formation of local electronic double occupations, 
equation  (145), due to the ion impact [152]. There it was 
shown that, at low projectile energies, electrons may be effi-
ciently excited across the Hubbard gap (e.g. at half filling) 
which gives rise to an enhancement of the stopping power. 
This effect has been explored in more detail in [27, 153].

To summarize this section: NEGF simulations coupled to 
an Ehrenfest description of a classical ion have been shown 
to be a powerful tool to model the energy transfer between a 
projectile and correlated target. They allow for a fully time-
resolved analysis and deep insight into the electronic trans-
itions that can be triggered by the ion impact. At the same time, 
these simulations are very expensive at low impact energies 
and further optimization is needed. Interesting future ques-
tions include the quantum treatment of the projectile and of 
the electronic excitations in the ion as well as possible charge 
transfer processes between projectile and substrate [153, 154].

3.4.4. Time evolution following a short enhancement (‘kick’) of 
the single-particle potential. We now consider another exci-
tation scenario where an external single-particle potential is 
turned on for a very short time only (see equation (31)),

fiσ
(

t
)

= fi,0 δ(t − t0).
 

(150)

Such a very short excitation, is spectrally (energetically) broad 
which means that a broad range of energetic transitions will be 

excited. Following the time-dependent dynamics of a suitable 
observable B(t) one can easily reconstruct the spectral infor-
mation contained in it, via Fourier transformation. It turns out 
that this is a very efficient way to obtain high-quality spectral 
information, provided the propagation can be extended to suf-
ficiently long times, to avoid windowing effects in the Fourier 
transform. If, furthermore, the excitation is weak, i.e. linear 
response applies, then one accurately probes the properties of 
the unperturbed system, e.g. the ground state or the equilib-
rium properties.

This approach was first used in NEGF simulations by 
Kwong et al to compute the optical absorption of a semicon-
ductor [155]. There, the frequency-resolved absorption coef-
ficient was obtained, after applying a short optical laser pulse, 
from Fourier transforming the interband polarization P(t), for 
details, see [136]. Similarly, it was shown that one can obtain 
the dynamical structure factor and dielectric function of a 
correlated system (e.g. electron gas or plasma) by applying a 
short monochromatic electric field with wavenumber q, i.e. a 
time-local excitation of (in the context of the uniform electron 
gas) f (r, t) = U0(t) cos (qr), that excites a density modulation 
δn(r, t) of wavelength 2π/q which yields the linear dynamic 
density-response function χ(q, ω) [156]. As a consequence 
one obtains results for the dynamic dielectric function and for 
the dynamic structure factor that selfconsistently include cor-
relation effects thereby obeying the relevant sum rules.

After successful applications to macroscopic systems this 
method was also used for finite systems. Van Leeuwen et al 
computed the optical absorption of atoms by Fourier trans-
forming the time-dependent dipole transition signal [70]. The 
method can also be applied to compute, via time-dependent 
NEGF simulations, the spectrum of electronic excitations of 
finite correlated systems. Balzer et al considered a four elec-
tron model quantum well and showed the second-order Born 
selfenergies yield accurate results for the electronic double 
excitations [124]. Similar results were obtained by Säkinen 
et al [157].

Here we illustrate this approach for a small Hubbard clus-
ter of 8 sites and coupling strength U/J  =  0.1. In the simu-
lations of Hermanns et  al [77] the excitation was local on 
one site, i.e. in equation  (150) the excitation amplitude was 
fi,0 = w0δi1. Choosing a very small amplitude, w0 = 0.01J , 
the system remained well inside the linear-response regime. 
Performing a very long simulation of duration T  =  1000J−1 
provided an accurate excitation spectrum. The selfenergy 
was used on the second-order Born level, which is adequate 

Figure 16. Spectral function of an 8-site Hubbard cluster at U/J  =  0.1 computed via Fourier transform after a single-particle potential 
kick, equation (150). NEGF simulations with second-order Born selfenergies (Hartree–Fock-GKBA) are compared to Hartree and exact 
diagonalization results. From [77].
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for the present weak-coupling case. To achieve the desired 
long simulation duration a single-time simulation (with the 
Hartree–Fock GKBA) was carried out. The result is shown 
in figure 16 where the NEGF result is compared to an exact-
diagonalization calculation. Obviously, the agreement is 
excellent. The NEGF simulations accurately reproduce the 
exact spectrum over a broad range of energies and practically 
capture all peaks. This agreement extends over an impressive 
seven orders of magnitude (note the logarithmic scale). Small 
deviations are visible for increasing frequency where peak 
shapes exhibit slight deviations. This calculation also allows 
to clearly single out correlation effects and explore the limita-
tions of the mean-field result (see the blue curves labeled HF). 
While HF well captures the low-frequency peaks, it entirely 
misses peaks occuring above ω ∼ 3.8J . But also at lower 
energy, many peaks are missing, e.g. at ω/J ≈ 2.7, 3.2 and 
3.6 that are associated to double excitations.

This result confirms the power of this approach and the 
capability of NEGF simulations to obtain accurate ground-
state (or equilibrium) spectra via time propagation. These 
results can, of course, be directly compared to independent 
pure ground-state (or equilibrium) simulations, e.g. within the 
framework of the Bethe–Salpeter equation for the Matsubara 
Green function. The comparison of the two approaches 
reveals that [156] time-dependent NEGF simulations with a 

selfenergy Σ correspond to Bethe–Salpeter results with a two-
particle kernel KBSE = δΣ/δG . For text-book discussions, see 
[73, 136].

3.4.5. Time evolution following a strong rapid quench of the 
onsite potential. We now turn to the final example of time-
dependent excitation that is very different from the previous 
cases. This section  investigates the dynamics of small Hub-
bard clusters that are driven out of equilibrium by a very 
strong sudden quench of the on-site potential of the form

fiσ
(

t
)

= Θ
(

t, t0
)

δi1w0, (151)

where throughout this section the value w0  =  5J is used. Thus 
at t  =  0 site i  =  1 is very strongly excited by a constant poten-
tial. This excitation, initially, drives a depletion of this site 
which is followed by a subsequent oscillation of the electronic 
density throughout the system. Such strong excitations of this 
form (equation (151)) of very small Hubbard clusters were 
studied in detail by Verdozzi and co-workers [121, 122] using 
selfconsistent two-time solutions of the KBE. They made a 
surprising observation: in contrast to the exact solution (which 
is easily found for these small systems), the NEGF dynamics 
of the density oscillations are strongly damped. The authors of 
these papers explained this artifact by the selfconsistency of 
the solution of the Dyson equation (or the KBE) which con-
tains selfenergy contribution to arbitrary orders (powers). This 
leads to a series of peaks in the spectral function that are not 
present in the exact result. They also observed that the effect 
is particularly strong for small clusters.

In the following we illustrate this effect for a few exam-
ples. In particular, we are interested in (1) how this damping 
behavior depends on the chosen selfenergy approximation, (2) 
on the filling and (3) how results from the HF-GKBA behave. 
To this end we focus on very small systems containing just 
two electrons on two and four sites, corresponding to half and 
quarter filling, respectively. The case of a half-filled Hubbard 
dimer, with an interaction of U  =  J and excitation strength 
of w0 = 5.0J , is shown in figure 17 [77]. There, three of us 
analyzed the time evolution of the density on the first (excited) 
site, comparing the exact result to selfconsistent two-time 
NEGF simulations and also single-time GKBA calculations 
with HF propagators. As expected, the exact solution exhibits 
undamped oscillations of the density because electrons peri-
odically move between the two sites after an initial depletion 
of the first site. Consider now the result of fully selfconsistent 
solutions of the KBE with second-order selfenergy (top fig-
ure). Here, reasonably good agreement with the exact solution 
is only observed for the first 1.5 oscillation periods. For later 
times the oscillation period becomes smaller and the oscilla-
tions quickly damp, reaching an artificial steady state that is 
not present in the exact result. It is now of interest to reduce 
the level of selfconsistency for which different approx imations 
can be considered [158]. Here we followed a different and 
more systematic strategy: we applied the Hartree–Fock-
GKBA propagators as described in section 2.10. The results 
for the case of second-order Born selfenergies are also 
included in the top part of figure 17. Evidently, application of 

Figure 17. Half-filled Hubbard dimer for U  =  J. Density evolution 
on the first site following a sudden switch-on of the onsite potential 
(equation (151)) of strength w0 = 5.0J  on site i  =  1. Black line 
with dots: exact results; green dashed line: two-time NEGF result, 
and red full line: HF-GKBA. Top figure: NEGF and GKBA with 
second-order Born selfenergy (Full 2B). Bottom figure: NEGF and 
GKBA with T-matrix selfenergy (Full T). From [77].
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the HF-GKBA indeed ‘cures’ the artificial damping and quali-
tatively agrees with the exact solution. The quantitative agree-
ment, though, can only be considered satisfactory for the first 
five oscillation periods up to 6 inverse hopping amplitudes. 
While the exact oscillation period is roughly reproduced, the 
GKBA exhibits several phase changes that are not present in 
the exact dynamics.

To further improve the agreement with the exact results we 
then combined the HF-GKBA with a higher-order non-per-
turbative selfenergy. Results for the particle–particle T-matrix 
approximation, both, for two-time solutions and in combina-
tions with the HF-GKBA, are shown in the bottom part of fig-
ure 17. In this case, the GKBA achieves very good agreement 
with the exact result. The first four periods are reproduced 
very accurately, whereas for later times a slight dephasing is 
observed. In contrast, the full two-time solution of the KBE 
with the particle–particle T matrix is quickly damped, as in 

the case of the second-order Born approximation (Full 2B, 
SOA, top figure). At the same time, the T-matrix result is bet-
ter than the second-Born approximation which is explained 
by the moderate coupling strength. Based on these results we 
conclude that the HF-GKBA, if used with the proper selfen-
ergy, provides an excellent method to solve the problem of 
artificial damping of two-time simulations in the case of very 
strong excitation.

We now turn to the case of a four-site fermionic Hubbard 
model with one quarter filling, and an interaction strength of 
U  =  1.5J. The excitation is the same as before. For this setup, 
Friesen et al [158] reported the particle–particle T matrix to 
show very good agreement with the exact solution, while the  
GW approximation performed much worse. Here, the same 
setup is re-examined using all selfenergy approximations 
that were introduced in sections  4 and 5. We observe that 
the selfenergies can be categorized into three groups based 
on the amount of artificial damping they exhibit. The three 
most strongly damped methods, which quickly start to deviate 
from the exact result are the electron–hole T matrix, the GW 
approximation and the second-order Born selfenergy and are 
shown in the top part of figure 18.

For all three methods, the damping sets in after the sec-
ond oscillation period, and the amplitude quickly drops to 
roughly one third of the exact amplitude. For the fluctuat-
ing-exchange approximation (FLEX) and the similarly con-
structed approx imation combining only the electron–hole 
and the particle–particle T matrix (TPPEH), the results are 
shown in the middle part of figure 18. Here, one notices only 
a slight damping, and the overall agreement with the exact 
result is significantly improved, compared to the first group 
of selfenergies approximations. The third group of methods 
that do not exhibit conceivable damping, in the present situ-
ation, are the particle–particle T matrix and, by construction, 
the uncorrelated Hartree(–Fock) approximation. The corre-
sponding results are shown in the bottom part of figure 18. 
Both methods are in good agreement with the exact result, but 
the quality of the T-matrix approximation is much better than 
that of the uncorrelated Hartree approximation. The super ior 
quality of the particle–particle T matrix, in the present case, 
is of course arising from the low density in the system as 
was noted also in the previous sections. For higher density 
the situation changes. Most importantly, we conclude that the 
artificial damping in strongly excited finite systems is not a 
generic feature of all two-time simulations but is observed for 
selfenergy approximations that most strongly deviate from the 
exact Hamiltonian. In addition, we have seen before that the 
artificial damping is removed almost completely by invoking 
the GKBA with Hartree–Fock propagators.

3.5. Discussion of the numerical results and outlook

We conclude the overview of numerical solutions of the KBE 
in equilibrium and nonequilibrium with a brief summary of 
the main findings and an outlook. In section 3.3 it has been 
shown that, for the interacting ground state, the order-by-
order expansion with respect to the interaction strength yields 
good results, already with the second-order approximation 
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Figure 18. One quarter-filled four-site Hubbard cluster for 
U  =  1.5J. Density evolution of the first (driven) site following a 
sudden switch-on of an onsite potential of strength w0 = 5.0J . The 
selfenergy approximations are given in the inset. Top (middle): 
strongly (moderately) damped methods, bottom: undamped results.
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(SOA). The results significantly improve further when also 
the third-order terms are taken into account (TOA). On the 
other hand, the non-perturbative expansions, such as the par-
ticle–particle and particle–hole T-matrix approximations and 
the GW approximation, as well as combinations of several 
non-perturbative approximations, do, in general, not reach 
the same accuracy. Concerning the single-particle spectrum, 
both, perturbative and non-perturbative methods, yield good 
results and especially with the combination of the results for 
all available methods, most of the spectral information can be 
computed.

For time-dependent processes involving strong excitations, 
the GKBA has been found to be a valuable tool to mitigate 
correlation-induced damping. Combined with the particle–
particle T matrix, which has shown to produce excellent 
results in full calculations for lower filling factors, it yields 
a density evolution which is close to the exact solution. With 
the great variety of available selfenergy approximations, cov-
ered in sections 4 and 5 both, with and without application of 
the GKBA, a powerful toolset is available to study systems 
of arbitrary dimension and large particle numbers, where cur-
rently no exact methods are available.

In section 3.4 we considered the dynamics of small- and 
intermediate-size Hubbard clusters in response to various 
kinds of excitations ranging from short to long and weak to 
strong. Where comparisons with benchmark data were avail-
able NEGF calculations have obtained very good agreement, 
provided the proper selfenergy approximation has been cho-
sen. This means that Σ has to be chosen such that it matches 
both the coupling strength and filling (density). While, at 
weak coupling, the second-order Born approximation is 
adequate, at moderate coupling, U � J, this approximation 
shows significant deviations and there is even no guarantee 
that it captures the dominant trends. Therefore, it is crucial to 
have a sufficiently large arsenal of selfenergy approximations 
available that can be used in a flexible manner. Thus, we can 
conclude that NEGF simulations have, indeed, reached a level 
of accuracy where reliable predictions can be made. For an 
efficient use of the proper selfenergies, it is crucial to have 
explicit results for each approximation available that can be 
rapidly implemented. This will be discussed in great detail in 
the next sections.

Before doing this we note that time-dependent NEGF 
simulations have seen a dramatic surge in activity in many 
areas. Even though the most accurate and best tested results 
were obtained for lattice models, as discussed above, there 
exist many further applications that are outside the scope of 
this article but should be briefly mentioned, together with a 
few relevant references. Indeed, second-order Born simula-
tions were reported for electrons in quantum dots [159, 160], 
the laser excitation of small atoms and molecules [70–72]. 
Interestingly, second-order Born calculations were shown 
to be applicable also to the photoionization of larger atoms 
such as krypton [161] and to well reproduce two-electron pro-
cesses such as Auger ionization [162]. Other finite systems the 
relaxation dynamics of which were recently studied include 

graphene-type clusters such as graphene nanoribbons [163]. 
Correlation effects of particular interest here are, e.g. carrier 
multiplication effects.

While in the applications listed above the electronic system 
was typically treated as isolated, in many cases the coupling 
to the environment (bath) has to be included. Examples are 
transport problems. Since the bath is typically much larger 
than the physical system of interest with time scales often 
well separated from those of the system, suitable procedures 
to eliminate the bath degrees of freedom are of high interest. 
An important example is transport through nanoscale systems 
where it is often advantageous to eliminate the effect of the 
leads. Here a highly efficient solution within the NEGF scheme 
is provided by an embedding approach [164], for a text-book 
discussion see [73]. This approach has been extended to the 
photoionization of atoms [161] and charge transfer processes 
between atoms and a solid surface [27, 154].

Due to the success of these NEGF simulations we expect 
that the number and scope of applications will continue to 
increase over the next years. Further progress requires new 
developments in several directions. One is certainly the use 
of improved more realistic models. Here we mention the idea 
to combine NEGF simulations with an ab initio basis set that 
is provided by a Kohn–Sham simulation. This concept is real-
ized, e.g. within the Yambo code of Marini et al, e.g. [165, 
166, 189]. A major problem for these approaches is the large 
basis size which leads to very large requirements of CPU time 
and computer memory.

One approach that allows to mitigate these problems, at 
least partially, is the generalized Kadanoff–Baym ansatz 
(GKBA) that was introduced in section 2.10. We have seen 
throughout the present section  that the GKBA, combined 
with Hartree–Fock propagators, indeed provides the expected 
major savings of resource. Moreover, in many cases it yields 
excellent results that may be not worse than the full two-time 
simulation, e.g. [77]. This, however, does not mean that two-
time simulations become obsolete. In contrast, as we have 
seen from the comparison to DMRG results in sections 3.4.1 
and 3.4.2, in many cases, the exact result is enclosed between 
those of the two-time NEGF and the time-diagonal GKBA. 
Thus, both types of simulations should be developed in 
parallel.

Future developments in this field should also aim at improv-
ing the GKBA simulations. Part of the problems of the GKBA 
will be overcome if, instead of Hartree–Fock propagators, cor-
related propagators are being used. Here, we mention recent 
promising proposals of [27, 167]. Furthermore, it will also be 
important to include correlated initial states into GKBA simu-
lations and to develop efficient schemes that reduce the asso-
ciated computational overhead, e.g. [27, 168–170].

Finally, all of the NEGF applications discussed above cru-
cially depend on the availability of a large arsenal of selfen-
ergy approximations and their optimization for special basis 
sets. In the remainder of this paper, we present a detailed 
overview of practical formulas that are ready to use in NEGF 
simulations.
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4. Selfenergy approximations I: perturbation 
expansions

To study time-dependent observables of the system of inter-
est by solving the Keldysh–Kadanoff–Baym equations, one 
has to know the ‘<’ and ‘>’ components of the two-time 

Green function, G≶
(

t1, t2
)
. These components can be gener-

ated from the solution of the contour Dyson equation, which is 
the first equation of Hedin’s equations, see equation (91). Its 
main ingredient is the selfenergy Σ. It is of great importance, 
both, from a physical point of view—since it incorporates all 
different classes of inter-particle effects and processes—as 
well as from the computational view—since a large portion 
of the numerical resources is consumed for its determination. 
Σ is the solution of the second Hedin equation, equation (95), 
which, in turn, is dependent on the third to fifth Hedin equa-
tion, equations (102), (105) and (106), and, in turn, also on the 
Dyson equation via the Green function entering it. Since the 
selfenergy, by iteration of Hedin’s equations, consists of an 
infinite number of terms, a strategy has to be used to reach a 
good approximation with only a small finite subset. The two 
most common approaches are detailed in the following. The 
first applies a perturbative approach with respect to the inter-
action strength, i.e. with respect to the powers of the potential 
w, whereas the second uses a resummation idea. The resum-
mation involves (infinitely many) diagrams in all orders of the 
interaction strength belonging to certain topological classes, 
namely the particle–particle, the particle–hole T-matrix 
approximation (TPP, TEH), the GW  approximation (GWA), 
or a combination of all of them or some subsets. The present 
section 4 deals with the expansion in orders of the interaction 
strength where we systematically study selfenergies of first, 
second and third order. After this, in section 5, the resumma-
tion approaches, are introduced and discussed for all relevant 
special cases. In these two sections we introduce all selfener-
gies that were applied in the calculations of section 3.

In the remainder of this section we focus on the expansion 
of the selfenergy with respect to the number of interaction 
factors w involved. This means that the nth order approx-
imation contains only terms with no more than n interactions. 
This procedure has two sources of reasoning behind it. First, 
for small interaction strength (in units of the single-particle 
energy), higher-order processes with more interaction factors 
usually have small amplitudes. Second, even for larger cou-
pling strength, higher-order terms also contain several Green 
functions corresponding to the correlated creation and annihi-
lation of several particles. The strength of these correlations is 
not directly coupled to the interaction strength and, therefore, 
a lower-order approximation may give good results even for 
stronger interactions.

Regarding the treatment of the Green functions occuring in 
the expansion of the selfenergy, three different approaches are 
common. In the free-particle approach, the Green function is 
expanded with respect to the number of occurrences of the 
interaction. That way, the selfenergy is eventually considered 
as a functional of the bare interaction and the non-interacting 

Green function: Σ
[
G(0), w

]
. This treatment is consistent to 

the expansion scheme of the selfenergy itself (and the other 
quantities in Hedin’s equations) in this section. That way, it is 
ensured that the nth order approximation contains no terms of 
higher order in w. In the self-consistent approach instead, the 
selfenergy is treated as a functional of the interacting Green 

function and the bare interaction: Σ
[
G, w

]
. Here, one starts 

from the non-interacting Green function G(0) and computes 
the selfenergy according to equation (95), within the chosen 
approximation. Then, the Dyson equation  is evaluated, tak-
ing G = G(0) on the right-hand side. With the resulting G , the 
selfenergy is reevaluated. This procedure is continued itera-
tively until convergence is reached. During this process terms 
of all orders in w are produced. Nonetheless, these terms are 
valid terms of order higher than n, so it cannot be answered 
beforehand which method is superior. We also mention a third 
framework—the screened approach—which appears to be the 
most native treatment of Hedin’s equations. Here, the selfen-
ergy is considered as a functional of the screened interaction 

and the interacting Green function: Σ
[
G, W

]
 (see, e.g. [73] 

for details). This treatment gives rise to several high-order 
resummation ideas, starting from the GW approximation (see 
section 5.2).

In the remainder of this section, the two approaches based 
on the bare interaction will be analyzed in detail by consider-
ing selfenergies up to the third order in w, i.e. Hartree–Fock 
(HF), second-order Born approximation (SOA) and third-
order approximation (TOA). These approximations will be 
systematically deduced from Hedin’s equations16; first, for a 
general basis. After this, each result will be specified to two 
important cases: a basis where the interaction is diagonal 
(‘diagonal basis’) and the Hubbard basis. For all three basis 
representations we present the quantities first on the Keldysh 
contour and then we derive the ‘≷ ’ and retarded/advanced 
components. In addition, we separately present the results for 
bosons and fermions. In cases when there are differences for 
different spin projections, the different cases will be specified 
separately. In addition to the formulas we present the graphi-
cal representation in terms of Feynman diagrams that will be 
introduced in figure 19.

4.1. First-order terms. Hartree and Fock selfenergies

To determine the first-order contributions to Σ, one starts from 
the second Hedin equation, equation (95). The first term, the 
Hartree term ΣH, is of first order, since it contains one w. It 
was already given in equation  (96) and is repeated here for 
consistency,

ΣH
ij

(
z1, z2

)
= ±i�δC

(
z1, z2

) ∑

mn

wmijn

(
z1

)
Gnm

(
z1, z1+

)
.

 (152)

16 It may seem more ‘native’ to deduce the order-wise selfenergy approx-
imations from the bare-vertex approach I (equations (97) and (98)). Since 
both approaches are fully equivalent we, instead, use approach II (equations 
(101)–(106)), because it nicely demonstrates the interdependent mechanics 
of Hedin’s equations and gives additional insights to the involved quantities.
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Since this expression contains a contour delta function, δC, the 
only non-vanishing Keldysh component is

ΣH,δ
ij

(
t1

)
= ΣH

ij

(
z1, z1

)
= ±i�

∑

mn

wmijn

(
z1

)
Gnm

(
z1, z1+

)

= ±i�
∑

mn

wmijn

(
t1

)
G<

nm

(
t1, t1

)
.

 

(153)

The second first-order term belongs to Σxc, see equation (95), 
and is generated by the first-order term W(1) of equation (102),

W(1)
ijkl

(
z1, z2

)
= Wbare

ijkl

(
z1, z2

)
= δC

(
z1, z2

)
wijkl

(
z1

)
, (154)

and the zeroth order vertex Γ(0), see equation (106),

Γ(0)
ijkl

(
z1, z2, z3

)
= δC

(
z1, z2+

)
δC

(
z3, z2

)
δikδ jl. (155)

This yields the Fock term, ΣF, which is of time-diagonal struc-
ture as the Hartree term and is given by

ΣF
ij

(
z1, z2

)
= Σxc

ij

(
W(1) ≡ Wbare, Γ(0)

)

= i�δC

(
z1, z2

) ∑

mn

winjm

(
z1

)
Gmn

(
z1, z1+

)
.

 

(156)

The δ component (prefactor of the delta function) is given by

ΣF,δ
ij

(
t1

)
= ΣF

ij

(
z1, z1

)
= i�

∑

mn

winjm

(
t1

)
G<

mn

(
t1, t1

)
. (157)

Because there is no further term stemming from W(0) and Γ(1), 
since W(0) ≡ 0, the final result for the first-order selfenergy 
Σ(1) is given by

Σ(1) = ΣH + ΣF, (158)

which both are time-diagonal. For the non-selfconsistent 
treatment, the Green functions appearing in ΣH and ΣF are 
taken as free Green functions, i.e. G −→ G(0). Otherwise, all 
expressions remain the same. There are no additional terms 
containing higher-order Green functions in first order.

4.1.1. Diagonal basis. In a basis where the interactions are 

diagonal, wijkl = δilδ jkwij , the first-order terms read

ΣH,diagonal
ij

(
z1, z2

)
= ±i�δC

(
z1, z2

)
δij

∑

m

wmi

(
z1

)
Gmm

(
z1, z1+

)
,

 (159)

ΣF,diagonal
ij

(
z1, z2

)
= i�δC

(
z1, z2

)
wij

(
z1

)
Gij

(
z1, z1+

)
, (160)

with the δ components

ΣH,diagonal,δ
ij

(
t1

)
= ±i�δij

∑

m

wmi

(
t1

)
G<

mm

(
t1, t1

)
, (161)

ΣF,diagonal,δ
ij

(
t1

)
= i�wij

(
t1

)
G<

ij

(
t1, t1

)
. (162)

Feynman diagrams. The structure of the selfenergy contrib-
utions can be suitably visualized by using Feynman diagrams 
[171]. In this diagrammatic representation, Green functions 
are depicted as solid lines with an arrow pointing from the 
second argument to the first argument (since the creation oper-
ator in G has the second argument and the annihilation opera-
tor has the first argument). The interaction is represented by a 
wiggly line which has two endpoints (in the diagonal basis). 
Employing the Feynman diagram technique, the two first-
order contributions to the selfenergy are depicted in figure 19.

4.1.2. Hubbard basis. For the Hubbard basis, introduced in 
section  2.3, the first-order selfenergy terms can be directly 
worked out. Here we separately consider the cases of bosons 
and fermions (superscripts b and f, respectively), see equa-
tions (28) and (35). For bosons we obtain17

ΣH,b
iαjα

(
z1, z2

)
= i�δC

(
z1, z2

)
δij

∑

ε

U
(

z1

)
Giεiε

(
z1, z1+

)
,

 (163)

ΣF,b
iαjα

(
z1, z2

)
= i�δC

(
z1, z2

)
δijU

(
z1

)
Giαiα

(
z1, z1+

)
, (164)

with the δ components

ΣH,b,δ
iαjα

(
t1

)
= i�δij

∑

ε

U
(

t1
)

G<
iεiε

(
t1, t1

)
, (165)

ΣF,b,δ
iαjα

(
t1

)
= i�δijU

(
t1

)
G<

iαiα

(
t1, t1

)
. (166)

On the other hand, for fermions one obtains the following 
Hartree terms

ΣH,f
iαjα

(
z1, z2

)
= −i�δC

(
z1, z2

)
δij

∑

ε�=α

U
(

z1

)
Giεiε

(
z1, z1+

)
,

 (167)

ΣH,f,δ
iαjα

(
t1

)
= −i�δij

∑

ε�=α

U
(

t1
)

G<
iεiε

(
t1, t1

)
, (168)

whereas the fermionic Fock terms vanish exactly in the 

Hubbard basis, ΣF,f
iαjα

(
z1, z2

)
≡ ΣF,f,δ

iαjα

(
t1

)
≡ 0.

We also consider the important special cases of spin-0 bos-
ons and spin-1/2 fermions, respectively (the spin is indicated 

i, z1 j, z1+

i, z1

mm, z1z1+

Figure 19. First-order diagrams in the diagonal basis. Left: Fock 
diagram, ΣF,diagonal. Right: Hartree diagram, ΣH,diagonal. Both 
diagrams are time-diagonal.

17 From here, we use a generalized time-dependent Hubbard interaction 

U
(

z
) [

U
(

t
)]

. This is particularly useful in the context of the adiabatic 

switching (see equation (126)), where the switching function can be in-

cluded as f AS
(

t
)

U → U
(

t
)
.
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where the superscripts refer to the orders of W and Γ. The first 
term involves W(2), the structure of which is determined from 
equation (102),

W(2) = Wns
(

P(0), W(1)
)

, (171)

where the zeroth order polarization is

P(0) = P
(

Γ(0)
)

, (172)

which is explicitly given by18

by an additional superscript). For spin-0 bosons the terms 
attain the form

ΣH,b,0
ij

(
z1

)
= i�δC

(
z1, z2

)
δijU

(
z1

)
Gii

(
z1, z1+

)
,

ΣF,b,0
ij

(
z1

)
= i�δC

(
z1, z2

)
δijU

(
z1

)
Gii

(
z1, z1+

)
,

ΣH,b,0,δ
ij

(
t1

)
= i�δijU

(
t1

)
G<

ii

(
t1, t1

)
,

ΣF,b,0,δ
ij

(
t1

)
= i�δijU

(
t1

)
G<

ii

(
t1, t1

)
,

whereas for spin-1/2 fermions the results are

ΣH,f,1/2
i↑j↑

(
z1

)
= −i�δC

(
z1, z2

)
δijU

(
z1

)
Gi↓i↓

(
z1, z1+

)
,

ΣH,f,1/2
i↓j↓

(
z1

)
= −i�δC

(
z1, z2

)
δijU

(
z1

)
Gi↑i↑

(
z1, z1+

)
,

ΣH,f,1/2,δ
i↑j↑

(
t1

)
= −i�δijU

(
t1

)
G<

i↓i↓

(
t1, t1

)
,

ΣH,f,1/2,δ
i↓j↓

(
t1

)
= −i�δijU

(
t1

)
G<

i↑i↑

(
t1, t1

)
,

where the fermionic Fock terms are again zero. The corre-
sponding diagrams for spin-0 bosons and spin-1/2 fermions 
are shown in figures 20 and 21, respectively.

4.2. Second-order terms. Second-Born approximation (SOA)

We now return to equations (95) and (101), and investigate the 
selfconsistent second-order contribution,

Σ(2) = Σxc,(2). (169)

The second-order terms of Σxc,(2) can only be of either one of 
two forms

Σ(2),2,0 = Σxc,(2)
(

W(2), Γ(0)
)

, Σ(2),1,1 = Σxc,(2)
(

W(1), Γ(1)
)

,
 (170)

18 For the purpose of better understanding, the following derivations are given in the simplified notation, as introduced in section 2.8. The way to the first 
second-order selfenergy term in the full notation is presented in the supplemental material 20 in section 1.1.1.

Figure 20. First-order diagrams in Hubbard basis for spin-0 
bosons. Left: Fock diagram, ΣF,b,0. Right: Hartree diagram, ΣH,b,0. 
Note that both diagrams coincide for the Hubbard basis.

Figure 21. First-order (Hartree) diagram in Hubbard basis for spin-
1/2 fermions, ΣH,f,1/2.

 

(173)

Inserting this result into equation (171) and, employing equation (104), one arrives at

 

(174)
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With this, Σ(2),2,0 can be calculated as, (see equation (101)),

 

(175)

or, in the full extended notation,

Σ(2),2,0
ij

(
z1, z2

)
= ±

(
i�

)2 ∑

mn

Gmn

(
z1, z2

) ∑

st

Gst

(
z1, z2

)

×
∑

r

wirsm

(
z1

) ∑

u

wtnju

(
z2

)
Gur

(
z2, z1

)
.

 

(176)

The other second-order selfenergy term, Σ(2),1,1
ij

, requires the first-order term of the vertex Γ, the structure of which is

Γ(1) = Γ
(

δΣxc,(1)
/δG, Γ(0)

)
, (177)

and involves the functional derivative of Σxc,(1) with respect to G ,

δΣxc,(1)
ij

(
z1, z2

)

δGrs

(
z5, z6

) =
δΣxc,(1),F

ij

(
z1, z2

)

δGrs

(
z5, z6

) . (178)

Employing equation (156), one finds19

 

(179)

where the functional derivative with respect to G, in the diagrams, corresponds to cutting the G-line (or, more generally, all 
G-lines one by one) which is symbolized by the scissors. In case of different arguments of the Green functions, the result is

 

(180)

Using equations (179) and (155), one arrives at

 

(181)

19 For the full-notation derivation, see section 1.1.2 of the supplement 20.
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Inserting this result, together with equation (154), yields

 

(182)

20 See supplemental material at (stacks.iop.org/JPhysCM/32/103001/mme-
dia) for the derivations of the selfenegies in a general (non-diagonal) basis 
set and for the non-selfconsistent selfenergy contributions in second order.

or, in the full notation,

Σ(2),1,1
ij

(
z1, z2

)
=

(
i�

)2 ∑

mpq

wipqm

(
z1

) ∑

n

Gmn

(
z1, z2

)

×
∑

rs

wnsjr

(
z2

)
Grp

(
z2, z1

)
Gqs

(
z1, z2

)
.

 

(183)
This is the final result that is still written on the Keldysh 
contour, i.e. is an equation for Keldysh matrices. The corre-
sponding matrix elements (‘>’, ‘<’, retarded and advanced 
components) of the selfconsistent second-order selfen-

ergy contributions Σ(2),2,0
ij  and Σ(2),1,1

ij  are straightforwardly 

extracted, applying the Langreth rules:

Σ(2),2,0,≷
ij

(
t1, t2

)
= ±

(
i�

)2 ∑

mn

G≷
mn

(
t1, t2

) ∑

st

G≷
st

(
t1, t2

)

×
∑

r

wirsm

(
t1

) ∑

u

wtnju

(
t2

)
G≶

ur

(
t2, t1

)
,

 (184)

Σ(2),1,1,≷
ij

(
t1, t2

)
=

(
i�

)2 ∑

mpq

wipqm

(
t1

) ∑

n

G≷
mn

(
t1, t2

)

×
∑

rs

wnsjr

(
t2

)
G≶

rp

(
t2, t1

)
G≷

qs

(
t1, t2

)
.

 (185)
All the above results were obtained within the selfconsist-

ent framework, where all expressions contain full, interacting 
Green functions. As we noted in the beginning of this section, 
alternatively one can perform a non-selfconsistent treatment, 
where all Green functions are replaced by non-interacting 
functions. In that case, the possible second-order classes are

Σ(2),(2),2,0,0 = Σxc,(2)
(

W(2), G(0), Γ(0)
)

≡ Σ(2),2,0
(

G → G(0)
)

,
 (186)

Σ(2),(2),1,0,1 = Σxc,(2)
(

W(1), G(0), Γ(1)
)

≡ Σ(2),1,1
(

G → G(0)
)

 (187)
and

Σ(2),{H,0},1 = ΣH,0
(

G(1)
)

, Σ(2),{F,0},1 = ΣF,0
(

G(1)
)

.
 (188)

A detailed list of these contributions, including all Keldysh 
matrix components for all considered basis sets, is given in the 
supplemental material20 in section 2.

4.2.1. Diagonal basis. For a basis where the interaction is 

diagonal, wijkl = δilδ jkwij , the selfconsistent second-order 
selfenergy terms, (see equations (176) and (183)), simplify to

Σ(2),2,0,diagonal
ij

(
z1, z2

)

= ±
(

i�
)2

Gij

(
z1, z2

) ∑

s

wis

(
z1

) ∑

t

Gst

(
z1, z2

)
Gts

(
z2, z1

)
wtj

(
z2

)
,

 

(189)

Σ(2),1,1,diagonal
ij

(
z1, z2

)

=
(

i�
)2 ∑

p

wip

(
z1

) ∑

n

Gin

(
z1, z2

)
wnj

(
z2

)
Gnp

(
z2, z1

)
G pj

(
z1, z2

)
,

 

(190)

with the corresponding Keldysh matrix components

Σ(2),2,0,diagonal,≷
ij

(
t1, t2

)

= ±
(

i�
)2

G≷
ij

(
t1, t2

) ∑

s

wis

(
t1

) ∑

t

G≷
st

(
t1, t2

)
G≶

ts

(
t2, t1

)
wtj

(
t2

)
,

 

(191)

Σ(2),1,1,diagonal,≷
ij

(
t1, t2

)

=
(

i�
)2 ∑

p

wip

(
t1

) ∑

n

G≷
in

(
t1, t2

)
wnj

(
t2

)
G≶

np

(
t2, t1

)
G≷

pj

(
t1, t2

)
.

 

(192)

The Feynman diagrams for these expressions are shown in 
figure 22.

4.2.2. Hubbard basis. For the Hubbard basis, we give the 
selfconsistent second-order selfenergy contributions first for 
bosons

Σ(2),2,0,Hubbard,b
iαjα

(
z1, z2

)

=
(

i�
)2

Giαjα

(
z1, z2

)
U

(
z1

) ∑

ε

Giεjε

(
z1, z2

)
G jεiε

(
z2, z1

)
U

(
z2

)
,

 

(193)
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Σ(2),1,1,Hubbard,b
iαjα

(
z1, z2

)

=
(

i�
)2

U
(

z1

)
Giαjα

(
z1, z2

)
U

(
z2

)
G jαiα

(
z2, z1

)
Giαjα

(
z1, z2

)
.

 

(194)

Similarly, we obtain for fermions:

Σ(2),2,0,Hubbard,f
iαjα

(
z1, z2

)

= −
(

i�
)2

Giαjα

(
z1, z2

)
U

(
z1

) ∑

ε�=α

Giεjε

(
z1, z2

)
G jεiε

(
z2, z1

)
U

(
z2

)
,

 

(195)

whereas the second expression vanishes, 
Σ(2),1,1,Hubbard,f

iαjα

(
z1, z2

)
≡ 0 .

The corresponding ‘≷ ’ Keldysh matrix components read, 
for bosons,

Σ(2),2,0,Hubbard,b,≷
iαjα

(
t1, t2

)

=
(

i�
)2

G≷
iαjα

(
t1, t2

)
U

(
t1

) ∑

ε

G≷
iεjε

(
t1, t2

)
G≶

jεiε

(
t2, t1

)
U

(
t2

)
,

Σ(2),1,1,Hubbard,b,≷
iαjα

(
t1, t2

)

=
(

i�
)2

U
(

t1
)

G≷
iαjα

(
t1, t2

)
U

(
t2

)
G≶

jαiα

(
t2, t1

)
G≷

iαjα

(
t1, t2

)
.

Analogously, we have, for fermions,

Σ(2),2,0,Hubbard,f,≷
iαjα

(
t1, t2

)
= −

(
i�

)2
G≷

iαjα

(
t1, t2

)
U

(
t1

) ∑

ε�=α

G≷
iεjε

(
t1, t2

)
G≶

jεiε

(
t2, t1

)
U

(
t2

)

and, as before, Σ(2),1,1,Hubbard,f,≷
iαjα

(
t1, t2

)
≡ 0.

We again consider the special cases of spin-0 bosons and 
spin-1/2 fermions, respectively. For spin-0 bosons, the self-
consistent second-order contributions are given by

Σ(2),2,0,Hubbard,b,0
ij

(
z1, z2

)

=
(

i�
)2

Gij

(
z1, z2

)
U

(
z1

)
Gij

(
z1, z2

)
G ji

(
z2, z1

)
U

(
z2

)
,

 

(196)

Σ(2),1,1,Hubbard,b,0
ij

(
z1, z2

)

=
(

i�
)2

U
(

z1

)
Gij

(
z1, z2

)
U

(
z2

)
G ji

(
z2, z1

)
Gij

(
z1, z2

)
.

 

(197)

Similarly, for spin-1/2 fermions we obtain

Σ(2),2,0,Hubbard,f,1/2
i↓(↑)j↓(↑)

(
z1, z2

)

= −
(

i�
)2

Gi↓(↑)j↓(↑)

(
z1, z2

)
U

(
z1

)
Gi↑(↓)j↑(↓)

(
z1, z2

)

G j↑(↓)i↑(↓)

(
z2, z1

)
U

(
z2

)
.

 

(198)

The Feynman diagrams of the self-consistent second-order 
selfenergy contributions for spin-0 bosons and spin-1/2 fermi-
ons are depicted in figures 23 and 24, respectively.

Consider again the corresponding ‘>’ and ‘<’ Keldysh 
matrix components. For spin-0 bosons, we have

Σ(2),2,0,Hubbard,b,0,≷
ij

(
t1, t2

)

=
(

i�
)2

G≷
ij

(
t1, t2

)
U

(
t1

)
G≷

ij

(
t1, t2

)
G≶

ji

(
t2, t1

)
U

(
t2

)
,

Σ(2),1,1,Hubbard,b,0,≷
ij

(
t1, t2

)

=
(

i�
)2

U
(

t1
)

G≷
ij

(
t1, t2

)
U

(
t2

)
G≶

ji

(
t2, t1

)
G≷

ij

(
t1, t2

)
.

In similar manner, we find the correlation components for 
spin-1/2 fermions:

Σ(2),2,0,Hubbard,f,1/2,≷
i↓(↑)j↓(↑)

(
t1, t2

)
= −

(
i�

)2
G≷

i↓(↑)j↓(↑)

(
t1, t2

)

U
(

t1
)

G≷
i↑(↓)j↑(↓)

(
t1, t2

)
G≶

j↑(↓)i↑(↓)

(
t2, t1

)
U

(
t2

)
,

whereas the second contribution vanishes, as before.

4.3. Third-order selfenergy (TOA)

After discussing the frequently used first- and second-order 
contributions, we now turn to the selfenergy approximations 

i, z1
j, z2

i, z1
j, z2 i, z1 j, z2

i, z1 j, z2

Figure 23. Selfconsistent second-order diagrams for spin-0 bosons 
in the Hubbard basis. Left: Exchange diagram Σ(2),1,1,Hubbard,b,0. 
Right: Direct diagram, Σ(2),2,0,Hubbard,b,0. Note that both diagrams 
coincide for the Hubbard basis.

i ↓ (↑), z1 j ↓ (↑), z2

i ↑ (↓), z1 j ↑ (↓), z2

Figure 24. Selfconsistent second-order diagram for spin-1/2 
fermions in the Hubbard basis, Σ(2),2,0,Hubbard,f,1/2.

i, z1
n, z2

p, z1
j, z2 i, z1 j, z2

s, z1 t, z2

Figure 22. Selfconsistent second-order diagrams in the diagonal 
basis. Left: Exchange diagram Σ(2),1,1,diagonal . Right: Direct diagram, 

Σ(2),2,0,diagonal .
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that are of third order in the interaction. We have seen in the results section 3 that, in many cases, the third order provides sur-
prisingly accurate results. On the other hand, this approximation has not been discussed in the literature before. Therefore, we 
discuss the third-order approximation and its different variants in detail below.

The structure of the selfconsistent third-order contributions to the selfenergy can again be deduced from equation (101). 
There is a total of three terms that contribute to the third-order selfenergy

Σ(3),3,0 = Σxc
(

W(3), Γ(0)
)

, (199)

Σ(3),2,1 = Σxc
(

W(2), Γ(1)
)

, (200)

Σ(3),1,2 = Σxc
(

W(1), Γ(2)
)

. (201)

For the first class, in turn, there exist two contributions to W(3):

W(3),0,2 = Wns
(

P(0), W(2)
)

, W(3),1,1 = Wns
(

P(1), W(1)
)

.
 

(202)

Using equation (104), together with equation (174), one finds21

 

(203)

Combining this with equation (155), the first term of the first third-order selfenergy class, Σ(3),3,0, becomes

 

(204)

or, in the full notation,

Σ(3),{3;0,2},0
ij

(
z1, z2

)

=
(

i�
)3 ∑

mn

Gmn

(
z1, z2

) ∑

rs

wirsm

(
z1

) ∫

C
dz3

∑

tu

Gst

(
z1, z3

)
Gur

(
z3, z1

)

×
∑

vw

wtvwu

(
z3

) ∑

xy

Gwx

(
z3, z2

)
Gyv

(
z2, z3

)
wxnjy

(
z2

)
.

 

(205)

21 The corresponding equations in the full notation are given in section 1.2.1 of the supplement 20.

J. Phys.: Condens. Matter 32 (2020) 103001



Topical Review

43

For the second class of the interaction, W(3),1,1, contributing to equation (199), the first-order contribution to the polarization is 
needed, which is given by22, (see equations (105) and (181)),

 

(206)

Inserting this result back, one finds, using equation (104),

 

(207)

With these results, the second term of the class Σ(3),3,0 is found, using equations (101) and (155),

 

(208)

or, in the full notation,

Σ(3),{3;1,1},0
ij

(
z1, z2

)

= ±
(

i�
)3 ∑

mn

Gmn

(
z1, z2

) ∑

rs

wirsm

(
z1

) ∫

C
dz3

∑

t

Gst

(
z1, z3

) ∑

u

Gur

(
z3, z1

)

×
∑

vw

wtwuv

(
z3

) ∑

xy

Gvx

(
z3, z2

)
Gyw

(
z2, z3

)
wxnjy

(
z2

)
.

 

(209)

22 The corresponding equations in the full notation are given in section 1.2.2 of the supplement 20.
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We continue with the second class, Σ(3),2,1, which is straightforwardly worked out23 by combining equations (174) and (181),

 

(210)

or, in the full notation,

Σ(3),2,1
ij

(
z1, z2

)

= ±
(

i�
)3

∫

C
dz3

∑

mrs

wirsm

(
z1

) ∑

tu

Gst

(
z1, z3

)
Gur

(
z3, z1

) ∑

pq

wtpqu

(
z3

)

×
∑

n

Gmn

(
z1, z2

) ∑

vw

wnwjv

(
z2

)
Gvp

(
z2, z3

)
Gqw

(
z3, z2

)
.

 

(211)

For the third class Σ(3),1,2, the second-order contributions to the vertex, Γ(2), have to be computed. There are two structural 
classes to consider:

Γ(2),1,1 = Γ
(

δΣxc,(1)
/δG, Γ(1)

)
, (212)

Γ(2),2,0 = Γ
(

δΣxc,(2)
/δG, Γ(0)

)
. (213)

For the class Γ(2),1,1, there exists a single contribution24, which is found by employing equations (179) and (181),

 

(214)

This enables the computation of Σ(3),1,{2;1,1} with equations (101) and (154),

 

(215)

23 The corresponding equations in the full notation are given in section 1.2.3 of the supplement 20.
24 The corresponding equations in the full notation are given in section 1.2.4 of the supplement 20.
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i.e. in the full notation,

Σ(3),1,{2;1,1}
ij

(
z1, z2

)

=
(

i�
)3 ∑

mpq

wipqm

(
z1

) ∑

n

Gmn

(
z1, z2

) ∑

rs

wnsjr

(
z2

) ∫

C
dz3

∑

t

Grt

(
z2, z3

)

×
∑

u

Gus

(
z3, z2

) ∑

vw

wtwuv

(
z3

)
Gvp

(
z3, z1

)
Gqw

(
z1, z3

)
.

 

(216)

The vertex class Γ(2),2,0 has six members stemming from the derivatives with respect to each of the three Green functions in 
both second-order contributions to Σ(2), see equations (176) and (183),

Γ(2),{2;2,0},0 = Γ
(

δΣ(2),2,0
/δG, Γ(0)

)
, (217)

Γ(2),{2;1,1},0 = Γ
(

δΣ(2),1,1
/δG, Γ(0)

)
. (218)

For the first terms, one finds25

 

(219)

Inserting equation (176), the occurring derivative evaluates to

 

(220)

With that, the resulting vertex splits up into three parts labeled ‘A’, ‘B’ and ‘C’:

 

(221)

25 The corresponding equations in the full notation are given in section 1.2.5 of the supplement 20.
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(222)

 

(223)

Similarly, one finds

 

(224)

Inserting equation (183), the occurring derivative evaluates to

 

(225)
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Again, three vertex contributions A, B and C are generated:

 

(226)

 

(227)

 

(228)

With this result, the corresponding selfenergy terms26 can be computed by combining equations  (101) and (154) with 
equations (221)–(228),

 

(229)

26 The corresponding equations in the full notation are given in section 1.2.6 of the supplement 20.
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 (230)

 

(231)

 

(232)

 

(233)
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(234)

In the full notation, these contributions read,

Σ(3),1,{2;{2;2,0},0,A}
ij

(
z1, z2

)
= ±

(
i�

)3 ∑

mpq

wipqm

(
z1

)

×
∫

C
dz4

∑

n

Gmn

(
z1, z4

) ∑

rsuv

Guv

(
z4, z2

) ∑

t

wntur

(
z4

)

×
∑

w

wvsjw

(
z2

)
Gwt

(
z2, z4

)
Grp

(
z4, z1

)
Gqs

(
z1, z2

)
,

 

(235)

Σ(3),1,{2;{2;2,0},0,B}
ij

(
z1, z2

)

= ±
(

i�
)3 ∑

mpq

wipqm

(
z1

) ∫

C
dz4

∑

n

Gmn

(
z1, z4

) ∑

rs

∑

tu

Gtu

(
z4, z2

)

×
∑

v

wnvrt

(
z4

) ∑

w

wsujw

(
z2

)
Gwv

(
z2, z4

)
Grp

(
z4, z1

)
Gqs

(
z1, z2

)
,

 

(236)

Σ(3),1,{2;{2;2,0},0,C}
ij

(
z1, z2

)

= ±
(

i�
)3 ∑

mpq

wipqm

(
z1

) ∫

C
dz4

∑

n

Gmn

(
z1, z4

) ∑

rs

∑

tu

Gtu

(
z4, z2

)

×
∑

vw

Gvw

(
z4, z2

)
wnsvt

(
z4

)
wwujr

(
z2

)
Grp

(
z2, z1

)
Gqs

(
z1, z4

)
,

 

(237)

Σ(3),1,{2;{2;1,1},0,A}
ij

(
z1, z2

)

=
(

i�
)3 ∑

mpq

wipqm

(
z1

) ∫

C
dz4

∑

n

Gmn

(
z1, z4

) ∑

rs

∑

tu

wntur

(
z4

)

×
∑

vw

wswjv

(
z2

)
Gvt

(
z2, z4

)
Guw

(
z4, z2

)
Grp

(
z4, z1

)
Gqs

(
z1, z2

)
,

 

(238)

Σ(3),1,{2;{2;1,1},0,B}
ij

(
z1, z2

)

=
(

i�
)3 ∑

mpq

wipqm

(
z1

) ∫

C
dz4

∑

n

Gmn

(
z1, z4

) ∑

rs

∑

tv

wnsvt

(
z4

)

×
∑

u

Gtu

(
z4, z2

) ∑

w

wuwjr

(
z2

)
Gvw

(
z4, z2

)
Grp

(
z2, z1

)
Gqs

(
z1, z4

)
,

 

(239)

Σ(3),1,{2;{2;1,1},0,C}
ij

(
z1, z2

)

=
(

i�
)3 ∑

mpq

wipqm

(
z1

) ∫

C
dz4

∑

n

Gmn

(
z1, z4

) ∑

rs

∑

tv

wnvrt

(
z4

)

×
∑

u

Gtu

(
z4, z2

) ∑

w

wusjw

(
z2

)
Gwv

(
z2, z4

)
Grp

(
z4, z1

)
Gqs

(
z1, z2

)
.

 

(240)

‘>’ and ‘<’ Keldysh coomponents: Let us now turn 
to the ‘ ≷ ’ components which are the central ingredient for 

the numerical implementation. For all third-order selfenergy 
terms these components can be computed in a generic fashion, 
splitting all integrals at the points where the arguments of each 
Green function change their relative ordering on the contour. 

Consider first the ‘<’ component, to Σ(3),1,{2;{2;2,0},0,B}
ij

(
z1, z2

)
. 

The result consists of three terms, (see equation (74)),

Σ(3),1,{2;{2;2,0},0,B},<
ij

(
t1, t2

)
= Σ(3),1,{2;{2;2,0},0,B},<

ij

(
z1− , z2+

)

= ±
(

i�
)3 ∑

mpq

wipqm

(
z1−

)

×
{

I1,<
mpq

(
z1− , z2+

)
+ I2,<

mpq

(
z1− , z2+

)
+ I3,<

mpq

(
z1− , z2+

)}
,
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with the three terms given by

I1,<
mpq

(
z1− , z2+

)
=

∫ z
1−

z
0−

dz4

∑

n

G>
mn

(
z1− , z4

)

×
∑

rs

∑

tu

G<
tu

(
z4, z2+

) ∑

v

wnvrt

(
z4

)

×
∑

w

wsujw

(
z2+

)
G>

wv

(
z2+ , z4

)
G<

rp

(
z4, z1−

)
G<

qs

(
z1− , z2+

)
,
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I2,<
mpq

(
z1− , z2+

)
=

∫ z
2+

z
1−

dz4

∑

n

G<
mn

(
z1− , z4

)

×
∑

rs

∑

tu

G<
tu

(
z4, z2+

) ∑

v

wnvrt

(
z4

)

×
∑

w

wsujw

(
z2+

)
G>

wv

(
z2+ , z4

)
G>

rp

(
z4, z1−

)
G<

qs

(
z1− , z2+

)
,
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I3,<
mpq

(
z1− , z2+

)
=

∫ z
0+

z
2+

dz4

∑

n

G<
mn

(
z1− , z4

)

∑

rs

∑

tu

G>
tu

(
z4, z2+

) ∑

v

wnvrt

(
z4

)

∑

w

wsujw

(
z2+

)
G<

wv

(
z2+ , z4

)
G>

rp

(
z4, z1−

)
G<

qs

(
z1− , z2+

)
.
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We now transform these expression to real-time integrals:

Σ(3),1,{2;{2;2,0},0,B},<
ij

(
t1, t2

)
= ±

(
i�

)3 ∑

mpq

wipqm

(
t1

)

×
{

I1,<
mpq

(
t1, t2

)
+ I2,<

mpq

(
t1, t2

)
+ I3,<

mpq

(
t1, t2

)}
,
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with the corresponding results for the three contributions

I1,<
mpq

(
t1, t2

)
=

∫ t
1

t
0

dt4
∑

n

G>
mn

(
t1, t4

)

×
∑

rs

∑

tu

G<
tu

(
t4, t2

) ∑

v

wnvrt

(
t4

)

×
∑

w

wsujw

(
t2

)
G>

wv

(
t2, t4

)
G<

rp

(
t4, t1

)
G<

qs

(
t1, t2

)
,
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I2,<
mpq

(
t1, t2

)
=

∫ t
2

t
1

dt4
∑

n

G<
mn

(
t1, t4

)

×
∑

rs

∑

tu

G<
tu

(
t4, t2

) ∑

v

wnvrt

(
t4

)

×
∑

w

wsujw

(
t2

)
G>

wv

(
t2, t4

)
G>

rp

(
t4, t1

)
G<

qs

(
t1, t2

)
,
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I3,<
mpq

(
t1, t2

)
=

∫ t
0

t
2

dt4
∑

n

G<
mn

(
t1, t4

)

×
∑

rs

∑

tu

G>
tu

(
t4, t2

) ∑

v

wnvrt

(
t4

)

×
∑

w

wsujw

(
t2

)
G<

wv

(
t2, t4

)
G>

rp

(
t4, t1

)
G<

qs

(
t1, t2

)
.
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For the ‘>’ component, we find analogously

Σ(3),1,{2;{2;2,0},0,B},>
ij

(
t1, t2

)
= Σ(3),1,{2;{2;2,0},0,B},>

ij

(
z1+ , z2−

)

= ±
(

i�
)3 ∑

mpq

wipqm

(
z1+

)

×
{

I1,>
mpq

(
z1+ , z2−

)
+ I2,>

mpq

(
z1+ , z2−

)
+ I3,>

mpq

(
z1+ , z2−

)}
,
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which, again, consists of three terms:

I1,>
mpq

(
z1+ , z2−

)
=

∫ z
2−

z
0−

dz4

∑

n

G>
mn

(
z1+ , z4

)

×
∑

rs

∑

tu

G<
tu

(
z4, z2−

) ∑

v

wnvrt

(
z4

)

×
∑

w

wsujw

(
z2−

)
G>

wv

(
z2− , z4

)
G<

rp

(
z4, z1+

)
G>

qs

(
z1+ , z2−

)
,
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I2,>
mpq

(
z1+ , z2−

)
=

∫ z
1+

z
2−

dz4

∑

n

G>
mn

(
z1+ , z4

)

×
∑

rs

∑

tu

G>
tu

(
z4, z2−

) ∑

v

wnvrt

(
z4

)

×
∑

w

wsujw

(
z2−

)
G<

wv

(
z2− , z4

)
G<

rp

(
z4, z1+

)
G>

qs

(
z1+ , z2−

)
,
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I3,>
mpq

(
z1+ , z2−

)
=

∫ z
0+

z
1+

dz4

∑

n

G<
mn

(
z1+ , z4

)

×
∑

rs

∑

tu

G>
tu

(
z4, z2−

) ∑

v

wnvrt

(
z4

)

×
∑

w

wsujw

(
z2−

)
G<

wv

(
z2− , z4

)
G>

rp

(
z4, z1+

)
G>

qs

(
z1+ , z2−

)
.
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Transforming, again, to real-time integrals, we obtain

Σ(3),1,{2;{2;2,0},0,B},>
ij

(
t1, t2

)
= ±

(
i�

)3 ∑

mpq

wipqm

(
t1

)

×
{

I1,>
mpq

(
t1, t2

)
+ I2,>

mpq

(
t1, t2

)
+ I3,>

mpq

(
t1, t2

)}
,
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with the three contributions becoming

I1,>
mpq

(
t1, t2

)
=

∫ t
2

t
0

dt4
∑

n

G>
mn

(
t1, t4

)

×
∑

rs

∑

tu

G<
tu

(
t4, t2

) ∑

v

wnvrt

(
t4

)

×
∑

w

wsujw

(
t2

)
G>

wv

(
t2, t4

)
G<

rp

(
t4, t1

)
G>

qs

(
t1, t2

)
,
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I2,>
mpq

(
t1, t2

)
=

∫ t
1

t
2

dt4
∑

n

G>
mn

(
t1, t4

)

×
∑

rs

∑

tu

G>
tu

(
t4, t2

) ∑

v

wnvrt

(
t4

)

×
∑

w

wsujw

(
t2

)
G<

wv

(
t2, t4

)
G<

rp

(
t4, t1

)
G>

qs

(
t1, t2

)
,
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I3,>
mpq

(
t1, t2

)
=

∫ t
0

t
1

dt4
∑

n

G<
mn

(
t1, t4

)

×
∑

rs

∑

tu

G>
tu

(
t4, t2

) ∑

v

wnvrt

(
t4

)

×
∑

w

wsujw

(
t2

)
G<

wv

(
t2, t4

)
G>

rp

(
t4, t1

)
G>

qs

(
t1, t2

)
.
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Non-selfconsistent expansion: We now briefly discuss 
how the above results change in the case that all expressions 
are expanded in terms of noninteracting Green functions. The 
additional non-selfconsistent diagrams are of either of the 
structures

Σ(3)
(

G −→ G(0)
)

, (10 terms)

Σ(2)
(

G(0) −→ G(0)Σ(1)G(0)
)

, (6 · 2 = 12 terms)

ΣH/ΣF
(

G(0) −→ G(0)Σ(2)G(0)
)

, (2 · 6 = 12 terms)

ΣH/ΣF
(

G(0) −→ G(0)Σ(1)G(0)Σ(1)G(0)
)

, (2 · 2 · 2 = 8 terms)

This makes a total of 42 non-selfconsistent third-order terms.

4.3.1. Diagonal basis. In a diagonal basis, the selfconsistent 
third-order selfenergy contributions become

Σ(3),{3;0,2},0,diag
ij

(
z1, z2

)

=
(

i�
)3

Gij

(
z1, z2

) ∑

r

wir

(
z1

) ∫

C
dz3

∑

t

Grt

(
z1, z3

)
Gtr

(
z3, z1

)

×
∑

v

wtv

(
z3

) ∑

x

Gvx

(
z3, z2

)
Gxv

(
z2, z3

)
wxj

(
z2

)
,
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Σ(3),{3;1,1},0,diag
ij

(
z1, z2

)

= ±
(

i�
)3

Gij

(
z1, z2

) ∑

r

wir

(
z1

) ∫

C
dz3

∑

t

Grt

(
z1, z3

) ∑

u

Gur

(
z3, z1

)

× wtu

(
z3

) ∑

x

Gtx

(
z3, z2

)
Gxu

(
z2, z3

)
wxj

(
z2

)
,
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Σ(3),2,1,diag
ij

(
z1, z2

)

= ±
(

i�
)3

∫

C
dz3

∑

r

wir

(
z1

) ∑

t

Grt

(
z1, z3

)
Gtr

(
z3, z1

) ∑

p

wtp

(
z3

)

×
∑

n

Gin

(
z1, z2

)
wnj

(
z2

)
Gnp

(
z2, z3

)
G pj

(
z3, z2

)
,
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Σ(3),1,{2;1,1},diag
ij

(
z1, z2

)

=
(

i�
)3 ∑

p

wip

(
z1

) ∑

n

Gin

(
z1, z2

)
wnj

(
z2

) ∫

C
dz3

∑

t

Gnt

(
z2, z3

)

×
∑

u

Guj

(
z3, z2

)
wtu

(
z3

)
Gtp

(
z3, z1

)
G pu

(
z1, z3

)
,

 

(260)

Now we again provide the three contributions labeled ‘A, B, 
C’, respectively:

Σ(3),1,{2;{2;2,0},0,A},diag
ij

(
z1, z2

)

= ±
(

i�
)3 ∑

p

wip

(
z1

) ∫

C
dz4

∑

n

Gin

(
z1, z4

) ∑

tv

Gtv

(
z4, z2

)

× wnt

(
z4

)
wvj

(
z2

)
Gvt

(
z2, z4

)
Gnp

(
z4, z1

)
G pj

(
z1, z2

)
,
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Σ(3),1,{2;{2;2,0},0,B},diag
ij

(
z1, z2

)

= ±
(

i�
)3 ∑

p

wip

(
z1

) ∫

C
dz4

∑

n

Gin

(
z1, z4

) ∑

rs

Gnj

(
z4, z2

)

× wnr

(
z4

)
wsj

(
z2

)
Gsr

(
z2, z4

)
Grp

(
z4, z1

)
G ps

(
z1, z2

)
,
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Σ(3),1,{2;{2;2,0},0,C},diag
ij

(
z1, z2

)

= ±
(

i�
)3 ∑

p

wip

(
z1

) ∫

C
dz4

∑

n

Gin

(
z1, z4

) ∑

rs

Gnj

(
z4, z2

)

× Gsr

(
z4, z2

)
wns

(
z4

)
wrj

(
z2

)
Grp

(
z2, z1

)
G ps

(
z1, z4

)
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and, similarly, for the second class of selfenergy contributions:

Σ(3),1,{2;{2;1,1},0,A},diag
ij

(
z1, z2

)

=
(

i�
)3 ∑

p

wip

(
z1

) ∫

C
dz4

∑

n

Gin

(
z1, z4

) ∑

st

wnt

(
z4

)

× wsj

(
z2

)
Gst

(
z2, z4

)
Gtj

(
z4, z2

)
Gnp

(
z4, z1

)
G ps

(
z1, z2

)
,
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Σ(3),1,{2;{2;1,1},0,B},diag
ij

(
z1, z2

)

=
(

i�
)3 ∑

p

wip

(
z1

) ∫

C
dz4

∑

n

Gin

(
z1, z4

) ∑

rs

wns

(
z4

)

× Gnr

(
z4, z2

)
wrj

(
z2

)
Gsj

(
z4, z2

)
Grp

(
z2, z1

)
G ps

(
z1, z4

)
,
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Σ(3),1,{2;{2;1,1},0,C},diag
ij

(
z1, z2

)

=
(

i�
)3 ∑

p

wip

(
z1

) ∫

C
dz4

∑

n

Gin

(
z1, z4

) ∑

r

wnr

(
z4

)

×
∑

u

Gnu

(
z4, z2

)
wuj

(
z2

)
Gur

(
z2, z4

)
Grp

(
z4, z1

)
G pj

(
z1, z2

)
.
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The corresponding Keldysh matrix components as well as 
the non-selfconsistent selfenergy contributions can be worked 
out in analogy to those in the non-diagonal basis. The dia-
grams of the selfconsistent third-order selfenergy contrib-
utions in a diagonal basis are shown in figure 25.

4.3.2. Hubbard basis. Spin-0 bosons. For the Hubbard 
basis we separately consider spin-0 bosons and spin-1/2 
fermions. For the case of spin-0 bosons, the third-order self-
energy contrib utions separate into two classes. The first is 
given by

Σ(3),{3;0,2},0,b,0
ij

(
z1, z2

)
= Σ(3),{3;1,1},0,b,0

ij

(
z1, z2

)

= Σ(3),2,1,b,0
ij

(
z1, z2

)
= Σ(3),1,{2;1,1},b,0

ij

(
z1, z2

)

= Σ(3),1,{2;{2;2,0},0,A},b,0
ij

(
z1, z2

)
= Σ(3),1,{2;{2;2,0},0,B},b,0

ij

(
z1, z2

)

= Σ(3),1,{2;{2;1,1},0,A},b,0
ij

(
z1, z2

)
= Σ(3),1,{2;{2;1,1},0,C},b,0

ij

(
z1, z2

)

=
(

i�
)3

Gij

(
z1, z2

)
U

(
z1

) ∫

C
dz3

∑

t

Git

(
z1, z3

)
Gti

(
z3, z1

)

× U
(

z3

)
Gtj

(
z3, z2

)
G jt

(
z2, z3

)
U

(
z2

)
,

 

(267)

and the second is given by

Σ(3),1,{2;{2;2,0},0,C},b,0
ij

(
z1, z2

)
= Σ(3),1,{2;{2;1,1},0,B},b,0

ij

(
z1, z2

)

=
(

i�
)3

U
(

z1

) ∫

C
dz4

∑

n

Gin

(
z1, z4

)
Gnj

(
z4, z2

)

× Gnj

(
z4, z2

)
U

(
z4

)
U

(
z2

)
G ji

(
z2, z1

)
Gin

(
z1, z4

)
.
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The corresponding diagrams are shown in figure 26.

Let us now turn to the Hubbard result for spin-1/2 fermi-
ons. In this case only the terms with the superscripts ‘B’ and 
‘C’ exist which are denoted by Σ(3),1,{2;{2;2,0},0,B},f,1/2 and 
Σ(3),1,{2;{2;2,0},0,C},f,1/2, respectively. The ‘B’-terms are given 
by

Σ(3),1,{2;{2;2,0},0,B},f,1/2
i↑j↑

(
z1, z2

)

= −
(

i�
)3

U
(

z1

) ∫

C
dz4

∑

n

Gi↑n↑

(
z1, z4

)
Gn↑j↑

(
z4, z2

)

× U
(

z4

)
U

(
z2

)
G j↓n↓

(
z2, z4

)
Gn↓i↓

(
z4, z1

)
Gi↓j↓

(
z1, z2

)
,
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Σ(3),1,{2;{2;2,0},0,B},f,1/2
i↓j↓

(
z1, z2

)

= −
(

i�
)3

U
(

z1

) ∫

C
dz4

∑

n

Gi↓n↓

(
z1, z4

)
Gn↓j↓

(
z4, z2

)

× U
(

z4

)
U

(
z2

)
G j↑n↑

(
z2, z4

)
Gn↑i↑

(
z4, z1

)
Gi↑j↑

(
z1, z2

)
,
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and, for the ‘C’-terms, we find

Σ(3),1,{2;{2;2,0},0,C},f,1/2
i↑j↑

(
z1, z2

)

= −
(

i�
)3

U
(

z1

) ∫

C
dz4

∑

n

Gi↑n↑

(
z1, z4

)
Gn↑j↑

(
z4, z2

)

× U
(

z4

)
U

(
z2

)
Gn↓j↓

(
z4, z2

)
Gi↓n↓

(
z1, z4

)
G j↓i↓

(
z2, z1

)
,
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Σ(3),1,{2;{2;2,0},0,C},f,1/2
i↓j↓

(
z1, z2

)

= −
(

i�
)3

U
(

z1

) ∫

C
dz4

∑

n

Gi↓n↓

(
z1, z4

)
Gn↓j↓

(
z4, z2

)

× U
(

z4

)
U

(
z2

)
Gn↑j↑

(
z2, z4

)
Gi↑n↑

(
z4, z1

)
G j↑i↑

(
z1, z2

)
,
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whereas the ‘A’ terms vanish, as well as all other contrib-
utions in third order. The corresponding Feynman diagrams 
are shown in figure 27.

4.4. Selfenergies of orders higher than three

All terms of orders higher than three can be generated simi-
larly as was demonstrated above for the lower orders. So 
we only outline the main steps. As before, one computes all 
possible permutations of the quantities involved in Hedin’s 
equations  that lead to the desired total order. An approach 
that is suitable for a systematic recursive algorithm, starts 
by eliminating the polarizability from Hedin’s equations, 
yielding, for the selfenergy and the screened potential (see 
equation (95)–(106)),
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Figure 25. Third-order diagrams in diagonal basis from left to right. First row: Σ(3),{3;0,2},0,diag, Σ(3),{3;1,1},0,diag Second row: Σ(3),2,1,diag, 

Σ(3),1,{2;1,1},diag Third row: Σ(3),1,{2;{2;2,0},0,A},diag, Σ(3),1,{2;{2;2,0},0,B},diag
 Fourth row: Σ(3),1,{2;{2;2,0},0,C},diag, Σ(3),1,{2;{2;1,1},0,A},diag Fifth row: 

Σ(3),1,{2;{2;1,1},0,B},diag, Σ(3),1,{2;{2;1,1},0,C},diag.
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Σij

(
z1, z2

)
= ΣH

ij

(
z1, z2

)
+ i�

∫

C
dz3

∑

mpq

Wipqm

(
z1, z3

)

×
∫

C
dz4

∑

n

Gmn

(
z1, z4

)
Γnqpj

(
z4, z2, z3

)
,

 (273)

Wijkl

(
z1, z2

)
= δC

(
z1, z2

)
wijkl

(
z1

)

± i�
∑

mn

wimnl

(
z1

) ∫

C
dz3

∑

pq

∫

C
dz4

∑

r

Gnr

(
z1, z4

)

×
∫

C
dz5

∑

s

Gsm

(
z5, z1

)
Γrqps

(
z4, z5, z3

)
W pjkq

(
z3, z2

)

 

(274)

and, for the vertex function,

Γijkl

(
z1, z2, z3

)
= δC

(
z1, z2+

)
δC

(
z3, z2

)
δikδ jl

+
∫

C
dz4dz5

∑

mn

δΣxc
il

(
z1, z2

)

δGmn

(
z4, z5

)
∫

C
dz6

∑

p

Gmp

(
z4, z6

)

×
∫

C
dz7

∑

q

Gqn

(
z7, z5

)
Γ pjkq

(
z6, z7, z3

)
.

 

(275)

With this set of three coupled equations, the following  
recursive algorithm can be applied to calculate the Nth order 
selfenergy contributions:

 (i)  Initialize Σ(1) = ΣH, see equation (273),
 (ii)  Initialize W(1) = w, see equation (274),
 (iii)  Initialize Γ = Γ(0), see equation (275),
 (iv)  Loop over n = 1 . . . N :

 (a)  If n > 1: Loop over all orders m = 1 . . . (n − 1):

 –  Loop over all selfenergy contributions Σ(m) of order m:
 –  Loop over all vertex contributions Γ(n−1−m)

 of order 
n − 1 − m:

 –  Calculate the new vertex contribution Γ(n−1)
 of order 

m + n − 1 − m = n − 1, from Σ(m) and Γ(n−1−m)
, via 

equation (275),

 (b)  If n > 1: Loop over all orders m = 1 . . . (n − 1):

 –  Loop over all contributions to the screened interaction 
W(m) of order m:

 –  Loop over all vertex contributions Γ(n−1−m)
 of order 

n − 1 − m:
 –  Calculate the new contribution to the screened interac-

tion W
(n)

 of order 1 + m + n − 1 − m = n, from w, 
W(m) and Γ(n−1−m)

, via equation (274)

 (c)  Loop over all orders m = 1 . . . n:

 –  Loop over all contributions to the screened interaction 
W(m) of order m:

 –  Loop over all vertex contributions Γ(n−m)
 of order 

n − m:
 –  Calculate the new selfenergy contribution Σ(n)

 from 
W(m) and Γ(n−m)

 of order m + n − m = n via equa-
tion (273).

A similar algorithm yielding the diagrams with respect to the 
bare interaction, w, can be deduced, replacing the full vertex 
Γ by the bare vertex Λ, see equations (97) and (98). Further, 
the generation of the non-selfconsistent diagrams is straight-
forward by inclusion of the Dyson equation and, additionally, 
taking into account the order of the Green functions in the 
respective equations.

With this we conclude the discussion of the perturbative 
approaches to the selfenergy.

5. Selfenergy approximations II: diagram  
resummation. GW , T matrix, FLEX

In this section  we discuss an alternative to the perturbative 
expansion of the selfenergy in terms of the interaction strength 
that was presented in section 4. The perturbation expansion is 
expected to become questionable or, at least, inefficient with 
increasing interaction strength. This was confirmed in the sec-
tion 3 where we demonstrated that a number of non-perturba-
tive approaches, such as the GW approximation, the T-matrix 
approximation or the FLEX approach are significantly more 
accurate, in many cases.

i, z1
n, z3

j, z2

i, z1

n, z3
j, z2

i, z1
n, z4

j, z2

i, z1

n, z4
j, z2

Figure 26. Third-order diagrams in the Hubbard basis for spin-0 bosons. Left: first equivalence class of Σ(3),{3;0,2},0,diag, Σ(3),{3;1,1},0,diag, 

Σ(3),2,1,diag, Σ(3),1,{2;1,1},diag, Σ(3),1,{2;{2;2,0},0,A},diag, Σ(3),1,{2;{2;2,0},0,B},diag, Σ(3),1,{2;{2;1,1},0,A},diag and Σ(3),1,{2;{2;1,1},0,C},diag. Right: Second 
equivalence class of Σ(3),1,{2;2,0,C},diag and Σ(3),1,{2;1,1,B},diag.
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Thus, when perturbation expansions fail, a more appro-
priate approach consists in diagram resummation techniques 
that sum an entire infinite perturbation series and which is 
in the focus of the present section. The underlying idea is to 
take into consideration one or several classes of terms with 
a recursive structure which occur in all orders of the inter-
action, based on physical intuition about their importance. 
In fact such resummation approaches have a long history. 
For example the T-matrix approximation has been success-
fully applied in scattering theory and in nuclear physics. On 
the other hand, the concept of dynamical screening (GW 
approximation) has been employed for electrolytes and plas-
mas. The major advance provided by Green functions theory 
is the extension of the concept to arbitrary nonequilibrium 
situations.

GW approximation. Starting from the notion of the 
screened interaction, W , the simplest choice is the GW  
approximation [82] which centers around treating W  exactly 
according to equation  (102) while taking the screened ver-
tex Γ only in zeroth-order approximation. This leads to the 
familiar concept of dynamical screening and plasmon dynam-
ics which is of particular importance for long-range Coulomb 
interaction in dense plasmas [136] or molecules. The resulting 
structure of the selfenergy approximation is discussed in the 
ensuing section 5.2.

T-matrix approximation. In contrast to GW , the T-matrix 
approximation, treats the interaction only at the level of the 
bare interaction, but focuses instead on a good representation 
of the bare vertex functions Λ. This approximation sums the 
entire Born series and is, thus expected to be more accurate 
than the second-Born approximation, at strong coupling. The 
T-matrix approximation exists in two flavors—the particle–
particle T-matrix approximation (TPP) and the particle–hole 
T-matrix approximation (TPH).

Combination of strong coupling and dynamical screen-
ing. Furthermore, several other approaches have been intro-
duced that mix screened and bare interaction [172]. An 
example for this group is the second-order screened-exchange 
(SOSEX) approximation [105, 172, 173], which takes the 
second-order exchange diagram, see equation  (183), and 
replaces one of the bare interactions w by the screened inter-

action W. Doing that, the total complexity is still of O
(

N3
t

)
, 

since the determination of the selfenergy, the computation of 
the screened interaction according to equation (104) and the 

solution of the KBE, (see equations (66) and (67)), all scale 

as O
(

N3
t

)
.

Another possible way is to combine several existing 
approximations. Thereby one has to correct for possible 
double counting. This strategy is pursued in the so-called 
fluctuating-exchange (FLEX) approximation which adds the 
diagrams of third and higher order of the GW approx imation 
and both T matrices to the second-order diagrams, which are 
taken only once. The FLEX approximation which will be 
detailed in section 5.5 can be seen as a the starting term of 
the more sophisticated plaquet theory [174–180], where one 
uses coupled equations for the vertex functions in the particle–
particle and particle–hole channels.

Before discussing in detail the GW approximation, the 
T-matrix approximation and the FLEX approximation, in 
Sections 5.2, 5.3 and 5.5, respectively, we investigate in some 
detail the two-particle Green function G(2). We start by intro-
ducing the Hartree and the Fock approximation for G(2) in 
section 5.1, since they will be used later.

5.1. Mean field. Hartree and Fock approximations for G(2)

In the following, the two simplest approximations for the two-
particle Green function are defined which will are the starting 
point for simplifying the expressions occuring in the resum-
mation approaches. Those are the Hartree Green function, 
G(2),H, and the Fock Green function, G(2),F.

G(2),H corresponds to the approximation that two particles 
are uncorrelated. Then the two-particle Green function G(2) is 
approximated as

G(2)
ijkl

(
z1, z2, z3, z4

)
≡ G(2),H

ijkl

(
z1, z2, z3, z4

)
:= Gik

(
z1, z3

)
G jl

(
z2, z4

)
.

 (276)
This approximation applies to classical and quantum many-
particle systems alike. In contrast, an additional approximation 
that exists only in the case of quantum systems and reflects the 
indistinguishability of quantum particles (exchange effects 
of bosons or fermions) is the Fock approximations which, is 
denoted as G(2),F and reads

G(2)
ijkl

(
z1, z2, z3, z4

)
≡ G(2),F

ijkl

(
z1, z2, z3, z4

)
:= ±Gil

(
z1, z4

)
G jk

(
z2, z3

)
.

 (277)

For better illustration both two-particle quantities are repeated 
in the compact notation:

 

(278)

 

(279)
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Following the above considerations, in a quantum system the 
mean-field approximation for G(2) is the sum of the Hartree 
and Fock contributions.

In the resummation expansions presented in this sec-
tion, both quantities play a central role. However, in most 
cases, we will only need simpler two-time versions of the 
two-particle functions, GH and GF, respectively These 
expressions follow by setting equal two pairs of time-argu-
ments and adding a dimensionality factor i� . This leads to 
(we skip the superscript ‘(2)’ since it is clear that a func-
tion with four basis indices refers to a two-particle Green 
function)

GH
ijkl

(
z1, z2

)
:= i�G(2),H

ijkl

(
z1, z1, z2, z2

)
≡ i�Gik

(
z1, z2

)
G jl

(
z1, z2

)
,

 (280)
whereas, for the Fock approximation, one has

GF
ijkl

(
z1, z2

)
= i�G(2),F

ijkl

(
z1, z2, z1, z2

)
≡ ±i�Gil

(
z1, z2

)
G jk

(
z2, z1

)
.

 (281)

We now provide the Keldysh matrix components of equa-
tions (280) and (281). For the Hartree function, we have the 
following ‘≷ ’ and advanced/retarded components:

GH,≷
ijkl

(
t1, t2

)
= i�G≷

ik

(
t1, t2

)
G≷

jl

(
t1, t2

)
,

GH,A/R
ijkl

(
t1, t2

)
= ∓i�Θ[±(t2 − t1)]

−
[
G>

ik

(
t1, t2

)
G>

jl

(
t1, t2

)
G<

ik

(
t1, t2

)
G<

jl

(
t1, t2

)]
.

Similarly, for the Fock two-particle function follows

GF,≷
ijkl

(
t1, t2

)
= ±i�G≷

il

(
t1, t2

)
G≶

jk

(
t2, t1

)
,

GF,A/R
ijkl

(
t1, t2

)
= ∓i�Θ[±(t2 − t1)]
[
G>

il

(
t1, t2

)
G<

jk

(
t2, t1

)
− G<

il

(
t1, t2

)
G>

jk

(
t2, t1

)]
.

5.2. Polarization bubble resummation. GW  approximation

The GW  approximation aims at treating long-range interac-
tion effects that lead to dynamical screening and collective 
excitations (plasmons). These effects are of particular rele-
vance for charged many-particle systems, including ionized 
gases (plasmas), the electron gas in metals, electron-hole 
plasmas in semiconductors and so on. In fact, many-body 
approx imations that go beyond the static second-Born 
approximation, on one hand, and beyond the statical-
screening concept of Debye and Hückel, on the other hand, 
have a long tradition in plasma physics. In fact kinetic equa-
tions with collision integrals the include a complete resum-
mation of all polarization diagrams have been derived in the 
1960s by Lenard and Balescu [181, 182] and analyzed in 
detail by Klimontovich [183] and many others. A quant um 
derivation within density-operator theory (BBGKY-
hierarchy) and a discussion of its relation to Green func-
tions can be found in [136].

The Green functions approach to dynamical screening and col-
lective excitation is based on Hedin’s equations for the screened 
interaction W  according to equation (104) with the zeroth order 
vertex Γ(0). The set of equations is given by the Dyson equation27 
(see equation (91))

 

(282)

the equation for the selfenergy (see equation (95))

 

(283)

with

 

(284)

27 The corresponding equations in the full notation are given in section 1.3 of the supplement 20.
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the zeroth-order polarizability (see equation (173))

 

(285)

and the screened interaction (see equations (102) and (104))

 

(286)

To solve this set of equations, one has to determine the selfconsistent solution of equation (286). Due to the time-diagonal 
structure (i.e. due to the time delta function) of the bare interaction (see equation (60)) the computational solution of equa-
tion (286) in the displayed form becomes ill-defined. Therefore, it is advantageous to eliminate the singular bare interaction 
by defining the ‘non-singular’ part of the interaction (or the induced potential which will be labeled with the superscript ‘ns’)

 

(287)

Using this and, by comparison with equation (156), one arrives at

 

(288)

Thus the full selfenergy in the GW approximation contains, in addition to the Hartree–Fock selfenergy, a correlation contrib-

ution which is denoted ΣGW,corr
ij  and which will be in the focus of the subsequent analysis.
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For the non-singular part of the screened interaction, we have

 

(289)

Returning to the full notation and the single-time interac-
tion one can use the definition of GF in equation (281) to sim-
plify equation (289) to

Wns
ijkl

(
z1, z2

)
= ΦGW

ijkl

(
z1, z2

)
+

∑

mn

wimnl

(
z1

) ∫

C
dz3

∑

pq

GF
nqmp

(
z1, z3

)
Wns

pjkq

(
z3, z2

)
,

 

(290)

ΦGW
ijkl

(
z1, z2

)
=:

∑

mn

wimnl

(
z1

) ∑

pq

GF
nqmp

(
z1, z2

)
w pjkq

(
z2

)
,

 (291)
where we introduced the short notation Φ for the second-Born 
contribution to the screened potential.

Finally, we provide the correlation components of 
equation (288)

ΣGW,corr,≷
ij

(
t1, t2

)
= i�

∑

mp

Wns,≷
ipjm

(
t1, t2

)
G≷

mp

(
t1, t2

)
, (292)

which require knowledge of the correlation components of the 
non-singular screened potential equation (290), that are given 
by

Wns,≷
ijkl

(
t1, t2

)
= ΦGW,≷

ijkl

(
t1, t2

)
+

∑

mn

wimnl

(
t1

) ∑

pq
(∫ t

1

t
0

dt3 GF,R
nqmp

(
t1, t3

)
Wns,≷

pjkq

(
t3, t2

)
+

∫ t
2

t
0

dt3 GF,≷
nqmp

(
t1, t3

)
Wns,A

pjkq

(
t3, t2

))
,

 

(293)

as well as of the advanced/retarded components,

Wns,A/R
ijkl

(
t1, t2

)
= ΦGW,A/R

ijkl

(
t1, t2

)

+
∑

mn

wimnl

(
t1

) ∫ t
2/1

t
1/2

dt3
∑

pq

GF,A/R
nqmp

(
t1, t3

)
Wns,A/R

pjkq

(
t3, t2

)
.

 

(294)

In the integration limits, in the notation t1/2, the first (second) 
subscript refers to the advanced (retarded) function.

5.2.1. Diagonal basis. In a diagonal basis set, equation (290) 
simplifies to

Wns,diag
ijkl

(
z1, z2

)
= δilδ jkΦ

GW,diag
ijji

(
z1, z2

)

+ δil

∑

m

wim

(
z1

) ∫

C
dz3

∑

pq

GF
mpmq

(
z1, z3

)
Wns,diag

pjkq

(
z3, z2

)
.

 

(295)

ΦGW,diag
ijji

(
z1, z2

)
=:

∑

m

wim

(
z1

) ∑

p

GF
mpmp

(
z1, z2

)
w pj

(
z2

)
,

 (296)
where we again used the function Φ, equation (291). By itera-

tion, it becomes evident that Wns,diag and ΦGW,diag
ijji

 are always 

of the form

Wns,diag
ijkl

(
z1, z2

)
= δilδ jkWns,diag

ijji

(
z1, z2

)
=: δilδ jkWns,diag

ij

(
z1, z2

)
,

 (297)

ΦGW,diag
ijkl

(
z1, z2

)
= δilδ jkΦ

GW,diag
ijji

(
z1, z2

)
=: δilδ jkΦ

GW,diag
ij

(
z1, z2

)
.

 (298)
With this, for a diagonal basis, equation (290) attains the form

Wns,diag
ij

(
z1, z2

)
= ΦGW,diag

ij

(
z1, z2

)

+
∑

m

wim

(
z1

) ∫

C
dz3

∑

p

GF
mpmp

(
z1, z3

)
Wns,diag

pj

(
z3, z2

)
.

 

(299)

The correlation part of the selfenergy, equation (288), reads

ΣGW,corr,diag
ij

(
z1, z2

)
= +i�Wns,diag

ij

(
z1, z2

)
Gij

(
z1, z2

)
. (300)

The first four terms of the GW selfenergy (mean field plus 
correlation selfenergy) are shown diagrammatically in  
figure 28. The sum continues to infinite order (infinite number 
of polarization bubbles).

The relevant components of the Keldysh matrix read (see 
equations (293) and (294)),

Wns,diag,≷
ij

(
t1, t2

)
= ΦGW,diag,≷

ij

(
t1, t2

)
+

∑

mp

wim

(
t1

)

(∫ t
1

t
0

dt3 GF,R
mpmp

(
t1, t3

)
Wns,diag,≷

pj

(
t3, t2

)

+
∫ t

2

t
0

dt3 GF,≷
mpmp

(
t1, t3

)
Wns,diag,A

pj

(
t3, t2

))
,

 

(301)

Wns,diag,A/R
ij

(
t1, t2

)
= ΦGW,diag,A/R

ij

(
t1, t2

)

+
∑

mp

wim

(
t1

) ∫ t
2/1

t
1/2

dt3 GF,A/R
mpmp

(
t1, t3

)
Wns,diag,A/R

pj

(
t3, t2

)
,

 

(302)
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and (see equation (292)),

ΣGW,corr,diag,≷
ij

(
t1, t2

)
= i�Wns,diag,≷

ij

(
t1, t2

)
G≷

ij

(
t1, t2

)
.

 

(303)

5.2.2. Hubbard basis. In the Hubbard basis, see section 2.3, 
the GW approximation simplifies considerably. We start by 
presenting the equations for bosons:

Wns,b
iαjβ

(
z1, z2

)
= ΦGW,b

ij

(
z1, z2

)

+ U
(

z1

) ∫

C
dz3

∑

pε

GF
iεpεiεpε

(
z1, z3

)
Wns,b

pεjβ

(
z3, z2

)
,

 

(304)

ΦGW,b
ij

(
z1, z2

)
=: U

(
z1

) ∑

ε

GF
iεjεiεjε

(
z1, z2

)
U

(
z2

)
, (305)

and the correlation selfenergy on the Keldysh contour is

ΣGW,corr,b
iαjα

(
z1, z2

)
= i�Wns,b

iαjα

(
z1, z2

)
Giαjα

(
z1, z2

)
. (306)

The Keldysh matrix components of the screened potential in 
the Hubbard basis become

Wns,b,≷
iαjβ

(
t1, t2

)
= ΦGW,b,≷

ij

(
t1, t2

)

+ U
(

t1
) ∫ t

1

t
0

dt3
∑

pε

GF,R
iεpεiεpε

(
t1, t3

)
Wns,b,≷

pεjβ

(
t3, t2

)

+ U
(

t1
) ∫ t

2

t
0

dt3
∑

pε

GF,≷
iεpεiεpε

(
t1, t3

)
Wns,b,A

pεjβ

(
t3, t2

)
,

Wns,b,A/R
iαjβ

(
t1, t2

)
= ΦGW,b,A/R

ij

(
t1, t2

)

+ U
(

t1
) ∫ t

2/1

t
1/2

dt3
∑

pε

GF,A/R
iεpεiεpε

(
t1, t3

)
Wns,b,A/R

pεjβ

(
t3, t2

)
,

and the ‘≷ ’ components of the correlation selfenergy (306) 
are

ΣGW,corr,b,≷
iαjα

(
t1, t2

)
= i�Wns,b,≷

iαjα

(
t1, t2

)
G≷

iαjα

(
t1, t2

)
. (307)

For the special case of spin-0 bosons, the screened potential 
on the Keldysh contour has the form

Wns,b,0
ij

(
z1, z2

)
= ΦGW,b,0

ij

(
z1, z2

)
+ U

(
z1

)

∫

C
dz3

∑

p

GF
ipip

(
z1, z3

)
Wns,b,0

pj

(
z3, z2

)
,

ΦGW,b,0
ij

(
z1, z2

)
=: U

(
z1

)
GF

ijij

(
z1, z2

)
U

(
z2

)
,

 

(308)

and the correlation selfenergy in GW approximation becomes

ΣGW,corr,b,0
ij

(
z1, z2

)
= i�Wns,b,0

ij

(
z1, z2

)
Gij

(
z1, z2

)
.

The ‘>’, ‘<’ and advanced/retarded matrix components 
become

Wns,b,0,≷
ij

(
t1, t2

)
= ΦGW,b,0,≷

ij

(
t1, t2

)

+ U
(

t1
) ∫ t

1

t
0

dt3
∑

p

GF,R
ipip

(
t1, t3

)
Wns,b,0,≷

pj

(
t3, t2

)

+ U
(

t1
) ∫ t

2

t
0

dt3
∑

p

GF,≷
ipip

(
t1, t3

)
Wns,b,0,A

pj

(
t3, t2

)
,

Wns,b,0,A/R
ij

(
t1, t2

)
= ΦGW,b,0,A/R

ij

(
t1, t2

)

+ U
(

t1
) ∫ t

2/1

t
1/2

dt3
∑

p

GF,A/R
ipip

(
t1, t3

)
Wns,b,0,A/R

pj

(
t3, t2

)

 

(309)

and, for the ‘≷ ’ components of the correlation selfenergy, we 
have

i ↓ (↑), z1
n ↓ (↑), z3

j ↓ (↑), z2

i ↑ (↓), z1

n ↑ (↓), z3
j ↑ (↓), z2

i ↓ (↑), z1
n ↓ (↑), z4

j ↓ (↑), z2

i ↑ (↓), z1

n ↑ (↓), z4
j ↑ (↓), z2

Figure 27. Third-order diagrams in Hubbard basis for spin-1/2 fermions. Left: Σ(3),1,{2;{2;2,0},0,B},f,1/2. Right: Σ(3),1,{2;{2;2,0},0,C},f,1/2.

i, z1

mm, z1z1+

i, z1 j, z1+ i, z1 j, z2

s, z1 t, z2

i, z1 j, z2

r, z1

t, z3 v, z3

x, z2

Figure 28. The first four terms of the GW  selfenergy, including Hartree and Fock terms, in a diagonal basis.
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ΣGW,corr,b,0,≷
ij

(
t1, t2

)
= i�Wns,b,0,≷

ij

(
t1, t2

)
G≷

ij

(
t1, t2

)
.

The diagrammatic representation of the leading terms for 
spin-0 bosons in the Hubbard basis is shown in figure 29.

Let us now turn to fermions. In that case the equations on 
the Keldysh contour attain the form

Wns,f
iαjβ

(
z1, z2

)
= ΦGW,f

ijαβ

(
z1, z2

)

+ U
(

z1

) ∫

C
dz3

∑

p

∑

ε�=α

GF
iεpεiεpε

(
z1, z3

)
Wns,f

pεjβ

(
z3, z2

)

 

(310)

ΦGW,f
ijαβ

(
z1, z2

)
=:

∑

ε�={α,β}
U

(
z1

)
GF

iεjεiεjε

(
z1, z2

)
U

(
z2

)
, 

(311)

whereas the correlation part of the selfenergy becomes

ΣGW,corr,f
iαjα

(
z1, z2

)
= i�Wns,f

iαjα

(
z1, z2

)
Giαjα

(
z1, z2

)
.

The Keldysh matrix components of the screened potential are 
now

Wns,f,≷
iαjβ

(
t1, t2

)
= ΦGW,f,≷

ijαβ

(
t1, t2

)

+ U
(

t1
) ∫ t

1

t
0

dt3
∑

p

∑

ε�=α

GF,R
iεpεiεpε

(
t1, t3

)
Wns,f,≷

pεjβ

(
t3, t2

)

+ U
(

t1
) ∫ t

2

t
0

dt3
∑

p

∑

ε�=α

GF,≷
iεpεiεpε

(
t1, t3

)
Wns,f,A

pεjβ

(
t3, t2

)
,

Wns,f,A/R
iαjβ

(
t1, t2

)
= ΦGW,f,A/R

ijαβ

(
t1, t2

)

+ U
(

t1
) ∫ t

2/1

t
1/2

dt3
∑

p

∑

ε �=α

GF,A/R
iεpεiεpε

(
t1, t3

)
Wns,f,A/R

pεjβ

(
t3, t2

)
.

The GW  selfenergy has now the following correlation 
components

ΣGW,corr,f,≷
iαjα

(
t1, t2

)
= i�Wns,f,≷

iαjα

(
t1, t2

)
G≷

iαjα

(
t1, t2

)
.

For the special case of spin-1
2-fermions, the equations for the 

screened interaction require some care. Since the particles can 

have two spin projections, there are four different screened 
potentials each obeying its own equation which, in turn, are 
coupled. To underline these details we use different colors for 
the four potentials:

 

(312)

 
(313)

Interestingly, the equations  for the screened potentials with 
different spin combinations, equations (312) and (313), do not 
contain a contribution from the bare interaction.

The correlation selfenergies of fermions with spin up and 
down read, respectively,

 (314)

 (315)

The diagrammatic representation of the leading terms for 
spin-1/2 fermions in the Hubbard basis is shown in figure 30. 
One recognizes a special structure of these equations  for 

spin-1
2-fermions. The selfenergy  

which couples only contributions of the same spin, also 
directly depends only on the same-spin parts of the screened 

interaction  see 

equations  (314) and (315). The same-spin screened interac-
tion, in turn, depends on the screened interaction with differ-

ent spin orientations  which itself 

couples back to the same-spin part.

i, z1

ii, z1z1+

i, z1 i, z1+ i, z1 j, z2

i, z1 j, z2

i, z1 j, z2

i, z1

t, z3 t, z3

j, z2

Figure 29. The first four terms of the GW selfenergy (Hartree, Fock and correlation part) in the Hubbard basis for spin-0 bosons.
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Finally, we present the respective ‘≷ ’ and retarded/advanced Keldysh components of the screened potential for all four spin 
combinations:

i ↓ (↑), z1

i ↑ (↓)i ↑ (↓), z1z1+

i ↓ (↑), z1 j ↓ (↑), z2

i ↑ (↓), z1 j ↑ (↓), z2

i ↓ (↑), z1 j ↓ (↑), z2

i ↑ (↓), z1

p ↑ (↓), z3 p ↓ (↑), z3 q ↓ (↑), z4 q ↑ (↓), z4

j ↑ (↓), z2

Figure 30. The first three terms of the GW  selfenergy (mean field plus correlation term) in the Hubbard basis for spin-1/2 fermions. Note 
that the Fock term equals zero.
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The correlation components of the selfenergy read

 (316)

 (317)
With this we conclude the discussion of the GW  approx-

imation. As mentioned before the strength of this approx-
imation is the account of long-range screening effects and 
collective excitations (plasmons) which is of particular rele-
vance for systems with Coulomb interaction. As we have seen 
in section 3, the GW  approximation has an impressively high 
accuracy, in many cases. At the same time, the GW approx-
imation does not take into account strong-coupling effects 
since it includes only terms of second order in the (screened) 
interaction. Effects of multiple scattering are, thus, missing.

The inclusion of these effects for the case of a static pair 
interaction is the goal of the T-matrix approximation that is 

studied in section 5.3. On the other hand, to account for multi-
ple scattering and dynamical screening simultaneously, is the 
goal of the FLEX scheme that is discussed in section 5.5.

5.3. Strong coupling. T-matrix approximation. Particle–particle 
and particle–hole T matrices

The goal of the T-matrix approximation is to capture effects of 
multiple scattering that are important in strongly coupled sys-
tems, but are missing in the second-Born approximation. The 
solution is to sum all higher-order Born terms up what leads to 
an effective interaction. In contrast to the GW  approximation, 
the T-matrix approximation takes only the bare interaction, 
w, into account (at least in its standard versions), neglecting 
dynamical screening, and aims, instead, at a good approx-
imation of the bare vertex function Λ. The goal here is to accu-
rately capture multiple scattering effects. Thus, its constitutive 
equations are the Dyson equation28,

 

(318)

the equation for the selfenergy, see equations (95) and (97),

 

(319)

28 The corresponding equations in the full notation are given in section 1.4 of the supplement 20.

J. Phys.: Condens. Matter 32 (2020) 103001



Topical Review

62

with the exchange–correlation selfenergy (all contributions beyond Hartree) given by

 

(320)

The bare vertex Λ is self-consistently given as the solution of the integral equation

 

(321)

If these equations are iterated ad infinitum, all selfenergy terms will be generated. To break the circular dependence between 
equations (320) and (321), the T-matrix approximation starts by taking the bare vertex on the right-hand side of equation (321) 
only in zeroth order, transforming it into

 

(322)

This closure of the equation for Λ allows to systematically generate results for the selfenergy which we will denote by the 
superscript ‘cl’. Using this result in equation (319), we obtain (see equation (156))

 

(323)
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To solve for δΣcl/δG, we differentiate the whole equation with respect to G:

 

(324)

This equation is still very complicated. Therefore, to make further progress, we transform equation (324) into a closed equa-

tion for δΣcl

δG
 by neglecting the term 

δΣcl
nj(z

4
,z

2)
δG

rs(z
5
,z

6)δG
tu(z

7
,z

8)
. The first iteration yields the second-order terms
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(325)

recovering equations (220) and (225) from the derivation of the third-order selfenergy guided by Hedin’s equations. Note that, 

for the first iteration, 
δΣcl

nj(z
4
,z

2)
δG

rs(z
5
,z

6)δG
tu(z

7
,z

8)
 is exactly equal to zero, thus equation (325) is also exact up to second order in w.

Considering equation (324), in the following, each of the three leading higher-order terms will be treated separately, starting 
off its particular diagrammatic series. Looking back at equations (324) and (325), it is convenient to choose a common starting 
point for all series, leading to the same first- and second-order selfenergy contributions,

 

(326)
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(327)

which agree with the exact first and second-order terms, already encountered in equations (158), (176) and (183).
The first diagram series (A) is generated by decoupling the first higher-order contribution of the derivation of the selfenergy 

in equation (324), leading to

 

(328)

The corresponding third-order selfenergy terms of series A follow by insertion of the respective second-order derivative terms 
in equation (325) as

 

(329)

At this point it is convenient to go back to the full notation and, particularly, the single-time interaction, to estimate the numer-
ical effort of computationally solving the first diagrammatic series. By introducing the kernel K  in the following way,

KA
ijkl

(
z1, z2, z3, z4

)
:= ±

δΣcl,A
ik

(
z1, z3

)

δGlj

(
z4, z2

) , (330)
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we arrive at a closed equation for KA
ijkl

(
z1, z2, z3, z4

)
,

KA
ijkl

(
z1, z2, z3, z4

)
= ±i�δC

(
z1, z3

)
δC

(
z1, z4

)
δC

(
z1+ , z2

)
w±

ijkl

(
z1

)

+ i�δC

(
z1, z4

) ∑

pq

wipql

(
z1

)

×
∫

C
dz5dz6

∑

rs

KA
jskr

(
z2, z6, z3, z5

)
Grp

(
z5, z1

)
Gqs

(
z1, z6

)
,

 (331)

where we introduced the (anti-)symmetrized interaction, w±
ijkl

(
z1

)
:= wijkl

(
z1

)
± w jikl

(
z1

)
. Iterating this equation, starting 

from

KA,(1)
ijkl

(
z1, z2, z3, z4

)
= ±i�δC

(
z1, z3

)
δC

(
z1, z4

)
δC

(
z1+ , z2

)
w±

ijkl

(
z1

)
,

we have, for the second iteration,

KA,(2)
ijkl

(
z1, z2, z3, z4

)
= i�δC

(
z1, z4

) ∑

pq

wipql

(
z1

)

×
∫

C
dz5dz6

∑

rs

KA,(1)
jskr

(
z2, z6, z3, z5

)
Grp

(
z5, z1

)
Gqs

(
z1, z6

)

= ±
(

i�
)2

δC

(
z1, z4

)
δC

(
z2, z3

) ∑

pq

wipql

(
z1

) ∑

rs

w±
jskr

(
z2

)
Grp

(
z2, z1

)
Gqs

(
z1, z2

)
.

Similarly, we obtain the third and fourth iterations,

KA,(3)
ijkl

(
z1, z2, z3, z4

)
= i�δC

(
z1, z4

) ∑

pq

wipql

(
z1

)

×
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C
dz5dz6

∑

rs

KA,(2)
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)
Grp
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)
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(
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)
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(
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pq

wipql

(
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) ∑
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KA,(2)
jskr

(
z2, z3, z3, z2

)
Grp

(
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)
Gqs

(
z1, z3

)
,

KA,(4)
ijkl

(
z1, z2, z3, z4

)
= i�δC

(
z1, z4

) ∑

pq

wipql

(
z1

)

×
∫
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dz5dz6

∑
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(
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)
Grp

(
z5, z1

)
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(
z1, z6

)

= i�δC

(
z1, z4
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pq

wipql

(
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C
dz6

∑

rs

KA,(3)
jskr

(
z2, z6, z3, z2

)
Grp

(
z2, z1

)
Gqs

(
z1, z6

)
,

and a similar structure for the higher orders. It is noteworthy that the computation of the fourth- and higher-order iterations are 

of complexity O
(

N4
t

)
, since, due to the appearance of the delta function, δC

(
z1, z4

)
,

KA,(N)
ijkl

(
z1, z2, z3, z4

)
= δC

(
z1, z4

)
KA,(N)

ijkl

(
z1, z2, z3, z1

)
, (332)

and the right-hand side contains one integral over an intermediate time, which typically limits the applicability of this approx-
imation to very short time scales. Therefore, series A is usually omitted in efficient quantum-many-body frameworks.
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The second approximation (B) is generated by the second higher-order contribution of 
δΣcl

ij

δG
 in equation (324), leading to

 

(333)

Using the respective second-order derivative terms in equation (325) one obtains the third-order selfenergy contributions of 
series B,

 

(334)

In the full notation with the single-time interaction we again 
introduce a kernel K for the series B:

KB
ijkl

(
z1, z2, z3, z4

)
:= ±

δΣcl,B
ik

(
z1, z3

)

δGlj

(
z4, z2

) , (335)

which obeys the equation of motion

KB
ijkl

(
z1, z2, z3, z4

)
= ±i�δC

(
z1, z3

)
δC

(
z1, z4

)
δC

(
z1+ , z2

)
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ijkl

(
z1

)

+ i�δC

(
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) ∑
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wijqm

(
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) ∫

C
dz5
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n
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(
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)

×
∫

C
dz6

∑

s

KB
nskl

(
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)
Gqs

(
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)
.

Iterating, starting again from the first iteration,

KB,(1)
ijkl

(
z1, z2, z3, z4

)
= ±i�δC

(
z1, z3

)
δC

(
z1, z4

)
δC

(
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)
w±

ijkl

(
z1

)
,

we find, for the second iteration,

KB,(2)
ijkl

(
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)
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s
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)
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)
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)

 
(336)

and, for the third iteration,
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KB,(3)
ijkl

(
z1, z2, z3, z4

)
= i�δC

(
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) ∑
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wijqm
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.

 
(337)

In similar manner higher orders are derived. The structure of 
this approximation is such that the computation of all terms 

scales as O
(

N3
t

)
 since, due to the two delta functions, we 

have, for each iteration order (N),

KB,(N)
ijkl

(
z1, z2, z3, z4

)
= δC

(
z1, z2

)
δC

(
z3, z4

)
KB,(N)

ijkl

(
z1, z2

)
,

and one integration on the right-hand side. With this, one finds 
(see equation (337)),

KB
ijkl

(
z1, z3

)
= δC

(
z1, z3

)
KB,(1)

ijkl

(
z1, z1

)

+
∑

mq

wijqm

(
z1

) ∫

C
dz5

∑

ns

GH
mqns

(
z1, z5

)
KB

nskl

(
z5, z3

)
,

 

(338)

where equation (280) has been used, in the last line. To sim-
plify the following expressions further, it is useful to eliminate 
the contributions with the delta function by introducing the 
non-singular kernel (superscript ‘ns’)29 (see equations  (338) 
and (336)), according to

KB,ns
ijkl

(
z1, z2

)
:= KB

ijkl

(
z1, z2

)
− δC

(
z1, z2

)
KB,(1)

ijkl

(
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)

= KB
ijkl

(
z1, z2

)
∓ i�δC

(
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)
w±

ijkl

(
z1

)
.

 (339)
It obeys its own equation where no singular terms appear any-
more (see equation (338)),

KB,ns
ijkl
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)
=

∑

mq

wijqm
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) ∫
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dz5
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×
{
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∑

mq

wijqm

(
z1

) ∑
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∑
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) ∫
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dz5
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(
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.

 (340)
The corresponding selfenergy reads, (see equation (323)),

Σcl,B
ij

(
z1, z2

)
= ΣH

ij

(
z1, z2

)
+ ΣF

ij

(
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)
+ Σcl,corr,B

ij

(
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)

 (341)

Σcl,corr,B
ij
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=: ±i�

∑
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dz3
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)
,

 (342)

where we defined the correlation part of the selfenergy via the 
additional superscript ‘corr’. Inserting the expression for KB, 
we find

Σcl,corr,B
ij
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z1, z2

)
= ±i�
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wipqm

(
z1

) ∫

C
dz3

∑

n

Gmn

(
z1, z3

)

×
∑

rs

Gqs

(
z1, z3

)
KB

nsjr

(
z3, z2

)
Grp
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)
,

which, by insertion of equation (339), transforms to

Σcl,corr,B
ij
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)
= ±

∑

mpq
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) ∫

C
dz3
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.

After restructuring, one has

Σcl,corr,B
ij

(
z1, z2

)
= ±

(
±i�

∑
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wipqm

(
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) ∑
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∑
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) ∫
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Grp

(
z2, z1

)
.

Looking at equation  (340), it is obvious that the right-hand 
side already contains the first iteration of the recursion equa-
tion, so we simply have

Σcl,corr,B
ij

(
z1, z2

)
= ±

∑

pr

KB,ns
ipjr

(
z1, z2

)
Grp

(
z2, z1

)
. (343)

With the definition

i�Tpp
ijkl

(
z1, z2

)
:= ±KB,ns

ijkl

(
z1, z2

)
, (344)

the coupled solution of, equations (340) and (343) becomes,

Tpp
ijkl

(
z1, z2

)
= Φpp

ijkl

(
z1, z2

)

+
∑

mq

wijqm

(
z1

) ∑

ns

∫

C
dz5 GH

mqns

(
z1, z5

)
Tpp

nskl

(
z5, z2

)
,

 

(345)

Φpp
ijkl

(
z1, z2

)
=:

∑

mq

wijqm

(
z1

) ∑

ns

GH
mqns

(
z1, z2

)
w±

nskl

(
z2

)
,

 (346)
where we introduced an abbreviation for the first term that 
contains the second-Born approximation (as we did before for 
the GW approximation).

Thus, according to equation (343), the correlation part of 
the selfenergy in the so-called (particle–particle) T-matrix 
approximation is given by

Σpp
ij

(
z1, z2

)
:= ΣTpp,corr

ij

(
z1, z2

)
= i�

∑

pr

Tpp
ipjr

(
z1, z2

)
Grp

(
z2, z1

)
.

 (347)
The T matrix relates to a similar quantity in scattering the-
ory, which is called transfer matrix there. It describes an 
interacting scattering state of a system selfconsistently in 
terms of a free state of two particles which undergo mul-
tiple (in general, infinitely many) scattering events with 
each other, which can be resummed into the transfer matrix 
acting on the two  particles. Looking at equations  (345) 29 This follows the procedure applied for the GWA, section 5.2.
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and (347), the same interpretation is possible, since GH 
describes a particle pair, and their scattering is governed 
by Tpp .

The Keldysh correlation components of the  particle–particle 
T matrix read

Tpp,≷
ijkl

(
t1, t2

)
= Φpp,≷

ijkl

(
t1, t2

)
+

∑

mq

wijqm

(
t1

) ∑

ns

×
(∫ t

1

t
0

dt5 GH,R
mqns

(
t1, t5

)
Tpp,≷

nskl

(
t5, t2

)
+

∫ t
2

t
0

dt5 GH,≷
mqns

(
t1, t5

)
Tpp,A

nskl

(
t5, t2

))
,

 

(348)

where Φpp,≷ is the ‘≷ ’ component of Φpp that is obtained from 
equation  (346) by replacing GH → GH,≷. Analogously, we 
have for the advanced/retarded Keldysh component and

Tpp,A/R
ijkl

(
t1, t2

)
= Φpp,A/R

ijkl

(
t1, t2

)

+
∑

mq

wijqm

(
t1

) ∑

ns

∫ t
2/1

t
1/2

dt5 GH,A/R
mqns

(
t1, t5

)
Tpp,A/R

nskl

(
t5, t2

)
,

where Φpp,A/R again follows from Φpp by replacing 

GH → GH,A/R, and in the notation t1/2 the first (second) sub-
script refers to the advanced (retarded) function. For the corre-
lation components of the particle–particle T-matrix selfenergy 
(347), we have

Σpp,≷
ij

(
t1, t2

)
= i�

∑

pr

Tpp,≷
ipjr

(
t1, t2

)
G≶

rp

(
t2, t1

)
.

5.3.1. Particle–particle T matrix in a diagonal basis. In a basis 

with diagonal interaction, wijkl = δilδ jkwij , equation  (345) 
attains the form

Tpp,diag
ijkl

(
z1, z2

)
=: Φpp,diag

ijkl

(
z1, z2

)

+ wij

(
z1

) ∑

ns

∫

C
dz5 GH

ijns

(
z1, z5

)
Tpp,diag

nskl

(
z5, z2

)
,

 

(349)

where the diagonal basis version of equation (346) is

Φpp,diag
ijkl

(
z1, z2

)
= wij

(
z1

) {
GH

ijlk

(
z1, z2

)
± GH

ijkl

(
z1, z2

)}
wlk

(
z2

)
.

 (350)
The correlation part of the selfenergy, corresponding to equa-
tion (347), reads

Σpp,diag
ij

(
z1, z2

)
= i�

∑

pr

Tpp,diag
ipjr

(
z1, z2

)
Grp

(
z2, z1

)
. (351)

The leading contributions to the selfenergy for a diagonal 
basis are shown in figure 31. The respective Keldysh matrix 
components are

Tpp,diag,≷
ijkl

(
t1, t2

)
= Φpp,diag,≷

ijkl

(
t1, t2

)

+ wij

(
t1

)(∫ t
1

t
0

dt5
∑

ns

GH,R
ijns

(
t1, t5

)
Tpp,diag,≷

nskl

(
t5, t2

)

+
∫ t

2

t
0

dt5 GH,≷
ijns

(
t1, t5

)
Tpp,diag,A

nskl

(
t5, t2

))
,

 

(352)

Tpp,diag,A/R
ijkl

(
t1, t2

)
= Φpp,diag,A/R

ijkl

(
t1, t2

)

+ wij

(
t1

) ∑

ns

∫ t
2/1

t
1/2

dt5 GH,A/R
ijns

(
t1, t5

)
Tpp,diag,A/R

nskl

(
t5, t2

)

 

(353)

and, finally, the diagonal version of the correlation selfenergy 
(347) becomes

Σpp,diag,≷
ij

(
t1, t2

)
=

∑

pr

Tpp,diag,≷
ipjr

(
t1, t2

)
G≶

rp

(
t2, t1

)
.

5.3.2. Particle–particle T matrix in the Hubbard basis. In the 
Hubbard basis the expressions for the T matrix simplify fur-
ther. We start from the case of bosons. In the bosonic Hubbard 
basis, the particle–particle T matrix reads

Tpp,b
iαjβkαlβ

(
z1, z2

)
= δijδklΦ

pp,b
iαiβkαkβ

(
z1, z2

)

+ δijU
(

z1

) ∑

ns

∫

C
dz5 GH

iαiβnαsβ

(
z1, z5

)
Tpp,b

nαsβkαlβ

(
z5, z2

)
,

 

(354)

where the bosonic Hubbard version of the function Φpp is 
given by

Φpp,b
iαiβkαkβ

(
z1, z2

)
=: 2U

(
z1

)
GH

iαiβkαkβ

(
z1, z2

)
U

(
z2

)
. (355)

For the correlation part of the selfenergy, we now have

Σpp,b
iαjα

(
z1, z2

)
= i�

∑

pr

∑

ε

Tpp,b
iαpεjαrε

(
z1, z2

)
Grεpε

(
z2, z1

)
.

From these equations it is evident that the equality

Φpp,b
iαjβkαlβ

(
z1, z2

)
= δijδklΦ

pp,b
iαiβkαkβ

(
z1, z2

)
=: δijδklΦ

pp,b
ikαβ

(
z1, z2

)
,

 (356)

implies Tpp,b
iαjβkαlβ

(
z1, z2

)
=: δijδklT

pp,b
ikαβ

(
z1, z2

)
, which is veri-

fied by iteration. Regarding the notation, one has to bear in 

mind that Tpp,b
ikαβ

 and GH
ikαβ

:= GH
iαiβkαkβ

 are quantities of all 
four spin-space orbitals |iα〉, |iβ〉, |kα〉, |kβ〉. With this, the 
equations become

Tpp,b
ikαβ

(
z1, z2

)
= Φpp,b

ikαβ

(
z1, z2

)

+ U
(

z1

) ∑

n

∫

C
dz5 GH

inαβ

(
z1, z5

)
Tpp,b

nkαβ

(
z5, z2

)
,

and the correlation selfenergy is

Σpp,b
iαjα

(
z1, z2

)
= i�

∑

ε

Tpp,b
ijαε

(
z1, z2

)
G jεiε

(
z2, z1

)
.

The Keldysh ‘≷ ’ matrix components of the selfenergy and the 
T matrix read

Σpp,b,≷
iαjα

(
t1, t2

)
= i�

∑

ε

Tpp,b,≷
ijαε

(
t1, t2

)
G≶

jεiε

(
t2, t1

)
,

Tpp,b,≷
ikαβ

(
t1, t2

)
= Φpp,b,≷

ikαβ

(
t1, t2

)
+ U

(
t1

) ∑

n(∫ t
1

t
0

dt5 GH,R
inαβ

(
t1, t5

)
Tpp,≷

nkαβ

(
t5, t2

)
+

∫ t
2

t
0

dt5 GH,≷
inαβ

(
t1, t5

)
Tpp,A

nkαβ

(
t5, t2

))
,

 

(357)
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whereas the advanced/retarded component is given by

Tpp,b,A/R
ikαβ

(
t1, t2

)
= Φpp,b,A/R

ikαβ

(
t1, t2

)

+ U
(

t1
) ∑

n

∫ t
1/2

t
1/2

dt5 GH,A/R
inαβ

(
t1, t5

)
Tpp,A/R

nkαβ

(
t5, t2

)
.

 

(358)

In the special case of spin-0 bosons, there is no spin index, 
and we have

Tpp,b,0
ik

(
z1, z2

)
=Φpp,b,0

ik

(
z1, z2

)

+ U
(

z1

) ∑

n

∫

C
dz5 GH

in

(
z1, z5

)
Tpp,b,0

nk

(
z5, z2

)
,

and the correlation part of the selfenergy reduces to

Σpp,b,0
ij

(
z1, z2

)
= i�Tpp,b,0

ij

(
z1, z2

)
G ji

(
z2, z1

)
. (359)

The ‘ ≷ ’ components of the correlation selfenergy are

Σpp,b,0,≷
ij

(
t1, t2

)
= i�Tpp,b,0,≷

ij

(
t1, t2

)
G≶

ji

(
t2, t1

)
, (360)

with the Keldysh components of the T matrix given by

Tpp,b,0,≷
ik

(
t1, t2

)
= Φpp,b,0,≷

ik

(
t1, t2

)
+ U

(
t1

) ∑

n

×
(∫ t

1

t
0

dt5 GH,R
in

(
t1, t5

)
Tpp,b,0,≷

nk

(
t5, t2

)

+
∫ t

2

t
0

dt5 GH,≷
in

(
t1, t5

)
Tpp,b,0,A

nk

(
t5, t2

))
,

 

(361)

Tpp,b,0,A/R
ik

(
t1, t2

)
= Φpp,b,0,A/R

ik

(
t1, t2

)

+ U
(

t1
) ∑

n

∫ t
2/1

t
1/2

dt5 GH,A/R
in

(
t1, t5

)
Tpp,b,0,A/R

nk

(
t5, t2

)
.

 

(362)

The corresponding diagrams are shown in figure 32.
Fermions. Let us now consider the results for the T-matrix 

approximation for the fermionic Hubbard model. The correla-
tion part of the selfenergy30 is

Σpp,f
iαjα

(
z1, z2

)
= ih

∑

pr

∑

ε

Tpp,f
iαpεjαrε

(
z1, z2

)
Grεpε

(
z2, z1

)
,

and the equation of motion for the T matrix reads

Tpp,f
iαjβkαlβ

(
z1, z2

)
= U

(
z1

)
δijδklδ̄αβ

×
{

GH
iαiβkβkα

(
z1, z2

)
δ

αβ
− GH

iαiβkαkβ

(
z1, z2

)
δ

αα
δ

ββ

}
U

(
z2

)

+ U
(

z1

)
δ̄αβδij

∑

ns

∫

C
dz5 GH

iαiβnαsβ

(
z1, z5

)
Tpp,f

nαsβkαlβ

(
z5, z2

)
.

 

(363)

After cancellations, the equation becomes

Tpp,f
iαjβkαlβ

(
z1, z2

)
= δ̄αβδijδklΦ

pp,f
iikkαβ

(
z1, z2

)

+ U
(

z1

)
δ̄αβδij

∑

ns

∫

C
dz5 GH

iαiβnαsβ

(
z1, z5

)
Tpp,f

nαsβkαlβ

(
z5, z2

)
,

 

(364)

Φpp,f
iikkαβ

(
z1, z2

)
=: −U

(
z1

)
GH

iαiβkαkβ

(
z1, z2

)
U

(
z2

)
, (365)

where we again introduced the function Φpp. Similar as for 
bosons, by iteration starting with

Φpp,f
iαjβkαlβ

(
z1, z2

)
= δ̄αβδijδklΦ

pp,f
iikkαβ

(
z1, z2

)
=: δ̄αβδijδklΦ

pp,f
ikα�=β

(
z1, z2

)
,

the particle–particle T matrix is also of the structure

Tpp,f
iαjβkαlβ

(
z1, z2

)
:= δ̄αβδijδklT

pp,f
iikkαβ

(
z1, z2

)
=: δijδklδ̄αβTpp,f

ikα�=β

(
z1, z2

)
.

i, z1 j, z1+

i, z1

mm, z1z1+

i, z1
n, z2

p, z1
j, z2

i, z1 j, z2

s, z1 t, z2

i, z1

n, z4

r, z2 p, z1

s, z4
j, z2 i, z1

n, z4
j, z2

p, z1

s, z4
r, z2

Figure 31. Leading terms of the particle–particle T-matrix selfenergy, Σpp,diag (including first-order terms), in a diagonal basis.

30 The total selfenergy contains the Hartree selfenergy. There is no Fock 
term.
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The resulting equations  for the T matrix and the correlation 
selfenergy read

Tpp,f
ikα�=β

(
z1, z2

)
= Φpp,f

ikα�=β

(
z1, z2

)

+ U
(

z1

) ∑

n

∫

C
dz5 GH

inα�=β

(
z1, z5

)
Tpp,f

nkα�=β

(
z5, z2

)
,

 

(366)

Σpp,f
iαjα

(
z1, z2

)
= i�

∑

ε�=α

Tpp,f
ijα�=ε

(
z1, z2

)
G jεiε

(
z2, z1

)
. (367)

The ‘≷ ’ components of the selfenergy are given by

Σpp,f,≷
iαjα

(
t1, t2

)
= i�

∑

ε�=α

Tpp,f,≷
ijα�=ε

(
t1, t2

)
G≶

jεiε

(
t2, t1

)
,

whereas the Keldysh components of the T matrix are

Tpp,f,≷
ikα�=β

(
t1, t2

)
= Φpp,f,≷

ikα�=β

(
t1, t2

)

+ U
(

t1
) ∑

n

(∫ t
1

t
0

dt5 GH,R
inα�=β

(
t1, t5

)
Tpp,f,≷

nkα�=β

(
t5, t2

)

+
∫ t

2

t
0

dt5 GH,≷
inα�=β

(
t1, t5

)
Tpp,f,A

nkα�=β

(
t5, t2

))
,

 

(368)

and

Tpp,f,A/R
ikα�=β

(
t1, t2

)
= Φpp,f,A/R

ikα�=β

(
t1, t2

)

+ U
(

t1
) ∑

n

∫ t
2/1

t
1/2

dt5 GH,A/R
inα�=β

(
t1, t5

)
Tpp,f,A/R

nkα�=β

(
t5, t2

)
.

In the special case of spin-1
2 fermions, we have

Φpp,f,1/2
ikα�=β

(
z1, z2

)
=: Φpp,f,1/2

ik

(
z1, z2

)
,

GH
ikα�=β

(
z1, z2

)
=: GH

ik

(
z1, z2

)
,

and, consequently, Tpp,f,1/2
ikα�=β

(
z1, z2

)
=: Tpp,f,1/2

ik

(
z1, z2

)
 , holds.  

With this, one arrives at

Tpp,f,1/2
ik

(
z1, z2

)
= Φpp,f,1/2

ik

(
z1, z2

)

+ U
(

z1

) ∑

n

∫

C
dz5 GH

in

(
z1, z5

)
Tpp,f,1/2

nk

(
z5, z2

)
,

 

(369)

and obtains for the spin up and spin down selfenergies

Σpp,f,1/2
i↑j↑

(
z1, z2

)
= i�Tpp,f,1/2

ij

(
z1, z2

)
G j↓i↓

(
z2, z1

)
,

Σpp,f,1/2
i↓j↓

(
z1, z2

)
= i�Tpp,f,1/2

ij

(
z1, z2

)
G j↑i↑

(
z2, z1

)
.

The ‘≷ ’ components of the selfenergy are given by

Σpp,f,1/2,≷
i↑j↑

(
t1, t2

)
= i�Tpp,f,1/2,≷

ij

(
t1, t2

)
G≶

j↓i↓

(
t2, t1

)
,

Σpp,f,1/2,≷
i↓j↓

(
t1, t2

)
= i�Tpp,f,1/2,≷

ij

(
t1, t2

)
G≶

j↑i↑

(
t2, t1

)
,

and the corresponding ‘≷ ’ Keldysh components of the T 
matrix are

Tpp,f,1/2,≷
ik

(
t1, t2

)
= Φpp,f,1/2,≷

ik

(
t1, t2

)

+ U
(

t1
) ∑

n

∫ t
1

t
0

dt5 GH,R
in

(
t1, t5

)
Tpp,f,1/2,≷

nk

(
t5, t2

)

+ U
(

t1
) ∑

n

∫ t
2

t
0

dt5 GH,≷
in

(
t1, t5

)
Tpp,f,1/2,A

nk

(
t5, t2

)
,
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whereas the advanced and retarded components become

Tpp,f,1/2,A/R
ik

(
t1, t2

)
= Φpp,f,1/2,A/R

ik

(
t1, t2

)

+ U
(

t1
) ∑

n

∫ t
2/1

t
1/2

dt5 GH,A/R
in

(
t1, t5

)
Tpp,f,1/2,A/R

nk

(
t5, t2

)
.
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Finally, the corresponding Feynman diagrams are shown in 
figure 33.

i ↓ (↑), z1

i ↑ (↓)i ↑ (↓), z1z1+

i ↓ (↑), z1 j ↓ (↑), z2

i ↑ (↓), z1 j ↑ (↓), z2

i ↓ (↑), z1
n ↓ (↑), z4

j ↓ (↑), z2

i ↑ (↓), z1

n ↑ (↓), z4
j ↑ (↓), z2

Figure 33. Leading terms of Σpp,f,1/2 (including first-order terms) 
in the Hubbard basis for spin-1/2 fermions.

i, z1

ii, z1z1+

i, z1 j, z2

i, z1 j, z2

i, z1
n, z4

j, z2

i, z1

n, z4
j, z2

Figure 32. Leading terms of Σpp,b,0 (including first-order terms) in the 
Hubbard basis for spin-0 bosons. Each term carries a factor of two.
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5.4. Particle–hole T-matrix approximation

Returning to equation (324) and taking the third approx imation (C), we have

 

(372)

The corresponding third-order selfenergy terms follow as (see equation (325))

 

(373)

The Kernel of series C is again introduced in the full notation 
with the single-time interaction,

KC
ijkl

(
z1, z2, z3, z4

)
:= ±

δΣcl,C
ik

(
z1, z3

)

δGlj

(
z4, z2

) ,

and obeys the equation

KC
ijkl

(
z1, z2, z3, z4

)
= ±i�δC

(
z1, z3

)
δC

(
z1, z4

)
δC

(
z1+ , z2

)
w±

ijkl

(
z1

)

+ i�δC

(
z1, z4

) ∑

mp

wiplm

(
z1

) ∫

C
dz5

∑

n

Gmn

(
z1, z5

)

×
∫

C
dz6

∑

r

KC
njkr

(
z5, z2, z3, z6

)
Grp

(
z6, z1

)
.

Iterating as before, starting with

KC,(1)
ijkl

(
z1, z2, z3, z4

)
= ±i�δC

(
z1, z3

)
δC

(
z1, z4

)
δC

(
z1+ , z2

)
w±

ijkl

(
z1

)
,
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we arrive at

KC,(2)
ijkl

(
z1, z2, z3, z4

)
= i�δC

(
z1, z4

) ∑

mp

wiplm

(
z1

) ∫

C
dz5

∑

n

Gmn

(
z1, z5

)

×
∫

C
dz6

∑

r

KC,(1)
njkr

(
z5, z2, z3, z6

)
Grp

(
z6, z1

)
.

 

(375)

Use of the δ-structure of KC,(1), leads to

KC,(2)
ijkl

(
z1, z2, z3, z4

)
= i�δC

(
z1, z4

)
δC

(
z2, z3

)

∑

mp

wiplm

(
z1

) ∑

n

Gmn

(
z1, z2

)

×
∑

r

KC,(1)
njkr

(
z2, z2, z2, z2

)
Grp

(
z2, z1

)
,

 

(376)

KC,(3)
ijkl

(
z1, z2, z3, z4

)
= i�δC

(
z1, z4

) ∑

mp

wiplm

(
z1

) ∫

C
dz5

∑

n

Gmn

(
z1, z5

)

×
∫

C
dz6

∑

r

KC,(2)
njkr

(
z5, z2, z3, z6

)
Grp

(
z6, z1

)

= i�δC

(
z1, z4

)
δC

(
z2, z3

) ∑

mp

wiplm

(
z1

) ∫

C
dz5

∑

n

Gmn

(
z1, z5

)

×
∑

r

KC,(2)
njkr

(
z5, z2, z2, z5

)
Grp

(
z5, z1

)
.

 

(377)
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The structure again remains the same for higher orders, so that 

this approximation lies within O
(

N3
t

)
 due to

KC,(N)
ijkl

(
z1, z2, z3, z4

)
=: δC

(
z1, z4

)
δC

(
z2, z3

)
KC,(N)

ijkl

(
z1, z2

)
,

and one integration on the right-hand side. With this, we arrive 
at (see equation (374))

KC
ijkl

(
z1, z2

)
= δC

(
z1, z2

)
KC,(1)

ijkl

(
z1, z1

)
+ i�

∑

mp

wiplm

(
z1

)

×
∫

C
dz5

∑

n

Gmn

(
z1, z5

) ∑

r

KC
njkr

(
z5, z2

)
Grp

(
z5, z1

)
.

 (378)
To simplify, we again go over to a non-singular kernel

KC,ns
ijkl

(
z1, z2

)
:= KC

ijkl

(
z1, z2

)
− δC

(
z1, z2

)
KC,(1)

ijkl

(
z1, z1

)

= KC
ijkl

(
z1, z2

)
∓ i�δC

(
z1, z2

)
w±

ijkl

(
z1

)
.

 (379)
This quantity obeys the equation (see equation (377))

KC,ns
ijkl

(
z1, z2

)
= i�

∑

mp

wiplm

(
z1

) ∫

C
dz5

∑

n

Gmn

(
z1, z5

) ∑

r

Grp

(
z5, z1

)

×
{

KC,ns
njkr

(
z5, z2

)
± i�δC

(
z5, z2

)
w±

njkr

(
z2

)}
.

 

(380)

Restructuring, this implies

KC,ns
ijkl

(
z1, z2

)
= ±

(
i�

)2 ∑

mp

wiplm

(
z1

) ∑

n

Gmn

(
z1, z2

) ∑

r

Grp

(
z2, z1

)
w±

njkr

(
z2

)

+ i�
∑

mp

wiplm

(
z1

) ∫

C
dz5

∑

n

Gmn

(
z1, z5

) ∑

r

Grp

(
z5, z1

)
KC,ns

njkr

(
z5, z2

)

and, finally,

KC,ns
ijkl

(
z1, z2

)
= i�

∑

mp

wiplm

(
z1

) ∑

nr

GF
mrpn

(
z1, z2

)
w±

njkr

(
z2

)

±
∑

mp

wiplm

(
z1

) ∫

C
dz5

∑

nr

GF
mrpn

(
z1, z5

)
KC,ns

njkr

(
z5, z2

)
,

 
(381)

where in the last line, equation (281) has been used.
With this, the correlation selfenergy reads31, (see equation 

(323))

Σcl,corr,C
ij

(
z1, z2

)
= ±i�

∑

mpq

wipqm

(
z1

) ∫

C
dz3

∑

n

Gmn

(
z1, z3

)

×
∫

C
dz4dz5

∑

rs

KC
nsjr

(
z3, z5, z2, z4

)
Grp

(
z4, z1

)
Gqs

(
z1, z5

)
.

Using equation (379), we arrive at

Σcl,corr,C
ij

(
z1, z2

)
= ±i�

∑

mpqs

wipqm

(
z1

)
Gqs

(
z1, z2

)

∑

nr

∫

C
dz3 Gmn

(
z1, z3

)
Grp

(
z3, z1

)

×
{

KC,ns
nsjr

(
z3, z2

)
± i�δC

(
z3, z2

)
w±

nsjr

(
z2

)}
.

Evaluating this expression further, we find

Σcl,corr,C
ij

(
z1, z2

)
= ±

∑

qs

Gqs

(
z1, z2

)

×
(

i�
∑

pm

wipqm

(
z1

) ∑

rn

GF
mrpn

(
z1, z2

)
w±

nsjr

(
z2

)

±
∑

pm

wipqm

(
z1

) ∫

C
dz3

∑

rn

GF
mrpn

(
z1, z3

)
KC,ns

nsjr

(
z3, z2

))
.

As for the particle–particle T matrix, the right-hand side 
already contains the first iteration of equation (381) and, thus, 
we can simplify

Σcl,corr,C
ij

(
z1, z2

)
= ±

∑

qs

Gqs

(
z1, z2

)
KC,ns

isjq

(
z1, z2

)
. (382)

Defining i�Tph
ijkl

(
z1, z2

)
:= ±KC,ns

ijkl

(
z1, z2

)
, and solving equa-

tions (381) and (382), we have

Tph
ijkl

(
z1, z2

)
= Φph

ijkl

(
z1, z2

)

±
∑

mp

wiplm

(
z1

) ∫

C
dz5

∑

nr

GF
mrpn

(
z1, z5

)
Tph

njkr

(
z5, z2

)
,

 

(383)

Φph
ijkl

(
z1, z2

)
= ±

∑

mp

wiplm

(
z1

) ∑

nr

GF
mrpn

(
z1, z2

)
w±

njkr

(
z2

)
,

 (384)
where we again defined the proper function Φph  corre sponding 
to the first iteration (second-Born approximation).

With these definitions, we obtain the correlation selfenergy

Σph
ij

(
z1, z2

)
:= ΣTph,corr

ij

(
z1, z2

)
= i�

∑

qs

Gqs

(
z1, z2

)
Tph

isjq

(
z1, z2

)
,

which is the so-called particle–hole T-matrix approximation32 
(TPH). In contrast to the particle–particle T matrix, which 
describes the recurrent scattering of a pair of particles, the 
particle–hole T matrix describes the (multiple) scattering of 
a particle–hole pair. The Keldysh components of the particle–
hole T matrix read

Tph,≷
ijkl

(
t1, t2

)
= Φph,≷

ijkl

(
t1, t2

)
±

∑

mp

wiplm

(
t1

) ∑

nr(∫ t
1

t
0

dt5 GF,R
mrpn

(
t1, t5

)
Tph,≷

njkr

(
t5, t2

)
+

∫ t
2

t
0

dt5 GF,≷
mrpn

(
t1, t5

)
Tph,A

njkr

(
t5, t2

))
,

 

(385)

and

Tph,A/R
ijkl

(
t1, t2

)
= Φph,A/R

ijkl

(
t1, t2

)

±
∑

mp

wiplm

(
t1

) ∑

nr

∫ t
2/1

t
1/2

dt5 GH,A/R
mrpn

(
t1, t5

)
Tph,A/R

njkr

(
t5, t2

)
.

 

(386)

For the ‘≷ ’ components of the selfenergy, we have

Σph,≷
ij

(
t1, t2

)
=

∑

qs

G≷
qs

(
t1, t2

)
Tph,≷

isjq

(
t1, t2

)
.

31 The total selfenergy contains, in addition the mean-field terms 

ΣH
ij

(
z1, z2

)
+ ΣF

ij

(
z1, z2

)
.

32 In the context of the Fermi–Hubbard model for electrons, the particle–
hole T matrix will later be called electron–hole T matrix (TEH).
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5.4.1. Particle–hole T matrix in a diagonal basis. For diago-

nal basis sets with wijkl = δilδ jkwij , equations (383) and (385) 
become

Tph,diag
ijkl

(
z1, z2

)
= Φph,diag

ijkl

(
z1, z2

)
± wil

(
z1

)

∫

C
dz5

∑

nr

GF
irln

(
z1, z5

)
Tph,diag

njkr

(
z5, z2

)
,

Φph,diag
ijkl

(
z1, z2

)
=: ±wil

(
z1

) {
δ jk

∑

n

GF
inln

(
z1, z2

)
wnj

(
z2

)
± GF

ijlk

(
z1, z2

)
w jk

(
z2

)}
,

where we defined the diagonal version of the particle–hole func-
tion Φph. Then the selfenergy in the diagonal basis becomes

Σph,diag
ij

(
z1, z2

)
= i�

∑

qs

Gqs

(
z1, z2

)
Tph,diag

isjq

(
z1, z2

)
.

The ‘≷ ’ Keldysh components are

Tph,diag,≷
ijkl

(
t1, t2

)
= Φph,diag,≷

ijkl

(
t1, t2

)
± wil

(
t1

) ∑

nr

×
(∫ t

1

t
0

dt5 GF,R
irln

(
t1, t5

)
Tph,diag,≷

njkr

(
t5, t2

)

+
∫ t

2

t
0

dt5 GF,≷
irln

(
t1, t5

)
Tph,diag,A

njkr

(
t5, t2

))
,

 

(387)

whereas, for the advanced/retarded T matrices we obtain

Tph,diag,A/R
ijkl

(
t1, t2

)
= Φph,diag,A/R

ijkl

(
t1, t2

)

± wil

(
t1

) ∑

nr

∫ t
2/1

t
1/2

dt5 GF,A/R
irln

(
t1, t5

)
Tph,diag,A/R

njkr

(
t5, t2

)
.

 

(388)

For the ‘≷ ’ components of the selfenergy, we have

Σph,diag,≷
ij

(
t1, t2

)
= i�

∑

qs

G≷
qs

(
t1, t2

)
Tph,diag,≷

isjq

(
t1, t2

)
. (389)

The diagrammatic representation of the first terms of the par-
ticle–hole T matrix is given in figure 34.

5.4.2. Particle–hole T matrix in the Hubbard basis. For the 
bosonic Hubbard basis, the particle–hole T matrix reads

Tph,b
iαjβkαlβ

(
z1, z2

)
= δilδ jkU

(
z1

) {
δ

αβ
GF

iαjαiαjα

(
z1, z2

)

+GF
iαjβiβjα

(
z1, z2

)}
U

(
z2

)

+ δilU
(

z1

) ∫

C
dz5

∑

nr

GF
iαrβiβnα

(
z1, z5

)
Tph,b

nαjβkαrβ

(
z5, z2

)
.

Introducing the function Φph , as before, this expression 
becomes

Tph,b
iαjβkαlβ

(
z1, z2

)
=: δilδ jkΦ

ph,b
iαjβiαjβ

(
z1, z2

)

+ δilU
(

z1

) ∫

C
dz5

∑

nr

GF
iαrβiβnα

(
z1, z5

)
Tph,b

nαjβkαrβ

(
z5, z2

)
.

By iteration, starting from

Φph,b
iαjβkαlβ

(
z1, z2

)
= δilδ jkΦ

ph,b
iαjβjαiβ

(
z1, z2

)
=: δilδ jkΦ

ph,b
ijαβ

(
z1, z2

)
,

it is evident that the particle–hole T matrix is also of the structure

Tph,b
iαjβkαlβ

(
z1, z2

)
=: δilδ jkTph,b

ijαβ

(
z1, z2

)
.

Thus the governing equation for the T matrix becomes

Tph,b
ijαβ

(
z1, z2

)
= Φph,b

ijαβ

(
z1, z2

)

+ U
(

z1

) ∫

C
dz5

∑

n

GF
iαnβiβnα

(
z1, z5

)
Tph,b

njαβ

(
z5, z2

)
,

 

(390)

and the resulting correlation selfenergy reads

Σph,b
iαjα

(
z1, z2

)
= i�

∑

ε

Giεjε

(
z1, z2

)
Tph

ijαε

(
z1, z2

)
. (391)

The ‘≷ ’ components of the correlation selfenergy are given 
by

Σph,b,≷
iαjα

(
t1, t2

)
= i�

∑

ε

G≷
iεjε

(
t1, t2

)
Tph,≷

ijαε

(
t1, t2

)
, (392)

with the ‘≷ ’ components of the T matrix:

Tph,b,≷
ijαβ

(
t1, t2

)
= Φph,b,≷

ijαβ

(
t1, t2

)

+ U
(

t1
)(∫ t

1

t
0

dt5
∑

n

GF,R
iαnβiβnα

(
t1, t5

)
Tph,b,≷

njαβ

(
t5, t2

)

+
∫ t

2

t
0

dt5
∑

n

GF,≷
iαnβiβnα

(
t1, t5

)
Tph,b,A

njαβ

(
t5, t2

))
,

 

(393)

i, z1

mm, z1z1+

i, z1 j, z1+

i, z1 j, z2

s, z1 t, z2

i, z1
n, z2

p, z1
j, z2

i, z1
n, z4

j, z2

p, z1

r, z4
s, z2

i, z1

n, z4

u, z2

r, z4 p, z1
j, z2

Figure 34. The first six terms of the particle–hole T-matrix 
selfenergy (including first-order terms) in a diagonal basis.
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and the advanced/retarded components,

Tph,b,A/R
ijαβ

(
t1, t2

)
= Φph,b,A/R

ijαβ

(
t1, t2

)

+ U
(

t1
) ∫ t

2/1

t
1/2

dt5
∑

n

GF,A/R
iαnβiβnα

(
t1, t5

)
Tph,b,A/R

njαβ

(
t5, t2

)
.

 

(394)

For spin-0 bosons, the equations simplify to

Tph,b,0
ij

(
z1, z2

)
= Φph,b,0

ij

(
z1, z2

)

+ U
(

z1

) ∫

C
dz5

∑

n

GF
inin

(
z1, z5

)
Tph,b,0

nj

(
z5, z2

)

and the correlation selfenergy is

Σph,b,0
ij

(
z1, z2

)
= i�Gij

(
z1, z2

)
Tph,b,0

ij

(
z1, z2

)
, (395)

with the ‘≷ ’ components

Σph,b,0,≷
ij

(
t1, t2

)
= i�G≷

ij

(
t1, t2

)
Tph,b,0,≷

ij

(
t1, t2

)
. (396)

The ‘≷ ’ components of the T matrix that enter this expression 
are given by

Tph,b,0,≷
ij

(
t1, t2

)
= Φph,b,0,≷

ij

(
t1, t2

)

+ U
(

t1
)(∫ t

1

t
0

dt5
∑

n

GF,R
inin

(
t1, t5

)
Tph,b,0,≷

nj

(
t5, t2

)

+
∫ t

2

t
0

dt5
∑

n

GF,≷
inin

(
t1, t5

)
Tph,b,0,A

nj

(
t5, t2

))
,

 

(397)

and the advanced/retarded components are

Tph,b,0,A/R
ij

(
t1, t2

)
= Φph,b,0,A/R

ij

(
t1, t2

)

+ U
(

t1
) ∫ t

2/1

t
1/2

dt5
∑

n

GF,A/R
inin

(
t1, t5

)
Tph,b,0,A/R

nj

(
t5, t2

)
.

 

(398)

The leading terms of the corresponding diagrams are shown 
in figure 35.

For fermionic particles and holes, the particle–hole T 
matrix satisfies

Tph,f
iαjβkαlβ

(
z1, z2

)
= δilδ jkδ̄αβU

(
z1

)

×
{

−δ
αβ

GF
iαjαiαjα

(
z1, z2

)
+ GF

iαjβiβjα

(
z1, z2

)}
U

(
z2

)

− δilδ̄αβU
(

z1

) ∫

C
dz5

∑

nr

GF
iαrβiβnα

(
z1, z5

)
Tph,f

nαjβkαrβ

(
z5, z2

)
.

 

(399)

Evaluating the terms, we have

Tph,f
iαjβkαlβ

(
z1, z2

)
= δilδ jkδ̄αβU

(
z1

)
GF

iαjβiβjα

(
z1, z2

)
U

(
z2

)

− δilδ̄αβU
(

z1

) ∫

C
dz5

∑

nr

GF
iαrβiβnα

(
z1, z5

)
Tph,f

nαjβkαrβ

(
z5, z2

)
,

which, with the introduction of the function Φph , becomes

Tph,f
iαjβkαlβ

(
z1, z2

)
=: δilδ jkδ̄αβΦph,f

iαjβiαjβ

(
z1, z2

)

− δilδ̄αβU
(

z1

) ∫

C
dz5

∑

nr

GF
iαrβiβnα

(
z1, z5

)
Tph,f

nαjβkαrβ

(
z5, z2

)
.

 

(400)

Again by iteration, starting from Φph,f
iαjβkαlβ

(
z1, z2

)
=:  

δilδ jkδ̄αβΦph,f
ijα�=β

(
z1, z2

)
, it follows Tph,f

iαjβkαlβ

(
z1, z2

)
=:

δilδ jkδ̄αβTph,f
ijα�=β

(
z1, z2

)
. With this, equation  (400) simplifies 

to

Tph,f
ijα�=β

(
z1, z2

)
= Φph,f

ijα�=β

(
z1, z2

)

− U
(

z1

) ∫

C
dz5

∑

n

GF
iαnβiβnα

(
z1, z5

)
Tph,f

njα�=β

(
z5, z2

)
.

 

(401)

The corresponding correlation selfenergy becomes33

Σph,f
iαjα

(
z1, z2

)
= i�

∑

ε�=α

Giεjε

(
z1, z2

)
Tph,f

ijα�=ε

(
z1, z2

)
. (402)

The Keldysh components of the T matrix read

Tph,f,≷
ijα�=β

(
t1, t2

)
= Φph,f,≷

ijα�=β

(
t1, t2

)

− U
(

t1
)(∫ t

1

t
0

dt5
∑

n

GF,R
iαnβiβnα

(
t1, t5

)
Tph,f,≷

njα�=β

(
t5, t2

)

+
∫ t

2

t
0

dt5
∑

n

GF,≷
iαnβiβnα

(
t1, t5

)
Tph,f,A

njα�=β

(
t5, t2

))
,

 

(403)

Tph,f,A/R
ijα�=β

(
t1, t2

)
= Φph,f,A/R

ijα�=β

(
t1, t2

)

− U
(

t1
) ∫ t

2/1

t
1/2

dt5
∑

n

GF,A/R
iαnβiβnα

(
t1, t5

)
Tph,f,A/R

njα�=β

(
t5, t2

)
.

 

(404)

For the correlation selfenergy, the ‘≷ ’ components read

i, z1 i, z1+

i, z1

ii, z1z1+

i, z1 j, z2

i, z1 j, z2

i, z1
n, z3

j, z2

i, z1

n, z3
j, z2

Figure 35. Leading terms of Σph,b,0 (including first-order terms) in 
the Hubbard basis for spin-0 bosons. Each term carries a factor of two.

33 The total selfenergy contains, in addition, the Hartree selfenergy, 

ΣH,f
iαjα

(
z1, z2

)
.
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Σph,f,≷
iαjα

(
t1, t2

)
= i�

∑

ε�=α

G≷
iεjε

(
t1, t2

)
Tph,f,≷

ijα�=ε

(
t1, t2

)
.

For spin-1
2 fermions, we now switch to the name electron–hole 

T matrix (TEH), since the quantity is predominantly used for 
(effective) electrons. We get

T eh,f,1/2
ij↑↓

(
z1, z2

)
= Teh,f,1/2

ij↓↑

(
z1, z2

)
=: Teh,f,1/2

ij

(
z1, z2

)

= Φeh,f,1/2
ij

(
z1, z2

)
− U

(
z1

) ∫

C
dz5

∑

n

GF
in

(
z1, z5

)
Teh,f,1/2

nj

(
z5, z2

)
,

where we have defined

Φeh,f,1/2
ij

(
z1, z2

)
:= Φeh,f,1/2

ij↑↓

(
z1, z2

)
= Φeh,f,1/2

ij↓↑

(
z1, z2

)
,

GF
in

(
z1, z2

)
:= GF

i↑n↓i↓n↑

(
z1, z2

)
= GF

i↓n↑i↑n↓

(
z1, z2

)
.
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The correlation selfenergy reads

Σeh,f,1/2
i↓(↑)j↓(↑)

(
z1, z2

)
= i�Gi↑(↓)j↑(↓)

(
z1, z2

)
Teh,f,1/2

ij

(
z1, z2

)
.

 (406)
The first terms of the diagrammatic representation are shown 
in figure 36.

The ‘≷ ’ components of the electron–hole T matrix are

Teh,f,1/2,≷
ij

(
t1, t2

)
= Φeh,f,1/2,≷

ij

(
t1, t2

)

− U
(
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)(∫ t

1

t
0

dt5
∑

n

GF,R
in

(
t1, t5

)
Teh,f,1/2,≷

nj

(
t5, t2

)

+
∫ t

2

t
0

dt5
∑

n

GF,≷
in

(
t1, t5

)
Teh,f,1/2,A

nj

(
t5, t2

))
,
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and the advanced/retarded components become

Teh,f,1/2,A/R
ij

(
t1, t2

)
= Φeh,f,1/2,A/R

ij

(
t1, t2

)

− U
(

t1
) ∫ t

2/1

t
1/2

dt5
∑

n

GF,A/R
in

(
t1, t5

)
Teh,f,1/2,A/R

nj

(
t5, t2

)
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The ‘≷ ’ components of the correlation selfenergy read

Σeh,f,1/2,≷
i↓(↑)j↓(↑)

(
t1, t2

)
= i�G≷

i↑(↓)j↑(↓)

(
t1, t2

)
Teh,f,1/2,≷

ij

(
t1, t2

)
.

With this we conclude the discussion of the T-matrix 
approx imation. After considering separately the standard 
approx imations—the particle–particle and particle–hole T 
matrix, we briefly mention the limitations and possible exten-
sions. The present approximations were based on the static 
pair interaction. While we took into account multiple scat-
tering processes to all orders, on the other hand, dynamical-
screening effects (as described by the GW  approximation in 
section 5.2), have been neglected completely. An approximate 
combination of dynamical-screening and strong-coupling 
effects is, therefore, considered in the next section.

5.5. Fluctuating-exchange approximation (FLEX)

The idea to combine strong-coupling and dynamical-screen-
ing effects goes back several decades. A discussion in the 
frame of Green functions is summarized in [184]. An alter-
native approach has been presented within density-operator 
theory. The solution for the pair-correlation operator that 
includes both, ladder and polarization terms leads to the 
screened-ladder approximation, e.g. [136]. However, imple-
menting these approximations for nonequilibrium situations 
is presently not computationally feasible. Therefore, it is rea-
sonable to employ a simpler approach where contributions of 
both approx imations are taken into account approximately. 
This idea was first realized for classical plasmas by Gould and 
DeWitt [185]. They had the idea to simultaneously include 
strong-coupling and dynamical-screening effects in a kinetic 
equation by simply adding the Boltzmann (B) and Lenard–
Balescu (LB) collision integrals,

IGDW = IB + ILB − IL, (409)
where the Boltzmann collision integral includes the entire 
Born series and Lenard–Balescu the entire ring-diagram sum 
[181, 182]. In the Green functions language the former cor-
responds to the T-matrix approximation and the latter to GW . 
Subtraction of the Landau integral, IL , is necessary to avoid 
double counting of terms. The Landau integral corresponds to 
the static second-Born approximation (collision integrals of 
second order in the pair potential) which are contained (as the 
lowest iteration orders) in both, the T matrix and the dynami-
cally screened potential, see [186] for a recent discussion and 
further references.

Extension of this idea to quantum systems directly leads 
to the fluctuating-exchange approximation (FLEX). The idea 
behind FLEX is to construct an approximation that includes 
both flavors of the T matrix as well as the GW  approx imation 
thereby neglecting cross-terms that mix the three different 
approximations. To avoid double counting, the common to all 
three second-order terms are subtracted twice in the correlation 
contribution. Thereby, the resulting FLEX selfenergy becomes

ΣFLEX = ΣH + ΣF + ΣFLEX,corr.

ΣFLEX,corr = ΣGW,corr + Σpp + Σeh − 2Σ(2)
 

(410)

i ↓ (↑), z1
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i ↓ (↑), z1 j ↓ (↑), z2
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n ↓ (↑), z3

j ↓ (↑), z2
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n ↑ (↓), z3
j ↑ (↓), z2

Figure 36. Leading terms of Σeh,f,1/2  (including first-order terms) 
in the Hubbard basis for spin-1/2 fermions.
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where equation  (410) directly corresponds to the Gould–
DeWitt approach, equation (409). This scheme can be applied 
in an arbitrary basis representation. The diagrammatic repre-
sentation of the leading terms for a diagonal basis, and for 
spin-0 bosons as well as spin-1/2 fermions in the Hubbard 
basis are shown in figures 37–39, respectively.

We have implemented this scheme for a fermionic Hubbard 
basis and found excellent performance. Numerical results for 
the ground-state properties and for nonequilibrium dynamics 
were presented in section 3 and confirm that this is a powerful 
and highly accurate approximation.

6. Discussion and outlook

6.1. Summary of numerical results

In this article, an overview of recent progress in the dynam-
ics of correlated fermions out of equilibrium has been given. 
The theoretical framework in the focus was nonequilibrium 
(real-time) Green functions that were introduced 55 years ago 
by Keldysh, in the Soviet Union, and Baym and Kadanoff, 
in the U.S. For more than two decades the method of NEGF 
was primarily a tool to systematically derive Boltzmann-
type quantum-kinetic equations  and improvements thereof. 
Only after the work of Danielewicz two decades later [187] 
it became a practical option to use the NEGF technique for 
numerical simulations. However, the computational effort that 
exceeds that of other many-body approaches by far, remained 
a major obstacle. The next step forward occured in the second 
half of the 1990s where important effects in semiconductor 

optics and transport, in nuclear matter and laser plasmas could 
be explained for the first time by using NEGF methods, for 
details see the text books [54, 55, 131, 136]. Not only were 
new approximations derived but also the number of groups 
that attempted numerical solutions increased rapidly.

The next spike of activity came 10 years later when NEGF 
methods were first applied to finite spatially inhomogenous 
systems including electrons in atoms, molecules or quantum 
dots [71, 73, 188]. NEGF simulations with second-order Born 
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Figure 37. Leading terms of ΣFLEX,diag in a diagonal basis.
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Figure 38. Leading terms of ΣFLEX,b,0 in the Hubbard basis for 
spin-0 bosons.
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selfenergies (SOA) were able to reproduce the qualitative fea-
tures of the excitation and ionization dynamics of optically 
excited few-electron systems. Another new application con-
cerned finite Hubbard-type lattice models [77, 121, 122]. The 
simplicity of the basis allowed, for the first time, to system-
atically study strongly correlated systems in nonequilibrium 
with selfenergies beyond the simple second-Born approx-
imation. This has allowed for NEGF applications in the fields 
of strongly correlated solids and cold atoms [28, 78, 152].

Still it remained unclear what level of accuracy NEGF 
simulations can provide and whether they are an approach 
that is competitive with other many-body methods. This 
question was answered in a series of papers where small 
Hubbard clusters were treated with NEGF simulations that 
could be compared to exact-diagonalization calculations [77, 
158]. Recently the first systematic test of various selfenergy 
approximations was reported by two of the present authors by 
comparing to DMRG benchmark simulations for 1D Hubbard 
systems [22]. The result was that, indeed, NEGF simulations 
are a highly accurate tool if, in each case, the proper self-
energy approximation is being used. The choice is dictated, 
primarily, by the coupling strength and the particle density 
(filling factor). With that NEGF simulations have reached the 
level of a predictive tool where the main observables can be 
accurately computed—with an error not exceeding the order 
of 10% . . . 20%. This allows extensions of the system size, 
system geometry and the simulation duration to situations that 
are out of the reach of alternative methods such as CI, DMRG 
or real-time quantum Monte Carlo.

Thus, NEGF simulations have the potential of becoming a 
broadly used tool in many fields of physics including atomic 
and molecular physics, condensed-matter physics, nuclear 
matter, warm dense matter and cold atomic and molecular 
gases. This requires not only codes that efficiently solve the 
Keldysh–Kadanoff–Baym equations  but also a quick, easy 
and reliable use of the entire arsenal of selfenergy approx-
imations. The present article attempted to pave the way for 
such applications focusing on the latter task.

To this end, we gave a short selfcontained introduction to 
the theory of NEGF in section 2 and an overview on recent 

numerical results for the dynamics of finite Hubbard systems 
in section 3. There a variety of selfenergy approximations was 
used that included, in addition to the commonly used Hartree–
Fock and second-order Born approximation (SOA), also the 
third-order approximation (TOA), the particle–particle and 
particle–hole T matrices (TPP, TPH), the GW and the FLEX 
approximations, and their accuracy was investigated. The 
first tests concerned the interacting ground-state properties, 
in particular, the ground-state energy and the spectral func-
tion of small Hubbard clusters of varying coupling strength 
and filling. The best results were obtained for the perturba-
tive approaches, i.e. the second-order and especially the third-
order approximations, the latter being applied for the first time 
to the Hubbard model, in this article. For small and medium 
fillings, the TOA ground-state energies were, by far, the most 
accurate, and the TOA outperformed all previously applied 
approximations. For half filling, though, the TOA exactly 
agrees with the SOA due to particle–hole symmetry and, con-
sequently, yields no improvement over it.

We then analyzed the spectral properties of small Hubbard 
clusters by computing the single-particle spectral function via 
the solution of the full two-time KBE. Here, the best results 
were achieved with the FLEX approximation, for all filling 
factors. Additionally, the TOA shows single-particle energy 
transitions which are not contained in any other approx-
imation. Thus, by taking into account the full set of approx-
imation methods, most of the relevant energy levels of the 
systems differing by one particle from the analyzed system 
can be determined.

Finally, the performance of the different selfenergies in 
various time-dependent setups, was investigated. We showed 
results for the time evolution following a confinement quench 
that was motivated by recent experiments with fermionic 
atoms. The NEGF results using the particle–particle T-matrix 
selfenergy agreed very well with the experiment. The second 
setup used a one-dimensional charge-density-wave state as 
initial state. Here, by comparison with DMRG simulations 
the best results were obtained for third-order selfenergies. 
The third setup were finite graphene-type honeycomb clus-
ters that were exposed to the impact of energetic ions. Here 
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Figure 39. Leading terms of ΣFLEX,f,1/2 in the Hubbard basis for spin-1/2 fermions.
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we compared, among others, second-order Born selfenergies 
and HF-GKBA simulations. The fourth type of excitation was 
a rapid weak change of the lattice potential. The subsequent 
(linear-response) dynamics allowed to compute the spectral 
function of the system.

Finally, we considered a strong excitation of the system 
where the lattice potential of one site was changed. Here pre-
vious studies have indicated problems in the dynamics of the 
NEGF, in particular, a strongly damped behavior that is absent 
in exact-diagonalization calculations [122]. This behavior 
was found to vary strongly for different selfenergy approx-
imations. We also compared two-time and single-time simu-
lations within the HF-GKBA. The latter almost completely 
removed the damping.

6.2. Summary of Selfenergy approximations

In the second part of this review, a detailed overview of 
approximation strategies for the single-particle selfenergy 
within the framework of nonequilibrium Green functions has 
been presented. Here we followed two strategies. The first is a 
perturbative approach with respect to the interaction strength 
that, i.a. gives rise to the Born series. After reproducing the 
familiar and broadly used second-order Born approximation 
we derived the third-order selfenergy (TOA). This approx-
imation contains all terms that are of third order in the interac-
tion strength including, in particular, the relevant ladder-type 
and polarization diagrams. This important new approximation 
was derived for all relevant system types, starting from a gen-
eral basis representation. Additionally, for the special cases of 
a basis, in which the interaction is diagonal, as well as for the 
fermionic and bosonic Hubbard basis with a scalar interac-
tion, the corresponding selfenergy terms with Keldysh comp-
onents have been derived.

The second strategy was a non-perturbative approach where 
the selfenergies are derived using resummations of infinite 
partial series. Here our starting point was the set of Hedin’s 
equations from which we derived the GW  approximation. The 
closely related set of integral equations for the bare interaction 
and vertex led us to the particle–particle and the particle–hole 
T matrix. In each case we presented all details of the formulas 
that are needed for an efficient numerical implementation. As 
before, the results were summarized for general basis sets, for 
the case of a diagonal potential and for the Hubbard basis. The 
presentation was concluded by a discussion of the fluctuating-
exchange (FLEX) approximation that involves the combina-
tion of the terms from both T matrices and GW .

6.3. Outlook

With the set of selfenergies that were introduced in this review 
a powerful arsenal of approximations is available. In addition 
to two-time results that are obtained from the full Keldysh–
Kadanoff–Baym equations, also the single-time version is 
available. Here the basis is the Hartree–Fock-GKBA that, 
in many cases was found to be complementary to the KBE. 
The HF-GKBA removes the artificial damping for two-time 

simulations but does not yield spectral information. It has 
been successfully combined with most of the selfenergies dis-
cussed in this paper, which confirmes the attractive properties 
of this approximation. Moreover, comparisons with DMRG 
benchmark data indicated that the exact result is typically 
enclosed between KBE and HF-GKBA. This means that, if 
both simulations are performed independently, accurate pre-
dictions are possible even in the absence of benchmark data.

An important further development will consist in combin-
ing the GKBA with propagators beyond Hartree–Fock, i.e. 
correlated propagators [27]. This is expected to improve the 
spectral content of single-time simulations and bringing the 
GKBA simulations closer to the exact result.

The presently available selfenergies have been found to 
work well for arbitrary filling parameters and weakly to mod-
erately correlated Fermi systems, within the Hubbard model 
this corresponds to U/J � 8. For larger couplings the present 
implementation failed to converge. Here it will be important 
to attempt modified implementations to extend the range of 
accessible coupling strengths. In addition, it is of high inter-
est to derive higher-order selfenergy approximations, along 
the lines outlined in this article. For example, for half filling, 
the implementation of the fourth-order terms, following the 
algorithm presented in section 4.4, could achieve significant 
improvements, as was done successfully for homogeneous sys-
tems by Gebhard et al in [145]. One important obstacle to the 
application of the fourth-order terms, though, is the numerical 
downside of a quartic scaling with the propagation time, which 
will probably limit the applicability to small system sizes and 
short propagation times. If achievable, though, it opens the 
way to many new approximation strategies and resumma-
tions starting from the fourth-order terms similar to the (third-
order-starting) T matrices. Furthermore, the equations for the 
screened interaction W , see equation  (104), and the polariz-
ability P , see equation (105), can be solved exactly in fourth 
order for a given approximation of the vertex function.
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1. Derivations in full notation

For the following derivations we repeat several equations from the main text. From
Hedin’s equations (or the respective scheme for the bare interaction) we rewrite the
Dyson equation [main text: Eq. (91)],

Gij

(
z1, z2

)
= G

(0)
ij

(
z1, z2

)
+ (1)

+
∫

C
dz3dz4

∑

mn

G
(0)
im

(
z1, z3

)
Σmn

(
z3, z4

)
Gnj

(
z4, z2

)
,

the selfenergy [main text: Eqs. (95), (97) and (101)],

Σij

(
z1, z2

)
= ΣH

ij

(
z1, z2

)
+ Σxc

ij

(
z1, z2

)
, (2)

Σxc
ij

(
z1, z2

)
= i~

∑

mpq

wipqm

(
z1

) ∫

C
dz3

∑

n

Gmn

(
z1, z3

)
Λnqpj

(
z3, z2, z1

)
, (3)

Σxc
ij

(
z1, z2

)
= i~

∫

C
dz3

∑

mpq

Wipqm

(
z1, z3

)
× (4)

∫

C
dz4

∑

n

Gmn

(
z1, z4

)
Γnqpj

(
z4, z2, z3

)
,

the interaction [main text: Eqs. (102)-(104)],

Wijkl

(
z1, z2

)
= W bare

ijkl

(
z1, z2

)
+W ns

ijkl

(
z1, z2

)
, (5)

W
(1)
ijkl

(
z1, z2

)
= W bare

ijkl

(
z1, z2

)
= δC

(
z1, z2

)
wijkl

(
z1

)
, (6)
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W ns
ijkl

(
z1, z2

)
=
∑

mn

wimnl

(
z1

) ∫

C
dz3

∑

pq

Pnqpm

(
z1, z3

)
Wpjkq

(
z3, z2

)
, (7)

and the polarizability [main text: Eq. (105)],

Pijkl

(
z1, z2

)
= ±i~

∫

C
dz3

∑

m

Gim

(
z1, z3

)
× (8)

∫

C
dz4

∑

n

Gnl

(
z4, z1

)
Γmjkn

(
z3, z4, z2

)
.

The first-order selfenergy reads [main text: Eq. (158)]

Σ(1)
ij

(
z1, z2

)
= ΣH

ij

(
z1, z2

)
+ ΣF

ij

(
z1, z2

)
, (9)

with [main text: Eq. (156)]

ΣF
ij

(
z1, z2

)
= Σxc

ij

(
W

(1) ≡ W bare,Γ(0)) = (10)

= i~δC
(
z1, z2

)∑

mn

winjm

(
z1

)
Gmn

(
z1, z1+

)
.

The zeroth-order screened vertex becomes [main text: Eq. (155)]

Γ(0)
ijkl

(
z1, z2, z3

)
= δC

(
z1, z2+

)
δC
(
z3, z2

)
δikδjl . (11)

1.1. Second-order selfenergy contributions

1.1.1. Direct second-order selfenergy
The first second-order selfenergy term involves W (2), which structurally is given by, cf.
Eq. (5),

W
(2) = W ns

(
P

(0)
,W

(1))
. (12)

The structure of the zeroth-order term of the polarization is

P
(0) = P

(
Γ(0))

. (13)

Thus, it is given by

P
(0)
ijkl

(
z1, z2

)
= ±i~

∫

C
dz3

∑

m

Gim

(
z1, z3

)
(14)

∫

C
dz4

∑

n

Gnl

(
z4, z1

)
δC
(
z3, z4+

)
δC
(
z2, z4

)
δmkδjn

= ±i~Gik

(
z1, z2

)
Gjl

(
z2, z1

)
.
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Inserting this result into Eq. (12), one arrives at

W
(2)
ijkl

(
z1, z2

)
=
∑

mn

wimnl

(
z1

)
(15)

∫

C
dz3

∑

pq

(
±i~Gnp

(
z1, z3

)
Gqm

(
z3, z1

))
δC
(
z3, z2

)
wpjkq

(
z3

)

and, employing Eq. (7), finally, one has

W
(2)
ijkl

(
z1, z2

)
(16)

= ±i~
∑

mn

wimnl

(
z1

)∑

pq

Gnp

(
z1, z2

)
Gqm

(
z2, z1

)
wpjkq

(
z2

)
.

With this, Σ(2),2,0 can be calculated as, cf. Eq. (4),

Σ(2),2,0
ij

(
z1, z2

)
(17)

= i~
∫

C
dz3

∑

mpq

(
±i~

∑

rs

wirsm

(
z1

)∑

tu

Gst

(
z1, z3

)
Gur

(
z3, z1

)
wtpqu

(
z3

))

∫

C
dz4

∑

n

Gmn

(
z1, z4

)
δC
(
z4, z2+

)
δC
(
z3, z2

)
δnpδqj .

Evaluating the terms, one arrives at

Σ(2),2,0
ij

(
z1, z2

)
(18)

= ±
(
i~
)2∑

mn

Gmn

(
z1, z2

)∑

st

Gst

(
z1, z2

)

∑

r

wirsm

(
z1

)∑

u

wtnju

(
z2

)
Gur

(
z2, z1

)
.

1.1.2. Exchange–correlation second-order selfenergy
The other second-order selfenergy term, Σ(2),1,1

ij , requires the first-order term of the vertex
Γ, the structure of which is

Γ(1) = Γ
(
δΣxc,(1)

/δG,Γ(0))
. (19)

This term involves the functional derivative of Σxc,(1) with respect to G. One has

δΣxc,(1)
ij

(
z1, z2

)

δGrs

(
z5, z6

) =
δΣxc,(1),F

ij

(
z1, z2

)

δGrs

(
z5, z6

) . (20)

Employing Eq. (10), one finds

δΣxc,(1)
ij

(
z1, z2

)

δGrs

(
z5, z6

) = i~δC
(
z1, z2

)∑

mn

winjm

(
z1

)δGmn

(
z1, z1+

)

δGrs

(
z5, z6

) (21)

= i~δC
(
z1, z2

)
δC
(
z1, z5

)
δC
(
z1, z6

)
wisjr

(
z1

)
,
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where
δGij

(
z1, z2

)

δGmn

(
z5, z6

) = δC
(
z1, z5

)
δC
(
z2, z6

)
δimδjn (22)

has been applied. With this,

Γ(1)
ijkl

(
z1, z2, z3

)
(23)

=
∫

C
dz4dz5

∑

mn

δΣxc,(1)
il

(
z1, z2

)

δGmn

(
z4, z5

)
∫

C
dz6

∑

p

Gmp

(
z4, z6

)

∫

C
dz7

∑

q

Gqn

(
z7, z5

)
Γ(0)
pjkq

(
z6, z7, z3

)
.

Using Eq. (21), one has

Γ(1)
ijkl

(
z1, z2, z3

)
(24)

= i~δC
(
z1, z2

)∑

mn

winlm

(
z1

) ∫

C
dz6

∑

p

Gmp

(
z1, z6

)

∫

C
dz7

∑

q

Gqn

(
z7, z1

)
Γ(0)
pjkq

(
z6, z7, z3

)
.

With Eq. (11), finally,

Γ(1)
ijkl

(
z1, z2, z3

)
(25)

= i~δC
(
z1, z2

)∑

mn

winlm

(
z1

)
Gmk

(
z1, z3

)
Gjn

(
z3, z1

)

ensues. Inserting this result yields

Σ(2),1,1
ij

(
z1, z2

)
(26)

= i~
∫

C
dz3

∑

mpq

W
(1)
ipqm

(
z1, z3

) ∫

C
dz4

∑

n

Gmn

(
z1, z4

)
Γ(1)
nqpj

(
z4, z2, z3

)
.

Employing Eqs. (6) and (25), one arrives at

Σ(2),1,1
ij

(
z1, z2

)
(27)

= i~
∑

mpq

wipqm

(
z1

) ∫

C
dz4

∑

n

Gmn

(
z1, z4

)
Γ(1)
nqpj

(
z4, z2, z1

)

=
(
i~
)2 ∑

mpq

wipqm

(
z1

)∑

n

Gmn

(
z1, z2

)∑

rs

wnsjr

(
z2

)
Grp

(
z2, z1

)
Gqs

(
z1, z2

)
.

1.2. Third-order selfenergy contributions
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1.2.1. Third-order term: Σ(3),{3;0,2},0
ij

Using Eq. (7), one finds

W
(3),0,2
ijkl

(
z1, z2

)
(28)

=
∑

mn

wimnl

(
z1

) ∫

C
dz3

∑

pq

(
±i~Gnp

(
z1, z3

)
Gqm

(
z3, z1

))
W

(2)
pjkq

(
z3, z2

)
.

Employing Eq. (15) yields

W
(3),0,2
ijkl

(
z1, z2

)
(29)

=
∑

mn

wimnl

(
z1

) ∫

C
dz3

∑

pq

(
±i~Gnp

(
z1, z3

)
Gqm

(
z3, z1

))

(
±i~

∑

rs

wprsq

(
z3

)∑

tu

Gst

(
z3, z2

)
Gur

(
z2, z3

)
wtjku

(
z2

))
.

Evalutating and reordering, one has

W
(3),0,2
ijkl

(
z1, z2

)
(30)

=
(
i~
)2∑

mn

wimnl

(
z1

) ∫

C
dz3

∑

pq

Gnp

(
z1, z3

)
Gqm

(
z3, z1

)∑

rs

wprsq

(
z3

)

∑

tu

Gst

(
z3, z2

)
Gur

(
z2, z3

)
wtjku

(
z2

)
.

With this, the first term of the first third-order selfenergy class, Σ(3),3,0, becomes

Σ(3),{3;0,2},0
ij

(
z1, z2

)
(31)

= i~
∫

C
dz3

∑

mpq

W
(3),0,2
ipqm

(
z1, z3

) ∫

C
dz4

∑

n

Gmn

(
z1, z4

)
Γ(0)
nqpj

(
z4, z2, z3

)
.

Using Eq. (11), one has

Σ(3),{3;0,2},0
ij

(
z1, z2

)
(32)

=
(
i~
)3∑

mn

Gmn

(
z1, z2

)∑

rs

wirsm

(
z1

) ∫

C
dz3

∑

tu

Gst

(
z1, z3

)
Gur

(
z3, z1

)

∑

vw

wtvwu

(
z3

)∑

xy

Gwx

(
z3, z2

)
Gyv

(
z2, z3

)
wxnjy

(
z2

)
.

1.2.2. Third-order term: Σ(3),{3;1,1},0
ij

For the second class of the interaction, W (3),1,1, the first-order contribution to the
polarizability is needed, which is given by, cf. Eqs. (8) and (25),

P
(1)
ijkl

(
z1, z2

)
= Pijkl

(
z1, z2

)(
Γ(1)) (33)

= ±i~
∫

C
dz3

∑

m

Gim

(
z1, z3

) ∫

C
dz4

∑

n

Gnl

(
z4, z1

)
Γ(1)
mjkn

(
z3, z4, z2

)
.
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Employing Eq. (25), one arrives at

P
(1)
ijkl

(
z1, z2

)
(34)

= ±
(
i~
)2 ∫

C
dz3

∑

m

Gim

(
z1, z3

)∑

n

Gnl

(
z3, z1

)

∑

pq

wmqnp

(
z3

)
Gpk

(
z3, z2

)
Gjq

(
z2, z3

)
.

Inserting this result back, one finds, using Eq. (7),

W
(3),1,1
ijkl

(
z1, z2

)
=
∑

mn

wimnl

(
z1

) ∫

C
dz3

∑

pq

P
(1)
nqpm

(
z1, z3

)
W

(1)
pjkq

(
z3, z2

)

=
∑

mn

wimnl

(
z1

) ∫

C
dz3

∑

pq

(
±
(
i~
)2 ∫

C
dz4

∑

r

Gnr

(
z1, z4

)∑

s

Gsm

(
z4, z1

)

∑

tu

wrust

(
z4

)
Gtp

(
z4, z3

)
Gqu

(
z3, z4

))
δC
(
z3, z2

)
wpjkq

(
z2

)
. (35)

After reordering, one has

W
(3),1,1
ijkl

(
z1, z2

)
(36)

= ±
(
i~
)2∑

mn

wimnl

(
z1

) ∫

C
dz3

∑

r

Gnr

(
z1, z3

)∑

s

Gsm

(
z3, z1

)

∑

tu

wrust

(
z3

)∑

pq

Gtp

(
z3, z2

)
Gqu

(
z2, z3

)
wpjkq

(
z2

)
.

With these results, the second term of the class Σ(3),3,0 is found, using Eq. (4),

Σ(3),{3;1,1},0
ij

(
z1, z2

)
(37)

= i~
∫

C
dz3

∑

mpq

W
(3),1,1
ipqm

(
z1, z3

) ∫

C
dz4

∑

n

Gmn

(
z1, z4

)
Γ(0)
nqpj

(
z4, z2, z3

)
.

Using Eq. (11), one finds

Σ(3),{3;1,1},0
ij

(
z1, z2

)
(38)

= ±
(
i~
)3∑

mn

Gmn

(
z1, z2

)∑

rs

wirsm

(
z1

) ∫

C
dz3

∑

t

Gst

(
z1, z3

)∑

u

Gur

(
z3, z1

)

∑

vw

wtwuv

(
z3

)∑

xy

Gvx

(
z3, z2

)
Gyw

(
z2, z3

)
wxnjy

(
z2

)
.

1.2.3. Third-order term: Σ(3),2,1
ij

Continuing with the second class Σ(3),2,1, it is directly worked out by combining Eqs. (15)
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and (25),

Σ(3),2,1
ij

(
z1, z2

)
= i~

∫

C
dz3

∑

mpq

W
(2)
ipqm

(
z1, z3

)
(39)

∫

C
dz4

∑

n

Gmn

(
z1, z4

)
Γ(1)
nqpj

(
z4, z2, z3

)
.

Inserting Eq. (25) yields

Σ(3),2,1
ij

(
z1, z2

)
(40)

= ±
(
i~
)3 ∫

C
dz3

∑

mrs

wirsm

(
z1

)∑

tu

Gst

(
z1, z3

)
Gur

(
z3, z1

)∑

pq

wtpqu

(
z3

)

∑

n

Gmn

(
z1, z2

)∑

vw

wnwjv

(
z2

)
Gvp

(
z2, z3

)
Gqw

(
z3, z2

)
.

1.2.4. Third-order term: Σ(3),1,{2;1,1}
ij

For the single contribution to the class Γ(2),1,1, one finds, employing Eqs. (21) and (25),

Γ(2),1,1
ijkl

(
z1, z2, z3

)
=
∫

C
dz4dz5

∑

mn

δΣxc,(1)
il

(
z1, z2

)

δGmn

(
z4, z5

)
∫

C
dz6

∑

p

Gmp

(
z4, z6

)

∫

C
dz7

∑

q

Gqn

(
z7, z5

)
Γ(1)
pjkq

(
z6, z7, z3

)
. (41)

Evaluating the derivative yields

Γ(2),1,1
ijkl

(
z1, z2, z3

)
(42)

= i~δC
(
z1, z2

)∑

mn

winlm

(
z1

) ∫

C
dz6

∑

p

Gmp

(
z1, z6

)

∫

C
dz7

∑

q

Gqn

(
z7, z1

)
Γ(1)
pjkq

(
z6, z7, z3

)
.

Employing Eq. (25), one finds

Γ(2),1,1
ijkl

(
z1, z2, z3

)
(43)

=
(
i~
)2
δC
(
z1, z2

)∑

mn

winlm

(
z1

) ∫

C
dz6

∑

p

Gmp

(
z1, z6

)

∑

q

Gqn

(
z6, z1

)∑

rs

wpsqr

(
z6

)
Grk

(
z6, z3

)
Gjs

(
z3, z6

)
.
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This enables the computation of Σ(3),1,{2;1,1} with Eqs. (4) and (6),

Σ(3),1,{2;1,1}
ij

(
z1, z2

)
(44)

= i~
∫

C
dz3

∑

mpq

W
(1)
ipqm

(
z1, z3

) ∫

C
dz4

∑

n

Gmn

(
z1, z4

)
Γ(2),1,1
nqpj

(
z4, z2, z3

)

= i~
∑

mpq

wipqm

(
z1

) ∫

C
dz4

∑

n

Gmn

(
z1, z4

)
Γ(2),1,1
nqpj

(
z4, z2, z1

)
.

Using Eq. (43), one arrives at

Σ(3),1,{2;1,1}
ij

(
z1, z2

)
(45)

=
(
i~
)3 ∑

mpq

wipqm

(
z1

)∑

n

Gmn

(
z1, z2

)∑

rs

wnsjr

(
z2

) ∫

C
dz3

∑

t

Grt

(
z2, z3

)

∑

u

Gus

(
z3, z2

)∑

vw

wtwuv

(
z3

)
Gvp

(
z3, z1

)
Gqw

(
z1, z3

)
.

1.2.5. Second-order vertex terms
For the first terms, one finds

Γ(2),{2;2,0},0
ijkl

(
z1, z2, z3

)
=
∫

C
dz4dz5

∑

mn

δΣ(2),2,0
il

(
z1, z2

)

δGmn

(
z4, z5

)
∫

C
dz6

∑

p

Gmp

(
z4, z6

)

∫

C
dz7

∑

q

Gqn

(
z7, z5

)
Γ(0)
pjkq

(
z6, z7, z3

)
(46)

=
∫

C
dz4dz5

∑

mn

δΣ(2),2,0
il

(
z1, z2

)

δGmn

(
z4, z5

) Gmk

(
z4, z3

)
Gjn

(
z3, z5

)
.

Inserting Eq. (18), the term attains the form

Γ(2),{2;2,0},0
ijkl

(
z1, z2, z3

)
= ±

(
i~
)2 ∫

C
dz4dz5 (47)

∑

mn

δ

(
∑
pq
Gpq

(
z1, z2

)∑
st
Gst

(
z1, z2

)∑
r
wirsp

(
z1

)∑
u
wtqlu

(
z2

)
Gur

(
z2, z1

))

δGmn

(
z4, z5

)

Gmk

(
z4, z3

)
Gjn

(
z3, z5

)
.

Evaluating the derivative, one has

Γ(2),{2;2,0},0
ijkl

(
z1, z2, z3

)
= Γ(2),{2;2,0},0,A

ijkl

(
z1, z2, z3

)
(48)

+ Γ(2),{2;2,0},0,B
ijkl

(
z1, z2, z3

)
+ Γ(2),{2;2,0},0,C

ijkl

(
z1, z2, z3

)
,
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with

Γ(2),{2;2,0},0,A
ijkl

(
z1, z2, z3

)
(49)

= ±
(
i~
)2∑

mn

∑

st

Gst

(
z1, z2

)∑

r

wirsm

(
z1

)

∑

u

wtnlu

(
z2

)
Gur

(
z2, z1

)
Gmk

(
z1, z3

)
Gjn

(
z3, z2

)

and

Γ(2),{2;2,0},0,B
ijkl

(
z1, z2, z3

)
(50)

±
(
i~
)2∑

mn

∑

pq

Gpq

(
z1, z2

)∑

r

wirmp

(
z1

)

∑

u

wnqlu

(
z2

)
Gur

(
z2, z1

)
Gmk

(
z1, z3

)
Gjn

(
z3, z2

)

as well as

Γ(2),{2;2,0},0,C
ijkl

(
z1, z2, z3

)
(51)

±
(
i~
)2∑

mn

∑

pq

Gpq

(
z1, z2

)∑

st

Gst

(
z1, z2

)

winsp

(
z1

)
wtqlm

(
z2

)
Gmk

(
z2, z3

)
Gjn

(
z3, z1

)
.

Similarly, one finds

Γ(2),{2;1,1},0
ijkl

(
z1, z2, z3

)
=
∫

C
dz4dz5

∑

mn

δΣ(2),1,1
il

(
z1, z2

)

δGmn

(
z4, z5

)
∫

C
dz6

∑

p

Gmp

(
z4, z6

)

∫

C
dz7

∑

q

Gqn

(
z7, z5

)
Γ(0)
pjkq

(
z6, z7, z3

)
. (52)

Inserting Eq. (27) yields

Γ(2),{2;1,1},0
ijkl

(
z1, z2, z3

)
=
(
i~
)2 ∫

C
dz4dz5 (53)

∑

mn

δ

(
∑
prs
wirsp

(
z1

)∑
q
Gpq

(
z1, z2

)∑
tu
wqult

(
z2

)
Gtr

(
z2, z1

)
Gsu

(
z1, z2

))

δGmn

(
z4, z5

)

Gmk

(
z4, z3

)
Gjn

(
z3, z5

)
,

which, after evaluation of the derivative, yields

Γ(2),{2;1,1},0
ijkl

(
z1, z2, z3

)
= Γ(2),{2;1,1},0,A

ijkl

(
z1, z2, z3

)
(54)

+ Γ(2),{2;1,1},0,B
ijkl

(
z1, z2, z3

)
+ Γ(2),{2;1,1},0,C

ijkl

(
z1, z2, z3

)
,
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with

Γ(2),{2;1,1},0,A
ijkl

(
z1, z2, z3

)
(55)

=
(
i~
)2∑

mn

∑

rs

wirsm

(
z1

)∑

tu

wnult

(
z2

)
Gtr

(
z2, z1

)

Gsu

(
z1, z2

)
Gmk

(
z1, z3

)
Gjn

(
z3, z2

)

and

Γ(2),{2;1,1},0,B
ijkl

(
z1, z2, z3

)
(56)

+
(
i~
)2∑

mn

∑

ps

winsp

(
z1

)∑

q

Gpq

(
z1, z2

)∑

u

wqulm

(
z2

)

Gsu

(
z1, z2

)
Gmk

(
z2, z3

)
Gjn

(
z3, z1

)

as well as

Γ(2),{2;1,1},0,C
ijkl

(
z1, z2, z3

)
(57)

+
(
i~
)2∑

mn

∑

pr

wirmp

(
z1

)∑

q

Gpq

(
z1, z2

)∑

t

wqnlt

(
z2

)

Gtr

(
z2, z1

)
Gmk

(
z1, z3

)
Gjn

(
z3, z2

)
.

1.2.6. Third-order terms: Σ(3),1,2
ij

With this result, the corresponding selfenergy terms can be computed,

Σ(3),1,{2;{2;2,0},0,A}
ij

(
z1, z2

)
(58)

= i~
∫

C
dz3

∑

mpq

W
(1)
ipqm

(
z1, z3

) ∫

C
dz4

∑

n

Gmn

(
z1, z4

)
Γ(2),{2;2,0},0,A
nqpj

(
z4, z2, z3

)

= i~
∑

mpq

wipqm

(
z1

) ∫

C
dz4

∑

n

Gmn

(
z1, z4

)
Γ(2),{2;2,0},0,A
nqpj

(
z4, z2, z1

)
.

Inserting Eq. (49), one arrives at

Σ(3),1,{2;{2;2,0},0,A}
ij

(
z1, z2

)
= ±

(
i~
)3 ∑

mpq

wipqm

(
z1

)
(59)

∫

C
dz4

∑

n

Gmn

(
z1, z4

) ∑

rsuv

Guv

(
z4, z2

)∑

t

wntur

(
z4

)

∑

w

wvsjw

(
z2

)
Gwt

(
z2, z4

)
Grp

(
z4, z1

)
Gqs

(
z1, z2

)
.

For the second term, one has

Σ(3),1,{2;{2;2,0},0,B}
ij

(
z1, z2

)
(60)

= i~
∑

mpq

wipqm

(
z1

) ∫

C
dz4

∑

n

Gmn

(
z1, z4

)
Γ(2),{2;2,0},0,B
nqpj

(
z4, z2, z1

)
.
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Using Eq. (50) yields

Σ(3),1,{2;{2;2,0},0,B}
ij

(
z1, z2

)
(61)

= ±
(
i~
)3 ∑

mpq

wipqm

(
z1

) ∫

C
dz4

∑

n

Gmn

(
z1, z4

)∑

rs

∑

tu

Gtu

(
z4, z2

)

∑

v

wnvrt

(
z4

)∑

w

wsujw

(
z2

)
Gwv

(
z2, z4

)
Grp

(
z4, z1

)
Gqs

(
z1, z2

)
.

The third term is given by

Σ(3),1,{2;{2;2,0},0,C}
ij

(
z1, z2

)
(62)

= i~
∑

mpq

wipqm

(
z1

) ∫

C
dz4

∑

n

Gmn

(
z1, z4

)
Γ(2),{2;2,0},0,C
nqpj

(
z4, z2, z1

)
.

With Eq. (51), one finds

Σ(3),1,{2;{2;2,0},0,C}
ij

(
z1, z2

)
(63)

= ±
(
i~
)3 ∑

mpq

wipqm

(
z1

) ∫

C
dz4

∑

n

Gmn

(
z1, z4

)∑

rs

∑

tu

Gtu

(
z4, z2

)

∑

vw

Gvw

(
z4, z2

)
wnsvt

(
z4

)
wwujr

(
z2

)
Grp

(
z2, z1

)
Gqs

(
z1, z4

)
.

For the other class, one has

Σ(3),1,{2;{2;1,1},0,A}
ij

(
z1, z2

)
(64)

= i~
∫

C
dz3

∑

mpq

W
(1)
ipqm

(
z1, z3

) ∫

C
dz4

∑

n

Gmn

(
z1, z4

)
Γ(2),{2;1,1},0,A
nqpj

(
z4, z2, z3

)

= i~
∑

mpq

wipqm

(
z1

) ∫

C
dz4

∑

n

Gmn

(
z1, z4

)
Γ(2),1,1,A
nqpj

(
z4, z2, z1

)
.

Inserting Eq. (55) yields

Σ(3),1,{2;{2;1,1},0,A}
ij

(
z1, z2

)
(65)

=
(
i~
)3 ∑

mpq

wipqm

(
z1

) ∫

C
dz4

∑

n

Gmn

(
z1, z4

)∑

rs

∑

tu

wntur

(
z4

)

∑

vw

wswjv

(
z2

)
Gvt

(
z2, z4

)
Guw

(
z4, z2

)
Grp

(
z4, z1

)
Gqs

(
z1, z2

)
.

Similarly, the second term reads

Σ(3),1,{2;{2;1,1},0,B}
ij

(
z1, z2

)
(66)

= i~
∑

mpq

wipqm

(
z1

) ∫

C
dz4

∑

n

Gmn

(
z1, z4

)
Γ(2),{2;1,1},0,B
nqpj

(
z4, z2, z1

)
.
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With Eq. (56), one has

Σ(3),1,{2;{2;1,1},0,B}
ij

(
z1, z2

)
(67)

=
(
i~
)3 ∑

mpq

wipqm

(
z1

) ∫

C
dz4

∑

n

Gmn

(
z1, z4

)∑

rs

∑

tv

wnsvt

(
z4

)

∑

u

Gtu

(
z4, z2

)∑

w

wuwjr

(
z2

)
Gvw

(
z4, z2

)
Grp

(
z2, z1

)
Gqs

(
z1, z4

)
.

For the third term, one finds

Σ(3),1,{2;{2;1,1},0,C}
ij

(
z1, z2

)
(68)

= i~
∑

mpq

wipqm

(
z1

) ∫

C
dz4

∑

n

Gmn

(
z1, z4

)
Γ(2),{2;1,1},0,C
nqpj

(
z4, z2, z1

)
.

Employing Eq. (57), one arrives at

Σ(3),1,{2;{2;1,1},0,C}
ij

(
z1, z2

)
(69)

=
(
i~
)3 ∑

mpq

wipqm

(
z1

) ∫

C
dz4

∑

n

Gmn

(
z1, z4

)∑

rs

∑

tv

wnvrt

(
z4

)

∑

u

Gtu

(
z4, z2

)∑

w

wusjw

(
z2

)
Gwv

(
z2, z4

)
Grp

(
z4, z1

)
Gqs

(
z1, z2

)
.

1.3. Resummation approaches: GW approximation

The GW approximation solves Hedin’s equation for the screened interactionW according
to Eq. (7) with the zeroth-order vertex Γ(0). The set of equations is given by the Dyson
equation, cf. Eq. (1),

Gij

(
z1, z2

)
= G

(0)
ij

(
z1, z2

)
(70)

+
∫

C
dz3dz4

∑

mn

G
(0)
im

(
z1, z3

)
Σmn

(
z3, z4

)
Gnj

(
z4, z2

)
,

the equation for the selfenergy [cf. Eq. (2)]

Σij

(
z1, z2

)
= ΣH

ij

(
z1, z2

)
+ Σxc

ij

(
z1, z2

)
, (71)

with

Σxc
ij

(
z1, z2

)
= i~

∫

C
dz3

∑

mpq

Wipqm

(
z1, z3

)
(72)

∫

C
dz4

∑

n

Gmn

(
z1, z4

)
Γ(0)
nqpj

(
z4, z2, z3

)

= i~
∑

mp

Wipjm

(
z1, z2

)
Gmp

(
z1, z2

)
,
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the zeroth-order polarizability, cf. Eq. (14),

Pijkl

(
z1, z2

)
= P

(0)
ijkl

(
z1, z2

)
= ±i~Gik

(
z1, z2

)
Gjl

(
z2, z1

)
, (73)

the zeroth-order vertex, cf. Eq. (11),

Γijkl
(
z1, z2, z3

)
= Γ(0)

ijkl

(
z1, z2, z3

)
= δC

(
z1, z2+

)
δC
(
z3, z2

)
δikδjl (74)

and the screened interaction [cf. Eqs. (5) and (7)]

Wijkl

(
z1, z2

)
= δC

(
z1, z2

)
wijkl

(
z1

)
+W ns

ijkl

(
z1, z2

)
, (75)

with

W ns
ijkl

(
z1, z2

)
(76)

=
∑

mn

wimnl

(
z1

) ∫

C
dz3

∑

pq

P
(0)
nqpm

(
z1, z3

)
Wpjkq

(
z3, z2

)

= ±i~
∑

mn

wimnl

(
z1

) ∫

C
dz3

∑

pq

Gnp

(
z1, z3

)
Gqm

(
z3, z1

)
Wpjkq

(
z3, z2

)
.

To solve this set of equations, one has to determine the selfconsistent solution of Eq. (75).
Thereto, it is more suitable to eliminate the singular bare interaction by using

W ns
ijkl

(
z1, z2

)
= Wijkl

(
z1, z2

)
−W bare

ijkl

(
z1, z2

)
(77)

= Wijkl

(
z1, z2

)
− δC

(
z1, z2

)
wijkl

(
z1

)
.

The selfenergy [cf. Eqs. (71) and (72)] in terms of W ns is then given by

ΣGW
ij

(
z1, z2

)
= ΣH

ij

(
z1, z2

)
+ i~

∑

mp

Wipjm

(
z1, z2

)
Gmp

(
z1, z2

)

= ΣH
ij

(
z1, z2

)
+ i~

∑

mp

wipjm

(
z1

)
Gmp

(
z1, z1+

)
δC
(
z1, z2

)

+ i~
∑

mp

W ns
ipjm

(
z1, z2

)
Gmp

(
z1, z2

)
. (78)

Using Eq. (10), the expression simplifies to

ΣGW
ij

(
z1, z2

)
(79)

= ΣH
ij

(
z1, z2

)
+ ΣF

ij

(
z1, z2

)
+ i~

∑

mp

W ns
ipjm

(
z1, z2

)
Gmp

(
z1, z2

)

=: ΣH
ij

(
z1, z2

)
+ ΣF

ij

(
z1, z2

)
+ ΣGW,corr

ij

(
z1, z2

)
.
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For the screened interaction, one has

W ns
ijkl

(
z1, z2

)
(80)

= ±i~
∑

mn

wimnl

(
z1

)∑

pq

Gnp

(
z1, z2

)
Gqm

(
z2, z1

)
wpjkq

(
z2

)

± i~
∑

mn

wimnl

(
z1

) ∫

C
dz3

∑

pq

Gnp

(
z1, z3

)
Gqm

(
z3, z1

)
W ns
pjkq

(
z3, z2

)
.

1.4. Resummation approaches: T matrix

In contrast to the GW approximation, the T matrix is an approximation, which takes
only the bare interaction w into account and aims instead at a good approximation of
the bare vertex function Λ. Thus, its constitutive equations are the Dyson equation,

Gij

(
z1, z2

)
= (81)

G
(0)
ij

(
z1, z2

)
+
∫

C
dz3dz4

∑

mn

G
(0)
im

(
z1, z3

)
Σmn

(
z3, z4

)
Gnj

(
z4, z2

)
,

the equation for the selfenergy, cf. Eqs. (2) and (3),

Σij

(
z1, z2

)
= ΣH

ij

(
z1, z2

)
+ Σxc

ij

(
z1, z2

)
, (82)

with

Σxc
ij

(
z1, z2

)
(83)

= i~
∑

mpq

wipqm

(
z1

) ∫

C
dz3

∑

n

Gmn

(
z1, z3

)
Λnqpj

(
z3, z2, z1

)
.

The bare vertex Λ is self-consistently given as the solution of

Λijkl

(
z1, z2, z3

)
= δC

(
z1, z2+

)
δC
(
z3, z2

)
δikδjl (84)

+
∫

C
dz4dz5

∑

mn

δΣil

(
z1, z2

)

δGmn

(
z4, z5

)
∫

C
dz6

∑

p

Gmp

(
z4, z6

)

∫

C
dz7

∑

q

Gqn

(
z7, z5

)
Λpjkq

(
z6, z7, z3

)
.

If these equations are iterated ad infinitum, all selfenergy terms will be
generated. To break the circular dependence between Eqs. (83) and (84), the T -
matrix approximation starts by taking the bare vertex on the right-hand side of Eq. (84)
only in zeroth order,

Λ(0)
ijkl

(
z1, z2, z3

)
= δC

(
z1, z2+

)
δC
(
z3, z2

)
δikδjl , (85)
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transforming it into

Λcl
ijkl

(
z1, z2, z3

)
= δC

(
z1, z2+

)
δC
(
z3, z2

)
δikδjl (86)

+
∫

C
dz4dz5

∑

mn

δΣcl
il

(
z1, z2

)

δGmn

(
z4, z5

)Gmk

(
z4, z3

)
Gjn

(
z3, z5

)
.

To arrive at a closed equation, this result is used in Eq. (82), yielding

Σcl
ij

(
z1, z2

)
= ΣH

ij

(
z1, z2

)
+ Σxc

ij

(
z1, z2

)
(87)

= ΣH
ij

(
z1, z2

)
+ i~

∑

mpq

wipqm

(
z1

) ∫

C
dz3

∑

n

Gmn

(
z1, z3

)
Λcl
nqpj

(
z3, z2, z1

)
.

Inserting Eq. (86), one has

Σcl
ij

(
z1, z2

)
= ±i~δC

(
z1, z2

)∑

mn

wmijn

(
z1

)
Gnm

(
z1, z1+

)
(88)

+ i~
∑

mn

winjm

(
z1

)
Gmn

(
z1, z1+

)
δC
(
z1, z2

)

+ i~
∑

mpq

wipqm

(
z1

) ∫

C
dz3

∑

n

Gmn

(
z1, z3

)

∫

C
dz4dz5

∑

rs

δΣcl
nj

(
z3, z2

)

δGrs

(
z4, z5

)Grp

(
z4, z1

)
Gqs

(
z1, z5

)
.

This term can be restructured to yield

Σcl
ij

(
z1, z2

)
(89)

= i~δC
(
z1, z2

)∑

mn

Gmn

(
z1, z1+

)
w±injm

(
z1

)

+ i~
∑

mpq

wipqm

(
z1

) ∫

C
dz3

∑

n

Gmn

(
z1, z3

)

∫

C
dz4dz5

∑

rs

δΣcl
nj

(
z3, z2

)

δGrs

(
z4, z5

)Grp

(
z4, z1

)
Gqs

(
z1, z5

)
,

with the (anti-)symmetrized potential w±ijkl
(
z1

)
:= wijkl

(
z1

)
± wjikl

(
z1

)
. Using Eq. (10)

again, one finds

Σcl
ij

(
z1, z2

)
(90)

= ΣH
ij

(
z1, z2

)
+ ΣF

ij

(
z1, z2

)
+ i~

∑

mpq

wipqm

(
z1

) ∫

C
dz3

∑

n

Gmn

(
z1, z3

)

∫

C
dz4dz5

∑

rs

δΣcl
nj

(
z3, z2

)

δGrs

(
z4, z5

)Grp

(
z4, z1

)
Gqs

(
z1, z5

)
.



Supplement “Ultrafast dynamics of strongly correlated fermions” 16

Taking the derivative with respect to G, one arrives at

δΣcl
ij

(
z1, z2

)

δGtu

(
z6, z7

) = i~δC
(
z1, z2

)
δC
(
z1, z6

)
δC
(
z1+ , z7

)
w±iujt

(
z1

)



δΣcl,A

ij

(
z1, z2

)

δGtu

(
z6, z7

) +
δΣcl,B

ij

(
z1, z2

)

δGtu

(
z6, z7

)

+
δΣcl,C

ij

(
z1, z2

)

δGtu

(
z6, z7

) +
δΣcl,D

ij

(
z1, z2

)

δGtu

(
z6, z7

)


 , (91)

with
δΣcl,A

ij

(
z1, z2

)

δGtu

(
z6, z7

) (92)

= i~δC
(
z1, z6

)∑

pq

wipqt

(
z1

)

∫

C
dz4dz5

∑

rs

δΣcl
uj

(
z7, z2

)

δGrs

(
z4, z5

)Grp

(
z4, z1

)
Gqs

(
z1, z5

)
,

δΣcl,B
ij

(
z1, z2

)

δGtu

(
z6, z7

) (93)

= i~δC
(
z1, z7

)∑

mq

wiuqm

(
z1

) ∫

C
dz3

∑

n

Gmn

(
z1, z3

)

∫

C
dz5

∑

s

δΣcl
nj

(
z3, z2

)

δGts

(
z6, z5

)Gqs

(
z1, z5

)

and
δΣcl,C

ij

(
z1, z2

)

δGtu

(
z6, z7

) (94)

= i~δC
(
z1, z6

)∑

mp

wiptm

(
z1

) ∫

C
dz3

∑

n

Gmn

(
z1, z3

)

∫

C
dz4

∑

r

δΣcl
nj

(
z3, z2

)

δGru

(
z4, z7

)Grp

(
z4, z1

)
,
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as well as
δΣcl,D

ij

(
z1, z2

)

δGtu

(
z6, z7

) (95)

= i~
∑

mpq

wipqm

(
z1

) ∫

C
dz3

∑

n

Gmn

(
z1, z3

)

∫

C
dz4dz5

∑

rs

δΣcl
nj

(
z3, z2

)

δGrs

(
z4, z5

)
δGtu

(
z6, z7

)Grp

(
z4, z1

)
Gqs

(
z1, z5

)
.

Neglecting
δΣcl

nj(z3,z2)
δG

rs(z4,z5)δGtu(z6,z7)
as an approximation, Eq. (91) becomes a closed equation

for δΣcl

δG
. The first iteration yields the second-order terms

δΣcl,(2)
ij

(
z1, z2

)

δGtu

(
z6, z7

) ≈
δΣcl,(2),A

ij

(
z1, z2

)

δGtu

(
z6, z7

) (96)

+
δΣcl,(2),B

ij

(
z1, z2

)

δGtu

(
z6, z7

) +
δΣcl,(2),C

ij

(
z1, z2

)

δGtu

(
z6, z7

) ,

with
δΣcl,(2),A

ij

(
z1, z2

)

δGtu

(
z6, z7

) (97)

=
(
i~
)2
δC
(
z1, z6

)
δC
(
z2, z7

)∑

pq

wipqt

(
z1

)

∑

rs

w±usjr
(
z2

)
Grp

(
z2, z1

)
Gqs

(
z1, z2

)

and
δΣcl,(2),B

ij

(
z1, z2

)

δGtu

(
z6, z7

) (98)

=
(
i~
)2
δC
(
z1, z7

)
δC
(
z2, z6

)∑

mq

wiuqm

(
z1

)

∑

n

Gmn

(
z1, z2

)∑

s

w±nsjt
(
z2

)
Gqs

(
z1, z2

)

as well as
δΣcl,(2),C

ij

(
z1, z2

)

δGtu

(
z6, z7

) (99)

=
(
i~
)2
δC
(
z1, z6

)
δC
(
z2, z7

)∑

mp

wiptm

(
z1

)

∑

n

Gmn

(
z1, z2

)∑

r

w±nujr
(
z2

)
Grp

(
z2, z1

)
.
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Note that, for the first iteration,
δΣcl,D

ij (z1,z2)
δG

tu(z6,z7)
is exactly equal to zero, thus Eq. (96) is

also exact up to second order in w. In the following, each of the three terms will be
considered separately. To start with, one recognizes that all three terms yield the same
first and second-order contributions to the selfenergy, which read

Σcl,(1)
ij

(
z1, z2

)
= ΣH

ij

(
z1, z2

)
+ ΣF

ij

(
z1, z2

)
(100)

Σcl,(2)
ij

(
z1, z2

)
=
(
i~
)2 ∑

mpq

wipqm

(
z1

)∑

n

Gmn

(
z1, z2

)
(101)

∑

rs

w±nsjr
(
z2

)
Grp

(
z2, z1

)
Gqs

(
z1, z2

)

and agree with the exact first and second-order terms, already encountered in Eqs. (9),
(18) and (27). The third-order contributions to Σcl from the second-order terms in
Eq. (96) are given by

Σcl,(3),A
ij

(
z1, z2

)
= i~

∑

mpq

wipqm

(
z1

) ∫

C
dz3

∑

n

Gmn

(
z1, z3

)
(102)

∫

C
dz4dz5

∑

rs

δΣcl,(2),A
nj

(
z3, z2

)

δGrs

(
z4, z5

) Grp

(
z4, z1

)
Gqs

(
z1, z5

)
.

Inserting the second-order term yields

Σcl,(3),A
ij

(
z1, z2

)
=
(
i~
)3 ∑

mpq

wipqm

(
z1

) ∫

C
dz3

∑

n

Gmn

(
z1, z3

)
(103)

∑

rs

∑

tu

wntur

(
z3

)∑

vw

w±swjv
(
z2

)

Gvt

(
z2, z3

)
Guw

(
z3, z2

)
Grp

(
z3, z1

)
Gqs

(
z1, z2

)
.

For the second third-order selfenergy term, one has

Σcl,(3),B
ij

(
z1, z2

)
= i~

∑

mpq

wipqm

(
z1

) ∫

C
dz3

∑

n

Gmn

(
z1, z3

)
(104)

∫

C
dz4dz5

∑

rs

δΣcl,(2),B
nj

(
z3, z2

)

δGrs

(
z4, z5

) Grp

(
z4, z1

)
Gqs

(
z1, z5

)
.

which evaluates to

Σcl,(3),B
ij

(
z1, z2

)
=
(
i~
)3 ∑

mpq

wipqm

(
z1

) ∫

C
dz3

∑

n

Gmn

(
z1, z3

)
(105)

∑

rs

∑

tu

wnsut

(
z3

)∑

v

Gtv

(
z3, z2

)∑

w

w±vwjr
(
z2

)

Guw

(
z3, z2

)
Grp

(
z2, z1

)
Gqs

(
z1, z3

)
.
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The third term reads

Σcl,(3),C
ij

(
z1, z2

)
= i~

∑

mpq

wipqm

(
z1

) ∫

C
dz3

∑

n

Gmn

(
z1, z3

)
(106)

∫

C
dz4dz5

∑

rs

δΣcl,(2),C
nj

(
z3, z2

)

δGrs

(
z4, z5

) Grp

(
z4, z1

)
Gqs

(
z1, z5

)
.

(107)

Using the second-order result, one arrives at

Σcl,(3),C
ij

(
z1, z2

)
= i~

∑

mpq

wipqm

(
z1

) ∫

C
dz3

∑

n

Gmn

(
z1, z3

)
(108)

∑

rs

∑

tu

wnurt

(
z3

)∑

v

Gtv

(
z3, z2

)∑

w

w±vsjw
(
z2

)

Gwu

(
z2, z3

)
Grp

(
z3, z1

)
Gqs

(
z1, z2

)
.

2. Non-selfconsistent second-order selfenergy contributions

2.1. General basis

The first two classes are just the same as in the selfconsistent approximation, cf. Eqs.
(176) and (183) of the main text, with the replacement G → G

(0). Likewise, their
components follow directly from Eqs. (184) and (185) of the main text. For the third
and fourth class, one needs the contributions to G(1), which are

G
(1),{H,0},0
ij

(
z1, z2

)
(109)

=
∫

C
dz3dz4

∑

mn

G
(0)
im

(
z1, z3

)
ΣH,0
mn

(
z3, z4

)
G

(0)
nj

(
z4, z2

)

= ±i~
∫

C
dz3

∑

mn

G
(0)
im

(
z1, z3

)∑

pq

wpmnq

(
z3

)
G

(0)
qp

(
z3, z3+

)
G

(0)
nj

(
z3, z2

)

and

G
(1),{F,0},0
ij

(
z1, z2

)
(110)

=
∫

C
dz3dz4

∑

mn

G
(0)
im

(
z1, z3

)
ΣF,0
mn

(
z3, z4

)
G

(0)
nj

(
z4, z2

)

= i~
∫

C
dz3

∑

mn

G
(0)
im

(
z1, z3

)∑

pq

wmqnp

(
z3

)
G

(0)
pq

(
z3, z3+

)
G

(0)
nj

(
z3, z2

)
.
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With these results, the additional non-selfconsistent contributions are

Σ(2),{H,0},{1,{H,0},0}
ij

(
z1, z2

)
= ±i~δC

(
z1, z2

)∑

mn

wmijn

(
z1

)
G

(1),{H,0},0
nm

(
z1, z1+

)

=
(
i~
)2
δC
(
z1, z2

)∑

mn

wmijn

(
z1

)
(111)

∫

C
dz3

∑

pq

G
(0)
np

(
z1, z3

)∑

rs

wrpqs

(
z3

)
G

(0)
sr

(
z3, z3+

)
G

(0)
qm

(
z3, z1+

)
,

as well as

Σ(2),{H,0},{1,{F,0},0}
ij

(
z1, z2

)
= ±i~δC

(
z1, z2

)∑

mn

wmijn

(
z1

)
G

(1),{F,0},0
nm

(
z1, z1+

)

= ±
(
i~
)2
δC
(
z1, z2

)∑

mn

wmijn

(
z1

)
(112)

∫

C
dz3

∑

pq

G
(0)
np

(
z1, z3

)∑

rs

wpsqr

(
z3

)
G

(0)
rs

(
z3, z3+

)
G

(0)
qm

(
z3, z1+

)

and

Σ(2),{F,0},{1,{H,0},0}
ij

(
z1, z2

)
= i~δC

(
z1, z2

)∑

mn

winjm

(
z1

)
G

(1),{H,0},0
mn

(
z1, z1+

)

= ±
(
i~
)2
δC
(
z1, z2

)∑

mn

wnimj

(
z1

)
(113)

∫

C
dz3

∑

pq

G
(0)
mp

(
z1, z3

)∑

rs

wrpqs

(
z3

)
G

(0)
sr

(
z3, z3+

)
G

(0)
qn

(
z3, z1+

)
,

as well as

Σ(2),{F,0},{1,{F,0},0}
ij

(
z1, z2

)
= i~δC

(
z1, z2

)∑

mn

winjm

(
z1

)
G

(1),{F,0},0
mn

(
z1, z1+

)

=
(
i~
)2
δC
(
z1, z2

)∑

mn

wnimj

(
z1

)
(114)

∫

C
dz3

∑

pq

G
(0)
mp

(
z1, z3

)∑

rs

wpsqr

(
z3

)
G

(0)
rs

(
z3, z3+

)
G

(0)
qn

(
z3, z1+

)
.

The corresponding components are all time-diagonal and read

Σ(2),{H,0},{1,{H,0},0},δ
ij

(
t1

)
(115)

=
(
i~
)2∑

mn

wmijn

(
t1

)(

∫ t1

t0

dt3
∑

pq

G
(0),>
np

(
t1, t3

)∑

rs

wrpqs

(
t3

)
G

(0),<
sr

(
t3, t3

)
G

(0),<
qm

(
t3, t1

)

+
∫ t0

t1

dt3
∑

pq

G
(0),<
np

(
t1, t3

)∑

rs

wrpqs

(
t3

)
G

(0),<
sr

(
t3, t3

)
G

(0),>
qm

(
t3, t1

))
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and

Σ(2),{H,0},{1,{F,0},0},δ
ij

(
t1

)
(116)

= ±
(
i~
)2∑

mn

wmijn

(
t1

)(

∫ t1

t0

dt3
∑

pq

G
(0),>
np

(
t1, t3

)∑

rs

wpsqr

(
t3

)
G

(0),<
rs

(
t3, t3

)
G

(0),<
qm

(
t3, t1

)

+
∫ t0

t1

dt3
∑

pq

G
(0),<
np

(
t1, t3

)∑

rs

wpsqr

(
t3

)
G

(0),<
rs

(
t3, t3

)
G

(0),>
qm

(
t3, t1

))
,

as well as

Σ(2),{F,0},{1,{H,0},0},δ
ij

(
t1

)
(117)

= ±
(
i~
)2∑

mn

wnimj

(
t1

)(

∫ t1

t0

dt3
∑

pq

G
(0),>
mp

(
t1, t3

)∑

rs

wrpqs

(
t3

)
G

(0),<
sr

(
t3, t3

)
G

(0),<
qn

(
t3, t1

)

+
∫ t0

t1

dt3
∑

pq

G
(0),<
mp

(
t1, t3

)∑

rs

wrpqs

(
t3

)
G

(0),<
sr

(
t3, t3

)
G

(0),>
qn

(
t3, t1

))

and

Σ(2),{F,0},{1,{F,0},0},δ
ij

(
t1

)
(118)

=
(
i~
)2∑

mn

wnimj

(
t1

)(

∫ t1

t0

dt3
∑

pq

G
(0),>
mp

(
t1, t3

)∑

rs

wpsqr

(
t3

)
G

(0),<
rs

(
t3, t3

)
G

(0),<
qn

(
t3, t1

)

+
∫ t0

t1

dt3
∑

pq

G
(0),<
mp

(
t1, t3

)∑

rs

wpsqr

(
t3

)
G

(0),<
rs

(
t3, t3

)
G

(0),>
qn

(
t3, t1

))
.

2.2. Diagonal basis

For wijkl = δilδjkwij, the non-selfconsistent selfenergy terms attain the form, cf. Eqs.
(189) and (191) of the main text,

Σ(2),(2),2,0,0,diagonal
ij

(
z1, z2

)
(119)

≡ Σ(2),2,0,diagonal
ij

(
z1, z2

)(
G → G

(0))

and

Σ(2),(2),1,0,1,diagonal
ij

(
z1, z2

)
(120)

≡ Σ(2),1,1,diagonal
ij

(
z1, z2

)(
G → G

(0))
,
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as well as

Σ(2),{H,0},{1,{H,0},0},diagonal
ij

(
z1, z2

)
(121)

=
(
i~
)2
δC
(
z1, z2

)
δij
∑

m

wmi

(
z1

)

∫

C
dz3

∑

p

G
(0)
mp

(
z1, z3

)
G

(0)
pm

(
z3, z1+

)∑

r

wrp

(
z3

)
G

(0)
rr

(
z3, z3+

)

and

Σ(2),{H,0},{1,{F,0},0},diagonal
ij

(
z1, z2

)
(122)

= ±
(
i~
)2
δC
(
z1, z2

)
δij
∑

m

wmi

(
z1

)

∫

C
dz3

∑

p

G
(0)
mp

(
z1, z3

)∑

q

wpq

(
z3

)
G

(0)
pq

(
z3, z3+

)
G

(0)
qm

(
z3, z1+

)
.

Further,

Σ(2),{F,0},{1,{H,0},0},diagonal
ij

(
z1, z2

)
(123)

= ±
(
i~
)2
δC
(
z1, z2

)
wij

(
z1

)

∫

C
dz3

∑

p

G
(0)
ip

(
z1, z3

)∑

r

wrp

(
z3

)
G

(0)
rr

(
z3, z3+

)
G

(0)
pj

(
z3, z1+

)

and

Σ(2),{F,0},{1,{F,0},0},diagonal
ij

(
z1, z2

)
(124)

=
(
i~
)2
δC
(
z1, z2

)
wij

(
z1

)

∫

C
dz3

∑

p

G
(0)
ip

(
z1, z3

)∑

q

wpq

(
z3

)
G

(0)
pq

(
z3, z3+

)
G

(0)
qj

(
z3, z1+

)
.

The components read [cf. Eqs. (191) and (192) of the main text]

Σ(2),(2),2,0,0,diagonal,≷
ij

(
t1, t2

)
≡ Σ(2),2,0,diagonal,≷

ij

(
t1, t2

)(
G → G

(0))
, (125)

Σ(2),(2),1,0,1,diagonal,≷
ij

(
t1, t2

)
≡ Σ(2),1,1,diagonal,≷

ij

(
t1, t2

)(
G → G

(0))
, (126)

as well as [cf. Eq. (115) to Eq. (119)]

Σ(2),{H,0},{1,{H,0},0},diagonal,δ
ij

(
t1

)
(127)

=
(
i~
)2
δij
∑

m

wmi

(
t1

)(

∫ t1

t0

dt3
∑

p

G
(0),>
mp

(
t1, t3

)∑

r

wrp

(
t3

)
G

(0),<
rr

(
t3, t3

)
G

(0),<
pm

(
t3, t1

)

+
∫ t0

t1

dt3
∑

p

G
(0),<
mp

(
t1, t3

)∑

r

wrp

(
t3

)
G

(0),<
rr

(
t3, t3

)
G

(0),>
pm

(
t3, t1

))
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and

Σ(2),{H,0},{1,{F,0},0},δ
ij

(
t1

)
(128)

= ±
(
i~
)2
δij
∑

m

wmi

(
t1

)(

∫ t1

t0

dt3G
(0),>
mr

(
t1, t3

)∑

rs

wrs

(
t3

)
G

(0),<
rs

(
t3, t3

)
G

(0),<
sm

(
t3, t1

)

+
∫ t0

t1

dt3G
(0),<
mr

(
t1, t3

)∑

rs

wrs

(
t3

)
G

(0),<
rs

(
t3, t3

)
G

(0),>
sm

(
t3, t1

))
.

Further,

Σ(2),{F,0},{1,{H,0},0},diagonal,δ
ij

(
t1, t2

)
(129)

= ±
(
i~
)2
wji

(
t1

)(

∫ t1

t0

dt3
∑

p

G
(0),>
ip

(
t1, t3

)∑

rs

wrp

(
t3

)
G

(0),<
rr

(
t3, t3

)
G

(0),<
pj

(
t3, t1

)

+
∫ t0

t1

dt3
∑

p

G
(0),<
ip

(
t1, t3

)∑

rs

wrp

(
t3

)
G

(0),<
rr

(
t3, t3

)
G

(0),>
pj

(
t3, t1

))

and

Σ(2),{F,0},{1,{F,0},0},δ
ij

(
t1

)
(130)

=
(
i~
)2∑

n

wji

(
t1

)(

∫ t1

t0

dt3G
(0),<
ir

(
t1, t3

)∑

rs

wrs

(
t3

)
G

(0),<
rs

(
t3, t3

)
G

(0),>
sj

(
t3, t1

)

+
∫ t0

t1

dt3G
(0),>
ir

(
t1, t3

)∑

rs

wrs

(
t3

)
G

(0),<
rs

(
t3, t3

)
G

(0),<
sj

(
t3, t1

))
.

2.3. Hubbard basis

In the Hubbard basis, the non-selfconsistent contributions attain the form

Σ(2),(2),2,0,0,Hubbard,b
iαjα

(
z1, z2

)
(131)

≡ Σ(2),2,0,Hubbard,b
iαjα

(
z1, z2

)(
G → G

(0))

and

Σ(2),(2),1,0,1,Hubbard,b
iαjα

(
z1, z2

)
(132)

≡ Σ(2),1,1,Hubbard,b
iαjα

(
z1, z2

)(
G → G

(0))
,
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as well as

Σ(2),{H,0},{1,{H,0},0},Hubbard,b
iαjα

(
z1, z2

)
(133)

=
(
i~
)2
δC
(
z1, z2

)
δij
∑

ε

U
(
z1

)

∫

C
dz3

∑

p

G
(0)
iεpε

(
z1, z3

)
G

(0)
pεiε

(
z3, z1+

)∑

ζ

U
(
z3

)
G

(0)
pζpζ

(
z3, z3+

)

and

Σ(2),{H,0},{1,{F,0},0},Hubbard,b
iαjα

(
z1, z2

)
(134)

=
(
i~
)2
δC
(
z1, z2

)
δij
∑

ε

U
(
z1

)

∫

C
dz3

∑

p

G
(0)
iεpε

(
z1, z3

)
U
(
z3

)
G

(0)
pεpε

(
z3, z3+

)
G

(0)
pεiε

(
z3, z1+

)
.

Further,

Σ(2),{F,0},{1,{H,0},0},Hubbard,b
iαjα

(
z1, z2

)
(135)

=
(
i~
)2
δC
(
z1, z2

)
δijU

(
z1

)

∫

C
dz3

∑

p

G
(0)
iαpα

(
z1, z3

)
U
(
z3

)∑

ε

G
(0)
pεpε

(
z3, z3+

)
G

(0)
pαiα

(
z3, z1+

)

and

Σ(2),{F,0},{1,{F,0},0},Hubbard,b
iαjα

(
z1, z2

)
(136)

=
(
i~
)2
δC
(
z1, z2

)
δijU

(
z1

)

∫

C
dz3

∑

p

G
(0)
iαpα

(
z1, z3

)
U
(
z1

)
G

(0)
pαpα

(
z1, z1+

)
G

(0)
pαiα

(
z3, z1+

)
,

for bosons, and

Σ(2),(2),2,0,0,Hubbard,f
iαjα

(
z1, z2

)
(137)

≡ Σ(2),2,0,Hubbard,f
iαjα

(
z1, z2

)(
G → G

(0))

and

Σ(2),(2),1,0,1,Hubbard,f
iαjα

(
z1, z2

)
(138)

≡ Σ(2),1,1,Hubbard,f
iαjα

(
z1, z2

)(
G → G

(0))
,
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as well as

Σ(2),{H,0},{1,{H,0},0},Hubbard,f
iαjα

(
z1, z2

)
(139)

=
(
i~
)2
δC
(
z1, z2

)
δij
∑

ε 6=α
U
(
z1

)

∫

C
dz3

∑

p

G
(0)
iεpε

(
z1, z3

)
G

(0)
pεiε

(
z3, z1+

)∑

ζ 6=ε
U
(
z3

)
G

(0)
pζpζ

(
z3, z3+

)
,

Σ(2),{H,0},{1,{F,0},0},Hubbard,f
iαjα

(
z1, z2

)
≡ 0 (140)

and

Σ(2),{F,0},{1,{H,0},0},Hubbard,f
iαjα

(
z1, z2

)
≡ 0 , (141)

Σ(2),{F,0},{1,{F,0},0},Hubbard,f
iαjα

(
z1, z2

)
≡ 0 , (142)

for fermions. The components read

Σ(2),(2),2,0,0,Hubbard,b,≷
iαjα

(
t1, t2

)
(143)

≡ Σ(2),2,0,Hubbard,b,≷
iαjα

(
t1, t2

)(
G → G

(0))
,

Σ(2),(2),1,0,1,Hubbard,b,≷
iαjα

(
t1, t2

)
(144)

≡ Σ(2),1,1,Hubbard,b,≷
iαjα

(
t1, t2

)(
G → G

(0))
,

Σ(2),(2),2,0,0,Hubbard,f,≷
iαjα

(
t1, t2

)
(145)

≡ Σ(2),2,0,Hubbard,f,≷
iαjα

(
t1, t2

)(
G → G

(0))
,

Σ(2),(2),1,0,1,Hubbard,f,≷
iαjα

(
t1, t2

)
(146)

≡ Σ(2),1,1,Hubbard,f,≷
iαjα

(
t1, t2

)(
G → G

(0))
,

as well as

Σ(2),{H,0},{1,{H,0},0},Hubbard,b,δ
iαjα

(
t1, t2

)
(147)

=
(
i~
)2
δij
∑

ε

U
(
t1

)(

∫ t1

t0

dt3
∑

p

G
(0),>
iεpε

(
t1, t3

)
G

(0),<
pεiε

(
t3, t1

)∑

ζ

U
(
t3

)
G

(0),<
pζpζ

(
t3, t3

)

+
∫ t0

t1

dt3
∑

p

G
(0),<
iεpε

(
t1, t3

)
G

(0),>
pεiε

(
t3, t1

)∑

ζ

U
(
t3

)
G

(0),<
pζpζ

(
t3, t3

))
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and

Σ(2),{H,0},{1,{F,0},0},Hubbard,b,δ
iαjα

(
t1, t2

)
(148)

=
(
i~
)2
δij
∑

ε

U
(
t1

)(

∫ t1

t0

dt3
∑

p

G
(0),>
iεpε

(
t1, t3

)
U
(
t3

)
G

(0),<
pεpε

(
t3, t3

)
G

(0),<
pεiα

(
t3, t1

)

+
∫ t0

t1

dt3
∑

p

G
(0),<
iεpε

(
t1, t3

)
U
(
t3

)
G

(0),<
pεpε

(
t3, t3

)
G

(0),>
pεiε

(
t3, t1

))
.

Further,

Σ(2),{F,0},{1,{H,0},0},Hubbard,b,δ
iαjα

(
t1, t2

)
(149)

=
(
i~
)2
δijU

(
z1

)(

∫ t1

t0

dt3
∑

p

G
(0),>
iαpα

(
t1, t3

)
U
(
t3

)∑

ε

G
(0),<
pεpε

(
t3, t3

)
G

(0),<
pαiα

(
t3, t1

)

+
∫ t0

t1

dt3
∑

p

G
(0),<
iαpα

(
t1, t3

)
U
(
t3

)∑

ε

G
(0),<
pεpε

(
t3, t3

)
G

(0),>
pαiα

(
t3, t1

))

and

Σ(2),{F,0},{1,{F,0},0},Hubbard,b,δ
iαjα

(
t1, t2

)
(150)

=
(
i~
)2
δijU

(
t1

)(

∫ t1

t0

dt3
∑

p

G
(0),>
iαpα

(
t1, t3

)
U
(
t3

)
G

(0),<
pαpα

(
t3, t3

)
G

(0),<
pαiα

(
t3, t1

)

+
∫ t0

t1

dt3
∑

p

G
(0),<
iαpα

(
t1, t3

)
U
(
t3

)
G

(0),<
pαpα

(
t3, t3

)
G

(0),>
pαiα

(
t3, t1

))

and

Σ(2),{H,0},{1,{H,0},0},Hubbard,f,δ
iαjα

(
t1, t2

)
(151)

=
(
i~
)2
δij
∑

ε6=α
U
(
t1

)(

∫ t1

t0

dt3
∑

p

G
(0),>
iεpε

(
t1, t3

)
G

(0),<
pεiε

(
t3, t1

)∑

ζ 6=ε
U
(
t3

)
G

(0),<
pζpζ

(
t3, t3

)

+
∫ t0

t1

dt3
∑

p

G
(0),<
iεpε

(
t1, t3

)
G

(0),>
pεiε

(
t3, t1

)∑

ζ 6=ε
U
(
t3

)
G

(0),<
pζpζ

(
t3, t3

))
.
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2.4. Spin-0 bosons/spin-1/2 fermions

For the specific bosonic and fermionic cases, one has

Σ(2),(2),2,0,0,Hubbard,b,0
ij

(
z1, z2

)
(152)

≡ Σ(2),2,0,Hubbard,b,0
ij

(
z1, z2

)(
G → G

(0))

and

Σ(2),(2),1,0,1,Hubbard,b,0
ij

(
z1, z2

)
(153)

≡ Σ(2),1,1,Hubbard,b,0
ij

(
z1, z2

)(
G → G

(0))
,

as well as

Σ(2),{H,0},{1,{H,0},0},Hubbard,b,0
ij

(
z1, z2

)
(154)

= Σ(2),{H,0},{1,{F,0},0},Hubbard,b,0
ij

(
z1, z2

)

= Σ(2),{F,0},{1,{H,0},0},Hubbard,b,0
ij

(
z1, z2

)

= Σ(2),{F,0},{1,{F,0},0},Hubbard,b,0
ij

(
z1, z2

)

=
(
i~
)2
δC
(
z1, z2

)
δijU

(
z1

)

∫

C
dz3

∑

p

G
(0)
ip

(
z1, z3

)
G

(0)
pi

(
z3, z1+

)
U
(
z3

)
G

(0)
pp

(
z3, z3+

)
,

for spin-0 bosons, and

Σ(2),(2),2,0,0,Hubbard,f,1/2
iαjα

(
z1, z2

)
(155)

≡ Σ(2),2,0,Hubbard,f,1/2
iαjα

(
z1, z2

)(
G → G

(0))

and

Σ(2),(2),1,0,1,Hubbard,f,1/2
iαjα

(
z1, z2

)
(156)

≡ Σ(2),1,1,Hubbard,f,1/2
iαjα

(
z1, z2

)(
G → G

(0))
,

as well as

Σ(2),{H,0},{1,{H,0},0},Hubbard,f,1/2
i↑j↑

(
z1, z2

)
(157)

=
(
i~
)2
δC
(
z1, z2

)
δijU

(
z1

)

∫

C
dz3

∑

p

G
(0)
i↓p↓

(
z1, z3

)
G

(0)
p↓i↓

(
z3, z1+

)
U
(
z3

)
G

(0)
p↑p↑

(
z3, z3+

)
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and

Σ(2),{H,0},{1,{H,0},0},Hubbard,f,1/2
i↓j↓

(
z1, z2

)
(158)

=
(
i~
)2
δC
(
z1, z2

)
δijU

(
z1

)

∫

C
dz3

∑

p

G
(0)
i↑p↑

(
z1, z3

)
G

(0)
p↑i↑

(
z3, z1+

)
U
(
z3

)
G

(0)
p↓p↓

(
z3, z3+

)
,

for spin-1/2 fermions. The corresponding components read

Σ(2),(2),2,0,0,Hubbard,b,0,≷
ij

(
t1, t2

)
(159)

≡ Σ(2),2,0,Hubbard,b,0,≷
ij

(
t1, t2

)(
G → G

(0))
,

Σ(2),(2),1,0,1,Hubbard,b,0,≷
ij

(
t1, t2

)
(160)

≡ Σ(2),1,1,Hubbard,b,0,≷
ij

(
t1, t2

)(
G → G

(0))
,

Σ(2),(2),2,0,0,Hubbard,f,1/2,≷
iαjα

(
t1, t2

)
(161)

≡ Σ(2),2,0,Hubbard,f,1/2,≷
iαjα

(
t1, t2

)(
G → G

(0))
,

Σ(2),(2),1,0,1,Hubbard,f,1/2,≷
iαjα

(
t1, t2

)
(162)

≡ Σ(2),1,1,Hubbard,f,1/2,≷
iαjα

(
t1, t2

)(
G → G

(0))
,

as well as

Σ(2),{H,0},{1,{H,0},0},Hubbard,b,0,δ
ij

(
t1, t2

)
(163)

= Σ(2),{H,0},{1,{F,0},0},Hubbard,b,0,δ
ij

(
t1, t2

)

= Σ(2),{F,0},{1,{H,0},0},Hubbard,b,0,δ
ij

(
t1, t2

)

= Σ(2),{F,0},{1,{F,0},0},Hubbard,b,0,δ
ij

(
t1, t2

)

=
(
i~
)2
δijU

(
t1

)(

∫ t1

t0

dt3
∑

p

G
(0),>
ip

(
t1, t3

)
G

(0),<
pi

(
t3, t1

)
U
(
t3

)
G

(0),<
pp

(
t3, t3

)

+
∫ t0

t1

dt3
∑

p

G
(0),<
ip

(
t1, t3

)
G

(0),>
pi

(
t3, t1

)
U
(
t3

)
G

(0),<
pp

(
t3, t3

))
,
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for spin-0 bosons, and

Σ(2),{H,0},{1,{H,0},0},Hubbard,f,1/2,δ
i↑j↑

(
t1, t2

)
(164)

=
(
i~
)2
δijU

(
t1

)(

∫ t1

t0

dt3
∑

p

G
(0),>
i↓p↓

(
t1, t3

)
G

(0),<
p↓i↓

(
t3, t1

)
U
(
t3

)
G

(0),<
p↑p↑

(
t3, t3

)

+
∫ t0

t1

dt3
∑

p

G
(0),<
i↓p↓

(
t1, t3

)
G

(0),>
p↓i↓

(
t3, t1

)
U
(
t3

)
G

(0),<
p↑p↑

(
t3, t3

))
,

as well as

Σ(2),{H,0},{1,{H,0},0},Hubbard,f,1/2,δ
i↓j↓

(
t1, t2

)
(165)

=
(
i~
)2
δijU

(
t1

)(

∫ t1

t0

dt3
∑

p

G
(0),>
i↑p↑

(
t1, t3

)
G

(0),<
p↑i↑

(
t3, t1

)
U
(
t3

)
G

(0),<
p↓p↓

(
t3, t3

)

+
∫ t0

t1

dt3
∑

p

G
(0),<
i↑p↑

(
t1, t3

)
G

(0),>
p↑i↑

(
t3, t1

)
U
(
t3

)
G

(0),<
p↓p↓

(
t3, t3

))
,

for spin-1/2 fermions.
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2.1.3 Representations of the Interaction Tensor

Despite of all care and diligence, there are occasionally ambiguous definitions circulating

within the NEGF community and, to some degree, also in the publications of this thesis.

This section is used to clarify such ambiguities regarding the pair-interaction tensor.

2.1.3.1 The General Single-Particle Basis

As the alert reader certainly noticed, Refs. [122] and [79] make use of different formulations

of the general second-quantization Hamiltonian. Given the canonical creation
(
ĉ†i
)

and

annihilation
(
ĉi
)

operators (in a general, orthonormal single-particle basis), which obey

the following (anti-)commutation relations,3

[
ĉ†i , ĉ

†
j

]
∓ = 0 ,

[
ĉi, ĉj

]
∓ = 0 ,

[
ĉi, ĉ

†
j

]
∓ = δij , (2.1)

the Hamiltonian (time dependence and single-particle excitations are neglected)

Ĥ =
∑

ij

hij ĉ
†
i ĉj +

1

2

∑

ijkl

wijklĉ
†
i ĉ
†
j ĉlĉk , (2.2)

is used in Eqs. (23)–(24) of Ref. [122] to describe a system of interacting identical particles.

Here, hij is the ideal single-particle Hamiltonian and wijkl is the matrix element of the

two-particle interaction. In contrast, in Eq. (16) of Ref. [79] the Hamiltonian

Ĥ =
∑

ij

hij ĉ
†
i ĉj +

1

2

∑

ijkl

wijklĉ
†
i ĉ
†
j ĉkĉl (2.3)

is used (the fontstyle of the interaction matrix is altered to disambiguate the definitions).

Note that the last two annihilation operators in Eq. (2.3) are interchanged, compared to

Eq. (2.2). Indeed, both Hamiltonians incorporate different definitions for the interaction

matrix. To demonstrate this, first, the position–spin x is introduced that comprises the

position r and the spin σ as |x〉 = |rσ〉. With the single-particle basis functions |i〉 = |ϕi〉,
the standard way to define the two-particle interaction tensor is given by

wijkl :=

∫
dxdx′ ϕ∗i (x)ϕ∗j(x

′)v(x,x′)ϕk(x)ϕl(x
′) , (2.4)

which can be found in many text books (see, e.g., Refs. [219–222]) and is also used in

Eq. (2.2) and Ref. [122], respectively. The most common choice of the two-body interaction

potential v(x,x′) is the Coulomb potential vC(x,x′) ∝ |r − r′|−1. For this case, Eq. (2.4) is

referred to as Coulomb integral or two-electron integral if electrons are described. Recently,

it has become increasingly popular within the NEGF community to use—opposed to

3Here and below, the ∓ sign refers to bosons/fermions.
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the standard definition—the following modified two-particle interaction matrix (see, e.g.,

Refs. [23, 108, 223, 224]):

wijkl :=

∫
dxdx′ ϕ∗i (x)ϕ∗j(x

′)v(x,x′)ϕk(x
′)ϕl(x) = wijlk , (2.5)

to allow for the more intuitively structured Hamiltonian of Eq. (2.3). The interaction

matrix in the general basis is a central quantity of Ref. [79]. In order to achieve the

highest possible impact the definition of Eq. (2.5) has been applied to conform to the

aforementioned emerging trend.4

It should be mentioned that, by using the (anti-)commutator property of Eq. (2.1)

for the annihilation operators, the Hamiltonian of Eq. (2.2) can be transformed to

Ĥ =
∑

ij

hij ĉ
†
i ĉj ±

1

2

∑

ijkl

wijklĉ
†
i ĉ
†
j ĉkĉl , (2.6)

which, compared to Eq. (2.3), could suggest the equality between ±wijkl and wijkl. The

equality holds, yet, only for the terms in the Hamiltonians and not the interaction matrix

itself. It implies, however, that ±wijkl and wijkl lead to the same interaction energy, which

hints towards an (anti-)symmetrized usage of the interaction matrix in the exact solution

or consistent approximations.

It is an important implication of the two definitions (2.4) and (2.5), that the typical

diagonal representation of the interaction matrix within the same single-particle basis is

found in different ways. While the second-order tensor for w is reached via wijkl = δikδjlwij ,

the differing definition of w leads to wijkl = δilδjkwij . Therefore, it is of crucial importance

to keep track of the respective interaction choice when handling the NEGF equations or

any second-quantization framework in general.

2.1.3.2 The Fermi-Hubbard Basis

Unrelated to the discussion above, there are two common ways to define the Hubbard

interaction for electronic systems. Based on the general, non-diagonal interaction matrix,

both definitions can be formulated as (lattices-site positions, ijkl, and spin indices, αβγδ,

4The above-mentioned difference between the definitions of the interaction matrix must not be confused

with the difference between the “physicist’s notation”,

〈ij|kl〉 :=

∫
dxdx′ ϕ∗i (x)ϕ∗j (x

′)vC(x,x′)ϕk(x)ϕl(x
′) = wijkl ,

and the “chemist’s (or Mulliken) notation”,

[ij|kl] :=

∫
dxdx′ ϕ∗i (x)ϕj(x)vC(x,x′)ϕ∗k(x′)ϕl(x

′) = wikjl ,

for the Coulomb integral that are widely used in quantum chemistry (see, e.g., Ref. [222]).
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are explicitly specified; time dependence is omitted)5

wαβγδijkl = UδikδjlδijδαγδβδPαβ , (2.7)

where U is the on-site Hubbard interaction. The two treatments differ in the question

whether or not explicit Pauli blocking is applied. If so, P is set to Pαβ = 1− δαβ and

accounts for the fact that no electrons of the same spin can occupy the same lattice

site; if not, P is set to Pαβ = 1. These treatments are sometimes called spin dependent

(Pαβ = 1− δαβ) and spin independent (Pαβ = 1) (see, e.g., Ref. [109]). In the following, it

is demonstrated that both choices for P lead to the same interaction part Ŵ and, thus,

to the same (Fermi-)Hubbard Hamiltonian. Starting from the general form in second

quantization [cf. Eq. (2.2)] and inserting the definition of Eq. (2.7) leads to:

Ŵ =
1

2

∑

ijkl
αβγδ

wαβγδijkl ĉ
†
i,αĉ
†
j,β ĉl,δ ĉk,γ =

1

2

∑

ijkl
αβγδ

(UδikδjlδijδαγδβδPαβ) ĉ†i,αĉ
†
j,β ĉl,δ ĉk,γ

=
1

2
U
∑

i,αβ

Pαβ ĉ†i,αĉ†i,β ĉi,β ĉi,α . (2.8)

For the case of explicit Pauli blocking (Pαβ = 1− δαβ) Eq. (2.8) is further transformed

to

Ŵ =
1

2
U
∑

i,α 6=β
ĉ†i,αĉ

†
i,β ĉi,β ĉi,α

=
1

2
U
∑

i,α 6=β
ĉ†i,αĉi,αĉ

†
i,β ĉi,β =

1

2
U
∑

i,α 6=β
n̂αi n̂

β
i , (2.9)

where the anticommutation relations for the canonical operators [see Eq. (2.1)] and the

occupation-number operator n̂αi := ĉ†i,αĉi,α have been used in the last line. Inserting the

explicit electronic spin σ ∈ {↑, ↓} leads to

Ŵ =
1

2
U
∑

i

(
n̂↑i n̂

↓
i + n̂↓i n̂

↑
i

)
= U

∑

i

n̂↑i n̂
↓
i , (2.10)

which is the widely used standard form that appears in the Hubbard Hamiltonian (see,

e.g., Refs. [79, 122]). Going back to Eq. (2.8), the spin-independent treatment is carried

out by inserting Pαβ = 1. In this case, the anticommutation relations of Eq. (2.1) lead to

additional terms:

Ŵ =
1

2
U
∑

i,αβ

ĉ†i,αĉ
†
i,β ĉi,β ĉi,α =

1

2
U
∑

i,αβ

(
ĉ†i,αĉi,αĉ

†
i,β ĉi,β − δαβ ĉ†i,αĉi,β

)

=
1

2
U
∑

i,αβ

(
n̂αi n̂

β
i − δαβn̂αi

)
. (2.11)

5Here, the standard interaction matrix is applied [cf. Eq. (2.4)]. For the modified definition [cf. Eq. (2.5)],

the Hubbard interaction is found via

wαβγδijkl = UδilδjkδijδαδδβγPαβ .
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For an electronic system one finds

Ŵ =
1

2
U
∑

i

(
n̂↑i n̂

↑
i + n̂↑i n̂

↓
i + n̂↓i n̂

↑
i + n̂↓i n̂

↓
i − n̂↑i − n̂↓i

)
, (2.12)

which—due to the idempotence of the occupation-number operator
(
n̂σi n̂

σ
i = n̂σi

)
—is easily

transformed to

Ŵ =
1

2
U
∑

i

(
n̂↑i n̂

↓
i + n̂↓i n̂

↑
i

)
= U

∑

i

n̂↑i n̂
↓
i , (2.13)

again and recovers Eq. (2.10).

Having found that the Hubbard Hamiltonian is independent of the choice of P , it is

obvious that the exact solution for any Hubbard system does not depend on P as well.

The picture is different, however, for certain many-body approximations. In NEGF theory,

it has been reported, e.g., for the GW selfenergy, that both treatments lead to different

results [109]. To decide whether or not an approximation is affected by P , it is expedient

to consider the (anti-)symmetrized interaction matrix in a general one-particle basis (see,

e.g., Refs. [79, 122]),

w±ijkl := wijkl ± wijlk , (2.14)

and its equivalent in the (Fermi-)Hubbard basis,

w−,αβγδijkl = Uδikδjlδij (δαγδβδPαβ − δαδδβγPαβ) . (2.15)

For α 6= β, either choice of P results in Pαβ = 1, by construction, whereas for α = β, the

expression in parentheses in Eq. (2.15) vanishes in either case. Hence, the antisymmetrized

interaction matrix

w−,αβγδijkl = Uδikδjlδij (δαγδβδ − δαδδβγ) (2.16)

is unaffected by the choice of P. This implies that every selfenergy approximation that

can be constructed in terms of w± in a general single-particle basis remains unchanged.

This is, e.g., the case for all order-truncated approximations, such as HF, SOA, and TOA,

but not for the GW approximation, which confirms the result of Ref. [109].

2.1.4 Conserving Approximations and the Φ Functional

While Ref. [79] discusses many aspects of the selfenergy and covers a variety of different

approximations, it is, nevertheless, instructive to place special emphasis on another

characteristic of selfenergy approximations: the satisfaction of physical conservation

laws. As this is a fundamental property of major importance, it is unsurprising that

conserving schemes are frequently used as a starting point for derivations of many-body

approximations [23, 103, 225–228]. It is a remarkable feature of the selfenergy and the single-

particle Green function that the important conservation laws for density, momentum,
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angular momentum, and total energy can be matched to a universal form.6 In 1962,

Baym [225] demonstrated a close connection between the conservation laws and the so-

called Φ functional which is related to the works of Luttinger and Ward [229]. In the

language of many-body theory, the Φ functional is constructed by using only skeletonic

vacuum diagrams, i.e. scattering diagrams that are fully connected and not representable

through resummation procedures of smaller units. As Φ contains the condensed scattering

information encapsulated in a specific integrated connectivity structure, one is tempted to

quote from Ref. [230]: “Φ (...) is a unique shape made of integrated information—a shape

that is maximally irreducible—the shape of understanding”.7 The striking benefit of Φ

becomes apparent in the fact that the selfenergy satisfies all above conservation laws if

it fulfills a single, condensed condition—Φ derivability; the selfenergy has to be educible

as the functional derivative of Φ with respect to the single-particle Green function G.

While, in principle, the way to construct conserving approximation within NEGF theory

is well-known, it becomes increasingly complex when higher-order approximations are

addressed. For some of these approximations, particularly the TOA and the TPH, the

concept of Φ derivability has, to the knowledge of the author, not been discussed in detail

before. This shortcoming is rectified in Sec. 2.1.4.1 for the case of the TOA selfenergy,

and in Sec. 2.1.4.2 for the TPH approximation, where also other resummation approaches

are discussed. In particular, the latter case has important implications for the general

applicability.

2.1.4.1 Third-Order Selfenergy

As discussed before, the great value of the graphical Feynman-diagram technique is the

unique convertibility back to mathematical expressions while being intuitively accessible.

To reduce complexity and increase the comprehensibility, the discussion of different Φ

functionals and their respective derivatives is, thus, only given diagrammatically. There are

six distinct skeletonic vacuum diagrams that are of third order in the interaction (cf., e.g.,

Ref. [234]), which are illustrated in Fig. 2.1 in the parentheses. The functional derivative

with respect to the single-particle Green function has a one-to-one correspondence to the

Feynman-diagram technique, as it corresponds to a cut through one Green-function line,

leaving the corresponding (previously connected) vertices as external indices. If the initial

quantity consists of multiple Green functions, the product rule results in the sum of several

diagrams, each one cut at a different respective G. Fig. 2.1 shows how the third-order

contributions of the Φ functional generate the ten third-order selfenergy diagrams by

functional derivative. As one can see, the high symmetry of the first four Φ diagrams

leads to six congruent selfenergy terms each (note the prefactors of the Φ terms). This

6The interested reader is referred to Ref. [23] which contains a comprehensible, well-written introduction

to the Φ functional and its properties.
7Apparently, the author has used an out-of-context quote from integrated-information theory (IIT)—a

research field of neuroscience—to point at the strong analogy in this context. In IIT, Φ is used as

the symbol for integrated information, which is assumed to be both, foundation and manifestation of

consciousness [231–233].
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Figure 2.1 – Third-order Φ diagrams (in parentheses) and their corresponding selfenergy

terms, which result from removing a single Green-function line from the Φ diagrams.

Prefactors are given explicitly.

implies that every selfenergy diagram in the first two rows can be used individually in

conserving approximations, as it is Φ derivable on its own. In contrast, the remaining

two third-order Φ terms break into inhomogeneous parts (cf. the two bottom rows of

Fig. 2.1). As a consequence, the resulting groups of three selfenergy diagrams have to be

included collectively to be Φ compensated and to ensure a conserving approach. The TOA

scheme, which is described in Ref. [79], consists of all ten third-order selfenergy diagrams

and, therefore, is Φ compensated by construction. The partial inclusion of diagrams,

however, is expected to cause conservation problems since any incomplete subset of the

Φ-compensated diagram groups is not Φ derivable.

The interdependence of the selfenergy contributions can be made explicit by using an

additional property, which is equivalent to Φ derivability. If the Φ functional is cut not

only once but at two different G lines, this generates the two-particle kernel K, which is,

thus, the functional derivative of the selfenergy [23],

Kijkl(z1, z2, z3, z4) = ± Φ

δGki(z3, z1)δGlj(z4, z2)
= ±δΣik (z1, z3)

δGlj (z4, z2)
. (2.17)

It is a direct consequence following from the symmetry of the two-particle Green function

G
(2)
ijkl (z1, z2, z3, z4) = G

(2)
jilk (z2, z1, z4, z3) that the kernel has to obey [23]

Kijkl(z1, z2, z3, z4) = Kjilk(z2, z1, z4, z3), (2.18)

which leads to the following symmetry:

δΣik (z1, z3)

δGlj (z4, z2)
=
δΣjl (z2, z4)

δGki (z3, z1)
. (2.19)



2.1 Advances in NEGF Theory 229

δ

δG

  →

δ

δG

  →

δ

δG

  →

δ
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Figure 2.2 – Φ-derivable third-order selfenergy diagrams and their corresponding two-

particle-kernel terms. Black frames indicate the kernel-diagram pairs that transition

into each other under 180◦ rotation and, thus, obey Eq. (2.19). Individually framed

kernel diagrams are rotational invariant on their own. Prefactors are omitted for better

readability.

In the language of the Feynman-diagram technique, Eq. (2.19) has a very simple translation;

if Σ is a conserving (Φ-derivable) approximation the respective kernel diagrams δΣ
δG

have

to be invariant under rotation by an angle of 180◦.
For the first four third-order selfenergy diagrams of Fig. 2.1, the corresponding kernel

diagrams are illustrated in Fig. 2.2. As expected, the symmetry of Eq. (2.19) holds for

each selfenergy term, separately. While the rotation by 180◦ leaves some kernel diagrams

unchanged (individually framed), there are other ones that form symmetric pairs, in which

the diagrams transition into each other (framed pairs).

The behavior is different for the Φ-compensated selfenergy diagram groups of

Fig. 2.1. The two-particle-kernel diagrams that correspond to the respective third-order

selfenergy group without a Green-function loop are illustrated in Fig. 2.3. Some of the

kernel terms (black frame) directly obey Eq. (2.19) on their own. For all other kernel

contributions the mirrored diagram pairs are distributed across multiple lines: the second

line compensates contributions of the first line (red, blue), as well as the third line (yellow,

pink), whereas the third line compensates terms of the first line (lightblue, green). Thus,

to form a conserving approximation, all three selfenergy diagrams have to be included

collectively which agrees with the previous result in the context of Φ derivability (cf.

Fig. 2.1).
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δ
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  →

δ

δG

  →

δ

δG

  →

Figure 2.3 – Φ-compensated third-order selfenergy diagram group without Green-function

loop, and their corresponding two-particle-kernel terms. Kernel diagrams framed in

black remain unchanged under 180◦ rotation. Diagrams with the same color transition

into each other when flipped. Prefactors are omitted for better readability.

A similar picture is found for the Φ-compensated, third-order selfenergy diagram

group with one Green-function loop (cf. the third line of Fig. 2.1). The respective two-

particle-kernel diagrams are shown in Fig. 2.4. Again, Eq. (2.19) is only fulfilled if all

three selfenergy diagrams are combined. Here, the first line couples to the second line via

the red and lightblue terms, and to the third line via the green and blue contributions.

The second and third line are interconnected through the yellow and pink diagrams.

The above discussion for the third-order selfenergy diagrams points towards problems

for some of the resummation approximations presented in Ref. [79], as the TOA already

contains their respective third-order terms. The property of Φ derivability for these

approximations is addressed in the following section.

2.1.4.2 Resummation Selfenergies and the Case of TPH

For the long-established TPP and GW approximations, the corresponding Φ functionals

are well known and can be found, e.g., in Ref. [23]. The nth-order Φ diagrams for GW

(first line) and the particle–particle ladder (second and third line) are repeated in Fig. 2.5

together with their respective selfenergy diagrams that follow from the functional derivative

with respect to G. It is worth mentioning that the T matrix, which consists of a direct and

an exchange term, leads to two separate Φ diagrams. In this case, both nth-order selfenergy

diagrams of the resummation series are Φ derivable on their own. This is a consequence

following from the high symmetry of the corresponding Φ diagrams that—being cut at

any Green-function line—produce only a single type of selfenergy diagram.

For the TPH approximation, however, this behavior is only found for the direct
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δ
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Figure 2.4 – Φ-compensated third-order selfenergy diagram group with one Green-

function loop, and their corresponding two-particle-kernel terms. Kernel diagrams

framed in black remain unchanged under 180◦ rotation. Diagrams with the same color

transition into each other when flipped. Prefactors are omitted for better readability.

terms of the T matrix and their respective Φ. The nth-order Φ diagram and the resulting

selfenergy contribution is presented in the fourth line of Fig. 2.5. As one can see, it

differs from the direct TPP counterpart only by the direction of one Green-function loop.

The exchange terms of the TPH approximation (cf. Ref. [79]) are—when considered

isolated—not Φ derivable. The nth-order selfenergy diagram that corresponds to the TPH

exchange series, follows, instead, from a Φ diagram that gives rise to various other selfenergy

contributions that are not considered within the approximation. This is illustrated in

Fig. 2.6. Here, the first (TPH-representable) selfenergy diagram is accompanied by its

mirrored counterpart, as well as several other contributions that balance the interaction

lines between the two sides.

One has to conclude that the TPH approximation in the way presented in Ref. [79]

is not Φ compensated and, thus, violates physical conservation laws for a general single-

particle basis. Hence, it is advisable to reduce all uses of the approximation to the direct,

Φ-derivable terms. It is presumably an interesting topic of future research to combine

all selfenergy terms of Fig. 2.6 into a generalized, conserving particle–hole T matrix.

Furthermore, it should be noted that for the Hubbard basis the exchange terms of the TPH

approximation vanish [79]. Thus, all produced TPH results for the Hubbard model within

the publications of this thesis are not affected by conservation issues and remain valid.

Finally, it should be mentioned that an analogous consideration for the potential exchange

terms of the GW series leads to similar results (not shown in detail). The inclusion of

exchange diagrams within an NEGF scheme with GW approximation is, therefore, not

recommended. The same holds true for the FLEX selfenergy, which is a combination of the

TPP, TPH and GWA schemes (cf. Ref. [79]). To summarize the results of this section, an

overview of conserving approximations within the NEGF framework is shown in Tab. 2.1.
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Figure 2.5 – Illustration of the nth-order Φ diagrams of the GW , TPP and the (direct)

TPH approximation, as well as their corresponding selfenergy diagrams. Dotted lines

indicate structural continuation until n occurrences of the interaction are reached. The

prefactors are given explicitly.
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n−2∑
m=1

m× w (n-m-1)
×w

Figure 2.6 – Illustration of the nth-order Φ diagram that gives rise to the TPH exchange

selfenergy contributions. Dotted lines indicate structural continuation until n occur-

rences of the interaction are reached. In the last selfenergy diagram the number of

interaction lines is explicitly specified. The prefactors are given explicitly.
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Φ compensated Φ incomplete

HF TPH + exchange

SOA GWA + exchange

TOA FLEX + exchange

TPP direct

TPP + exchange

TPH direct

GWA direct

FLEX direct

Table 2.1 – Overview of conserving and unbalanced approximations. As in the main

text, “Φ compensated” refers to Φ-derivable, conserving approximations that contain all

selfenergy diagrams that originate from a specific choice of the Φ functional. In contrast,

“Φ incomplete” refers to approximations that include at least one unbalanced subset of a

Φ-derivable selfenergy-diagram group and, thus, violate physical conservation laws.
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2.2 Ion Stopping in Correlated Materials: A

Green-Functions Perspective

The conference proceedings following the 2018 meeting “Progress in Nonequilibrium Green’s

Functions VII” (PNGF VII) in Frascati, Italy contain a variety of interesting works on

several topics, including theoretical developments for the Dyson equation [235, 236], the

GKBA [207, 237, 238], and the NEGF method in general [239, 240], as well as experi-

mentally relevant applications for magnetic skyrmions [241], graphene nanoribbons [216]

(see Sec. 5.1), quantum-well photovoltaics [242], and ion-impact processes on solids [207]

(see Sec. 4.3). Especially the last topic is of high interest as ion-impact scenarios play an

important role, e.g., in ion sputtering on surfaces [243] and, in particular, as measuring the

kinetic-energy loss of the ions can be used as a diagnostic tool for electronic structures [244].

From a theoretical point of view, the description of ion-stopping situations is particularly

challenging as it requires to properly treat the intriguingly intricate interplay between

nonequilibrium processes and correlations. This obstacle can be overcome by using the

NEGF method. Since the author’s group has significantly advanced the corresponding

theoretical foundations [41, 214, 215] (see Sec. 4.3) it was possible to review the NEGF ap-

proach for ion-impact scenarios as a whole and provide a roadmap for future adaptions and

theoretical developments. As a feature article8 within the above-mentioned proceedings,

the following Ref. [207], is a topical review that discusses NEGF theory and applications,

developments of the GKBA, and, most notably, the simulation of ion-impact processes

on solid surfaces. In addition, Ref. [207] contains original content in the form of further

results and theoretical advancements.

Following a short introduction, Ref. [207] starts with the description of a simple

but expedient model to describe the dynamics of charged-particle impacts on a surface

(Sec. 2 of Ref. [207]). It is based on the versatile Hubbard model [204], which has been

used to explain a large number of interesting effects in condensed matter, including band

magnetism, the Mott metal–insulator transition, and superconductivity [245]. This de-

scription of Hubbard-type lattice models is combined with a classically treated ion, which

interacts with the (quantum) lattice electrons. The subsequent section (Sec. 3 of Ref. [207])

gives a brief recapitulation of the central NEGF equations, discusses different selfenergy

approximations, and focuses particularly on the GKBA. Here, benchmark results against

DMRG calculations (see Sec. 4.1) are shown, the use of correlated propagators is addressed,

and the proper treatment of initial correlations, giving rise to the possibility of restarting

from a previously generated system state, is described. Coming back to the application of

ion stopping, or, more precisely, ion deceleration on surfaces, the next section (Sec. 4 of

Ref. [207]) reviews results of energy-loss calculations on finite, hexagonal quantum dots,

where electronic correlations emerge as a red-shifted, reduced stopping-power maximum.

In Ref. [41], it was shown that the exposure of 2D lattice systems with incident charged

particles can be an efficient mechanism to induce electronic double occupation in the lattice.

8M. Bonitz, K. Balzer, N. Schlünzen, M. Rodriguez Rasmussen, and J.-P. Joost, Phys. Status Solidi B,

256, 1800490 (2019). Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.

https://doi.org/10.1002/pssb.201800490
https://doi.org/10.1002/pssb.201800490
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This novel connection is demonstrated and elaborated in the next part of Ref. [207] and

an analytical model based on a Landau–Zener approach is used to explain the increased

doublon number. Additionally, the effect of multiple successive ion impacts is analyzed for

the local double occupation which shows a correlation-spreading velocity, and the spectral

function where an increased excitation to the upper Hubbard band is observed. Finally, a

generalized approach to include charge-transfer processes is presented (Sec. 5 of Ref. [207],

see also Refs. [246, 247]) which is based on an embedding-selfenergy scheme. As part of

this, first numerical test calculations are shown.



Ion Impact Induced Ultrafast Electron Dynamics
in Finite Graphene-Type Hubbard Clusters

Michael Bonitz,* Karsten Balzer, Niclas Schlünzen,
Maximilian Rodriguez Rasmussen, and Jan-Philip Joost

Strongly correlated systems of fermions have an interesting phase diagram
arising from the Hubbard gap. Excitation across the gap leads to the
formation of doubly occupied lattice sites (doublons) which offers interesting
electronic and optical properties. Moreover, when the system is driven out of
equilibrium interesting collective dynamics may arise that are related to the
spatial propagation of doublons. Here, a novel mechanism that was recently
proposed by the authors [Balzer et al., Phys. Rev. Lett. 121, 267602 (2018)] is
verified by exact diagonalization and nonequilibrium Green functions (NEGF)
simulations – fermionic doublon creation by the impact of energetic ions.
The formation of a nonequilibrium steady state with homogeneous doublon
distribution is reported. The effect should be particularly important for
correlated finite systems, such as graphene nanoribbons, and directly
observable with fermionic atoms in optical lattices. It is demonstrated that
doublon formation and propagation in correlated lattice systems can be
accurately simulated with NEGF. In addition to two-time results, single-time
results within the generalized Kadanoff–Baym ansatz (GKBA) with Hartree–
Fock propagators (HF-GKBA) is presented. Finally systematic improvements
of the GKBA that use correlated propagators (correlated GKBA) and a
correlated initial state are discussed.

1. Introduction

The interaction of energetic charged particles with solid
bodies is a phenomenon common to hot gases, plasmas, as
well as astrophysical systems, including the solar wind and
cosmic rays. When charged particles hit a solid surface, they
deposit energy and momentum and may cause substantial
surface modification the details of which strongly depend on
the particle energy and the material properties. In low-

temperature plasma physics, this process
is routinely used to clean surfaces from
adsorbates or modify them via sputtering,
for example ref. [1] or as a source of
secondary electrons.[2] On the other hand,
ions impacting a solid can be used as a
diagnostic tool of the electronic structure
of the material by measuring the energy
loss (or stopping power or stopping range)
as a function of impact energy.[3]

From the theory side, the interaction of
ions with a solid surface has been studied
with a variety of approaches including
scattering theory[4] or uniform electron
gas models.[5] More recently, ab initio
simulations of ion stopping based on
time-dependent density functional theory
(TDDFT) became available for metals,[6]

semimetals,[7] or boron nitride and gra-
phene sheets[8] and other materials.
These simulations account primarily for
valence electron excitation. Good results
for the stopping power of high energy
ions in matter are also provided by the
SRIM code[9] that uses the binary colli-
sion approximation in combination with
an averaging over a large range of

experimental situations. Thus presently two main questions
remain open: i) how does the stopping power change in
correlated materials and what is the effect of the correlation
strength? ii) How does the stopping power change when the
system size is reduced or the geometry of the target is altered?
And what is the role of electronic correlations in finite
systems?

The motivation for these questions is fueled by the recent
progress in nanostructured materials, clusters or finite nano-
size systems. A particularly exciting example are finite
honeycomb clusters or graphene nanoribbons (GNR). GNR
hold the promise that they overcome the limitations of
graphene arising from its semimetallic character. In contrast,
GNR have been shown to have a finite bandgap EG(L) arising
from the quantum confinement.[10,11] Over a broad range of
system widths L, the band gap increases nearly proportional
with L�1.[12] Typical values for the bandgap are found to be
EG � 2:5eV according to tight-binding and DFTcalculations.[13]

Taking into account quasiparticle corrections results in a
significantly larger gap of EG � 5:5eV.[10] In electronic
structure measurements for GNRs on substrates bandgaps
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of EG � 2:4� 3:5eV were found.[14–16] The finite band gap
makes the material semiconducting which is crucial for
applications in electronics and optics. Recent progress in
synthetization methods of GNR,[17–19] has drastically increased
the number of exciting experiments over the past few years.
[20–23] Therefore, an accurate theoretical description of these
systems in nonequilibrium and especially of their time-resolved
correlation effects is needed.

However, finite graphene nanostructures, especially when
driven out of equilibrium, are extremely complex, inhomoge-
neous systems that put high requirements on theory. The two-
dimensional geometry of the graphene honeycomb lattice has
to be modeled, and the correlated nonequilibrium dynamics
of the system have to be accurately described for up to several
femtoseconds within a reasonable amount of computing time.
Due to the limitations of time-dependent density functional
theory to weakly correlated systems and the difficulties of
density matrix renormalization group (DMRG) approaches to
treat two-dimensional systems, nonequilibrium Green func-
tions (NEGF) have emerged as the first choice to provide such
a description. This method has recently been shown to
accurately describe the dynamics of finite strongly correlated
lattice systems, for example, refs. [24–26] where both two-time
simulations and single-time dynamics within the generalized
Kadanoff–Baym ansatz (GKBA[27]) were presented.[28] Fur-
thermore, in our recent work,[29,30] we have shown that the
NEGF approach is well capable to treat the correlated electron
dynamics in lattice systems that is initiated by the impact of
charged projectiles and, thus, is able to answer questions i)
and ii) that were raised above.

The goal of this article is to present recent results on NEGF
simulations of finite correlated lattice systems with a particular
focus on doublon creation and propagation following the
impact of one or several charged particles. We also discuss
how to include the description of charge transfer processes
between projectile and target that is observed at low impact
velocities. Finally, we discuss theoretical issues that are related
to the GKBA and to its extension to include correlated
propagators.

The remainder of this article is organized as follows. In
Section 2, we introduce the Hubbard model and the description
of the interaction of the charged projectile with the electronic
system. This is followed, in Section 3, by a brief introduction into
the NEGF approach and the GKBA and a discussion of its
further improvements. The main results are presented in
Section 4 and include numerical data from two-time NEGF and
GKBA simulations as well as analytical results for a representa-
tive two-site system, cf. Section 4.3. We conclude by presenting
an embedding approach to treat the charge transfer between
projectile and solid, in Section 5, and by an outlook, in
Section 6.

2. Model

We consider a 1D or 2D system with moderate to strong
electronic correlations that is modeled by a Hubbard hamilto-
nian (1) with hopping amplitude J [hi; ji denotes nearest
neighbors] and onsite interaction strength U.

He ¼ �J
P
hi;ji;σc

†
iσcjσ þU

P
i ni" � 1

2

� �
ni# � 1

2

� �

�Zpe2

4πe0

X
i;σ

c†iσciσ
rp tð Þ � Ri

�� ��þ
X

hi;ji;σWij tð Þc†iσcjσ
ð1Þ

The strength of correlations is measured by the ratio U/J. For
finite graphene clusters (nanoribbons) a typical value is
U=J ¼ 3:5.[31] For other 2D materials larger values are possible.
Similarly, such finite clusters are straightforwardly realized from
fermionic atoms in optical lattices where U/J can be very large.
Here, we will mostly consider moderate values,U=J ¼ 4 but also
a few applications where U=J ¼ 10 . . . 15. The latter cases are
treated by exact diagonalization (CI) methods, for small systems,
and the former with nonequilibrium Green functions, see
Section 3.

The second line of Equation (1) contains the coupling of the
lattice electrons located at coordinate Ri with a positively charged
projectile of charge Zp that is treated classically (Ehrenfest
dynamics) by solving Newton’s equation for the trajectory rp(t)
under the influenceofallCoulombforceswith the latticeelectrons.
The final term allows to improve the model by accounting for
modificationof thehopping rates due to the projectile according to
Wij tð Þ ¼ γ Wii tð Þ þWjj tð Þ

� �
=2, whereWii is the magnitude of the
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Coulomb potential of the projectile at lattice site “i,” and γ is a
phenomenological parameter of the order unity.[29]

Although the Hubbard model permits any geometry, here we
will concentrate on single-layer honeycomb clusters, due to their
relevance for graphene-type structures. A sketch of such a
system is shown in Figure 1. For the special case of high
symmetry, as in this figure, it is tempting to consider a reduced
dimer model that consists only of sites A and B. This model can
be solved analytically, even in the presence of a time-dependent
external perturbation (such as a charged projectile[30]), and this
will be summarized in Section 4.3.

Of course, the Hubbard model (1) represents a strong
simplification compared to graphene. Nevertheless, fairly
accurate parameters can be obtained from DFT simulations.
On the other hand, this model can be exactly realized with
ultracold atoms in optical lattices. A first improvement to the
model is achieved by using strongly reduced hopping rates at the
cluster edge (due to the larger distances and to the termination
with other atoms). We have tested this effect in ref. [30] and
verified that this does not significantly change the response of
the cluster to a projectile compared to the results that are
presented below. A further improved description of graphene-
type finite-size structures can be achieved via an extended
Hubbard model where one includes also hopping beyond the
nearest neighbor sites and non-vanishing orbital overlap, which
is described in detail in ref. [31] but will not be used here.

3. Nonequilibrium Green Functions Formalism

The method of nonequilibrium (real-time) Green functions is a
very powerful approach to quantum many-body systems out of
equilibrium, cf. refs. [32,33]. The method successfully over-
comes the limitations of the quantum Boltzmann equation, such
as the restriction to times larger than the correlation time and
fundamental problems such as failure for strongly correlated
systems, incorrect conservation laws (e.g., conservation of
kinetic energy instead of total energy) and relaxation toward
an equilibrium state of an ideal gas (Fermi, Bose, or Maxwell
distribution) instead of the one of an interacting system, for a
detailed discussion, see refs. [34–38]. An extensive overview on

recent applications that span condensed matter physics, nuclear
physics, laser plasmas, etc., can be found in the proceedings of
the PNGF conferences.[39–44]

3.1. Basic Concepts

The NEGF method is formulated in second quantization (for
textbook or review discussions, see for example, refs. [24,33,45]),
in terms of creation (annihilation) operators c†iσ ciσð Þ for electrons
in a single-particle orbital iij with spin projection σ that obey the
standard fermionic anti-commutation relations. Below we will
consider a spatially inhomogeneous lattice configuration where i
labels the spatial coordinates of individual lattice points.

The central quantity that determines all time-dependent
observables is the one-particle NEGF

Gijσ t; t0ð Þ ¼ �i�hhTCciσ tð Þc†jσ t0ð Þi ð2Þ

where the expectation value is computed with the equilibrium
density operator of the system, and times are running along the
Keldysh contour C, with TC denoting ordering of operators on
C.[32,46] The NEGF obeys the two-time Keldysh–Kadanoff–Baym
equations (KBE)[33]

P
k i�h@tδik � �hikσ tð Þ� �

Gkjσ t; t0ð Þ
¼ δC t� t0ð Þδij þ

X
k

R
CdsΣikσ t; sð ÞGkjσ s; t0ð Þ ð3Þ

P
kGikσ t; ; t0ð Þ �i�h@

 
t0δkj � �hkjσ t0ð Þ

� �

¼ δC t� t0ð Þδij þ
X
k

R
CdsGkjσ t; sð ÞΣikσ s; t0ð Þ

ð4Þ

where we do not consider spin changes. The hamiltonian �h tð Þ
contains kinetic, potential, and mean field energy [including the
projectile contributions in the second line of Equation (1)],
whereas correlation effects are contained in the selfenergy Σ.

For numerical applications the Equation (3) for the Keldysh
matrix Green function have to be rewritten for the correlation
functions GP:

X
l

i�h@tδil � �hil tð Þ
� �

GP
lj t; t0ð Þ ¼ I 1ð ÞP

ij t; t0ð Þ ð5Þ

X
l

GP
il t; t0ð Þ �i�h@

 
t0δlj � �hlj t

0ð Þ
� �

¼ I 2ð ÞP
ij t; t0ð Þ ð6Þ

with the collision integrals given by

I 1ð ÞP
ij t; t0ð Þ ¼
X
l

Z1

ts

dt ΣR
il t; tð ÞGP

lj t;t0ð Þ þ ΣP
il t; tð ÞGA

lj t; t0ð Þ
n o ð7Þ

Figure 1. Sketch of a honeycomb cluster of L¼ 12 sites and distance
between sites a, showing the hopping and on-site interaction parameters
in the hamiltonian (1). The dimer model of Section 4.3 consists of the
representative sites A and B.
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I 2ð ÞP
ij t; t0ð Þ ¼
X
l

Z1

ts

dt GR
il t; tð ÞΣP

lj t; t0ð Þ þ GP
il t; tð ÞΣA

lj t; t0ð Þ
n o ð8Þ

where the retarded and advanced functions are given by

GR=A
ij t; t0ð Þ ¼ �Θ � t� t0ð Þ½ � G>

ij t; t0ð Þ � G<
ij t; t0ð Þ

n o

ΣR=A
ij t; t0ð Þ ¼ �Θ � t� t0ð Þ½ � Σ>

ij t; t0ð Þ � Σ<
ij t; t0ð Þ

n o ð9Þ

Note that the correlation effects that are contained in the
collision integrals I1;2P lead to memory effects, that is, time
integrations over the past, starting from a start time ts. In most of
the simulations presented below, we will start at ts with an
uncorrelated system and slowly switch on the interaction
(“adiabatic switching”[28,47]) which produces, at time t0, a
correlated ground state from which the excitation of the system
starts. We return to the discussion of a correlated initial state in
Section 3.4.

The system (3)–(9) is a closed set of equations for the
dynamics of the NEGF once a selfenergy approximation Σ G½ �
has been chosen. This issue is discussed in the following
section.

3.2. Selfenergies

In this work we use the following selfenergy approximations to
account for the electron–electron interaction. We consider
Hartree-Fock (HF) contributions (i.e., mean field, note that, for
Hubbard systems, the Fock terms are absent) and correlation
effects. The latter are described on the level of the second Born
(2B) and the T-matrix approximation (TM) where the former
(latter) is adequate at weak (moderate) coupling.[25,26] Moreover,
we also consider the third-order approximation[24,48] that
includes all bubble and ladder-type diagrams to third order.
The corresponding selfenergy diagrams are shown in
Figure 2.

The KBE (3) are solved on the t� t0-plane as described in
refs. [24,49]. Due to the time integration involved in the
collision integrals (memory) the numerical effort increases
cubically with the simulation duration Ttot. The effort is
particularly high for the GWand T-matrix approximations since
for the effective interaction, an additional integral equation has
to be solved, for example, ref. [24]. One way to reduce the
computational effort is the restriction to the propagation along
the time diagonal via the generalized Kadanoff–Baym ansatz
(GKBA), proposed in ref. [27]. The GKBA reduces the
computational effort of NEGF simulations with second order
Born selfenergies from a scaling � T3

tot with the total
simulation duration to � T2

tot as was confirmed in ref. [47].
The GKBA has the additional attractive feature that it reduces
the degree of selfconsistency in the NEGF simulations[28] and
“cures” the artificial damping behavior of two-time simulations

observed in small systems at very strong excitation,[50] for
computational aspects, see also ref. [51].

3.3. Generalized Kadanoff–Baym Ansatz: Extension to
Correlated Propagators

Instead of propagating the Green functions in the two-time
plane one can perform a propagation along the diagonal,
T ¼ tþ t0ð Þ=2, only. The equation for G< is a commutator
equation � the first equation of the BBGKY-hierarchy for the
reduced density operators[34]:

i�h@TG
<
ij T;Tð Þ ¼ �h Tð Þ;G< T;Tð Þ� �

ij þ Iij Tð Þ
A;B½ � ij¼

X
k

AikBkj � BikAkj

	 
 ð10Þ

Iij Tð Þ ¼
X
k

R T

t0
dtfΣ>

ik T; tð ÞG<
kj t;Tð Þ � Σ<

ik T; tð ÞG>
kj t;Tð Þ þ h:c:g

ð11Þ

To compute the collision integral I, the Green functions
GP t; t0ð Þ are required also away from the diagonal. In fact, due to
the symmetry GP

ij t; t0ð Þ ¼ �½GP
ji t0; tð Þ �� values for t � t0 are

sufficient. With the GKBA the following “reconstruction”
approximation is made[27]

GP
ij t; t0ð Þ ¼ i�h

X
k

GR
ik t; t0ð ÞGP

kj t
0; t0ð Þ; t � t0 ð12Þ

and with GP t; t0ð Þ also ΣP t; t0ð Þ are known. While the diagonal

valueGP
kj t
0; t0ð Þ is available from the solution of Equation (10), the

retarded function has to be provided as an external input. Among
the different approaches inmacroscopic systems wemention the

Figure 2. Feynman diagrams for the selfenergy approximations used in
this work: Hartree–Fock (HF), Second order Born approximation (2B),
particle–particle and particle–hole T-matrix (TPP, TEH), and third order
approximation (TOA) which contains all diagrams with three interaction
lines from GW, TPP, and TEH.
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use of ideal propagators (“Free GKBA” or FGKBA), and
quasiparticle propagators, that are exponentially decaying as a
function of t� t0j j (QP-GKBA) which have been used extensively
in semiconductor optics and transport, in particular, by the
groups of Haug, Banyai, and Jahnke, for example, refs. [52–55]
and references therein. For strong field physics in semi-
conductors and laser plasmas the gauge-invariant FGKBA has
been introduced.[53,56–58] The GKBA has also been used with
propagators taken from a full two-time simulation (2t-GKBA) in
ref. [59] which confirmed the good quality of the ansatz (12). A
revival of the interest in the GKBA occured with the NEGF study
of finite systems about a decade ago, for example, ref. [45] and
references therein. Here very good results were obtained with
Hartree-Fock propagators (HF-GKBA).[49,60–62]

Although earlier studies used the GKBA together with lowest
order correlated selfenergies (second Born approximation) we
recently demonstrated that the HF-GKBA can also be
successfully used together with mored advanced approxima-
tions such as the T-matrix, GW and third-order selfenergies, cf.
Section 3.2. The most thorough test of the HF-GKBA (and of
two-time NEGF simulations), so far, was performed in ref. [26]
by benchmarks against quasi-exact DMRG simulations for 1D
systems which are summarized in Figure 3. For weak and
moderate coupling very good agreement with DMRG was
obtained, if the HF-GKBA was combined with the adequate
selfenergy: second order Born for U=J � 1 and T-matrix for
U=J � 4 at weak (or high) filling. Around half filling the third
order approximation showed the best behavior. This agreement
is observed for all observables including densities and energies
and even for very sensitive quantities such as the average
double occupation, Equation (24), that is shown in Figure 3.
While the NEGF simulations are more efficient than DMRG at

weak and moderate coupling (cf. the accessible simulation
durations in Figure 3), for strong coupling, U ¼ 10, in contrast
to DMRG, no NEGF simulations were possible, indicating
complementary applicability ranges of the two methods.[26] In
addition, NEGF have the remarkable advantage of being
completely flexible in terms of system dimensionality and
geometry which makes them an ideal approach to treat finite
correlated systems such as GNR.

Despite the success of the HF-GKBA, it also has problems.
While it removes most of the over-damping artifacts of two-time
NEGF simulations (see above), it often underestimates the
damping present in the exact dynamics and does not correctly
reproduce the high-frequency features, cf. Figure 3. Also, due to
the HF-propagators, the spectral function produced by the HF-
GKBA is uncorrelated. There have been early attempts to modify
the free propators by an exponential damping, GR � e�γ t�t0j j (cf.
QP-GKBA above). However this choice of propagators violates
energy conservation [as opposed to the FKGBA and HF-GKBA]
due to a very slow 1=ω2ð Þ decay of the propagators in frequency
space. This behavior was improved in ref. [63] by the use of non-
Lorentzian damping factors, GR � 1=coshα ω t� t0ð Þ½ �, where ω is
a characteristic frequency (phonon or plasmon frequency) and α
is a positive fit parameter, but energy conservation is still
violated. For a recent discussion of the reconstruction problem,
see ref. [64].

Here we outline a systematic approach toward an improved
version of the GKBA that goes beyond the HF-GKBA. The idea is
to start from the equation of motion for the retarded propagators
(Dyson equation)

GR
ij t; t

0ð Þ ¼ GR
HF;ij t; t

0ð Þ þ
X
k

Z t

t0

d~tGR
HF;ik t;~tð Þ~IRkj ~t; t0ð Þ

~I
R
ij t; t

0ð Þ ¼
X
k

R t
t0 dt
00~ΣR

ik t; t00ð ÞGR
kj t
00; tð Þ

ð13Þ

where ~Σ is a conserving selfenergy that may be different from the
one used in Iij.

[28] Since our main goal is to improve the single-
time simulations beyond the HF-GKBA and to include damping
effects, we may regard correlation effects in the GKBA as small
corrections to GR

HFij t; t
0ð Þ. While the HF-GKBA corresponds to

the neglect of the integral in (13), an approximate treatment of
the integral will be called correlated GKBA (C-GKBA). For this we
propose several approximations that are listed in increasing
order of accuracy, assuming that ~Σ corresponds to weak
correlations, that is, small ~U=J:

a) replacement of all propagators in the integral (13) by ideal
propagators, GR ! GR

id;
b) replacement of all propagators in the integral (13) by HF

propagators, GR ! GR
HF. The result G

R; 1ð Þ can be understood
as first step of an iteration series that starts with
GR;ð0Þ 	 GR

HF;
c) higher order iterations, GR; lð Þ, l � 2, that use GR; l�1ð Þ in the

integral term;
d) linearization of the collision integral in the correlated GR.

This means, products of retarded functions are replaced

Figure 3. Benchmarks of the HF-GKBA against DMRG for a 1D charge
density wave state of doublons (site occupations alternate 2, 0, 2 . . .).
System-size dependence and long-time evolution of the average double
occupancy, Equation (24), for (a) U ¼ J and (b) U ¼ 4J and chain lengths
L ¼ 6; 12; 20; 24; 36.Full lines:DMRG,shortdashes:HF-GKBAþ TMA.The
insets, in addition, showHF-GKBAþ TOA results (long dashes). For better
visibility, curves for different L are shifted vertically by 0.1. After ref. [26].
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according to GR
ikG

R
kj ! GR

HF;ikG
R
kj þGR

ikG
R
HF;kj and similarly,

for more complex products;
e) 2t-GKBA: exact solution of the Dyson equation for

GR t; t0ð Þ,[59] see above.

Note that the Dyson Equation (13) for GR is not closed since
the selfenergy ~Σ

R
, in general, also contains GP. However, in the

spirit of perturbation theory, we can always reconstruct GP via
GR=A applying again the GKBA (12).

This is a systematic scheme to incorporate correlations in the
propagators. The drawback of the C-GKBA is, of course, that the
evaluation of the integral term in Equation (13) is costly, scaling
as T3

tot. However, this effort is warranted by the expected
improved accuracy of the observables and spectral properties as
compared to two-time NEGF simulations, on the one hand, and
HF-GKBA results, on the other. The analytical and numerical
properties of the C-GKBA are presently under investigation.
Finally, we note that recently also improvements that take into
account corrections beyond the GKBA have been studied for
stationary transport problems by Kalvova et al.[65] A modified
reconstruction problem where the GKBA is applied also to the
off-diagonal propagation (“extended GKBA”) was recently
proposed by Hopjan et al.[66,67] but the relation to the original
reconstruction scheme of ref. [27] remains open.

3.4. Initial Correlations for NEGF and GKBA: Restart
Capability

Until now we have only considered situations where, at the
“initial” time where the evolution starts, the system is
uncorrelated. This is, of course, a special case. In general, at
this time, the systemmay be characterized by non-vanishing pair
correlations c12 which may have a profound effect on the
dynamics. The generalization of the KBE to include finite initial
correlations goes back to Danielewicz[68] who derived a collision
integral IIC that is due to c12. Alternative derivations have been
given by Kremp et al.[56,69] who also derived initial correlation
contributions to the selfenergy. In these articles also numerical
results were given that demonstrate the effect of initial
correlations. Text book discussions can be found in
refs. [34,45,70]. Despite these early results and similar theoretical
and numerical results for density operators, for example, ref.
[34], numerical results for the GKBA have not been proposed so
far. Only recently, two papers appeared that presented solutions
for this problem.[67,71]

Here we present an alternative approach that is based on
ref. [72] that provides a complementary and more general view
on this issue. In Equation (3) we introduced, on the right-hand
side, the collision integral that involves the correlation selfenergy
or, alternatively, the correlation part of the two-particle Green
function G(2)

Z
d2V 1� 2ð ÞGð2Þ 12; 102þð Þ ¼

Z
C
d�1Σ 1; �1ÞG �1; 10Þðð ð14Þ

¼ I 1; 10;�1ð Þ 	 I 1; 10; t0ð Þ þ IIC 1; 10ð Þ ð15Þ

Here 1 ¼ r1; s1; t1ð Þ,V is a general interaction potential, and the
third argument of I explicitly denotes the initial moment of the
time evolution. When the evolution starts at �1, the system is
assumed to be uncorrelated initially and, due to collisions,
correlations are being build upuntil, at afinite time t0, they reach a
value c(t0). This can be real dynamics driven by an external
excitation. Alternatively, if one is interested in a correlated initial
state, the evolution from�1 to t0 canbe generated “artificially” by
adiabatically switching on the interaction, starting from an
uncorrelated state, for example, ref. [28], or via including an
imaginary track into theKeldyshcontour, forexample, refs. [45,49].
Even though the start of the dynamics is, in practice, set to a finite
value, �1! t� with c t�ð Þ ¼ 0, both scenarios involve a time
integration over the past in the r.h.s. of Equation (14) which is
computationally costly, in particular for long propagation times.

Thisexpensive timeintegration from t� to t0 can, in fact,beavoided
in many cases[56,71] as we show now. The r.h.s. of Equation (15)
indicates that the collision integral can be identically rewritten as a
scattering integral I, in which the evolution starts at t0, plus an
additional collision integral IIC that contains the initial correlations c
(t0), for a detailed discussion, see ref. [72]. In that reference explicit
results for ahomogeneoussystemweregiven.Using themomentum
representation (plane wave basis) the additional collision integral
becomes, for second order Born selfenergy (the extension to the
T-matrix approximation was presented in ref. [69]),

IIC;2Bp1
t; t0ð Þ ¼ �2i�h5V0

X
p2�p1�p2

Vp1��p1
δp1þp2 ;�p1þ�p2


GR
�p1

t; t0ð ÞGR
�p2

t; t0ð Þc�p1; �p2 ;p1 ;p2 t0ð ÞGA
�p1

t0; t
0ð ÞGA

�p2
t0; t

0ð Þ
ð16Þ

whereV0 is thevolume.This is thefirstcrucialstepandonerealizes
that Equation (16) does, indeed, not contain a time integral. The
second important step is to derive the initial correlation function c
(t0). This is done by going back to the connection between the two-
particle Green function and the selfenergy, Equation (14), and to
specialize this to the desired timemoment, t ¼ t0 ! t0. This leads
to the following general relation

IICp1 t0; t0ð Þ ¼ �2i�hV0

X
p2�p1

�p2

Vp1��p1
δp1þp2;�p1þ�p2
c�p1 ;�p2 ;p1;p2 t0ð Þ

¼
Z t0

t�
d�t Σ>

p1
t0;�tð ÞG<

p1
�t; t0ð Þ � Σ<

p1
t0;�tð ÞG>

p1
�t; t0ð Þ

n o ð17Þ

which constitutes an equation for the matrix c(t0) in terms of the
selfenergy and the correlation functions built up from the
uncorrelated state at t�. An explicit result for c(t0) can be obtained
for direct second order Born selfenergies (first 2B diagram in
Figure 2), for �p1 þ �p2 ¼ p1 þ p2 (the other matrix elements are
equal to zero),

c2B�p1;�p2;p1;p2
t0ð Þ ¼ i�h

V0

Z t0

t�
d�tVp1��p1


 G>
�p1

t0;�tð ÞG>
�p2

t0;�tð ÞG<
�p1

�t; t0ð ÞG<
�p2
�t; t0ð Þ � >$<ð Þ

n o
ð18Þ
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which was presented in ref. [72] for the general case of NEGF
propagation in the two-time plane.

Expression (18) is immediately rewritten for the case of
propagation along the time diagonal within the GKBA scheme,
cf. Section 3.3, by replacing the functions GP via (12),

c2B;GKBA�p1 ;�p2 ;p1;p2 t0ð Þ ¼ i�h
V0

Z t0

t�
d�tVp1��p1


GR
�p1

t0;�tð ÞGR
�p2

t0;�tð ÞGA
p1
�t; t0ð ÞGA

p2
�t; t0ð Þ ð19Þ


 f >p1 t0ð Þf >p2 t0ð Þf <p1

t0ð Þf <p2

t0ð Þ− >$<ð Þ
n o

where f > t0ð Þ is the Wigner function of the initial state, and
f > ¼ 1� f <. If HF propagators are chosen this agrees with the
result of ref. [71], but improved propagators can also be used, as
was discussed in Section 3.3. Since the distribution functions are
taken at a fixed time, the time integral in Equation (19) involves
only the propagators. For HF propagators it can be done
analytically whereas for more complicated propagators numeri-
cal integration remains to be done, but only once, prior to the
start of the time propagation.

Another approach is to derive c(t), Equation (18), from the Bethe-
Salpeter equation forG(2). For any choice of the selfenergyΣ Gð Þ it is,
in principle, possible to find the functionalG(2)[G], as was explicitly
demonstrated for the Born approximation in ref. [73]. With the
GKBA this also provides the result for cGKBA t0ð Þ, Equation (19). In
fact, the result for cGKBA t0ð Þ with HF propagators does not require
NEGF input at all. It follows directly from density operator theory
within the single-time BBGKY-hierarchy where it has been
computed for a variety of many-particle approximations including
second order Born, T-matrix[38,69] or GW approximation.[34]

Finally we note that this approach of computing the quantum
dynamics within the two-time NEGF or single-time GKBA
scheme by starting from a correlated state at a finite time t0 has
another important application. Indeed, the pair correlation c(t0)
is not necessarily that of the ground state or the equilibrium
state, but it is arbitrary, as long as it fulfills condition (17) as was
shown in ref. [72]. For example, it can be the correlations that
have been built up during a previous real dynamics, for t � t0,
and which can be used to restart (continue) the evolution, for
t � t0, cf. ref. [72]. This is possible in cases when a unique
solution of Equation (17) for the entire matrix of c exists.

3.5. NEGF-Ehrenfest Approach to Ion Stopping

Let us now come back to the problem of ion stopping and the
associated electronic correlation effects in finite graphene-type
clusters that we discussed above in Sections 1 and 2. For the
numerical analysis, we use the Kadanoff–Baym Equations (3)
with the electronic hamiltonian (1). The impacting ion acts as a
time-dependent external attractive potential for all electrons.
This potential is sharply peaked as a function of time, reaching
its maximum (negative) value when the projectile traverses the
honeycomb layer. The energy loss of the ion is treated classically
via solution of Newton’s equation (Ehrenfest dynamics).
Processes of charge transfer between target and projectile which

are important at low impact velocities will be considered
separately, in Section 5.

From the NEGF all time-dependent single-particle observ-
ables can be computed according to

hÂi tð Þ ¼ �i�h
X
ij

AijG
<
ji t; tð Þ ð20Þ

including the single-particle energy and the site-resolved density,
niσ ¼ hn̂iσ tð Þi. Another important quantity is the time-resolved
photoemission spectrum[74]

A< ω;Tð Þ ¼ �i�h
X
i

R
dtdt0Sκ t� Tð ÞSκ t0 � Tð Þ


e�iω t�t0ð ÞG<
ii t; t0ð Þ

ð21Þ

which measures the occupied states of the system. It allows for a
direct comparison with time-resolved (pump-probe) photoemis-
sion experiments where Sκ mimicks a Gaussian probe pulse of
width κ,

Sκ tð Þ ¼ 1

κ
ffiffiffiffiffi
2π
p exp � t2

2κ2

� �

The energy exchange between projectile and the cluster can be
computed from the increase of the total energy of the electrons
or, equivalently, from the energy loss of the projectile,

Se ¼ mp

_r2p t! þ1ð Þ
2

�mp

_r2pt! þ1
� 

2
ð22Þ

which is just the difference of kinetic energies far away from the
target before and after the impact. With this we assume that the
interaction between different projectiles or with a surrounding
plasmamedium is negligible. Further, we do not resolve internal
degrees of freedom of the projectile. Also two-particle expecta-
tion values such as the correlation energy and the double
occupation di are accessible in the NEGF approach taking
advantage of the two-time information in G and Σ. Thus we
compute the expectation value of the site-resolve doublon
number, its cluster-average and the long-time limit of the latter,
after passing of the projectile, according to

di tð Þ ¼ hn̂i" tð Þn̂i# tð Þi

¼ � i�h
U

X
k

Z
C
dsΣik t; sð ÞGki s; tð Þ ð23Þ

dav tð Þ ¼ 1
L

XL
i¼1

di tð Þ; d1av ¼ lim
t!1

1
Δt

ZtþΔt

t

d�t dav �tð Þ ð24Þ

4. Results

We now turn to the results for the time-resolved coupled
electron-projectile dynamics. A detailed investigation has been
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presented in refs. [30,75] some results of which are briefly
summarized here and complemented with additional data. For
small clusters, L � 12, we have performed exact diagonalization
calculations whereas for larger systems we solved the Keldysh–
Kadanoff–Baym Equation (3) for the NEGF. In the latter case the
accuracy of the results is determined by the choice of the
selfenergy Σ. In this article, we present simulations within the
second order Born approximation using the HF-GKBA, cf.
Section 3.3 and selected data with more advanced selfenergies
that were introduced in Section 3.2. Prior to the NEGF
simulations we have performed detailed numerical convergence
tests that include particle number and energy conservation[51]

and time reversibility.[76,77] In addition, for small systems we
have performed tests against exact diagonalization calculations.
Further tests of the present code (T-matrix selfenergy) include
comparisons with cold atom experiments[25] where excellent
agreement was found. Finally we mention extensive bench-
marks against density matrix renormalization group (DMRG)
calculations,[26] a typical example � for the GKBA � was shown
above in Figure 3. An important outcome of the benchmarks of
ref. [26] was that the exact result is often enclosed between the
two-time simulations and the HF-GKBA. From this we can
conclude that the present NEGF stopping simulations are
reliable and have predictive power.

4.1. Energy Loss of the Projectile

Let us start with the total energy loss of the projectile,
Equation (22), as a function of impact energy which is shown
in Figure 4, for the case of a proton. The overall behavior is well-
known: the energy loss vanishes, both, for very low and very high
impact energies. An optimum projectile-target interaction is
observed at intermediate impact energies, in the range of
several keV per mass unit u. The decrease at large energies is due
to the reduced interaction duration and is consistent with the
standard non-relativistic Bethe formula, for example, ref. [3], and
with linear response treatments (based on the density–density
correlations and dynamic structure factor). Not surprisingly,
here correlations in the material have very little influence which
can be seen in the convergence of the curves for different U. In
the opposite limit, the energy available for transfer to the target is
small. At the same time, in the range left of the maximum the
influence of the target properties on the energy loss is
significant: here the curves for different coupling strength U
differ significantly.

This overall trend of the energy loss (stopping power) is well
reproduced with our NEGF simulations, and the results agree
well with other approaches, such as TDDFTand the SRIM code,
at high energies. On the other hand, in the low energy range the
situation is less clear. One reason is that, previously, most
attention focused on high-energy particle beams or hot plasmas.
Only more recently low projectile energies in the range of several
hundred or tens of eVattracted interest because this is the typical
energy range in low-temperature plasmas and surface physics,
for example, ref. [2]. In this range, correlation effects in the target
(the value of U/J in our model) play a crucial role, and also size
and geometry effects are expected to be relevant. The influence of
system size is clearly seen in our simulations, compare parts (a)

and (b) of Figure 4: with increasing size of the cluster more
electrons are excited by the projectile and, hence, the energy
deposition, Se, grows.

With the increasing role of correlations, also the requirements
for theory increase. For NEGF simulations, this means that the
proper choice of the selfenergy becomes important, whereas, at
high impact energy, the difference between different selfenergy
approximations is rather small, cf. Figure 4(b). At the same time,
reducing the impact energy increases the interaction time and,
thus, also the simulation duration in our nonequilibrium
approach grows rapidly. For this reason, in the range of 1keV/u
and below, so far, mostly local second order Born simulations
(assuming Σij � Σiδij) were performed. A comparison to mean
field (Hartree) simulations clearly signals the importance of
correlations for the stopping for strongly correlated materials, cf.
curves for U=J ¼ 4 in Figure 4(a).

4.2. Ion Impact Induced Doublon Excitation

A particularly interesting observation is that the deviation of the
correlated simulations from the mean field result changes sign.
While for high energy, correlations seem to lower the energy
deposition, at impact energies below approximately 3keV/u,
correlation effects enhance the stopping power. This is a

Figure 4. Energy loss of a proton with initial energy Ekin during passage
through a honeycomb cluster [cf. Figure 1] of size L ¼ 24 (top) and L ¼ 54
(bottom). Local 2B denotes the local approximation for the second Born
selfenergy Σij ¼ δijΣi

	 

. Reproduced with permission.[29] Copyright 2016,

American Physical Society.
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surprising effect, and one may speculate that this is due to an
increase of the correlation energy. To verify this hypothesis we
analyze, in the following, the doublon number, Equation (23),
that is induced by the projectile. In fact, the total number of
doublons or its cluster average, dav, Equation (24), minus the
mean field result,

dHi ¼ hn̂i" tð Þihn̂i# tð Þi ¼ ni" tð Þni# tð Þ ð25Þ

is proportional to the correlation energy in the system.
The numerical analysis for the system in Figure 1 confirms,

indeed, that a charged projectile with an impact energy in the
range of a few hundred electron volts may create a significant
number of doublons.[30] Details of this analysis are shown in
Figure 5 for the case of strong correlations U=J ¼ 10ð Þ. In part
(a), we show the electron densities at two lattice sites B and A
adjacent to the impact point. During the impact of the projectile
t ¼ t0ð Þ electrons from the second nearest site (A) are attracted
toward the nearest site B whereas the mean density remains
constant. After the projectile has left, both densities, with some
retardation, return to their initial values. Consider now the
associated dynamics of the mean double occupations at sites A
and B.While here, too, doublons are transferred from site A to B,
the mean value, dav increases significantly. Most importantly,
after the projectile has left, dav does not return to its initial value
but remains at a significantly larger value. We conclude that the
projectile has deposited correlation energy in the system that
remains stored there. This is also confirmed by comparison with
the uncorrelated average doublon number, Equation (25), which
follows the average density and, hence, remains almost constant.
In a quantum-mechanical language, under the action of the
projectile, the electron system undergoes a transition to an
excited state that is associated with a higher double occupa-
tion.[30] This explanation is directly confirmed by a representative
dimer model that is discussed in Section 4.3.

4.3. Analytical Dimer Model

For a qualitative examination of the doublon generation in the
system of Figure 1, the simplest possible setup is a dimer
consisting of only the two sites, A and B, being driven by a pulsed
attractive external potential. Since we expect that the excitation of
doublons is governed only by the potential difference on sites A
and B, it is sufficient to consider the excitation only on one site
(B). The time dependence of the excitation is chosen as

W tð Þ ¼ �W0exp� t�t0ð Þ2=2τ2 ð26Þ

which closely resembles a positively charged projectile passing
close to one site, where the two parameters W0 and τ have clear
implication as the amplitude (proportional to the charge of the
ion) and the interaction duration (proportional to one over the
velocity), respectively. For sufficiently large U this can lead to a
significant and lasting increase of the mean double occupation
d1av , Equation (24). However d1av strongly depends onW0 and τ, as
is confirmed by exact diagonalization results that are shown in
Figure 6. For an excitation amplitude W0 smaller than U, the
Hubbard-gap prevents the creation of doublons. For W0 > U
doublon production is possible, and for larger W0, oscillations
caused by transient Bloch oscillations are observed,[30] the
frequency of which grows with W0. Interestingly, the envelopes
of these curves are very similar to the stopping-power curves, cf.
Figure 4. There the total energy gain of the electrons was plotted
versus kinetic energy of the projectile which here corresponds to
the inverse of τ2. The results of Figure 6 reflect the fraction of the
projectile energy that is transferred into an increase of the double
occupation in the target, and a detailed analysis of the different
energy contributions remains to be performed in future work.
Themost notable result is, that for an optimal choice of τ andW0

a permanent increase of the double occupation of up to 0.5 per
site can be achieved.

We have shown in ref. [30] that the dimer model captures the
excitation physics not only qualitatively correctly. Using a
Landau–Zener[78,79] approach the probability for doublon
excitation of our model agrees even semi-quantitatively with

Figure 5. Time-dependent response of a strongly correlated finite
honeycomb cluster of Figure 1 for U=J ¼ 10 to a charged projectile with
charge Z¼ 2 penetrating through the center (point C in Figure 1). a) The
densities on sites A (dashed line) and B (full) closest to the projectile. b)
Site-averaged double occupation, Equation (24). Exact diagonalization
results, after ref. [30].

Figure 6. Asymptotic value of the average double occupation, Equa-
tion (24), of the dimer versus τ (proportional to the inverse projectile
velocity) for U¼ 15 and different excitation amplitudes, W0. When W0

exceeds U, doublons are excited and remain in the system.
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the simulation results for the L¼ 12 cluster of Figure 1 and
shows the correct trends also for other systems, including the
optimal coupling strength and projectile velocity that maximize
the induced doublon number.

4.4. Doublon Dynamics Excited by Multiple Ion Impacts

The average doublon number in the system can be further
increased by repeating the impact once or even more often. The
analysis presented in ref. [30] showed that this allows to achieve an
asymptotic averagedoublonnumberofdav ¼ 0:25andeven larger.
A representative example is shown inFigure 7. At each impact the
projectile rapidly increases di at the impact point, at the expense of
the doublon number at the two nearest neighbor sites. This is
followed by a spreading of di (t) along the chain (notice the wave
fronts). At the same time,with each successive impact, the average
doublon number can be systematically increased which can be
seen from the increasing doublon level in the foreground. In that
figure the excitation is intentionally kept localized at the same
central site [keeping only a single term in the sum over “i” in
Equation (1)] in order to monitor the propagation of the doublon
occupation along the cluster. Note that, when one restores the
long-range ion–electron interaction (all terms in the sumover “i”),
this gives rise to even larger values of d1av .

[30]

The ion induced nonequilibrium dynamics of the electron
system can also be tracked in the spectral function which can be
directly measured in photoemission experiments. In Figure 8we
plot the photoemission spectrum, Equation (21), that gives
information about the occupied energies. The projectiles induce
transitions of electrons into the upper Hubbard band corre-
sponding to ω > 0. With each successive impact the spectral
weight (corresponding to the fraction of electrons) in the upper
Hubbard band grows, cf. the shaded areas.

As in the case of a single impact, Figure 5, also after multiple
impacts, the many-electron system remains in the excited state
characterized by a significantly increased average doublon
occupation d1av , after all projectiles have left. This stationary
nonequilibrium state will be stable until additional dissipation

channels (e.g., to phononic degrees of freedom) set in and is
another example of a pre-thermalized state, for example,
refs. [80,81]. In contrast to previous spatially homogeneous
doublon excitation scenarios that used time-dependent electric
fields or a modulation of the lattice depth, for example, ref. [82],
here a local excitation is used that has much more degrees of
freedom, including timing and locations of the impacts, and a
potential to achieve higher doublon numbers and an increased
stopping power.

5. Embedding Scheme to Capture Charge
Transfer Dynamics Between Projectile and
Target

So far we have considered only the case of high projectile
velocities where the feedback from the surface to the ion is small
and restricted to a reduction of its velocity whereas quantum
effects are neglected. On the other hand, when the impact
velocity is reduced, the interaction duration of the projectile with
the lattice increases and electron transfer between both systems
may occur.

Figure 7. Time evolution of the site-resolved doublon number, di tð Þ,
Equation (23), for a 1D cluster with L ¼ 24 sites (periodic boundary
conditions) and U=J ¼ 4. The cluster is excited by ten ion impacts in the
center (at site 12) using the Gaussian model (26). The increase of d1av tð Þ
can be seen from the slope of the surface. Note the logarithmic scale.

Figure 8. Time evolution of the spectral function of the occupied states,
A< (photoemission spectrum), for the honeycomb cluster with L ¼ 12
sites, Figure 1, and U=J ¼ 4, from a two-time NEGF simulation with
second order Born selfenergies. The cluster is excited by 20 equidistant
ion impacts (at times 10, 20, . . . 200) in the center using a Coulomb
potential for the electron–projectile interaction, cf. Equation (1) and the
grey line on the left. The projectiles lead to an increased occupation of the
upper Hubbard band corresponding to ω > 0, cf. the shaded areas. The
spectra are shown at times 5, 15, . . . 195 with a width of the probe pulse
[cf. Equation (21)] of κ ¼ 2:5�h=J which causes a spectral broadening. For
comparison, we also present the results of an unexcited cluster, where
only the lower Hubbard band is occupied, depicted by the red filled area
corresponding to A<, whereas the unoccupied upper Hubbard band A>ð Þ
is shown by the blue area.
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Quantum transitions inside the projectile and charge transfer
have been studied approximately with quantum kinetic models
(Newns-Andersonmodel)where theprojectilewas treated as a few
level system.[83] Furthermore, there have been a number of
TDDFTstudies of ions impinging onto correlated materials such
asgrapheneor boronnitride (BN)[7,8] andonfinite systems such as
metal clusters,[84,85] carbon nanostructures,[86] or graphene frag-
ments[87] (for more references see ref. [2]), where quantum
transitions inside the projectile are taken into account. However,
the uncertainties in the quality of the adiabatic LDAand themodel
parameters in the Newns-Andersonmodel, respectively, as well as
the neglect of correlation effects in thematerial[2]make it desirable
to develop an independent many-body approach to this problem.

Here,wepresentanonequilibriumGreenfunctionsapproachfor
the electron transfer dynamics between projectile and a strongly
correlated solid. We start from the second-quantized many-body
Hamiltonian for the electrons in the plasma–solid interface and
separate the system into a plasma (p) and solid surface part (s) [we
denote Ω ¼ p; sf g and do not write the spin index explicitly],

Hinterface ¼
X
αβ2Ω

X
ij

Hαβ
ij tð Þcα†i cβj

þ 1
2

X
αβγδ2Ω

X
ijkl

Wαβγδ
ijkl c

α†
i cβ†j cγkc

δ
l ð27Þ

Here, the operator cα†i cαi
	 


creates (annihilates) an electron in
the state i of part α. The one-particle Hamiltonian H(t) contains
the kinetic and the time-dependent potential energy of electrons,
and W accounts for all possible electron–electron Coulomb
interactions within and between the two parts.

Considering individual energetic plasma ions, which penetrate
into thesolid,undergoscatteringandstopping in thesurface layers
or are reflected, we describe the system (27) by a one-particle
nonequilibrium Green function (2), Gαβ

ij t; t0ð Þ, which now has an
additional 2
 2 matrix structure α; β ¼ fp; sgð Þ,

Gαβ
ij t; t0ð Þ ¼ �i�hhTCc

α
i tð Þcβ†j t0ð Þi ð28Þ

ρ
αβ
ij tð Þ ¼ �i�hGβα

ji t; tþð Þ ð29Þ

for example, refs. [45,88], and the time-diagonal elements
provide the density matrix (29). The diagonal elements, ρppij ρssij

h i
,

refer to the plasma part, describing the dynamics of free
electrons and electrons bound in the ion [to the solid part,
describing electrons in bound states of the solid surface].
Moreover, the density matrix component ρpsij is related to charge
transfer processes between plasma and solid and will be of
special interest in the following.

The equations of motion for the NEGF are the generalization
of Equation (3) to the plasma–solid interface,

i�h@tG
αβ
ij t; t0ð Þ �

X
δ2Ω;k

Hαδ
ik tð ÞGδβ

kj t; t0ð Þ

¼ δ
αβ
ij δC t; t0ð Þ þ

X
δ2Ω;k

R
Cd�tΣ

αδ
ik W;G½ � t;�tð ÞGδβ

kj
�t; t0ð Þ

ð30Þ

where the self-energy Σαβ t; t0ð Þ describes the interaction between
the electrons and with phonons. Even though a complete
solution of the KBE (30) for real materials and with a full
quantum treatment of the plasma electrons is out of reach, these
equations provide the rigorous starting point for the develop-
ment of consistent approximations. In the following, we show
how it is possible to include the electronic states of the ion via an
embedding self-energy approach that was previously applied to
quantum transport and photoionization problems, for example,
refs. [89,90], for a text book discussion, see ref. [45]. Here the
embedding approach allows us to study resonant (neutralization
and ionization) processes at the plasma–solid interface. While
this embedding approach is based on a formal decoupling of the
surface and plasma parts of the KBE, it retains one-electron
charge transfer in the Hamiltonian Hsp, cf. Equation (33), see
below. A closed description of the solid can be maintained if
correlations in the plasma part and the feedback of the solid on
the plasma can be neglected, that is, for Σsp � Σpp � 0. This is
usually well fulfilled in plasmas, except for plasmas at or beyond
atmospheric pressure or in warm dense matter[91] where small
correlation corrections should be taken into account. Then, the
KBE (3) for the plasma part simplify to

X
k

i�h@tδik �Hpp
ik tð Þ� �

gppkj t; t0ð Þ ¼ δijδC t; t0ð Þ ð31Þ

where the solution gpp t; t0ð Þ denotes the NEGF of the electrons
inside the plasma ions [here we do not consider processes
involving free electrons in the plasma phase because they do not
contribute to charge transfer except for heavy particle induced
secondary electron emission], whereas the time dependence of
Hpp tð Þ accounts for possible parametric changes of the energy
levels (e.g., as function of the distance of the ion from the
surface).

The main result of the embedding procedure is a closed
equation for Gss t; t0ð Þ:
X
k

i�h@tδik �Hss
ik tð Þ� �

Gss
kj t; t

0ð Þ ¼ δijδC t; t0ð Þ
X
k

R
Cd�t Σct

ik t;�tð Þ þ Σss
ik G

ss½ � t;�tð Þ� �
Gss

kj
�t; t0ð Þ

ð32Þ

to be complemented with the adjoint equation, with the charge
transfer (or embedding) self-energy that involves the charge
transfer hamiltonian

Σct
ij t; t0ð Þ ¼

X
kl

Hsp
ik tð Þgppkl t; t0ð ÞHps

lj t0ð Þ ð33Þ

Hsp
ij tð Þ ¼

Z
d3rϕsi rð Þ T̂ þ V̂

� 
ϕpj r; tð Þ ð34Þ

Equation (32) shows how the many-body description of an
isolated (but correlated) solid is altered by the presence of the
electronic states of a plasma ion (or neutral), with the latter
giving rise to an additional self-energy Σct t; t0ð Þ. While, for
Σct ¼ 0, the KBE (32) conserve the particle number and total
energy [ for a conserving approximation of the self-energy Σss,
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such as the ones discussed in Section 3.2], the inclusion of the
embedding self-energy explicitly allows for time-dependent
changes of the particle number (and energy) in the solid and,
thus, accounts for ion charging and neutralization effects. For
the practical solution of Equation (32), the charge transfer
HamiltonianHsp(t) has to be computed by selecting the relevant
electronic transitions between solid and plasma and computing
the matrix elements of the kinetic and potential energy operators
T̂ and V̂ , with the electronic single-particle wave functions ϕs

ϕpð Þ in the solid (ion).
A first test of this embedding scheme is shown in Figure 9,

where a correlated Hubbard chain (for simplicity only the last
site is correlated) is coupled to a single active energy level ep ¼ J
of an approaching ion via the charge transfer hamiltonian
Hsp

i tð Þ ¼ δiLΓ tð Þ, cf. the sketch on top of Figure 9. The time
dependence of Hsp

i is approximated by Γ tð Þ ¼ Γ0e
� t�t0ð Þ2= 2τ2ð Þ,

and the initial occupation of the energy level ep is set to
nσ ¼ 0:269.

The charge transfer from the chain to the ion, seen in the
reduction of the total electron number in the chain,
Nσ tð Þ ¼P

iniσ tð Þ, is shown as a function of time in Figure 9
(a). The reduction of Nσ is found to be nearly proportional to the
ion charge (amplitude Γ0) up to the resonance condition Γ0 ¼ J.
Thus, as expected, a highly charged ion will be more strongly
neutralized. For Γ0 > J, away from resonance, the net transfer of
charge will decrease again. The neutralization time is given by
the interaction duration τ which is inversely proportional to the
projectile velocity. The dependence of the magnitude of the
charge transfer on τ is analyzed in Figure 9(c) and again
confirms the expected trend: the charge transfer increases with τ,
i.e., is larger for slower projectiles, whereas for τ90:1�h=J it is
negligible. Figure 9(b) shows the spatial propagation of the
removed charge (hole) along the chain as a function of time (the
distortion of the dip is due to reflections from the edge of
the chain). Again one sees that, in the presence of correlations,
the propagation speed is reduced, in agreement with simulations
of fermion propagation in optical lattices.[24,25]

Finally, we can analyze the effect of correlations in the target
on the charge transfer. As can be seen in Figure 9(a) and (c), an
increase of electron–electron correlations reduces the charge
transfer, which is a consequence of the reduced mobility of the
electrons in the chain. An increase of the interaction strength
from zero to U ¼ 4=J, which is a realistic range for graphene
nanoribbons, reduces the charge transfer by about 20%, in the
present setup.

In conclusion, we have demonstrated a NEGF approach to
charge transfer between a plasma ion and a strongly correlated
finite electron system. The next task is to derive improved data
for the energy levels and occupations of the projectile. Further,
the resonant charge transfer, studied in this section, and
the energy deposition and electronic excitation of the target that
were discussed in Section 4, should be integrated into a single
model to take into account the mutual influences of both
processes.

6. Summary and Discussion

In this article, we studied correlated inhomogeneous finite
graphene-type Hubbard clusters. Our results are expected to be
relevant for ultracold fermionic atoms in optical lattices as well
as for electrons in graphene clusters and nanoribbons. We
considered the electronic response to a spatially and temporally
localized excitation by a charged particle. Using a nonequilib-
rium Green functions approach we computed, via an Ehrenfest
approach, the time-dependent interaction of the projectile with
the many-electron system and the dependence of the energy
transfer on the impact energy.[29] An interesting observation was
that, at low projectile energies, correlation effects lead to an
enhanced energy transfer. Our analysis revealed that the ion
impact causes a transition of the system across the Hubbard gap
leading to the formation of doubly occupied lattice sites
(doublons).[30] We investigated the spatial propagation of the
doublon number across the cluster. Eventually a homogeneous
nonequilibrium steady state is reached that is long lived andmay

Figure 9. Numerical illustration of the embedding scheme. An initially
half-filled tight-binding chain (L ¼ 10 sites, nearest-neighbor hopping J,
Hubbard interaction strength U on the last site, and inverse temperature
βs ¼ 100J�1) is interacting with an external energy level ep ¼ J via a time-
dependent coupling Γ tð Þ ¼ Γ0e� t�t02ð Þ= 2τ2ð Þ, cf. bottom of part (b), giving
rise to the transfer of charge. The initial occupation of the energy level is
given by nσ ¼ 0:269 (corresponding to a Fermi distribution with an
inverse temperature βp ¼ 1J�1). a) Time evolution of the total particle
numberNσ tð Þ for different U and Γ0, computed from Equation (32) with a
local second Born self-energy Σij ¼ δijΣi

	 

; τ ¼ 1�hJ�1. b) Local electron

densities nlσ tð Þ and correlation part of the double occupation dcorL tð Þ ¼
dL tð Þ � dHL tð Þ on the last site l ¼ L ¼ 10 forU ¼ 3, Γ 0 ¼ 1J and τ ¼ 1�hJ�1;
for times t� t09� 5 the time evolution of dcorL tð Þ corresponds to the
ground state preparation by adiabatic switching (AS). c) Final values of
the particle number Nσ t!1ð Þ as function of the interaction time τ for
different U and Γ0.
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have interesting electronic and optical properties. A physically
intuitive picture was given in terms of an analytical model for a
two-site system where the doublon formation is explained in
terms of a twofold passage of an avoided crossing (Landau-Zener
picture[30]). The effect should be of relevance for graphene
nanoribbons and be particularly important for strongly
correlated finite systems. For an experimental observation the
best candidates are fermionic atoms in optical lattices. There the
projectile impact can be easily mimicked by a proper time-
dependent modulation of the lattice potentials nearest to the
“impact” point.

We demonstrated that doublon formation and propagation
in correlated finite lattice systems can be accurately simulated
with NEGF. In addition to two-time results we presented single-
time results within the generalized Kadanoff–Baym ansatz
(GKBA) with Hartree–Fock propagators (HF-GKBA). To further
improve the accuracy of GKBA calculations in the future, we
introduced the correlated GKBA (C-GKBA) that allows to
systematically incorporate correlation effects in the propagators
GR=A. Moreover, we discussed how to systematically take into
account initial correlations in the GKBA and presented an idea
that is complementary to recent results for equilibrium
correlations.[67,71]

Aside from an accurate treatment of correlation effects,
quantitatively reliable NEGF results also require to improve the
underlying model. One way to go beyond the present one-band
Hubbard model is to use an extended Hubbard model as
demonstrated in ref. [31], or to perform ab initio NEGF
simulations using a Kohn-Sham basis, for example, on the basis
of the Yambo code.[92]
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Chapter 3

Theoretical Developments of the NEGF
Formalism

Several methodological improvements have been required for the NEGF method to be

applicable in the context of practically relevant correlated lattice systems. In the following,

it is demonstrated how the NEGF technique is brought to its ultimate scaling limit (III).

Furthermore, serious theoretical shortcomings are eradicated to put the method on a more

solid foundation (I).

3.1 Single-Time Equations for the NEGF: the G1–G2

Scheme

In 1986, Lipavský et al. published a seminal paper [107] that opened the path to experi-

mentally relevant long-time NEGF simulations by introducing the GKBA. Particularly the

greatly advantageous tandem of the second-order selfenergy and the HF-GKBA (SOA-HF-

GKBA) has become a workhorse for NEGF calculations (see, e.g., Refs. [101, 129, 136]).

While the full two-time NEGF equations yield a computational scaling of O (N3
t ), where Nt

is the number of time steps, the SOA-HF-GKBA drops this scaling to O (N2
t ). The increase

of computational power has brought about a second rise of GKBA-related activity during

the last decade with a variety of successful applications including atoms [126], metallic

clusters [248], semiconductors [249], ultracold atoms in optical lattices (see Sec. 4.2),

biologically relevant molecules [250], carbon allotropes [113], two-dimensional layered

materials [110, 112] as well as ion stopping in hexagonal lattices (see Secs. 2.2 and 4.3).

At the same time, it has become clear that a description on the second-order level is

not sufficient to correctly predict the time evolution of strongly correlated systems [79, 109,

130, 212, 213]. However, the usage of higher-order selfenergies and powerful resummation

techniques for the GKBA reverts to the unfavorable time scaling of O (N3
t ). This drastically

reduces the applicability of the GKBA to strongly correlated systems of practical relevance,
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such as heterostructures of graphene nanoribbons [119, 251], irradiated krypton1 [252],

and exotic warm dense matter (WDM) [9–11]. Therefore, much effort has been put into

developments to improve and extend the GKBA. A natural generalization is to replace

the Hartree–Fock propagators with higher-order choices for the retarded and advanced

Green functions which is discussed, e.g., in Refs. [203, 207]. Additionally, the relation

between the NEGF equations with the HF-GKBA and the independent RDO theory has

been analyzed in Refs. [96, 134] on the second-order level from the RDO perspective. In

recent years, also the optimized treatment of initial correlations has attracted considerable

interest [207, 253, 254]. Particularly Refs. [207] and [253] demonstrated a way to restart a

HF-GKBA simulation after the build-up of correlations by replacing the preceding time

evolution by an initial, time-local term. Motivated by this research, the author, in close

collaboration with Jan-Philip Joost, asked the question: “Can we achieve O (N1
t ) scaling

for HF-GKBA simulations?” Astonishingly, the answer is yes. This raises the applica-

bility of the method onto a next level, thereby opening up the way towards previously

unfeasible investigations. The research in this course then addressed different integral and

differential formulations, recovered the link to the RDO theory,2 and led to the following

publications,3,4 Refs. [114] and [208].

Ref. [114] introduces the G1–G2 scheme—a time-linear reformulation of the HF-

GKBA from the perspective of nonequilibrium Green functions. It is demonstrated for the

second-order selfenergy and, for the first time, for the GW approximation, that a time-local

set of equations can be found if the collision terms are computed from the time-diagonal

two-particle Green function instead of the original selfenergy integral. The complete set

of coupled differential equations for the single-particle and two-particle Green function

(hence the name G1–G2 scheme) involves no additional approximation, but contains the

full information of the two-time correlation selfenergy. To facilitate a simple, universal

applicability, the equations are given for a general single-particle basis, as well as the

Hubbard model and the homogeneous electron gas—the latter being of central importance

for WDM applications mentioned above. Ref. [114] also analyzes the numerical scaling of

the new-found scheme with respect to the number of time steps and the size of the single-

particle basis—with a striking outcome: the G1–G2 scheme turns out to be numerically

favorable compared to the ordinary HF-GKBA for nearly all cases of practical relevance. A

remarkable observation is made for the GW approximation describing dynamical-screening

effects, where the time scaling is reduced from O (N3
t ) to O (N1

t ), leading to practical

achievable speed-up factors of up to 104. Furthermore, while the test calculations for the

Hubbard model perfectly agree with the HF-GKBA results, the G1–G2 description even

reveals superior numerical accuracy for comparable integration methods. Additionally,

Ref. [114] demonstrates that previously inaccessible two-particle quantities, such as the

pair-distribution function and the pair-correlation function, are within reach for the new

1It is demonstrated in Ref. [126] that the experimentally validated transition to Kr3+ is not captured by

the second-order selfenergy.
2In RDO theory, time-local equations for the single-particle and two-particle reduced density matrix are

known on different approximation levels [96].
3N. Schlünzen, J.-P. Joost, and M. Bonitz, Phys. Rev. Lett., 124, 076601 (2020). Copyright by the

American Physical Society. Reproduced with permission.
4J.-P. Joost, N. Schlünzen, and M. Bonitz, Phys. Rev. B, 101, 245101 (2020). Copyright by the

American Physical Society. Reproduced with permission.

https://doi.org/10.1103/PhysRevLett.124.076601
https://doi.org/10.1103/PhysRevB.101.245101
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method, due to the explicit evaluation of the time-diagonal two-particle Green function.

These quantities are of great practical relevance as they are measured experimentally, e.g.,

for ultracold gases in optical lattices to indicate long-range correlations [146]. In addition,

two-particle correlation quantities constitute a conceptual barrier for many other quantum

simulation tools, such as DFT-based approaches [255].

The advantageous numerical scaling of the G1–G2 scheme will allow for simulations

on an experimentally relevant (long-)time scale for systems that have been out of reach,

so far. It has already been directly applied to generalize stopping-power simulations (cf.

Secs. 2.2 and 4.3) to more realistic setups, which will be shown in a future publication [256].

Given the popularity of the SOA-HF-GKBA in particular, it is expected that the results of

Ref. [114] will have a profound and lasting impact on the NEGF community. Indeed, new

research by other groups in this field has already been inspired by the new formalism [205,

206].

As a follow-up publication to Ref. [114], Ref. [208] is meant to be a reference work

for the G1–G2 scheme with the purpose to extensively explain, deepen, and generalize

the method. As a starting point, the derivation of the SOA-G1–G2 for a general single-

particle basis is redone in a step-by-step manner and with more details.5 Likewise, the

GW -G1–G2 scheme is recovered in Sec. IV of Ref. [208] where special emphasis is given to

the inverse dielectric function, which obeys a Schrödinger equation. The generalizations

of the G1–G2 scheme for the direct parts of both T -matrix approximations presented in

Sec. V of Ref. [208] have been derived solely by the author. The extension to corresponding

exchange terms for the particle–particle T -matrix approximation6 have been carried out by

Jan-Philip Joost. For both ladder approximations, the respective nonequilibrium Møller

operator [257, 258]—which can be understood as a renormalization core that transforms

the bare interaction into the corresponding T matrix—is found to also obey a Schrödinger

equation. Again, all resulting equations are specified for a general single-particle basis,

the Hubbard basis, and the homogeneous electron gas. Furthermore, it is discussed how

initial correlations are incorporated within the G1–G2 formalism for several different

groundstate methods (Sec. III E of Ref. [208]). The remarkably simple structure of the

two-particle EOMs from the different selfenergy expressions allows for an additional gener-

alization by including all above-mentioned approximations into a combined approach—the

dynamically-screened-ladder (DSL) approximation (Sec. VI of Ref. [208]). An equivalent

of this approach can be systematically derived in RDO theory [96]. From a numerical

perspective, Ref. [208] also discusses a complementary formulation of the equations for the

time-diagonal two-particle Green function by utilizing a symmetry relation between the

particle- and hole-density matrix (Sec. VII of Ref. [208]). It turns out that, for the case of

the Hubbard basis, this alternative form yields an improved numerical scaling with the basis

size of O (N4
b) compared to the O (N5

b) scaling reported in Ref. [114]. The theoretically

derived scaling behaviors with the simulation time and the system size are reproduced

by numerical test calculations for the Hubbard model. The results again confirm the

advantageous character of the G1–G2 scheme compared to the original HF-GKBA for all

considered selfenergy choices. Lastly, the numerical results of the DSL-G1–G2 approach

5In this progress, also a time-linear integration-based scheme to solve the SOA-HF-GKBA equations is

presented and elaborated in the appendix of Ref. [208].
6An additional inspection of the particle–hole exchange terms is discussed in Sec. 3.1.1.
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accurately match the results [259] for the Wang–Cassing approximation7 [261] from RDO

theory that is based on neglecting all three-particle correlations.

7The Wang–Cassing approximation is also referred to as Valdemoro approximation after Ref. [260].
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The dynamics of strongly correlated fermions following an external excitation reveals extremely rich
collective quantum effects. Examples are fermionic atoms in optical lattices, electrons in correlated
materials, and dense quantum plasmas. Presently, the only quantum-dynamics approach that rigorously
describes these processes in two and three dimensions is the nonequilibrium Green functions (NEGF)
method. However, NEGF simulations are computationally expensive due to their T3 scaling with the
simulation duration T. Recently, T2 scaling was achieved with the generalized Kadanoff-Baym ansatz
(GKBA), for second-order Born (SOA) selfenergies, which has substantially extended the scope of NEGF
simulations. Here we demonstrate that GKBA-NEGF simulations can be performed with order T1 scaling,
both for SOA and GW selfenergies, and point out the remarkable capabilities of this approach.
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Strongly correlated fermion systems are attracting
increasing interest in many fields including dense plasmas
[1,2], warm dense matter [3,4], strongly correlated materi-
als [5,6], ultracold atoms [7,8], and atoms and molecules in
strong radiation fields [9,10]. Of particular relevance are the
relaxation phenomena that occur following an external
excitation such as a rapid change (“quench”) of the
confinement or the interaction strength, the impact of
charged particles [11,12], or the photoionization of atoms
by lasers or free-electron lasers [13,14]. Many theoretical
approaches to the dynamics of strongly correlated fermions
are limited either to one-dimensional systems (density-
matrix renormalization-group simulations, DMRG) or
short times (quantum Monte Carlo). The first quantum
simulations of the expansion of correlated fermions in two
and three dimensions were recently achieved using non-
equilibrium Green functions (NEGF) [8] and exhibited very
good agreement with experiments. The high accuracy of
NEGF simulations was also demonstrated by comparison
to DMRG [15]. However, these NEGF simulations are
hampered by an unfavorable scaling with the simulation
duration according to T3 resulting from the two-time
structure of the NEGF and the memory effects in the
collision integral (see below).
This behavior can be relieved by applying the generalized

Kadanoff-Baym ansatz (GKBA) [16,17], which reduces the
dynamics of theNEGFGðt; t0Þ to propagation along the time
diagonal t ¼ t0. It could be demonstrated that, indeed, the
expected improvement of the scaling, N3

t → N2
t (in the

followingwewill use the number of discretization time steps
Nt ¼ T=Δt), can be achieved in practice for the selfenergy in
the second-order Born approximation (SOA) [18,19] where
initial correlation effects can be treated evenmore efficiently
[20,21]. It could further be shown that this approximation, in

many cases, does not lead to a loss of accuracy [10,15,22].
For these reasons, NEGF simulations using the GKBAwith
Hartree-Fock propagators (HF-GKBA) [cf. Eqs. (6) and (7)
below] have become a powerful tool for studying the
quantum dynamics in many fields, including optically
excited semiconductors [23–25], excitonic insulators [26],
quantum transport and molecular junctions [27,28], laser-
excited plasmas [29,30] and atoms [10,13], strongly corre-
lated electrons [22], and fermionic atoms in optical lattices
[15,31]. In recent years, significant effort was devoted to
improve the GKBA, see, e.g., Refs. [17,20–22,27,32–34].
Nevertheless, the quadratic scaling with Nt still makes the
approach much less efficient than competing methods that
scale linearly with Nt, such as molecular dynamics, fluid
theory, time-dependent density-functional theory within the
adiabatic approximation, or Boltzmann-type (Markovian)
kinetic equations.
In this Letter we demonstrate that the same linear scaling

with Nt, which is the ultimate limit in time-dependent
simulations, can be achieved for NEGF simulations within
the HF-GKBA. This allows for unprecedented long sim-
ulations as well as for high-quality energy spectra that are
computed via Fourier transformation of time-dependent
quantities, see, e.g., Refs. [35–37]. We demonstrate this
efficiency gain, compared to the original HF-GKBA,
for finite Hubbard clusters and predict an even stronger
gain for a basis in which the Green function and selfenergy
are diagonal, such as for spatially homogeneous systems.
Moreover, our approach allows one to compute additional
quantities that are not directly accessible in standard NEGF
schemes, such as the time-dependent pair-distribution
function, the static and dynamic structure factor, and
various correlation functions. Finally, we prove that
linear scaling can be achieved also for more advanced
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selfenergies, such as GW, where all existing schemes scale
as N3

t .
Theory.—We consider a general many-particle system

with the Hamiltonian

HðtÞ ¼
X

ij

hijðtÞĉ†i ĉj þ
1

2

X

ijkl

wijklĉ
†
i ĉ

†
j ĉlĉk; ð1Þ

containing a single-particle contribution ĥ and a pair
interaction ŵ. The matrix elements are computed with an
orthonormal system of single-particle orbitals jii. The
creation (ĉ†i ) and annihilation (ĉi) operators of particles
in state jii define the one-body nonequilibrium Green
functions (correlation functions; here and below “�” refers
to bosons and fermions) G<

ijðt; t0Þ ¼ �ði=ℏÞhĉ†jðt0ÞĉiðtÞi
and G>

ijðt; t0Þ ¼ ði=ℏÞhĉiðtÞĉ†jðt0Þi, where the averaging is
performed with the correlated unperturbed density operator
of the system. The response of the system (1) to an external
excitation is described by the Keldysh-Kadanoff-Baym
equations (KBE) on the time diagonal [16,19] where the
Green function reduces to the single-particle density
matrix, �iℏG<

ijðt; tÞ ¼ nijðtÞ,

∂nijðtÞ
∂t −

1

iℏ

X

k

½hHFik ðtÞ; nkjðtÞ� ¼ �½I þ I†�ijðtÞ; ð2Þ

with a mean-field Hamiltonian hHF. Here I is the collision
integral that takes into account interaction effects beyond
Hartree-Fock, including scattering and dissipation, which
we will treat in leading order, i.e., within the SOA [19,38]:

IijðtÞ ¼ ðiℏÞ2
X

mnp

wimnpðtÞ
X

kqrs

Z
t

t0

dt̄ w�
qrskðt̄Þ

× ½G>
nqðt; t̄ÞG>

prðt; t̄ÞG<
smðt̄; tÞG<

kjðt̄; tÞ − ð>↔<Þ�;
ð3Þ

where we defined w�
qrsj ≡ wqrsj � wqrjs ¼ �w�

qrjs. Clearly,
the computational effort to solve Eqs. (2) and (3) scales
with the number of time steps as N2

t .
We now demonstrate that, in the HF-GKBA approxi-

mation, Eqs. (2) and (3) can be reformulated such that the
effort is reduced to N1

t scaling. First, we introduce an
auxiliary four-index function G,

IijðtÞ ¼ �iℏ
X

mnp

wimnpðtÞGnpjmðtÞ; ð4Þ

GnpjmðtÞ¼ iℏ
X

kqrs

Z
t

t0

dt̄w�
qrskðt̄Þ

× ½G>
nqðt; t̄ÞG>

prðt; t̄ÞG<
sjðt̄;tÞG<

kmðt̄;tÞ−ð>↔<Þ�;
ð5Þ

where the replacement k ↔ s is used to match Eq. (3).
Comparing Eq. (4) with the first equation of the Martin-
Schwinger hierarchy for the many-particle Green functions
[39] reveals that GðtÞ is nothing but the time-diagonal
element of the two-particle Green function, and Eq. (5) is
its explicit form in the second-Born approximation [40].
Next, we introduce the GKBA [16,19] (summation over k is
implied)

G≷
ijðt; t0Þ ¼ �GR

ikðt; t0Þn≷kjðt0Þ ∓ n≷ikðtÞGA
kjðt; t0Þ; ð6Þ

GR=Aðt; t0Þ ¼ Θ½þ= − ðt − t0Þ�fG≷ðt; t0Þ −G≶ðt; t0Þg;
n<ijðtÞ ¼ nijðtÞ; n>ijðtÞ ¼ nijðtÞ − δij; ð7Þ

with Hartree-Fock propagators (HF-GKBA), GR=A →
GR=A;HF and apply it to each Green function in Eq. (5):

GGKBA
npjm ðtÞ ¼ iℏ

X

abcdkqrs

Z
t

t0

dt̄ w�
qrskðt̄Þ

× Uð2Þ
npabðt; t̄ÞΦabsk

qrcdðt̄ÞUð2Þ
cdjmðt̄; tÞ: ð8Þ

Here we introduced the abbreviations

Φabsk
qrcdðtÞ ¼ Φabsk>

qrcd ðtÞ −Φabsk<
qrcd ðtÞ;

Φabsk≷
qrcd ðtÞ ¼ n≷qaðtÞn≷rbðtÞn≶csðtÞn≶dkðtÞ; ð9Þ

and the two-particle time-evolution operator Uð2Þ is given in
the Supplemental Material [41].
Finally, we remove the time integral in Eq. (8) by

differentiating with respect to time which yields

iℏ
d
dt

GGKBA
npjm ðtÞ − ½hð2ÞHF;GGKBA�npjmðtÞ

¼ 1

ðiℏÞ2
X

kqrs

w�
qrskðtÞΦnpsk

qrjmðtÞ; ð10Þ

where hð2ÞHFijkl ðtÞ ¼ δjlhHFik ðtÞ þ δikhHFjl ðtÞ. With this we have
shown that NEGF theory within the HF-GKBA can be
brought to a memory-less form (10) which, indeed, changes
the scaling from quadratic to linear with Nt. This was
achieved by introducing the two-particle Green function on
the time diagonal G and by solving coupled time-local
equations for Gðt; tÞ and GðtÞ. We, therefore, will refer to
this as the “G1–G2” scheme. In fact, the one-to-one
correspondence of NEGF theory within the HF-GKBA
to time-local equations has been observed before [18,42].
In Ref. [42] it was also shown how to include arbitrary
initial correlations, by supplementing Eq. (10) with an
initial value, GGKBAðt0Þ ¼ G0. In Eq. (8) this gives rise to an
additional homogeneous solution that leads to an additional
collision integral in the time-diagonal KBE (2), in agree-
ment with recent results [20,21].
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In the following we analyze the G1–G2 scheme more in
detail. One readily confirms that the CPU time required to
solve Eq. (10), for a general basis of dimension Nb, scales
as OðN5

bN
1
t Þ [43]. In contrast, the original HF-GKBA

scales as OðN5
bN

2
t Þ and, thus a dramatic speedup is

expected, for any Nb [45]. At the same time, for many
practical applications optimized basis sets are being used
for which the scaling of both schemes has to be established
separately. We, therefore, consider below two representa-
tive examples—theHubbard basis and the uniform electron
gas. The scaling for all three cases is summarized in Table I.
Hubbard basis.—The (Fermi-)Hubbard model is a key

system in the theory of strongly correlated electrons in
solids, see, e.g., Refs. [46,47], and it is being directly
realized with fermionic atoms in optical lattices, see, e.g.,
Refs. [7,48,49]. It is defined by the Hubbard Hamiltonian

ĤðtÞ ¼ −J
X

hi;ji

X

α

ĉ†iαĉjα þ UðtÞ
X

i

n̂↑i n̂
↓
i ; ð11Þ

which includes hopping processes between nearest-neigh-
bor sites hi; ji with amplitude J and an on-site interaction
U, and α labels the spin projection. The integral (4) reads,

I↑ð↓Þij ðtÞ ¼ −iℏUðtÞG↑ð↓Þ
iiji ðtÞ, and the equation of motion

(10) for G simplifies to [50]

iℏ
d
dt
G↑ð↓Þ
npjmðtÞ− ½hð2ÞHF↑ð↓Þ ;G

↑ð↓Þ�
npjm

ðtÞ¼ðiℏÞ2
X

k

UðtÞ

× ½G↑ð↓Þ>
nk ðt;tÞG↓ð↑Þ>

pk ðt;tÞG↑ð↓Þ<
kj ðt;tÞG↓ð↑Þ<

km ðt;tÞ−>↔<�:

The numerical effort to solve this equation scales as
OðN5

bN
1
t Þ, whereas the original HF-GKBA solution scales

as OðN3
bN

2
t Þ, cf. Table I. It turns out that, for the Hubbard

model, the new scheme exhibits the most unfavorable
scaling with Nb, as compared to the standard scheme
and will become advantageous only for sufficiently large
Nt. For this reason we choose this case for numerical tests.
In Fig. 1 we study the dynamics of a small Hubbard cluster
and find excellent agreement between both schemes for all
observables, which is demonstrated for the density on site
one in Figs. 1(a) and 1(b). An even more sensitive accuracy

test is the conservation of total energy. Here, the G1–G2
scheme turns out to be even more accurate than the standard
HF-GKBA scheme if both use the same time step Δt,
cf. Fig. 1(c). We now compare in Fig. 2 the CPU time
required by both schemes for Hubbard systems with Nb¼2
and Nb ¼ 10. Our results clearly confirm the quadratic
(linear) scaling with Nt of the original HF-GKBA (G1–G2)
scheme as well as the predicted scaling with Nb: when
going from Nb ¼ 2 to Nb ¼ 10, “break even” is achieved
for Nt approximately ð10=2Þ2 ¼ 25 times larger, for SOA
selfenergies.
The uniform electron gas [(UEG), jellium] is a key

model for many-body physics, plasma, and condensed-
matter physics allowing one to describe important features

(a)

(c)(b)

FIG. 1. Comparisonof thenumerical accuracyof theordinaryHF-
GKBA and the G1–G2 scheme with SOA selfenergies, for a four-
site Hubbard chain with U=J ¼ 1.5, excited by a rapid potential
change of amplitude w0 ¼ 0.1J at site one. (a) Density evolution
at the first lattice site, n1ðtÞ. (b) Density difference between
both methods, Δn1ðtÞ ¼ nG1–G21 ðtÞ − nordinary1 ðtÞ. (c) Deviation
from total-energy conservation for two time steps. Both NEGF
implementations are based on a fourth-order integration scheme
with the same time step with the initial state being prepared via
adiabatic switching [22,31].

TABLE I. Scaling of the CPU time with the number of time
steps Nt and basis dimension Nb of the traditional non-Marko-
vian HF-GKBA and the present time-local scheme (G1–G2), for
three relevant basis sets, for SOA and GW selfenergies.

Basis and pair
potential

SOA GW

Old G1–G2 Old G1–G2
General: wijkl OðN5

bN
2
t Þ OðN5

bN
1
t Þ OðN6

bN
3
t Þ OðN6

bN
1
t Þ

Hubbard: U OðN3
bN

2
t Þ OðN5

bN
1
t Þ OðN3

bN
3
t Þ OðN5

bN
1
t Þ

Jellium: vjqj OðN3
bN

2
t Þ OðN3

bN
1
t Þ OðN3

bN
3
t Þ OðN3

bN
1
t Þ

FIG. 2. Log-log comparison of the computational effort of the
ordinary HF-GKBA (dashes) and the G1–G2 scheme (full lines)
for Hubbard clusters as a function of propagation time Nt. Colors
denote system size and the selfenergy approximation.

PHYSICAL REVIEW LETTERS 124, 076601 (2020)

076601-3



of the laser-driven nonequilibrium dynamics of electrons
in metals [51], warm dense matter [4], and quantum
plasmas [2,29], as well as of electron-hole plasmas
in semiconductors; see, e.g., Refs. [25,52–54]. Because
of homogeneity, a momentum (plain-wave) basis is
advantageous where the Green function becomes diagonal:
Gpqðt;t0Þ≔δpqGpðt;t0Þ, for momenta p, q. The Hamiltonian
of the UEG in second quantization reads [3]

ĤðtÞ ¼
X

pα

p2

2m
ĉ†pαĉpα þ

X

pp0qαβ

vjqjĉ
†
pþqαĉ

†
p0−qβĉp0βĉpα;

with the Coulomb matrix element vjqj ¼ ð4πe2=jqj2Þ. The
integral (4) becomes Ip;σðtÞ ¼ �iℏ

P
p̄;q;α vjqjðtÞGσα

pp̄qðtÞ,
whereas the two-particle Green’s function G obeys

iℏ
d
dt
Gσα
pp̄qðtÞ−Gσα

pp̄qðtÞðhHFp−q;σ þhHFp̄þq;α−hHFp;σ −hHFp̄;αÞ
¼ ðiℏÞ2fvjqjðtÞ� δσ;αvjp−q−p̄jðtÞg
× ½G>

p−q;σðt; tÞG>
p̄þq;αðt; tÞG<

p;σðt; tÞG<
p̄;αðt; tÞ− ð>↔<Þ�:

ð12Þ

Interestingly, Eq. (12) scales as OðN3
bN

1
t Þ vs OðN3

bN
2
t Þ,

for the standard HF-GKBA, cf. Table I, and the G1–G2
scheme brings about a dramatic acceleration, independent
of basis size.
Spectra and two-particle observables.—In addition to

accelerating the time evolution, the G1–G2 scheme gives
also access to more accurate spectral information. While
within the HF-GKBA spectral functions are treated on the
Hartree-Fock level, correlation effects in energy spectra can
be recovered by investigating the temporal response of the
system to a short weak external excitation (linear response),
see, e.g., Refs. [35–37]. This is demonstrated in Fig. 3
where the energy spectrum is retrieved via Fourier trans-
form of the density evolution in a Hubbard system. Here the
long propagation time enabled by the G1–G2 scheme
allows us to resolve correlation effects in the spectra, in
particular broadening and shift of peaks as well as the
emergence of new states at high energies.
Furthermore, the G1–G2 scheme allows one to compute

several quantities that are difficult or even impossible
to access within standard NEGF schemes. This includes
the nonequilibrium pair-distribution function (PDF)
gðr1; σ1; r2; σ2; tÞ and its Fourier transform—the static
structure factor. Moreover, dynamic quantities, such as
the density- and spin-correlation functions or velocity-
autocorrelation functions and the related transport
coefficients—the dynamic structure factor, diffusion and
absorption coefficients, and the dynamical conductivity
within and beyond linear response—are becoming directly
accessible. In Fig. 4, we show, as an example, the time
evolution of the pair-correlation function (PCF, i.e., the

correlated part or the PDF) relative to site 1, δgi↑;1↓ ¼
gi↑;1↓ − ni↑n1↓, for a 20-site Hubbard system after an
interaction quench, U=J ¼ 0 → 2. Initially the system is
ideal, corresponding to δg≡ 0, and correlations emerge
rapidly and spread with constant speed throughout the
system. Changing U does not affect this speed, but the
amplitude of the distance-dependent oscillations is propor-
tional to U.
Extension to advanced selfenergies.—Finally, we test the

G1–G2 scheme for the HF-GKBA with GW selfenergies
which are known to be significantly more accurate than
SOA, in particular, at stronger coupling [38,44]. At the
same time existing GW simulations out of equilibrium
scale as N3

t . Remarkably, we observe that the present G1–
G2 scheme achieves order N1

t scaling, as is summarized for

FIG. 3. Excitation spectrum of a 12-site Hubbard chain for
three coupling strengths U due to a rapid potential change of
amplitude w0 ¼ 0.01J at site one. The spectrum is obtained via
Fourier transform of the density n1ðtÞ computed with the G1–G2
scheme up to T ¼ 600ℏ=J. The initial state is prepared using
adiabatic switching.

FIG. 4. Time evolution of the PCF relative to site 1, δgi↑;1↓ðtÞ,
for a spatially homogeneous spin-symmetric 20-site Hubbard
chain following an interaction quench U=J ¼ 0 → 2 at t ¼ 0.
Sign-alternating correlations emerge rapidly and approach the
correlated ground state (GS). Inset shows δgGSi↑;j↓, for U=J ¼ 2,
computed via adiabatic switching. The dashed line corresponds to
data in the main figure.
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different basis sets in Table I (details are given in Ref. [41],
and similar results are observed for T-matrix selfenergies).
The huge computational advantage brought about by G1–
G2-GW simulations becomes evident also in Fig. 2; even
for Hubbard systems the G1–G2 scheme is advantageous,
except for very short simulations. This indicates that a large
class of problems is now becoming accessible for accurate
NEGF simulations that had remained out of reach so far.
Summary and discussion.—We have implemented an

alternative approach to NEGF simulations within the HF-
GKBA that is memory-free and achieves the ultimate limit
of linear scaling with the propagation duration T, as
opposed to the common HF-GKBA approach with SOA
(GW) selfenergies that is of order T2 (T3). This is achieved
by solving coupled time-local equations for Gðt; tÞ and the
time-diagonal two-particle Green function GðtÞ. With this
G1–G2 scheme we also established a direct link to the
independent reduced-density-matrix (RDM) approach that
has become popular in recent years in many fields, see, e.g.,
Refs. [42,55–60]. Applying our derivation allows one to
identify those RDM approximations that are equivalent
to common selfenergies in NEGF theory what enables one
to make use of the full power of Feynman diagrams in
RDM theory. We expect that the demonstrated astonishing
scaling of the G1–G2 scheme will make highly accurate
NEGF simulations of many nonequilibrium processes such
as in laser-excited correlated systems achievable.
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Niclas Schlünzen, Jan-Philip Joost, and Michael Bonitz

This supplement contains additional information on 1.) the time-evolution operators U(t, t′), and 2.) the
derivation of the G1–G2 formulas in GW approximation.

1 Time-evolution operators
The two-particle time-evolution operator appearing in Eq. (8) of the manuscript is defined as

U (2)
npab(t, t

′) := Una(t, t′)Upb(t, t′) , (S1)

where U(t, t′) obeys a Schrödinger equation,

i~
d

dt
Una(t, t′)−

∑

b

hHF
nb (t)Uba(t, t′) = 0 , (S2)

i~
d

dt′
Una(t, t′) +

∑

b

Unb(t, t′)hHF
ba (t′) = 0 .

Note that the retarded/advanced propagators of Eq. (6) of the main text are related to U via

Uij(t, t′) = GR
ij(t, t

′)−GA
ij(t, t

′) . (S3)

2 Derivation of the G1–G2 scheme for GW selfenergies
In the GW approximation, the selfenergy has the form [1],

Σ
≷
ij(t, t

′) = i~
∑

kl

W
≷
ilkj(t, t

′)G≷
kl(t, t

′) , (S4)

where, W is the dynamically screened interaction, which can be expressed in terms of the inverse dielectric
function [2],

W
≷
ijkl(t, t

′) =
∑

mn

wimkn(t)ε
−1,≷
mjnl(t, t

′) . (S5)

The collision integral in Eq. (2) of the manuscript then becomes,

Iij(t) =
∑

k

∫ t

t0

dt̄
[
Σ>

ik(t, t̄)G<
kj(t̄, t)− Σ<

ik(t, t̄)G>
kj(t̄, t)

]
(S6)

= i~
∑

klmnp

wimkn(t)

∫ t

t0

dt̄
[
ε−1,>mlnp(t, t̄)G>

kl(t, t̄)G
<
pj(t̄, t)− ε−1,<mlnp(t, t̄)G<

kl(t, t̄)G
>
pj(t̄, t)

]
. (S7)

With Eq. (4) of the main text one finds the following expression for the time-diagonal element of the two-particle
Green function,

Gnpjm(t) = ±
∑

kl

∫ t

t0

dt̄
[
ε−1,>mkpl (t, t̄)G

>
nk(t, t̄)G<

lj(t̄, t)− ε−1,<mkpl (t, t̄)G
<
nk(t, t̄)G>

lj(t̄, t)
]
. (S8)
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By construction, the interaction tensors obey the following symmetries [2],

wijkl(t) = wjilk(t) , (S9)

W
≷
ijkl(t, t

′) = W
≶
jilk(t′, t) . (S10)

Using that, the dynamical screening is included in ε−1 via the recursive equation,

ε
−1,≷
ijkl (t, t′) =± i~

∑

mn

wmjnl(t
′)G≷

km(t, t′)G≶
ni(t
′, t) (S11)

± i~
∑

mnpq

wjplq(t′)

[∫ t

t0

dt̄
(
G>

km(t, t̄)G<
ni(t̄, t)−G<

km(t, t̄)G>
ni(t̄, t)

)
ε−1,≶pmqn(t′, t̄)

+

∫ t′

t0

dt̄ G
≷
km(t, t̄)G

≶
ni(t̄, t)

(
ε−1,>pmqn(t′, t̄)− ε−1,<pmqn(t′, t̄)

)]
.

Applying the HF-GKBA [cf. Eq. (6) and (7) of the main text] leads to the following expressions for GGKBA,

GGKBA
npjm (t) = ±

∑

klrs

∫ t

t0

dt̄Unr(t, t̄)
[
ε−1,>mkpl (t, t̄)n

>
rk(t̄)n<

ls(t̄)− ε−1,<mkpl (t, t̄)n
<
rk(t̄)n>

ls(t̄)
]
Usj(t̄, t) , (S12)

as well as for ε−1GKBA → ε−1,

ε
−1,≷
ijkl (t ≥ t′) (S13)

=± i~
∑

mnpq

wmjnl(t
′)Ukp(t, t′)n≷

pm(t′)n≶
nq(t′)Uqi(t′, t)

± i~
∑

mnpqab

wjalb(t
′)

[∫ t

t0

dt̄Ukp(t, t̄)
(
n>
pm(t̄)n<

nq(t̄)− n<
pm(t̄)n>

nq(t̄)
)
Uqi(t̄, t)ε−1,≶ambn(t′, t̄)

+

∫ t′

t0

dt̄Ukp(t, t̄)n≷
pm(t̄)n≶

nq(t̄)Uqi(t̄, t)
(
ε−1,>ambn(t′, t̄)− ε−1,<ambn(t′, t̄)

)]
,

where U is given by Eq. (S2). With Eq. (S13), also the derivative of ε−1 is readily found,

d

dt
ε
−1,≷
ijkl (t ≥ t′) =

1

i~
∑

m

hHF
km(t)ε

−1,≷
ijml (t ≥ t′)− 1

i~
∑

m

ε
−1,≷
mjkl (t ≥ t′)hHF

mi (t)

± 1

i~
∑

mnab

wmanb(t)
[
n>
km(t)n<

ni(t)− n<
km(t)n>

ni(t)
]
ε
−1,≷
ajbl (t ≥ t′) . (S14)

Finally, the derivative of GGKBA can be set up,
d

dt
GGKBA
npjm (t) =± 1

(i~)
2

∑

kl

[
ε−1,>mkpl (t, t)n

>
nk(t)n<

lj(t)− ε−1,<mkpl (t, t)n
<
nk(t)n>

lj(t)
]

±
∑

klrs

∫ t

t0

dt̄

(
d

dt
Unr(t, t̄)

)[
ε−1,>mkpl (t, t̄)n

>
rk(t̄)n<

ls(t̄)− ε−1,<mkpl (t, t̄)n
<
rk(t̄)n>

ls(t̄)
]
Usj(t̄, t)

±
∑

klrs

∫ t

t0

dt̄Unr(t, t̄)

[(
d

dt
ε−1,>mkpl (t, t̄)

)
n>
rk(t̄)n<

ls(t̄)−
(

d

dt
ε−1,<mkpl (t, t̄)

)
n<
rk(t̄)n>

ls(t̄)

]
Usj(t̄, t)

±
∑

klrs

∫ t

t0

dt̄Unr(t, t̄)
[
ε−1,>mkpl (t, t̄)n

>
rk(t̄)n<

ls(t̄)− ε−1,<mkpl (t, t̄)n
<
rk(t̄)n>

ls(t̄)
]( d

dt
Usj(t̄, t)

)
. (S15)

With the introduction of the following auxiliary function [3],

Pnpjm(t) = ±
∑

cd

[
n>
pd(t)n<

cm(t)− n<
pd(t)n>

cm(t)
]∑

rs

wdrcs(t)GGKBA
nsjr (t) , (S16)

Eq. (S15) can eventually be exactly brought to the following time-local form that is used in the G1–G2 scheme,

i~
d

dt
GGKBA
npjm (t)−

[
h(2),HF,GGKBA

]
npjm

(t)

=
1

(i~)
2

∑

kqrs

wqrsk(t)
[
n>
nq(t)n>

pr(t)n<
sj(t)n

<
km(t)− n<

nq(t)n<
pr(t)n>

sj(t)n
>
km(t)

]

+ Pnpjm(t) + Ppnmj(t) . (S17)
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The time evolution in quantum many-body systems after external excitations is attracting high interest
in many fields, including dense plasmas, correlated solids, laser-excited materials, or fermionic and bosonic
atoms in optical lattices. The theoretical modeling of these processes is challenging, and the only rigorous
quantum-dynamics approach that can treat correlated fermions in two and three dimensions is nonequilibrium
Green functions (NEGF). However, NEGF simulations are computationally expensive due to their T 3 scaling
with the simulation duration T . Recently, T 2 scaling was achieved with the generalized Kadanoff-Baym ansatz
(GKBA), for the second-order Born (SOA) self energy, which has substantially extended the scope of NEGF
simulations. In a recent Letter [Schlünzen et al., Phys. Rev. Lett. 124, 076601 (2020)]. we demonstrated that
GKBA-NEGF simulations can be efficiently mapped onto coupled time-local equations for the single-particle
and two-particle Green functions on the time diagonal, hence the method has been called the G1-G2 scheme.
This allows one to perform the same simulations with order T 1 scaling, both for SOA and GW self energies
giving rise to a dramatic speedup. Here we present more details on the G1-G2 scheme, including derivations
of the basic equations including results for a general basis, for Hubbard systems, and for jellium. Also, we
demonstrate how to incorporate initial correlations into the G1-G2 scheme. Further, the derivations are extended
to a broader class of self energies, including the T matrix in the particle-particle and particle-hole channels and
the dynamically-screened-ladder approximation. Finally, we demonstrate that, for all self energies, the CPU-time
scaling of the G1-G2 scheme with the basis dimension Nb can be improved compared to our first report: The
overhead compared to the original GKBA is not more than an additional factor Nb, even for Hubbard systems.

DOI: 10.1103/PhysRevB.101.245101

I. INTRODUCTION

Nonequibrium Green functions (NEGF) [1–3] have proven
highly successful in simulations of the dynamics of correlated
many-body systems. This is due to a number of attractive
properties that include conservation laws and the existence of
systematic approximation schemes that are based on Feynman
diagrams. Moreover, NEGF allow for a rigorous derivation of
quantum kinetic equations and for their systematic improve-
ment; for recent overviews, see the text books [4–6].

While early computational applications focused on spa-
tially homogeneous systems such as nuclear matter [7,8],
optically excited semiconductors [4,9], and dense plasmas
[10,11], during the last 15 years the scope of applications has
substantially broadened. This includes the excitation and ion-
ization dynamics of small atoms and molecules [12–14], the
correlated-electron dynamics in the Hubbard model [15–17],
the dynamics of fermionic atoms [18,19], and the stopping of

*bonitz@theo-physik.uni-kiel.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

ions in correlated materials [20–22]. This success was caused,
among other things, by progress in the numerical solution of
the basic equations of NEGF—the Keldysh-Kadanoff-Baym
equations (KBE) [12,23–25]. Furthermore, improved time
propagation and integration schemes led to an increase in
efficiency and accuracy of the simulations [26,27]. Moreover,
the implementation of more advanced self energies, such as
the T -matrix self energy, further increased the accuracy and
predictive capability; for a recent review, see Ref. [28]. In
particular, very good agreement with cold-atom experiments
[18] and with ab initio density-matrix-renormalization-group
(DMRG) simulations were reported [27]. A particular ad-
vantage of NEGF simulation is that they are well capable
to treat strong electronic correlations, in contrast to density-
functional theory (DFT), and that they are neither restricted
to 1D systems, such as DMRG, nor to short times, such as
continuous-time quantum Monte Carlo [29].

The main disadvantage of NEGF is their high numeri-
cal effort. The majority of many-body methods, including
time-dependent DFT (TDDFT), Boltzmann-type quantum ki-
netic equations, hydrodynamics or semiclassical molecular
dynamic—and even the exact solution of the time-dependent
Schrödinger equation—require a simulation time that grows
linearly with the physical time. In contrast, for NEGF, the
propagation in the two-time plane, together with the memory
integration in the scattering contributions, gives rise to a N3

t

2469-9950/2020/101(24)/245101(27) 245101-1 Published by the American Physical Society
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scaling, where Nt is the propagation time (number of time
steps). A substantial acceleration is possible when the gener-
alized Kadanoff-Baym ansatz (GKBA) is applied [30] which
restricts the propagation to a time stepping along the time
diagonal. If combined with Hartree-Fock propagators (HF-
GKBA) [31–33] the CPU-time scaling can be reduced to N2

t ,
which has given rise to a drastic increase of the number of HF-
GKBA simulations in recent years, see, e.g., Refs. [17,27,34–
38]. However, this improved scaling is achieved only for the
simplest self energy—the second-Born approximation (SOA).
If the HF-GKBA is applied to improved self energies, such
as the T -matrix self energy [19,27], which is required for
strongly correlated systems [18], or the GW self energy [28]
which is required to capture dynamical-screening effects, the
CPU-time scaling is again increased to N3

t .
In a recent Letter we reported a breakthrough for NEGF

simulations within the HF-GKBA scheme: We demonstrated
that time-linear scaling, i.e., a CPU time that is of order
N1

t , can be achieved if the equations of motion are properly
reformulated, without any approximations. The alternative
approach solves the time-local equations for the time-diagonal
single- and two-particle Green functions and was called the
G1-G2 scheme [39]. While the equivalence of the HF-GKBA
to time-local equations was pointed out before [5,40], a com-
parison of the numerical behavior of both approaches was
performed only in Ref. [39]. There we reported N1

t scaling
for SOA and GW self energies and any type of single-particle
basis. The scaling was demonstrated for small Hubbard clus-
ters which turned out to be the most unfavorable case because
the CPU time of the G1-G2 scheme was found to grow by
a factor N2

b faster than for the standard HF-GKBA approach,
where Nb is the dimension of the single-particle basis.

In this paper we present extensive additional results for the
G1-G2 scheme. First, we present all necessary details for the
derivation of the equation of motion for the time-diagonal
two-particle Green function. The results are derived for a
general basis, for the Hubbard model, and for jellium. Second,
we discuss how initial correlations can be incorporated. Third,
we extend the analysis to other self energies: the T -matrix
approximation in the particle-particle (TPP) and particle-hole
(TPH) channels and the dynamically-screened-ladder (DSL)
approximation. Fourth, numerical results are presented for
all self-energy approximations which clearly confirm the N1

t
scaling, not only asymptotically, but already for rather small
simulation durations, Nt � 30. Finally, we re-evaluate the
Nb dependence of the CPU time and report an additional
optimization that reduces the overhead of the new scheme
from N2

b to only N1
b , for the Hubbard model, for all self

energies.
This paper is organized as follows: In Sec. II we sum-

marize the main required formulas of NEGF theory and the
properties of the two-particle Green function. In Sec. III we
present the basic formulas for the G1-G2 scheme, for the
case of the SOA self energy—separately for a general basis,
the Hubbard basis, and for jellium. The same analysis is
then extended to GW and T -matrix self energies in Secs. IV
and V and to the screened-ladder approximation in Sec. VI.
Finally, the analysis of the scaling behavior with Nt and Nb

for all self energies and numerical results are presented in
Sec. VII.

II. THEORETICAL FRAMEWORK

A. Keldysh-Kadanoff-Baym equations and two-particle
Green function

We consider a nonequilibrium quantum many-particle sys-
tem with the generic Hamiltonian

Ĥ (t ) =
∑

i j

h(0)
i j (t )ĉ†

i ĉ j + 1

2

∑
i jkl

wi jkl (t )ĉ†
i ĉ†

j ĉl ĉk , (1)

containing a single-particle contribution h(0) and a pair inter-
action w. Note the twofold time dependencies of the Hamil-
tonian. The time dependence of the single-particle contribu-
tion h(0) covers the interaction with external electromagnetic
fields, lasers, or particle impact (stopping) [20], or the vari-
ation (quench) of a confinement potential [18,41]. While the
interaction potential w is time independent in most cases, a
time dependence has to be taken into account when modeling
interactions quenches (e.g., in cold-atom experiments) or for
the numerical preparation of a correlated initial state via
“adiabatic switching,” cf. Sec. III E. Thus, for the sake of
generality of our derivations, we will retain the full time
dependence throughout this paper.

The matrix elements of the Hamiltonian are computed with
a complete orthonormal system of single-particle orbitals |i〉.
The creation (ĉ†

i ) and annihilation (ĉi) operators of particles in
state |i〉 define the one-body nonequilibrium Green function
(correlation function) for contour-time arguments z on the
Keldysh contour C [28] (examples of the contour are shown
in Fig. 1),

Gi j (z, z′) = 1

ih̄
〈TC{ĉi(z)ĉ†

j (z
′)}〉 .

Here, TC is the time-ordering operator on the contour, and the
averaging is performed with the correlated unperturbed den-
sity operator of the system. The equations of motion (EOMs)
for the NEGF are the Keldysh-Kadanoff-Baym equations [43]

∑
k

[
ih̄

d

dz
δik − h(0)

ik (z)

]
Gk j (z, z′)

= δi jδC (z, z′) ± ih̄
∑
kl p

∫
C

dz̄ wikl p(z, z̄)G(2)
l p jk (z, z̄, z′, z̄+) ,

(2)

∑
k

Gik (z, z′)

⎡
⎣−ih̄

←
d

dz′ δk j − h(0)
k j (z′)

⎤
⎦

= δi jδC (z, z′) ± ih̄
∑
kl p

∫
C

dz̄ G(2)
ikl p(z, z̄−, z′, z̄)wl p jk (z̄, z′) .

(3)

Here, the times z± := z ± ε differ from z by an infinites-
imally small positive constant ε to avoid ambiguities in
the time ordering of field-operator products. Furthermore,
a two-time version of the interaction potential is intro-
duced using the delta function on the Keldysh contour,
wi jkl (z, z′) = δC (z, z′)wi jkl (z), see, e.g., Refs. [6,19,28]. The
KBE couple to the two-particle Green function (terms on the
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(a)

−∞ ∞

t0 t

CAS

(b)

t0

∞

t0 − ih̄β

t

CM

FIG. 1. Two examples of the Keldysh “round-trip” time contour
that are used in NEGF theory to treat initial correlations, see, e.g.,
Ref. [2]. (a) Contour CAS containing an initial real-time interval (from
−∞ to t0) to adiabatically “switch on” the pair interaction, starting
from an uncorrelated state. (b) Contour CM with an imaginary branch
allowing us to include thermodynamic-equilibrium correlations via
Green functions which have one time argument on the real branch
and one on the imaginary branch [33,42].

r.h.s.) which is defined by

G(2)
i jkl (z1, z2, z3, z4) = 1

(ih̄)2
〈TC{ĉi(z1)ĉ j (z2)ĉ†

l (z4)ĉ†
k (z3)}〉

and contains a mean-field (Hartree-Fock) and a correlation
contribution

G(2)
i jkl (z1, z2, z3, z4)=G(2),H

i jkl (z1, z2, z3, z4)±G(2),F
i jkl (z1, z2, z3, z4)

+ G(2),corr
i jkl (z1, z2, z3, z4) . (4)

The Eqs. (2) and (3) for the one-particle NEGF are formulated
on the Keldysh contour, cf. Fig. 1. They are equivalent to
equations for Keldysh Green function matrices of real-time
arguments where the matrix components differ by the location
of the time arguments on the contour; for details see the
text books [6,33]. Our G1-G2 scheme involves the special
case of two-particle functions that depend either on one or
two times and their real-time components that we define as
follows:

GH
i jkl (z, z′) := G(2),H

i jkl (z, z, z′, z′) = Gik (z, z′)Gjl (z, z′) ,

GF
i jkl (z, z′) := G(2),F

i jkl (z, z′, z, z′) = Gil (z, z′)Gjk (z′, z) ,

Gcorr
i jkl (z, z′) := G(2),corr

i jkl (z, z, z′, z+) ,

GH,≷
i jkl (t, t ′) := G≷

ik (t, t ′)G≷
jl (t, t ′) ,

GF,≷
i jkl (t, t ′) := G≷

il (t, t ′)G≶
jk (t ′, t ) ,

GH,≷
i jkl (t ) := GH,≷

i jkl (t, t ) ,

GF,≷
i jkl (t ) := GF,≷

i jkl (t, t ) ,

Gi jkl (t ) := Gcorr,<
i jkl (t, t ) . (5)

The time-diagonal two-particle Green function G(t ), defined
by Eq. (5), is the central quantity of the G1-G2 scheme. In
general, and for all self-energy approximations considered in
this work, it obeys the following (pair-) exchange symmetries,

Gi jkl (t ) = G jilk (t ) , (6)

Gi jkl (t ) = [Gkli j (t )]∗ . (7)

B. Time-diagonal KBE

In the following we are interested in the dynamics of the
real-time components G≷(t, t ′) and, in particular, the proper-
ties of G≷

i j (t ) := G≷
i j (t, t ) on the real-time diagonal. The EOM

for G<(t ) has the form [19,44]

ih̄
d

dt
G<

i j (t ) − [hHF, G<]i j (t ) = [I + I†]i j (t ) , (8)

I (t ) = I (t ) + I IC(t ) , (9)

where I is the collision integral of the kinetic equation that,
in general, consists of the dynamical collision integral I and
the initial-correlation contribution I IC which includes pair
correlations existing in the system at the initial time t = t0.
In NEGF theory initial correlations can be described [6,21],
e.g., by including contributions from the imaginary track of
the Keldysh contour (lower part of Fig. 1) or via building up
initial correlations dynamically via a prior dynamics that starts
from an uncorrelated state (“adiabatic switching,” upper part
of Fig. 1). We will discuss this issue more in detail below,
in Sec. III E where we also show how initial correlations are
taken into account in the G1-G2 scheme. For now we focus
on the first collision integral, i.e., I (t ) = I (t ), assuming that
the system is prepared in an uncorrelated (ideal) initial state
at time t0. In that case the buildup of dynamical correlations is
described by

Ii j (t ) = ±ih̄
∑
kl p

wikl p(t )Gl p jk (t )

=
∑

k

∫ t

t0

dt̄[�>
ik (t, t̄ )G<

k j (t̄, t ) − �<
ik (t, t̄ )G>

k j (t̄, t )] .

(10)

Here, the first line follows directly from the r.h.s. of Eqs. (2)
and (3), where the time integral has been taken with the help of
the delta function in the two-time potential. In the second line
the two-particle Green function has been eliminated by intro-
ducing the correlation self-energy functions �≷ [the notion
“correlation self energy” means that the Hartree-Fock self-
energy contributions have been subtracted from �≷; they are
included in the Hamiltonian hHF on the l.h.s., cf. Eq. (12)]—
which is the standard approach in the NEGF framework. The
self energy is the only unknown function in the theory. If it
was known exactly, the description of the dynamics would be
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exact. This is, of course, not the case in most situations and,
thus, approximations are required. In the following sections
we will consider several key approximations that are currently
broadly used in various fields of many-body physics. Note that
for the approximations studied in this paper, the self energies
�≷(t, t ′) are nonsingular functions. This means, the collision
integral Ii j (t ) in Eq. (10) vanishes for t → t0.

Before we start the analysis with the second-order Born
approximation for the self energy, in Sec. III, we summarize a
few important properties of Eq. (8). First, on the time diagonal
the less component of the NEGF can be written as

G<
i j (t ) = G>

i j (t ) − 1

ih̄
δi j = ± 1

ih̄
ni j (t ) , (11)

where ni j is the single-particle density matrix. Further, as was
noted above, in Eq. (8) the mean-field part of the two-particle
Green function, cf. Eq. (4) (or, equivalently, the self energy),
is included in an effective single-particle Hartree-Fock Hamil-
tonian which is defined as [28]

hHF
i j (t ) = h(0)

i j (t ) ± ih̄
∑

kl

w±
ik jl (t )G<

lk (t, t ) , (12)

where we introduced the (anti-)symmetrized interaction po-
tential which we define via its four-dimensional matrix with
respect to the single-particle basis

w±
i jkl (t ) := wi jkl (t ) ± wi jlk (t ) .

The interaction tensor obeys the same symmetries as G(t ) [cf.
Eqs. (6) and (7)]:

wi jkl (t ) = w jilk (t ) , (13)

wi jkl (t ) = [wkli j (t )]∗ , (14)

which also leads to

w±
i jkl (t ) = ±w±

i jlk (t ) .

III. SECOND-ORDER BORN SELF ENERGY

In the following we introduce the G1-G2 scheme for the
simplest case of choosing the self energy in the second-Born
approximation [19],

�
≷
i j (t, t ′) = ±(ih̄)2

∑
kl pqrs

wikl p(t )w±
qr js(t

′)

× G≷
lq (t, t ′)G≷

pr (t, t ′)G≶
sk (t ′, t ) .

With that, the collision integral of the time-diagonal equation
(10) transforms into:

Ii j (t ) = ±(ih̄)2
∑

kl pqrsu

wikl p(t )
∫ t

t0

dt̄ w±
qrsu(t̄ )

× [G>
lq(t, t̄ )G>

pr (t, t̄ )G<
uk (t̄, t )G<

s j (t̄, t )

− G<
lq(t, t̄ )G<

pr (t, t̄ )G>
uk (t̄, t )G>

s j (t̄, t )]

= ±(ih̄)2
∑

kl pqrsu

wikl p(t )
∫ t

t0

dt̄ w±
qrsu(t̄ )

× [
GH,>

l pqr (t, t̄ )GH,<
su jk (t̄, t ) − GH,<

l pqr (t, t̄ )GH,>
su jk (t̄, t )

]

= ±(ih̄)2
∑

kl pqrsu

wikl p(t )
∫ t

t0

dt̄ w±
qrsu(t̄ )

× [
GF,>

l jqs(t, t̄ )GF,<
urkp(t̄, t ) − GF,<

l jqs(t, t̄ )GF,>
urkp(t̄, t )

]
,

where we presented several equivalent formulations that will
be used below. At this point, it is possible to identify G [cf.
Eq. (10)] in SOA,

Gi jkl (t ) = ih̄
∑
pqrs

∫ t

t0

dt̄ w±
pqrs(t̄ )

× [
GH,>

i j pq (t, t̄ )GH,<
rskl (t̄, t ) − GH,<

i j pq (t, t̄ )GH,>
rskl (t̄, t )

]
.

(15)

A. G within the GKBA

The G1-G2 scheme is a reformulation of the ordinary
solution of the time-diagonal KBE in the HF-GKBA. When
applying the GKBA the time-off-diagonal elements of the less
and greater NEGF are reconstructed from the time-diagonal
value via [19]

G≷
i j (t, t ′) = ih̄

∑
k

[
GR

ik (t, t ′)G≷
k j (t

′) − G≷
ik (t )GA

k j (t, t ′)
]
,

(16)

with the retarded and advanced Green functions that are
defined by

GR
i j (t, t ′) = �(t − t ′)[G>

i j (t, t ′) − G<
i j (t, t ′)] ,

GA
i j (t, t ′) = −�(t ′ − t )[G>

i j (t, t ′) − G<
i j (t, t ′)] ,

where GR(t, t ′) [GA(t, t ′)] is nonzero only for t � t ′ (t � t ′).
We now show that, in the reconstruction expression (16), the
individual functions GR/A can be eliminated in favor of their
difference

Ui j (t, t ′) = GR
i j (t, t ′) − GA

i j (t, t ′) . (17)

In the case of the HF-GKBA the propagator U (t, t ′) has
the properties of a time-evolution operator, as is shown in
Appendix A. It possesses the group property [Eq. (A4)] and
obeys a Schrödinger equation, cf. Eqs. (A6) and (A7), with
the initial value

Ui j (t, t ) = GR
i j (t, t ) − GA

i j (t, t ) = G>
i j (t ) − G<

i j (t ) = 1

ih̄
δi j .

(18)

We now demonstrate the appearance of U by rewriting
Eq. (16) separately, for t = t ′ and t > t ′,

G≷
i j (t ′ = t ) = ih̄

∑
k

[
GR

ik (t, t )G≷
k j (t )︸ ︷︷ ︸

=G≷
ik (t )GR

k j (t,t )

−G≷
ik (t )GA

k j (t, t )
]

= ih̄
∑

k

G≷
ik (t )

[
GR

k j (t, t ) − GA
k j (t, t )

]
,

G≷
i j (t ′ < t ) = −ih̄

∑
k

G≷
ik (t ′)GA

k j (t
′, t )

= ih̄
∑

k

G≷
ik (t ′)

[
GR

k j (t
′, t )︸ ︷︷ ︸

=0

−GA
k j (t

′, t )
]
.
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Similar relations can be found for t � t ′. These results can be
combined to an alternative form of the GKBA

G≷
i j (t ′ � t ) = ih̄

∑
k

G≷
ik (t ′)Uk j (t

′, t ) , (19)

G≷
i j (t � t ′) = ih̄

∑
k

Uik (t, t ′)G≷
k j (t

′) . (20)

Using the results of Eqs. (19) and (20), for the Green func-
tions [taking into account that in the collision integral only
G>(t � t̄ ) and G<(t̄ � t ) appear], we reformulate Eq. (15)
for the two-particle Green function on the time diagonal (cf.
Appendix A 1)

Gi jkl (t ) = ih̄
∑

pqrsuvxy

∫ t

t0

dt̄ w±
pqrs(t̄ )

× U (2)
i juv (t, t̄ )�uvrs

pqxy(t̄ )U (2)
xykl (t̄, t ) ,

where we introduced short notations for the two-particle prop-
agator U (2) and define the occupation factors �≷,

U (2)
i jkl (t, t ′) = Uik (t, t ′)U jl (t, t ′) = U (2)

jilk (t, t ′), (21)

�i jkl
pqrs(t ) = �i jkl,>

pqrs (t ) − �i jkl,<
pqrs (t ) ,

�i jkl,≷
pqrs (t ) = (ih̄)4GH,≷

i j pq (t )GH,≶
klrs (t )

= (ih̄)4GF,≷
ikr p (t )GF,≷

jlsq (t ) = (ih̄)4GF,≷
ilsp (t )GF,≶

k jqr (t ) .

A more compact and intuitive notation can be achieved by
introducing the two-particle source term

�±
i jkl (t ) = 1

(ih̄)2

∑
pqrs

w±
pqrs(t )�i jrs

pqkl (t ) ,

which results in

Gi jkl (t ) = (ih̄)3
∑
pqrs

∫ t

t0

dt̄ U (2)
i j pq(t, t̄ )�±

pqrs(t̄ )U (2)
rskl (t̄, t ) (22)

and allows for a straightforward interpretation: Pair correla-
tions Gi jkl existing in the system at time t are due to pair
correlations existing at all times t̄ with t0 � t̄ � t that are
time evolved with the propagators U (2). The function �±
has the meaning of pair correlations produced in the system
via two-particle scattering per unit time. The appearance
of two propagators indicates that Gi jkl (t ) does not obey a
Schrödinger-type equation but a commutator equation, that we
will derive below, in Sec. III B. There we will also show that
the time integral in Eq. (22) can be eliminated.

B. Time-linear differential solution for G : SOA-G1-G2
equations for a general basis

There are two ways to transform Eq. (22) into a scheme that
scales linearly with propagation time. The first is based on the
integral representation for G while the second uses, instead,
coupled time-local differential equations for G<(t ) and G(t ).
Here and throughout this paper we will concentrate on the
second approach as it turns out to be more efficient. The first
approach is discussed, for completeness, in Appendix B.

In the following we first derive the differential equation
scheme (G1-G2 scheme) for a general single-particle basis
that corresponds to the generic Hamiltonian defined in Eq. (1),
where spin degrees of freedom are included in the basis
index. Below we will separately consider the special cases of
a Hubbard basis and the jellium model for electrons where
the two spin projections will be indicated explicitly. In order
to find the differential equation for G , the EOMs for the
retarded/advanced Green functions in HF-GKBA along both
time directions are repeated [19]:

ih̄
d

dt
GR/A

i j (t, t ′) =
∑

k

hHF
ik (t )GR/A

k j (t, t ′) + δi jδ(t, t ′)

ih̄
d

dt
GR/A

i j (t ′, t ) = −
∑

k

GR/A
ik (t ′, t )hHF

k j (t ) − δi jδ(t, t ′) .

(23)

For the two-particle propagators similar Schrödinger-type
EOMs hold as shown in Appendix A 3,

d

dt
U (2)

i jkl (t, t ′) = 1

ih̄

∑
pq

h(2),HF
i j pq (t )U (2)

pqkl (t, t ′) , (24)

d

dt
U (2)

i jkl (t
′, t ) = − 1

ih̄

∑
pq

U (2)
i j pq(t ′, t )h(2),HF

pqkl (t ) , (25)

where we define the two-particle Hartree-Fock Hamiltonian
as the sum of two single-particle parts:

h(2),HF
i jkl (t ) = δ jl h

HF
ik (t ) + δikhHF

jl (t ) . (26)

With that we now compute the time derivative of the time-
diagonal two-particle Green function within the HF-GKBA
(22), G , which contains two parts,

d

dt
Gi jkl (t ) =

[
d

dt
Gi jkl (t )

]
∫ +

[
d

dt
Gi jkl (t )

]
U (2)

.

The first contribution (
∫

) originates from the integration
boundaries,[

d

dt
Gi jkl (t )

]
∫ = (ih̄)3

∑
pqrs

U (2)
i j pq(t, t )�±

pqrs(t )U (2)
rskl (t, t )

= 1

ih̄
�±

i jkl (t ) , (27)

where the latter equation holds due to the identity [cf.
Eqs. (18) and (21)]

U (2)
i jkl (t, t ) = 1

(ih̄)2
δikδ jl .

The second contribution to the derivative results from the time
dependence of the integrand, i.e., of U (2),[

d

dt
Gi jkl (t )

]
U (2)

= (ih̄)3
∑
pqrs

∫ t

t0

dt̄ �±
pqrs(t̄ )

×
{[

d

dt
U (2)

i j pq(t, t̄ )

]
U (2)

rskl (t̄, t ) + U (2)
i j pq(t, t̄ )

[
d

dt
U (2)

rskl (t̄, t )

]}
,
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and, using the results from Eqs. (24) and (25), we obtain[
d

dt
Gi jkl (t )

]
U (2)

= (ih̄)3
∑
pqrs

∫ t

t0

dt̄

×
{[

1

ih̄

∑
uv

h(2),HF
i juv (t )U (2)

uvpq(t, t̄ )

]
�±

pqrs(t̄ )U (2)
rskl (t̄, t )

+ U (2)
i j pq(t, t̄ )�±

pqrs(t̄ )

[
− 1

ih̄

∑
uv

U (2)
rsuv (t̄, t )h(2),HF

uvkl (t )

]}
,

where we identify G again, to get[
d

dt
Gi jkl (t )

]
U (2)

= 1

ih̄

∑
pq

h(2),HF
i j pq (t ) Gpqkl (t )

− 1

ih̄

∑
l f

Gi j pq(t ) h(2),HF
pqkl (t ) . (28)

With that, the full derivative of the time-diagonal two-particle
Green function is obtained by adding up the results of
Eqs. (27) and (28) [45]

ih̄
d

dt
Gi jkl (t ) − [

h(2),HF,G
]

i jkl
(t ) = �±

i jkl (t ) . (29)

We now summarize the equations of the G1-G2 scheme
for the second-order Born self energy, for a general basis. The
scheme consists of the equation for the time-diagonal element
of the single-particle Green function, cf. Eq. (8),

ih̄
d

dt
G<

i j (t ) = [hHF, G<]i j (t ) + [I + I†]i j (t ) , (30)

Ii j (t ) = ±ih̄
∑
kl p

wikl p(t )Gl p jk (t ) , (31)

coupled to Eq. (29)—the EOM of the time-diagonal element
of the two-particle Green function. Equations (29), (30),
and (31) constitute a closed system of time-local differential
equations, for which the computational effort for a numerical
implementation scales linearly with time. This was achieved
by eliminating the non-Markovian (memory) structure of the
collision integral. All transformations so far introduce no fur-
ther approximations resulting in an exact reformulation of the
standard HF-GKBA, as was demonstrated in Ref. [39]. The
linear scaling with Nt , as opposed to the quadratic scaling of
the standard HF-GKBA in SOA, is the basis for a potentially
dramatic speedup of NEGF simulations. The price to pay is
the need to compute the entire matrix of the time-diagonal
two-particle Green function, the effort for which only depends
on the basis dimension Nb. This will be analyzed in detail in
Sec. VII.

In a similar manner as for the SOA self energy, a time-local
equation for G corresponding to more advanced self energies
can be derived for which the speedup of the G1-G2 scheme
is even larger. This will be demonstrated in the subsequent
sections. But before that, we consider the G1-G2 scheme
in SOA for two important special cases of basis sets—the
Hubbard basis and the spatially uniform jellium model (plane-
wave basis).

C. SOA-G1-G2 equations for the Hubbard model

The Hubbard model [46] is among the fundamental
models in condensed-matter physics, in particular, for the
analysis of strong electronic correlations. More recently it
has been widely used to study the behavior of fermionic
and bosonic atoms in optical lattices [47] and, in par-
ticular, time-dependent correlation phenomena, see, e.g,
Refs. [16,17,41,48]. For the Fermi-Hubbard model, the gen-
eral pair-interaction matrix element becomes (δ̄αβ := 1 − δαβ)

w
αβγ δ

i jkl (t ) = U (t )δi jδikδilδαγ δβδδ̄αβ , (32)

with the on-site interaction U and the spin projection labeled
by greek indices. Recall that we allow for a time dependence
of the interaction to capture the adiabatic-switching protocol
of initial correlations (see Sec. III E) as well as nonequilibrium
processes such as an interaction quench, cf. the discussion
of Eq. (1) above. The kinetic-energy matrix is replaced by a
hopping Hamiltonian,

h(0)
i j = −δ〈i, j〉J ,

which includes hopping processes between nearest-neighbor
sites 〈i, j〉 with amplitude J . Thus, the total Hamiltonian is
given by

Ĥ (t ) = −J
∑
〈i, j〉

∑
α

ĉ†
iα ĉ jα + U (t )

∑
i

n̂↑
i n̂↓

i . (33)

Extensions to more complicated models, going beyond the
nearest-neighbor single-band case are straightforward but will
not be considered here.

The time-diagonal EOM for the single-particle Green func-
tion, Eq. (8), takes the following form (from here we give all
Hubbard equations for the spin-up component; the spin-down
equations follow from the replacement ↑↔↓.)

ih̄
d

dt
G<,↑

i j (t ) = [hHF,↑, G<,↑]i j (t ) + [I + I†]↑i j (t ) , (34)

I↑
i j (t ) = −ih̄U (t )G↑↓↑↓

ii ji (t ) , (35)

where for electrons there exist two collision integrals, I↑ and
I↓, that enter the single-particle EOMs. The Hartree-Fock
Hamiltonian in Eq. (34) in the Hubbard basis becomes [cf.
Eq. (12)]:

hHF,↑
i j (t ) = h(0)

i j − ih̄δi jU (t )G<,↓
ii (t ) .

The equation for the time-diagonal two-particle Green func-
tion, Eq. (29), now reads

ih̄
d

dt
G↑↓↑↓

i jkl (t ) − [
h(2),HF

↑↓ ,G↑↓↑↓]
i jkl (t )

= 1

(ih̄)2
U (t ) �

↑↓↑↓
i jkl (t ) =: �

↑↓↑↓
i jkl (t ) , (36)

where

h(2),HF
i jkl,↑↓(t ) = δ jl h

HF,↑
ik (t ) + δikhHF,↓

jl (t ) , (37)
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and

�
↑↓↑↓
i jkl (t ) := (ih̄)4

∑
p

[
G>,↑

ip (t )G>,↓
j p (t )G<,↑

pk (t )G<,↓
pl (t )

− G<,↑
ip (t )G<,↓

j p (t )G>,↑
pk (t )G>,↓

pl (t )
]
. (38)

The Eqs. (34) and (36) together with their spin-down coun-
terparts form a coupled system of four equations. For SOA,
no further spin combinations of G contribute. Numerical
examples will be presented in Sec. VII.

D. SOA-G1-G2 equations for jellium

As the second example we consider the jellium Hamilto-
nian [49],

Ĥ (t ) =
∑

pα

p2

2m
ĉ†

pα ĉpα +
∑

pp′qαβ

v|q|(t )ĉ†
p+qα

ĉ†
p′−qβ

ĉp′β ĉpα ,

(39)

with the vector-sized momenta p, p′, q and the Coulomb ma-
trix element v|q| = 4πe2

|q|2 [we again allow for a time-dependent
pair interaction to also describe adiabatic-switching pro-
cesses, cf. the discussion of Eq. (1) above]. This model is of
relevance for the electron gas in metals [50,51], for electron-
hole plasmas in semiconductors [4], and for dense quantum
plasmas, e.g., Refs. [5,10], as well as for model development
[49,51]. The matrix element of the pair interaction in a plane-
wave basis is

w
αβγ δ

k1k2k3k4
(t ) = δαγ δβδδ(k1 + k2 − k3 − k4)v|k1−k3|(t ) , (40)

where vq denotes the spatial Fourier transform of the pair
potential, and the delta function arises from momentum con-
servation (spatial homogeneity).

The EOM for the single-particle Green function, Eq. (8), is
now

ih̄
d

dt
G<,α

p (t ) = [I + I†]αp(t ) , (41)

with

Iα
p (t ) = ±ih̄

∑
p̄,q

∑
β

v|q|(t )Gαβ
pp̄q(t ) ,

where we defined

Gαβ
p,p̄,q(t ) := Gαβαβ

p−q,p̄+q,p,p̄(t ) , (42)

and the equation for the time-diagonal two-particle Green
function becomes

ih̄
d

dt
Gαβ

pp̄q(t ) − Gαβ
pp̄q(t )

(
hHF,α

p−q + hHF,β
p̄+q − hHF,α

p − hHF,β
p̄

)
(t )

= 1

(ih̄)2

[
v|q|(t ) ± δαβv|p−q−p̄|(t )

]
�

αβ
pp̄q(t )

=: �
±,αβ
pp̄q (t ) , (43)

where

hHF,α
p (t ) = p2

2m
+ ih̄

∑
p̄

v|p−p̄|(t )G<,α
p̄ (t ) ,

and

�
αβ
pp̄q(t ) = (ih̄)4

[
G>,α

p−q(t )G>,β
p̄+q(t )G<,α

p (t )G<,β
p̄ (t )

− G<,α
p−q(t )G<,β

p̄+q(t )G>,α
p (t )G>,β

p̄ (t )
]
.

This result agrees with the one derived in Refs. [5,32].

E. Initial pair correlations in the G1-G2 scheme

We conclude this section by returning to the question of
initial correlations in NEGF theory that we briefly discussed
in the context of Eq. (8) and analyze how they show up in the
present G1-G2 scheme. For NEGF theory and the GKBA, the
question of initial correlations has been extensively discussed
before, see, e.g., Refs. [6,7,11,52], for more recent investiga-
tions, see Refs. [21,36,53]. As we mentioned below Eq. (10),
the collision integral I (t ) = I (t ) vanishes for t → t0 which is
correct only for a system that is uncorrelated at the initial time
t0. In the presence of finite initial correlations, one also has
to consider the second contribution of the collision integral,
Eq. (9), with limt→t0 I (t ) = I IC(t0). In NEGF theory there are
three common equivalent approaches to take into account ini-
tial correlations and to derive the additional collision integral
I IC(t ):

(i): Derivation of an additional self energy �IC that de-
pends on initial correlations. This self energy can be shown
to be singular, i.e., it contains a delta function δ(t, t0) which
gives rise to a finite value of the time integral from t0 to t in
I (t ), in the limit t → t0. This approach has been developed
in Refs. [5,10,52,54], where also explicit expressions for the
second-order Born and T -matrix approximations for the self
energy have been derived.

(ii): Incorporation of thermodynamic-equilibrium initial
correlations given by an imaginary-time Green function (Mat-
subara function). This leads to an extension of the Keldysh
time contour C that is shown in the lower part of Fig. 1. When
making the transition from the Green function on this contour
to real-time quantities, i.e., from Eqs. (2) and (3) to the equa-
tions of motion for G≷(t, t ′), an additional collision integral
appears that involves the mixed Green functions G(t, τ ) and
G(τ, t ) where the argument t runs along the real-time part of
the contour and τ along the imaginary-time branch of CM. This
approach was introduced by Danielewicz [7] and is explained
in detail in Refs. [6,33].

(iii): Incorporation of arbitrary initial correlations at time
t = t0 that are computed via a preceding time evolution that
starts from an uncorrelated initial state in the remote past
(t → −∞). This is the “adiabatic-switching” procedure that
was discussed already by Keldysh [1,2]. There the interaction
is smoothly turned on, i.e., wi jkl (t ) = f (t )wi jkl , where the
scalar function f (t ) starts from zero and approaches one at
t0. Correspondingly, the contour is extended to real times well
before t0 (see the contour CAS in the upper part of Fig. 1) and
the collision integral I again has a finite value at t = t0. For
recent applications of this approach, see Refs. [17,28,55].

It is characteristic for these NEGF approaches [except
for (i)] that the correlated initial state is prepared without
explicitly specifying the two-particle Green function G(2) or
the pair-correlation function. This is in line with the standard
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NEGF approach to formally eliminate the two-particle Green
function in favor of the single-particle self energy.

In contrast, the G1-G2 scheme recovers the two-particle
Green function on the time diagonal G(t ) from the collision
integral I (t ). Its equation is solved simultaneously with the
equation for the single-particle NEGF. This allows for a differ-
ent and more straightforward approach to initial correlations
as we discuss in the remainder of this section.

As shown in Ref. [5], the previous expression (22) for G(t )
is only a particular solution of the inhomogeneous differential
equation (29), whereas the complete solution contains, in
addition, the general solution of the homogeneous equations
(corresponding to the neglect of �±) which is directly related
to initial correlations and which we denote GIC(t ). Thus the
total solution becomes

G (t ) → G (t ) + GIC(t ) , (44)

GIC
i jkl (t ) = (ih̄)4

∑
pqrs

U (2)
i j pq(t, t0) G0

pqrs U (2)
rskl (t0, t ) . (45)

For the special case t = t0, the first term in Eq. (44) van-
ishes but the second reduces exactly to the initial correlation,
GIC(t0) = G0. Thus, we have identified the initial conditions
for the differential equations (30), for G<(t ), and (29), for
G(t ). Recalling the definitions (11) and (5), the former is
related to the initial value of the single-particle density matrix
and the latter to the initial value of the correlated part of the
two-particle density matrix n0

i jkl := ni jkl (t0):

G0,<
i j = ± 1

ih̄
ni j (t0) =: ± 1

ih̄
n0

i j ,

G0
i jkl = 1

(ih̄)2

{
n0

i jkl − n0
ikn0

jl ∓ n0
il n

0
jk

}
,

i.e., to pair correlations existing in the system at the initial
time t = t0. The two expressions, (45) and (22), can be com-
bined into the total solution for the time-diagonal two-particle
Green function according to

Gi jkl (t ) = (ih̄)4
∑
pqrs

∫ t

t0

dt̄ U (2)
i j pq(t, t̄ )

×
[
δ(t0, t̄ )G0

pqrs + 1

ih̄
�±

pqrs(t̄ )

]
U (2)

rskl (t̄, t ) . (46)

Mathematically, of course, arbitrary initial conditions can
be used to time evolve the differential equations for G<(t )
and G(t ). At the same time, however, restrictions should be
imposed by selecting only physically realistic correlations
(see below). An important example is initial correlations that
correspond to the correlated ground state or thermodynamic-
equilibrium state. This can be achieved using concept (iii)
above to adiabatically turn on the interaction, starting from
an uncorrelated system in the remote past. This results in the
following “initial” pair-correlation function (corresponding to
the second-Born approximation)

G0
i jkl = (ih̄)3

∑
pqrs

∫ t0

−∞
dt̄ U (2)

i j pq(t0, t̄ )�±
pqrs(t̄ )U (2)

rskl (t̄, t0) .

(47)

In practice, a sufficiently long but finite adiabatic-switching
time has to be chosen to generate the correlated ground state
[19]. Inserting the adiabatic-switching result (47) into the
general expression for the time-dependent initial-correlation
contribution, Eq. (45), we obtain

GIC
i jkl (t ) = (ih̄)3

∑
pqrs

∫ t0

−∞
dt̄ U (2)

i j pq(t, t̄ )�±
pqrs(t̄ )U (2)

rskl (t̄, t ) ,

where we took into account the group property of the two-
particle propagators, cf. Appendix A 2. Interestingly, this re-
sult is of exactly the same mathematical form as the collision-
induced contribution, Eq. (22), except for the limits of the
time integration, which are t0 and t , in the latter case. This
means, in the case of initial correlations that are produced
via adiabatic switching, both contributions to the two-particle
function can be combined into

Gi jkl (t ) = (ih̄)3
∑
pqrs

∫ t

−∞
dt̄ U (2)

i j pq(t, t̄ )�±
pqrs(t̄ )U (2)

rskl (t̄, t ) ,

(48)

which is a special case of the general result (46). This re-
sult also shows that the “initial” point t0 is arbitrary: The
dynamics that started at −∞ can be interrupted at any time
t1 ∈ (−∞, t], and the result (48) for G(t1) can be used as
the new “initial” correlation G0, whereas the collision-induced
contribution now contains an integral running from t1 to t . Of
course, the dynamics are time reversible: Starting at time t and
changing the Hamiltonian Ĥ (t + t̄ ) → −Ĥ (t − t̄ ) will return
the system to the same initial state at t1 [56].

While expression (47) was based on adiabatic switching,
in principle, the initial value for G0 can be generated by
other methods [e.g. (i) and (ii) above], as long as certain
physical restrictions are satisfied, as was discussed, e.g., in
Refs. [21,57]. The result can be summarized as follows: In
a closed (isolated) system, only such pair correlations are
physically relevant that are produced for the same system
within the same many-body approximations as the subsequent
dynamics. In contrast, initial correlations that are produced by
different approximations will, in general, lead to discontinu-
ities in the dynamics, for t > t0. This has relevance in open
systems, in cases where the initial state is produced externally,
by a separate process such as an interaction quench, e.g.,
Refs. [10,58–60] or a spin switch [61,62]. When the general
result, Eq. (46), is inserted into the kinetic equation (30),
this will give rise to the total collision integral, I (t ), Eq. (9),
where the term containing �± will produce the dynamical
collision integral I (t ), whereas the term containing G0 will
give rise to the second contribution I IC(t ), in agreement with
the discussion above.

With this we succeeded to derive the complete formal
solution for the time-diagonal two-particle Green function that
is equivalent to the coupled system of differential equations
for G<(t ) and G(t ) [Eqs. (30) and (29)] with the initial
conditions G<0 and G0, respectively. While the results in
Eqs. (46) and (48) hold for the second-Born approximation
for the self energy, this functional form is generally valid. The
main difference, for more complicated self energies, is the
explicit form of the two-particle propagators. For the addi-
tional approximations considered in this work [GW (Sec. IV),
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T matrix (Sec. V)] the respective expressions are presented in
Appendix D.

IV. GW SELF ENERGY

The static second-Born approximation that was considered
above neglects screening effects and the dynamics of screen-
ing. These effects are captured by the GW approximation for
which the self energy is given by

�
≷
i j (t, t ′) = ih̄

∑
kl

W ≷
ilk j (t, t ′)G≷

kl (t, t ′) . (49)

Here, W is the dynamically screened interaction, which can
be expressed in terms of the bare interaction and the inverse
dielectric function,

W ≷
i jkl (t, t ′) =

∑
pq

wipkq(t )ε−1,≷
p jql (t, t ′) , (50)

which allows us to transform the self energy (49) into

�
≷
i j (t, t ′) = ih̄

∑
kl pq

wipkq(t )ε−1,≷
plq j (t, t ′)G≷

kl (t, t ′) .

The collision integral of the time-diagonal equation then
becomes

Ii j (t ) =
∑

k

∫ t

t0

dt̄
[
�>

ik (t, t̄ )G<
k j (t̄, t ) − �<

ik (t, t̄ )G>
k j (t̄, t )

]

= ih̄
∑
kl pqr

wipkq(t )
∫ t

t0

dt̄

× [
ε−1,>

plqr (t, t̄ )GF,>
kr jl (t, t̄ ) − ε−1,<

plqr (t, t̄ )GF,<
kr jl (t, t̄ )

]
.

Recalling the definition (10), we identify the time-diagonal
element of the two-particle Green function in GW approxi-
mation,

Gi jkl (t ) = ±
∑

pq

∫ t

t0

dt̄
[
ε−1,>

l p jq (t, t̄ )GF,>
iqkp(t, t̄ )

− ε−1,<
l p jq (t, t̄ )GF,<

iqkp(t, t̄ )
]
.

By construction, the screened-interaction tensor obeys the
following symmetry [cf. Eq. (13)],

W ≷
i jkl (t, t ′) = W ≶

jilk (t ′, t ) . (51)

From Hedin’s equations [63] we derive the following
relation for the dynamically screened interaction
W from which we subtract the singular part, i.e.,
W ≷

i jkl (t, t ′) → W ≷
i jkl (t, t ′) − wi jklδ(t − t ′) [28],

W ≷
i jkl (t, t ′) = ±ih̄

∑
pqrs

wipkq(t )wr jsl (t
′)GF,≷

qspr (t, t ′)

± ih̄
∑
pqrs

wipkq(t )

×
[ ∫ t

t0

dt̄
(
GF,>

qspr (t, t̄ ) − GF,<
qspr (t, t̄ )

)
W ≷

r jsl (t̄, t ′)

+
∫ t ′

t0

dt̄ GF,≷
qspr (t, t̄ )(W <

r jsl (t̄, t ′) − W >
r jsl (t̄, t ′))

]
. (52)

By comparison with Eq. (50) and using the symmetry of
Eq. (51) one can identify a recursive equation for ε−1,

ε
−1,≷
i jkl (t, t ′) = ± ih̄

∑
pq

wp jql (t
′)GF,≷

kqip(t, t ′)

± ih̄
∑
pqrs

w jrls(t
′)

×
[ ∫ t

t0

dt̄
(
GF,>

kqip(t, t̄ ) − GF,<
kqip(t, t̄ )

)
ε−1,≶

r psq (t ′, t̄ )

+
∫ t ′

t0

dt̄ GF,≷
kqip(t, t̄ )

(
ε−1,>

r psq (t ′, t̄ ) − ε−1,<
r psq (t ′, t̄ )

)]
.

The time-diagonal equation for the inverse dielectric function
can be further simplified,

ε
−1,≷
i jkl (t, t ) = ± ih̄

∑
pq

wp jql (t )GF,≷
kqip(t ) ± ih̄

∑
pqrs

w jrls(t )

×
∫ t

t0

dt̄
(
GF,>

kqip(t, t̄ )ε−1,>
r psq (t, t̄ )

− GF,<
kqip(t, t̄ )ε−1,<

r psq (t, t̄ )
)

= ± ih̄
∑

pq

wp jql (t )GF,≷
kqip(t )

+ ih̄
∑

pq

wp jql (t )Gkqip(t ) . (53)

A. GW approximation within the HF-GKBA

We now apply the HF-GKBA [cf. (16) and (17)] and obtain
the following expressions for G ,

Gi jkl (t ) = ± (ih̄)2
∑
pqrs

∫ t

t0

dt̄ Uir (t, t̄ )
[
ε−1,>

l p jq (t, t̄ )GF,>
rqsp(t̄ )

− ε−1,<
l p jq (t, t̄ )GF,<

rqsp(t̄ )
]
Usk (t̄, t ) ,

as well as for ε−1,

ε
−1,≷
i jkl (t � t ′)

= ±(ih̄)3
∑
pqrs

wp jql (t
′)Ukr (t, t ′)GF,≷

rqsp(t ′)Usi(t
′, t )

± (ih̄)3
∑

pqrsuv

w jrls(t
′)
[ ∫ t

t0

dt̄ Uku(t, t̄ )

× (
GF,>

uqvp(t̄ ) − GF,<
uqvp(t̄ )

)
Uvi(t̄, t )ε−1,≶

r psq (t ′, t̄ )

+
∫ t ′

t0

dt̄ Uku(t, t̄ )GF,≷
uqvp(t̄ )Uvi(t̄, t )

× (
ε−1,>

r psq (t ′, t̄ ) − ε−1,<
r psq (t ′, t̄ )

)]
, (54)

where U obeys Eqs. (A6) and (A7). By using the sym-
metry relation of Eq. (51) we easily find an expression
for the time derivative of the off-diagonal inverse dielectric
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function,

d

dt
ε

−1,≷
i jkl (t � t ′)

= 1

ih̄

∑
p

{
hHF

kp (t )ε−1,≷
i j pl (t � t ′) − ε

−1,≷
p jkl (t � t ′)hHF

pi (t )
}

± ih̄
∑
pqrs

wprqs(t )
[
GF,>

kqip(t ) − GF,<
kqip(t )

]
ε

−1,≷
r jsl (t � t ′)

= 1

ih̄

∑
pq

[
hε,HF

pkqi (t ) + hε,corr
pkqi (t )

]
ε

−1,≷
p jql (t � t ′) ,

where we introduced the modified two-particle Hartree-Fock
Hamiltonian

hε,HF
i jkl (t ) = δil h

HF
jk (t ) − δ jkhHF

il (t ) ,

which matches the index structure of the effective quasi-
Hamiltonian, defined as

hε,corr
i jkl (t ) = ±(ih̄)2

∑
pq

wqipk (t )
[
GF,>

j plq(t ) − GF,<
j plq(t )

]
. (55)

Combining these Hamiltonians into a single one,

hε
i jkl (t ) = hε,HF

i jkl (t ) + hε,corr
i jkl (t ) , (56)

we observe that the inverse dielectric function, within the GW -
HF-GKBA, obeys a time-dependent two-particle Schrödinger
equation,

ih̄
d

dt
ε

−1,≷
i jkl (t � t ′) =

∑
pq

hε
pkqi(t )ε−1,≷

p jql (t � t ′) , (57)

with the Hamiltonian (56), that is equivalent to the rather com-
plicated integral equation (54). In the following, we demon-
strate that, for the GW -HF-GKBA, again, a time-local G1-G2
scheme can be derived which retains time-linear scaling [39].

B. GW -G1-G2 equations for a general basis

To derive the G1-G2 scheme, we compute the time deriva-
tive of G, yielding

d

dt
Gi jkl (t )=

[
d

dt
Gi jkl (t )

]
∫ +

[
d

dt
Gi jkl (t )

]
ε

+
[

d

dt
Gi jkl (t )

]
U
,

(58)

where the first contribution, which originates from the deriva-
tive of the integration boundaries, is given by[

d

dt
Gi jkl (t )

]
∫

= ±
∑

pq

[
ε−1,>

l p jq (t, t )GF,>
iqkp(t ) − ε−1,<

l p jq (t, t )GF,<
iqkp(t )

]
= ih̄

∑
pqrs

wr psq(t )
[
GF,>

jslr (t )GF,>
iqkp(t ) − GF,<

jslr (t )GF,<
iqkp(t )

]
± ih̄

∑
pqrs

wr psq(t )G jslr (t )
[
GF,>

iqkp(t ) − GF,<
iqkp(t )

]

= 1

ih̄
�i jkl (t ) − 1

ih̄

∑
pq

Gq j pl (t )
[
hε,corr

qkpi (t )
]∗

.

Here, the two-particle source term is defined as

�i jkl (t ) = 1

(ih̄)2

∑
pqrs

wpqrs(t )�i jrs
pqkl (t ) .

The second contribution to Eq. (58), resulting from the time
derivative of ε−1, is given by[

d

dt
Gi jkl (t )

]
ε

= ±(ih̄)2
∑
pqrs

∫ t

t0

dt̄ Uir (t, t̄ )

[(
d

dt
ε−1,>

l p jq (t, t̄ )

)
GF,>

rqsp(t̄ )

−
(

d

dt
ε−1,<

l p jq (t, t̄ )

)
GF,<

rqsp(t̄ )

]
Usk (t̄, t )

= 1

ih̄

∑
pq

[
hε,HF

p jql (t ) + hε,corr
p jql (t )

]
Giqkp(t ) ,

whereas the third contribution to Eq. (58), which stems from
the derivative of the propagators, is[

d

dt
Gi jkl (t )

]
U

= ±(ih̄)2
∑
pqrs

∫ t

t0

dt̄

(
d

dt
Uir (t, t̄ )

)[
ε−1,>

l p jq (t, t̄ )GF,>
rqsp(t̄ )

− ε−1,<
l p jq (t, t̄ )GF,<

rqsp(t̄ )
]
Usk (t̄, t )

± (ih̄)2
∑
pqrs

∫ t

t0

dt̄ Uir (t, t̄ )
[
ε−1,>

l p jq (t, t̄ )GF,>
rqsp(t̄ )

− ε−1,<
l p jq (t, t̄ )GF,<

rqsp(t̄ )
]( d

dt
Usk (t̄, t )

)

= 1

ih̄

∑
p

[
hHF

ip (t )Gp jkl (t ) − Gi j pl (t )hHF
pk (t )

]

= − 1

ih̄

∑
pq

Gq j pl (t )
[
hε,HF

qkpi (t )
]∗

.

Finally, the three contributions to the derivative of G are
combined to reveal

ih̄
d

dt
Gi jkl (t ) = �i jkl (t ) +

∑
pq

{
hε

q j pl (t )[Gqkpi(t )]∗

− Gq j pl (t )
[
hε

qkpi(t )
]∗}

, (59)

where hε(t ) was defined in Eq. (56). With this we have
obtained the equations of the G1-G2 scheme for the GW
approximation. For hε,corr(t ) ≡ 0, we recover the equations
from the SOA, cf. Eq. (29), since the remaining Hamiltonian
contribution can be expressed as a commutator. Equation (59)
is the most compact formulation that visualizes the intrinsic
structure of G in the GW approximation.

For practical use, it is convenient to separate the correlation
contributions from the mean-field terms via the introduction
of an additional quantity:

ih̄
d

dt
Gi jkl (t ) − [

h(2),HF,G
]

i jkl (t )

= �i jkl (t ) + �i jkl (t ) − [�lk ji(t )]∗ , (60)

245101-10



G1-G2 SCHEME: DRAMATIC ACCELERATION OF … PHYSICAL REVIEW B 101, 245101 (2020)

where polarization effects are included in

�i jkl (t ) =
∑

pq

hε,corr
q j pl (t )Gipkq(t ) . (61)

Equation (59) agrees with the polarization approximation of
density-matrix theory, cf. Refs. [5,64]. In the Markov limit
this leads to the quantum generalization of the Balescu-Lenard
kinetic equation [65–67].

Here, we have employed the standard definition of GW in
NEGF theory, which is widely used in literature (see, e.g.,
Refs. [15,28,68]), in which the screened interaction [Eq. (52)]
does not include exchange terms. The generalization to also
describe exchange processes is, however, straightforwardly
carried out. For the G1-G2 scheme, this is achieved by simply
replacing �i jkl (t ) by �±

i jkl (t ) in Eqs. (59) and (60).
Again we have succeeded to eliminate all time integrations

which means that Eq. (59) can be solved with an effort that is
first order in Nt . Note that the conventional HF-GKBA scheme
with GW self energy scales as N3

t indicating a huge advantage
of the G1-G2 formulation [39]. More computational details
will be given below, in Sec. VII.

C. GW -G1-G2 equations for the Hubbard model

For the Hubbard system [cf. Eq. (33)] we again use the
interaction matrix of Eq. (32). With that, the equations of
motion (60) become,

ih̄
d

dt
G↑↓↑↓

i jkl (t ) − [
h(2),HF

↑↓ ,G↑↓↑↓]
i jkl (t )

= �
↑↓↑↓
i jkl (t ) + �

↑↓↑↓
i jkl (t ) − [�↑↓↑↓

lk ji (t )]∗ and (62)

ih̄
d

dt
G↑↑↑↑

i jkl (t ) − [
h(2),HF

↑↑ ,G↑↑↑↑]
i jkl (t )

= �
↑↑↑↑
i jkl (t ) − [�↑↑↑↑

lk ji (t )]∗ , (63)

where we introduced the polarization terms,

�
↑↓↑↓
i jkl (t ) = −(ih̄)2U (t )

∑
p

[G>,↓
j p (t )G<,↓

pl (t )

− G<,↓
j p (t )G>,↓

pl (t )]G↑↑↑↑
ipkp (t ), (64)

�
↑↑↑↑
i jkl (t ) = −(ih̄)2U (t )

∑
p

[G>,↑
j p (t )G<,↑

pl (t )

− G<,↑
j p (t )G>,↑

pl (t )]G↑↓↑↓
ipkp (t ) . (65)

Notice that there are two separate spin combinations (four
when considering ↑↔↓) for the two-particle Green function
that enter Eqs. (62) and (63). Due to the cross coupling in the
two polarization terms, they cannot be solved independently
[28,69]. Numerical results for the GW -G1-G2 scheme are
presented in Sec. VII.

D. GW -G1-G2 equations for jellium

For the uniform electron gas [cf. Eq. (39)] we again use the
interaction matrix of Eq. (40) and define

�
αβ
p,p̄,q(t ) := �

αβαβ
p−q,p̄+q,p,p̄(t ) .

With that, the equation (60) for the time-diagonal two-particle
Green function [recall the definition (42)] becomes

ih̄
d

dt
Gαβ

pp̄q(t ) − Gαβ
pp̄q(t )

(
hHF,α

p−q + hHF,β
p̄+q − hHF,α

p − hHF,β
p̄

)
(t )

= 1

(ih̄)2
v|q|(t )�αβ

pp̄q(t )︸ ︷︷ ︸
=:�αβ

pp̄q(t )

+�
αβ
p,p̄,q(t ) − [

�
βα
p̄+q,p−q,q(t )

]∗
,

with the momentum representation of the polarization term,
given by

�
αβ
p,p̄,q(t ) = ± (ih̄)2

[
G>,β

p̄+q(t )G<,β
p̄ (t ) − G<,β

p̄+q(t )G>,β
p̄ (t )

]
× v|q|(t )

∑
k,σ

Gασ
pkq(t ) . (66)

As we will discuss in Sec. VII, the GW equations for jellium
can be solved particularly efficiently.

V. T -MATRIX SELF ENERGIES

We next turn to the case of strong coupling where the
second-Born approximation is not applicable. It is well known
that the entire Born series can be summed up, giving rise to
the T -matrix (or binary-collision or ladder) approximation.
Here we first consider the case of a static pair interaction.
The extension to a dynamically screened T matrix will be
considered in Sec. VI. We start by considering, in Sec. V A,
the T matrix in the particle-particle channel after which we
analyze, in Sec. V B, the T matrix in the particle-hole channel.

A. T matrix in the particle-particle channel

For the particle-particle T matrix, the self energy has the
form [3,19],

�
≷
i j (t, t ′) = ih̄

∑
kl

T pp,≷
ik jl (t, t ′)G≶

lk (t ′, t ) . (67)

Here, the T matrix is expressed as

T pp,≷
i jkl (t, t ′) =

∑
pq

wi j pq(t )�pp,≷
pqkl (t, t ′) , (68)

which allows us to rewrite the self energy (67):

�
≷
i j (t, t ′) = ih̄

∑
kl pq

wikpq(t )�pp,≷
pq jl (t, t ′)G≶

lk (t ′, t ) . (69)

In Eqs. (68) and (69) the quantity �pp is the nonequilibrium
generalization of the Møller operator from scattering theory
[70,71]. The collision integral (10) of the time-diagonal equa-
tion then becomes,

Ii j (t ) = ih̄
∑
kl pqr

wipqr (t )
∫ t

t0

dt̄
[
�

pp,>

qrkl (t, t̄ )GH,<
kl j p(t̄, t )

− �
pp,<

qrkl (t, t̄ )GH,>
kl j p(t̄, t )

]
= ±ih̄

∑
kl p

wikl p(t )Gkp jl (t ) ,
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which results in the following expression for the time-diagonal element of the two-particle Green function,

Gi jkl (t ) = ±
∑

pq

∫ t

t0

dt̄
[
�

pp,>

i j pq (t, t̄ )GH,<
pqkl (t̄, t ) − �

pp,<

i j pq (t, t̄ )GH,>
pqkl (t̄, t )

]
.

By construction, the T matrix obeys the following symmetry [cf. Eq. (14)],

T pp,≷
i jkl (t, t ′) = −[

T pp,≷
kli j (t ′, t )

]∗
. (70)

The T matrix sums up the particle-particle collisions via the recursive equation (nonequilibrium Lippmann-Schwinger
equation; compared to the standard definition of the T matrix, here the singular part has been subtracted [19,28]),

T pp,≷
i jkl (t, t ′) = ± ih̄

∑
pqrs

wi j pq(t )GH,≷
pqrs (t, t ′)w±

rskl (t
′) + ih̄

∑
pqrs

wi j pq(t )

{ ∫ t

t0

dt̄
[
GH,>

pqrs(t, t̄ )

− GH,<
pqrs(t, t̄ )

]
T pp,≷

rskl (t̄, t ′) +
∫ t ′

t0

dt̄ GH,≷
pqrs (t, t̄ )

[
T pp,<

rskl (t̄, t ′) − T pp,>

rskl (t̄, t ′)
]}

.

Following this and using the symmetries of Eqs. (14) and (70) the relation for the Møller operator is readily derived,

�
pp,≷
i jkl (t, t ′) = ± ih̄

∑
pq

GH,≷
i j pq (t, t ′)w±

pqkl (t
′) + ih̄

∑
pqrs

{ ∫ t

t0

dt̄
[
GH,>

i j pq (t, t̄ ) − GH,>
i j pq (t, t̄ )

]
wpqrs(t̄ )�pp,≷

rskl (t̄, t ′)

+
∫ t ′

t0

dt̄ GH,≷
i j pq (t, t̄ )wpqrs(t̄ )

[
�

pp,<

rskl (t̄, t ′) − �
pp,>

rskl (t̄, t ′)
]}

= ± ih̄
∑

pq

GH,≷
i j pq (t, t ′)w±

pqkl (t
′) + ih̄

∑
pqrs

{ ∫ t

t0

dt̄ �pp,≷
rspq (t ′, t̄ )

[
GH,<

pqi j (t̄, t ) − GH,>
pqi j (t̄, t )

]

+
∫ t ′

t0

dt̄
[
�pp,>

rspq (t ′, t̄ ) − �pp,<
rspq (t ′, t̄ )

]
GH,≷

pqi j (t̄, t )

}∗
wrskl (t

′) .

The time-diagonal equation for �pp can be further simplified,

�
pp,≷
i jkl (t, t ) = ± ih̄

∑
pq

GH,≷
i j pq (t )w±

pqkl (t ) + ih̄
∑
pqrs

[ ∫ t

t0

dt̄
(
�pp,>

pqrs (t, t̄ )GH,<
rsi j (t̄, t ) − �pp,<

pqrs (t, t̄ )GH,>
rsi j (t̄, t )

)]∗
wpqkl (t )

= ± ih̄
∑

pq

GH,≷
i j pq (t )w±

pqkl (t ) ± ih̄
∑

pq

[
Gpqi j (t )

]∗
wpqkl (t ) .

1. T pp approximation within the HF-GKBA

We now apply the HF-GKBA [cf. Eqs. (16) and (17)] and find the following expressions for G ,

Gi jkl (t ) = ± (ih̄)2
∑
pqrs

∫ t

t0

dt̄
[
�

pp,>

i j pq (t, t̄ )GH,<
pqrs(t̄ ) − �

pp,<

i j pq (t, t̄ )GH,>
pqrs(t̄ )

]
U (2)

rskl (t̄, t ) ,

as well as for �pp,

�
pp,≷
i jkl (t � t ′) = ± (ih̄)3

∑
pqrs

U (2)
i jrs(t, t ′)GH,≷

rspq (t ′)w±
pqkl (t

′) + (ih̄)3
∑

pqrsuv

[ ∫ t

t0

dt̄ U (2)
i jrs(t, t̄ )

(
GH,>

rspq (t̄ ) − GH,<
rspq (t̄ )

)
wpquv (t̄ )�pp,≷

uvkl (t̄, t ′)

+
∫ t ′

t0

dt̄ U (2)
i jrs(t, t̄ )GH,≷

rspq (t̄ )wpquv (t̄ )
(
�

pp,<

uvkl (t̄, t ′) − �
pp,>

uvkl (t̄, t ′)
)]

, (71)

where U (2) obeys Eqs. (24) and (25). With Eq. (71) we easily find an expression for the time derivative of �pp,

d

dt
�

pp,≷
i jkl (t � t ′) = 1

ih̄

∑
pq

(
h�pp,HF

i j pq (t ) + h�pp,corr
i j pq (t )

)
�

pp,≷
pqkl (t � t ′) . (72)
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As for the case of the GW self energy, here we introduced two
quasi-Hamiltonians,

h�pp,HF
i jkl (t ) = h(2),HF

i jkl (t ) ,

h�pp,corr
i jkl (t ) = (ih̄)2

∑
pq

[
GH,>

i j pq (t ) − GH,<
i j pq (t )

]
wpqkl (t ). (73)

Combining these Hamiltonians again into a single one,

h�pp

i jkl (t ) = h�pp,HF
i jkl (t ) + h�pp,corr

i jkl (t ) , (74)

the equation (72) for the Møller operator is transformed into a
time-dependent two-particle Schrödinger equation,

ih̄
d

dt
�

pp,≷
i jkl (t � t ′) =

∑
pq

h�pp

i j pq(t )�pp,≷
pqkl (t � t ′) . (75)

This equation is analogous to the Schrödinger equation for the
inverse dielectric function, Eq. (57), the main difference being
the modified Hamiltonian (74).

2. T pp-G1-G2 equations for a general basis

To derive the G1-G2 scheme for the particle-particle T
matrix, we have to take the derivative of G, yielding,

d

dt
Gi jkl (t )

=
[

d

dt
Gi jkl (t )

]
∫ +

[
d

dt
Gi jkl (t )

]
�pp

+
[

d

dt
Gi jkl (t )

]
U (2)

,

The derivative of the integration boundaries results in,[
d

dt
Gi jkl (t )

]
∫

= ±
∑

pq

[
�

pp,>

i j pq (t, t )GH,<
pqkl (t ) − �

pp,<

i j pq (t, t )GH,>
pqkl (t )

]
= ih̄

∑
pqrs

w±
rspq(t )

[
GH,>

i jrs (t )GH,<
pqkl (t ) − GH,<

i jrs (t )GH,>
pqkl (t )

]
+ ih̄

∑
pqrs

[Grsi j (t )]∗wrspq(t )
[
GH,<

pqkl (t ) − GH,>
pqkl (t )

]

= 1

ih̄
�±

i jkl (t ) − 1

ih̄

∑
pq

[
h�pp,corr

kl pq (t )Gpqi j (t )
]∗

,

while the time derivative of the Møller operator yields[
d

dt
Gi jkl (t )

]
�pp

= ±(ih̄)2
∑
pqrs

∫ t

t0

dt̄

[(
d

dt
�

pp,>

i j pq (t, t̄ )

)
GH,<

pqrs(t̄ )

−
(

d

dt
�

pp,<

i j pq (t, t̄ )

)
GH,>

pqrs(t̄ )

]
U (2)

rskl (t̄, t )

= 1

ih̄

∑
pq

(
h�pp,HF

i j pq (t ) + h�pp,corr
i j pq (t )

)
Gpqkl (t ) .

The last contribution originates from the derivative of the two-
particle propagator,[

d

dt
Gi jkl (t )

]
U (2)

= ±(ih̄)2
∑
pqrs

∫ t

t0

dt̄
[
�

pp,>

i j pq (t, t̄ )GH,<
pqrs(t̄ )

− �
pp,<

i j pq (t, t̄ )GH,>
pqrs(t̄ )

]( d

dt
U (2)

rskl (t̄, t )

)

= 1

ih̄

∑
pq

Gi j pq(t )h�pp,HF
pqkl (t ).

Combining the three contributions to the derivative of G
reveals

ih̄
d

dt
Gi jkl (t ) =�±

i jkl (t ) +
∑

pq

{
h�pp

i j pq(t )[Gkl pq(t )]∗

− Gi j pq(t )
[
h�pp

kl pq(t )
]∗

}
, (76)

where h�pp
(t ) was introduced in Eq. (74). This is the central

equation for the G1-G2 scheme in T -matrix approximation for
the particle-particle channel [5,71]. Compared to the equation
of motion for G in second-Born approximation, Eq. (29),
this equation contains, in addition, the particle-particle lad-
der terms which are generated by the quasi-Hamiltonian of
Eq. (73). Again, for practical use, it is convenient to separate
the correlation contributions from the mean-field terms via the
introduction of an additional quantity:

ih̄
d

dt
Gi jkl (t ) − [

h(2),HF,G
]

i jkl (t )

= �±
i jkl (t ) + �

pp
i jkl (t ) − [

�
pp
kli j (t )

]∗
,

where the particle-particle ladder term is defined by

�
pp
i jkl (t ) =

∑
pq

h�pp,corr
i j pq (t )Gpqkl (t ) . (77)

Without the � terms we exactly recover the equation of
motion for G in second-order Born approximation. Inclusion
of the � terms, on the other hand, allows one to take into
account multiple scattering and large-angle scattering effects
that are important for strongly correlated systems. These terms
correspond to the summation of the infinite Born series.

3. T pp-G1-G2 equations for the Hubbard model

We now apply this result to the Hubbard Hamiltonian and
find,

ih̄
d

dt
G↑↓↑↓

i jkl (t ) − [
h(2),HF

↑↓ ,G↑↓↑↓]
i jkl (t )

= �
↑↓↑↓
i jkl (t ) + �

pp,↑↓↑↓
i jkl (t ) − [

�
pp,↑↓↑↓
kli j (t )

]∗
,

where we introduced the particle-particle ladder term

�
pp,↑↓↑↓
i jkl (t ) = (ih̄)2U (t ) ×

∑
p

[
G>,↑

ip (t )G>,↓
j p (t )

− G<,↑
ip (t )G<,↓

j p (t )
]
G↑↓↑↓

ppkl (t ) . (78)
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In the present case there exists only one distinct spin combi-
nation (two when considering ↑↔↓) of the particle pair that
enters the single-particle EOM [cf. Eqs. (34) and (35)] which
simplifies the equations. Numerical results for the T pp-G1-G2
scheme are presented in Sec. VII.

4. T pp-G1-G2 equations for jellium

Turning now to the uniform electron gas, Eq. (39), we again
use the interaction matrix of Eq. (40) and define

�
pp,αβ
p,p̄,q (t ) := �

pp,αβαβ
p−q,p̄+q,p,p̄(t ) .

With that, the equation of motion for the time-diagonal two-
particle Green function becomes,

ih̄
d

dt
Gαβ

pp̄q(t ) − Gαβ
pp̄q(t )

(
hHF,α

p−q + hHF,β
p̄+q − hHF,α

p − hHF,β
p̄

)
(t )

= �
±,αβ
pp̄q (t ) + �

pp,αβ
p,p̄,q (t ) − [

�
pp,αβ
p−q,p̄+q,−q(t )

]∗
,

where the momentum representation of the particle-particle
ladder term is given by

�
pp,αβ
p,p̄,q (t ) = (ih̄)2

[
G>,α

p−q(t )G>,β
p̄+q(t ) − G<,α

p−q(t )G<,β
p̄+q(t )

]
×

∑
k

v|k−q|(t )Gαβ

pp̄k(t ) . (79)

B. Particle-hole T matrix

For the T matrix in the particle-hole channel [28], the
derivations of the single-time equations are performed in
a similar fashion as for the particle-particle T matrix in
Sec. V A. The detailed derivation is given in Appendix C.
Here, we summarize the main findings.

1. T ph-G1-G2 equations for a general basis

As for the GW and the TPP approximations, two quasi-
Hamiltonians are introduced,

h�ph,HF
i jkl (t ) = δ jl h

HF
ik − δikhHF

jl ,

h�ph,corr
i jkl (t ) = (ih̄)2

∑
pq

[
GF,>

iql p(t ) − GF,<
iql p(t )

]
wp jkq(t ), (80)

and combined into a single quantity,

h�ph

i jkl (t ) = h�ph,HF
i jkl (t ) + h�ph,corr

i jkl (t ) . (81)

The corresponding Møller operator of the particle-hole T ma-
trix again obeys a time-dependent two-particle Schrödinger
equation,

ih̄
d

dt
�

ph,≷
i jkl (t � t ′) =

∑
pq

h�ph

ipql (t )�ph,≷
q jkp (t � t ′) . (82)

The time derivative of G in TPH approximation follows as

ih̄
d

dt
Gi jkl (t ) = �±

i jkl (t ) +
∑

pq

{
h�ph

ipql (t )[Gkpq j (t )]∗

− Gipql (t )
[
h�ph

kpq j (t )
]∗

}
. (83)

Again, for practical use, it is convenient to separate the
correlation contributions from the mean-field terms via the

introduction of an additional quantity:

ih̄
d

dt
Gi jkl (t ) − [h(2),HF,G]i jkl (t )

= �±
i jkl (t ) + �

ph
i jkl (t ) − [

�
ph
kli j (t )

]∗
,

where the particle-hole ladder term is defined by

�
ph
i jkl (t ) =

∑
pq

h�ph,corr
ipql (t )Gq jkp(t ) . (84)

As in the case of the particle-particle T matrix, Sec. V A,
neglect of the � terms exactly recovers the equation of motion
for G in second-order Born approximation. Inclusion of theses
terms, on the other hand, accounts for the entire Born series.

2. T ph-G1-G2 equations for the Hubbard basis

For the Hubbard system (for the definitions, see Sec. III C),
we find,

ih̄
d

dt
G↑↓↑↓

i jkl (t ) − [
h(2),HF

↑↓ ,G↑↓↑↓]
i jkl (t )

= �
↑↓↑↓
i jkl (t ) + �

ph,↑↓↑↓
i jkl (t ) − [

�
ph,↑↓↑↓
kli j (t )

]∗
,

where we introduced the particle-hole ladder term for the
Hubbard system

�
ph,↑↓↑↓
i jkl (t ) = (ih̄)2U (t )

∑
p

[
G>,↑

ip (t )G<,↓
pl (t )

− G<,↑
ip (t )G>,↓

pl (t )
]
G↑↓↑↓

p jkp (t ) . (85)

Similar to the behavior in the TPP case, only one spin
combination (two when considering ↑↔↓) contributes
to the single-particle EOM in Eqs. (34) and (35). The
T ph-G1-G2 scheme for the Hubbard model is numerically
tested in Sec. VII.

3. T ph-G1-G2 equations for jellium

For the uniform electron gas, Eq. (39), we again use the
interaction matrix of Eq. (40), and define

�
ph,αβ
p,p̄,q (t ) := �

ph,αβαβ
p−q,p̄+q,p,p̄(t ) .

With that, the equation of motion for the time-diagonal two-
particle Green function becomes

ih̄
d

dt
Gαβ

pp̄q(t ) − Gαβ
pp̄q(t )

(
hHF,α

p−q + hHF,β
p̄+q − hHF,α

p − hHF,β
p̄

)
(t )

= �
±,αβ
pp̄q (t ) + �

ph,αβ
p,p̄,q (t ) − [

�
ph,αβ
p−q,p̄+q,−q(t )

]∗
,

with the momentum representation of the particle-hole ladder
term, given by

�
ph,αβ
p,p̄,q (t ) = (ih̄)2

[
G>,α

p−q(t )G<,β
p̄ (t ) − G<,α

p−q(t )G>,β
p̄ (t )

]
×

∑
k

v|k|(t )Gαβ

p,p̄−k,q+k(t ) . (86)

VI. DYNAMICALLY-SCREENED-LADDER
APPROXIMATION

So far we have considered three important self-energy
approximations: the second-Born approximation, GW , and
the particle-particle and particle-hole T matrices. While GW
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describes dynamical screening, for weakly coupled systems,
the T -matrix self energy accounts for strong coupling but
neglects dynamical-screening effects. Therefore, the ques-
tion arises how to combine strong coupling and dynamical
screening into a single model in a computationally feasi-
ble way. An approximation to realize this, within NEGF
theory, is the fluctuating-exchange approximation (FLEX)
that combines T matrix and GW contributions according to
� = �TPP + �TPH + �GW − 2�SOA, where the last term is
needed to avoid double counting; for more details, see
Ref. [28]. A fully self-consistent treatment of dynamical-
screening and strong-coupling effects is provided by the
dynamically-screened-ladder approximation that has been
studied in the context of the bound-state problem in a plasma
medium in equilibrium [72]. For more details, see Ref. [73].

The G1-G2 scheme allows for a straightforward way to
combine the GW (including exchange) and both T -matrix
approximations in a self-consistent way for arbitrary nonequi-
librium situations. This is achieved by including in the EOM
of the time-diagonal two-particle Green function the terms
with all effective Hamiltonians that were derived for GW , the
particle-particle and the particle-hole T matrix, respectively,
cf. Eqs. (56), (74), and (81). Then, the EOM for G, in a general
basis becomes

ih̄
d

dt
Gi jkl (t ) − [

h(2),HF,G
]

i jkl (t )

= �±
i jkl (t ) +

∑
pq

{
hε,corr

q j pl (t )[Gqkpi(t )]∗

− Gq j pl (t )
[
hε,corr

qkpi (t )
]∗} +

∑
pq

{
h�pp,corr

i j pq (t )[Gkl pq(t )]∗

− Gi j pq(t )
[
h�pp,corr

kl pq (t )
]∗} +

∑
kl

{
h�ph,corr

ipql (t )[Gkpq j (t )]∗

− Gipql (t )
[
h�ph,corr

kpq j (t )
]∗}

. (87)

Alternatively, we can rewrite this equation by using the po-
larization (�) and ladder (�) terms that were defined by
Eqs. (61), (77), and (84),

ih̄
d

dt
Gi jkl (t ) − [

h(2),HF,G
]

i jkl (t ) = �±
i jkl (t )

+ �i jkl (t ) − [�lk ji(t )]∗ + �i jkl (t ) − [�kli j (t )]∗ , (88)

where we combined both ladder terms into

�i jkl (t ) = �
pp
i jkl (t ) + �

ph
i jkl (t ) .

Obviously, Eq. (88) is a generalization of all previous cases:
It additively includes the contributions of the second-order
Born self energy (first line), polarization terms that account
for dynamical screening and strong-coupling terms. The SOA
term that appears in each of the different approximations
is included only once, so no double counting occurs. Since
all contributions are treated on the same footing, this equa-
tion amounts to a simultaneous full account of dynamical
screening and strong binary correlations. Alternatively, this
approximation can be obtained from reduced-density-operator
theory by neglecting three-particle and higher correlations [5];
an early discussion was presented by Wang and Cassing [74].

TABLE I. Scaling of the CPU time with the number of time
steps Nt and basis dimension Nb of the traditional non-Markovian
HF-GKBA (“standard”) and the present time-local scheme (G1-G2),
for three relevant basis sets and the self-energy approximations
considered in this paper: the second-Born approximation (SOA), GW
approximation (GW ), the particle-particle (TPP) and particle-hole
(TPH) T matrices, and the dynamically-screened-ladder approxima-
tion (DSL). Last column: CPU speedup ratio of the G1-G2 scheme
compared to standard HF-GKBA. For DSL, currently no standard
HF-GKBA version exists. Note that full two-time NEGF simulations
always have cubic scaling with Nt .

HF-GKBA Speedup

� Basis Standard G1-G2 ratio

general O(N5
b N2

t ) O(N5
b N1

t ) O(Nt )
SOA Hubbard O(N3

b N2
t ) O(N4

b N1
t ) O(Nt/Nb)

jellium O(N3
b N2

t ) O(N3
b N1

t ) O(Nt )

general O(N6
b N3

t ) O(N6
b N1

t ) O(N2
t )

GW Hubbard O(N3
b N3

t ) O(N4
b N1

t ) O(N2
t /Nb)

jellium O(N3
b N3

t ) O(N3
b N1

t ) O(N2
t )

general O(N6
b N3

t ) O(N6
b N1

t ) O(N2
t )

TPP Hubbard O(N3
b N3

t ) O(N4
b N1

t ) O(N2
t /Nb)

jellium O(N3
b N3

t ) O(N4
b N1

t ) O(N2
t /Nb)

general O(N6
b N3

t ) O(N6
b N1

t ) O(N2
t )

TPH Hubbard O(N3
b N3

t ) O(N4
b N1

t ) O(N2
t /Nb)

jellium O(N3
b N3

t ) O(N4
b N1

t ) O(N2
t /Nb)

general – O(N6
b N1

t ) –
DSL Hubbard – O(N4

b N1
t ) –

jellium – O(N4
b N1

t ) –

It is easily verified that the entire Eq. (87) requires a
CPU time that has the same linear scaling with Nt as all the
special cases that were studied before. On the other hand, the
polarization and ladder terms determine the scaling with the
basis size Nb. This is summarized in Table I and discussed in
more detail in Sec. VII.

VII. ANALYSIS OF THE NUMERICAL SCALING

As was shown in the previous sections, the G1-G2 scheme
transforms the time-diagonal KBE within the HF-GKBA to
a memory-less, time-local form. This means, the theoretical
scaling is first order in the propagation duration. This dramatic
acceleration is achieved by propagating, in addition to the
single-particle Green function, also the time-diagonal two-
particle Green function G. This function has, in general, four
basis indices and, thus, a dimensionality of N4

b , where Nb is
the single-particle basis dimension. The total scaling of the
G1-G2 scheme with Nb depends on the self energy and on
the type of basis. In the following, we investigate this scaling
more in detail, extending the analysis of Ref. [39].

A. Second-order Born self energy

We start by analyzing the Nb scaling of the SOA-G1-G2
equation for G, Eq. (29), which we rewrite in a different
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form

ih̄
d

dt
Gi jkl (t ) − [

h(2),HF,G
]

i jkl (t )

= (ih̄)2
∑

p

G>
ip(t )

∑
q

G>
jq(t )

∑
r

G<
rk (t )

∑
s

w±
pqrs(t )G<

sl (t )

− (ih̄)2
∑

p

G<
ip(t )

∑
q

G<
jq(t )

∑
r

G>
rk (t )

∑
s

w±
pqrs(t )G>

sl (t ) .

The r.h.s. of this equation contains four sums of dimension-
ality Nb which are all independent of each other. They are
evaluated by successive execution of the occurring tensor
contractions. This means the total scaling of the CPU time,
in this case, is of order N5

b .
For the Hubbard basis a first look at Eqs. (36)–(38) sug-

gests an N5
b -scaling, due to the commutator term in Eq. (36)

and the summation in the � term of Eq. (38). However, in the
Hubbard model the scaling can be further reduced. Note that
the Hartree-Fock Hamiltonian, hHF(t ), is a tridiagonal matrix
and, thus, the commutator can be computed with N4

b effort:[
h(2),HF

↑↓ ,G↑↓↑↓]
i jkl (t )

=
∑

p

[
hHF,↑

ip (t )G↑↓↑↓
p jkl (t ) + hHF,↓

j p (t )G↑↓↑↓
ipkl (t )

− G↑↓↑↓
i j pl (t )hHF,↑

pk (t ) − G↑↓↑↓
i jkp (t )hHF,↓

pl (t )
]

= −ih̄U (t )G↑↓↑↓
i jkl (t )

[
G↓

ii (t ) + G↑
j j (t ) − G↓

kk (t ) − G↑
ll (t )

]
− J

∑
p

[
δ〈i,p〉G↑↓↑↓

p jkl (t ) + δ〈 j,p〉G↑↓↑↓
ipkl (t )

− G↑↓↑↓
i j pl (t )δ〈p,k〉 − G↑↓↑↓

i jkp (t )δ〈p,l〉
]
.

On the other hand, the � term can be simplified by using the
identity of Eq. (11):

�
↑↓↑↓
i jkl (t )

= (ih̄)4
∑

p

{[
G<,↑

ip (t ) + 1

ih̄
δip

][
G<,↓

j p (t ) + 1

ih̄
δ j p

]

× G<,↑
pk (t )G<,↓

pl (t ) − G<,↑
ip (t )G<,↓

j p (t )

×
[

G<,↑
pk (t ) + 1

ih̄
δpk

][
G<,↓

pl (t ) + 1

ih̄
δpl

]}
= (ih̄)2(δi j − δkl )G

<,↑
ik (t )G<,↓

jl (t )

+ (ih̄)3[G<,↑
i j (t )G<,↑

jk (t ) − G<,↑
lk (t )G<,↑

il (t )]G<,↓
jl (t )

+ (ih̄)3[G<,↓
ji (t )G<,↓

il (t ) − G<,↓
kl (t )G<,↓

jk (t )]G<,↑
ik (t ) .

(89)

Here, the leading contribution to the difference,
G<G<G<G< − G<G<G<G<, cancels (contribution with
four functions G<) which reduces the complexity. For the
Hubbard basis, this reduces the numerical effort of the G1-G2
scheme to a N4

b scaling compared to the N5
b -scaling in the

straightforward implementation [39]. In total, an acceleration
is achieved for the SOA-G1-G2 scheme, compared to the
ordinary HF-GKBA if Nt � Nb, as summarized in Table I.

The reformulation above that eliminates products of four
G< functions can be made for any basis choice. However,
for the general basis this does not result in an improved
Nb scaling. For the jellium basis the Eqs. (41)–(43) reveal
a particularly favorable scaling with the basis size with N3

b
for which the above reformulation does not provide further
improvement.

B. GW self energy

The additional terms of the GW approximation can change
the Nb scaling compared to the SOA case discussed in the
previous section. For the general basis, the leading-order
terms for the scaling with the basis size are found in Eqs. (55)
and (61) which reveal a N6

b scaling. For this case no further
reductions are possible, cf. Table I.

For the Hubbard basis the polarization terms [Eqs. (64) and
(65)] can be reformulated by again using Eq. (11) to get

�
↑↓↑↓
i jkl (t ) = −ih̄U (t )G<,↓

jl (t )[G↑↑↑↑
i jk j (t ) − G↑↑↑↑

ilkl (t )] ,

�
↑↑↑↑
i jkl (t ) = −ih̄U (t )G<,↑

jl (t )[G↑↓↑↓
i jk j (t ) − G↑↓↑↓

ilkl (t )] .

From this, it is obvious that, compared to the second-order
Born approximation, no further complexity is added for GW
in the Hubbard case, and the scaling with the basis size
remains N4

b .
To explore the Nb scaling for the jellium basis we recall the

polarization term, Eq. (66),

�
αβ
p,p̄,q(t ) = ± (ih̄)2[G>,β

p̄+q(t )G<,β
p̄ (t ) − G<,β

p̄+q(t )G>,β
p̄ (t )

]
× v|q|(t )

∑
k,σ

Gασ
pkq(t ) .

As one can see, the tensor contraction over k can be executed
independently of p̄. Thus, the full scaling of the GW -G1-G2
scheme for a jellium basis remains of order N3

b , as in the case
of the standard HF-GKBA.

C. T -matrix self energies

The T -matrix equations [Sec. V] behave very similar to
the GW equations. For a general basis set with a four-index
interaction tensor both, TPP and TPH scale as N6

b which can
be directly seen from Eqs. (73) and (77), as well as Eqs. (80)
and (84).

For the Hubbard basis we can now use Eq. (11) to eliminate
contributions that are of second order in G< from the ladder
terms in Eq. (78),

�
pp,↑↓↑↓
i jkl (t ) = δi jU (t )G↑↓↑↓

i jkl (t ) + ih̄U (t )[G<,↓
ji (t )G↑↓↑↓

iikl (t )

+ G<,↑
i j (t )G↑↓↑↓

j jkl (t )] ,

as well as in Eq. (85),

�
ph,↑↓↑↓
i jkl (t ) = ih̄U (t )[G<,↓

il (t )G↑↓↑↓
i jki (t ) − G<,↑

il (t )G↑↓↑↓
l jkl (t )] .

For both cases one can see that the remaining scaling order of
the equations is N4

b since all internal summations have been
eliminated.

In the jellium basis the T matrices show a different scaling
behavior compared to GW . To see this, we reproduce the two

245101-16



G1-G2 SCHEME: DRAMATIC ACCELERATION OF … PHYSICAL REVIEW B 101, 245101 (2020)

ladder terms of Eqs. (79) and (86),

�
pp,αβ
p,p̄,q (t ) = (ih̄)2[G>,α

p−q(t )G>,β
p̄+q(t ) − G<,α

p−q(t )G<,β
p̄+q(t )

]
×

∑
k

v|k−q|(t )Gαβ

pp̄k(t ) ,

�
ph,αβ
p,p̄,q (t ) = (ih̄)2

[
G>,α

p−q(t )G<,β
p̄ (t ) − G<,α

p−q(t )G>,β
p̄ (t )

]
×

∑
k

v|k|(t )Gαβ

p,p̄−k,q+k(t ) .

Evidently, in both cases the tensor contraction of k depends
on all other momenta p, p̄, q. Thus, the final scaling with the
basis size becomes of order N4

b . A summary of the numerical
scaling with the propagation duration and the basis size is
presented in Table. I.

At the same time, any practical implementation of the
G1-G2 scheme could, in principle, carry a large overhead that
prevents us from achieving the theoretical scaling with the
simulation duration and the basis dimension within a relevant
parameter range. We, therefore, have implemented the G1-G2
scheme for each of the self energies discussed in this paper
and present representative numerical results in Sec. VII D.

D. Numerical results for the Hubbard basis

As we have shown above (cf. Table I), the Hubbard basis is
the most unfavorable case for the G1-G2 scheme. Therefore,
we choose this case for numerical demonstrations. In Ref. [39]
we presented the first numerical tests of this scheme and
demonstrated that, for finite Hubbard clusters the predicted
linear scaling is indeed achieved for SOA and GW self ener-
gies, already for rather small values Nt .

Here we extend these simulations to the T -matrix self
energies and the DSL approximation. Furthermore, we prac-
tically confirm the Nb scaling. As a first test, we verify that
the derived formulas of the G1-G2 scheme are equivalent
to the original (non-Markovian) HF-GKBA formulation. As
a test case we consider, in Fig. 2, the time evolution in a
Hubbard dimer for SOA, GW , TPP, and TPH self energies. For
both considered methods, the original HF-GKBA and the G1-
G2 scheme, a fourth-order Runge-Kutta integration scheme
with a time step of �t = 0.02h̄/J is used. The agreement is
excellent, and the deviations are mostly due to the original
HF-GKBA, as discussed in Ref. [39].

Next, we demonstrate the scaling with the basis dimen-
sion Nb for the SOA self energy. In Fig. 3 we show results
for a large number of Hubbard chains of varying length,
Nb = 2 . . . 100. We clearly confirm the N5

b scaling for the
standard implementation of the G1-G2 scheme that uses
Eq. (38) [39]. This asymptotic behavior is reached already for
Nb � 20. The second curve is for the same setup but uses the
optimization, Eq. (89). Again, the predicted improved scaling
according to N4

b is clearly identified, at least for Nb � 50. This
confirms the expected speedup of the SOA-G1-G2 scheme
compared to the standard HF-GKBA, if Nt � Nb. Thus, even
for the most unfavorable case of a Hubbard basis [cf. Table I]
the scaling advantage should be reached already for small
simulation durations.
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FIG. 2. Comparison of the ordinary HF-GKBA and the G1-G2
scheme for a Hubbard dimer with U = J at half filling. The initial
state was uncorrelated with the entire density concentrated at the
first lattice site. Rows correspond to SOA, GW , TPP, and TPH self
energies. Right column shows the deviation �n1(t ) = nG1−G2

1 (t ) −
nordinary

1 (t ) of the densities of both schemes on site 1.

To explore the scaling with Nt in more detail we have
performed a series of simulations for all self-energy approx-
imations, comparing the standard HF-GKBA to the G1-G2
scheme. The results are shown in Fig. 4 and confirm the
quadratic (cubic) scaling of the CPU time with Nt , for the
standard HF-GKBA with SOA (GW ) self energy. Similar
cubic scaling is observed for the two T -matrix approximations
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FIG. 3. CPU-time scaling of the SOA-G1-G2 scheme with the
basis size Nb comparing the direct, Eq. (39) [39], and the optimized
implementation, Eq. (89). Results are for a 1D Hubbard chain.
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FIG. 4. CPU-time scaling with the simulation duration Nt , com-
paring the standard HF-GKBA to the G1-G2 scheme. G1-G2 data are
shown for five self-energy approximations (indicated in the legend)
all of which clearly exhibit linear scaling. In contrast, the standard
HF-GKBA scales as N2

t , for SOA, and N3
t , for GW . Results are for a

10-site Hubbard chain.

(not shown) whereas simulations with DSL approximation are
not possible, at the moment. Let us now turn to the G1-G2 re-
sults (dashed lines). Each of the curves exhibits the predicted
linear scaling, already for Nt � 20. Interestingly, in the G1-G2
scheme, the CPU time required for the rather involved T -
matrix approximations is only slightly above the time required
for the comparatively simple SOA case. Equally remarkable
is the observation that the GW and DSL approximations,
which, in Hubbard, rely on cross-coupling spin components,
are rather close to the former self energies.

Note that, for the present small system (10-site Hubbard
chain) “break even” of the G1-G2 scheme is reached for all
self energies compared to the ordinary SOA-HF-GKBA (dark
blue curve) well below Nt = 100 whereas the original GW -
HF-GKBA (light blue) is unfavorable, practically from the
start. For larger times, the ordinary GW -HF-GKBA quickly
turns out unfeasible (e.g., for Nt ∼ 103 it requires 104 times
longer simulations than GW -G1-G2), and the same applies to
the T -matrix self energies. Thus, we conclude that, it is not
just a quantitative gain in CPU time that the G1-G2 scheme
delivers but, in many cases, highly accurate simulations (be-
yond the simple SOA self energy) become possible at all that
are (currently) impossible otherwise.

In particular, at increased coupling, U/J � 2, the SOA
self energy is known to be inaccurate (for an analysis see
Ref. [28]), and for reliable simulations, more advanced ap-
proximations are crucial. In that context the DSL approxi-
mation is particularly attractive because it contains the dom-
inant correlation effects self consistently. Until now such
simulations have only occasionally been reported, for very
small systems and short propagation times. An example of
a four-site Hubbard chain is shown in Fig. 5. We observe
excellent agreement of our DSL-G1-G2 scheme to the Wang-
Cassing (WC) approximation simulations of Akbari et al.
[75] confirming the equivalence of the two approximations.
The results show excellent quantitative agreement with exact-
diagonalization data (black curve), however, for times tJ/h̄ �
30 deviations are growing.
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FIG. 5. Density evolution comparing the DSL-G1-G2 scheme to
the results of Ref. [75] (WC) and exact-diagonalization simulations.
The system is a four-site Hubbard chain at U = 0.1J and half filling;
the simulations started from a noninteracting (uncorrelated) initial
state, where the first two sites are doubly occupied.

VIII. DISCUSSION AND OUTLOOK

In this paper we analyzed the properties of nonequilibrium
Green functions in the frame of the generalized Kadanoff-
Baym ansatz with Hartree-Fock propagators (HF-GKBA).
Due to the non-Markovian structure of the collision inte-
gral, HF-GKBA simulations have an unfavorable quadratic
(cubic) scaling with the number of time steps, for second-
order Born (more complicated) self energies. At the same
time, it has been reported earlier that this memory integral
can be formally eliminated in favor of coupled time-local
differential equations for the single-particle and two-particle
density matrix [5,40]. An equivalent formulation in the frame-
work of nonequilibrium Green functions has been established
in Ref. [39]—the G1-G2 scheme. The formal equivalence
between both approaches is important because it means that
the G1-G2 scheme retains all attractive properties of the HF-
GKBA: It is total-energy conserving and time reversible [56].
Furthermore, the most prominent self-energy approximations
from NEGF theory that have been derived, e.g., using dia-
grammatic techniques, can be transformed into a time-local
form, by applying the HF-GKBA.

The earlier analyses of the time-linear equations [5,40]
concentrated mainly on spatially homogeneous systems (jel-
lium) and did not include computational aspects such as the
CPU-time requirement. The scaling with the propagation time
and basis size have only recently been analyzed in detail
in conjunction with the G1-G2 scheme [39], and it was
confirmed that the N1

t scaling can be achieved in practice.
Here, we substantially extended these results, including addi-
tional high-level self energies such as the particle-particle and
particle-hole T -matrix self energies and the screened-ladder
approximation. In each case N1

t scaling of the CPU time could
be confirmed giving rise to a remarkable N2

t -scaling advantage
compared to the standard HF-GKBA scheme (Fig. 4) which
was found to be independent of the single-particle basis used
for the simulations. Furthermore, we re-analyzed the CPU-
time scaling with the basis dimension Nb and observed that
the G1-G2 scheme has an overhead, compared to standard
HF-GKBA, that is, at most, first order in Nb, cf. Table I.
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Even for the most unfavorable basis—the Hubbard basis—the
G1-G2 scheme has only a N1

b overhead (down from a N2
b

overhead reported in Ref. [39]) which could be achieved by
a reformulation of the scattering term in the G2 equation,
cf. Sec. VII A. Thus, we expect that the G1-G2 scheme
outperforms the standard HF-GKBA approach, in all cases
of practical relevance, which can be seen from the CPU-time
scaling ratio summarized in the right column of Table I.

With the G1-G2 scheme NEGF simulations (within the
HF-GKBA) have been brought to the same CPU-time scaling
as many other time-dependent approaches, including semi-
classical molecular dynamics, hydrodynamics, Boltzmann-
type kinetic equations, TDDFT (adiabatic approximation),
and the time-dependent Schrödinger equation. Most impor-
tantly, now long simulations are feasible that were previously
prohibited by the memory structure (resulting in the N2

t or N3
t

scaling discussed above) without compromising the quality of
the treatment of electronic correlations. We also showed that
the inclusion of initial correlations in the G1-G2 scheme is
trivial, and their propagation again requires a CPU-time effort
that is of order Nt . Also the precomputation of the correlated
initial state, e.g., via imaginary-time stepping or adiabatic
switching, see, e.g., Ref. [21], can be carried out separately
and does not affect the propagation scaling.

While we presented numerical results only for the Hubbard
model, even larger gains, compared to the standard HF-
GKBA, are predicted for jellium (e.g., electron gas, dense
quantum plasmas, electron-hole plasmas etc.) and for more
general basis sets where the interaction tensor has four indices
(e.g., electron dynamics in atoms and molecules). At the same
time, the removal of the memory integral as the main CPU-
time bottleneck was achieved by computing the dynamics of
an additional quantity—the time-diagonal two-particle Green
function Gi jkl . Thus, the new bottleneck in the G1-G2 scheme
is the memory cost to store this four-dimensional tensor (only
the current values are required), but this can be mitigated by
suitable parallelization concepts.

By mapping NEGF simulations to a time-local scheme for
single-time quantities, it should be expected that close con-
nections exist with reduced-density-operator theory (RDO)
[5,39,40]. The latter has been an independent many-body
approach that has been successfully applied in many areas,
including semiconductor optics, see, e.g., Refs. [76,77], dense
plasmas [32], correlated electrons [64,75,78], nuclear matter
[79], and cold atoms [80]. Our results indicate the corre-
spondence between important self-energy approximations of
NEGF theory to closure relations of RDO and confirm and
extend earlier results on the particle-particle T matrix [71]
and the GW approximation [64]. We also investigated the
simultaneous treatment of strong coupling and dynamical-
screening effects by combining ladder and polarization terms
in the equation for G. This led us to the dynamically-screened-
ladder approximation (DSL) in Sec. VI. This approximation
includes all two-particle interaction contributions and is, thus,
equivalent to an approximation considered by Wang and
Cassing before [74]. The equivalence of the two approxi-
mations was confirmed by the excellent agreement with the
numerical results of Akbari et al. [75] for a small Hubbard
cluster, cf. Fig. 5. Consequently, all self-energy contributions
that go beyond the DSL correspond to the (partial) account

of three-particle correlations and, thus, additionally require
(at least) the propagation of the time-diagonal three-particle
Green function, when mapped to a time-linear scheme.

Despite the high quality of the DSL, we also observed that
it is in quantitative agreement with exact diagonalization (CI)
data (black curve in Fig. 5) only during the initial relaxation
phase (for times tJ/h̄ � 30) [75]. So, clearly, more systematic
comparisons to CI results, for a broader range of coupling
strengths and filling fractions, are desirable to understand
the applicability limits of the DSL. While CI simulations
are limited to very small particle numbers (basis size Nb)
the G1-G2 scheme in DSL and simpler approximations can
treat much larger systems. To go beyond those parameters
where the DSL approximation is valid, further improved
approximations are in high demand. This will require one to
partially include three-particle correlations. Examples are the
Kirkwood superposition approximation of classical statistical
physics [81] (for recent applications see Refs. [82,83]),
the approximation by Nakatsuji and Yasuda [84,85], and
self-energy corrections to the BBGKY hierarchy [5]. Another
route to improvements starts from nonequilibrium Green
functions theory where one approach is to apply the GKBA
but replace the Hartree-Fock propagators by correlated
propagators [21]. Another concept is to replace the GKBA
entirely by an improved reconstruction ansatz. In both cases,
the procedure outlined in the present paper will allow one to
derive the corresponding improved G1-G2 scheme. Since the
applicability limits of the GKBA are still not fully explored,
full two-time NEGF simulations will remain indispensable
for tests and benchmarks, see, e.g., Ref. [86].

In conclusion, let us come back to the remarkable ca-
pability of the G1-G2 scheme to efficiently perform long-
time simulations of correlated-electron dynamics. With this it
should be feasible to reach thermodynamic equilibrium (or a
quasistationary or prethermalized state) of the electrons. At
the same time, slower processes, such as the equilibration
with heavier particles (e.g., with the lattice in solids or with
ions in dense plasmas) will make it desirable to develop
a multiscale approach. This can be based on approximate
solutions of the G1-G2 equations, e.g., by using retardation
expansions [5] or the correlation-time approximation [87],
eventually approaching the Markovian Boltzmann equation or
local thermodynamic equilibrium. In that case a connection
of the kinetic simulations to quantum hydrodynamic models,
see, e.g., Refs. [88,89], could be a promising approach.
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APPENDIX A: PROPERTIES OF THE TIME-EVOLUTION
OPERATOR

In the following, we derive important properties of the one-
and two-particle propagators.
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1. Symmetry relations

The single-particle time-evolution operator U fulfills the
symmetry

[U ji(t
′, t )]∗ = [

GR
ji(t

′, t ) − GA
ji(t

′, t )
]∗ = −Ui j (t, t ′) , (A1)

where [GA/R
ji (t, t ′)]

∗ = GR/A
i j (t ′, t ) has been used. Likewise,

the two-particle propagator obeys,[
U (2)

kli j (t, t ′)
]∗ = [Uki(t, t ′)]∗[Ul j (t, t ′)]∗ = U (2)

i jkl (t
′, t ) ,

where Eq. (A1) has been used.

2. Group property

When applying the HF-GKBA the retarded and advanced
propagators, GR(t, t ′) and GA(t, t ′), are used in HF approxi-
mation and, thus, obey the group property [36] for t > t̄ > t ′:

GA
i j (t

′, t ) = −ih̄
∑

k

GA
ik (t ′, t̄ )GA

k j (t̄, t ) , (A2)

GR
i j (t, t ′) = ih̄

∑
k

GR
ik (t, t̄ )GR

k j (t̄, t ′) . (A3)

In the following, the group property for the propagator U is
derived for all relevant time orderings. Starting with

ih̄
∑

k

Uik (t, t̄ )Uk j (t̄, t ′)

= ih̄
∑

k

[
GR

ik (t, t̄ ) − GA
ik (t, t̄ )

][
GR

k j (t̄, t ′) − GA
k j (t̄, t ′)

]
,

five different cases have to be considered. For t = t̄ = t ′ one
gets∑

k

Uik (t, t )Uk j (t, t ) =
∑

k

δikδk j

(ih̄)2
= δi j

(ih̄)2
= 1

ih̄
Ui j (t, t ) .

For t = t̄ one gets∑
k

Uik (t, t )Uk j (t, t ′) =
∑

k

1

ih̄
δikUk j (t, t ′) = 1

ih̄
Ui j (t, t ′) ,

as well as for t̄ = t ′,∑
k

Uik (t, t ′)Uk j (t
′, t ′) =

∑
k

Uik (t, t ′)
1

ih̄
δk j = 1

ih̄
Ui j (t, t ′) .

For t > t̄ > t ′, the propagators reduce to Ui j (t, t ′) = GR
i j (t, t ′),

for which Eq. (A3) is directly applicable. For the analogous
case, t < t̄ < t ′, one obtains Ui j (t, t ′) = −GA

i j (t, t ′) which,
together with Eq. (A2), leads to

ih̄
∑

k

Uik (t, t̄ )Uk j (t̄, t ′) = Ui j (t, t ′) , (A4)

for all t, t ′. A direct consequence of this group property is [cf.
Eq. (21)],

U (2)
i jkl (t, t ′) = (ih̄)2

∑
pq

U (2)
i j pq(t, t̄ )U (2)

pqkl (t̄, t ′) , (A5)

for the two-particle propagator.

3. Equations of motion

Using the EOM for the retarded/advanced Green func-
tions, Eq. (23), the EOMs for the modified propagator im-
mediately follows, where we separately consider the time
evolution along the first and second time arguments:

ih̄
d

dt
Ui j (t, t ′) =

∑
k

hHF
ik (t )GR

k j (t, t ′) + δi jδ(t, t ′)

−
∑

k

hHF
ik (t )GA

k j (t, t ′) − δi jδ(t, t ′)

=
∑

k

hHF
ik (t )Uk j (t, t ′) , (A6)

ih̄
d

dt
Ui j (t

′, t ) = −
∑

k

GR
ik (t ′, t )hHF

k j (t ) − δi jδ(t, t ′)

+
∑

k

GA
ik (t ′, t )hHF

k j (t ) + δi jδ(t, t ′)

= −
∑

k

Uik (t ′, t )hHF
k j (t ) . (A7)

Obviously, U has no time-singular term but obeys a
Schrödinger-type equation of motion. For the two-particle
propagator follows

d

dt

[
U (2)

i jkl (t, t̄ )
] = d

dt
[Uik (t, t̄ )]U jl (t, t̄ )

+ Uik (t, t̄ )
d

dt
[U jl (t, t̄ )]

=
[

1

ih̄

∑
p

hHF
ip (t )Upk (t, t̄ )

]
U jl (t, t̄ )

+ Uik (t, t̄ )

[
1

ih̄

∑
p

hHF
j p (t )Upl (t, t̄ )

]

= 1

ih̄

∑
p

hHF
ip (t )U (2)

p jkl (t, t̄ )

+ 1

ih̄

∑
p

hHF
j p (t )U (2)

ipkl (t, t̄ ) . (A8)

To simplify the notation, we use the two-particle Hartree-Fock
Hamiltonian [cf. Eq. (26)] so that∑

pq

h(2),HF
i j pq (t )U (2)

pqkl =
∑

p

hHF
ip (t )U (2)

p jkl (t, t̄ )

+
∑

p

hHF
j p (t )U (2)

ipkl (t, t̄ ) ,

and Eq. (A8) can be rewritten as

d

dt

[
U (2)

i jkl (t, t̄ )
] = 1

ih̄

∑
pq

h(2),HF
i j pq (t )U (2)

pqkl (t, t̄ ) .
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In the same way the derivative with respect to the second time
argument is found,

d

dt

[
U (2)

i jkl (t̄, t )
] = d

dt
[Uik (t̄, t )]U jl (t̄, t )

+ Uik (t̄, t )
d

dt
[U jl (t̄, t )]

=
[
− 1

ih̄

∑
p

Uip(t̄, t )hHF
pk (t )

]
U jl (t̄, t )

+ Uik (t̄, t )

[
− 1

ih̄

∑
p

U j p(t̄, t )hHF
pl (t )

]

= − 1

ih̄

∑
pq

U (2)
i j pq(t̄, t )h(2),HF

pqkl (t ).

APPENDIX B: TIME-LINEAR INTEGRAL SOLUTION
FOR G

As we show in Sec. III B, the non-Markovian structure of
the time-diagonal two-particle Green function, Eq. (22), can
be eliminated by converting the problem into two coupled
differential equations for G<(t ) and G(t ). Here we show for
completeness that, alternatively, time-linear scaling can also
be achieved within an integral representation of G. To reveal
the time-linear core of Eq. (22) for Hartree-Fock propagators,
we consider a time T + � for which the time integral can be
split into two intervals [t0, T ] and [T, T + �], resulting in

Gi jkl (T + �) = G�
i jkl (T ) + (ih̄)3

∑
pqrs

∫ T

t0

dt̄

× U (2)
i j pq(T + �, t̄ )�±

pqrs(t̄ )U (2)
rskl (t̄, T + �) ,

with

G�
i jkl (T ) := (ih̄)3

∑
pqrs

∫ T +�

T
dt̄

× U (2)
i j pq(T + �, t̄ )�±

pqrs(t̄ )U (2)
rskl (t̄, T + �) .

Applying the group property of the two-particle propagator,
Eq. (A5), leads to

Gi jkl (T + �) = G�
i jkl (T ) + (ih̄)7

∑
pqrsuvxy

∫ T

t0

dt̄

× U (2)
i j pq(T + �, T )U (2)

pqrs(T, t̄ )

× �±
rsuv (t̄ )U (2)

uvxy(t̄, T )U (2)
xy jm(T, T + �) ,

where we identify the two-particle Green function at time T ,

Gi jkl (T + �) = G�
i jkl (T ) + (ih̄)4

∑
pqrs

U (2)
i j pq(T + �, T )

× Gpqrs(T )U (2)
rskl (T, T + �). (B1)

The above expression only contains a time integral of fixed
length �. Thus, provided that the solution G (T ) is known,
the propagation to T + � can be done in a constant amount
of time, independent of T . This way Eq. (B1) provides the
basis for a time-linear propagation scheme. At the same time,
we found that, for current applications, the integral form is

less favorable for numerical implementation, compared to the
independent approach that uses coupled time-local differential
equations (G1-G2 scheme [39]) that is derived in Sec. III B
and, therefore, forms the basis of the present paper.

APPENDIX C: PARTICLE-HOLE T MATRIX

For the T matrix in the particle-hole channel [28], the
derivation of the G1-G2 scheme is performed in similar
fashion as for the particle-particle T matrix in Sec. V A. The
self energy has the form,

�
≷
i j (t, t ′) = ih̄

∑
kl

T ph,≷
ik jl (t, t ′)G≷

lk (t, t ′) , (C1)

where now the particle-hole T matrix is expressed as

T ph,≷
i jkl (t, t ′) =

∑
pq

wipql (t )�ph,≷
q jkp (t, t ′) , (C2)

which allows us to rewrite the self energy (C1):

�
≷
i j (t, t ′) = ih̄

∑
kl pq

wipql (t )�ph,≷
qk j p (t, t ′)G≷

lk (t, t ′) . (C3)

In Eqs. (C2) and (C3), �ph denotes the nonequilibrium gen-
eralization of the Møller operator in the particle-hole channel.
The collision integral (10) of the time-diagonal equation then
becomes

Ii j (t ) = ih̄
∑
kl pqr

wipqr (t )
∫ t

t0

dt̄
[
�

ph,>

qlkp (t, t̄ )GF,<
krl j (t̄, t )

− �
ph,<

qlkp (t, t̄ )GF,>
krl j (t̄, t )

]
= ±ih̄

∑
kl p

wikl p(t )Gl p jk (t ) ,

which results in the following expression for the time-
diagonal element of the two-particle Green function,

Gi jkl (t ) = ±
∑

pq

∫ t

t0

dt̄
[
�

ph,>

iqpl (t, t̄ )GF,<
p jqk (t̄, t )

− �
ph,<

iqpl (t, t̄ )GF,>
p jqk (t̄, t )

]
. (C4)

By construction, the particle-hole T matrix obeys the follow-
ing symmetry [cf. Eq. (13)],

T ph,≷
i jkl (t, t ′) = T ph,≶

jilk (t ′, t ) .

The particle-hole T matrix sums up the particle-hole colli-
sions via the recursive equation (again the singular part has
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been subtracted compared to its standard definition [28])

T ph,≷
i jkl (t, t ′) = ± ih̄

∑
pqrs

wiqpl (t )GF,≷
psqr (t, t ′)w±

r jks(t
′) + ih̄

∑
pqrs

wiqpl (t )

[ ∫ t

t0

dt̄
(
GF,>

psqr (t, t̄ ) − GF,<
psqr (t, t̄ )

)
T ph,≷

r jks (t̄, t ′)

+
∫ t ′

t0

dt̄ GF,≷
psqr (t, t̄ )

(
T ph,<

r jks (t̄, t ′) − T ph,>

r jks (t̄, t ′)
)]

,

whereas the Møller operator obeys

�
ph,≷
i jkl (t, t ′) = ± ih̄

∑
pq

GF,≷
iplq (t, t ′)w±

q jkp(t ′) + ih̄
∑
pqrs

[ ∫ t

t0

dt̄
(
GF,>

iplq(t, t̄ ) − GF,<
iplq(t, t̄ )

)
wqrsp(t̄ )�ph,≷

s jkr (t̄, t ′)

+
∫ t ′

t0

dt̄ GF,≷
iplq (t, t̄ )wqrsp(t̄ )

(
�

ph,<

s jkr (t̄, t ′) − �
ph,>

s jkr (t̄, t ′)
)]

= ± ih̄
∑

pq

GF,≷
iplq (t, t ′)w±

q jkp(t ′) + ih̄
∑
pqrs

[ ∫ t

t0

dt̄
(
GF,<

piql (t̄, t ) − GF,>
piql (t̄, t )

)
�ph,≶

rqps (t ′, t̄ )

+
∫ t ′

t0

dt̄ GF,≶
piql (t̄, t )

(
�ph,>

rqps (t ′, t̄ ) − �ph,<
rqps (t ′, t̄ )

)]
ws jkr (t ′) .

The time-diagonal equation for �ph can be further simplified,

�
ph,≷
i jkl (t, t ) = ± ih̄

∑
pq

GF,≷
iplq (t )w±

q jkp(t ) + ih̄
∑
pqrs

∫ t

t0

dt̄
(
GF,<

piql (t̄, t )�ph,>
rqps (t, t̄ ) − GF,>

piql (t̄, t )�ph,<
rqps (t, t̄ )

)
ws jkr (t )

= ± ih̄
∑

pq

GF,≷
iplq (t )w±

q jkp(t ) ± ih̄
∑

pq

Gipql (t )wq jkp(t ) .

1. T ph approximation within the HF-GKBA

Applying the HF-GKBA to Eq. (C4) yields

Gi jkl (t ) = ± (ih̄)2
∑
pqrs

∫ t

t0

dt̄ U jr (t, t̄ )Usk (t̄, t )
[
�

ph,>

iqpl (t, t̄ )GF,<
prqs(t̄ ) − �

ph,<

iqpl (t, t̄ )GF,>
prqs(t̄ )

]
,

and, for the Møller operator,

�
ph,≷
i jkl (t � t ′) = ± (ih̄)3

∑
pqrs

Uir (t, t ′)GF,≷
r psq(t ′)Usl (t

′, t )w±
q jkp(t ′)

+ (ih̄)3
∑

pqrsuv

[ ∫ t

t0

dt̄ wqrsp(t̄ )Uiu(t, t̄ )
(
GF,>

upvq(t, t̄ ) − GF,<
upvq(t, t̄ )

)
Uvl (t̄, t )�ph,≷

s jkr (t̄, t ′)

+
∫ t ′

t0

dt̄ Uiu(t, t̄ )GF,≷
upvq(t, t̄ )Uvl (t̄, t )wqrsp(t̄ )

(
�

ph,<

s jkr (t̄, t ′) − �
ph,>

s jkr (t̄, t ′)
)]

, (C5)

where U obeys Eqs. (A6) and (A7). With Eq. (C5) we obtain the time derivative,

d

dt
�

ph,≷
i jkl (t � t ′) = 1

ih̄

∑
p

{
hHF

ip (t )�ph,≷
p jkl (t � t ′) − �

ph,≷
i jkp (t � t ′)hHF

pl (t )
}

± ih̄
∑
pqrs

[
GF,>

iplq (t ) − GF,<
iplq (t )

]
wqrsp(t )�ph,≷

s jkr (t � t ′)

= 1

ih̄

∑
pq

[
h�ph,HF

ipql (t ) + h�ph,corr
ipql (t )

]
�

ph,≷
q jkp (t � t ′) ,
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where we introduced the Hamiltonians

h�ph,HF
i jkl (t ) = δ jl h

HF
ik − δikhHF

jl ,

h�ph,corr
i jkl (t ) = (ih̄)2

∑
pq

[
GF,>

iplq (t ) − GF,<
iplq (t )

]
wq jkp(t )

that can be combined to

h�ph

i jkl (t ) = h�ph,HF
i jkl (t ) + h�ph,corr

i jkl (t ) ,

and the Møller operator obeys a Schrödinger equation,

ih̄
d

dt
�

ph,≷
i jkl (t � t ′) =

∑
pq

h�ph

ipql (t )�ph,≷
q jkp (t � t ′) .

2. T ph-G1-G2 equations for a general basis

Next, we compute the time derivative of G,

d

dt
Gi jkl (t ) =

[
d

dt
Gi jkl (t )

]
∫ +

[
d

dt
Gi jkl (t )

]
�ph

+
[

d

dt
Gi jkl (t )

]
U
,

and obtain for the first part,[
d

dt
Gi jkl (t )

]
∫ = ±

∑
pq

[
�

ph,>

iqpl (t, t )GF,<
p jqk (t, t ) − �

ph,<

iqpl (t, t )GF,>
p jqk (t, t )

]

= ih̄
∑
pqrs

w±
rqps(t )

[
GF,>

islr (t )GF,<
p jqk (t ) − GF,<

islr (t )GF,>
p jqk (t )

] + ih̄
∑
pqrs

Gisrl (t )wrqps(t )
[
GF,<

p jqk (t ) − GF,>
p jqk (t )

]

= 1

ih̄
�±

i jkl (t ) − 1

ih̄

∑
pq

[
h�ph,corr

kqp j (t )
]∗Giqpl (t ) ,

and, for the second part,[
d

dt
Gi jkl (t )

]
�ph

= ± (ih̄)2
∑
pqrs

∫ t

t0

dt̄ U jr (t, t̄ )

[(
d

dt
�

ph,>

iqpl (t, t̄ )

)
GF,<

prqs(t̄ ) −
(

d

dt
�

ph,<

iqpl (t, t̄ )

)
GF,>

prqs(t̄ )

]
Usk (t̄, t )

= 1

ih̄

∑
pq

[
h�ph,HF

ipql (t ) + h�ph,corr
ipql (t )

]
Gq jkp(t ),

and, for the third part,[
d

dt
Gi jkl (t )

]
U

= ±(ih̄)2
∑
pqrs

∫ t

t0

dt̄

(
d

dt
U jr (t, t̄ )

)[
�

ph,>

iqpl (t, t̄ )GF,<
prqs(t̄ ) − �

ph,<

iqpl (t, t̄ )GF,>
prqs(t̄ )

]
Usk (t̄, t )

± (ih̄)2
∑
pqrs

∫ t

t0

dt̄ U jr (t, t̄ )

[
�

ph,>

iqpl (t, t̄ )GF,<
prqs(t̄ ) − �

ph,<

iqpl (t, t̄ )GF,>
prqs(t̄ )

](
d

dt
Usk (t̄, t )

)

= 1

ih̄

∑
pq

Gipql (t )h�ph,HF
jqpk (t ).

Combining the three contributions yields the derivative,

ih̄
d

dt
Gi jkl (t ) = �±

i jkl (t ) +
∑

kl

{
h�ph

ipql (t )[Gkpq j (t )]∗ − Gipql (t )
[
h�ph

kpq j (t )
]∗

}
,

which is the result presented in the main part of the paper.

APPENDIX D: INTEGRAL SOLUTION G(t ) AND INITIAL CORRELATIONS
FOR HIGHER-ORDER SELF ENERGIES

While initial correlations are trivially added to the differential G1-G2 scheme as an initial condition, as we demonstrated
in Sec. III E, for the integral representation of G, this problem is more involved. We, therefore, outline, in this Appendix, the
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solution for higher-order self energies by extending our SOA result, Eq. (46). Since the derivations are carried out analogously
to Sec. III E and Appendix B, respectively, we only give the resulting equations. Performing the time derivative of the integral
expressions recovers the differential equations for the respective self energy, cf. Eqs. (59), (76), and (83).

1. GW self energy

In the case of the GW self energy Eq. (46) becomes

Gi jkl (t ) = (ih̄)4
∑
pqrs

∫ t

t0

dt̄ U (2),ε
lq js (t, t̄ )

[
δ(t0, t̄ )G0

pqrs + 1

ih̄
�pqrs(t̄ )

][
U (2),ε

irkp (t, t̄ )
]∗

,

where

U (2),ε
i jkl (t, t ′) = Uk j (t, t ′)Uli(t

′, t ) + ih̄
∑
pqrs

∫ t

t ′
dt̄ Ukp(t, t̄ )Uqi(t̄, t )hε,corr

r psq (t̄ )U (2),ε
r jsl (t̄, t ′) .

The equation of motion for these modified propagators can also be brought to a differential form:

ih̄
d

dt
U (2),ε

i jkl (t � t ′) =
∑

pq

hε
pkqi(t )U (2),ε

p jql (t � t ′) . (D1)

As one observes, U (2),ε obeys the same equation as ε−1,≷ itself [cf. Eq. (57)]. They are, however, not identical, since the time-
diagonal values differ [cf. Eqs. (18) and (53)].

2. T matrix in the particle-particle channel

For the particle-particle T -matrix approximation similar equations can be derived. The equivalent of Eq. (46) takes the form,

Gi jkl (t ) = (ih̄)4
∑
pqrs

∫ t

t0

dt̄ U (2),�pp

i j pq (t, t̄ )

[
δ(t0, t̄ )G0

pqrs + 1

ih̄
�±

pqrs(t̄ )

][
U (2),�pp

klrs (t, t̄ )
]∗

,

where

U (2),�pp

i jkl (t, t ′) = U (2)
i jkl (t, t ′) + ih̄

∑
pqrs

∫ t

t ′
dt̄ U (2)

i j pq(t, t̄ )h�pp,corr
pqrs (t̄ )U (2),�pp

rskl (t̄, t ′) .

The corresponding differential equation for the two-particle propagator mirrors the respective equation for �pp [cf. Eq. (75)],

ih̄
d

dt
U (2),�pp

i jkl (t � t ′) =
∑

pq

h�pp

i j pq(t ) U (2),�pp

pqkl (t � t ′) . (D2)

As for GW , the time-diagonal values of both quantities do, however, not coincide.

3. T matrix in the particle-hole channel

Finally, in the particle-hole T -matrix approximation Eq. (46) is replaced by

Gi jkl (t ) = ih̄
∑
pqrs

∫ t

t0

dt̄ U (2),�ph

ispl (t, t̄ )

[
δ(t0, t̄ )G0

pqrs + 1

ih̄
�±

pqrs(t̄ )

][
U (2),�ph

kqr j (t, t̄ )
]∗

,

with

U (2),�ph

i jkl (t, t ′) = Uik (t, t ′)U jl (t
′, t ) + ih̄

∑
pqrs

∫ t

t ′
dt̄ Uiq(t, t̄ )Upl (t̄, t )h�ph,corr

qrsp (t̄ )U (2),�ph

s jkr (t̄, t ′) .

The last equation can again be transformed into its differential form,

ih̄
d

dt
U (2),�ph

i jkl (t � t ′) =
∑

pq

h�ph

ipql (t )U (2),�ph

q jkp (t � t ′) ,

which matches Eq. (82) for �ph in analogy to Eqs. (D1) and (D2).
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292 Chapter 3 Theoretical Developments of the NEGF Formalism

3.1.1 Exchange Consistency in the T ph-G1–G2

As shown in Sec. 2.1.4, the GW and TPH approximations in a general single-particle

basis can violate physical conservation laws, when the corresponding exchange series are

included (cf. Tab. 2.1). Therefore, it is necessary to confine oneself to the direct scattering

terms, for both resummation schemes. In Ref. [208] the G1–G2 scheme has been derived

for the general form of the particle–hole T matrix—involving exchange. This is particularly

problematic since the important symmetry (cf. appendix C of Ref. [208])

T ph,≷
ijkl (t, t′) = T ph,≶

jilk (t′, t) (3.1)

for T ph is violated, if exchange terms are included.8 For a more consistent treatment, it is,

therefore, indispensable to use a modified EOM for the time-diagonal two-particle Green

function in TPH approximation and replace equation (83) of Ref. [208] by the following:

i~
d

dt
Gijkl(t) = Ψijkl(t)

+
∑

pq

{
hΩph

ipql (t)
[
Gkpqj(t)

]∗
− Gipql(t)

[
hΩph

kpqj(t)
]∗}

. (3.2)

Note that the direct two-particle source term Ψ(t) is used instead of Ψ±(t). See Ref. [208]

for the definitions in this context. While the Hubbard formulas for TPH remain unchanged,

for jellium (section V.B.3 in Ref. [208]; cf. the definitions therein) one arrives at

i~
d

dt
Gαβpp̄q(t)− Gαβpp̄q(t)

(
hHF,α
p−q (t) + hHF,β

p̄+q (t)− hHF,α
p (t)− hHF,β

p̄ (t)
)

= Ψαβ
pp̄q(t) + Λph,αβ

p,p̄,q (t)−
[
Λph,αβ

p−q,p̄+q,−q(t)
]∗
. (3.3)

The same reasoning holds true for the GW -G1–G2 as well, which, therefore, cannot be

extended to describe exchange contributions in the suggested way.

Following the above discussion, it becomes necessary to also define a modified DSL

approximation within the G1–G2 scheme. To avoid inclusion of terms that violate

conservation laws, the source term Ψ±(t) should be replaced in equations (87) and (88) of

Ref. [208] as well, leading to

i~
d

dt
Gijkl(t)−

[
h(2),HF,G

]
ijkl

(t) = Ψijkl(t)

+
∑

pq

{
hε,corr
qjpl (t)

[
Gqkpi(t)

]∗
− Gqjpl(t)

[
hε,corr
qkpi (t)

]∗}

+
∑

pq

{
hΩpp,corr
ijpq (t)

[
Gklpq(t)

]∗
− Gijpq(t)

[
hΩpp,corr
klpq (t)

]∗}

+
∑

kl

{
hΩph,corr
ipql (t)

[
Gkpqj(t)

]∗
− Gipql(t)

[
hΩph,corr
kpqj (t)

]∗}
, (3.4)

8Without the symmetry of Eq. (3.1) the transition to the G1–G2 formulation of the TPH scheme leads

to an irresolvable contradiction.
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and

i~
d

dt
Gijkl(t)−

[
h(2),HF,G

]
ijkl

(t) = Ψijkl(t)

+ Πijkl(t)−
[
Πlkji(t)

]∗
+ Λijkl(t)−

[
Λklij(t)

]∗
, (3.5)

respectively (see Ref. [208] for the definitions in this context). Note that this variant of

the DSL misses the (valid) exchange terms of the particle–particle T matrix, which may

seem artificial but is, nonetheless, required due to the recursive nature of the two-particle

EOM. Arguably, the reach of the DSL becomes significantly narrowed by this handling,

as already the second-order exchange diagram is omitted. A generalization of the DSL

that exceeds the imposed restrictions is presented in the end of Sec. 3.1.2.1 in the context

of the third-order approximation. On this occasion, also the link to the RDO theory is

discussed.

3.1.2 Extensions for the G1–G2 Scheme: TOA and FLEX

In Refs. [114, 208] the G1–G2 scheme has been introduced for several important selfenergy

approximations, i.e. the second-order approximation (SOA), GW , the T -matrix approxi-

mation in the particle–particle (TPP), and the particle–hole channel (TPH), as well as

the dynamically-screened-ladder (DSL) approximation. Two further common selfenergy

choices in NEGF theory are the third-order selfenergy (TOA) and the fluctuating-exchange

approximation (FLEX); see, e.g., Refs. [79, 212] for details. To expand the scope of the

G1–G2 scheme, the application to TOA and FLEX is a logical next step. Here, the way

to derive the TOA result is demonstrated explicitly for the (third-order) particle–particle

scattering diagrams in Sec. 3.1.2.1. The derivation for FLEX-G1–G2 is carried out in

Sec. 3.1.2.2. The specification of the results to the Hubbard basis and numerical tests are

presented in Sec. 3.1.2.3 for both derived methods.

3.1.2.1 G1–G2 Scheme for TOA

In NEGF theory, there are generally ten selfenergy diagrams of third order in the inter-

action [79]. In the following, the results for the particle–particle scattering terms are

derived and discussed. Subsequently, the corresponding results for the third-order diagrams

describing particle–hole scattering and dynamical screening are given, followed by the

respective expressions for the remaining four diagrams.

Particle–Particle Scattering Terms
The diagrams that describe particle–particle scattering are illustrated in Fig. 3.1. The two

diagrams also form the third-order contribution to the TPP selfenergy. For contour-time
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Figure 3.1 – Diagrammatic illustration of the third-order particle–particle selfenergy

contributions. The first diagram describes direct particle scattering, while the second

one accounts for particle exchange.

arguments, in a general single-particle basis, the selfenergy diagrams can be written in the

following combined notation (cf. Refs. [79, 212]):

Σij(z, z
′) = ± (i~)3

∑

klmnp
qrsuv

∫

C
dz̄ wikmn(z)GH

mnpq(z, z̄)wpqrs(z̄)GH
rsuv(z̄, z

′)w±uvjl(z
′)Glk(z

′, z) ,

(3.6)

where the two-particle Hartree Green function, GH, is defined as in Ref. [208] as

GH
ijkl(z, z

′) := Gik(z, z
′)Gjl(z, z

′) , (3.7)

leading to the real-time components

GH,≷
ijkl (t, t

′) := G≷
ik(t, t

′)G≷
jl(t, t

′) . (3.8)

The (anti-)symmetrized interaction matrix [cf. Eq. (2.14)]

w±ijkl(z) := wijkl(z)± wijlk(z) (3.9)

accounts for a particle exchange that leads to the structural difference between the two

diagrams. In order to derive the G1–G2 scheme, one has to find a single-time equation

for the time-diagonal two-particle Green function, G(t). The corresponding expression

for G(t) in third order can be identified by comparing two equivalent expressions for the

collision integral,

Iij(t) = ±i~
∑

klp

wiklp(t)Glpjk(t) (3.10)

=
∑

k

∫ t

t0

dt̄
[
Σ>
ik(t, t̄)G

<
kj(t̄, t)− Σ<

ik(t, t̄)G
>
kj(t̄, t)

]
, (3.11)

that enters the EOM for the time-diagonal single-particle Green function,

i~
d

dt
G<
ij(t)−

[
hHF(t), G<(t)

]
ij

=
[
I + I†

]
ij

(t) . (3.12)
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Here, hHF(t) denotes the single-particle Hartree–Fock Hamiltonian, that accounts for

mean-field effects. The less and greater components of Σ are found to [79]:

Σ<
ij(t, t

′) =± (i~)3
∑

kmn

wikmn(t)
∑

lpqrsuv

w±uvjl(t
′)G>

lk(t
′, t)×

×
[∫ t

t0

dt̄GH,>
mnpq(t, t̄)wpqrs(t̄)GH,<

rsuv(t̄, t
′)

+

∫ t′

t

dt̄GH,<
mnpq(t, t̄)wpqrs(t̄)GH,<

rsuv(t̄, t
′)

+

∫ t0

t′
dt̄GH,<

mnpq(t, t̄)wpqrs(t̄)GH,>
rsuv(t̄, t

′)

]
, (3.13)

Σ>
ij(t, t

′) =± (i~)3
∑

kmn

wikmn(t)
∑

lpqrsuv

w±uvjl(t
′)G<

lk(t
′, t)×

×
[∫ t′

t0

dt̄GH,>
mnpq(t, t̄)wpqrs(t̄)GH,<

rsuv(t̄, t
′)

+

∫ t

t′
dt̄GH,>

mnpq(t, t̄)wpqrs(t̄)GH,>
rsuv(t̄, t

′)

+

∫ t0

t

dt̄GH,<
mnpq(t, t̄)wpqrs(t̄)GH,>

rsuv(t̄, t
′)

]
. (3.14)

Together with Eqs. (3.10) and (3.11), one can now find an explicit expression for G(t):

Gijkl(t) = (i~)2
∑

mnpq
rsuv

∫ t

t0

dt̄ w±uvmn(t̄)

{
GH,<
mnkl(t̄, t)×

×
[∫ t̄

t0

d¯̄tGH,>
ijpq (t, ¯̄t)wpqrs(¯̄t)GH,<

rsuv(
¯̄t, t̄) +

∫ t

t̄

d¯̄tGH,>
ijpq (t, ¯̄t)wpqrs(¯̄t)GH,>

rsuv(
¯̄t, t̄)

+

∫ t0

t

d¯̄tGH,<
ijpq (t, ¯̄t)wpqrs(¯̄t)GH,>

rsuv(
¯̄t, t̄)

]
− GH,>

mnkl(t̄, t)×

×
[∫ t

t0

d¯̄tGH,>
ijpq (t, ¯̄t)wpqrs(¯̄t)GH,<

rsuv(
¯̄t, t̄) +

∫ t̄

t

d¯̄tGH,<
ijpq (t, ¯̄t)wpqrs(¯̄t)GH,<

rsuv(
¯̄t, t̄)

+

∫ t0

t̄

d¯̄tGH,<
ijpq (t, ¯̄t)wpqrs(¯̄t)GH,>

rsuv(
¯̄t, t̄)

]}
. (3.15)

As shown in Refs. [114, 208], applying the HF-GKBA is equivalent to the replacement of

all time-off-diagonal Green functions according to

G≷
ij(t
′ ≤ t) = i~

∑

k

G≷
ik(t
′)Ukj(t′, t) , (3.16)

G≷
ij(t ≥ t′) = i~

∑

k

Uik(t, t′)G≷
kj(t

′) , (3.17)
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dependent on the time ordering of the real-time arguments. Here, U is the time-evolution

operator that obeys a Schrödinger equation for the single-particle Hartree–Fock Hamiltonian

hHF(t). The single-time dependent Green functions G≷(t) := G≷(t, t) are related to the

system’s single-particle density matrix, n(t), via

G<
ij(t) = G>

ij(t)−
1

i~
δij = ± 1

i~
nij(t) . (3.18)

To describe a particle pair, the corresponding two-particle propagator

U (2)
ijkl(t, t

′) := Uik(t, t′)Ujl(t, t′) is introduced, which obeys [208]:

d

dt

[
U (2)
ijkl(t, t

′)
]

=
1

i~
∑

pq

h
(2),HF
ijpq (t)U (2)

pqkl(t, t
′) , (3.19)

d

dt

[
U (2)
ijkl(t

′, t)
]

= − 1

i~
∑

pq

U (2)
ijpq(t

′, t)h(2),HF
pqkl (t) , (3.20)

where h
(2),HF
ijkl (t) := δjlh

HF
ik (t) + δikh

HF
jl (t). Using the Eqs. (3.8), (3.16) and (3.17), one finds

the HF-GKBA replacements of the two-particle Hartree Green functions:

GH,≷
ijkl (t ≥ t′) = (i~)2

∑

mn

U (2)
ijmn(t, t′)GH,≷

mnkl(t
′) , (3.21)

GH,≷
ijkl (t

′ ≤ t) = (i~)2
∑

mn

GH,≷
ijmn(t′)U (2)

mnkl(t
′, t) , (3.22)
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with the single-time dependent GH,≷(t) := GH,≷(t, t). Having that, the explicit form of G(t)

[Eq. (3.15)] within the HF-GKBA is readily found9:

Gijkl(t) = (i~)8
∑

mnpqrs
uvxyabcd

∫ t

t0

dt̄ w±uvmn(t̄)

{
GH,<
mnxy(t̄)U (2)

xykl(t̄, t)×

×
[∫ t̄

t0

d¯̄tU (2)
ijab(t,

¯̄t)GH,>
abpq(

¯̄t)wpqrs(¯̄t)GH,<
rscd(

¯̄t)U (2)
cduv(

¯̄t, t̄)

+

∫ t

t̄

d¯̄tU (2)
ijab(t,

¯̄t)GH,>
abpq(

¯̄t)wpqrs(¯̄t)U (2)
rscd(

¯̄t, t̄)GH,>
cduv(t̄)

−
∫ t̄

t0

d¯̄tU (2)
ijab(t,

¯̄t)GH,<
abpq(

¯̄t)wpqrs(¯̄t)GH,>
rscd(

¯̄t)U (2)
cduv(

¯̄t, t̄)

−
∫ t

t̄

d¯̄tU (2)
ijab(t,

¯̄t)GH,<
abpq(

¯̄t)wpqrs(¯̄t)U (2)
rscd(

¯̄t, t̄)GH,>
cduv(t̄)

]
− GH,>

mnxy(t̄)U (2)
xykl(t̄, t)×

×
[∫ t̄

t0

d¯̄tU (2)
ijab(t,

¯̄t)GH,>
abpq(

¯̄t)wpqrs(¯̄t)GH,<
rscd(

¯̄t)U (2)
cduv(

¯̄t, t̄)

+

∫ t

t̄

d¯̄tU (2)
ijab(t,

¯̄t)GH,>
abpq(

¯̄t)wpqrs(¯̄t)U (2)
rscd(

¯̄t, t̄)GH,<
cduv(t̄)

−
∫ t

t̄

d¯̄tU (2)
ijab(t,

¯̄t)GH,<
abpq(

¯̄t)wpqrs(¯̄t)U (2)
rscd(

¯̄t, t̄)GH,<
cduv(t̄)

−
∫ t̄

t0

d¯̄tU (2)
ijab(t,

¯̄t)GH,<
abpq(

¯̄t)wpqrs(¯̄t)GH,>
rscd(

¯̄t)U (2)
cduv(

¯̄t, t̄)

]}
. (3.23)

Reordering the terms leads to a more compact form:

Gijkl(t) = (i~)8
∑

mnpqrs
uvxyabcd

∫ t

t0

dt̄ w±uvmn(t̄)U (2)
xykl(t̄, t)

{[
GH,<
mnxy(t̄)− GH,>

mnxy(t̄)
]
×

×
∫ t̄

t0

d¯̄tU (2)
ijab(t,

¯̄t)wpqrs(¯̄t)U (2)
cduv(

¯̄t, t̄)
[
GH,>
abpq(

¯̄t)GH,<
rscd(

¯̄t)− GH,<
abpq(

¯̄t)GH,>
rscd(

¯̄t)
]

+
[
GH,>
cduv(t̄)GH,<

mnxy(t̄)− GH,<
cduv(t̄)GH,>

mnxy(t̄)
]
×

×
∫ t

t̄

d¯̄tU (2)
ijab(t,

¯̄t)wpqrs(¯̄t)U (2)
rscd(

¯̄t, t̄)
[
GH,>
abpq(

¯̄t)− GH,<
abpq(

¯̄t)
]}

. (3.24)

The time derivative of Eq. (3.24) can be carried out by using the derivative relations for the

two-particle propagators [cf. Eqs. (3.19) and (3.20)], and accounting for the contributions

9Compared to Eq. (3.15), some integration boundaries have been flipped to match causal time ordering.

To disambiguate the time ordering in the arguments of GH,≷ and U (2), the integration interval [t0, t]

has been split into two separate intervals [t0, t̄], [t̄, t].
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of the integration boundaries10:

d

dt
Gijkl(t) =

1

i~
∑

mn

h
(2),HF
ijmn (t)Gmnkl(t)−

1

i~
∑

mn

Gijmn(t)h
(2),HF
mnkl (t)

+ (i~)6
∑

mnpqrs
uvabcd

w±uvmn(t)
[
GH,<
mnkl(t)− GH,>

mnkl(t)
]
×

×
∫ t

t0

dt̄ wpqrs(t̄)U (2)
ijab(t, t̄)U

(2)
cduv(t̄, t)

[
GH,>
abpq(t̄)GH,<

rscd(t̄)− GH,<
abpq(t̄)GH,>

rscd(t̄)
]

+ (i~)6
∑

mnpqrs
uvxycd

wpqrs(t)
[
GH,>
ijpq (t)− GH,<

ijpq (t)
]
×

×
∫ t

t0

dt̄ w±uvmn(t̄)U (2)
rscd(t, t̄)U

(2)
xykl(t̄, t)

[
GH,>
cduv(t̄)GH,<

mnxy(t̄)− GH,<
cduv(t̄)GH,>

mnxy(t̄)
]
.

(3.25)

In the second and third line of the expression, it is convenient to separate the

w±uvmn(t) = wuvmn(t)± wuvnm(t) contribution and rename some indices for the second

part (±), which, together with the symmetry relations for w(t), allows one to regroup the

terms in a different way, using w±pqrs(t̄) instead11:

d

dt
Gijkl(t) =

1

i~
∑

mn

h
(2),HF
ijmn (t)Gmnkl(t)−

1

i~
∑

mn

Gijmn(t)h
(2),HF
mnkl (t)

+ (i~)6
∑

mnpqrs
uvxycd

wpqrs(t)
[
GH,>
ijpq (t)− GH,<

ijpq (t)
]
×

×
∫ t

t0

dt̄ w±uvmn(t̄)U (2)
rscd(t, t̄)U

(2)
xykl(t̄, t)

[
GH,>
cduv(t̄)GH,<

mnxy(t̄)− GH,<
cduv(t̄)GH,>

mnxy(t̄)
]

+ (i~)6
∑

mnpqrs
uvabcd

wuvmn(t)
[
GH,<
mnkl(t)− GH,>

mnkl(t)
]
×

×
∫ t

t0

dt̄ w±pqrs(t̄)U (2)
ijab(t, t̄)U

(2)
cduv(t̄, t)

[
GH,>
abpq(t̄)GH,<

rscd(t̄)− GH,<
abpq(t̄)GH,>

rscd(t̄)
]
. (3.26)

In the above expression, the explicit form of the time-diagonal two-particle Green function

in second-order Born approximation can be identified, which reads [208]

GSOA
ijkl (t) = (i~)5

∑

pqrs
uvxy

∫ t

t0

dt̄ w±pqrs(t̄)U (2)
ijuv(t, t̄)

[
GH,>
uvpq(t̄)GH,<

rsxy(t̄)− GH,<
uvpq(t̄)GH,>

rsxy(t̄)
]
U (2)
xykl(t̄, t) .

(3.27)

The resulting EOM for G(t), Eq. (3.26), can be brought to the following time-linear form:

d

dt
Gijkl(t) =

1

i~

[
h(2),HF(t),G(t)

]
ijkl

+ i~
∑

pqrs

[
GH,>
ijpq (t)− GH,<

ijpq (t)
]
wpqrs(t)GSOA

rskl (t)

+ i~
∑

mnuv

GSOA
ijuv (t)wuvmn(t)

[
GH,<
mnkl(t)− GH,>

mnkl(t)
]
. (3.28)

10The time-diagonal two-particle propagators obey U (2)
ijkl(t, t) = 1

(i~)2 δikδjl (cf. Ref. [208]).
11The second and third line of Eq. (3.25) have been exchanged with the forth and fifth line.
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During the derivation of the G1–G2 scheme for the particle–particle T -matrix approxima-

tion in Ref. [208], the effective quasi-Hamiltonian

hΩpp,corr
ijkl (t) := (i~)2

∑

pq

[
GH,>
ijpq (t)− GH,<

ijpq (t)
]
wpqkl(t) (3.29)

has been introduced, to reveal the Heisenberg character of the EOM of the corresponding

two-particle Green function. Using this definition, Eq. (3.28) can be further simplified to

the most compact form

i~
d

dt
Gijkl(t) =

[
h(2),HF(t),G(t)

]
ijkl

+
∑

pq

{
hΩpp,corr
ijpq (t)

[
GSOA
klpq (t)

]∗
− GSOA

ijpq (t)
[
hΩpp,corr
klpq (t)

]∗}
,

(3.30)

where the symmetry properties of the two-particle Green function and the pair-interaction

matrix have been used [208]. Equation (3.30) provides the basis for a time-linear propa-

gation that accounts for third-order particle–particle scattering effects. For a consistent

approach, it has to be supplemented with the diagrams of second order in the interaction.

The G1–G2 scheme for SOA is derived in Refs. [114, 208]. The resulting expression for

the two-particle EOM of the combined selfenergy attains the following form:

i~
d

dt
Gijkl(t) =

[
h(2),HF(t),G(t)

]
ijkl

+ Ψ±ijkl(t)

+
∑

pq

{
hΩpp,corr
ijpq (t)

[
GSOA
klpq (t)

]∗
− GSOA

ijpq (t)
[
hΩpp,corr
klpq (t)

]∗}
, (3.31)

where the two-particle source term is defined as

Ψ±ijkl(t) = (i~)2
∑

pqrs

w±pqrs(t)
[
GH,>
ijpq (t)GH,<

rskl (t)− GH,<
ijpq (t)GH,>

rskl (t)
]
. (3.32)

Equation (3.31), together with Eqs. (3.10) and (3.12) for the single-particle Green function,

form the G1–G2 scheme for the particle–particle TOA contributions. From a numerical

perspective, propagating Eq. (3.31) can only be achieved in a time-linear way, if a separate

equation is solved for GSOA(t) [which obeys the first line of Eq. (3.31)]. Thus, instead of

one, one has to propagate two high-dimensional tensor objects, which doubles the memory

effort and significantly increases the CPU time.

Comparing Eq. (3.31) to the result for the TPP approximation from Ref. [208],

i~
d

dt
Gijkl(t) =

[
h(2),HF(t),G(t)

]
ijkl

+ Ψ±ijkl(t)

+
∑

pq

{
hΩpp,corr
ijpq (t)

[
Gklpq(t)

]∗
− Gijpq(t)

[
hΩpp,corr
klpq (t)

]∗}
, (3.33)

reveals a close connection between both approximations. For the TPP result, the coupling

to the second-order two-particle Green function is replaced by the coupling to G(t) itself,

thereby introducing the additional recursive structure of the T matrix. This treatment

accounts for particle–particle correlations of higher order, as discussed in Ref. [208].

In the following sections, the results for the remaining third-order selfenergy con-

tributions are discussed. Since the respective G1–G2 schemes are derived in analogous

considerations as for the particle–particle diagrams, the derivations will not be repeated.
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(a) (b)

Figure 3.2 – Diagrammatic illustration of different third-order selfenergy contributions.

(a) particle–hole scattering diagram (b) dynamical-screening diagram.

Particle–Hole Scattering and Dynamical Screening
The counterpart to the previous particle–particle channel is the particle–hole channel, in

which scattering events between particles and holes are described. Such processes are

typically included via the TPH approximation. As discussed in Secs. 2.1.4 and 3.1.1,

there are exchange diagrams within the third- (and higher-)order contributions of the

TPH selfenergy leading to a violation of conservation laws. Hence, when considered

isolated, it is expedient to only include the direct third-order particle–hole-scattering term,

which is illustrated in Fig. 3.2 (a). For this diagram, the final result for the EOM of the

time-diagonal two-particle Green function is the following:

i~
d

dt
Gijkl(t) =

[
h(2),HF(t),G(t)

]
ijkl

+ Ψ±ijkl(t)

+
∑

pq

{
hΩph,corr
ipql (t)

[
G(2),di
kpqj (t)

]∗
− G(2),di

ipql (t)
[
hΩph,corr
kpqj (t)

]∗}
, (3.34)

where the effective quasi-Hamiltonian12

hΩph,corr
ijkl (t) := (i~)2

∑

pq

[
GF,>
iqlp (t)− GF,<

iqlp (t)
]
wpjkq(t) (3.35)

is taken from the derivation of the T ph-G1–G2 scheme in Ref. [208]. In the above equation,

only the first part of the second-order two-particle Green function is used that leads to

the direct second-order selfenergy diagram, i.e.:

G(2),di
ijkl (t) = (i~)5

∑

pqrs
uvxy

∫ t

t0

dt̄ wpqrs(t̄)U (2)
ijuv(t, t̄)

[
GH,>
uvpq(t̄)GH,<

rsxy(t̄)− GH,<
uvpq(t̄)GH,>

rsxy(t̄)
]
U (2)
xykl(t̄, t) .

(3.36)

Note that the full two-particle Green function in SOA [cf. Eq. (3.27)] can be expressed

as

GSOA
ijkl (t) = G(2),di

ijkl (t)± G(2),di
ijlk (t) . (3.37)

12The time-diagonal two-particle Fock Green function is defined as GF,≷ijkl (t) := G
≷
il (t)G

≶
jk(t).
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Equation (3.34) is again coupled to the EOM for the single-particle Green function,

Eq. (3.12), via Eq. (3.10). Similarly to the particle–particle case above, Eq. (3.34) is

a less recursive version of the EOM for the two-particle Green function in T -matrix

approximation, now for the particle–hole channel [cf. Eq. (3.2)]. As already discussed, the

source term

Ψijkl(t) = (i~)2
∑

pqrs

wpqrs(t)
[
GH,>
ijpq (t)GH,<

rskl (t)− GH,<
ijpq (t)GH,>

rskl (t)
]

(3.38)

in Eq. (3.2) is defined without exchange contribution to avoid inducing unbalanced diagrams

during the recursion. In Eq. (3.34), this is not necessary since G(2),di(t) obeys a separate

EOM of the form

i~
d

dt
G(2),di
ijkl (t) =

[
h(2),HF(t),G(2),di(t)

]
ijkl

+ Ψijkl(t) . (3.39)

The inclusion of dynamical-screening effects is usually achieved by introducing a

renormalized interaction tensor, leading to the well-known GW approximation. The third-

order selfenergy contribution, that describes dynamical-screening processes is illustrated

in Fig. 3.2 (b). Starting from this diagram and deriving the corresponding G1–G2 scheme

leads to the following time-linear EOM for the two-particle Green function:

i~
d

dt
Gijkl(t) =

[
h(2),HF(t),G(t)

]
ijkl

+ Ψ±ijkl(t)

+
∑

pq

{
hε,corr
qjpl (t)

[
G(2),di
qkpi (t)

]∗
− G(2),di

qjpl (t)
[
hε,corr
qkpi (t)

]∗}
, (3.40)

where, from the derivation of the GW -G1–G2 scheme in Ref. [208], the effective quasi-

Hamiltonian

hε,corr
ijkl (t) := ± (i~)2

∑

pq

wqipk(t)
[
GF,>
jplq(t)− GF,<

jplq(t)
]

(3.41)

is used. Again, Eq. (3.40) is solved in conjunction with Eqs. (3.10) and (3.12) for the

single-particle Green function. Comparing this result to the two-particle EOM of the

GW -G1–G2 scheme [208],

i~
d

dt
Gijkl(t) =

[
h(2),HF(t),G(t)

]
ijkl

+ Ψijkl(t)

+
∑

pq

{
hε,corr
qjpl (t)

[
Gqkpi(t)

]∗
− Gqjpl(t)

[
hε,corr
qkpi (t)

]∗}
, (3.42)

shows that the recursive structure is, once more, reduced for the TOA result due to the

explicit usage of the second-order two-particle Green function. The source term Ψ(t) in

Eq. (3.42) does not describe exchange processes to maintain, e.g., energy conservation—in

line with the insights of Secs. 2.1.4 and 3.1.1.
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A B C

D E F

Figure 3.3 – Diagrammatic illustration of the remaining third-order selfenergy contribu-

tions that are not included in Fig. 3.1 or Fig. 3.2.

Remaining Terms—Full TOA
In order to complete the description of the selfenergy contributions that are of third order

in the interaction now the remaining six diagrams are addressed, four of which are not

expressible through common resummation approaches (see Fig. 3.3 for an illustration of

the respective terms). While the diagram A can be attributed to the particle–hole T

matrix when considering exchange terms [79, 121], diagram D can be assigned to the

GW approximation (again, these inclusions will potentially lead to unbalanced energy

contributions). The selfenergy parts C and F resemble these diagrams, to which they

are mirrored. The diagrams B and E, however, exhibit structural uniqueness, thereby

capturing scattering physics that are not accounted for otherwise. For a recent discussion

of all third-order selfenergy terms, see, e.g., Ref. [79].

For all terms X ∈ {A,B,C,D,E,F}, the derivative of the respective time-diagonal

two-particle Green function takes the general form

i~
d

dt
GX
ijkl(t) =

[
h(2),HF(t),GX(t)

]
ijkl

+ ΥX
ijkl , (3.43)

where the source term ΥX incorporates specific correlations according to

ΥA
ijkl(t) =± (i~)2

∑

mnpq

wnpqm(t)
[
GF,>
imln(t)− GF,<

imln(t)
]
G(2),di
qjpk (t)

∓ (i~)2
∑

mnpq

wnqmp(t)
[
GF,>
mjnk(t)− GF,<

mjnk(t)
]
G(2),di
ipql (t) , (3.44)

ΥB
ijkl(t) =± (i~)2

∑

mnpq

wnpmq(t)
[
GF,>
imln(t)− GF,<

imln(t)
]
G(2),di
qjkp (t)

∓ (i~)2
∑

mnpq

wnpqm(t)
[
GF,>
mjnk(t)− GF,<

mjnk(t)
]
G(2),di
iqlp (t) , (3.45)
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ΥC
ijkl(t) =± (i~)2

∑

mnpq

wnqpm(t)
[
GF,>
imkn(t)− GF,<

imkn(t)
]
G(2),di
jpql (t)

∓ (i~)2
∑

mnpq

wnpqm(t)
[
GF,>
mjnl(t)− GF,<

mjnl(t)
]
G(2),di
qikp (t) , (3.46)

ΥD
ijkl(t) = (i~)2

∑

mnpq

wnqpm(t)
[
GF,>
imkn(t)− GF,<

imkn(t)
]
G(2),di
jplq (t)

− (i~)2
∑

mnpq

wnpmq(t)
[
GF,>
mjnl(t)− GF,<

mjnl(t)
]
G(2),di
qikp (t) , (3.47)

ΥE
ijkl(t) = (i~)2

∑

mnpq

wnqmp(t)
[
GF,>
imkn(t)− GF,<

imkn(t)
]
G(2),di
jpql (t)

− (i~)2
∑

mnpq

wnpqm(t)
[
GF,>
mjnl(t)− GF,<

mjnl(t)
]
G(2),di
qipk (t) , (3.48)

ΥF
ijkl(t) = (i~)2

∑

mnpq

wnpmq(t)
[
GF,>
imln(t)− GF,<

imln(t)
]
G(2),di
qjpk (t)

− (i~)2
∑

mnpq

wnpmq(t)
[
GF,>
mjnk(t)− GF,<

mjnk(t)
]
G(2),di
iqlp (t) . (3.49)

Equation (3.43) for one specific choice of X should not be used as an EOM on its own;

at this point, partial inclusion of selfenergy diagrams can corrupt the approach, being

no longer Φ compensated (cf. Sec. 2.1.4). Instead, one can illustrate, how the individual

terms counterbalance each other when considered collectively. To this end, four effective

quasi-Hamiltonians are introduced:

h
(i)
ijkl(t) := (i~)2

∑

pq

wpjkq(t)
[
GF,>
iqlp (t)− GF,<

iqlp (t)
]

= hΩph,corr
ijkl (t) , (3.50)

h
(ii)
ijkl(t) := ± (i~)2

∑

pq

wpjqk(t)
[
GF,>
iqlp (t)− GF,<

iqlp (t)
]
, (3.51)

h
(iii)
ijkl(t) := ± (i~)2

∑

pq

wqipk(t)
[
GF,>
jplq(t)− GF,<

jplq(t)
]

= hε,corr
ijkl (t) , (3.52)

h
(iv)
ijkl(t) := (i~)2

∑

pq

wqikp(t)
[
GF,>
jplq(t)− GF,<

jplq(t)
]
. (3.53)

Using the above definitions, the Eqs. (3.44) – (3.49) transform to

ΥA
ijkl(t) =±

∑

pq

h
(i)
ipql(t)

[
G(2),di
kpjq (t)

]∗
−
∑

pq

G(2),di
ipql (t)

[
h

(ii)
kpqj(t)

]∗
, (3.54)

ΥB
ijkl(t) =

∑

pq

h
(ii)
ipql(t)

[
G(2),di
kpqj (t)

]∗
∓
∑

pq

G(2),di
iplq (t)

[
h

(i)
kpqj(t)

]∗
, (3.55)

ΥC
ijkl(t) =±

∑

pq

h
(iv)
qjpl(t)

[
G(2),di
qkip (t)

]∗
∓
∑

pq

G(2),di
qjlp (t)

[
h

(iv)
qkpi(t)

]∗
, (3.56)



304 Chapter 3 Theoretical Developments of the NEGF Formalism

ΥD
ijkl(t) =±

∑

pq

h
(iii)
qjpl(t)

[
G(2),di
qkip (t)

]∗
−
∑

pq

G(2),di
qjpl (t)

[
h

(iv)
qkpi(t)

]∗
, (3.57)

ΥE
ijkl(t) =

∑

pq

h
(iv)
qjpl(t)

[
G(2),di
qkpi (t)

]∗
∓
∑

pq

G(2),di
qjlp (t)

[
h

(iii)
qkpi(t)

]∗
, (3.58)

ΥF
ijkl(t) =±

∑

pq

h
(ii)
ipql(t)

[
G(2),di
kpjq (t)

]∗
∓
∑

pq

G(2),di
iplq (t)

[
h

(ii)
kpqj(t)

]∗
. (3.59)

These relations exhibit (or at least resemble) a quasi-commutator form which approaches

a Heisenberg-like structure for Eq. (3.43)—similar to the results for the terms considered

before [cf. Eqs. (3.31), (3.34) and (3.40)]. However, this time the contributions of each

quasi-Hamiltonian are distributed across multiple source terms Υ. Balancing out the

quasi-commutator parts is directly linked to energy conservation. Thus, interconnected

source terms (and their corresponding selfenergy diagrams) have to be considered in

conjunction.

Having transformed all ten third-order diagrams to their respective derivative of the

time-diagonal two-particle Green function, it is now convenient to combine all contributions

to the full TOA-G1–G2. By gathering Eqs. (3.31), (3.34) and (3.40), as well as Eqs. (3.54)

– (3.59) one finds

i~
d

dt
Gijkl(t) =

[
h(2),HF(t),G(t)

]
ijkl

+ Ψ±ijkl(t)

+
∑

pq

{
hΩpp,corr
ijpq (t)

[
GSOA
klpq (t)

]∗
− GSOA

ijpq (t)
[
hΩpp,corr
klpq (t)

]∗}

+
∑

pq

{
h

(i)
ipql(t)

[
G(2),di
kpqj (t)

]∗
− G(2),di

ipql (t)
[
h

(i)
kpqj(t)

]∗}

+
∑

pq

{
h

(iii)
qjpl(t)

[
G(2),di
qkpi (t)

]∗
− G(2),di

qjpl (t)
[
h

(iii)
qkpi(t)

]∗}

+ ΥA
ijkl(t) + ΥB

ijkl(t) + ΥC
ijkl(t) + ΥD

ijkl(t) + ΥE
ijkl(t) + ΥF

ijkl(t) . (3.60)

Finally, by grouping the quasi-Hamiltonians according to

hΛ
ijkl(t) := h

(i)
ijkl(t) + h

(ii)
ijkl(t) = (i~)2

∑

pq

w±pjkq(t)
[
GF,>
iqlp (t)− GF,<

iqlp (t)
]
, (3.61)

hΠ
ijkl(t) := h

(iii)
ijkl(t) + h

(iv)
ijkl(t) = ± (i~)2

∑

pq

w±qipk(t)
[
GF,>
jplq(t)− GF,<

jplq(t)
]

= hΛ
jikl(t) , (3.62)

and by using Eq. (3.37), this expression can be transformed to

i~
d

dt
Gijkl(t) =

[
h(2),HF(t),G(t)

]
ijkl

+ Ψ±ijkl(t)

+
∑

pq

{
hΩpp,corr
ijpq (t)

[
GSOA
klpq (t)

]∗
− GSOA

ijpq (t)
[
hΩpp,corr
klpq (t)

]∗}

+
∑

pq

{
hΛ
ipql(t)

[
GSOA
kpqj (t)

]∗
− GSOA

ipql (t)
[
hΛ
kpqj(t)

]∗}

+
∑

pq

{
hΠ
qjpl(t)

[
GSOA
qkpi (t)

]∗
− GSOA

qjpl (t)
[
hΠ
qkpi(t)

]∗}
. (3.63)
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Here, hΛ(t) gives access to mostly the particle–hole ladder diagrams, whereas hΠ(t) incor-

porates predominantly polarization effects. Note that both hΛ(t) and hΠ(t) include the

anti-symmetrized interaction matrix w±(t) [cf. Eqs. (3.61) and (3.62)], while in hΩpp,corr(t)

only the bare interaction w(t) enters [cf. Eq. (3.29)]. A closer look to the bottom two

lines of Eq. (3.63) [and keeping in mind the equivalence of the quasi-Hamiltonians in

Eq. (3.62)] reveals that, in fact, both lines show a similar structure, differing only by an

index exchange i ↔ j. With the following definitions

LSOA
ijkl (t) :=

∑

pq

{
hΩpp,corr
ijpq (t)

[
GSOA
klpq (t)

]∗
− GSOA

ijpq (t)
[
hΩpp,corr
klpq (t)

]∗}
, (3.64)

P SOA
ijkl (t) :=

∑

pq

{
hΠ
qjpl(t)

[
GSOA
qkpi (t)

]∗
− GSOA

qjpl (t)
[
hΠ
qkpi(t)

]∗}
, (3.65)

Eq. (3.63) can, thus, be rephrased to

i~
d

dt
Gijkl(t) =

[
h(2),HF(t),G(t)

]
ijkl

+ Ψ±ijkl(t) + LSOA
ijkl (t) + P SOA

ijkl (t)± P SOA
jikl (t) , (3.66)

which shows that, in this context, particle–hole correlations and dynamical-screening

effects come out as the (anti-)symmetrized materialization of a shared structural core. The

surprisingly compact form of Eq. (3.66) [and Eq. (3.63)] exhibits the desired symmetry

with respect to the—now Φ-compensated—Heisenberg-like quasi-commutators between

GSOA(t) and the quasi-Hamiltonians. This has been achieved, because all interdependent

source terms Υ(t) have been included collectively.

Thus, the EOM for the time-diagonal two-particle Green function in TOA is found—

the main ingredient for the respective G1–G2 scheme. It has to be solved in conjunction

with Eqs. (3.10) and (3.12) and with a separate equation for GSOA(t). Having two objects

with the size of the two-particle Green function leads to an increased memory consumption

compared to the previously derived variants of the G1–G2 scheme, i.e. SOA, GW , TPP,

TPH, and DSL. The numerical scaling, however, remains linear with the number of time

steps Nt. Analyzing Eq. (3.66) with respect to the dimension of the single-particle basis

Nb reveals a scaling of O (N6
b). Hence, the total scaling of TOA-G1–G2 for a general basis

is O (N6
bN

1
t ) as opposed to O (N6

bN
3
t ) for the original TOA-HF-GKBA. This confirms

the tremendous numerical advantage of the G1–G2 scheme, in line with the results of

Refs. [114, 208].

The general structure of Eq. (3.63) resembles the two-particle EOM of the DSL-

G1–G2 scheme [208], Eq. (3.4), but with two differences. First, the explicit usage of

the second-order GSOA(t) leads to a truncated recursiveness for the TOA-G1–G2, as

seen for its ingredient terms before. Secondly, the interaction matrix is replaced by its

(anti-)symmetrized counterpart in Ψ(t), hΩph,corr(t), and hε,corr(t). This is of particular

interest, as it hints towards a consistent treatment of exchange terms for both the particle–

hole ladder and the dynamically screened interaction (cf. Sec. 3.1.1). Justified by the

results in third order, a generalized variant of the DSL-G1–G2 scheme can be proposed.

The time-diagonal two-particle Green function within this completed-DSL description

obeys

i~
d

dt
Gijkl(t) =

[
h(2),HF(t),G(t)

]
ijkl

+ Ψ±ijkl(t) + Lijkl(t) + Pijkl(t)± Pjikl(t) , (3.67)
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where the recursive coupling of the two-particle Green function is included in

Lijkl(t) :=
∑

pq

{
hΩpp,corr
ijpq (t)

[
Gklpq(t)

]∗
− Gijpq(t)

[
hΩpp,corr
klpq (t)

]∗}
, (3.68)

Pijkl(t) :=
∑

pq

{
hΠ
qjpl(t)

[
Gqkpi(t)

]∗
− Gqjpl(t)

[
hΠ
qkpi(t)

]∗}
. (3.69)

Again, particle–hole- and polarization contributions differ only by a particle exchange

and can be expressed through the same quantity. It is expected, that all higher-order

selfenergy terms that emerge during the recursion preserve total-energy conservation by

forming Φ-compensated groups (in analogy to the third-order terms). Obviously, the

completed-DSL-G1–G2 scheme contains all ten third-order selfenergy contributions. The

structure of Eq. (3.67) suggests that even in fourth order 50 out of 82 diagrams are

described correctly—beyond any approximation that has been used within the HF-GKBA.

Finally, it should be mentioned that Eq. (3.67) has its equivalent in RDO theory,

where it corresponds to the omission of three-particle and higher correlations [96, 261]. In

fact, it is possible to deduce a term-by-term correspondence, which will be demonstrated

in an upcoming publication [262]. In the RDO framework, there is also a straightforward

path to the TOA scheme of Eq. (3.66), which follows as the first-iteration solution of

Eq. (3.67) for the two-particle Green function.

The specification of the third-order G1–G2 scheme for the Hubbard basis is specified

in Sec. 3.1.2.3. There, also first numerical test results are presented.

3.1.2.2 G1–G2 Scheme for FLEX

There are various developments aiming at a combined treatment of particle–particle and

particle–hole scattering, intertwined with dynamical-screening effects [79, 96, 263–266].

An adequate description of this correlation nexus entails the exhilarating promise to

capture the predominant physics in quantum systems, even up to the strong-coupling

regime. A particularly consistent example of appropriate approximations in this context

is the already discussed dynamically-screened-ladder approximation. While it has been

successfully integrated in the G1–G2 scheme [208], there is currently no approach to

implement the DSL within a two-time NEGF framework. In NEGF theory, however, the

linkup of the ladder approximations with the dynamically screened interaction is commonly

achieved within the fluctuating-exchange approximation, which implies a slightly smaller

degree of selfconsistency.

The idea of the FLEX approximation is to combine the selfenergy contributions of

TPP, TPH, and GW , while accounting for the correct handling of the mutual terms. Thus,

the selfenergy attains the form [79]

ΣFLEX
ij (z, z′) =ΣH

ij(z, z
′) + ΣF

ij(z, z
′) + ΣGW

ij (z, z′)

+ ΣTPP
ij (z, z′) + ΣTPH

ij (z, z′)− 2Σ
(2),di
ij (z, z′) , (3.70)

where the Hartree
(
ΣH
)

and Fock
(
ΣF
)

part describe mean-field effects, and the direct

second-order diagram Σ(2),di is subtracted twice to avoid double counting (see, e.g., Ref. [79]
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for details). It should be noted that all selfenergy terms in Eq. (3.70) share the same

single-particle Green function Gij(z, z
′), from which their respective expression is evaluated.

For all ingredient parts of the FLEX selfenergy, the G1–G2 scheme has a known form,

derived in Ref. [208]. Being the sum of said selfenergy parts, ΣFLEX is directly transformed

to the following EOM for the time-diagonal two-particle Green function:

i~
d

dt
Gijkl(t) =

[
h(2),HF(t),G(t)

]
ijkl

+ Ψ±ijkl(t)

+
∑

pq

{
hΩpp,corr
ijpq (t)

[
GTPP
klpq (t)

]∗
− GTPP

ijpq (t)
[
hΩpp,corr
klpq (t)

]∗}

+
∑

pq

{
hΩph,corr
ipql (t)

[
GTPH
kpqj (t)

]∗
− GTPH

ipql (t)
[
hΩph,corr
kpqj (t)

]∗}

+
∑

pq

{
hε,corr
qjpl (t)

[
GGWqkpi(t)

]∗
− GGWqjpl (t)

[
hε,corr
qkpi (t)

]∗}
. (3.71)

Here, each additional G obeys its own EOM, i.e.,13

i~
d

dt
GTPP
ijkl (t) =

[
h(2),HF(t),GTPP(t)

]
ijkl

+ Ψ±ijkl(t)

+
∑

pq

{
hΩpp,corr
ijpq (t)

[
GTPP
klpq (t)

]∗
− GTPP

ijpq (t)
[
hΩpp,corr
klpq (t)

]∗}
, (3.72)

i~
d

dt
GTPH
ijkl (t) =

[
h(2),HF(t),GTPH(t)

]
ijkl

+ Ψijkl(t)

+
∑

pq

{
hΩph,corr
ipql (t)

[
GTPH
kpqj (t)

]∗
− GTPH

ipql (t)
[
hΩph,corr
kpqj (t)

]∗}
, and (3.73)

i~
d

dt
GGWijkl (t) =

[
h(2),HF(t),GGW (t)

]
ijkl

+ Ψijkl(t)

+
∑

pq

{
hε,corr
qjpl (t)

[
GGWqkpi(t)

]∗
− GGWqjpl (t)

[
hε,corr
qkpi (t)

]∗}
. (3.74)

The single-particle Green function enters all four equations [Eqs. (3.71) – (3.74)], but only

G of Eq. (3.71) directly couples to its EOM via Eqs. (3.10) and (3.12). In conclusion, for

FLEX-G1–G2, four different two-particle tensors of similar complexity have to be saved

and propagated, leading to four times the memory consumption and roughly a factor

of four in the CPU runtime for numerical calculations. Comparing Eq. (3.71) to the

two-particle equation of DSL-G1–G2 [Eqs. (3.4) and (3.67)], shows a very similar structure

of both approximations, differing primarily by the presence of the backcoupling to G in

the bottom three lines. As a consequence, DSL brings in a higher degree of selfconsistency,

giving access to possible cross-coupling terms, as stated above. This is opposed to the

seemingly artificial separation of the equations in FLEX [cf. Eq. (3.71)]. Therefore, the

DSL approximation seems to be the more native treatment for G1–G2. The new-found

FLEX-G1–G2 is, nonetheless, of interest due to its one-to-one correspondence to the

respective formulation within NEGF theory with HF-GKBA, for which the DSL equivalent

13To allow for a conserving description, both the particle–hole T matrix and the dynamically screened

interaction are considered without exchange terms (cf. Secs. 2.1.4 and 3.1.1).
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is, yet, missing. Moreover, it remains to be tested, which treatment can, in practice, lead

to more accurate simulations.

For the Hubbard basis, the FLEX-G1–G2 scheme reduces to more compact equations,

which is specified in the next section along with first numerical test results.

3.1.2.3 Hubbard Basis and Numerical Demonstration

In order to demonstrate the equivalence between the two novel flavors of the G1–G2 scheme

derived above and their counterparts within the HF-GKBA, this section shows simulation

results for first numerical test calculations. To this end, first, the central equations of

G1–G2 for TOA and FLEX are specified for the Hubbard basis.

Hubbard Basis: TOA-G1–G2
When applying the Hubbard basis, the interaction matrix transforms as follows14 (explicit

Pauli blocking is assumed):

wαβγδijkl (t) = U(t)δijδikδilδαγδβδ δ̄αβ , (3.75)

with the on-site interaction strength U(t). The matrix of the kinetic energy, h
(0)
ij = −Jδ〈i,j〉,

accounts for hopping processes with amplitude J between neighboring lattice sites 〈i, j〉.
This leads to the adjusted single-particle EOM (from here only the spin-up components

are explicitly written; the spin-down components follow from the replacement ↑↔↓)

i~
d

dt
G<,↑
ij (t) =

[
hHF,↑(t), G<,↑(t)

]
ij

+
[
I + I†

]↑
ij

(t) , (3.76)

I↑ij(t) = −i~U(t)G↑↓↑↓iiji (t) , (3.77)

with the Hartree–Fock Hamiltonian

hHF,↑
ij (t) = h

(0)
ij − i~δijU(t)G<,↓

ii (t) . (3.78)

As seen from Eq. (3.77), only one spin component (two, when considering ↑↔↓) enters the

EOM for the single-particle Green function. When the third-order selfenergy is applied,

the truncated structure of Eq. (3.63) prevents possible cross-coupling of different spin

components (which is seen, e.g., for the GW approximation [208]), leading to a single

two-particle EOM. Due to the highly diagonal Hubbard interaction [cf. Eq. (3.75)], only

two out of ten third-order diagrams remain—namely the direct particle–particle- and

particle–hole-scattering diagram—while all other selfenergy terms vanish [79]. Thus,

Eq. (3.63) reduces to

i~
d

dt
G↑↓↑↓ijkl (t)−

[
h

(2),HF
↑↓ ,G↑↓↑↓

]
ijkl

(t) =Ψ↑↓↑↓ijkl (t) + ΛSOA,↑↓↑↓
ijkl (t)−

[
ΛSOA,↑↓↑↓
klij (t)

]∗
, (3.79)

14From now on, the spin indices are separated from the single-particle basis indices and, instead, specified

explicitly as greek letters.



3.1 Single-Time Equations for the NEGF: the G1–G2 Scheme 309

where the two-particle Hamiltonian for the Hubbard basis becomes

h
(2),HF
ijkl,↑↓(t) = δjlh

HF,↑
ik (t) + δikh

HF,↓
jl (t) , (3.80)

and the two-particle source term transforms to

Ψ↑↓↑↓ijkl (t) := (i~)2 U(t)
∑

p

[
G>,↑
ip (t)G>,↓

jp (t)G<,↑
pk (t)G<,↓

pl (t)−G<,↑
ip (t)G<,↓

jp (t)G>,↑
pk (t)G>,↓

pl (t)
]
.

(3.81)

The ladder term ΛSOA(t) includes the coupling to the two-particle Green function in

second-order approximation and combines the contributions of the two quasi-Hamiltonians

hΩpp,corr(t) and hΛ(t):

ΛSOA,↑↓↑↓
ijkl (t) =(i~)2U(t)

∑

p

[
G>,↑
ip (t)G>,↓

jp (t)−G<,↑
ip (t)G<,↓

jp (t)
]
GSOA,↑↓↑↓
ppkl (t)

+ (i~)2U(t)
∑

p

[
G>,↑
ip (t)G<,↓

pl (t)−G<,↑
ip (t)G>,↓

pl (t)
]
GSOA,↑↓↑↓
pjkp (t) . (3.82)

The separate EOM for GSOA(t) attains the form

i~
d

dt
GSOA,↑↓↑↓
ijkl (t)−

[
h

(2),HF
↑↓ ,GSOA,↑↓↑↓

]
ijkl

(t) =Ψ↑↓↑↓ijkl (t) . (3.83)

From a numerical perspective, Eqs. (3.79), (3.81) and (3.82) suggest a scaling of

O (N5
b) with the basis size. It has been shown in the sections VII.A–C of Ref. [208],

however, that the general structure of these terms can be rearranged for the Hubbard

basis to achieve an O (N4
b) scaling, which is not repeated here. Hence, the total scaling of

the TOA-G1–G2 scheme for the Hubbard model is O (N4
bN

1
t ).

Hubbard Basis: FLEX-G1–G2
When considering the FLEX approximation for the Hubbard model the two-particle EOM

of the G1–G2 scheme invokes a coupled system of equations [cf. Eqs. (3.71) – (3.74)].

By applying the Hubbard interaction [Eq. (3.75)] the derivative of the time-diagonal

two-particle Green function becomes

i~
d

dt
G↑↓↑↓ijkl (t)−

[
h

(2),HF
↑↓ ,G↑↓↑↓

]
ijkl

(t) =Ψ↑↓↑↓ijkl (t) + Λpp,↑↓↑↓
ijkl (t)−

[
Λpp,↑↓↑↓
klij (t)

]∗

+ Λph,↑↓↑↓
ijkl (t)−

[
Λph,↑↓↑↓
klij (t)

]∗

+ Π↑↓↑↓ijkl (t)−
[
Π↓↑↓↑lkji (t)

]∗
, (3.84)

which—together with its counterpart (↑↔↓)—is the only spin-component that needs to

be considered for G(t). It is coupled to the single-particle Green function via Eqs. (3.76)
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and (3.77). The ladder and polarization terms in Eq. (3.84) obey

ΛTPP,↑↓↑↓
ijkl (t) =(i~)2U(t)

∑

p

[
G>,↑
ip (t)G>,↓

jp (t)−G<,↑
ip (t)G<,↓

jp (t)
]
GTPP,↑↓↑↓
ppkl (t) , (3.85)

ΛTPH,↑↓↑↓
ijkl (t) =(i~)2U(t)

∑

p

[
G>,↑
ip (t)G<,↓

pl (t)−G<,↑
ip (t)G>,↓

pl (t)
]
GTPH,↑↓↑↓
pjkp (t) , (3.86)

Π↑↓↑↓ijkl (t) =− (i~)2U(t)
∑

p

[
G>,↓
jp (t)G<,↓

pl (t)−G<,↓
jp (t)G>,↓

pl (t)
]
GGW,↑↑↑↑ipkp (t) , (3.87)

and couple to three additional, self-contained variants of G(t), each of them obeying its

own EOM:

i~
d

dt
GTPP,↑↓↑↓
ijkl (t)−

[
h

(2),HF
↑↓ ,GTPP,↑↓↑↓

]
ijkl

(t) =Ψ↑↓↑↓ijkl (t) + Λpp,↑↓↑↓
ijkl (t)−

[
Λpp,↑↓↑↓
klij (t)

]∗
,

(3.88)

i~
d

dt
GTPH,↑↓↑↓
ijkl (t)−

[
h

(2),HF
↑↓ ,GTPH,↑↓↑↓

]
ijkl

(t) =Ψ↑↓↑↓ijkl (t) + Λph,↑↓↑↓
ijkl (t)−

[
Λph,↑↓↑↓
klij (t)

]∗
,

(3.89)

i~
d

dt
GGW,↑↑↑↑ijkl (t)−

[
h

(2),HF
↑↑ ,GGW,↑↑↑↑

]
ijkl

(t) =Π↑↑↑↑ijkl (t)−
[
Π↑↑↑↑lkji (t)

]∗
. (3.90)

Within the GW approximation in the Hubbard model, the polarization structure gives

rise to a second spin component for GGW (t) that enters the two-particle EOM [208]. In

line with this, Eq. (3.90) is cross-coupled to

i~
d

dt
GGW,↑↓↑↓ijkl (t)−

[
h

(2),HF
↑↓ ,GGW,↑↓↑↓

]
ijkl

(t) =Ψ↑↓↑↓ijkl (t) + Π↑↓↑↓ijkl (t)−
[
Π↑↓↑↓lkji (t)

]∗
, (3.91)

via the spin-parallel polarization term

Π↑↑↑↑ijkl (t) =− (i~)2U(t)
∑

p

[
G>,↑
jp (t)G<,↑

pl (t)−G<,↑
jp (t)G>,↑

pl (t)
]
GGW,↑↓↑↓ipkp (t) . (3.92)

Albeit the necessity to propagate multiple tensor quantities with their respective

EOM, the numerical complexity of the underlying equations is similar to the case of

the (Hubbard) TOA-G1–G2 scheme considered above. Thus, the numerical scaling of

FLEX-G1–G2 can be brought to O (N4
bN

1
t ) if all occurring expressions are treated as

described in Ref. [208].

Numerical Test Calculations
At this point, it is instructive to compare the numerical implementations of the new-found

variants of the G1–G2 scheme to their equivalents within the original HF-GKBA. Thereto,

short simulations for a convenient test system are presented. It is beyond the scope of this

work to give a detailed investigation of the new methods with respect to performance and

general accuracy, which is left for future research.

The equations (3.79) for TOA and (3.84) for FLEX form the basis for time-linear
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Figure 3.4 – Comparison of the ordinary HF-GKBA and the G1–G2 scheme for a four-site

Hubbard chain with U = J at half filling. The initial state was uncorrelated with the

entire density concentrated at the two leftmost lattice site. The rows correspond to

the TOA and FLEX selfenergies. The right column shows the deviation ∆n1(t) of the

densities of both schemes on site 1.

propagations of excited Hubbard systems within the G1–G2 scheme. An example for a

four-site Hubbard chain is presented in Fig. 3.4. The dynamics starts from an uncorrelated

initial state in which all particles of the half-filled system are blocked at the two leftmost

sites. Once released, the density starts to oscillate irregularly due to the building up of

correlations induced by the interaction strength U = J . Apart from numerical uncertainty,

the G1–G2 data shows perfect agreement to the reference data of the ordinary HF-GKBA,

both for TOA (Fig. 3.4, top left) and FLEX (bottom left). For comparability, a fourth-

order Runge–Kutta integration scheme with a time step of ∆t = 0.02~/J is used for all

simulations. The deviations ∆n1(t) = nG1–G2
1 (t)− nordinary

1 (t) grow over time (Fig. 3.4,

right column) and are predominantly caused by the original HF-GKBA, as discussed in

Ref. [114].

Concluding this supplementary section to the G1–G2 scheme, the capability to describe

nonequilibrium Green functions in a time-linear way constitutes a remarkable advancement

in NEGF theory. The extension of the G1–G2 scheme to the TOA and FLEX selfenergies

further expands the reservoir of corresponding approximations to the HF-GKBA. Of

particular interest is the third-order G1–G2 variant, as the TOA has proven to be very

successful as an allrounder [79], also when the HF-GKBA is applied [212]. There are

several topics for possible future research. Both TOA-G1–G2 and FLEX-G1–G2 need to

be tested in a broader context and compared to the previous G1–G2 methods, considering

accuracy and numerical behavior. Furthermore, one can specify the derived equations

for more single-particle-basis choices, such as the jellium basis. The generalization of

the DSL approximation, discussed in Sec. 3.1.2.1, is especially interesting and should
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be tested extensively. Being the most in-depth approximation on the two-particle level,

which combines its selfenergy constituents in a consistent way, the completed DSL is a

particularly promising method for prospective applications.
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3.2 Time Reversibility in Quantum-Kinetic Equations

Obviously, every existing tool to describe quantum many-body dynamics is build to re-

produce as many characteristics of the exact solution as possible. However, the need to

describe increasingly large systems over long periods of time often manifests as a decrease

of theoretical depth. Therefore, specific properties such as symmetries and conservation

laws are sometimes loosened in favor of efficient and powerful approximations. Examples

include the quantum Boltzmann equation, which violates total-energy conservation [96],

and also time-dependent Hartree–Fock (TDHF) and NEGF methods, where, in some cases,

spin symmetry is broken for half-filled electronic systems (cf. Sec. 3.3). A more subtle

yet fundamental property of quantum systems is time-reversal invariance.15 Following

the original notion of Wigner [269], time-reversal invariance is expressed by reversing

the (wavefunction) trajectory |Ψ(t)〉 7→ T̂ |Ψ(−t)〉 for t 7→ −t, where T̂ is an anti-unitary

time-reversal operator. The fact that, by this definition, also instantaneous states (t = 0)

are affected by T̂ has given rise to an expansive, still ongoing (and quite entertaining)

philosophical debate [270–274] about whether or not Wigner’s representation is the justified

translation to the quantum realm.16 This shows that the concept of time reversibility

is not entirely intuitive. Accepting the time-dependent Schrödinger equation and the

Heisenberg equation as being time-reversal invariant, it is not immediately clear that all

many-body approximations preserve this property. Instead, e.g., Boltzmann-type equations

of motion are known to be irreversible, thereby giving rise to relaxation processes towards

a thermalized equilibrium state [53].

Given the fact that time reversibility is not only of theoretical relevance but also

opens the path to advanced numerical testing opportunities (see, e.g., Refs. [130, 202, 211]),

it is surprising that there has been no rigorous discussion in the context of generalized

quantum-kinetic equations. The following publications,17,18 Refs. [209] and [210], form a

two-part analysis on time-reversal invariance considering—in part I—the NEGF framework

and—in part II—the RDO method.

As a first outcome of Ref. [209] an analytical proof of the expected time reversibility of

the exact Martin–Schwinger hierarchy is given. To this end, the respective derivations for

the Schrödinger and the Heisenberg equation are redone first. Both relations are reversible

if the commutator between the time-reversal operator T̂ and the Hamiltonian Ĥ vanishes.

Subsequently, T̂ is applied to the field operators and, eventually, the n-particle correlator

and the n-particle nonequilibrium Green function to demonstrate the desired symmetry.

15It should be noted that time-reversal symmetry (or T symmetry) can be violated under the influence

of the weak interaction. A direct observation of such a T violation has been presented in Ref. [267]

for the decay of entangled neutral B mesons. Instead, the—more general—CPT theorem is widely

believed to remain valid under all conditions [268], which, for every physical process, predicts the

existence of the time-reversed process under charge conjugation and parity inversion.
16Quoting from Ref. [271]: “David Albert, forthcoming, argues – rightly in my opinion – that the

traditional definition of [time-reversal invariance], which I have just given, is in fact gibberish. It just

doesn’t make sense to time-reverse a truly instantaneous state of a system”.
17M. Scharnke, N. Schlünzen, and M. Bonitz, J. Math. Phys., 58, 061903 (2017). Copyright by AIP

Publishing. Reproduced with permission.
18M. Bonitz, M. Scharnke, and N. Schlünzen, Contrib. Plasma Phys., 58, 1036 (2018). Copyright

Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.

https://doi.org/10.1063/1.4989684
https://doi.org/10.1002/ctpp.201700052
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While the result for the hierarchy is mostly of theoretical interest, the corresponding

statement for frequently used many-body approximations has great practical relevance.

For this reason, a time-reversibility condition for the selfenergy is derived in Ref. [209]

using the Kadanoff–Baym equations. It is shown that this condition is fulfilled—and, thus,

time-reversal invariance is preserved—for any Φ-derivable selfenergy. This result, on the

one hand, reinforces the importance of the Φ functional and, on the other hand, accounts

for the inner consistency of the NEGF framework. Finally, the application of the GKBA

and the associated implications for time-reversal invariance are discussed.

The central result of Ref. [209] lifts NEGF theory on a more solid foundation. At the

same time, it substantiates an important tool to ensure numerical stability via backwards-

propagation consistency in NEGF calculations. Practically, this has already been applied

in Refs. [130, 202, 211]. It is important to note that the need for numerical convergence

tests can hardly be overstated. For example, such numerical pitfalls have been at the

heart of the recent controversy around a paper by Adrian Stan [202], which is addressed

in detail in Ref. [211] included in Sec. 4.1.

In the second part of the time-reversibility analysis, Ref. [210], the RDO theory (see,

e.g., Ref. [96]) is addressed, which shares its theoretical foundation with the NEGF theory,

but focuses on single-time-dependent density-matrix objects, instead. The first major

result of Ref. [210] is the proof of time-reversal invariance for the Bogolyubov–Born–Green–

Kirkwood–Yvon (BBGKY) hierarchy which depends on a more general condition—not just

the full Hamiltonian Ĥ, but also the single-particle, two-particle, and higher contributions

have to commute individually with the operator T̂ . In exact calculations, this constitutes

no further restriction, since the n-particle dynamics are always consistent to each other.

Subsequently, a general reversibility condition for closure relations is derived and it is

demonstrated that all common many-body approximations for density operators fulfill

this condition. The final part of Ref. [210] discusses the successive transition from the

density-operator equations to the quantum Boltzmann equation, which is not time-reversal

invariant. It is shown that the crucial approximation that leads to the violation of time

reversibility is, in fact, the Markov limit that effectively shifts the initial time t0 to −∞,

thereby breaking the unitary character of the dynamics.

These important results close a gap in the theoretical basis of the RDO method. Be-

yond that, time-reversal symmetry is of direct practical use for numerical consistency tests

in RDO calculations. The outcome of Ref. [210] is also relevant for the recently developed

G1–G2 scheme (cf. Sec. 3.1), which is closely related to RDO theory.
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Time reversal symmetry is a fundamental property of many quantum mechanical
systems. The relation between statistical physics and time reversal is subtle and
not all statistical theories conserve this particular symmetry, most notably hydro-
dynamic equations and kinetic equations such as the Boltzmann equation. In this
article, it is shown analytically that quantum kinetic generalizations of the Boltzmann
equation that are derived using the nonequilibrium Green functions formalism as
well as all approximations that stem from Φ-derivable self-energies are time reversal
invariant. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4989684]

I. INTRODUCTION

The nonequilibrium Green functions (NEGFs) formalism provides an ab initio description
of strongly interacting quantum many-particle systems far from equilibrium. It has gained much
importance in the last two decades mainly because it is now possible to solve the two-time Keldysh–
Kadanoff–Baym (KBE) equations numerically. NEGFs have been successfully used to describe a
huge variety of systems and phenomena, such as Bose condensation, quantum and molecular trans-
port1 and femtosecond spectroscopy, carrier dynamics in quantum dots and quantum wells,2,3 laser
excitation of small atoms,4,5 nuclear collisions,6 intense laser-plasma interaction,7 baryogenesis in
cosmology,8 and much more. Within the Green functions formalism, there exists an elegant diagram-
matic method for constructing approximations that conserve energy, momentum, angular momentum,
and particle number, by using the so-called Φ-derivable self-energies. It is the purpose of this paper
to show that those approximations as well as the exact equations of motion of the Green functions
formalism are invariant under time reversal.

The relation between time reversal symmetry and statistical physics is subtle and not all statistical
theories are invariant under time reversal, the most famous counterexample being the Boltzmann equa-
tion of classical statistical mechanics and its quantum generalization. Therefore, extensive work has
been done over the recent seven decades to derive non-Markovian generalizations of the Boltzmann
equation that are time-reversal invariant as the underlying quantum mechanical system. Among the
well established approaches, we mention density operator concepts, see, e.g., Ref. 9 for an overview,
and nonequilibrium Green functions,10 for a recent text book discussion, see Ref. 11. Despite recent
activities in this field, we are not aware of a general analysis of the time reversal properties of the
resulting generalized quantum kinetic equations. Since these equations are usually solved with the
help of certain many-body approximations, it is even more important to understand under which
conditions time reversal invariance is retained.

It is the goal of the present article to solve these questions for the NEGF formalism which
we briefly recall in Sec. II. Since the Kadanoff–Baym equations can be directly derived from the
equations of motion of the field operators in second quantization which are time-reversal invariant,
it should be expected that the KBE equations have the same symmetry properties. It is, nonetheless,
not trivial to show this directly in full generality, and a successful procedure is presented in Sec. IV.
We then demonstrate in Sec. V that an important class of approximations—the so-calledΦ-derivable
approximations—also preserve time reversal symmetry. We conclude with a summary in Sec. VI
where we also outline the time reversal invariance conditions of the generalized Kadanoff–Baym
ansatz.12

0022-2488/2017/58(6)/061903/8/$30.00 58, 061903-1 Published by AIP Publishing.
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II. NONEQUILIBRIUM GREEN FUNCTIONS

The n-particle Green function G(n) is defined element-wise as the ensemble average of the
n-particle correlator in second quantization

G(n)
i1...in;j1...jn

(z1 . . . zn; z′1 . . . z
′
n)=

〈
Ĝ(n)

i1...in;j1...jn
(z1 . . . zn; z′1 . . . z

′
n)
〉

=

(
− i
~

)n 〈
T̂C ĉi1 (z1) . . . ĉin (zn)ĉ†jn (z′n) . . . ĉ†j1 (z′1)

〉
, (1)

where ĉ†jk and ĉik are second quantization creation and annihilation operators with respect to a complete
orthonormal basis of single-particle states {|φi

〉} obeying the (anti-)commutation relations for bosons
(fermions),

[ĉik , ĉil ]∓ = [ĉ†ik , ĉ†il ]∓ = 0,

[ĉik , ĉ†il ]∓ = δik ,il . (2)

Further, T̂C is the time ordering operator on the Keldysh time contour C, as illustrated in Fig. 1.
The dynamics of the n-particle Green function are described by the Martin–Schwinger

hierarchy—a coupled hierarchy of equations of motion (we leave out the orbital indices for
brevity), [

i~∂zk − h(0)(zk)
]

G(n)(z1 . . . zn; z′1 . . . z
′
n)=

± i~
∫

C
dz̄ W (zk z̄) G(n+1)(z1 . . . znz̄; z′1 . . . z

′
nz̄+)

+
n∑

p=1

(±1)k+pδC(zkz′p)G(n−1)(z1 . . .Zzk . . . zn; z′1 . . .@@zp
′ . . . z′n), (3)

and

G(n)(z1 . . . zn; z′1 . . . z
′
n)

[
−i~
←−
∂ z′k − h(0)(z′k)

]
=

± i~
∫

C
dz̄ G(n+1)(z1 . . . znz̄−; z′1 . . . z

′
nz̄)W (z̄z′k)

+
n∑

p=1

(±1)k+pδC(zpz′k)G(n−1)(z1 . . .@@zp . . . zn; z′1 . . .Zzk
′ . . . z′n), (4)

where W (z1, z2)= δC(z1, z2)w(z1) and w(z1) is the instantaneous two-particle interaction operator.
The Dirac delta function δC acts on contour times z, and h(0) denotes the matrix element of the
single-particle Hamiltonian. The first-order hierarchy equations can be formally closed by intro-
ducing the self-energy Σ, reducing the description to the dynamics of the single-particle Green
function G(1),

[
i~∂z − h(z)

]
G(1)(zz′)= δC(zz′)1 +

∫

C
dz̄ Σ(zz̄) G(1)(z̄z′), (5)

and its adjoint
[−i~∂z′ − h(z)

]
G(1)(zz′)= δC(zz′)1 +

∫

C
dz̄ G(1)(zz̄)Σ(z̄z′). (6)

FIG. 1. Illustration of the two real-time branches of the Keldysh contour. z1 on the causal branch C− is earlier on the contour
than z2 on the anti-causal branch C+, although the physical time t1 corresponding to z1 is later than the physical time t2
corresponding to z2.
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FIG. 2. The Hartree (a) and Fock (b) diagrams contributing to the Hartree–Fock potentialΦHF. A full (wiggly) line corresponds
to a Green function (interaction potential).

These equations are the Keldysh–Kadanoff–Baym equations. It is theoretically possible to write Σ
as a functional of G(1) such that Eqs. (5) and (6) are still exact. The main challenge of the Green
functions formalism is to find suitable approximations for the self-energy. One important class of self-
energy approximations is constructed as the functional derivative of a scalar functionΦ (“Φ-derivable
approximations”),

Σ(z1, z2)=
δΦ[G]

δG(z2, z+
1 )

. (7)

These approximations conserve particle number, momentum, energy, and angular momentum if Φ
is invariant under gauge transformations, space and time translations, and rotations, respectively.
This is satisfied if Φ is the amplitude of a scattering process (since every scattering process satisfies
these conservation requirements). Therefore, it is possible to construct conserving scalar potentials
diagrammatically. For example, the potentialΦHF corresponding to the Hartree–Fock approximation
consists of two diagrams, as illustrated in Fig. 2,

ΦHF[G]=± i~
2
Φ(a)[G] +

i~
2
Φ(b)[G], (8)

Φ(a)[G]=
∫

C
dz1dz2 G(z1; z+

1 )W (z1; z2)G(z2; z+
2 ), (9)

Φ(b)[G]=
∫

C
dz1dz2 G(z1; z+

2 )W (z1; z2)G(z2; z+
1 ). (10)

resulting in the Hartree–Fock self-energy

ΣHF(zz′)=±i~δC(zz′)
∫

C
dz̄ W (zz̄)G(1)(z̄z̄+) + i~G(1)(zz′)W (z+z′). (11)

Other Φ-derivable approximations are the second order and third order Born approximations, the
GW-approximation, and the T-matrix (ladder) approximation, e.g., Ref. 11.

III. TIME REVERSAL INVARIANCE IN QUANTUM MANY-BODY THEORY

Here, we briefly recall the notion of time reversibility introducing the time reversal operator T̂ .
We first illustrate this for the N-particle Schrödinger equation and then extend the concept to many-
body theory within second quantization.

A. Time reversal invariance of the Schrödinger equation

The Schrödinger equation is called symmetric with regard to time reversal if (i) for any solution
|ψ(t)

〉
, there exists another solution |ψ ′(t ′)〉 with t ′ =−t, and if (ii) there exists a unique relation

between the two, |ψ ′〉= T̂ |ψ〉
, for some operator T̂ .13 It can be shown that T̂ must not only be a linear

operator but also an anti-unitary one. Thus, it can be expressed as the product of complex conjugation
and some unitary operator Û. The quantum mechanical equivalent to classical conventional time
reversal is obtained by choosing Û =1, so that |ψ〉→ |ψ〉∗.
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Let us illustrate this for the time-dependent Schrödinger equation

i~ ∂t |ψ〉
= Ĥ |ψ〉

. (12)

Applying T̂ to both sides yields

T̂ i~ ∂t |ψ〉
= T̂ Ĥ |ψ〉

⇐⇒ −i~ ∂t︸︷︷︸
i~∂(−t)

T̂ |ψ〉
= T̂ ĤT̂−1T̂ |ψ〉

, (13)

which means that T̂ |ψ〉
solves the time-reversed Schrödinger equation

i~ ∂(−t) |ψ ′〉= Ĥ |ψ ′〉 (14)

if (and only if) Ĥ = T̂ ĤT̂−1. This result is valid for an arbitrary interacting many-particle system.

B. Time reversal invariance of the Heisenberg equation

The Heisenberg equation for an operator ÂH is equivalent to the Schrödinger equation and
should, therefore, possess the same reversibility properties. This is straightforwardly shown applying
the T̂ -operator introduced above from left and right,

i~ ∂tÂH =
[
ÂH, Ĥ

]
, (15)

⇐⇒ T̂ i~ ∂tÂH T̂−1 = T̂
(
ÂHĤ − ĤÂH

)
T̂−1

⇐⇒ −i~ ∂t T̂ ÂHT̂−1 = T̂ ÂHT̂−1 T̂ ĤT̂−1 − T̂ ĤT̂−1 T̂ Â HT̂−1, (16)

which is equivalent to
i~ ∂−t T̂ ÂHT̂−1 =

[
T̂ ÂHT̂−1, Ĥ

]
(17)

if and only if Ĥ = T̂ ĤT̂−1. This means that, if a Heisenberg operator ÂH(t) solves the Heisenberg
equation, then T̂ ÂHT̂−1 solves the time-reversed Heisenberg equation.

C. Time reversal invariance of the equations of motion of the field operators
of second quantization

The equation of motion of the annihilation operator in an arbitrary single-particle basis {|φi
〉}

[cf. Sec. II] reads14

i~ ∂t ĉi(t)=
∑

k

(
tik + vik(t)

)
ĉk(t) +

∑

jkl

wijkl(t) ĉ†j (t)ĉl(t)ĉk(t), (18)

where tik and vik (wijkl) are the matrix elements computed with the respective single-particle
(two-particle product) basis states. For the purpose of analyzing time reversal symmetry, it is
convenient to consider that Eq. (18) is derived from and equivalent to the Heisenberg equation
for ĉi(t),

i~ ∂t ĉi(t)=
[
ĉi, Ĥ

]
, (19)

and, as such, possesses the same symmetry properties that Ĥ does. The same obviously holds for the
creation operator ĉ†j .

IV. TIME REVERSAL INVARIANCE OF THE MARTIN–SCHWINGER HIERARCHY

The Martin–Schwinger hierarchy (3) follows from taking the ensemble average of the formally

equivalent hierarchy of equations of motion of the n-particle correlators Ĝ
(n)

. The latter, in turn,
follows from the equations of motion of field operators (3) and (4) and, therefore, must satisfy the
same symmetry properties as the field operators. Nonetheless, it is instructive to prove the time reversal
invariance of the Martin–Schwinger hierarchy directly. To this end, it is important to understand how
the contour-δ-distribution behaves under time reversal. Since δ is even with respect to its argument,
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i.e., δ(z)= δ(−z), it might be expected that δ̃C := δz→−z
C = δC. That, however, cannot be true, as the

following considerations show

∫

C
dz δC(z)= 1

z→−z−−−−→ 1=
∫

C
d(−z) δ̃C(z),

⇐⇒ δC
z→−z−−−−→ δ̃C =−δC. (20)

This means that the δ-distribution with respect to contour time arguments changes its sign under time
reversal, in analogy to differential and integral operators.

Component-wise, the nth order hierarchy equations for the correlators read

∑

l

[
i~

∂

∂zk
δik l − h(0)

ik l (zk)

]
Ĝ(n)

i1...l...in;j1...jn
(z1 . . . zn; z′1 . . . z

′
n)

=± i~
∑

lmn

∫

C
dz̄

{
Wik lmn(zk z̄)Ĝ(n+1)

i1...m...inn;j1...jnl(z1 . . . znz̄; z′1 . . . z
′
nz̄+)

}

+
n∑

p=1

{
(±1)k+pδik jpδC(zkz′p)Ĝ(n−1)

i1...Aik ...in;j1...Ajp...jn
(z1 . . .Zzk . . . zn; z′1 . . .@@zp

′ . . . z′n)
}
. (21)

Since W (zz′)= w(z)δC(zz′), it immediately follows that W z(′)→−z(′)
=−W . Therefore, the time-reversed

equations read

∑

l

[
−i~

∂

∂zk
δik l − h(0)

ik l (zk)

]
Ĝ(n)

i1...l...in;j1...jn
(z1 . . . zn; z′1 . . . z

′
n)

=±i~
∑

lmn

∫

C
dz̄

{
Wik lmn(zk z̄) Ĝ(n+1)

i1...m...inn;j1...jnl(z1 . . . znz̄; z′1 . . . z
′
nz̄+)

}

−
n∑

p=1

{
(±1)k+pδik jpδC(zkz′p) Ĝ(n−1)

i1...Aik ...in;j1...Ajp...jn
(z1. . .Zzk . . .zn; z′1. . .@@zp

′. . .z′n)
}
. (22)

The question remains whether these reversed equations have a solution and what the relation between
this solution and the solution of the original (non-reversed) equations is. Applying T̂ from the left
and T̂−1 from the right on both sides of Eq. (21), and omitting the time arguments for brevity,
yields

∑

l

[
−i~

∂

∂zk
δik l − h(0)

ik l (zk)

]
T̂ Ĝ(n)

i1...l...in;j1...jn
T̂−1

=∓i~
∑

lmn

∫

C
dz̄ Wik lmn(zk z̄)T̂ Ĝ(n+1)

i1...m...inn;j1...jnlT̂
−1

+
n∑

p=1

(±1)k+pδik jpδC(zkz′p)T̂ Ĝ(n−1)

i1...Aik ...in;j1...Ajp...jn
T̂−1. (23)

This is not equivalent to Eq. (22), and therefore T̂ Ĝ(n)
i1...l...in;j1...jn

T̂−1 does not solve the reversed
equations.

We, therefore, use a different approach which takes advantage of the fact that Ĝ(n)
i1...l...in;j1...jn

can

be interpreted as a functional of ĉi1 , . . . , ĉin , ĉ†j1 , . . . , ĉ†jn . Considering that T̂ ĉiT̂−1 and T̂ ĉ†j T̂−1 solve

the reversed equations of motion compared to ĉi and ĉ†j , it could be expected that the solution to the

reversed hierarchy equations is given by the same functional Ĝ(n)
i1...l...in;j1...jn

of T̂ ĉiT̂−1. This is, in fact,
the case because
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T̂ Ĝ(n)
i1...l...in;j1...jn

T̂−1

= T̂

{(
− i
~

)n

T̂Cĉi1 (z1) . . . ĉin (zn)ĉ†jn (z′n) . . . ĉ†j1 (z′1)

}
T̂−1

= (−1)n
(
− i
~

)n {
T̂CT̂ ĉi1 (z1)T̂−1 . . . T̂ ĉin (zn)T̂−1T̂ ĉ†jn (z′n)T̂−1 . . . T̂ ĉ†j1 (z′1)T̂−1

}
= (−1)nĜ(n)

i1...l...in;j1...jn

{
T̂ ĉi1 (z1)T̂−1 . . . T̂ ĉin (zn)T̂−1T̂ ĉ†jn (z′n)T̂−1. . .T̂ ĉ†j1 (z′1)T̂−1

}
=: (−1)n ˜̂G(n)

i1...l...in;j1...jn
. (24)

Inserting this into Eq. (23) yields

(−1)n
∑

l

[
−i~

∂

∂zk
δik l − h(0)

ik l (zk)

]
˜̂G(n)

i1...l...in;j1...jn
(25)

=∓(−1)n+1i~
∑

lmn

∫

C
dz̄ Wik lmn(zk z̄) ˜̂G(n+1)

i1...m...inn;j1...jnl +(−1)n−1
n∑

p=1

(±1)k+pδik jpδC(zkz′p) ˜̂G(n−1)

i1...Aik ...in;j1...Ajp...jn
,

which, when divided by (�1)n, is equivalent to Eq. (22). From this it follows directly, by taking the
ensemble average of both sides, that G(n)

[
T̂ ĉT̂−1, T̂ ĉ†T̂−1

]
satisfies the reversed nth-order equations

of the Martin–Schwinger hierarchy in the same way. Thus, we have demonstrated that the exact
Martin–Schwinger hierarchy is time reversal invariant, as expected.

V. TIME REVERSAL INVARIANCE OF Φ-DERIVABLE APPROXIMATIONS

Since the solution of the Martin–Schwinger hierarchy is usually possible only with suitable
approximations, the important question arises as which approximations retain the time reversal
properties of the exact system. In the following, we demonstrate that any Φ-derivable self-energy
leads to time reversal invariance. Thereby we will restrict ourselves to real-valued Hamiltonians,
Ĥ∗ = Ĥ.

A. Time reversal symmetry condition for the self-energy

Let us recall the first Kadanoff–Baym equation,

[
i~∂z − h(z)

]
G[ĉ](zz′)= δC(zz′)1 +

∫

C
dz̄ Σ[G[ĉ]](zz̄)G[ĉ](z̄z′), (26)

and take the complex conjugate of both sides,

[−i~∂z − h(z)
]

G∗[ĉ](zz′)= δC(zz′)1 +
∫

C
dz̄ Σ∗[G[ĉ]]

(zz̄)G∗[ĉ](z̄z′), (27)

where G∗[ĉ](zz′)=−G[ĉ∗](zz′) and, therefore,

− [−i~∂z − h(z)
]

G[ĉ∗](zz′)= δC(zz′)1 −
∫

C
dz̄ Σ∗[G[ĉ]]

(zz̄)G[ĉ∗](z̄z′). (28)

This means that G[ĉ∗] solves the reversed equation

[−i~∂z − h(z)
]

G[ĉ∗](zz′)=−δC(zz′)1 −
∫

C
dz̄ Σz(′)→−z(′)

[G[ĉ∗]]
(zz̄)G[ĉ∗](z̄z′) (29)

if the following holds true for the self-energy Σ:

Σ∗[G[ĉ]]
=−Σz(′)→−z(′)

[G[ĉ∗]]
, (30)

where the superscript denotes that the sign of both z and z′ is inverted.



061903-7 Scharnke, Schlünzen, and Bonitz J. Math. Phys. 58, 061903 (2017)

B. Φ-derived self-energies

Consider the important case of self-energies that are expressed as a functional derivative of a
scalar potential Φ. Complex conjugation of both sides of Eq. (7) yields

Σ∗ =
δΦ∗[G]
δG∗

=− δΦ
∗[G[ĉ]]

δG[ĉ∗]
, (31)

and, therefore, condition (30) for the self-energy translates into the following condition for the
functional Φ:

Φ∗[G[ĉ]]=Φ
z(′)→−z(′)

[G[ĉ∗]]. (32)

The rules governing the construction of valid functionals Φ dictate11 that an nth-order diagram
includes 2n contour-time integrals, 2n single-particle Green functions G, n interparticle interactions
W, and a factor (i~)n. This means that

Φ∗[G[ĉ]]= (−1)nΦ[G∗[ĉ]]= (−1)nΦ[−G[ĉ∗]]

= (−1)3nΦ[G[ĉ∗]]=Φ
z(′)→−z(′)

[G[ĉ∗]]. (33)

The last equivalence is true because of the delta-functions in the n interparticle interactions and the
2n contour-time integrals that lead to 3n sign changes under time-reversal. Thus we have shown that
any Φ-derivable NEGF approximation is time reversal invariant.

C. Example: Hartree–Fock self-energy

The simplest example of aΦ-derivable self-energy is Hartree–Fock. Nevertheless, it is instructive
to explicitly verify that ΣHF satisfies Eq. (30). To this end, we take the complex conjugate of both
sides of Eq. (11),

ΣHF,∗(zz′)=± (−i)~δC(zz′)
∫

C
dz̄ W (zz̄)

[
−G(1)

[ĉ∗](z̄z̄+)
]

+ (−i)~
[
−G(1)

[ĉ∗](zz′)
]

W (z+z′)

=± i~δC(zz′)
∫

C
dz̄ W (zz̄) G(1)

[ĉ∗](z̄z̄+) + i~G(1)
[ĉ∗](zz′) W (z+z′)

=± i~
[
−δ̃C(zz′)

] ∫
C

d(−z̄)
[
−W̃ (zz̄)

]
G(1)

[ĉ∗](z̄z̄+) + i~G(1)
[ĉ∗](zz′)

[
−W̃ (z+z′)

]
=− ΣHF, z(′)→−z(′)

[G[ĉ∗]]
, (34)

where δ̃ = δz(′)→−z(′)
and W̃ =W z(′)→−z(′)

. Equivalently, it can be checked that ΦHF satisfies Eq. (33),

ΦHF,∗ = ± (−i)
2

∫

C

∫

C
dz1dz2

[
−G[ĉ∗](z1; z+

1 ) W (z1; z2)
] [
−G[ĉ∗](z2; z+

2 )
]

+
(−i)

2

∫

C

∫

C
dz1dz2

[
−G[ĉ∗](z1; z+

2 )
]

W (z1; z2)
[
−G[ĉ∗](z2; z+

1 )
]

=∓ i
2

∫

C

∫

C
dz1dz2 G[ĉ∗](z1; z+

1 ) W (z1; z2) G[ĉ∗](z2; z+
2 )

− i
2

∫

C

∫

C
dz1dz2 G[ĉ∗](z1; z+

2 ) W (z1; z2) G[ĉ∗](z2; z+
1 )

=± i
2

∫

C

∫

C
d(−z1)d(−z2) G[ĉ∗](z1; z+

1 )
[
−W̃ (z1; z2)

]
G[ĉ∗](z2; z+

2 )

+
i
2

∫

C

∫

C
d(−z1)d(−z2) G[ĉ∗](z1; z+

2 )
[
−W̃ (z1; z2)

]
G[ĉ∗](z2; z+

1 )

=ΦHF, z(′)→−z(′)
[G[ĉ∗]]. (35)
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VI. SUMMARY AND DISCUSSION

In this paper, it has been explicitly shown that the governing equations of the nonequilibrium
Green functions formalism, the exact Martin–Schwinger hierarchy, and the associated quantum-
kinetic equations are time reversible. This is in striking contrast to conventional Boltzmann-type
kinetic equations, where irreversibility is introduced by the “Stoßzahlansatz” or similar proce-
dures. The existence of generalized quantum kinetic equations that retain the reversibility of the
underlying quantum-mechanical equations is known for a long time. Here we have presented a
simple procedure that allows us to verify this property. It is based on use of the anti-unitary time-
reversal operator T̂ that translates the solution of the Schrödinger equation into the time-reversed
equation.

We then turned to approximate solutions to the NEGF formalism that are based on approximations
of the self-energy. We have demonstrated that any self-energy that is Φ-derivable is symmetric
with respect to time reversal, as long as the (single-particle) Hamiltonian possesses an anti-unitary
symmetry Ĥ = T̂ ĤT̂−1. These approximations include the well-known Hartree–Fock, second Born,
and T-matrix approximations as well as many others.

Aside from theΦ-derivable self-energy approximations discussed above, in recent years, another
class of approximations has attracted high interest: the generalized Kadanoff–Baym ansatz (GKBA).
It replaces the two-time Green function by a single-time approximation. The GKBA was originally
derived by Lipavský et al.,12 and a rigorous derivation from density operator theory was given in Ref. 9.
In a detailed investigation by Hermanns et al.,15 it was shown that the GKBA retains the conservation
properties of the original two-time equations if the approximation for the retarded Green function GR

is conserving as well. The same reasoning can be applied to the issue of time reversal invariance. The
result is that use of a Φ-derivable approximation for GR (which may differ from the approximation
for the self-energy) will retain the time reversal properties of the original two-time approximation.
Using the GKBA it is also straightforward to perform the transition to conventional “Boltzmann-type”
kinetic equations that are known to be irreversible. The analysis shows that reversibility is lost upon
performing the Markov limit and by neglecting initial correlations. This issue is studied in detail in
Ref. 16.

An interesting outcome of our analysis is that Φ-derivable approximations for the self-energy
are both conserving and time reversible. It remains to investigate whether this applies also to other
classes of approximations. Finally, proof of time-reversibility of an approximation is also of a high
practical value in numerical solutions of the KBE, as this provides a sensitive test for the numerical
accuracy and convergence, e.g., Ref. 17.
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Time-reversal symmetry is a fundamental property of many quantum mechani-

cal systems. The relation between statistical physics and time reversal is subtle,

and not all statistical theories conserve this particular symmetry—most notably,

hydrodynamic equations and kinetic equations such as the Boltzmann equation.

Here, we consider quantum kinetic generalizations of the Boltzmann equation using

the method of reduced density operators, leading to the quantum generalization

of the Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy. We demon-

strate that all commonly used approximations, including Vlasov; Hartree-Fock; and

the non-Markovian generalizations of the Landau, T-matrix, and Lenard-Balescu

equations, are originally time-reversal invariant, and we formulate a general criterion

for time reversibility of approximations to the quantum BBGKY hierarchy. Finally,

we illustrate, through the example of the Born approximation, how irreversibility is

introduced into quantum kinetic theory via the Markov limit, making the connec-

tion with the standard Boltzmann equation. This paper is a complement to paper I

(Scharnke et al., J. Math. Phys., 2017, 58, 061903), where the time-reversal invari-

ance of quantum kinetic equations was analysed in the frame of the independent

non-equilibrium Green functions formalism.

KEYWORDS

BBGKY-hierarchy, density operators, quantum dynamics, quantum kinetic theory,

time reversibility

1 INTRODUCTION

The time evolution of quantum many-body systems is of great interest currently in many areas of modern physics and chem-

istry, for example, in the context of laser–matter interaction, non-stationary transport, or dynamics following an interaction or

confinement quench. The theoretical concepts used to study these dynamics are fairly broad and include (but are not limited

to) wave function-based approaches, density functional theory, and quantum kinetic theory. The latter treats the time dynamics

of the Wigner distribution or, more generally, the density matrix and captures the relaxation towards an equilibrium state (see,

e.g., Refs. 1–4). The most famous example of a kinetic equation is the Boltzmann equation, along with quantum generaliza-

tion, but this equation is known to not be applicable to the short-time dynamics. For this reason, generalized quantum kinetic

equations were derived that are non-Markovian in nature (e.g., Refs. 1, 3, 5–9) and that have a number of remarkable properties,

including the conservation of total energy, in contrast to kinetic energy conservation in the Boltzmann equation. It was recently

demonstrated that these generalized quantum kinetic equations are well suited to study the relaxation dynamics of weakly and

moderately correlated quantum systems, in very good agreement with experiments with ultra-cold atoms (e.g., Refs. 10, 11)

and first-principle density matrix renormalization group methods.[12]
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This success of generalized quantum kinetic equations warrants a more detailed theoretical analysis of their properties. Despite

extensive work over recent decades, the aspect of time reversibility was not studied in detail. The relation between time-reversal

symmetry and statistical physics is generally subtle, and not all statistical theories are invariant under time reversal, the most

famous counterexample being the above-mentioned Boltzmann equation of classical statistical mechanics and its quantum

generalization. In contrast, the non-Markovian generalizations of the Boltzmann equation, which can be used to improve the

Boltzmann equation and reduce to the latter as a limiting case, are expected to be time-reversal invariant because of the under-

lying quantum mechanical system. But then, questions arise about where exactly time-reversal invariance is lost, how this is

related to common many-body approximations, and so on.

Among the well-established approaches to derive these generalized quantum kinetic equations, we mention density operator

concepts—see, for example, Ref. 3 for an overview—and non-equilibrium Green functions (NEGF). We recently analysed the

question of time-reversal invariance within the NEGF formalism in paper I.[13] It is the goal of the present article to complement

the NEGF results of that paper with an analysis of the independent and technically very different density operator formalism.

In this paper, we briefly recall the derivation of the quantum Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy

in section 2. As the BBGKY hierarchy can be directly derived from the Heisenberg equation (von Neumann equation) for the

N-particle density operator, which is time-reversal invariant, it should be expected that this hierarchy has the same symmetry

properties. Nevertheless, general proof is usually missing in the literature, for example, Refs. 1–4, and a successful procedure

is presented in section 4. We then demonstrate, in section 5, that important standard closure approximations to the BBGKY

hierarchy also preserve time-reversal symmetry. In section 6, we demonstrate, as an example, the transition from a time-reversal

invariant generalized kinetic equation to an irreversible equation of the Boltzmann type by performing the Markov limit and

the weakening of initial conditions. We conclude with a summary in section 7.

2 BBGKY HIERARCHY FOR THE REDUCED-DENSITY OPERATORS

Here, we briefly recall the basic equations of the density operator theory following Ref. 3. The generic Hamiltonian of an

interacting N-particle system is given by a sum of a single particle and an interaction term

Ĥ =
N∑

i=1

Ĥi +
∑

1≤i<j≤N
V̂𝑖𝑗 , (1)

Ĥi(t) =
p̂2

i

2mi
+ Ûi(t). (2)

The solutions of the time-dependent N-particle Schrödinger equation with this Hamiltonian are denoted by ∣𝜓 (1)⟩… ∣𝜓 (M)⟩
and form a complete orthonormal basis:

⟨𝜓 (k)|𝜓 (l)⟩ = 𝛿k,l, (3)

M∑
k=1

∣ 𝜓 (k)⟩⟨𝜓 (k) ∣= 1. (4)

The central quantity for the construction of quantum kinetic equations is the N-particle density operator:

𝜌 =
M∑

k=1

Wk ∣ 𝜓 (k)⟩⟨𝜓 (k) ∣, (5)

where Wk are positive real probabilities, and 0≤Wk ≤ 1, with
M∑

k=1

Wk = 1, and we restrict ourselves to the case of

time-independent probabilities. The density operator obeys the von Neumann equation

iℏ 𝜕
𝜕t
𝜌 − [Ĥ, 𝜌] = 0. (6)

In order to derive the quantum BBGKY hierarchy, we introduce the reduced s-particle density operator (s= 1…N − 1)

F̂1…s = CN
s Trs+1…N 𝜌, Tr1…sF̂1…s = CN

s , (7)

where CN
s = N!

(N−s)!
. The equations of motion for the reduced density operators follow directly from the von Neumann Equation 6

and the definition 7:

iℏ 𝜕
𝜕t

F̂1…s − [Ĥ1…s, F̂1…s] = Trs+1

s∑
i=1

[V̂i,s+1, F̂1…s+1], (8)
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where Ĥ1…s is the s-particle Hamilton operator, which follows from the N-particle Hamiltonian, Equation 1, by substituting

N → s. The system 8 with s= 1…N − 1 constitutes the quantum generalization of the BBGKY hierarchy.

In order to specify decoupling approximations to the hierarchy, we introduce the correlation operators:

F̂12 = F̂1F̂2 + ĝ12, (9)

F̂123 = F̂1F̂2F̂3 + ĝ23F̂1 + ĝ13F̂2 + ĝ12F̂3 + ĝ123, (10)

where ĝ12 describes pair correlations, ĝ123 three-particle correlations, and so on, which are due to interaction effects beyond

the mean field. In contrast, mean field (Vlasov, Hartree-Fock) terms are contained in the products of single-particle density

operators and appear via the mean field potential ÛH
i = TrjV̂𝑖𝑗F̂j, leading to the renormalization of the single-particle and

two-particle Hamiltonians Ĥi → Ĥi = Ĥi + ÛH
i , Ĥ𝑖𝑗 → Ĥ𝑖𝑗 = Ĥi + Ĥj + V̂𝑖𝑗 , and so on. The BBGKY hierarchy, rewritten in

terms of the correlation operators, then becomes:

iℏ 𝜕
𝜕t

F̂1 − [Ĥ1, F̂1] = Tr2[V̂12, ĝ12], (11)

iℏ 𝜕
𝜕t

ĝ12 − [Ĥ12, ĝ12] = [V̂12, F̂1F̂2]+

+Tr3{[V̂13, F̂1ĝ23] + [V̂23, F̂2ĝ13] + [V̂13 + V̂23, ĝ123]}, (12)

and this is also applicable for the higher-order operators. Standard many-body approximations are easily identified from

Equations 11 and 12, cf. for example, Ref. 3:

1. The mean field (Hartree or Hartree-Fock) approximation that leads to the non-linear Vlasov equation (or to the

time-dependent Hartree-Fock) follows from letting ĝ12 → 0 in Equation 11.

2. The second-order Born approximation, leading to the Landau equation, follows from neglecting V̂12 in Ĥ12 on the left and

ĝ23 = ĝ13 = ĝ123 → 0 on the right side in Equation 12.

3. The T-matrix or ladder approximation follows from setting ĝ23 = ĝ13 = ĝ123 → 0 on the right side in Equation 12.

4. The polarization approximation that is related to the GW approximation of Green functions theory and leads to the

Lenard-Balescu equation follows from neglecting V̂12 in Ĥ12 on the left and ĝ123 → 0 on the right side in Equation 12.

5. The screened ladder approximation that is related to the parquet approximation (or “FLEX”) in Green functions theory

follows from ĝ123 → 0 on the right side in Equation 12.

In a similar manner, higher-order decoupling schemes for the BBGKY hierarchy are introduced on the level of the equation of

motion for g123. Typically, approximations are derived by omitting terms of the form [Â, B̂], where Â is a contribution to the full

Hamiltonian 1 (typically an interaction potential), and B̂ are contributions to the cluster expansion 10. This will be discussed in

more detail in section 5.

Finally, we note that the cluster expansion 10 is written without an explicit account of the spin statistics. A direct

(anti-)symmetrization of the hierarchy, for the case of bosons (fermions), is straightforwardly achieved by replacing the density

operators according to[14] (Figure 1)

F̂1…s → F̂1…sΛ±1…s, (13)

where the (anti-)symmetrization operators are given by

Λ±
12

= 1±P12,

Λ±
123

= 1±P12±P13±P23 + P12P13 + P12P23,

and so on, where Pij is the permutation operator of particles i and j, and the upper (lower) sign refers to bosons (fermions).

(Anti-)symmetrization is then achieved by applying the s-particle operator Λ±
1…s to the s-th equation of the BBGKY hierar-

chy, term by term. We illustrate this procedure for the (anti-)symmetrization of the Hartree mean field term on the l.h.s. of

FIGURE 1 Illustration of the forward and backward solutions of the time-dependent

Schrödinger equation. Upper trajectory: forward solution |𝜓𝜎(t)⟩. Lower trajectory:

backward solution |𝜓 ′
−𝜎(t′)⟩. Note that we choose the limits of the forward trajectory as

t=−t0 and t= 0, whereas the backward one runs from t′ = 0 to t′ = t0. The time reversal

occurs at t= 0
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Equation 11, which is obtained by replacing F̂1F̂2 → F̂1F̂2Λ±12
:

[ÛH
1
, F̂1] → [ÛHF

1
, F̂1] = Tr2[V̂12, F̂1F̂2Λ±12

],

with ÛHF
i = TrjV̂𝑖𝑗F̂jΛ±𝑖𝑗 , (14)

The full (anti-)symmetrized equations are given in Ref. [3]. However, we will not need these equations below. This is because

the (anti-)symmetrization operators commute with the time-reversal operator T̂ , cf. section 3. Therefore, (anti-)symmetrization

does not affect the time-reversal properties of the resulting equations and approximations, allowing us to restrict ourselves to

the simpler Equations 11, 12 in this study.

3 TIME-REVERSAL INVARIANCE IN QUANTUM MANY-BODY THEORY

3.1 Time-reversal invariance of the equations of motion of quantum mechanics

Let us recall the concept of time reversibility as was discussed in Ref. 13; for text book discussions, see Refs. 15, 16. Consider

the time-dependent N-particle Schrödinger equation on an arbitrary finite interval of time, − t0 ≤ t≤ 0, with a given initial

condition |𝜓0⟩:
iℏ𝜕t ∣ 𝜓(t)⟩ = Ĥ ∣ 𝜓(t)⟩ , (15)

∣ 𝜓(−t0)⟩ =∣ 𝜓0⟩. (16)

This equation is called time-reversal invariant if:

i. for any solution |𝜓(t)⟩, there exists another solution |𝜓 ′(t′)⟩ with t′∈ [0, t0] and t′ =−t and

ii. there exists a unique relation between the two:

∣ 𝜓 ′(t′)⟩ = T̂ ∣ 𝜓(t)⟩, (17)

for which the time-reversal operator T̂ will be specified below. Both solutions describe the same physical state; therefore, the

associated probability densities must coincide:

||𝜓𝜎(t)⟩|2 =||𝜓 ′
−𝜎(−t)⟩|2, (18)

where we indicated explicitly that, on the backward trajectory |𝜓 ′(t′)⟩, the spin projections 𝜎 of all particles are inverted.

Analogously, momenta and angular momenta (their eigenvalues) are inverted, as in classical mechanics. To motivate the choice

of T̂ , we rewrite the Schrödinger dynamics 15 in terms of the standard time-evolution operator Û:

∣ 𝜓(t)⟩ = Û(t,−t0) ∣ 𝜓0⟩, (19)

Û(t, t′) = 𝑇 𝑒−
i

ℏ
∫ t

t′ dtĤ(t). (20)

Backward evolution in time is, obviously, achieved by the complex conjugation of U. This brings us to the following choice

of the time-reversal operator T̂ , which is originally due to Wigner[17]:

T̂ is an anti-unitary operator, that is, T̂ = K̂Ŵ, where Ŵ is a unitary operator that assures the spin flip in Equation 18, and K̂
performs complex conjugation. Here, we will not treat the spin explicitly and will, therefore, use Ŵ → 1. As a result, Equation 17

becomes:

∣ 𝜓 ′(t′)⟩ = T̂ ∣ 𝜓(t)⟩ =∣ 𝜓(−t)⟩∗, (21)

An operator Â′ acting on the time-reversed solution is obtained from the original operator Â via

Â′ = T̂ÂT̂−1 (22)

T̂ is anti-linear, that is,

T̂{|𝜓1⟩ + i|𝜓2⟩} = T̂ ∣ 𝜓1⟩ − iT̂ ∣ 𝜓2⟩, (23)

T̂{Â + iB̂}T̂−1 = T̂ÂT̂−1 − iT̂B̂T̂−1, (24)

for any two states and any two operators.
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FIGURE 2 Illustration of the forward and backward solutions of the quantum BBGKY

hierarchy. Upper trajectory: forward solution {F1(t), g12(t), …} on the interval −t0 ≤ t≤ 0.

Lower trajectory: backward solution {F′
1
(t′), g′

12
(t′),…} on the same interval with

0≤ t’ ≤ t0, Time reversal occurs at t= 0, cf. Figure 1

As a test, we apply the operator T̂ to both sides of Equation 15:

T̂iℏ𝜕t ∣ 𝜓⟩ = T̂Ĥ ∣ 𝜓⟩
⇐⇒ −iℏ𝜕t

⏟⏟⏟
iℏ𝜕(−t)

T̂ ∣ 𝜓⟩ = T̂ĤT̂−1T̂ ∣ 𝜓⟩ , (25)

which means that, indeed, ∣ 𝜓 ′⟩ = T̂ ∣ 𝜓⟩ solves the time-reversed Schrödinger equation

iℏ𝜕(−t) ∣ 𝜓 ′⟩ = Ĥ ∣ 𝜓 ′⟩ (26)

if and only if

Ĥ = T̂ĤT̂−1. (27)

This is equivalent to [T̂ , Ĥ] = 0, and we obtain a result found in many text books. However, we will see in section 4 that

condition 27 is, in fact, not sufficient.

Next, we find the time-reversed values of the coordinate and momentum operators using the coordinate representation:

r̂′ = T̂ r̂T̂−1 = r̂T̂T̂−1 = r̂, (28)

as r̂ is real, and

p̂′ = T̂p̂T̂−1 = −p̂, (29)

as p̂ = ℏ
i
𝛻 is purely imaginary. This is again consistent with the time-reversal properties of classical mechanics. Furthermore,

Equation 29 also shows that relation 27 excludes certain classes of Hamiltonians, such as those containing odd powers of the

momentum (Figure 2).

4 TIME-REVERSAL INVARIANCE OF THE BBGKY HIERARCHY

The N-particle density operator 𝜌, defined by Equation 5, extends the concept of the time-dependent Schrödinger equation to a

thermodynamic ensemble while containing the dynamics of a pure state |𝜓 (l)⟩ as a special case, when Wk = 𝛿k, l.

Let us now analyse the time-reversal symmetry of the von Neumann Equation 6 by applying the T̂ operator, introduced above,

from the left and its inverse from the right:

T̂iℏ𝜕t𝜌T̂−1 = T̂(𝜌Ĥ − Ĥ𝜌)T̂−1

−iℏ𝜕tT̂𝜌T̂−1 = T̂𝜌T̂−1T̂ĤT̂−1 − T̂ĤT̂−1T̂𝜌T̂−1 ,

which is equivalent to the time-reversed equation

iℏ𝜕−t𝜌′ = [𝜌′, Ĥ], (30)

again, if and only if condition 27 is fulfilled, as in the case of the Schrödinger equation. Here, we introduced the solution of the

time-reversed von Neumann equation:

𝜌′(−t) = T̂𝜌(t)T̂−1

=
∑

k
WkT̂ ∣ 𝜓 (k)(t)⟩⟨𝜓 (k)(t) ∣ T̂−1

=
∑

k
Wk ∣ 𝜓 (k)′ (−t)⟩⟨𝜓 (k)′ (−t) ∣, (31)

which is consistent with the definition of the density operator 5 in terms of the solutions of the time-reversed Schrödinger

equation. Let us now return to the BBGKY hierarchy 8. Its time reversibility follows immediately from the reversibility of the

von Neumann Equation 6 that was demonstrated above. Nevertheless, it is instructive to verify the time reversibility explicitly
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as this will be useful for the analysis of approximations to the hierarchy in section 5. Applying the operators T̂ and T̂−1 from

the left and right, respectively, we obtain:

iℏ 𝜕
𝜕(−t)

F̂′
1…s − [Ĥ′

1…s(−t), F̂′
1…s(−t)]

= Trs+1

s∑
i=1

[V̂ ′
i,s+1

, F̂′
1…s+1

(−t)], (32)

where we used the fact that the definition 7 is a real linear operation

T̂F̂1…s(t)T̂−1 = CN
s Trs+1…NT̂𝜌(t)T̂−1 =

= CN
s Trs+1…N𝜌′(−t) = F̂′

1…s(−t), (33)

such that F̂′
1…s(−t) is, indeed, the solution of the time-reversed hierarchy equation if the following conditions hold:

Ĥ′
1…s(−t) ≡ T̂Ĥ1…s(t)T̂−1 = Ĥ1…s(t), (34)

V̂ ′
𝑖𝑗 ≡ T̂V̂𝑖𝑗 T̂−1 = V̂𝑖𝑗 , (35)

for all i≠ j ∈ [1, N] and all s= 1…N − 1, simultaneously. While for typical distance-dependent real potentials, Equation 35 is

always fulfilled, Equation 34 places clear restrictions on the contributions to the system Hamiltonian.

Based on these results, we conclude that time-reversal invariance of the exact BBGKY hierarchy requires not only the time

reversal symmetry of the full N-particle Hamiltonian 1, as in the case of the Schrödinger equation, cf. condition 27, but also

that each of the contributions to the Hamiltonian have to obey this symmetry separately. This is, of course, a much stronger

condition than 27.

5 TIME-REVERSAL INVARIANCE OF APPROXIMATIONS TO THE HIERARCHY

As the solution of the BBGKY hierarchy is usually possible only with suitable approximations, the important question is which

approximations retain the time-reversal properties of the exact system. We subsequently demonstrate that a very broad class of

approximations retains time-reversal invariance. Therefore, we will restrict ourselves to real-valued Hamiltonians, Ĥ∗ = Ĥ.

We start by rewriting the first two equations of the BBGKY hierarchy in terms of the correlation operators, Equations 11, 12,

in a different form:

iℏ 𝜕
𝜕t

F̂1 = Ĵ1 = Ĵapp

1
+ Ô1, (36)

iℏ 𝜕
𝜕t

ĝ12 = Ĵ12 = Ĵapp

12
+ Ô12, (37)

where Ĵ1 and Ĵ12 comprise all the remaining terms in Equations 11, 12. A decoupling approximation to the hierarchy can then

be defined by specifying approximate expressions, Ĵapp

1
and Ĵapp

12
, where the remainders, Ô1 and Ô12, are being omitted. The

same procedure can be applied to decoupling approximations on the level of the third or higher-order hierarchy equations. To

answer the question of whether a given decoupling approximation, Ĵapp = {Ĵapp

1
, Ĵapp

12
,…}, is time reversible, we either have

to analyse the resulting equations directly or, alternatively, investigate the time-reversal properties of the omitted operators,

Ô = {Ô1, Ô12,…}, as the exact equations are known to be time-reversal invariant. Here, it will be advantageous to use the latter

approach.

In the following, we answer this question for the approximations that were introduced in section 2, starting by specifying the

corresponding operators Ô.

1. The mean field approximation is given by the choice Ô ≡ ÔHF
1

= Tr2[V̂12, ĝ12].
2. The second-order Born approximation is given by Ô ≡ Ô2B

12
= [V̂12, ĝ12]+𝑇 𝑟3{[V̂13, F̂1ĝ23]+[V̂23, F̂2ĝ13]+[V̂13+V̂23, ĝ123]}.

3. The T-matrix or ladder approximation is given by Ô ≡ ÔT
12

= 𝑇 𝑟3{[V̂13, F̂1ĝ23] + [V̂23, F̂2ĝ13] + [V̂13 + V̂23, ĝ123]}.

4. The polarization approximation is given by Ô ≡ ÔPOL
12

= [V̂12, ĝ12] + Tr3[V̂13 + V̂23, ĝ123].
5. The screened ladder approximation is given by Ô ≡ ÔSCT

12
= Tr3[V̂13 + V̂23, ĝ123].

Aside from their different physical characters, all these approximations have a common mathematical structure. They are

given by a functional relation of the form

Ô(t) = R[V̂𝑖𝑗 , F̂k(t), ĝ𝑙𝑚(t), ĝ𝑛𝑜𝑝(t),…], R ∈ , (38)
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where the indices are i, j, k, l, m, n, o, p∈ 1…N, and R is a real function. The properties of expression 38 under time

reversal are easily obtained. First, due to its real character, the functional form of R obviously does not change, that

is, T̂RT̂−1 = R. Second, the properties of the arguments of R are known: as we have discussed above, standard pair

potentials are always time-reversal invariant, T̂V̂𝑖𝑗 T̂−1 = V̂𝑖𝑗 . Next, the time-reversal invariance of the single-particle

density operator was demonstrated in Equation 33. Finally, based on property 33, together with the cluster expansion

(9, 10, …), which is a real functional relation, we easily conclude (iteratively) that all correlation operators are time-reversal

invariant:

T̂ĝ1…s(t)T̂−1 = ĝ1…s(−t), s = 1…N − 1. (39)

Summarizing these results, we conclude that the operator 38 is time-reversal invariant:

T̂Ô(t)T̂−1 = Ô(−t). (40)

This means that each of the approximations that were listed above (and the corresponding non-Markovian quantum kinetic

equations)—time-dependent Hartree-Fock (non-linear quantum Vlasov equation), second-order Born approximation (quantum

Landau equation), T-matrix (quantum Boltzmann equation), polarization approximation (quantum Lenárd-Balescu equation),

and the screened ladder approximation—are time-reversal invariant. We emphasize that condition 38 is much more gen-

eral than those approximations, including a broad range of decoupling schemes of the hierarchy that were proposed in

the literature.

6 BREAKING THE TIME-REVERSAL SYMMETRY: EXAMPLE OF THE BORN
APPROXIMATION

The emergence of time irreversibility, starting from reversible quantum dynamics, has been discussed in great detail since the

appearance of the Boltzmann kinetic Equation 18. Using our formalism, we can trace this emergence particularly clearly for the

case of the quantum Landau equation that corresponds to the following first two hierarchy equations:

iℏ 𝜕
𝜕t

F̂1 − [Ĥ1, F̂1] = Tr2[V̂12, ĝ12], (41)

iℏ 𝜕
𝜕t

ĝ12 − [Ĥ12, ĝ12] = [V̂12, F̂1F̂2]± = Ĵ2B
12
(t), (42)

F̂1(−t0) = F̂0
1
, ĝ12(−t0) = ĝ0

12
, t ∈ [−t0, 0], (43)

where we added the initial conditions for both operators. These coupled, time-local equations can be numerically solved directly.

The alternative route that leads to a quantum kinetic equation consists of, first, formally solving the equation for ĝ12 analytically

and then inserting the result into the r.h.s. of Equation 41. This is the approach we will use here. The solution of the initial value

problem 41–43 is easily found[3] and consists of an initial value term (solution of the homogeneous equation) and a collision

term

ĝ12(t) = ĝIC
12
(t) + ĝcoll

12
(t), (44)

ĝIC
12
(t) = Û0

12
(t,−t0)ĝ0

12
Û0†

12
(t,−t0), (45)

ĝcoll
12

(t) = 1

iℏ ∫
t

−t0
dtÛ0

12
(t, t)Ĵ0

12
(t)Û0†

12
(t, t), (46)

where the two-particle propagator factorizes into single-particle Hartree-Fock propagators, Û0
12
(t, t′) = Û1(t, t′)Û2(t, t′), with

{
iℏ 𝜕
𝜕t

− Ĥ1(t)
}

Û1(t, t′) = 0, Û1(t, t) = 1, (47)

the solution for which is analogous to that of the Schrödinger equation, cf. Equation 20. The quantum kinetic equation that is

associated with the solution 44 contains two collision integrals: the first, involving ĝIC
12
(t), is due to correlations existing in the

system at the initial time moment, whereas the second is due to correlations being formed as a result of two-particle collisions

while being absent at the initial moment. The characteristic feature of the latter collision integral is its non-Markovian character

(i.e., the presence of the time integral), which is in striking contrast to the traditional Boltzmann equation that involves only

distribution functions taken at the current time t.
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To analyse the transition from the former to the latter and, thereby, from time reversibility to irreversibility, we switch from

the operator form of the solution 44 to an instantaneous Hartree-Fock basis {|n⟩}, given by Ĥ1 ∣ n⟩ = En ∣ n⟩. Then, the first

hierarchy Equation 41 becomes

iℏ 𝜕
𝜕t

Fn1,n1′ − (En1
− En′

1
)Fn1,n1′ =

=
∑
n2

∑
n1n2

{Vn,ngn,n′ − gn,nVn,n′ }
||||||n2′ =n2

, (48)

where we introduced the short notations n≡ (n1, n2), n′ ≡ (n1
′
, n2

′
), and n ≡ (n1, n2). This is a generalized quantum kinetic

equation that describes the probability of transitions between different single-particle states (dynamics of Fn1,n1′ with n1 ≠ n1′),

as well as the dynamics of the occupations of state n1 (given by Fn1
≡ Fn1,n1

). Here, we focus on the latter as it is directly related

to the evolution towards an equilibrium state. Furthermore, the emergence of irreversibility in the dynamics of Fn is sufficient

for the transition of the whole system of coupled equations from reversible to irreversible.

The corresponding dynamics of the diagonal matrix elements are given by

iℏ 𝜕
𝜕t

Fn1
(t) = 2i

∑
n2

∑
n1n2

Vn,nIm gn,n(t), (49)

where we used gn,n′ = g∗
n′,n and Vn,n′ = Vn′,n. To compute Imgn,n(t), we first write down the solution of Equation 47, which is

given by a diagonal matrix:

⟨n1|Û(tt′)|n′
1
⟩ = Un1

(t − t′)𝛿n1,n1′ ,

Un1
(𝜏) = e−

i

ℏ
En1

𝜏 , (50)

and the matrix of the pair correlation operator 44 becomes

Im gn,n′ (t) = Im gIC
n,n′ (t) + Im gcoll

n,n′ (t), (51)

Im gIC
n,n′ (t) = Im{e−i𝜔n,n′ [t−(−t0)]g0

n,n′ } (52)

Im gcoll
n,n′ (t) = − 1

ℏ ∫
t

−t0
dt cos[𝜔n,n′ (t − t)]J2B

n,n′ (t) (53)

where we defined ℏ𝜔n,n′ ≡ En1 + En2 − En1′ − En2′ and used J2B∗
n,n′ = J2B

n,n′.

Let us now investigate the time-reversal symmetry of the kinetic Equation 48, that is, we apply the time-reversal operators T̂
and T̂−1 from the left and right, respectively, as before:

iℏ 𝜕
𝜕(−t)

F′
n1,n1′

(t) − (En1
− En′

1
)F′

n1,n1′
(t) =

=
∑
n2

∑
n1n2

{Vn,ng′
n,n′ (t) − g′

n,n(t)Vn,n′ }
||||||n2′ =n2

,

where F′
is the solution of the time-reversed equation. Time-reversal symmetry again requires fulfilment of F′

n1,n1′
(t) ≡

T̂Fn1,n1′ (t)T̂−1 = Fn1,n1′ (−t) and is observed only when the time-reversed solution of the second equation obeys

Im g′
n,n′ (t) ≡ T̂Im gn1,n1′ (t)T̂

−1 = Im gn,n′ (−t). (54)

This is easily verified by writing down the solution g′(t) noticing that application of the operators T̂ and T̂−1, from the left

and right, to the second hierarchy equation again changes the sign of the time derivative, which is equivalent to replacing

𝜔n, n’ → −𝜔n, n’, and J2B
n,n′ → J2B

n,n′, and the solution 52, 53 changes into

ImgIC′

n,n′ (t) = Im{e+i𝜔n,n′ [t−(−t0)]g0
n,n′ } (55)

Im gcoll′

n,n′ (t) = − 1

ℏ ∫
t

−t0
dt cos[−𝜔n,n′ (t − t)][−J2B

n,n′ (t)]

= − 1

ℏ ∫
t0

−t
dt cos[𝜔n,n′ (−t − t)]J2B

n,n′ (−t). (56)

It is obvious that the solutions g and g’ fulfil 54, which can be seen by changing (t, −t0)→ (−t, t0), in gIC′
, and (t,−t0, t) →

(−t, t0,−t), in gcoll′ .
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The mathematical transition to the conventional (quantum) Boltzmann collision integral that contains a delta function, 𝛿(En1
+

En2
− En′

1
− En′

2
), of the single-particle energies before and after the collision involves three steps:

Decoupling of the time scales of the single-particle and two-particle dynamics. The argument here is that, during a collision,

when the two-particle correlations are formed (during the correlation time 𝜏cor), the occupation of the single-particle states

changes only weakly. Its relaxation towards an equilibrium distribution involves many collisions and, therefore, requires a

relaxation time that is much larger

trel ≫ 𝜏cor. (57)

This justifies the expansion of Fn(t), and with it J2B
n,n′ (t), under the time integral in 53 around its value at the upper limit (the

current time),

J2B
n,n′ (t) = J2B

n,n′ (t) +
∑
k=1

(t − t)k

k!
dk

dtk J2B
n,n′ (t). (58)

Truncating this retardation expansion 3 at the first term (0-th-order retardation approximation) leads to the following result

for the pair correlations:

Imgcoll(0)
n,n′ (t) = −

J2B
n,n′ (t)
ℏ

sin[𝜔n,n′ (t − (−t0))]
𝜔n,n′

= Imgcoll(0)
n,n′ (t, [F(t)]). (59)

This expression is, of course, a drastic distortion of the original result, and its accuracy depends on the fulfilment of

condition 57. In fact, it is well known that, for weakly coupled systems, the two times are related by
𝜏cor

trel

∼ Γ ≪ 1, where Γ is

the relevant coupling parameter. In the second line of 59, we noted explicitly that the pair correlation functions have a twofold

time dependence: an explicit one (via the sine function, which is fast, for increasing time, particularly for high frequencies) and

a slow one via the evolution of F(t).
Note that this is still a proper (although distorted) solution of the initial value problem. It is also consistent with an (arbitrary)

initial condition g0
n,n′ (−t0) because the collision term exactly vanishes for t→−t0. Interestingly, despite the approximate charac-

ter of gcoll(0)
n,n′ (t), it is easily seen (by performing the retardation expansion in 56) that it still satisfies the time-reversal invariance

condition 54.

Markov limit. The limit of an infinitely remote initial state, −t0 → −∞, is usually motivated by the assumption that two

particles enter a scattering process in an uncorrelated manner. The result for the Markovian pair correlations is then:

Imgcoll(M)
n,n′ (t) ≡
−

J2B
n,n′ (t)
ℏ

lim
−t0→−∞

sin[𝜔n,n′ (t − (−t0))]
𝜔n,n′

= −
J2B

n,n′ (t)
ℏ

𝛿(𝜔n,n′ ). (60)

Note that it is assumed that the single-particle operators (i.e., the slow time dependence of gcoll [0]) are not affected by the

limit, which means that the limit Γ→ 0 has been considered first.

Weakening of initial correlations. Motivated by the argument that the state of the system cannot remember (and, hence, be

influenced by) its infinitely remote history, particularly its correlations, the Markov limit is accompanied by the suppression of

initial correlations:

lim
−t0→−∞

g0
n,n′ (−t0) → 0. (61)

This is consistent with the Markov limit because, after the procedure leading to 61, gn,n′ [F(t)] does not obey an initial value

problem that starts from an arbitrary initial state anymore but only adiabatically follows the dynamics of F(t), according to the

prescription 60. This concept is due to Bogolyubov[4] (“functional hypothesis”; “weakening of initial correlations”) and has

been generalized to situations where there exists a subclass of long-living correlations (such as those related to bound states or

long range order; partial weakening of initial correlations) by Kremp et al.[18]

With the result 61, the collision integral due to initial correlations (the term gIC) vanishes, and only the collision integral

involving Im gcoll(M)
n,n′ , Equation 60, remains, which is of the conventional Boltzmann-type form.

To summarize, time-reversal symmetry is lost at step 2. While the result of step 1, Im gcoll(0)
n,n′ (t), is time-reversal invariant for

any finite value− t0, no matter how far back in the past, this property vanishes with the limit −t0 → −∞. With this limit, the

unitary operator structure that is still present in the sine function is lost together with the explicit time dependence of the pair

correlations (this is particularly clear when the single-particle operators F are exactly stationary.)
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7 SUMMARY AND DISCUSSION

In this paper, we analysed the question of the time reversibility of generalized quantum kinetic equations that are derived within

the reduced density operator formalism. The governing equations of the density operator theory are given by the quantum

BBGKY hierarchy. Here, we demonstrated that the exact BBGKY hierarchy and the associated quantum kinetic equations are

time reversible. This behaviour is in striking contrast to the conventional Boltzmann-type kinetic equations that are known to

be irreversible and describe the relaxation of a many-body system to an equilibrium state, which is accompanied by an increase

of its entropy (H-theorem). This is traditionally achieved by means of ad hoc assumptions, such as about “molecular chaos”,[19]

via Boltzmann’s “Stoßzahlansatz”[20] or by similar procedures.

Although the derivation of generalized non-Markovian quantum kinetic equations goes back almost seven decades, in many

communities, the existence of a systematic kinetic theory beyond the Boltzmann equation is poorly known, which warrants a

detailed reconsideration of some mathematical aspects on the way from a reversible to an irreversible kinetic theory. Here, we

have presented a simple procedure that allows one to directly verify the time-reversal property of the exact BBGKY hierachy

and of important closure relations, as well as the transition to the conventional Boltzmann equation. Our approach is based

on the use of Wigner’s anti-unitary time-reversal operator T̂ [17] that translates the solution of the Schrödinger equation into

the time-reversed equation and is a mathematically well-controlled procedure that replaces the traditional heuristic arguments

mentioned above.

Let us summarize our main results:

1. Our proof of time-reversal invariance of the exact quantum BBGKY hierarchy revealed a much stronger condition,

Equations 34 and 35, than the commonly used condition for time reversibility of the N-particle Schrödinger equation, that

is, Equation 27. We have shown that not only does the total Hamiltonian have to obey T̂ĤT̂−1 = Ĥ, but in addition, each

of its single-particle, two-particle, and higher contributions, have this property separately. This might seem surprising as

Equation 27 is known to be necessary and sufficient for the Schrödinger and von Neumann equations. However, the N-particle

dynamics have to always be consistent with the quantum dynamics of sub-complexes (of N − 1…1 particles), which follow

directly from the partial integration of the N-particle equations. It is clearly impossible that the N-particles dynamics are

reversible, whereas the N-s-particle dynamics are not.

2. We presented a very general condition for time-reversal invariance of approximate solutions to the BBGKY hierarchy,

Equation 38, and demonstrated that it applies to many of the commonly used many-body approximations. Moreover, this

condition goes far beyond those approximations, including a broad range of additional decoupling schemes of the hierar-

chy. This is not limited to approximations that are motivated by physical considerations and violate conservation laws. For

example, the choice of the omitted term Ô = Ô12 ≠ Ô21 would violate the conservation of total energy, cf. Ref. 3, while still

being time-reversal invariant.

3. Our results allow us to analyse the interesting question posed in Ref. 13 of how total energy conservation and time reversibility

are related. While in most cases of practical relevance, both phenomena are fulfilled (or violated) simultaneously, their areas

of validity are not equivalent. As shown above, there exist time-reversible models that violate energy conservation. On the

other hand, there exist model Hamiltonians (e.g., those that contain odd powers of the momentum) that conserve energy but

violate condition 27 and, therefore, time-reversal symmetry.

4. Our analysis of the transition to the conventional Boltzmann equation involved three successive approximations. The first

one—the decoupling of the relaxation time scales of single-particle trel and two-particle dynamics (𝜏cor) by means of a

retardation expansion—allowed us to perform the memory integral and obtain a time-local result for the pair correlations,

Equation 59. This result (“completed collision approximation” or “energy broadening approximation”) not only conserves

total energy,[3] but, here, we also demonstrated that it preserves time-reversal symmetry. The same analysis also applies to

higher-order approximations in the retardation expansion 58.

5. We have demonstrated that time reversibility is lost only at the second step—the Markov limit, that is, with the shift of

the initial time to the infinitely remote past, −t0 → −∞. This destroys the unitary character of the dynamics of the pair

correlations and introduces a preferred “arrow” of time because there is no possibility of the system ever returning to this

state.

6. Our analysis also shows that the commonly used argument, that irreversibility is introduced into the theory via the assumption

of “molecular chaos”[19] or the “Stoßzahlansatz”,[20] has to be stated with some care. The requirement that the two-particle

probabilities factorize and particles enter the collision uncorrelatedly—that is, in our notation, F12 =F1F2 or g12 ≡ 0—is

not sufficient. First, transition to irreversibility is also possible in a strongly correlated system where this factorization is

not possible, for example, Ref. 3. Second, the example of the Born approximation that we discussed in section 5 applied

to a weakly coupled system. Choosing, as the initial condition, an uncorrelated system, that is, g(−t0)= g0 = 0, we would

formally satisfy those assumptions. Nevertheless, the resulting dynamics would still be given by Equation 44 without the
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initial correlation term, but it would be perfectly time reversible. The crucial point for the emergence of irreversibility is

again that the factorization is introduced not at a finite initial time but in the infinitely remote past.

With the generalized quantum kinetic equations that were discussed above at our disposal, one may ask whether it is necessary

at all to force the transition to conventional irreversible Boltzmann-type kinetic equations given the rather crude approximations

involved. The argument for the latter has always been that macroscopic many-particle dynamics, such as transport (diffusion,

heat conduction, viscosity, fluid dynamics etc.), is dissipative, and the dynamics are expected to approach thermodynamic

equilibrium—the state of maximum entropy. The answer is clearly “No”. Experience in solving the generalized quantum kinetic

equations (e.g., Ref. 3), which are derived either from the BBGKY hierarchy or from non-equilibrium Green functions, for

a sufficiently long time clearly reveals that these solutions exhibit an irreversible trend towards an asymptotic state that is

consistent with thermodynamic equilibrium. However, this state is different from a Maxwellian, Fermi, or Bose momentum

distribution as a result of correlations. Certainly, the present reversible dynamics will return to the initial state; however the

associated Poincaré recurrence time increases exponentially with particle number. This behaviour is in complete agreement with

simulation results for classical systems: solutions of the reversible equations of classical mechanics of a many-particle system

by means of microcanonical molecular dynamics show perfect relaxation trends to (correlated) thermodynamic equilibrium.

Therefore, the choice between the irreversible Boltzmann-type kinetic equations and reversible generalized kinetic equations

is mainly governed by the substantially increased computational effort involved in the solution of the latter. Here, in fact, proof

of time reversibility of the relevant approximations that was given in this paper is of high practical value as it provides a sensitive

test for the numerical accuracy and convergence, for example, Ref. 21. Time reversibility is also of importance for “echo”-type

experiments (e.g., Loschmidt echo,[22] spin echo, Rabi flop etc.) where time reversal is being forced by an external pulse. The

analysis of the forward and backward dynamics gives important insights into the internal properties (e.g., dissipation channels)

of a many-body system, and the present generalized quantum kinetic equations are well suited for such investigation. For a

recent theoretical analysis, see Ref. 23.
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334 Chapter 3 Theoretical Developments of the NEGF Formalism

3.3 Löwdin’s Symmetry Dilemma in the Hubbard Model

There is one question that has been controversially discussed in recent years, particularly

between Verdozzi and Coworkers (Lund University, Sweden) on the one side, and members

of the Bonitz group (Kiel University, Germany) on the other side: “Can Green-function

approaches produce a Mott-Hubbard (correlation) gap?” The existence of the gap is

fundamental for understanding the Mott transition between a paramagnetic metal and a

correlated insulator [245]. The former group considered respective methods conceptually

ill-suited to describe this feature and published results with a vanishing gap for the

infinite 1D and 3D Hubbard system [111, 275]. The group from Kiel, however, has

found several NEGF results for correlation gaps that go beyond the simple finite-size

effects [216, 276]. Following the KBEt2 workshop in Kiel that took place in march 2019,

both groups collaborated to analyze the seemingly contradictory results in more detail.

Both previous results could be identified as the multiple solutions of the KBE/Dyson

equation corresponding to different symmetry constraints.

A related kind of behavior was first described by Löwdin (published in Ref. [277]) who

observed for the Hartree–Fock approximation that the adaption of all exact symmetries

can prevent one from obtaining the minimum possible total energy. Similar “dilemma”

and symmetry-breaking scenarios have been observed for several systems, including the

homogeneous electron gas [10, 278, 279], the electronic structure of molecules [280],

quantum dots [281–286], and ultracold Bose gases [284]. For the Hubbard model, the loss

of the exact symmetries within mean-field descriptions was explored decades ago [287,

288]. For more sophisticated approximations that include electronic correlations, only

little effort was put into the analysis of symmetry breaking in Hubbard systems.

Independently, recent developments regarding the Green-functions technique have

shown the existence of solution multiplicity under certain conditions for different model

systems [196–201]. This is usually traced back to the multivaluedness of the Φ functional

(cf. Sec. 2.1.4) and questions the general validity of perturbative many-body approaches

for such cases.

The above-mentioned results for the correlation gap by the Kiel–Lund collaboration

initiated the preparation of the following publication,19 Ref. [118], which links multiple

solutions for the one-dimensional Hubbard model to different degrees of symmetry in

the system. Thereto, an equilibrium Green-functions description in the frequency space

is used which is explained in detail. Using the example of the SOA selfenergy, three

different framing conditions are compared: (I) the uniformity constraint, which forces

the system to be translationally invariant, (II) the restricted-spin constraint, which only

enforces spin symmetry, and (III) the unrestricted treatment, which allows for asymmetric

(spin-)density distributions. The approaches are then analyzed regarding the spectral

properties—particularly the Mott gap—and the spin-dependent density matrix. To

estimate the quality, exact-diagonalization calculations as well as DMRG simulations are

used as reference data. In this course, it is demonstrated that the successive relaxation

19J.-P. Joost, N. Schlünzen, S. Hese, M. Bonitz, P. Schmitteckert, C. Verdozzi, and M. Hopjan, Contrib.

Plasma Phys., Early View, DOI: 10.1002/ctpp.202000220 (2021), reproduced under the Creative

Commons CC BY license.

https://doi.org/10.1002/ctpp.202000220
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of symmetry constraints drastically improves the quality of the spectral information,

while the density matrices diverge from the exact behavior. Hence, considering the

equilibrium groundstates corresponding to (I)–(III), Löwdin’s original symmetry dilemma

manifests—in the strict word sense—as a trilemma for the Green-function method in

Hubbard systems, although even further states are conceivable. Additionally, it is shown

that both groundstates of (I) and (II) are also solutions for the unrestricted treatment (III).

In fact, during the respective iteration procedure of the equilibrium Dyson equation, the

results for (I) and (II) appear as long-living metastable states. Thus, the multiple solutions

in this context can be characterized and attributed to specific structural properties.

Coming back to the question from the beginning, Green-functions approaches do

indeed constitute a reliable tool to predict and estimate the Mott-Hubbard gap—presumed

that no (or few) symmetries are enforced onto the system.
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Abstract
The energy gap of correlated Hubbard clusters is well studied for
one-dimensional systems using analytical methods and density-matrix-
renormalization-group (DMRG) simulations. Beyond 1D, however, exact results
are available only for small systems by quantum Monte Carlo. For this reason
and, due to the problems of DMRG in simulating 2D and 3D systems, alternative
methods such as Green functions combined with many-body approximations
(GFMBA), that do not have this restriction, are highly important. However, it
has remained open whether the approximate character of GFMBA simulations
prevents the computation of the Hubbard gap. Here we present new GFMBA
results that demonstrate that GFMBA simulations are capable of producing
reliable data for the gap which agrees well with the DMRG benchmarks in 1D.
An interesting observation is that the accuracy of the gap can be significantly
increased when the simulations give up certain symmetry restriction of the
exact system, such as spin symmetry and spatial homogeneity. This is seen as
manifestation and generalization of the “symmetry dilemma” introduced by
Löwdin for Hartree–Fock wave function calculations.

K E Y W O R D S
DMRG simulations, Green functions, Hubbard model, symmetry breaking

1 INTRODUCTION

Symmetry and its possible violation or breaking are basic notions in our understanding of physical phenomena. In
essence, this is because the symmetry transformations in a physical system relate to conservation laws of specific
observables.

Around six decades ago, Löwdin introduced the term symmetry dilemma1[1] to portray a situation where imposing
symmetry constraints in a Hartree–Fock (HF) calculation of the eigenfunction of a given electronic system gives an energy
eigenvalue higher than in absence of such constraints. In other words, the removal of constraints increases the variational

1Quoting Löwdin from that reference, p. 498: “In my opinion, the Hartree–Fock scheme based on a single Slater determinant D is in a dilemma with
respect to the symmetry properties and the normal constants of motion Λ. The assumption that D should be symmetry-adapted or an eigenfunction to
Λ. leads to an energy ⟨H⟩ high above the absolute minimum,...”

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2021 The Authors. Contributions to Plasma Physics published by Wiley-VCH GmbH.
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flexibility of the HF wavefunction, giving an approximate energy value closer to the exact one, but typically does not
preserve the system’s good quantum numbers and symmetry properties. Well-known examples are HF simulations of the
ground state of the uniform electron gas, e.g., Refs. [2–4]. From Löwdin’s original insight, extensive research has spurred,
to develop approaches where symmetries in a single-determinant wavefunction are deliberately broken, and subsequently
reintroduced via symmetry projection operators, to attain a variationally improved multi-determinant state (see, e.g.,
Ref. [5] for a recent discussion).

Ambivalence in the use of symmetry is in fact of very general occurrence, and concerns both finite and infinite systems.
An interesting example is provided by spontaneous symmetry breaking (SSB).[6] In a rigorous sense, SSB only takes place
in the thermodynamic limit. However, exact numerical evidence from finite systems shows that the “disjointness” (typical
of macroscopic sizes) of phases or different values/orientations of the order parameter is replaced by a crossover behaviour
across finite barriers in Hilbert space, whose sharpness and strength increases on enlarging the system’s size. An example
is Wigner crystallization in finite electron systems, such as quantum dots, e.g., Refs. [7–9], for which also SSB in HF
calculations was investigated;[10] other examples are found in ultracold bosons in traps, nuclear matter, and quantum
chemistry; for an overview, see Ref. [11]. It can thus be methodologically expedient to artificially break the symmetry in
a finite system, to gain insight about the system behaviour in the thermodynamic limit. An often used prescription is the
addition of small external sources lowering the symmetry,[12,13] but under the stipulation that it is understood that true
SSB occurs only asymptotically.

Another central element to consider in addressing the symmetry-related behaviour of a system is electronic or
inter-particle correlations. These have deep influence in various situations, e.g. condensed-matter systems and materials,
plasmas, nuclear matter, and cold atoms, to mention a few.[14–17] Clearly, the interplay of electronic interactions and sym-
metry constraints affects the system’s properties in a way that is not accountable for within a free-particle or mean-field
picture. It should be noted, though, that already within a wavefunction framework, some theories going beyond the
mean-field picture can mimic the effect of strong electronic correlations with wavefunctions that do not respect the
expected symmetry (see, e.g., Ref. [18]).

In this work, we take a different route from wavefunctions, and we study the effect of lifting/breaking symmetry
in the presence of significant electronic correlations within many-body perturbative Green functions theory. As the
system of choice with strong correlations, we consider the Hubbard model[14,19,20] which via a minimum-complexity
Hamiltonian, describes the key trends in the behaviour of interacting electrons in the energy bands of a solid. For this
reason, Hubbard-like models have been applied in many contexts and to a wide typology of systems, both in and out of
equilibrium, see, e.g., Refs. [21–37].

Even though the Hubbard Hamiltonian is considerably simpler than that of a realistic material, exact solu-
tions for the Hubbard model are only known in special cases: in one dimension, an exact analytical treatment is
possible via Bethe-ansatz techniques,[38] and exact numerical solutions for finite samples can be obtained via the
density-matrix-renormalization-group (DMRG) method[39–41] (including spin-charge separation effects[42–44]). Using
configuration interaction (CI)[45] or quantum Monte Carlo methods,[46–49] exact solutions can be obtained for any dimen-
sionality, but only for small clusters. Finally, an exact description is possible in the limit of infinite dimensionality via
dynamical-mean-field theory (DMFT).[50–52] In all other cases (notably, in two and three dimensions), some level of
approximation must be introduced. Yet, high accuracy can be attained, for example, via the diagrammatic Monte Carlo
technique,[53] or by extensions of DMFT via cluster[54] or diagrammatic approaches.[55,56]

A premier method traditionally applied to the Hubbard model is the Green functions formalism combined with
many-body perturbation theory (GFMBA).[57,58] The GFMBA method is a general framework that can be used in any
dimension (i.e. also for 2D and 3D Hubbard models), scales not too unfavourably with system’s size, can deal with
both static and time-dependent regimes,[17,59] and is also practically viable for implementation for realistic systems.
Furthermore, a very recent reformulation of the method in terms of coupled one- and two-particle propagators[60,61]

has considerably increased its scope and range of applicability. In the case of the GFMBA method, correlation
effects are included via selected classes (possibly infinite sums) of diagrams in the selfenergy, or via truncated iter-
ative functional-derivative schemes. This leads to different perturbative treatments,[57,58] e.g. HF, second-order Born
approximation (SOA), third-order approximation,[62,63] GW , and the particle–particle and particle–hole T-matrix
approximation.[17,63] Comparisons against exact benchmarks for finite systems have shown that the GFMBA method
works well for not too strong interactions.[62–65]

The GFMBA approach has recently been under extensive scrutiny in relation to the existence of multiple solutions in
the ground state and a potential convergence to nonphysical ones[66–68] (for an example from out-of-equilibrium systems,
see e.g. Ref. [69]). However, in the discussion the multiplicity of GFMBA solutions, little or no attention has been given
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so far in the literature to the explicit role of symmetry, particularly in relation to the Hubbard model (for some discussion
of broken symmetry in the case of an isolated Hubbard dimer, see Refs. [70, 71]). For the exact solution of this model,
important ground-state properties and symmetries are well known[72,73] and in common practice, these symmetries are
granted by default also to the approximate solutions.

There is scarce knowledge on how these symmetries affect approximate treatments beyond mean-field theory. For
example, for Hartree–Fock treatments of the Hubbard model, it is well known that a phase transition from a paramagnetic
ground state to an antiferromagnetic one of unphysical nature occurs at a critical interaction, Uc, where the specific value
depends on the system size and geometry.[47,74] Yet, at the same time, the (unphysical) broken spin-symmetry solutions
result in a ground-state energy closer to the exact one, as well as in the emergence of a band gap (the latter is absent
within spin-symmetric/spin-restricted mean-field schemes). This raises the question whether selfenergy approximations
beyond Hartree–Fock can be found that violate the symmetry properties of the exact solution as well, and yet provide
“improved” values of relevant observables, such as the ground-state energy or the Hubbard gap. In other words,

1. Is there a Löwdin symmetry dilemma for the Hubbard model within many-body perturbation theory?
2. And in case, how is this related to solution multiplicity?

Our answer to the first question is in the affirmative: By considering the Hubbard model in the one-dimensional case,
and comparing GFMBA, CI, and DMRG results, we find that, lifting the symmetry constraints artificially, simulates the
effect of having more correlation effects in the system, and leads to a significant improvement of observables like the
system’s ground-state energy or the spectral functions, even at fairly large interactions. In particular, our discussion will
be especially focussed on the charge energy gapΔ (also known as Mott-Hubbard gap). For a system containing N particles,
it depends on the ground-state energies of the N, N + 1 and N − 1 systems,

Δ = EGS (N + 1) + EGS (N − 1) − 2EGS (N) . (1)

This is a central quantity of the Hubbard model, related to the metal–insulator transition at a characteristic interaction
strength.2

For the second question, we find that the occurrence of multiple (metastable) solutions is central to the connection
between symmetry lifting and improved values of certain observables in the Hubbard model. Besides looking at what
happens when lifting symmetry and why, we will also consider the possible implications in physical terms. However, due
to the explorative nature of this initial study, we will not explore/discuss strategies to restore symmetry. This is left to
future work.

The paper is organized as follows: in Section 2, we introduce the Hubbard Hamiltonian and the Green functions
formalism for HF and SOA treatments within the three self-consistency protocols with different levels of symmetry con-
straints. Section 3 presents results from a mean-field treatment, specifically for the ground-state energy, the Hubbard gap,
and the magnetic moment as function of the interaction strength U. In Section 4, we consider the SOA, discussing at
the same time the ground-state density matrix and equilibrium spectral function for all the three self-consistency pre-
scriptions. The multiple solutions in SOA are further analysed in Section 5 in terms of ground-state energy values and
self-consistency convergence errors. Finally, Section 6 focuses on a characterization of the Hubbard gap, where HF and
SOA results are compared to DMRG ones, and the dependence on system size, L, is taken into account. Our conclusions
and a brief outlook are presented in Section 7.

2 GREEN FUNCTIONS THEORY

We consider the Fermi-Hubbard model which is described by the Hamiltonian

Ĥ = −J
∑
⟨i,j⟩

∑
𝜎=↑,↓

ĉ†i,𝜎 ĉj,𝜎 + U
∑

i
n̂i,↑n̂i,↓, (2)

2The characteristics of the MIT (and thus of the gap) depend on dimensionality (see, e.g., Refs. [14, 75]). For D = 1, the exact solution shows that the
insulating phase (and the charge gap) exist for any U > 0 (i.e. no MIT occurs).[38] For infinite dimensions, where the model is exactly solvable via
DMFT, the MIT occurs at finite interaction values[52] (however, there is coexistence of metallic and insulating solutions in an interval Uc2 < U < Uc1 ).
This picture qualitatively remains in three dimensions, with however quantitative modifications, due to antiferromagnetic fluctuations.[48] However,
antiferromagnetic correlations appear to play an even more dramatic role in two dimensions, where it has been recently also proposed in Ref. [76] that
the system is gapped for any U > 0. For a recent review of the situation in 2D see e.g. Ref. [77].
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where J is the hopping amplitude between adjacent lattice sites, and U is the on-site interaction strength. The operators
ĉ†i,𝜎 and ĉj,𝜎 create and annihilate an electron with spin projection 𝜎 at site i and j, respectively, and the density operator is
given by n̂i,𝜎 = ĉ†i,𝜎 ĉi,𝜎 .

The one-body nonequilibrium Green function of the system is defined by the canonical operators for complex times
z on the Keldysh contour ,[78,79]

Gij,𝜎
(

z, z′
)
= 1

iℏ

⟨ {ĉi,𝜎 (z) ĉ†j,𝜎
(

z′
)}⟩

, (3)

where  is the time-ordering operator on the contour, and the averaging is performed with the correlated unperturbed
density operator of the system. In the rest of this work, we specialize to the equilibrium regime, i.e. when the system is
not acted upon by external fields. In that case, the real-time components[17,59] of the Green function depend only on the
difference of the two time arguments. Further, the retarded (R) component for the spin projection 𝜎 obeys the Dyson
equation

GR
𝜎 (𝜔) = GR

0 (𝜔) + GR
0 (𝜔)𝜮R

𝜎 (𝜔)GR
𝜎 (𝜔) , (4)

where all quantities are matrices in the orthonormal single-particle basis {|i⟩}. For spin-compensated situations, the
noninteracting retarded Green function GR

0 (𝜔) is independent of the spin projection and given by

GR
0,ij (𝜔) =

⟨
i
||||
(
𝜔 − ĥ0 + i𝜂

)−1||||j
⟩
, 𝜂 → 0+, (5)

depending only on the single-particle contribution to the Hamiltonian

ĥ0 = −J
∑
⟨i,j⟩

|i⟩⟨j|, (6)

where the sum over ⟨i, j⟩ ensures only nearest neighbour hopping. For numerical reasons, a finite value of 𝜂 = 10−2 is
used throughout this work. If the exact selfenergy 𝛴R

𝜎 (𝜔) of the system was known, Equation (4) would provide the exact
single-particle Green function. However, in practice many-body approximations to the selfenergy have to be used.

In this work, we employ the time-diagonal Hartree–Fock as well as the time-non-local second-order Born approxima-
tion. The retarded component of the HF selfenergy is defined as3

𝜮R,HF
𝜎 (t) = 𝛿 (t, 0) U diag

(
n1,𝜎 , … ,nL,𝜎

)
, (7)

where 𝛿 is the Dirac delta function for the relative time t in equilibrium and diag(⋅) represents a diagonal matrix with the
given arguments as diagonal entries. Further, 𝜎 denotes the spin-projection opposite to 𝜎, L the number of lattice sites,
and ni,𝜎 =

⟨
n̂i,𝜎

⟩
. The density matrix is given by the less component of the Green function,

n𝜎 = −iℏ∫
∞

−∞

d𝜔
2𝜋 G<

𝜎 (𝜔) . (8)

For the correlated Green function, the less (<) and greater (>) components can be determined by

G<
𝜎 (𝜔) = −fF (𝜔 − 𝜇)

[
GR

𝜎 (𝜔) − GA
𝜎 (𝜔)

]
, (9)

G>
𝜎 (𝜔) = f F (𝜔 − 𝜇)

[
GR

𝜎 (𝜔) − GA
𝜎 (𝜔)

]
, (10)

with the Fermi function f F(𝜔) = 1/(e𝛽𝜔 + 1), f F (𝜔) = 1 − fF (𝜔), the inverse temperature 𝛽, and GA
𝜎 (𝜔) =

[
GR

𝜎 (𝜔)
]†.

3Mind that in the Hubbard model all exchange contributions vanish and only the direct diagrams remain.
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For the SOA selfenergy, the retarded component is given by

𝜮R,SOA
𝜎 (t) = 𝜮R,HF

𝜎 (t) + Θ (t)
[
𝜮>,SOA

𝜎 (t) −𝜮<,SOA
𝜎 (t)

]
, (11)

with the Heaviside step function Θ(t) and the greater and less components of the selfenergy

𝜮≷,SOA
𝜎 (t) = −(iℏ)2U2G≷

𝜎 (t) ◦G≷
𝜎 (t) ◦

[
G≶

𝜎 (t)
]†
. (12)

Here, ◦ denotes the Hadamard product between matrices, and the G≷(t) are determined by the inverse Fourier
transform,

G≷
𝜎 (t) = −1

[
G≷

𝜎 (𝜔)
] ≔ ∫

∞

−∞

d𝜔
2𝜋 e−i𝜔tG≷

𝜎 (𝜔) . (13)

Finally, using the Fourier transform, 𝜮R
𝜎 (𝜔) =  [

𝜮R
𝜎 (t)

]
, the selfenergies, Equations (7) and (11), can be included in

Equation (4).
Since the selfenergy, in general, is a functional of the single-particle Green function, Equation (4) has to be solved

iteratively for both spin components until a self-consistent solution is found. The choice of a suitable initial value is crucial
and can affect the final result of the iteration. Here, if not mentioned otherwise, GR

0 (𝜔) is chosen as the starting point.
In summary, for the self-consistent solution of Equation (4) the following scheme is iterated until convergence is

achieved:

1. Diagonalize the single-particle Hamiltonian ĥ0, cf. Equation (6), set GR
0 (𝜔) via Equation (5) and choose an initial value

to start the iteration, e.g. GR
𝜎 (𝜔) = GR

0 (𝜔)
2. Calculate G≷

𝜎 (𝜔) from G𝜎
R(𝜔), using Equations (9) and (10)

3. Perform the inverse Fourier transform G≷
𝜎 (t) = −1

[
G≷

𝜎 (𝜔)
]
, cf. Equation (13)

4. Calculate 𝜮≷
𝜎 (t) and 𝛴R

𝜎 (t) using Equations (7), (11) and (12)
5. Perform the Fourier transform 𝜮R

𝜎 (𝜔) =  [
𝜮R

𝜎 (t)
]

6. Solve the Dyson equation for GR
𝜎 (𝜔), Equation (4), using the new 𝛴R

𝜎 (𝜔)
7. If GR

𝜎 (𝜔) is not yet converged start again at (1)

To improve the convergence of the above scheme, the input Green function at iteration k, GR
k,in (the spin index is

neglected here), is determined by mixing the solutions of the two previous iterations

GR
k,in (𝜔) = 𝛼GR

k−1,out (𝜔) + (1 − 𝛼)GR
k−1,in (𝜔) , (14)

where a mixing parameter of 𝛼 = 0.05 is used. The error at iteration k is given by

ϵk = 1
𝛼L ∫

∞

−∞

d𝜔
2𝜋 ∣ Dk (𝜔) − Dk−1 (𝜔) ∣, (15)

where D(𝜔) is the density of states (DOS) of the system,

D (𝜔) = iℏ
∑
𝜎=↑,↓

tr
[
G>

𝜎 (𝜔) − G<
𝜎 (𝜔)

]
. (16)

During the calculations, it is verified that the sum rules for the spectral function hold, i.e. that the DOS remains positive
and integrates to the number of lattice sites L within numerical accuracy. To ensure the convergence of the iteration
scheme an error threshold of 𝜖thr = 10−12 is used in this work. In addition to spectral properties, the single-particle Green
function gives access to the total energy of the system.[17,57]

Etot =
1
2 Ekin + EGM, (17)
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which combines the kinetic part

Ekin =
∑
𝜎

tr (h0n𝜎) , (18)

and the Galitskii–Migdal interaction energy

EGM = − iℏ
2

∑
𝜎=↑,↓∫

∞

−∞

d𝜔
2𝜋 (𝜔 − 𝜇) tr

[
G<

𝜎 (𝜔)
]
, (19)

where, in the GFMBA simulations of the present paper, the chemical potential is set to 𝜇 = 0.
In this paper, we consider three distinct cases for which different symmetry restrictions are imposed on the Green

function during the solution of the Dyson equation:

1. “uniform” (uni): the system is required to be translationally invariant. In this case, the iteration scheme is solved in
momentum space where the Green function and selfenergy are diagonal, i.e. GR

ij,𝜎 (𝜔) → GR
p,𝜎 (𝜔).

2. “restricted spin” (rs): the system is required to be spin-symmetric. In this case, the iteration scheme is solved for one
spin projection only since the Green function and selfenergy are spin-independent, i.e. GR

↑ (𝜔) = GR
↓ (𝜔).

3. “unrestricted spin” (us): no restrictions regarding both, the translation and spin symmetry are imposed. In this case,
an antiferromagnetic state is chosen to start the iteration.4

3 SPIN SYMMETRY IN THE MEAN-FIELD APPROXIMATION

Since the exact ground state of the half-filled 1D Hubbard Hamiltonian is known to be spin-symmetric (i.e. param-
agnetic) for systems with an even number of particles,[72,73] a logical prescription is to introduce spin symmetry also
for approximate solutions like HF and SOA. However, it is well known that, beyond a critical interaction strength Uc,
unrestricted-spin HF (usHF) spontaneously breaks spin symmetry resulting in an antiferromagnetic ground state. In the
following, we quantify the influence of this artificial phase transition on important ground-state properties by compar-
ing the performance of restricted-spin (rs) and unrestricted-spin (us) HF for finite one-dimensional Hubbard chains with
open (hard-wall) boundary conditions. In Figure 1a the ground-state energy of three Hubbard clusters containing L = 2,
4, 6 sites is plotted vs. the interaction strength U for rsHF, usHF, and the result obtained by exact diagonalization of the
Hamiltonian. The qualitative observations are similar for all three systems. In the limit of vanishing on-site interaction
all three methods agree perfectly and show a linear increase of the ground-state energy with U. For interactions beyond
U ≳ 1J, the exact energy is reduced due to increasing correlations giving rise to mounting differences compared to the two
HF solutions. In the case of rsHF, which by design fulfils the exact spin symmetry of the system, the linear increase of the
ground-state energy is present for all values of U resulting in a strong deviation from the exact result, for U ≳ 1J. Most
notably, since correlations are not included in rsHF, no Mott regime is observed in the presence of the on-site interaction.

By contrast, removing the requirement of spin-symmetry (usHF) results in a lower ground-state energy for interac-
tions beyond Uc ≈ 2 J which approaches the exact value for U →∞. Additionally, the usHF density of states, shown in
Figure 1c for a Hubbard chain of 10 sites, is indicative that a correlation gap in the spectrum (corresponding to a Mott
transition) emerges for a critical interaction Uc. However, since the usHF selfenergy accounts only for mean-field effects,
the improved results for the Hubbard gap and the ground-state energy cannot be attributed to the effects of correlations.
Instead, they are connected to the emergence of the antiferromagnetic state. This becomes apparent when looking at the
local magnetic moment on the outermost site of finite Hubbard chains depicted in Figure 1b. The local magnetic moment
is defined as

⟨
m̂2

i
⟩
=
⟨(

n̂i,↑ − n̂i,↓
)2
⟩
= ni − 2di, (20)

with ni = ni,↑ +ni,↓ and the local double occupancy di which contains a mean-field and a correlation part,

di = ni,↑ni,↓ + dcorr
i . (21)

4When choosing the spin-symmetric GR
0 (𝜔) as the initial value, the iteration will not break spin symmetry.
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F I G U R E 1 (a) Comparison of the ground-state energy EGS vs. interaction strength U for rsHF, usHF, and the exact solution of the
Hubbard Hamiltonian. Three finite Hubbard chains of length L = 2, 4, 6 with open boundary conditions at half filling are considered. (b)
Interaction dependence of the local magnetic moment

⟨
m̂2⟩, Equation (20), on the first site of finite Hubbard chains of length L = 2, … , 20

with open boundary conditions at half filling for usHF. (c) Interaction dependence of the DOS for a finite Hubbard chain of length L = 10
with open boundary conditions at half filling for usHF. A sudden opening of the correlation gap occurs at U ≈ 2 J

In the exact case, where the spin densities are homogeneous, an increasing magnetic moment at high interac-
tion strengths is caused by an increase of electronic correlations leading to a negative di

corr and, thus, a decrease
in the double occupancy. However, for usHF, where di

corr ≡ 0, the inhomogeneous spin-density distribution of the
antiferromagnetic spin state mimicks the effect of additional correlations.5 To summarize, removing the require-
ment of a homogeneous spin-symmetric ground state, as observed in the exact solution, allows HF simulations to
achieve results for ground-state energies closer to the exact ones and gives rise to a Hubbard gap of reasonable
magnitude.

4 SYMMETRIES IN SECOND-BORN APPROXIMATION

We next analyse the effect of imposing symmetry restrictions when including selfenergies with correlation effects (beyond
HF). The first correction beyond HF that takes into account interparticle scattering is the second-order Born approxima-
tion (SOA). We thus consider, within SOA, the behaviour of finite Hubbard chains with periodic boundary conditions for
which the exact ground state is known to be both, spin symmetric and invariant under space translations.[72,73,80] The effect
of relaxing the aforementioned symmetry constraints is quantified by comparing results from the three SOA approaches
I, II, and III, (i.e. for the uniform, restricted-spin, and unrestricted-spin treatments) introduced in Section 2; we will refer
to these three treatments as uniSOA, rsSOA, and usSOA, respectively. For all three cases, we compare in Figure 2 the
spin-up density matrix (a–d), the DOS (e–g) and the ground-state energy (h) to the exact results for an 8-site Hubbard
chain with periodic boundary conditions at U = 4 J. In the uniform case, the density matrix by design exhibits perfect

5Note that the critical interaction Uc for which the symmetry-broken state emerges decreases with increasing length of the chain. An in-depth
analysis on the exact value of Uc goes beyond the scope of this work.
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F I G U R E 2 Ground-state properties of a periodic, half-filled Hubbard chain of length L = 8 and U = 4 J, within second-order Born
approximation. (a)–(d) Density matrix for a translationally invariant system (red), without imposing homogeneity but spin symmetry (blue),
without both, homogeneity and spin restriction (green), and exact configuration interaction (CI) solution without restrictions (black). (e)–(g)
Spectral function (density of states) of the three approximations compared to CI results (“Exact”). (h) Total ground-state energy for the three
cases, compared to the exact result

translational symmetry and the resulting checkerboard structure closely resembles the exact solution (cf. Figure 2a,d). At
the same time, the ground-state energy of −3.64 J for uniSOA does not agree with the exact value of −4.60 J. Similarly, the
DOS shows poor qualitative agreement with the exact result, failing to reproduce the correct position of the peaks and,
above all, the existence of a band gap.

Relaxing the requirement of translational symmetry (rsSOA) leads to unphysical inhomogeneities in the odd minor
diagonals of the spin-up density matrix which is in contrast to the exact solution.6 However, the ground-state energy is
improved, to −3.84 J, closer to the exact result. Additionally, in the DOS, a correlation-induced gap emerges at the Fermi
energy in conjunction with an, in general, better qualitative agreement with the exact spectrum. Still, the rsSOA gap of
0.77 J is less than half the size of the exact result of 2.01 J.

As a next step, we no longer enforce spin symmetry (usSOA) which results in an antiferromagnetic ground state
indicated by the spin-density wave on the diagonal and the inhomogeneities on the even minor diagonals of the spin-up
density matrix, shown in Figure 2c. This Néel state has an energy of −4.08 J which is in much better agreement with the
exact value. In this case, the DOS nicely reproduces the position of the main peaks and the Hubbard gap of 1.77 J is much
closer to the exact value.7

Similar to the findings for the HF selfenergy presented in Section 3, removing the requirement of translation
and spin symmetry for the SOA leads to a significant improvement for the ground-state energy and the DOS.
This way the exact Mott gap can be remarkably well reproduced, even for relatively large interactions such as
U = 4 J.

6Note that, while the translational symmetry is broken, the spin symmetry is still fulfilled.
7The remaining differences to the exact DOS, namely, the missing high-energy satellites and the degenerate peak at ∼±1.8 J, can be attributed to the
shortcoming of the SOA at the large interaction U = 4 J.
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5 MULTIPLE SOLUTIONS OF THE DYSON EQUATION IN SECOND-BORN
APPROXIMATION

The possibility of multiple solutions is a well-known feature of self-consistent treatments of the Dyson equation.[67,68,81]

Usually, a self-consistency requirement is employed in approximate treatments via e.g. perturbation theory. The existence
of a self-consistent solution to the Dyson equation was shown to depend on the choice of the selfenergy approximation,
in particular its positive semi-definiteness (PSD). The SOA selfenergy used in this work is known to be conserving and
PSD,[82] and is thus suitable to study the emergence of multiple solutions. With a specific choice of the translational
invariance, and without addressing the role of broken symmetry, this was done before in a specific case.[83] Here, the effect
of artificially breaking specific symmetries is brought to the foreground, and explicitly connected to the insurgence of
multiple approximate self-consistent solutions. To this end, we solve Equation (4) with no symmetries enforced (usSOA),
for a half-filled Hubbard chain of length L = 8 with periodic boundary conditions and U = 4 J, i.e., for the same system
as in Section 4. The initial state of the iteration scheme is chosen to be the homogeneous, spin-restricted HF ground state
where the density is modified by a small random perturbation of the order 10−5.8

In Figure 3, the DOS (a,b), ground-state energy (c), and iteration error (d) are shown during the iterative proce-
dure. The calculation starts from the slightly disturbed rsHF ground state with energy −1.52 J (not shown in Figure 3c).
Within the first 170 iterations, the system converges into the homogeneous state (cf. the DOS in Figure 2e), as the rela-
tive iteration error drops to 10−3. However, at around 300 iterations the error increases and the system transitions into
the inhomogeneous but spin-symmetric state (cf. the DOS in Figure 2f). This state appears to be even more stable, with
the relative iteration error temporarily dropping to 10−5. However, after 3000 iterations, a final transition sets in, and
the system arrives in the spin-asymmetric state (cf. the DOS in Figure 2g). The system remained in this state for the
remainder of the iteration process, and the relative error of the calculation eventually reached the order of machine
precision.9

While, during the iteration, the DOS evolves through the three states shown in Figure 2, the total energy passes through
the values of the respective states that are depicted in Figure 2h. This is shown in detail, as a function of the iteration
number, in Figure 3c, cf. the coloured lines. This shows that the three states, corresponding to the different symmetry
restrictions discussed in Section 4, can be reached by a single iterative solution of the Dyson equation when no symmetries
are enforced. During the iteration, in the vicinity of each of the three states, the iteration error drops significantly (reaching
a high degree of self-consistency). This suggests that all of them are solutions of the same Dyson equation, with only the
unrestricted-spin state being absolutely numerically stable. A well-conditioned iteration scheme will, ultimately, reach
this minimum-energy state. Of course, the sequence of states reached on the way to the minimum depends on the choice
of the initial state of the iteration and on details of the numerical procedure.

The present example is a direct illustration of Löwdin’s symmetry dilemma discussed above and shows that a succes-
sive reduction of the symmetry of explored states may allow one to improve certain target properties of a system, such as
the ground-state energy, also in a many-body calculation with the SOA selfenergy. The behaviour just discussed here is
expected to be a specific facet of a general scenario underlying the search for multiple solutions of the Dyson equation
that are a consequence of the nonlinear dependence of the collision integrals on the Green functions which is a gen-
eral property of selfenergies beyond Hartree–Fock. These observations should give useful hints how to improve iterative
solutions of the Dyson equation or similar nonlinear equations.

6 BENCHMARKING AGAINST DMRG

The existence of a Mott gap for large on-site interactions is one of the most important features of the Hubbard model. After
analysing the general properties of GFMBA simulations with HF and SOA selfenergies for the three methods (I)–(III), we
now focus on their performance regarding the Hubbard gap, Equation (1), in particular. Since we are considering finite
systems we are interested in the correlation part of the band gap which we define as

Δcorr = Δ − ΔrsHF, (22)

8Recall that, without this small initial inhomogeneity, no broken spin symmetry would occur, even in spin-resolved calculations.
9It should be noted that there is a little dip/kink in the relative error at around iteration 3500. This could hint to a possible forth viable state that we
did not reach in our calculation.
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F I G U R E 3 Ground-state properties of a half-filled Hubbard chain of length L = 8 and U = 4 J for usSOA during the iteration
procedure. The initial state is the rsHF solution of the system modified by a small deviation to initiate the symmetry breaking. (a),(b)
Evolution of the density of states during the iteration procedure, for two stages A and B of the iteration that are highlighted by the grey areas
in (c) and (d). The coloured spectra correspond to the respective states in Figure 2. (c) Ground-state energy during the iteration procedure.
The energies corresponding to the states of Figure 2 are shown with their respective colour. (d) Relative error during the iteration procedure

where ΔrsHF is the band gap obtained from a rsHF calculation that contains only the finite-size contribution. In the ther-
modynamic limit ΔrsHF vanishes, and Δcorr = Δ. In Figure 4, we compare the correlation gap of finite Hubbard chains of
varying length at U = 4 J to the (exact) result obtained by DMRG (we employed the size-increasing scheme as in Refs. [84,
85]). Additionally, we extrapolate the data to L→∞ where the DMRG result agrees with the Bethe-ansatz solution.[86]

In the case of the restricted-spin HF and the homogeneous SOA (uniSOA) state the Hubbard gap vanishes, cf. Figure 2d
for the latter.

In contrast, starting with open boundary conditions, rsSOA shows a finite gap and correctly predicts its qualitative
dependence on the length of the system. However, since SOA captures only part of the correlation effects, the correct
band gap is underestimated by ∼0.7 J for all system sizes. As discussed for the local magnetic moment in Section 3, the
antiferromagnetic ground state of the unrestricted-spin methods can compensate shortcomings of the selfenergy approx-
imations in treating correlations. In the case of usHF, this results in the opening of a correlation gap on the mean-field
level. However, for the large interaction of U = 4 J, the size of the gap is severely overestimated, especially, in the thermo-
dynamic case, where usHF predicts a size of 3.073 J, as opposed to the exact value of 1.287 J. In contrast to the exact case,
the correlated gap is monotonically increasing with the system length for the unrestricted-spin methods. Nevertheless,
usSOA shows the best agreement with the exact gap out of all selfenergies and symmetry restrictions considered here.
Especially for large system sizes, including the case of the infinite Hubbard chain, the deviation does not exceed ∼0.25 J.

The results for periodic boundary conditions (shown as dashed lines in Figure 4) differ only slightly from the above
observations. While, for small systems (L< 40), there is a noticeable difference between both cases, the size of the cor-
related gap converges to the same value for larger systems. The speed of this convergence is considerably faster for the
unrestricted-spin methods which possess an antiferromagnetic ground state.

Independent of the type of boundary conditions, giving up on the symmetries of the exact solution, the description of
the Hubbard gap in finite systems, especially for the selfenergy in SOA, improves dramatically, even for large interaction
strengths, again confirming Löwdin’s symmetry dilemma.
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F I G U R E 4 Correlation band gap of a half-filled, one-dimensional Hubbard chain of finite length L and U = 4 J with open (full lines
with crosses) and periodic (dashed lines with circles) boundary conditions. Density-matrix-renormalization-group results are compared to
different restricted-spin (rs) and unrestricted-spin (us) selfenergy approximations. The extrapolated results for the limit of the infinite
Hubbard chain are shown as dotted lines on the right

To further assess the quality of not only the correlation gap but the total DOS, in Figure 5 we compare the results of
the rsSOA and usSOA methods to the spectral function obtained by Nocera et al.[87] using the time-dependent DMRG
(tDMRG) method for an open Hubbard chain of 40 sites for U = 4 J. The finite real-time window of the tDMRG approach
results in an artificial broadening of the peaks in the spectral function. For a better comparison, we emulate this effect by
performing on our much sharper DOS a convolution with a Gaussian that corresponds to a time-window size of 15 J−1.
The general trends observed in Figure 2f,g for a short chain of eight sites are confirmed also for this larger system of
length L = 40. The main characteristics of the tDMRG spectrum are the major peaks at ±1 J and± 2 J, the satellites at
±4.5 J and a slowly descending slope between those features. According to the observations of Figure 4, rsSOA severely
underestimates the size of the Hubbard gap since the spectrum in general is shifted toward the Fermi energy resulting
in a poor overall agreement with tDMRG. On the contrary, usSOA reproduces the position of the major peaks and the
satellites remarkably well, whereas only the slope between them is not described correctly. The spectral weight that is
missing in the slope is, instead, transferred to the oversized major peaks. Nevertheless, the agreement of usSOA with the
tDMRG results is striking, considering the high on-site interaction of U = 4 J.

7 CONCLUSION

Currently, there is great interest in the theoretical condensed-matter community in devising approaches for strongly
correlated systems, i.e. for those systems where a description based on an independent-particle picture is qualitatively
inadequate.

In this work, we have looked at a certain aspect of the problem, namely, the interplay of symmetry constraints and
electronic correlations. Specifically, using finite Hubbard chains at half filling as a case study for strongly correlated sys-
tems, we investigated the role of symmetry requirements in many-body perturbation Green function theory (GFMBA),
where approximations of increasing complexity can be systematically devised for the many-body selfenergy.
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F I G U R E 5 Density of states of a half-filled Hubbard chain of length L = 40 and U = 4 J with open boundary conditions. The tDMRG
data are taken from Ref. [87]. The rsSOA and usSOA spectra are broadened using a Gaussian corresponding to a real-time window of size
15 J−1 that matches the width in Ref. [87]

In the literature, GFMBA is often seen as an ill-suited conceptual paradigm to describe strong correlations, because
of, e.g., possible multiple self-consistent approximate solutions, or uncertainty about the convergence radius of the per-
turbation expansion. While not calling into question this point of view, in this study we have used GFMBA to address the
interplay of symmetry and correlation effects. To our knowledge this is a point that, irrespective of the methodology used,
has received little systematic attention so far. For our GFMBA description of Hubbard systems, we used the second-Born
approximation which accounts for electronic correlations at lowest perturbative order in a “skeleton-diagram” sense.
However, for the sake of comparison we also presented results from an Hartree–Fock treatment.

Already at the HF level, our comparison of spin-symmetry-restricted and unrestricted self-consistent solutions indi-
cates that one is facing a so-called Löwdin symmetry dilemma for the one-dimensional Hubbard model: namely, the
violation of spin-symmetry can lead to a spectral function and ground-state energy that are closer to the exact ones than
those obtained when spin symmetry is imposed.

Our results suggest that this behaviour is robust against the inclusion of electronic correlations within GFMBA. For
our self-consistent SOA treatment of finite periodic Hubbard chains at half-filling, in addition to spin symmetry we also
considered translation symmetry. While the exact solution corresponds to densities which are both spin-projection sym-
metric and translationally invariant, the violation of these properties in SOA leads to results for the ground-state energy
and the local spectral function which are remarkably close to the exact ones. This is particularly so when using the
unrestricted-spin symmetry SOA: in this case, the exact value of the Hubbard energy gap is surprisingly well produced,
within ∼15%, also for strong on-site interaction U = 4 J. Finally, an interesting overall trait of our results is that the
symmetry-restricted states are in fact solutions (albeit metastable) to the unrestricted Dyson equation: starting from a
specifically crafted initial state, the self-consistency iteration dynamics passes through the symmetry-constrained states
before reaching the unrestricted ground state.

Thus, altogether our work illustrates a direct connection between symmetry constraints and solution multiplicity in
GFMBA, adding to the already available body of knowledge on the behaviour of multiple solutions for the Dyson equation.
As possible future directions, an obvious point to address is if more complex selfenergy approximations, such as the
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T matrix and GW approximations, would give improved results in symmetry-lifted treatments as well. Other
straightforward extensions would be the exploration of the case of higher dimensions (where, however, an increased
complexity is expected due to a richer structure of the phase diagram) and electron occupancies different from half filling.

More in general (and very much in the spirit of Löwdin’s original lines of thought), it could be of some interest to see
if it is possible (and what happens) when concretely profiting from the symmetry dilemma within GFMBA, by restoring
symmetry at the end via projection techniques. This procedure, in different variants and extensions, has been already
used in the literature for wavefunctions, typically starting from HF symmetry-unrestricted states, e.g., Ref. [11]. Pursuing
the same strategy within GFMBA would allow one to explore the feasibility of convenient ways to access some important
physical quantities in strongly correlated systems.
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Chapter 4

Applications to Correlated Lattice
Systems Out of Equilibrium

Based on the theoretical improvements of the last chapters, the NEGF approach is well

qualified to describe nonequilibrium phenomena in experimentally relevant correlated

lattice systems. Chpt. 4 contains NEGF simulation results to examine the underlying

physics under such conditions. First, the predictive power of the method for state-of-the-art

applications is brought to proof to further validate the approach (I). Subsequently, the

NEGF technique is applied to ultracold atoms in optical lattices, where an unprecedented

agreement with recent experiments is obtained. Furthermore, ion-stopping dynamics in

graphene nanostructures are investigated, where a new mechanism to induce stable double

occupation in the material is identified.

4.1 Numerical Studies: Benchmark and Stability

Historically, it was a long way from the theoretical foundation of the NEGF technique by

Baym, Kadanoff and Keldysh in the early 60s to the first numerical applications in the mid

80s [106]. Since then, the NEGF framework has proven many times to be a competitive

method in practice. In the new millennium, the application to lattice models has been

particularly successful (see, e.g., the pioneering publications of Refs. [109, 130, 136]). The

combination of the simplicity of lattice Hamiltonians on the one hand and the general rise

of computer power on the other hand has spawned a well-suited, controllable environment

to compare different NEGF approaches. This makes it all the more surprising that a

systematic accuracy test for different NEGF approximations has been lacking—particularly

in the mesoscopic realm, where finite-size effects become less important.

In addition, it was found that under the influence of strong external fields the Kadanoff–

Baym dynamics suffer from an unphysical damping behavior that eventually leads to

a steady-state solution for finite systems [109, 130]. This behavior was identified as a

correlation-induced effect caused by unbalanced n-particle correlations due to the partial

summation schemes within the selfconsistent many-body approximations. Several attempts
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have been made to mitigate this artificial damping property. Among them, a more promis-

ing candidate has been the application of the GKBA [134, 136] (cf. Secs. 2.2 and 3.1). In

Ref. [202], Adrian Stan further analyzed the unphysical damping behavior earlier found

for strongly excited, finite lattice systems. His observations have driven him to make a

series of rather drastic statements. Additional to the previous findings, he claimed to have

found the artificial damping also for small excitations, i.e., in the linear-response regime.

Furthermore, not only a steady state should be approached in all these cases, but (after

a sufficiently long time) even a homogeneous density distribution (HDD), indicating the

existence of an attractor. Lastly, the damping behavior should appear even for selfenergies

on the mean-field level (Hartree/Hartree–Fock), although without reaching the HDD. With

all these claims, Stan seriously questioned the NEGF framework as a whole. As this would

drastically narrow the repertoire of quantum many-body tools, a thorough reevaluation of

Stan’s analysis is indispensable.

The above-mentioned shortcomings regarding the missing benchmark analysis

and the reexamination to Ref. [202] are remedied in the following publications,1,2

Refs. [211] and [212].

Regarding the serious claims by Stan, the author has carefully redone all critical

calculations of Ref. [202] with a strikingly different outcome. Ref. [211] is, therefore,

written as a comment to Ref. [202], and in it the above statements by Stan are unam-

biguously proven wrong. The reasoning in this comment is twofold. In the first part,

the numerical foundation of the above claims—the HDD, the damping in linear response,

and the mean-field damping—is refuted. It is shown on the basis of three representative

example calculations that by using thoroughly converged numerics the resulting dynamics

differ significantly from the ones presented in Ref. [202]. The converged results, instead,

show no sign for any of the described behaviors. This observation is in striking difference

to the well-described artificial damping for strongly excited systems, which manifests

in any converged description. Thus, there is no foundation to draw the far-reaching

conclusions of Ref. [202]. In the second part of Ref. [211], it is demonstrated that the

above-mentioned trends observed by Stan are not an intrinsic numerical property of the

KBE, but crucially depend on the choice of the numerical integration method. A general

tendency towards damped oscillations can be generated if the collision integral is evaluated

with a low-order integration rule combined with an insufficiently small time step, which

is the most probable explanation for Stan’s observations. It is also demonstrated, that,

in an equally likely scenario, the opposite behavior can be induced by using a low-order

time-stepping scheme with a too large step, leading to monotonically growing—and even-

tually diverging—oscillations. If there is a lesson to learn for NEGF simulations, it is the

great importance of numerical accuracy checks, such as convergency tests, fulfilling the

conservation laws (cf. Sec. 2.1.4), and time reversibility (cf. Sec. 3.2).

Ref. [212] provides a thorough benchmark analysis that compares Green-functions

methods utilizing more advanced selfenergy approximations to the quasi-exact density-

matrix-renormalization-group (DMRG) theory. The concept of the paper has been devel-

1N. Schlünzen, J.-P. Joost, and M. Bonitz, Phys. Rev. B, 96, 117101 (2017). Copyright by the American

Physical Society. Reproduced with permission.
2N. Schlünzen, J.-P. Joost, F. Heidrich-Meisner, and M. Bonitz, Phys. Rev. B, 95, 165139 (2017).

Copyright by the American Physical Society. Reproduced with permission.
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4.1 Numerical Studies: Benchmark and Stability 353

oped in collaboration with Fabian Heidrich-Meisner, who also provided all DMRG data

and wrote the corresponding theoretical part. Ref. [212] focuses on electron dynamics

following strong nonequilibrium conditions for Hubbard chains and a two-dimensional

ladder setup. The author’s work on the NEGF implementation has decisively facilitated the

applicability of the used many-body approximations on the Green-function side, comprising

the T -matrix and the third-order approximation with and without the additional adaption

of the GKBA. The analysis led to several key observations. Above all, the presented

simulation data confirm the excellent quality of the NEGF approach in the regime of

small to moderate coupling strengths. It is, however, of great importance to use every

selfenergy approximation in its appropriate context, as the system’s requirements such

as the filling ratio favor specific classes of many-body scattering processes. Furthermore,

it is demonstrated that the quasi-exact DMRG data are typically enclosed between the

results of the two-time NEGF and the GKBA description. This property can be utilized

to estimate the accuracy of NEGF calculations when no reference data is available, i.e.,

for systems that are out of reach for other quantum-dynamical methods. Lastly, it is

shown that DMRG and NEGF have complementary applicability ranges with respect to

the two-particle interaction strength. While DMRG simulations significantly slow down

in the weak-coupling regime due to the more versatile dynamics and the concomitant

exponential spreading of entanglement, the NEGF method loses its predictive power in

the strong-coupling regime due to the perturbative nature of the selfenergy approxima-

tions. Thus, an accurate description in the full interaction range can be achieved with a

combination of both methods.

The numerical studies in this section have demonstrated that the NEGF technique

is indeed a reliable tool to describe time-dependent correlated nonequilibrium systems.

For this reason, it is applied to various experimentally relevant setups in the next sec-

tions.
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Comment on “On the unphysical solutions of the Kadanoff-Baym equations in linear response:
Correlation-induced homogeneous density-distribution and attractors”

N. Schlünzen, J.-P. Joost, and M. Bonitz
Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany
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In a recent Rapid Communication [A. Stan, Phys. Rev. B 93, 041103(R) (2016)], the reliability of the
Keldysh-Kadanoff-Baym equations (KBE) using correlated self-energy approximations applied to linear and
nonlinear response has been questioned. In particular, the existence of a universal attractor has been predicted
that would drive the dynamics of any correlated system towards an unphysical homogeneous density distribution
regardless of the system type, the interaction, and the many-body approximation. Moreover, it was conjectured
that even the mean-field dynamics would be damped. Here, by performing accurate solutions of the KBE for
situations studied in that paper, we prove these claims wrong, being caused by numerical inaccuracies.

DOI: 10.1103/PhysRevB.96.117101

The dynamics of correlated quantum many-body systems
has been in the focus of experimental and theoretical studies
over the recent two decades. Applications span (but are not
limited to) nuclear physics, semiconductor optics and trans-
port, dense plasmas and, more recently, strongly correlated
materials and ultracold atoms [1]. A very popular tool to
describe these systems theoretically has been the method of
nonequilibrium Green functions (NEGF) [2,3] due to their
internal consistency and conserving properties. For recent text-
book discussions see Refs. [4–7]. Direct numerical solutions
of their equations of motion—the Keldysh-Kadanoff-Baym
equations (KBE)—have been performed for macroscopic,
spatially homogeneous systems such as nuclear matter [8],
dense plasmas and electron-hole plasmas (e.g., Refs. [9,10]), or
the correlated electron gas [11]. More recently, finite spatially
inhomogeneous systems were treated, including atoms and
small molecules [12–14], electrons in quantum dots [15], or
finite Hubbard clusters [16–18]. For an overview see Ref. [7].

Given the high success of numerical solutions of the KBE,
which includes excellent agreement with time-resolved optical
experiments in semiconductor optics, excitonic features and
transport [4] and, recently, with experiments on the expansion
dynamics of fermionic atoms [19,20], it came as a surprise
when unphysical behaviors were reported in applications to
small systems. Von Friesen, Verdozzi, and Almbladh demon-
strated [16,17] that, in small Hubbard clusters, cf. Eq. (1),
subjected to a strong external potential, the nonlinear density
evolution suffers from an unphysical damping, eventually
leading to a steady state, in striking contrast to the exact
solution. The authors explained this behavior by the highly
nonlinear structure of the correlation self energies entering the
KBE giving rise to an infinite sum of diagrams during a self-
consistent solution of the KBE. Due to the partial summation
schemes of the many-body approximations, the order-by-order
balance of the exact solution can be violated which leads to
an artificial energy reservoir that can cause damping. This
explanation was supported by modified approximations where
the degree of self consistency was reduced [17]. Another
confirmation and, at the same time, a more systematic approach
to this problem is the application of the generalized Kadanoff-
Baym ansatz (GKBA) [21] that practically eliminates the
artificial damping [22].

In view of the importance and popularity of the KBE, a
detailed investigation of the issue of unphysical solutions and
a clear mapping out of the range of validity of the KBE is, of
course, of high interest. Such an analysis has been attempted
by Stan [23] who concludes that unphysical solutions are
universal when solving the KBE with a correlation self energy,
thereby “[...]drastically restricting the parameter space for
which the method can give physically meaningful insights.” It
is the purpose of this Comment to analyze these far-reaching
statements.

The author of Ref. [23] considers a one-band Hubbard
model with the Hamiltonian [24]

H (t) = −
∑
〈s,s ′〉

∑
σ=↑,↓

ĉ
†
s,σ ĉs ′,σ + U

∑
s

ĉ
†
s,↑ĉs,↑ĉ

†
s,↓ĉs,↓

+
∑

s

∑
σ=↑,↓

fs(t)ĉ
†
s,σ ĉs,σ , (1)

with 〈s,s ′〉 being the summation over next neighbors and U

being the on-site Hubbard interaction. As a second example,
he considers a Hubbard lattice with Coulomb interaction. The
analysis focuses on a simple system: two lattice sites occupied
by two electrons (Hubbard dimer), except for one case where
a four-site system is simulated. Furthermore, the interaction
strength U (in units of the hopping rate) is varied between 0
and 5 and the system is treated using weak coupling many-
body approximations: the second Born self energy (2B, except
for one case where also GW results are shown). To study
the electron dynamics following an external excitation, the
author considers two variants of the time-dependent single-
particle field fs(t): first, a steplike form, fs(t) = w0δs,1θ (t),

and, second, an instantaneous excitation: fs(t) = k0δs,1δ(t),
both acting only on site 1. Varying the field amplitude between
0.01 and 5 the linear and nonlinear response are investigated.

Based on the simulation results for this limited set of
systems and situations, the author draws the following con-
clusions that are termed “universal,” i.e., are claimed to be
valid regardless of the system size, the interaction type, the
interaction strength, and the many-body approximation:

(1) The density dynamics obtained from the KBE in the
case of strong excitation is damped, in agreement with previous
studies [16,17].

2469-9950/2017/96(11)/117101(6) 117101-1 ©2017 American Physical Society
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FIG. 1. Density evolution on the first Hubbard site of the dimer
with U = 4 after the switch-on of a constant excitation with w0 = 5
at site 1, which is shown in the lower left inset. The insets on the right-
hand-side show the asymptotic density distributions of Ref. [23] (top)
and the present work (bottom). Solutions of the KBE in self-consistent
second Born approximation. The time step in our simulation is �t =
10−3.

(2) For sufficiently long propagation time, a state with
artificial homogeneous density distribution (HDD) is reached,
indicating the existence of an attractor.

(3) In addition to previous observations, the unphysical
damping occurs also for weak excitation (linear response
regime).

(4) For an uncorrelated system (Hartree or Hartree-Fock
self energies), damping occurs as well, although no artificial
HDD is approached.

We underline that item (1) is relevant only for small
finite systems, i.e., the damping effect vanishes quickly with
increasing system size. According to the author of Ref. [23],
the reason why the new points (2)–(4) have been “missed” by
previous studies is due to the insufficient propagation durations
in the latter. In the remainder of this Comment, we carefully
test the above new claims for several relevant cases.

Let us start with item (2) and analyze the results presented
in Fig. 1 of Ref. [23]. There the author studies the nonlinear
response of a correlated dimer (U = 4) to a strong steplike
excitation (w0 = 5). His result for the density on site 1 is
reprinted in our Fig. 1 by the dashed line [25] indicating that
the density approaches unity (the same value as on the other
site, cf. upper inset), i.e., the dynamics approach a spatially
homogeneous state (HDD). Now, compare this to our result
[26] shown by the full line. Both simulations are in agreement
for short times, t � 2, after which we observe a qualitatively
different behavior. Even though we also find the unphysical
damping known from Refs. [16,17], the asymptotic value is
very different from the one of Stan. Regardless of how far the
simulations are continued, no alleged HDD state emerges. We
note that the time step in our simulations is �t = 10−3 whereas
Stan reports the value [23] �t � 10−2. [A precise value for
the time step is missing from his paper.] We underline that this
is a typical case. In converged simulations we never found a
homogeneous density.

Item (3) concerns the case of a very weak external excitation
(linear response). Results for a two-site system were presented
in Fig. 2 of Ref. [23]. Here, we concentrate on the example of

FIG. 2. Density evolution at site 1 of a Hubbard dimer (U = 3),
following a very weak (w0 = 0.05) steplike excitation at site 1. Black
dashed line: result of Ref. [23]. Full red line: present result, using a
time step of �t = 10−3.

a Hubbard system at U = 3 excited by a weak external field
(amplitude w0 = 0.05) that is turned on at time t = 0 at site
1. While the exact dynamics show undamped oscillations [cf.
Figs. 2(a) and 2(b) of Ref. [23]], Stan’s second order Born
result for the density at site 1 shows strong damping initially
and, after t ∼ 10, approaches the homogeneous density value
n = 1, cf. the black dashed curve in Fig. 2. Our result is shown
by the full red line and shows undamped oscillations as the
exact solution. We note that the amplitude and frequency of
our result show small deviations from the exact data which is a
consequence of the failure of the second Born approximation
for U exceeding unity [19,22].

Let us now turn to item (4) of the above list, which concerns
the mean-field dynamics. In Fig. 5 of Ref. [23], a strongly
interacting (U = 5) dimer is considered in Hartree and
Hartree-Fock (HF) approximations. The corresponding results
of Stan for the densities on the two sites are reproduced in Fig. 3
(cf. the red and black curves) and exhibit a damping towards
constant (slightly different) values. This relaxation behavior is
very surprising since mean-field dynamics are nondissipative
[27]. We, therefore, repeated the Hartree simulations with our

FIG. 3. Mean field (Hartree) density evolution of a Hubbard
dimer with U = 5 following the switch-on of a constant excitation
with w0 = 0.01 on site 1. The results of Ref. [23] are shown by the
red and black lines and exhibit damping, whereas our results are
undamped (orange and brown lines). The high-frequency oscillations
of the density are illustrated in the inset (the resolution of the results
of Ref. [23] does not allow to resolve these oscillations).

117101-2



COMMENTS PHYSICAL REVIEW B 96, 117101 (2017)

code for the same parameters. The results are plotted by the
orange and brown curves and show no damping. We also note
that in our simulations the density exhibits high-frequency
oscillations (see inset).

Summarizing our numerical simulations (cf. Figs. 1–3) we
found that the statements (2)–(4) of the above list cannot be
reproduced within converged calculations. By “converged”
we denote simulations the result of which does not change
anymore upon further reduction of the time step in the
discretization of the KBE. To understand possible sources of
damping in the linear response regime and the emergence of an
artificial HDD state we now analyze the convergence behavior
in detail. The numerical solution of the KBE basically invokes
two time integration procedures [20,28]:

(A) the evaluation of the collision integral [cf. integral
expression in Eq. (1) of Ref. [23]] and

(B) the time propagation of the entire (integro)differential
equations (time stepping).

Obviously, for any discretization procedure, the exact
integrodifferential equation will be recovered when the time
step �t vanishes. For practical simulations, however, a finite
value �t has to be used, so the question arises, which values
are acceptable. For converged solutions, all values �t less or
equal to some threshold �tc are expected to yield the same
result, at least for a given propagation duration T (�tc may
depend on T ). A key question is how to determine the threshold
�tc. Since the answer to these questions strongly depends on
the specific scheme used to perform the integrations (A) and
(B), we consider two typical cases:

(I) The collision integral (A) is evaluated in the lowest pos-
sible order using the trapezoidal rule whereas the integration
(B) is performed by a fourth order Runge-Kutta method.

(II) The integral evaluation (A) is performed using a higher
order scheme (see Ref. [20] for details), and the integration (B)
is done with an explicit Euler method which is known to be
less accurate than Runge-Kutta.

In both cases convergence can be achieved, however, the
threshold values �tc may be different.

In the following, we analyze these issues for the setup
presented in Fig. 2 [i.e., a dimer (U = 3) with a weak
steplike excitation (w0 = 0.05) at site 1], but the results
are representative for all examples considered in this paper.
Figure 4(a) shows the density evolution using method I and
different time steps �t ranging from �t = 0.3 to �t = 0.01.
In (b) the convergence behavior for the density is shown for
method II for time steps in the range �t = 6 × 10−5 . . . 0.01.
In both cases convergence is observed: undamped density
oscillations that are in exact agreement with each other (see
also our result in Fig. 2) and are depicted by the green curve.
Since the two implementations are independent of each other,
this provides a strong test of the numerics. At the same time,
both methods have a very different numerical efficiency that
is reflected by the threshold time steps: In the case of method
I, �tIc ≈ 0.01, whereas for method II, �tII

c ≈ 6 × 10−5.
Let us now analyze the behavior of the simulations when

the time step exceeds �tc. The figure clearly demonstrates
that then the dynamics strongly deviate from the converged
behavior where the type of density response and of deviation
from the converged result is very different for methods I and
II. In case II [Fig. 4(b)] not-converged simulations lead to an

FIG. 4. Demonstration of the convergence behavior for a Hub-
bard dimer (U = 3), following a very weak (w0 = 0.05) steplike
excitation at site 1. (a)/(b): density evolution at site 1 for different time
steps �t . Simulations in (a) [(b)] are done with method I (method II).
(c) Quality of energy conservation corresponding to the results in (a).
(d). Different energy contributions for �t = 3 × 10−1 in (a) and (c).
We note that in (b) the time steps only refer to the integration (B).
The collision integral (A) is solved with �t = 10−2.

increase of the oscillation amplitude in time and, eventually,
the simulations become unstable. Increasing the time step
leads to an earlier onset of the instability and a more rapid
density increase. In case of method I [Fig. 4(a)], we observe
the opposite behavior, for �t > �tIc : The density rapidly
decays (cf. the yellow and green curves), a trend that sets in
earlier when �t increases. If �t is increased to 0.1 or beyond,
however, the behavior changes: After a short decay interval
the density increases again and approaches a constant value
n1 = n2 = 1, i.e., we exactly recover the trends reported by
Stan in Ref. [23] and that he termed “emergence of the HDD”
or of a “universal attractor.”

From the above observations, we conclude that, indeed, an
artificial HDD can be found, however, only if the time step
significantly exceeds the critical time step and only for certain
discretization schemes. Therefore, this observation is clearly a
consequence of nonconverged simulation and is not an inherent
property of the KBE.

One may now ask how such erroneous simulations can be
avoided. The final test is always a verification of convergence,
i.e., a repetition of the simulations with systematic reduction
of the time step �t . In case of the KBE, fortunately, this
procedure may be simplified essentially by monitoring the
conservation laws of density and total energy. While the former
is usually well maintained, the latter is quickly violated if
the time step is chosen too large. We, therefore, present in
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Fig. 4(c) the time dependence of total energy for method I,
for different time steps (the behavior is similar for method
II). While for �t � �tc energy is perfectly conserved (green
curve), for larger time steps this conservation is violated, and
the deviations increase with �t . Comparison with figure (a)
clearly shows that an occurrence of damping goes together
with a crucial violation of energy conservation [29]. We
also observe that the emergence of the artificial HDD is
connected to a convergence of the total energy to an unphysical
value (cf. red curve). This can be understood from the fact
that the trapezoidal rule systematically underestimates the
result of the integration of oscillating functions, such as the
integrand of the collision integral (see Appendix A for details).
Together with the self-consistent structure of the KBE, this
results in an ongoing damping, up to the point when the
collision integral completely vanishes. This is explored in
more detail in Fig. 4(d) where the different contributions
to the energy are shown for the time step �t = 3 × 10−1.
The potential and the HF energy are stable since they only
depend on the density which is conserved due to the accurate
solution of the differential equation (B). However, the kinetic
and correlation energy, which are connected to the collision
integral, tend to zero, leaving the system in a completely
uncorrelated stationary state that has nothing to do with the
Hamiltonian. Thus, for practical purposes, monitoring total
energy conservation is a strong quality test giving a necessary
(though not sufficient) criterion of convergence.

Another useful test of the accuracy of the simulations is
the verification of time reversal symmetry—a known property
of the KBE. This can be done in two ways. First, if after
a propagation duration t1, the times are inverted, t → −t ,
a numerically correct scheme will return to the initial state
after a time 2t1. This behavior was verified by Stan in the
Supplemental Material to Ref. [23], but this only proves that
the time step for integrating the differential equation (B)
is sufficiently small, but it is independent of the accuracy
of evaluation of the collision integral (A), as we show in
Appendix B. Therefore, a more sensitive approach to time
reversal is to change, at time t1, instead, the sign of the
Hamiltonian, H (t) → −H (−t) and of all its contributions.
Any converged solution will return to the initial state at
t = 2t1. In contrast, in case of a nonconverged evaluation of the
collision integral (A), time reversal symmetry is violated (there
is a loss of information). This is demonstrated in Appendix B
where we also show that the damped dynamics in the case of
strong excitation of a small system (a known property of the
KBE, cf. Refs. [16,17]) are completely time reversible, if the
simulation is converged.

Let us summarize our results. We have repeated a repre-
sentative part of the simulations of Ref. [23] and presented
the results in Figs. 1–3. Our results are in disagreement with
Ref. [23] on all the above points, (2)–(4). In particular, we do
not observe the alleged HDD state in any of our simulations.
Our results have been obtained by two independent methods
(method I and II) and have also been confirmed by another
program [30]. In the second part of the paper we have analyzed
possible reasons of the disagreement with Ref. [23]. A detailed
analysis of the convergence behavior of numerical solutions
of the KBE has been summarized in Figs. 4, 5, and 6. We
presented numerical evidence that our results are converged. In

contrast, the author of Ref. [23] did not present such evidence.
The data for the density conservation and time reversal in that
paper are not conclusive and the crucial checks of total energy
conservation and convergence with respect to the time step are
missing. Finally, by analyzing various numerical schemes and
their convergence properties we were, indeed, able to recover
the emergence of an artificial HDD state of Ref. [23], however,
only if we use method I together with a substantially too large
time step. Thus, the predictions of Stan are wrong, being a
numerical artifact (most likely arising from an inaccurate time
integration of the collision integral, cf. Fig. 4). The impressive
properties of the Keldysh-Kadanoff-Baym equations remain
fully intact.

Note added in proof. Recently, two papers have been
published that confirm the results of our Comment: A detailed
comparison of NEGF simulations with ab initio density
matrix renormalization group calculations [31] confirmed
the excellent accuracy of our results; and the time-reversal
invariance of NEGF theory was proven directly for phi-
derivable approximations in Ref. [32].

We thank A.-M. Uimonen for independent numerical
confirmation of our results. We acknowledge stimulating
discussions with S. Hermanns, G. Stefanucci, R. van Leeuwen,
and C. Verdozzi and financial support by the Deutsche
Forschungsgemeinschaft via Grant No. BO 1366/9.

APPENDIX A: DETAILS ON THE NUMERICAL ERROR OF
THE TRAPEZOIDAL RULE

To understand the fact that numerical integration applying
the trapezoidal rule can lead to an artificial damping in the
solution of the KBE, it is instructive to look at the shape of
the collision integral and its integrand, respectively. Figure 5
shows a typical t̄ dependence of Im[�(t,t̄)G(t̄ ,t ′)] (red). As
one can see the integrand oscillates around zero alternating
between concave and convex pieces, depending on the sign.
The blue line shows how the integrand is approximated with
the trapezoidal rule integration. It is apparent that the absolute

FIG. 5. Illustration of the trapezoidal rule for a typical calculation
of the collision integral. The red line shows a realistic example of
the integrand in Eq. (1) of Ref. [23] during a converged simulation.
The blue curve corresponds to the respective approximation of the
trapezoidal rule for a large time step �t = 0.3.
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value of the integrand is systematically underestimated for
every t̄ . During the evaluation of the integral, after the
cancellation of the areas with opposite sign, this leads to
an underestimation of the collision integral. Due to the self-
consistent structure of the KBE this systematic numerical error
results in a progressive damping during the time evolution
eventually leading to vanishing kinetic and correlation energy,
cf. Fig. 4(d).

The damping property for the integration of oscillating
functions can also be understood from a mathematical point
of view. The error of the extended trapezoidal rule, E(I ), for
the integral

∫ b

a
f (x)dx is given by [33]

E(I ) = −h2

12
[f ′(b) − f ′(a)] + O(h3) , (A1)

where h is the integration step. The behavior of oscillating
integrands can be easily demonstrated for the example of
a cosine function. For I (x) = ∫ x

0 cos (x̄)dx̄ it immediately
follows that

Itrapez(x) = sin(x)

[
1 − h2

12

]
+ O(h3), (A2)

where the reduction of the amplitude is evident. We note that
this systematic underestimation of the oscillations is inherent
only for the trapezoidal rule. Higher order interpolation
polynomials do not have this clear trend and, therefore, never
result in an “amplitude death.”

APPENDIX B: TIME REVERSIBILITY

Beside the conservation of the particle number and the total
energy, a very important accuracy test for the propagation
of the KBE is provided by the time reversal symmetry. As
mentioned in the main text, time reversal can be realized either
by changing the direction of time or by changing the sign of
the Hamiltonian at some time t1.

In Figs. 6(a) and 6(b) time reversibility tests are performed
for linear response, cf. Figs. 2 and 4(a). In Fig. 6(a) method
I is used, with a time step of �t = 3 × 10−1 which was
shown to result in a nonconverged density evolution associated
with damping and emergence of the artificial HDD. While
in the case of the backwards propagation (t → −t , dashed
brown curve), time reversal symmetry holds due to the
accurate treatment of the time-stepping (B), this symmetry
is completely broken if one applies the sign change of the
Hamiltonian (solid yellow curve). This is a clear indication of
a too large time step in the integral (A). In Fig. 6(b) the behavior
is shown for a converged calculation with �t = 10−2, resulting
in an undamped density evolution. As expected, the results for

FIG. 6. Time reversal properties of the density on the first site for a
Hubbard dimer with steplike excitation. Solid yellow (dashed brown)
lines correspond to simulations where Ĥ (t) → −Ĥ (−t) (t → −t)
is being applied. All calculations are performed via method I. Parts
(a) and (b) show the density for linear response (w0 = 0.05) and
U = 3. The time step in (a) is �t = 3 × 10−1 (not converged), while
in (b) it is �t = 10−2 (converged). Part (c) shows the time reversal
behavior for a strong excitation (w0 = 5) with U = 4 and a time step
of �t = 2.5 × 10−3 (converged).

both ways of performing the time reversal coincide and the
system properly returns to the initial state.

Finally, in Fig. 6(c) we analyze the case of a strong
excitation (w0 = 5), where unphysical damping of the density
occurs in a converged solution (cf. Fig. 1). As one can see,
even though the oscillation amplitude is drastically reduced,
the propagation is entirely time reversal symmetric, even if the
sign of the Hamiltonian is changed. Compared to Fig. 6(a),
this again confirms the substantial difference between the
artificial damping for strongly excited systems (which is
inherent to the KBE) and the damping caused by numerical
inaccuracies.
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The nonequilibrium dynamics of strongly-correlated fermions in lattice systems have attracted considerable
interest in the condensed matter and ultracold atomic-gas communities. While experiments have made remarkable
progress in recent years, there remains a need for the further development of theoretical tools that can account for
both the nonequilibrium conditions and strong correlations. For instance, time-dependent theoretical quantum
approaches based on the density matrix renormalization group (DMRG) methods have been primarily applied to
one-dimensional setups. Recently, two-dimensional quantum simulations of the expansion of fermions based on
nonequilibrium Green functions (NEGF) have been presented [Schlünzen et al., Phys. Rev. B 93, 035107 (2016)]
that showed excellent agreement with the experiments. Here we present an extensive comparison of the NEGF
approach to numerically accurate DMRG results. The results indicate that NEGF are a reliable theoretical tool
for weak to intermediate coupling strengths in arbitrary dimensions and make long simulations possible. This is
complementary to DMRG simulations which are particularly efficient at strong coupling.

DOI: 10.1103/PhysRevB.95.165139

I. INTRODUCTION

Experiments addressing the nonequilibrium dynamics of
quantum many-body systems have made remarkable progress
in recent years, both probing ultrafast dynamics in strongly
correlated materials [1,2] and quantum quenches in interacting
quantum gases (see Refs. [3–5] for a review). Among the many
ultracold quantum-gas experiments with fermions we mention
the study of the expansion dynamics of strongly-correlated
fermions in a two-dimensional optical lattice [6], the collapse
and revival dynamics of Fermi-Bose mixtures [7], and the
real-time decay of a density wave in one-dimensional lattices
[8]. Very recently, several experimental groups reported
the successful implementation of fermionic quantum-gas
microscopes [9–17], which will give unprecedented access
to both equilibrium and nonequilibrium properties of the
Fermi-Hubbard model. Given the tremendous success of
the earlier bosonic quantum-gas microscopes in exploring
the nonequilibrium realm [18–22], a considerable experi-
mental activity in studying quantum-quench dynamics in the
Fermi-Hubbard model can be expected in the near future.
Quantum-gas microscopes operate with two-dimensional sys-
tems which will push the efforts into this most challenging
regime (see also Ref. [23]) while also allowing one to study
one-dimensional systems [17].

A large body of theoretical work has concentrated on
one-dimensional systems, the reason being both experiments
[18,24–29] as well as the availability of powerful theoretical
tools based on field theory [30], integrability [31], or numerical
methods. While exact diagonalization (ED) is still an indis-
pensable tool (see, e.g., Refs. [32–34]), it is limited to small
systems. Nonetheless, for problems restricted to the dynamics
of a single charge carrier coupled to spin or phonon degrees of
freedom, there exist Krylov-space approaches that operate in
a subspace of the full Hilbert space constructed by selecting
only those states accessible by the Hamiltonian dynamics [35].
Such an exact diagonalization in a limited functional space has

been applied quite extensively to two-dimensional problems
as well (see, e.g., Refs. [36–39]).

Time-dependent density matrix renormalization group
(DMRG) methods [40–42] have been very widely applied
to nonequilibrium problems and yield numerically accurate
results but are limited by the accessible timescales and are
primarily useful for one-dimensional systems. A recent variant
of the method [43] has been tailored for long-range interactions
and is thus better suited for coupled one-dimensional and
two-dimensional systems [43,44] but cannot overcome the
exponential scaling of a matrix-product states ansatz with the
number of coupled chains. The application of time-dependent
tensor network approaches that are based on ansatz states
suitable for two-dimensional systems such as the projected
entangled pair states has been very little explored [45–47].

Apart from time-dependent DMRG methods, there are
other many-body methods for the real-time evolution includ-
ing continuous-time quantum Monte Carlo [48] and time-
dependent dynamical mean-field theory approaches [49–51].
The former, while being able to achieve essentially exact
results for short evolution times, can suffer from a dynamical
sign problem [48]. The latter method often utilizes continuous-
time quantum Monte Carlo as an impurity solver, while in more
recent developments, time-dependent DMRG has also been
successfully used for this purpose [52,53]. Time-dependent
DMFT methods are not exact in two dimensions either but
are argued to capture better the physics of strongly-correlated
systems in higher dimensions, leading to a wide range
of applications in the context of nonequilibrium dynamics
in the Hubbard model (see, e.g., Ref. [51]). Finally, the
iterative equation-of-motion method for operators provides
an alternative approach [54], which has also been applied to
quantum quench problems in the 2D Fermi-Hubbard model
[55].

Despite all these efforts, there still is a significant gap
between the rapidly progressing experiments in the field of
ultracold atoms and accurate quantum dynamics simulations
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when it comes to correlated systems in two dimensions.
To contribute towards closing this gap, two of us have
applied an alternative approach to the quantum simulation
of the nonequilibrium mass transport of correlated fermions
studied in the experiment of Ref. [6]: nonequilibrium Green
functions (NEGF). Previously, this theory has been success-
fully applied to a variety of many-particle systems including
the correlated electron gas [56], electron-hole plasmas [57],
nuclear matter [58], and electrons in quantum dots [59,60],
for a recent overview, see Ref. [61]. Extensive applications
to finite Hubbard clusters were presented in Ref. [62] and
first applications of NEGF to mass transport in small lattice
systems of correlated fermions were shown in Ref. [63].
Finally, in Ref. [64] these simulations were extended to
strong coupling by using T -matrix self energies as well as to
substantially larger systems. Applying an extrapolation to the
thermodynamic limit the nonequilibrium correlated quantum
mass transport in two-dimensional fermion ensembles could be
directly compared to the experiments of Ref. [6] and excellent
agreement was observed. For an overview on the NEGF
approach and its application to inhomogeneous Hubbard
clusters, see Ref. [65].

Even though NEGF simulations are computationally de-
manding, they have a number of remarkable advantages. First,
they do not exhibit an exponential scaling with system size, as
is the case for exact diagonalization, and they do not have a
dynamical sign problem as continuous time QMC methods.
Second, they are not limited with respect to the system
dimensionality, as opposed to matrix-product state methods.
At the same time, in contrast to ED, NEGF simulations are
not a first-principle method since they involve a many-body
approximation—the self energy—which determines the accu-
racy and the quality of the results, similar to the approximate
exchange-correlation energy in density functional theory.
DMRG, on the other hand, also involves an approximation
but the numerical errors depend on a control parameter, the
discarded weight, and whenever this can be made sufficiently
small, the results can become essentially exact for system sizes
larger than what is accessible to ED [66,67].

The accuracy of NEGF simulations of spatially inhomo-
geneous fermion systems was tested before for few-electron
atoms [68] and small Hubbard clusters [69] where exact
diagonalization results are available. This analysis was ex-
tended to larger Hubbard systems, on the order of 10 sites
in Refs. [62,70], revealing a high accuracy of simulations
with second-order Born self energies, for weak coupling and
moderate times (on the order of 20 inverse hopping times).
However, the quality of the results for larger systems has
remained open until now, due to the lack of reliable benchmark
data. On the other hand, for small Hubbard clusters, also
problems were reported: In the case of a strong excitation, two-
time NEGF simulations were found to exhibit an unphysical
damping of the dynamics [69,71]. The origin of this behavior
has been traced back to the self-consistent nature of the used
approximations. These deficiencies could be removed to a
large extent by making the transition to single-time dynamics
with the help of the generalized Kadanoff-Baym ansatz [72]
with Hartree-Fock propagators (HF-GKBA) [62].

Thus, there is a clear need to further study the question
of accuracy and predictive capability of NEGF simulations,

(a) symmetric expansion (b) asymmetric expansion

(c) asymmetric expansion on a ladder (d) charge density wave

FIG. 1. Initial states of the nonequilibrium problems studied in
this paper: (a) Symmetric 1D sudden expansion from a band insulator
(BI). (b) Asymmetric 1D expansion from a BI. (c) Sudden expansion
on a two-leg ladder. (d) Relaxation dynamics from a charge-density
wave state |ψ0〉 = |2,0,2,0,2,0, . . . 〉 in 1D. The open circles indicate
empty sites, the filled circles represent an initial occupation with two
fermions, i.e., a doublon.

in particular, for systems larger than those studied so far,
for longer simulation times and beyond the weak-coupling
limit. The goal of this paper is to present such an analysis
by benchmarking NEGF results using a variety of different
self-energy approximations, in a two-time as well as in a
single-time formalism (i.e., using the GKBA), against DMRG
results. Due to the inherent properties of matrix-product states
[67], these comparisons have to focus on 1D fermion systems.
We choose a set of four nontrivial cases of nonequilibrium
dynamics in the Fermi-Hubbard model for which correlations
play a crucial role.

The Hamiltonian of the Fermi-Hubbard chain is

H = −J
∑
〈s,s′〉

∑
σ=↑,↓

(ĉ†
s,σ ĉs′,σ + H.c.) + U

∑
s

n̂↑
s n̂

↓
s , (1)

where ĉ
†
s,σ creates a fermion with spin σ =↑ , ↓ in site s and

n̂
σ
s = ĉ

†
s,σ ĉs,σ . J is the hopping matrix element (set to unity in

our simulations), U denotes the onsite interaction, and L is the
number of sites (the lattice spacing and h̄ are set to unity). The
cases studied include (i) the symmetric and (ii) asymmetric
expansion from a band insulator into an empty lattice, (iii) the
expansion from a band insulator in a quasi-1D situation on a
two-leg ladder, and (iv) the decay of an ideal charge-density
wave state. These four initial situations are sketched in Fig. 1.

As a result of this analysis, the applicability range of NEGF
simulations and relevant approximations is being mapped
out. Our main results are the following: NEGF simulations
with the HF-GKBA are reliable also for moderate coupling,
U/J � 4, if the proper self energies are being used. These
are the T -matrix self energy—for small or large filling—and
the third-order self energy (including all diagrams of third
order, cf. Sec. II A)—close to half filling. In all cases, two-time
simulations are less accurate (due to the unphysical damping
mentioned above) but they can be used to estimate the
deviations of the HF-GKBA from the exact result as typically
the latter is enclosed between single-time and two-time NEGF
results. Finally, NEGF simulations fill the gap left open by
DMRG by being capable to treat large systems (of any
dimensionality) and to achieve long simulation times, for weak
and moderate coupling, whereas the DMRG is advantageous
and more efficient for strong coupling.

The remainder of this paper is as follows: in Sec. II we give
a brief introduction into NEGF and time-dependent DMRG
simulations. This is followed in Sec. III by numerical results.
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There we study the four cases introduced above and depicted
in Fig. 1: a symmetric and asymmetric sudden expansion
(confinement quench) in 1D, Secs. III A and III B, respectively,
the sudden expansion in a two-leg ladder, Sec. III C, and a
charge-density-wave initial state, Sec. III D.

II. METHODS

A. Nonequilibrium Green functions (NEGF)

The central quantity in the nonequilibrium Green functions
theory is the (single-particle) Green function G. It is defined
on the Schwinger-Keldysh contour [73,74] C via the time-
ordering operator TC ,

G
σ

ss′(z,z′) = − i

h̄
〈TC ĉs,σ (z)ĉ†

s′,σ (z′)〉, (2)

where 〈. . .〉 denotes the ensemble average. The Green function
can be understood as a generalization of the nonequilibrium
single-particle density matrix, nσ

s,s′ = 〈n̂σ
s,s′ 〉, onto the two-

time plane. Therefore, G provides easy access not only to
the observables related to n

σ

s,s′ but, in addition, also to the
spectral properties of the system. However, the full N -particle
information is not directly available from G, although, for
example, the pair correlation function can be reconstructed
from G [75].

The equations of motion for the single-particle Green
function are the Keldysh-Kadanoff-Baym equations [76],(

ih̄
∂

∂z
δs,s̄ − h

σ
ss̄

)
G

σ

s̄s′(z,z′)

= δC(z − z′)δs,s′ +
∫

C
dz̄ �

σ
ss̄(z,z̄)Gσ

s̄s′ (z̄,z′), (3)

together with the adjoint equation (h denotes the matrix
element of the single-particle Hamiltonian). � denotes the
self energy which is the only unknown of the theory, and
with an exact � the method would be exact. In practice,
the self energy has to be approximated for which systematic
many-body schemes (e.g., Feynman diagrams) exist that are
applicable in equilibrium as well as in nonequilibrium, via the
use of the time contour.

In the following we list the self energies that are used
in the present paper. The contribution of the first order in
the interaction is given by the Hartree-Fock (mean field) self
energy,

�
HF,↑(↓)
ss′ (z,z′) = UδC(z − z′)δs,s′n

↓(↑)
s (z) , (4)

which is contained in each of the approximations used below.
Many-body approximations that go beyond the mean field level
(that are of higher than first order in U ) contain, in addition, a
correlation self energy, i.e., �

σ

ss′ =: �
HF,σ

ss′ + �
cor,σ
ss′ .

The first correlation correction is of second order and works
well for weak coupling, i.e., U � J , for a discussion see
Ref. [62]. Here we want to go beyond the weak coupling
regime. Therefore, we focus on two higher order many-body
approximations. The first is the T -matrix approximation
(TMA) in the particle-particle channel and yields a self energy
�

cor,σ
ss′ which accounts for scattering processes up to infinite

order (see Ref. [65] for a detailed discussion). This is realized
by the self-consistent, recursive structure of the T matrix which

(a) TMA

· · ·

(b) TOA

FIG. 2. Feynman diagrams of the considered self-energy ap-
proximations: (a) Diagram series of the particle-particle T -matrix
approximation (TMA). (b) Diagrams contained in the third-order
approximation (TOA), see text.

can be understood as an effective interaction that obeys its
own equation of motion (the Lippmann-Schwinger equation),
Eq. (6),

�
TMA,↑(↓)
ss′ (z,z′) = ih̄ Tss′ (z,z′) G

↓(↑)
s′s (z′,z) , (5)

Tss′(z,z′) = −ih̄ U 2 G
↑
ss′(z,z′) G

↓
ss′(z,z′)

+ ih̄ U

∫
C

dz̄ G
↑
ss̄(z,z̄) G

↓
ss̄(z,z̄)Ts̄s′(z̄,z′). (6)

The corresponding Feynman diagrams are shown in Fig. 2(a).
The TMA is known to perform best in the limit of small
(or large) density [65,71,77], i.e., when the interaction in
the system is dominated by electron-electron or hole-hole
scattering events. Around half filling, however, electron-hole
scattering gains in importance which is not captured by the
particle-particle TMA. Therefore, we introduce, in addition,
the third-order approximation (TOA) which contains all self-
energy contributions up to O(U 3). In this approximation the
correlation self energy, �cor,σ

ss′ , attains the following form [77],

�
TOA,↑(↓)
ss′ (z,z′)

= −(ih̄)2 U 2G
↑
ss′(z,z′) G

↓
ss′(z,z′) G

↓(↑)
s′s (z′,z)

− (ih̄)3 U 3
∫

C
dz̄ G

↑
ss̄(z,z̄) G

↓
ss̄(z,z̄)

G
↑
s̄s′(z̄,z′) G

↓
s̄s′(z̄,z′) G

↓(↑)
s′s (z′,z)

− (ih̄)3 U 3
∫

C
dz̄ G

↑(↓)
ss̄ (z,z̄) G

↓(↑)
s̄s (z̄,z)

G
↑(↓)
s̄s′ (z̄,z′) G

↓(↑)
s′ s̄ (z′,z̄) G

↓(↑)
ss′ (z,z′). (7)

The corresponding diagrams are shown in Fig. 2(b). In the
TOA, particle-particle and electron-hole scattering processes
are considered on equal footing, yet only to third order
inclusively. Both the TMA and TOA approach have been
found to perform well for weak to moderate coupling strengths
as long as the respective density conditions are fulfilled
[62–65,69,71,71,77,78].

165139-3



SCHLÜNZEN, JOOST, HEIDRICH-MEISNER, AND BONITZ PHYSICAL REVIEW B 95, 165139 (2017)

Finally, we introduce the generalized Kadanoff-Baym
ansatz (GKBA) which is an approximation that reduces the
complexity of the time structure of NEGF theory by separating
the time-diagonal Green functions from the off-diagonal ones.
The full KBE of Eq. (3) is solved only for z = z′, while,
for z �= z′, the Green function is reconstructed from its time-
diagonal values, i.e., from the single-particle density matrix.
For the latter, the less and greater component of G which
originate from the mapping of the time contour onto the real
time axis [79] are reconstructed according to [72],

G
≷,σ

ss′ (t,t ′) ≈ −[
G

R,σ
ss̄ (t,t ′)n≷,σ

s̄s′ (t ′) − n
≷,σ

ss̄ (t)GA,σ

s̄s′ (t,t ′)
]
, (8)

where n<,σ
ss′ (t) = n

σ

s,s′(t) and n>,σ
ss′ (t) = n

σ

s,s′(t) − δs,s′ . The
GKBA does not violate the attractive properties of the NEGF
method, as it retains density and energy conservation, as well
as time reversibility [80]. When using the GKBA, still the
question remains how the retarded and advanced propagators
GR/A [81] are approximated. Here, we concentrate on Hartree-
Fock propagators—the resulting approximation will be called
HF-GKBA [62]. This approximation has been shown to elimi-
nate (or drastically reduce) the artificial damping properties
of two-time simulations for strongly excited systems and,
at the same time, substantially improving the computational
performance.

B. Time-dependent density matrix renormalization
group method (DMRG)

The density matrix renormalization group method
[66,67,82] relies on approximating many-body wave functions
|ψ〉 via matrix-product states of a finite bond dimension m. A
matrix-product state can be written as

|ψ〉 =
∑

σ1...σL

Aσ1Aσ2 . . . AσL |σ1 . . . σL〉 , (9)

where σ� are the local degrees of freedom at site � and Aσ�

are matrices of dimensions m × m (for details and the role of
boundary conditions, see Ref. [67]). Any wave function |ψ〉
can be brought into the form Eq. (9) by a sequence of singular
value decompositions where in general, the bond dimension
of the matrices will scale exponentially in system size. To
illustrate this procedure, consider a one-dimensional system
that is cut into two parts A and B. By denoting complete basis
sets in the parts A and B by |a〉A and |b〉B , we can express a
many-body wave function as

|ψ〉 =
∑
a,b

ψa,b|a〉A|b〉B . (10)

By means of a singular value decomposition of the rectangular
matrix ψa,b, this can be reexpressed in terms of new basis sets
in A and B with a single index α

|ψ〉 =
s∑

α=1

sα|α〉A|α〉B, (11)

where the sα are the singular values and s is the Schmidt
number, which in general scales exponentially with system
size. At the heart of the approximation used in DMRG and
matrix-product states methods in general is a truncation in the
number of states used to represent |ψ〉 by keeping only those

m states |α〉A with the largest Schmidt coefficients s2
1 � s2

2 �
s2
m � · · · � s2

s , i.e.,

|ψ〉 ≈
m∑

α=1

sα|α〉A|α〉B . (12)

This is equivalent to diagonalizing the reduced density matrix
of part A and truncating in its eigenspectrum, which was
White’s original formulation [82]

ρA = trB |ψ〉〈ψ | =
∑

α

s2
α|α〉AA〈α| . (13)

While actual algorithms are described comprehensively
in Ref. [67], we here want to explain for which many-body
states Eq. (12) provides a useful approximation in the sense
that few states (order of m ∼ 100,1000) suffice to obtain
numerically accurate results for observables 〈Ô〉 = 〈ψ |Ô|ψ〉.
This obviously depends on how quickly the eigenvalues s2

α

of the reduced density matrix decay. A correct intuition can
be gained from relating the decay of s2

α to the entanglement
entropy

SvN = −tr[ρAlogρA] = −
∑

α

s2
αlogs2

α . (14)

A fast decay of s2
α translates into a weakly entangled wave

function and vice versa. The crucial question is the scaling
of the entanglement entropy with the system size. For ground
states of gapped Hamiltonians with short-range interactions,
an area law holds [83]

SvN ∝ LD−1
A , (15)

where LA is the linear dimension of subsystem A and D is
the dimension. Scaling in LA translates directly into scaling
in L, i.e., the linear dimension of the full system. In D = 1,
we obtain SvN = const for L � ξ where ξ is the correlation
length and this implies that the numerical effort (i.e., the
number of states m used to approximate |ψ〉) does not increase
with system size since m � exp(SvN(L)) [67]. For critical
systems in one dimension, the entanglement entropy acquires
a logarithmic correction (see Refs. [67,83] and references
therein). This reasoning explains why matrix-product states
based techniques work primarily for one-dimensional systems
since in 2D, even if an area law holds, the scaling is exponential
in the width of the system [84]. The other important issue is
whether an efficient algorithm can be formulated based on
matrix-product states. It turns out that most matrix-product
state methods including DMRG scale as m3 and linearly in L

[67].
For real-time evolutions |ψ(t)〉 = exp(−iHt)|ψ(t = 0)〉,

the application of the time-evolution operator can be efficiently
implemented via a Trotter-Suzuki decomposition (using H =∑

� h�,�+1) into operators exp(−ih�,�+1δt) which is just a local
two-site gate affecting two A matrices in Eq. (9) (δt is the
time step) [40–42]. In general, a time-propagated many-body
state |ψ(t)〉 will develop volume law like entanglement even
if the initial state was a product state [67]. For global quantum
quenches [such as the time evolution from a product state such
as our case (iv), see Fig. 1(d)], the entanglement grows linearly
in time SvN ∝ t , implying that the number of states m needed
to maintain the same quality of approximation to the true
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|ψ(t)〉 will increase exponentially. This limits the accessible
times in global quenches to about t � O(10/J ), while in local
quenches, geometric quenches such as the sudden expansion
considered in examples (i)–(iii) or for slow parameter changes,
a milder entanglement increase occurs.

The two main parameters that control the accuracy of time-
dependent DMRG simulations are the time step δt and the
discarded weight δρ [67,85]. The latter is defined as

δρ =
s∑

α=m+1

s2
α , (16)

which is a measure for the error made per truncation. The
quality of DMRG data has to be analyzed as a function of both
δt and δρ, with the latter the dominant parameter since the
dependence of the error on δt can be reduced by using higher-
order Trotter-Suzuki decompositions [67]. In this work, we
use a time-dependent DMRG implementation as introduced in
Refs. [41,42] and we varied the time step between 0.02/J �
δt � 0.1/J and the discarded weight 10−7 � δρ � 10−4 with
a maximum number of 2000 states.

III. NUMERICAL RESULTS

In our simulations we consider four different nonequilib-
rium setups. The corresponding initial states are depicted in
Fig. 1. In all cases, the incipient configuration consists of both
doubly occupied and empty Hubbard sites. In the first setup,
the occupied sites are arranged on a straight line to form a
one-dimensional band insulator (BI). During time propagation,
and in the absence of any further potential, the density starts
to expand symmetrically towards the left and right edges
of the Hubbard chain, cf. Fig. 1(a). Next, in order to also
investigate an asymmetric expansion dynamics the initial BI
is placed onto the leftmost sites of the chain allowing the
density to escape only to the right, see Fig. 1(b). Further,
to analyze the effect of the dimensionality of the system we
extend the asymmetric setup to a two-leg Hubbard ladder the
leftmost rungs of which are initially doubly occupied, Fig. 1(c).
The dynamics on such ladders is often used to investigate
the 1D-to-2D crossover. Finally, we consider a setup that
generates a final state at a constant and large density where
correlation effects are expected to manifest themselves even
stronger, cf. Fig. 1(d). Here, the initial state consists of a
one-dimensional Hubbard chain with alternating occupation
ns = 0,2. During the evolution from this charge-density wave
(CDW), the particles quickly form an entangled many-body
state in which correlations play a crucial role. These four setups
will be analyzed in detail in Secs. III A–III D.

A. Sudden expansion in 1D: symmetric case

We start the numerical analysis by considering a confine-
ment quench giving rise to a sudden symmetric expansion of an
ensemble of fermions into an empty lattice [see Fig. 1(a)]. This
setup has been studied in many papers, including experimental
studies [6,29,86,87], and theoretically using DMRG methods
[44,88–94] and NEGF [64]. We exclusively study an initial
density of n = 2 on the sites that are occupied at t = 0, which
was previously considered in Refs. [64,90,95] such that the
general properties are well understood.
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FIG. 3. Symmetric 1D sudden expansion of a Hubbard chain of
N = 34 fermions at U = J . Time evolution of (a) density ns and
(b) double occupancy ds for six times (from bottom to top): tJ =
0,2,4,6,8,10. Solid lines: DMRG, long dashes: NEGF (two-time T

matrix), dashed lines: T matrix with HF-GKBA.

Here, we focus on the quantitative details of the time dy-
namics and compare our NEGF results to DMRG. We consider
a chain of length L = 75 with N = 34 particles for U = J .
The evolution of the respective density profiles is shown in
Fig. 3(a) for six consecutive times tJ = 0,2,4,6,8,10. The
solid black lines correspond to the DMRG results and the
dashed green lines belong to the NEGF calculations using
the T -matrix approximation (TMA) while the orange lines are
obtained by additionally invoking the HF-GKBA, cf. Sec. II A.
As expected, the general trend of the density is to propagate
outwards resulting in a bell-shaped profile which can be
seen from all considered descriptions. For times exceeding
5J−1, the site occupations start to deviate slightly in the three
simulations. In the full two-time NEGF calculation the fermion
expansion is slightly faster than in the DMRG, while in the
HF-GKBA simulation the particles stay closer to the center
and are in very good agreement with the DMRG.

A quantity more sensitive to correlations is the double
occupancy,

ds := n↑↓
s = 〈ĉ†

s,↑ĉs,↑ĉ
†
s,↓ĉs,↓〉, (17)

the dynamics of which are displayed in Fig. 3(b). It is evident
that it follows the trend of the density by which it is dominated.
Again, in the full two-time NEGF calculation ds expands faster
than in the DMRG result, where the deviations are larger than
for the density. In contrast, the HF-GKBA is again very close
to the latter.

To better quantify the discrepancies between DMRG and
the two NEGF approaches we introduce the total density
deviation between the two methods in the following way,

�n(t) :=
∑

s

∣∣nI
s(t) − nII

s (t)
∣∣ , (18)
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FIG. 4. Total density deviation, Eq. (18), between (a) DMRG and
NEGF and (b) DMRG and HF-GKBA, for the symmetric 1D sudden
expansion. Simulations as in Fig. 3 with N = 34 particles, but for
four different values of U indicated in the figure.

where I and II denote the respective method. This quantity
allows us to analyze the time dependent difference of the
density profiles. It should be noted that the quantitative value of
�n has no direct interpretation. Instead, by dividing by the total
number of Hubbard sites L, one gets the average deviation per
site. Adopting DMRG as the reference method, we investigate
the dependence of the deviation on the interaction strength
U and time by calculating the total deviations for the two-
time TMA simulation and the HF-GKBA results which are
displayed in Figs. 4(a) and 4(b), respectively. As expected,
the total deviation grows in time for all cases. Interestingly,
however, the deviations saturate around t = 10J−1. A closer
look reveals that, during the early propagation period, the
growth appears to be superlinear, followed by a receding
phase after which the growth becomes more fluctuating.
The lengths of these time periods strongly depends on the
interaction strength, as they become shorter for larger U . As
a consequence, for times around tJ = 1 the total deviation
increases with the interaction strength while for times around
tJ = 9 it decreases with U . The overall trend is common
between the full TMA results and the HF-GKBA simulations.
The only noticeable difference is that �n remains a little
smaller for larger times and small U in the HF-GKBA
calculations.

To better understand how the density deviations vary with
U and t , we replot these quantities in Fig. 5(a) for the two
time points, tJ = 1 and tJ = 9. In addition, we compute the
total deviation of the double occupancy which is defined, by
analogy to Eq. (18), as

�d(t) :=
∑

s

∣∣d (1)
s (t) − d (2)

s (t)
∣∣ , (19)

which is shown in Fig. 5(b). While for tJ = 1 all results
confirm the trend that the deviations grow with increasing U ,
for tJ = 9 the dependence is more irregular. In the latter case,
the deviations between HF-GKBA and DMRG, in particular,
are nearly independent of the interaction strength. The two-
time NEGF results for the double occupancy, however, show
large deviations for small U . The decrease of �n and �d with
increasing U for later times can be understood from the direct
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FIG. 5. Symmetric 1D sudden expansion. Total deviation of (a)
the density and (b) the double occupancy between DMRG and NEGF
(long dashed lines) and DMRG and HF-GKBA (dashed lines) at
tJ = 1 and tJ = 9, for N = 34.

dynamics of the density profiles. Since for large U the particles
predominantly remain in the center of the system the growth of
the deviations is limited due to the absence of moving particles.

From the presented results, it turns out that the DMRG result
is typically enclosed between the HF-GKBA and the two-time
NEGF result in T -matrix approximation. At the same time the
HF-GKBA data are slightly closer to the DMRG results.

To further analyze the expansion behavior following a 1D
sudden confinement switch, it is instructive to analyze the
expansion velocity of the fermion cloud which is defined
according to [64]

vexp(t) = d

dt
D(t), with D(t) =

√
R2(t) − R2(0),

R2(t) = 1

N

∑
s

ns(t) ‖s − s0‖2 , s0 = 1

N

∑
s

ns(0) s.

(20)

This quantity measures the temporal growth of the particle
cloud which has a mean square radius R(t) from which the
initial size is subtracted. This quantity was analyzed in detail
for 1D, 2D, and 3D systems and a broad range of system
size N in Ref. [64]. Here we focus on the time evolution
of vexp for 1D systems and compare again DMRG, two-time
NEGF simulations, and HF-GKBA. The results are shown
in Fig. 6 for U/J = 1,2,5. As one can see, for all cases
vexp starts from the same value vexp(0) = vmax = √

2DJ =√
2J which is the largest expansion velocity in an empty

lattice (cf. Refs. [6,64,91]). A noninteracting gas expands
with a constant vexp(0) = vmax = √

2DJ [6]. For U > 0, vexp

decreases from its initial value until it slowly converges to an
approximately constant value once U/J becomes comparable
to the bandwidth.

This behavior is explained by the large effective mass of
doublons in the limit U � 4J , where perturbation theory
results in an effective hopping matrix elements Jdoublon ∝
J 2/U for U � J (see, e.g., Ref. [96]). As a consequence,
the doublons become inert on the accessible time scales and
the system remains largely in a weakly-correlated state that
is essentially a product state in the core region [89,90,92]
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FIG. 6. Symmetric 1D sudden expansion. Evolution of the
expansion velocity versus time for U/J = 1,2,5 for three simulation
methods.

(see also Refs. [97–99]). Therefore, vexp is dominated by the
few atoms that expand after some doublons have dissolved into
single particles [90] and at long times, the expansion velocity
is dominated by these fast atoms while the slow doublons do
not contribute [93].

For the applicability of the NEGF methods, this dynamical
freezing of a build-up of correlations as U/J � 4 implies that
the methods become more accurate again, since the wave
functions acquire a simpler structure than at weak U/J .
This explains the a priori counterintuitive observation that
the numerical deviations of the NEGF methods compared to
DMRG (see the discussion of Figs. 4 and 5) become smaller
as U/J increases, even though the NEGF techniques are by
construction weak-coupling methods [100]. The regime of
U/J � 4 can much easier be accessed by DMRG with longer
times becoming accessible [89], demonstrating the usefulness
of NEGF and DMRG as complementary approaches for weak
and strong coupling, respectively.

Interestingly, for large interaction strength both DMRG
and the HF-GKBA propagation show oscillations in the
expansion velocity with similar frequency. In contrast, for the
two-time TMA calculations an onset of oscillations is seen
only for U/J = 5, in all other cases the expansion velocity
quickly decays monotonically approaching an asymptotic
value. This is consistent with earlier observations that two-time
propagations of the KBEs for strongly excited small Hubbard
systems can be accompanied by an unphysical damping in the
density evolution [62,69,71], as was noted in the introduction
Sec. I. Since the initial confinement quench in our simulations
constitutes such a strong excitation it is very likely that the
missing of the oscillations of the expansion velocity in the two-
time simulations are associated with this artificial damping.

On the other hand, the HF-GKBA is known to remove
the artificial damping in strongly excited small systems [62].
Therefore, it is not surprising that in the present setup, the
HF-GKBA simulations exhibit better agreement with the
DMRG for intermediate times, including the reproduction of
the oscillations of the expansion velocity. This is particularly
the case for small and moderate couplings, U � 3J . For
larger couplings, the long-time asymptotics of the expansion
velocity of the two-time simulations is closer to the DMRG

than the HF-GKBA result. This behavior is also consistent
with the earlier observations for the evolution of the density
profile and the double occupancy. This complementarity of
the performance of the two-time and the HF-GKBA NEGF
simulations are a particularly attractive feature.

Therefore, having both NEGF results at hand, allows one to
estimate, e.g., the value of the asymptotic expansion velocity.
For all U , the DMRG solution of this asymptotic value lies
within the NEGF results. Utilizing this observation, one can
extract the exact value of limt→∞ vexp(t) with a relative error
of �30%, for all U .

The experiment [6] used a different measure for the
expansion velocity derived from the time evolution of the half
width at half maximum, called core expansion velocity. In
Ref. [64], a direct comparison of numerical results for this
core expansion velocity to experimental data of Ref. [6] was
presented, with a very good agreement. Our analysis of the
errors of densities as a function of U/J and time in the different
NEGF schemes further corroborates the validity of the NEGF
data used in that comparison.

It should be mentioned that, in the present case, the choice
of the TOA self energy in the NEGF description leads to an
overestimation of the expansion by a factor of �2 (not shown).
This indicates that the stability of the correlated doublon cloud
at the center of the system is only sufficiently described if
higher order scattering diagrams are considered, as in TMA.
Additionally, throughout the early dynamics the lattice sites
are predominantly either empty or nearly fully occupied which
supports the validity of the TMA (cf. Sec. II A).

We close this discussion by noting that in principle, it should
be possible to compute the asymptotic expansion velocities
from the Bethe ansatz, along the lines of Refs. [92,94]. For
instance, limt→∞ vexp(t) was computed for n � 1 with an
excellent agreement with DMRG results [94]. The extension
of Ref. [94] to initial densities n � 1 is left for future research.

B. Sudden expansion in 1D: asymmetric case

It is now interesting to further investigate whether the
observed accuracy and the complementary behavior of single-
time and two-time NEGF simulations is just a special case
of the symmetric expansion. To this end we now consider a
modified setup [cf. Fig. 1(b)] where the confinement quench
gives rise to a density expansion in only one direction. The
results are presented in Fig. 7(a) for N = 20 fermions and
U = J . The respective evolution of the double occupancy
is shown in Fig. 7(b). As one can see, the results obtained
by all considered methods lie very close to each other. To
better distinguish between the particular profiles, we show
the deviations to the DMRG results in Fig. 8. The subfigures
Figs. 8(a)–8(d) correspond to different interaction strengths
U/J = 1,2,4,8. As in the symmetric 1D setup we observe
a complementary behavior of the two-time result and the
HF-GKBA. First, it is striking that again both approximations
exhibit opposite deviations from the DMRG: While the two-
time results show a slightly too fast expansion, the HF-GKBA
results are retarded. Correspondingly, the deviations of the
local densities from the DMRG results have opposite signs:
The HF-GKBA (two-time TMA) densities are above (below)
the DMRG result, on the originally doubly occupied sites,
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and, vice versa, for the unoccupied sites. Also, the deviations
have a similar dependence on the coupling strength as in
the symmetric case, Sec. III A: For the HF-GKBA that
exhibits smaller density deviations than the two-time result
for all considered U , the maximum deviation is found for
intermediate coupling strengths (2J � U � 4J ). In contrast,
for U = 8J , the two-time result shows large deviations at the
edge of the occupied region.

After considering the densities we again compute the
width of the expanding particle cloud, using Eq. (20) [see
Fig. 9(a)]. This quantity confirms the observations made before
for the density: Compared to the DMRG, the expansion of
the particle cloud is slightly accelerated (decelerated) for
the two-time (GKBA) simulations. With increasing U the
two-time result becomes more accurate than the HF-GKBA.
For large couplings, U � 6J , the deviations between two-time
and single-time approximations vanish. In this limit, also the
two-time result for the expansion is retarded, in comparison
to the DMRG. This analysis indicates that for U � 6J a
combination of two-time and single-time simulations is able
to reproduce the cloud size with a relative error not exceeding
20%. However, for large couplings, the inaccuracies grow and
appear to arise from the inadequacy of the underlying T -matrix
approximation in the particle-particle channel. This makes it
necessary to study additional many-body approximations.

The considered system of L = 20 sites and L0 = L/2 = 10
initially doubly occupied sites obeys a high symmetry [101]
between the electron (hole) density on site s and the hole
(electron) density on site L − s. To generalize our findings,
we also present results for a system of L0 = 2L/5 = 8
initially occupied sites, for which this symmetry is bro-
ken. The corresponding widths of the particle cloud are
shown in Fig. 9(b). As one can see, all trends agree with
the previous results and especially the enclosing behavior
of the NEGF methods seems not to depend on the symmetry
of the system.

C. Asymmetric sudden expansion on a two-leg ladder

As mentioned before, the generalization to higher system
dimensions constitutes a challenging problem to DMRG due
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to the additional degrees of freedom in the correlation growth.
Therefore, only simple 2D toy models have been simulated so
far with time-dependent DMRG, including the expansion of
strongly interacting bosons on few-leg ladders and in small 2D
clusters [44]. Since the NEGF method is not restricted with
respect to dimensionality it is very interesting to compare the
performance of both methods on a two-leg ladder to see if the
good agreement of the previous 1D analysis can be confirmed
for higher dimension.

As in Sec. III B, we consider an asymmetric expansion
setup, now with a ladder of ten rungs, the leftmost five of which
are initially doubly occupied [cf. Fig. 1(c)]. The resulting
density evolution is illustrated in Fig. 10(a) where the density
distributions for several times tJ = 0,1,2,3 are shown in a
simulation using the HF-GKBA+TMA approach with U = J .
As in the 1D case, the particles tend to move to the right. To
quantify the growth of the width of the particle cloud we again
use the reduced radius D(t) of Eq. (20) the time evolution
of which is shown in Fig. 10(b) for all considered methods
and U/J = 1,2,3,5. As one can see, the behavior is very
similar to the 1D case (cf. Fig. 9). The slowing down of the
expansion for increasing interaction strength is well predicted
by all considered methods for small interaction strengths,
whereas for larger U , the DMRG curve lies between the NEGF
results.

It should be mentioned that the evolutions of the reduced
radius for all U share a common short-time phase (this is also
present in 1D but becomes more apparent on the ladder), for
which D(t) behaves like the ideal system. This phase shortens
with increasing interaction strength, which is due to the build-
up of correlations. The behavior is similar for the symmetric
expansion setup (cf. Sec. III A) for which the dependence of
the early expansion phases and the connection to the onset of
correlations are analyzed in detail in Refs. [64,65].

D. Relaxation of charge-density-wave state of doublons

We now turn to the fourth setup that is depicted in Fig. 1(d),
an alternating sequence of doubly occupied and empty states
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N = 20. (a) Density imbalance, Eq. (21). (b) Total double occupancy∑

s ds(t).

corresponding to a charge-density wave. There have been a
number of experiments starting from similar initial states with
both fermions [8] or bosons [28], but mostly of the |ψ0〉 =
|1,0,1,0, . . . 〉 type. Theoretically, there is much interest in the
decay of charge-density waves or initial states with perfect
Néel order in the Fermi-Hubbard model, with previous work
on both its 1D version [102,103] and for higher-dimensional
systems (see, e.g., Ref. [104]). The decay from the bosonic
version of our initial state |ψ0〉 = |2,0,2,0, . . . 〉 was studied
in Ref. [105].

Here the dynamics is governed by a short-time process
in which particles move into the empty sites, provided that
U < 4J , which is the bandwidth. After that, a spreading and
build-up of correlations sets in, for which the relevant velocity
is typically strongly dependent on U/J [18,102,103].

A useful quantity for the dynamics is the density imbalance
which is defined as the difference of the densities on all even
and all odd sites,

I(t) = Neven(t) − Nodd(t)

L
, (21)

where Neven (Nodd) sums up all densities of the even (odd)
sites. The imbalance starts from N/L and is then expected
to decay. The results for N = 20 fermions and five different
couplings are shown in Fig. 11(a). In the figure we compare
DMRG results to NEGF simulations using a third-order
approximation for the self energy. We show results for the
single-time limit, i.e., after applying the HF-GKBA [106]. The
agreement is excellent for small and moderate couplings. Only
once the interaction strength becomes as large as U/J = 3,
small deviations are visible which grow for U = 4J . This
is not surprising because the third-order approximation does
not capture higher order corrections. It contains, however,
the third-order electron-hole diagram (cf. Fig. 2) which
becomes essentially important at half filling. Therefore, TOA
simulations are superior to the T -matrix calculations with
respect to the description of CDW dynamics. Similar trends
are seen in the total double occupancy which is displayed in
Fig. 11(b). The dependence of errors of the NEGF methods on
U/J (i.e., an increase as U/J becomes order of the bandwidth)
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in this example is the expected generic behavior since
these methods are by construction weak-coupling approaches.
DMRG works particularly well for U/J > 4 in such problems
[102], illustrating the complementary strength of NEGF versus
DMRG time evolutions.

IV. SUMMARY AND OUTLOOK

A. Summary of main results

In this paper we thoroughly investigated the accuracy
and applicability range of NEGF-based approaches in the
description of the complex and correlated electron dynamics
in strongly excited large Hubbard chains. The basis for this
benchmark analysis were DMRG simulations performed for
the same setups. Based on this analysis for the selected four
setups we may conclude that NEGF simulations are reliable
and accurate, thereby fully confirming earlier comparisons to
exact diagonalization results for small clusters. Thus, NEGF
simulations have predictive power, far beyond the present
systems and situations. More precisely, our conclusions can
be summarized as follows:

(1) The quality of the NEGF results crucially depends on
the choice of the self energy, �, which is clearly dictated by
the physical situation. For weak coupling, U < J (not studied
here, cf. [62]), the second Born approximation is adequate.
For moderate coupling, U � 2J , proper approximations are
the particle-particle T -matrix (TMA) and the third-order
approximation (TOA).

(2) For U � 2J , the choice of � depends on the local
densities (filling): For densities close to zero (or close to
one), TMA is appropriate, confirming earlier results for small
clusters [71], whereas near half filling TOA is significantly
more accurate, as it contains contributions neglected in TMA.

(3) For the present system sizes the HF-GKBA (with the
relevant self energy) yields more accurate results compared to
the corresponding two-time simulations (due to the artificial
damping observed in the latter). While the envelopes of global
dynamical quantities (energies, cloud size, expansion velocity,
density imbalance, etc.) are captured very accurately, oscilla-
tions of these quantities are reproduced only qualitatively, for
U � 2J .

(4) Full two-time NEGF simulations can be used as a
support of the HF-GKBA data, as typically the exact result
is enclosed between the single-time and two-time simulations.
One half of the difference of the two yields a (conservative)
estimate of the numerical error, at least for couplings U � 6J .

Based on this analysis of the NEGF capabilities, the main
outcome of this paper is that NEGF and DMRG have, to a large
degree, complementary strengths and limitations, with respect
to the interaction strength. If U does not exceed the bandwidth
of the system, the NEGF approach has predictive power even
for long-time propagations, and it is directly applicable to 2D
and 3D systems [64]. In contrast, the exponential spreading
of entanglement narrows the DMRG approach to very short
1D simulations (somewhat larger times can be reached than
presented here by using more states and possibly also by using
variants of the algorithm [46,102]). On the other hand, if U is
larger than the bandwidth, the NEGF approach, in its present
form, does not describe the dynamics properly, due to the
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FIG. 12. Relaxation of a CDW state of doublons. System-size
dependence and long-time evolution of the average double occupancy,
Eq. (22), for (a) U = J , (b) U = 4J , and (c) U = 10J (DMRG results
only) for chains of length L = 6,12,20,24,36. Full lines: DMRG,
short dashes: HF-GKBA+TMA. The insets, in addition, show HF-
GKBA+TOA results (long dashes). For better visibility, curves for
different L are shifted vertically by 0.1.

built-in perturbative character of the approximations, whereas
the DMRG method provides the exact dynamics for rather long
times, although being limited to 1D and small 2D systems.

B. Complementarity of NEGF and DMRG simulations:
A case study

To illustrate this complementarity and the reach of the two
methods, we have performed additional long-time simulations
and investigated the system-size dependence of the simula-
tions, for the CDW setup (cf. Sec. III D). As a particularly
sensitive quantity, we introduce the average double occupation

davg(t) = L−1
∑

s

ds(t). (22)

The time evolution of davg is shown in Fig. 12 for different
chain lengths L, ranging from 6 to 36, corresponding to
6, . . . ,36 particles, for (a) U = J , (b) U = 4J , and (c) U =
10J . The NEGF simulations use the HF-GKBA with T -matrix
self energies. TOA simulations had a stability problem and are
included only for shorter times (see insets).

Starting from the case of U = J [cf. Fig. 12(a)], one can see
that the short-time dynamics (tJ < 3) of all considered chains
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are very similar. After the transient oscillations have decayed a
quasistationary regime is observed. However, at some time the
double occupation abruptly increases again [cf. Fig. 12(a)].
These revivals occur periodically, becoming weaker with
increasing system size L, and their periods increase nearly
linearly with L. This indicates particles with a critical velocity
that pass through the entire system. It should be noted that, after
the revivals, davg starts to fluctuate inhomogeneously with an
amplitude that decreases with L. We note that similar revivals
and system-size dependencies were reported in Ref. [107].
While for U = J the DMRG simulations are restricted to very
short times, e.g., tJ ∼ 20 for L = 6 (tJ ∼ 5 for L = 12), the
NEGF simulations easily allow us to reach tJ = 50 and more,
for all chain lengths. The excellent agreement with DMRG is
striking, suggesting that also the long time results are reliable.

Consider now the case U = 4J , Fig. 12(b). Here the
complementary behavior of the two approaches becomes
particularly obvious. While DMRG simulations show an
improved performance compared to U = J and reach times of
the order of tJ ∼ 20, for L = 6 (tJ ∼ 12, for L = 12), NEGF
simulations still reach times of the order of tJ = 50, however,
it is more difficult to achieve convergence. Simulations with the
most accurate TOA self energy are stable only for short times,
on the order of tJ ∼ 4, for L = 20, similar to DMRG, and are
in good agreement with the latter [cf. inset of Fig. 12(b)].
Long-time simulations are presently possible only with
T -matrix self energies which, however, exhibit a small upshift,
compared to DMRG. Interestingly, the L-dependent revivals
that were observed in the NEGF simulations for U = J are
confirmed here as well by the NEGF results and, even more
clearly in the DMRG runs.

Finally, in Fig. 12(c) we show results for U = 10J . Here,
accurate long-time evolutions for small systems can be easily
performed with the DMRG method. In contrast, the available
NEGF approximations are not accurate enough and show poor
convergence for long times (results from NEGF simulations
not included in the figure).

C. Outlook

After this analysis of the NEGF approach and the illus-
tration of the interesting complementarity with DMRG we
briefly discuss questions that will be of interest for future
developments. First, it will be very important to extend the
arsenal of self energies. One important improvement will be
achieved by extending the T -matrix approximation by includ-
ing electron-hole contributions and by including dynamical
screening effects (FLEX approximation [77]). These choices
for the self energy will help to extend the interaction range
where NEGF properly describes the dynamics. Another way
to access larger U is to derive novel self energies via a
perturbation expansion with respect to U−1, i.e., by starting
from a Hamiltonian that includes doublons directly. Finally, it
would be interesting to further improve the GKBA. While it
was found to cure the artificial damping problems of two-time
simulations, the dynamics is often too weakly damped. This
behavior should improve if one uses correlated propagators
instead of HF-propagators [57,81].

While in this paper, 1D and small quasi-1D systems have
been investigated for uncorrelated initial states, it will be
interesting to extend the present method comparison to more
complex, correlated initial states (including the ground states)
as well as to larger 2D and 3D systems. It will also be
interesting to analyze the dependence of the dynamics on
the sign of the interaction [6,64], to investigate disordered
setups [108–111] and to compare the fermionic simulations
to those for bosonic lattice systems. Finally, the access of
long simulation times by NEGF and DMRG for weak and
strong coupling, respectively, should allow one to study
interesting features of the quantum-quench dynamics such as
prethermalization [112–114].
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4.2 Dynamics of Ultracold Atoms

When ultracold quantum gases are brought into particular configurations of counterpropa-

gating laser beams they can be forced to rearrange in what can be fittingly described as

artificial crystals of light. The interfering light beams create spatially periodic polarization

patterns resulting in lattice-like potentials. Adequately cooled neutral atoms can then be

trapped within this elaborate laser field via the Stark shift. The development of these

optical lattices for ultracold atoms has laid the foundation of an extremely versatile and

productive experimental field (an overview can be found, e.g., in Refs. [42–45]). The

strength of this technique is the high degree of controllability as the system’s parameters

can be tuned in such a way that the atoms simulate the electrons of a condensed-matter

state with adjustable characteristics. For this reason, cold gases in optical lattices are con-

sidered a promising realization of a quantum simulator [45]. Likewise, the lattice dimension

can be modified to create effective 1D, 2D, or 3D systems. Due to the high accessibility of

the laser optics, it is possible to design arbitrary potentials and even dynamical excitations.

Another major breakthrough in the field of ultracold atoms in optical lattices has been

the development of the quantum-gas microscopes for bosons [144, 145] and six years later

for fermions [146–150]. They allow for single-site-resolved observations of the atoms in

the lattice. With all these features the technique is well suited to experimentally simulate

bosons or fermions in the Hubbard model and even realize nonequilibrium states.

Due to the possibility to make time-resolved observations of particle dynamics within

optical lattices, it is of particular interest to investigate transport phenomena. A specific

setup that has been successfully studied is the expansion of an initially confined particle

cloud for bosons [151–153] and fermions [140, 154]. For numerical methods the reliable

prediction of bosonic and fermionic expansion is heavily demanding. Therefore, numeri-

cally accurate reference data provided by, e.g., DMRG calculations are usually limited

to 1D setups [154, 156]. This conjuncture has caused a drastic imbalance between the

experiment and the theoretical description [44, 140, 218]. However, the system dimension is

no conceptional barrier for the NEGF method and the recent developments in the author’s

group [136, 289] have rendered the application of the NEGF technique to practically

relevant, correlated nonequilibrium systems possible. For this reason, the author focused

on the prediction of fermionic 2D expansion in his master’s thesis [290]. The result was a

convincingly close agreement with the experimental data by Schneider et al. in Ref. [140].

During the author’s PhD studies, the previous findings have been complemented and

generalized to be published in the following paper,3 Ref. [213].

The time evolution of an expanding fermionic particle cloud crucially depends on the

strength of the on-site interaction. Ref. [213] focuses on the different limiting cases of

the expansion and, in particular, the crossover regime in between. In the noninteracting

limit—starting from a doubly occupied lattice center—the particles can move ballistically

towards the outer region of the system, unaffected by the surrounding fermions. In the

strong-coupling regime, however, one finds a phenomenon called quantum distillation [155]—

the separation between independent single particles and effective doublons (correlated

3N. Schlünzen, S. Hermanns, M. Bonitz, and C. Verdozzi, Phys. Rev. B, 93, 035107 (2016). Copyright

by the American Physical Society. Reproduced with permission.
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particle pairs), both with a characteristic expansion velocity. With increasing interaction,

the doublon fraction becomes larger and more stable. The crossover between both cases,

i.e., the region of intermediate interaction strengths, is governed by various scattering

processes and a complex correlation interplay, with an overall reducing expansion velocity

for increasing coupling. In Ref. [213], an NEGF approach with the (particle–particle)

T -matrix selfenergy, which has been developed by the author, is applied to study the

expansion in finite 1D, 2D, and 3D lattices. An analysis of the particle-number dependence

reveals a universal scaling of the expansion velocity that can be used for an extrapolation

to the macroscopic limit. The resulting data match the experiments of Ref. [140] with

an unprecedented accuracy. Furthermore, the short-time behavior is specified with three

characteristic phases that correspond to the time scales of the mean-field effects, the

(slower) correlation build-up, and the eventual saturation, respectively. Apart from the

single-particle observables, the NEGF approach gives also access to more involved quanti-

ties, such as the double occupation and the entanglement entropy, which give additional

insights to the dynamical behavior.

Finally, it is mentioned that the results have already impacted the community and

Fig. 1 of Ref. [213] has been reprinted in the reviews [122],[79] and [291].
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Quantum transport of strongly correlated fermions is of central interest in condensed matter physics. While
the stationary expansion dynamics have recently been measured with cold atoms in 2D optical lattices, ab initio
simulations have been limited to 1D setups so far. Here, we present the first precise fermionic quantum dynamics
simulations for 2D and 3D. The simulations are based on nonequilibrium Green functions and incorporate strong
correlations via T -matrix self-energies. The simulations predict the short-time dynamics, and we discover a
universal scaling of the expansion velocity with the particle number. Our predictions can be verified experimentally
using the recently developed fermionic atom microscopes.

DOI: 10.1103/PhysRevB.93.035107

I. INTRODUCTION

Particle, momentum, and energy transport of strongly
correlated quantum systems are of growing interest in con-
densed matter [1–3], ultracold quantum gases [4–8], and dense
plasmas [9]. Direct measurements of quantum transport have
been accomplished in Hubbard-type one- and two-dimensional
(1D, 2D) optical lattices by monitoring the expansion of
ultracold atoms following a confinement quench [4,6–8], for
an illustration see Fig. 1. Also, the dynamics following a
quench in lattice depth have been measured [11–14], and
very recently, three groups reported the development of an
atomic microscope for fermions [15–17] opening the way
for experiments with unprecedented single-site resolution.
In contrast to the experiment, theoretical studies of these
transport processes for fermions face fundamental difficulties.
While, in 1D, the expansion of fermions can be accurately
simulated with time-dependent density matrix renormalization
group (DMRG) methods, e.g., Refs. [5,6], currently higher
dimensions are not accessible [18].

The authors of Ref. [4] also presented 2D numerical
results from a semiclassical Boltzmann equation (SC-BE)
model with a collision integral in the relaxation-time approx-
imation (RTA). One important feature of the experiment—
the reduction of the expansion velocity Cexp of the cen-
tral part (the “core,” defined as half width at half maxi-
mum [HWHM]) of the density with the Hubbard coupling
strength U (see Sec. II A) and, eventually, shrinkage of the
core—is qualitatively captured by RTA, see lower part of
Fig. 1. However, additional observations, such as the zero
crossing of Cexp around U = 3 are missed, the value of Cexp

at large |U | is off by several 100%s, and even the value for
the ideal case (U = 0) is not reproduced. This is, of course,
not unexpected [4] due to the known defects of the SC-BE
that include the violation of total energy conservation and
an incorrect asymptotic state [20,21]. Also, the experimental
system is well isolated so the dynamics should be unitary
(reversible), which is in contrast to the Boltzmann equation.
The RTA, in addition, assumes that the system is close to local
thermal equilibrium, which may be adequate only at a late
stage of the expansion.

It is the purpose of this paper to present a theory that
overcomes all these problems. We present the first ab initio
quantum simulations for correlated fermions that apply not
only to one-dimensional systems but also to two and three di-
mensions. We capture not only the final stage of hydrodynamic
expansion but also the early period where the system is far from
equilibrium, and correlations and entanglement emerge. The
method of choice are first-principles nonequilibrium Green
functions (NEGF) simulations—a theory long established
in quantum statistical mechanics, e.g., Refs. [21,22]—and
demonstrate that it is capable to accurately simulate correlated
fermions in Hubbard lattices, in general, and fermionic atoms
in optical lattices under realistic experimental conditions, in
particular.

A first confirmation is shown in the lower part of Fig. 1
where we report excellent quantitative agreement with the
experiment [4] for all U without any free parameters.
Furthermore, we present extensive additional predictions of
quantum dynamics not yet observed experimentally: (a) the
early stage of the evolution of the expansion velocity vexp(t),
of pair correlations and of entanglement, (b) the change
of the dynamics with the system dimensionality D, (c) the
momentum distribution of the expanding correlated fermions,
and (d) the approach of the thermodynamic limit, N → ∞.
Here, a striking universal behavior is discovered: for all
U and D, the expansion velocity decreases with system
size according to v∞

exp(N ) − Vexp ∼ N−1/2, where we denoted
the long-time asymptotics by v∞

exp ≡ vexp(t → ∞) and Vexp ≡
v∞

exp(N → ∞).
This paper is organized as follows. In Sec. II, we introduce

the D-dimensional Hubbard model and summarize the basic
formulas of the nonequilibrium Green functions approach. In
Sec. III, we present the numerical results. In Sec. IV, we
conclude with a summary and a discussion of our results.

II. THEORY

A. Hubbard model

We consider the D-dimensional Hubbard model with
Ns sites that are labeled by a D-dimensional index s =

2469-9950/2016/93(3)/035107(7) 035107-1 ©2016 American Physical Society
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FIG. 1. (Top) Expansion dynamics of 74 circularly confined
fermions in a 2D 19 × 19 Hubbard lattice (1) following the removal
of the confinement at time t = 0, for U = 1(5), first (second) row.
Snapshots of the density ns for four time points during the early
stage of the expansion (t in units of the inverse hopping rate, color
code:

√
ns). (Bottom) Asymptotic core [defined as density HWHM]

expansion velocity Cexp. Plus signs: experimental results for different
lattice depths in units of the recoil energy Er [10]; gray dashed line:
RTA model [4]; red circles: present NEGF results. The black line is
a fit through the experimental points to guide the eye.

(s1, . . . ,sD) and the local spin projection is denoted by σ ∈
{↑,↓}. The Hamiltonian is, in second quantization, expressed
in terms of creation and annihilation operators ĉ

†
s,σ and ĉs,σ :

H (t) = −
∑
〈s,s′〉

∑
σ=↑,↓

ĉ†
s,σ ĉs′,σ + U

∑
s

ĉ
†
s,↑ĉs,↑ĉ

†
s,↓ĉs,↓

+
∑

s

∑
σ=↑,↓

V R
s (t)ĉ†

s,σ ĉs,σ , (1)

and, in the first (hopping) term, 〈s,s′〉 denotes nearest-neighbor
sites. The second term describes on-site interactions of
electrons with opposite spin, which has the strength U . In
the third term, V R(t) is a circular potential of radius R that
initially confines N fermions occupying N/2 sites in the trap
center. In the present paper, we consider the dynamics that
are initiated by a potential quench, i.e., at time t = 0, V R is
switched off what initiates a diffusion process, as, e.g., in the
experiment [4].

B. Nonequilibrium Green functions

Our goal is to study the correlated expansion dynamics of
spatially inhomogeneous finite Hubbard clusters with a single-
site resolution. We are interested in the dynamics on all time
scales while exactly fulfilling the many-particle conservation

laws of particle number, momentum, and total energy. This
can be achieved using NEGF that are defined on the Keldysh
time contour C with the contour-time-ordering operator TC as

G
σ

ss′(z,z′) = − i

�
〈TC ĉs,σ (z)ĉ†

s′,σ (z′)〉. (2)

The Green functions can be understood as generalized time-
dependent single-particle density matrices on the lattice where
the presence of two time arguments allows to incorporate
spectral information, and 〈. . . 〉 denotes the ensemble average.
The equations of motion for the NEGF are the Keldysh–
Kadanoff–Baym equations (KBE) [21,22],(

i�
∂

∂z
δs,s̄ − h

σ
ss̄

)
G

σ

s̄s′(z,z′)

= δC(z − z′)δs,s′ +
∫

C
dz̄ �

σ
ss̄(z,z̄)Gσ

s̄s′(z̄,z′), (3)

and its adjoint (summation over s̄ is implied). In order to
account for correlation effects in the dynamics, the self-energy
� includes, in addition to mean-field (Hartree-Fock), also
correlation contributions. For weak to moderate coupling
(|U | � 1), the second-order Born approximation is appropriate
[23], which includes all irreducible diagrams of second order
in the interaction (second order in U ). However, for the case
of strong correlations (large |U |), the next orders (third, fourth
powers of U ) become comparable and perturbation theory
fails. Therefore one has to sum up the entire Born series,
i.e., diagrams of all orders in U . This is equivalent to the
T -matrix approximation to the correlation self-energy (TMA
[24]), which reads, for the Hubbard model [25],

�
cor,↑(↓)
ss′ (z,z′) = i� Tss′(z,z′) G

↓(↑)
s′s (z′,z) , (4)

Tss′(z,z′) = −i� U 2 G
↑
ss′(z,z′) G

↓
ss′ (z,z′)

+ i� U

∫
C
dz̄ G

↑
ss̄(z,z̄) G

↓
ss̄(z,z̄)Ts̄s′(z̄,z′). (5)

Here, T can be understood as an effective interaction obeying
the Lippmann-Schwinger equation (5), e.g., Refs. [20,22,27].
The first term in (5) alone describes the interaction of a
single fermion pair and corresponds to the second-order Born
approximation, whereas the integral term adds interaction
contributions of all orders (in U ).

We underline the conserving character of this approxima-
tion [22] and, in fact, conservation of particle number and total
energy is observed to high accuracy in all our simulations.
Further, time-reversal symmetry is guaranteed (as it should
be since the system is isolated). Also, our simulations yield
the same time-dependent densities when U is replaced by
−U confirming the dynamical symmetry demonstrated in
Refs. [4,28].

The two-time KBE have been solved for a variety of
spatially homogeneous systems, including dense plasmas and
optically excited semiconductors [29–31] or the uniform
electron gas [32]. More recently, spatially inhomogeneous
systems were studied, in particular, the ionization dynamics
of few-electron atoms [33–35] and quantum dots [2]. All
these simulations used self-energies on the level of the static
second Born approximation. Only recently the use of the
two-time TMA, under full nonequilibrium conditions, has
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become possible for the Hubbard model in Refs. [23,25,36].
However, only very small 1D systems (N � 6,U � 4) could
be simulated for rather short times. Here, we report a dramatic
extension of TMA simulations in terms of particle number,
simulation duration, and dimensionality. With this, it is
possible, for the first time, to access experimentally relevant
situations. We systematically study up to N = N↑ + N↓ =
2N↑ = 114 fermions in a broad range of coupling parameters,
0 � |U | � 8, in a one-, two-, and three-dimensional lattice.

III. RESULTS

The initial state of our simulations is a doubly occupied
spherical central region in the ground state [4] that is confined
by a properly chosen potential V R which is turned off at t = 0.
In our simulations we use a steplike potential. We show in
Sec. III E that the precise functional form has a negligible
effect on the expansion dynamics. The KBE (3) are then solved
with this initial condition for the two-time correlation function
G

σ,<

ss′ (t,t ′) (the less component of the NEGF (2)[21,37])
yielding the time dependence of all observables.

Figure 1 shows snapshots of the site-resolved particle den-
sity ns(t) = n

↑
s (t) + n

↓
s (t) with n

σ
s (t) = −iGσ,<

ss (t,t), for two
couplings, U = 1, 5. For U = 1, the density rapidly evolves
towards the square symmetry of the lattice, whereas for U = 5
the core region remains circular over the entire simulation
duration, in agreement with experimental observations [4].

A. Time evolution of the expansion velocity

The density evolution is quantified by the diameter d(t) =√
R2(t) − R2(0), corrected for its starting value R(0),

R2(t) = 1

N

Ns∑
s

ns(t) ‖s − s0‖2 , s0 = 1

N

Ns∑
s

ns(0) s ,

where the center of mass s0 is immobile in the present case.
The left part of Fig. 2 shows the dynamics of the instantaneous
expansion velocity

vexp(t) = d

dt
d(t), (6)

FIG. 2. (Left) Time evolution of the expansion velocity for N =
58 in 2D and various U . (Right) Evolution of the independent-particle
and correlation parts of the entropy and energy, for U = 4. Symbols
mark the respective inflection points. Shaded areas correspond to the
three phases of the evolution (see text).

for various U , for a typical case, N = 58 in 2D. As the system
is initially uncorrelated, the expansion starts ballistically from
the ideal value, vexp(0) = vid = √

2D = 2, and converges to a
smaller asymptotic value, v∞

exp. These asymptotics monotoni-
cally decrease with increasing coupling strength U . This trend
is well known and easily understood: the diffusion front forms
at the cluster edge since particles in the “bulk” cannot move
due to the Pauli principle, since all neighboring lattice sites
are occupied. When |U | grows, the expansion of the outermost
particles is slowed down due to the growing interaction with
the bulk particles. Here, we can quantify this trend, for the first
time, for two- and three-dimensional systems.

B. Short-time dynamics. Build-up of correlations and
entanglement

The time evolution of vexp(t) is not trivial and results from
the interplay between independent-particle and correlation
effects. To quantify this, we decompose the double occupation
[38] of each site s into a factorized part (“fac”) and a correlation
part (“corr,” the reminder)

n↑↓
s = 〈ĉ†

s,↑ĉs,↑ĉ
†
s,↓ĉs,↓〉 =: n↑↓,fac

s + n↑↓,corr
s , (7)

n↑↓,fac
s = n↑

s n
↓
s . (8)

The factorized contribution is formally equivalent to the
contribution of independent particles. Note, however, that the
single-particle densities entering n

↑↓,fac
s are obtained from a

fully correlated calculation and, thus, the factorized term also
contains interaction effects.

With this, we identify the corresponding components of the
energy (Efac, Ecorr) [23] as well as the entanglement entropy
[38,39],

S = Sfac + Scorr =
∑

s

Ss, (9)

Ss = −2

(
ns

2
− n↑↓

s

)
log2

(
ns

2
− n↑↓

s

)
,

− n↑↓
s log2n

↑↓
s − (1 − ns + n↑↓

s )log2(1 − ns + n↑↓
s ).

(10)

Here, the factorized contribution, Sfac follows from the total
entropy by the replacement Eq. (8).

The dynamics of these two energy and entropy contribu-
tions are dominated by single-particle and correlation effects,
respectively, and it is well known from the dynamics of uni-
form systems [21,29,40] that they proceed on rather different
time scales: typically pair correlations relax substantially faster
than single-particle quantities. In the expansion dynamics
of the present Hubbard clusters we also observe a sequence of
time scales, however, the details are very different. We identify
three characteristic phases: during the first phase, Sfac (Efac)
is being built up (destroyed), resulting in a decrease of vexp,
see Fig. 2. Here, the increase of Sfac measures the transition
from a state of independent particles (S = 0) to an interacting
many-body state. The inflection point τfac (circles) of Sfac (and
Efac) is representative for the time scale of this phase. The
second phase is characterized by the saturation of Efac and
vexp. The simultaneous build-up of correlations partly prolongs
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N = 74

√
n

s
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√
2

·n
↑↓ s
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√
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√
15

· δ
n
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N = 2

√
n

s

t=0 t=1 t=2 t=3

N = 26

√
n

s

0.0

0.2

0.4

0.6

0.8
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FIG. 3. Fermion expansion dynamics in a 2D 19 × 19 Hubbard
lattice (1) at U = 4. Top three rows: square root of density ns for
N = 2, 26, and 74, respectively. Rows 4–6: square root of double
occupation, entropy density Ss, and the pair correlation function
δn↑↓

s = n↑↓
s − n↑

s n
↓
s .

the saturation and determines the final value, v∞
exp. The time

scale of these processes is the correlation time τcorr [21,40],
which is estimated by the inflection point of Scorr (and Ecorr,
diamonds). Both phases become shorter when U is increased,
i.e., correlations accelerate the early dynamics, cf. left part
of Fig. 2, It is evident that τcorr is one order of magnitude
larger than τfac—in striking contrast to homogeneous systems
as discussed above. The main difference here is the strong
inhomogeneity leading to a spatially localized formation
of correlations and entanglement [see Sec. III C] and the
formation of a diffusion front.

C. Single-site resolved expansion and correlation dynamics

Additional insight into the physics is gained from a site-
resolved analysis which is presented in Fig. 3. The top three
rows show the dynamics in 2D for a fixed U and three particle
numbers. Quantum interference effects are evident for small
N . Further, the dynamics are slowing down with increasing
N , because only fermions at the cluster edge are mobile,
in the beginning, due to the Pauli principle. The fourth row
displays the spatial distribution of the double occupation n

↑↓
s .

It originally coincides with the single-particle density (third
row) but then the two decouple. The much slower doublon
expansion is the first indication of “quantum distillation”[41]
of fermions in 2D. Finally, the emergence of entanglement and
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FIG. 4. Momentum distribution p(k), Eq. (11) at t = 9.5, for a
1D system of Ns = 65 for N = 2, . . . ,42. (Top) U = 3. (Bottom)
U = −3. The dashed lines denotes the uniform initial distribution
p0(k). (Insets) N -dependence of amplitude a. Symbols: data points,
lines: linear fits.

of pair correlations is shown in rows 5 and 6. Both start from
zero everywhere and emerge first at the cluster boundary from
where they propagate inward and outward. These processes
are accelerated (slowed down) with increasing U (N ), which
explains the corresponding behavior of the characteristic time
scales τfac and τcorr.

D. Hydrodynamic expansion phase. Momentum distribution

The third and final phase is the hydrodynamic expansion
where vexp, the correlations and the momentum distribution
have become stationary, see Fig. 4, whereas the independent-
particle energy and entropy continue to evolve, cf. Fig. 2.
Figure 4 shows the normalized momentum distribution,
p(k) = n(k)/N [obtained from the site occupations], of a 1D
system for U = 3 at the end of the simulation. For all N , p(k)
is oscillatory with an amplitude a that monotonically decreases
with N . For large N , it is very well described by the function

p(k) = p(k) = Ns
−1 − a cos(k) , (11)

where the value of a(U,N ) is shown in the inset of Fig. 4 for
different U . It is obvious that, for positive U , p(k) is peaked at
±π while the maximum of the occupation is around k = 0, for
negative U . We note that these results are in agreement with the
qualitative predictions in Ref. [28]. A striking observation is
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FIG. 5. (Left) Asymptotic expansion velocity vs particle number
for D = 1, . . . ,3 and U = 1, . . . ,3. Symbols correspond to data
points, errors are smaller than symbol size. Dashed lines: linear
extrapolation N → ∞ according to Eq. (13). (Right) Corresponding
slope χ vs bandwidth-normalized interaction.

the particle number dependence of the momentum distribution.
We observe that the amplitude of the oscillations scales as
a ∼ N−1/2. The origin of this scaling is presently an open
question but this behavior was observed in all cases and appears
to be universal.

To quantify the stationary hydrodynamic expansion we
extrapolate the expansion velocity to t → ∞, denoting the
result by v∞

exp. It is obtained from vexp(t) by averaging over all
times exceeding tavg where saturation is reached (cf. Fig. 2)
and which is given by∣∣∣∣ 1

vexp(t)

dvexp

dt
(t)

∣∣∣∣ < ε , (12)

for all t > tavg and a given small parameter (ε � 1). To
quantify the error of v∞

exp, we use the standard deviation σ (v∞
exp)

of the averaging process.
An interesting question is how the expansion of a group

of N fermions depends on the value of N and the system
dimensionality D. The results of the extrapolation are shown
in the left part of Fig. 5. Again, we observe a monotonic
decrease with U and, furthermore, a systematic increase of
v∞

exp with D, that is due to the enlarged number of degrees of
freedom.

E. Influence of particle number and dimensionality.
Extrapolation to the macroscopic limit

The most striking observation is the N dependence of v∞
exp

and its approach to the macroscopic limit: for any fixed U and
D and sufficiently large N , we observe the scaling

v∞
exp(U ; N ; D) − Vexp(U ; D) = χ (U ; D)N−1/2 , (13)

Vexp(U ; D) ≡ lim
N→∞

v∞
exp(U ; N ; D). (14)

Interestingly, this N dependence is the same as in the
momentum distribution (11), cf. Fig. 4 and is caused by the
latter.

For the extrapolation, Vexp and the slope χ are used as fit
parameters. Only particle numbers N larger than a cutoff value

FIG. 6. Macroscopic expansion velocity Vexp for varying U .
Comparison between Hartree-Fock (HF) and the correlated T -matrix
(TMA) results.

N
 are taken into account. The errors σ (v∞
exp) are also included

in the fit process, resulting in the final statistical uncertainty,
σ (Vexp). We note that our procedure is very similar to the one
applied for the diffusion of a Mott insulator and Néel state in
a 1D fermionic system in Ref. [42].

The right-hand part of Fig. 5 shows the dependency of
the slope χ on the bandwidth-normalized interaction strength
U/(b/2) with the effective bandwidth b = 4D. For all D and
N , χ starts from zero, at U = 0, which is a consequence
of ballistic expansion of noninteracting particles. When U is
increased further, χ reaches a maximum slightly below U =
(b/2) and then decreases again. The reason for the latter is
that fermions on doubly occupied sites are effectively frozen,
at large U , regardless of N . In-between these two limits, the
slope shows a qualitatively similar behavior for all D: a steep
rise (slow decrease) for small (large) U .

We now turn to the analysis of the macroscopic limit of
the expansion velocity, Vexp. In Fig. 6, we show Vexp as a
function of U and confirm the monotonic reduction that was
observed before for finite N , cf. Fig. 2. The error bars show
the total statistical error resulting from the time averaging
and the extrapolation with respect to N . We also show, for
comparison, the Hartree-Fock approximation, which exhibits
strong deviations, which underlines the key role of correlations
in the present quench dynamics.

Similar to our procedure of obtaining the asymptotic
expansion velocity v∞

exp and its macroscopic limit, we can
proceed with the core expansion velocity c∞

exp and its macro-
scopic limit, Cexp. The experimental results of Schneider
et al. [4] for a 2D Hubbard system and our T -matrix results
were displayed in Sec. I, in Fig. 1, We now explain how
our results were obtained. For the case D = 2, the density
distribution is averaged azimuthally for each time step. The
half width at half maximum of the resulting density profile,
RHWHM(t), is used to measure the “core” width. Adjusted for
the initial core width, R0

HWHM, c∞
exp is determined by fitting the

resulting RHWHM(t) to

RHWHM(t) =
√(

R0
HWHM

)2 + (
c∞

expt
)2

(15)

for all t > tavg with R0
HWHM and c∞

exp as free fitting parameters.
Since the core of the density distribution starts to shrink for
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FIG. 7. Dependence of the asymptotic expansion velocity on N

for confinement potentials of different curvature γk(N ). Insets show
the shape of the initial density profile.

sufficiently large interaction strength U , we apply

RHWHM(t) =
√(

R0
HWHM

)2 − (
c∞

expt
)2

(16)

instead, following Ref. [4], and consider c∞
exp the speed of

contraction of the core region.
The extrapolation of c∞

exp is done as in Eq. (13), resulting
in the macroscopic core expansion velocity Cexp, confirming
the scaling with N−1/2. This robust scaling with N allows us
to perform the thermodynamic limit, N → ∞. This yields
the results that were presented in Fig. 1, and that exhibit
excellent agreement with the experiment over the entire U

range, including the zero crossing of Cexp around U = 3.
One may wonder whether the results depend on the chosen

steep confinement, cf. Figs. 1 and 3. Here, we demonstrate that
the shape of the initial confinement has only a minor effect
on the asymptotic expansion velocity, in agreement with the
observations in Ref. [43]. To this end, we use a harmonic
confinement

V (R) = γkR
2 , (17)

with curvature γk . To achieve a similar shape for different N ,
we choose

γk(N ) = k/N , (18)

for three strengths k = 3,5,10. Together with the steplike
potential (k → ∞), the results are shown in Fig. 7. Even
though the initial density profile is affected by the curvature
(see inset), the expansion velocity is not. In particular, the
macroscopic limit, Vexp changes by less than 10%.

IV. DISCUSSION

To summarize, we have introduced T -matrix NEGF simu-
lations into the field of fermion dynamics in Hubbard lattices
providing the first accurate quantum dynamics results [24] for
two and three dimensions [44]. While the magnitude of the
error of NEGF simulations with T -matrix self-energies for the
present large systems is not exactly known, for the cases where
the exact results are available (small N , 1D) the agreement
is excellent [23,25,26]. It is expected that the accuracy will
further improve when N increases, as well as in higher
dimensions. The largest uncertainty is expected for Hubbard
clusters at half-filling and for small integrable systems. Further
tests are needed to verify and quantify this behavior.

Our results for 2D fermionic Hubbard clusters exhibit
excellent quantitative agreement with recent experiments
that investigated the final stage of the expansion dynamics
following a confinement quench [4]. They, moreover, yield
detailed information on the early stages of the dynamics of
correlated fermions, including the buildup and propagation
of correlations and entanglement and on the effect of the
system dimensionality. Furthermore, we uncovered a universal
scaling of macroscopic quantities with N . Our predictions,
including the site-resolved results for the pair correlations and
entanglement entropy, can be directly tested experimentally
using the novel quantum-gas microscopes [15–17].
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and F. Heidrich-Meisner, Phys. Rev. A 85, 043618 (2012).

[44] For more details, see N. Schlünzen, and M. Bonitz, Contrib.
Plasma Phys. 56 (to be published in 2016).

035107-7



382Chapter 4 Applications to Correlated Lattice Systems Out of Equilibrium

4.3 Ion Stopping in Hexagonal Lattices

The mechanism of ion stopping is a fundamental concept in physics and has important

applications in such diverse fields as medicine [292–294], astrophysics [295–297], astro-

biology4 [298–300], warm dense matter [301–304], and in laboratory research [40, 244,

301, 305]. In particular, the impact of energetic ions on solid surfaces (see, e.g., Refs. [38,

306–315]) is of high relevance for modern applications including magnetic fusion as well as

inertial confinement fusion [40, 316], and ion-sputtering experiments [40]. Moreover, ion

stopping is generally at the heart of plasma–solid-interface scenarios (see, e.g., Ref. [246]).

An important characteristic describing ion-stopping processes is the energy-loss function,

or stopping power, of the incident charged particles. Measuring the stopping power is a

valuable diagnostic tool to investigate the electronic structure of materials [244]. A partic-

ularly interesting target material with a unique ion-radiation response is the acclaimed

carbon allotrope graphene [157]. It has a number of intriguing and exotic properties

that follow from its two-dimensional, hexagonal configuration [157, 163–166, 317]. For

this reason, graphene-based structures are on the verge of revolutionizing nanoelectronics

permanently [186–188] (see also Sec. 5.1). While in planar graphene5 electronic correlation

effects are only of minor importance, they significantly shape the physics of finite graphene

fragments due to the induced quantum confinement. Therefore, graphene clusters provide a

unique opportunity to study the nontrivial interplay of nonequilibrium and correlations. In

the context of ion-impact excitations, however, previous first-principle studies of graphene

fragments [38, 310, 311] involved adiabatic approximations. This contradicts the true

nature of the complex nonequilibrium state that arises from the redistribution of the

correlated mobile electrons due to the rapidly evolving ionic field. To fully understand

the electronic response to ionic radiation and its impact on the stopping power, a highly

accurate description of nonequilibrium correlations is therefore indispensable.

This demanding challenge can be met by using the NEGF technique, which allows

one to systematically describe electronic correlations via the choice of the selfenergy (cf.

Sec. 2.1). Therefore, the author (in close collaboration with Karsten Balzer and others)

focused on the description of ion stopping in finite hexagonal lattices via NEGF and

further complementing quantum-dynamics tools. The results of these efforts have been

published in the three following papers,6,7,8 Refs. [214], [41] and [215], as well as in the

topical review [207] that is discussed and included in Sec. 2.2. Within these publications,

two important key observations are made:

4The interaction of solar-wind ions with ice surfaces in space is believed to trigger the evolution of certain

prebiotic organic materials [298–300].
5For planar graphene, the exposition to ion radiation has been studied both experimentally and in

theory [39, 318–320].
6K. Balzer, N. Schlünzen, and M. Bonitz, Phys. Rev. B, 94, 245118 (2016). Copyright by the American

Physical Society. Reproduced with permission.
7K. Balzer, M. Rodriguez Rasmussen, N. Schlünzen, J.-P. Joost, and M. Bonitz, Phys. Rev. Lett., 121,

267602 (2018). Copyright by the American Physical Society. Reproduced with permission.
8N. Schlünzen, K. Balzer, M. Bonitz, L. Deuchler, and E. Pehlke, Contrib. Plasma Phys., 59, e201800184

(2019). Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.

https://doi.org/10.1103/PhysRevB.94.245118
https://doi.org/10.1103/PhysRevLett.121.267602
https://doi.org/10.1103/PhysRevLett.121.267602
https://doi.org/10.1002/ctpp.201800184
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• It is demonstrated that electronic correlations in finite graphene have important

consequences for the stopping power of the incident ion (Refs. [214], [215] and [207]).

• It is proposed that the excitation by ion impact constitutes an efficient mechanism to

induce the formation of doublons—bound pairs of correlated electrons with opposite

spin—in graphene fragments (Refs. [41], [215] and [207]).

In Ref. [214], the effect of electronic correlations on the stopping power of fully ionized

hydrogen and helium atoms passing through finite segments of hexagonal lattices is

investigated. To this aim, time-dependent simulations have been performed with a

combined Ehrenfest–NEGF approach, i.e., the projectiles are treated classically with

Newton’s equations for the Coulomb interaction, whereas quantum-many-body effects

are considered between the lattice electrons via a Hubbard Hamiltonian. Within this

description, for sufficiently fast ions, the stopping power is bounded by two opposing effects:

if the time scales of the system’s components differ drastically, the lattice electrons either

adiabatically follow the potential landscape caused by the atom in a completely symmetric

and reversible process, or the effective interaction time becomes too small to cause any

energy transfer at all. This leads to a typical bell shape for the stopping power with a

maximum at a certain velocity. The paper compares different perturbation degrees for the

correlation treatment, ranging from the (mean-field) Hartree approximation, and the local

second-order selfenergy (both provided by Karsten Balzer) to full two-time selfenergies

in second-order, third-order and T -matrix approximation (cf. Sec. 2.1), as well as the

application of the GKBA (all provided by the author). From mean-field calculations, one

can easily deduce that strong interactions in the lattice have the effect of reducing the

maximum in the stopping-power curve. This qualitatively correct trend is due to the

decreased mobility of collective electrons. The analysis of Ref. [214] shows that this effect

becomes even more pronounced for more accurate treatments of correlations. Furthermore,

it is found that in a certain low-energy range the energy loss is slightly increased compared

to the mean-field prediction, which goes together with an altered scaling behavior in this

regime. Another connection that is explored in Ref. [214] concerns the influence of finite

temperatures on the stopping power. Here, it is demonstrated that increased thermal

fluctuations in the electronic system hamper a coherent response and, thus, cause an overall

reduced energy loss for the projectile. The simulations also indicate that correlations can

gain relative importance for larger temperatures, but the particular reason for this effects

remains an interesting topic for future research. There are certain classes of processes

that cannot be accounted for within the used theoretical model in Ref. [214], such as

lattice phonons, charge transfer between both components and electronic excitations of

the energetic atom. Recent attempts to consistently include charge transfer into NEGF

calculations can be found in Refs. [207, 246, 247]. Though it is clear that such processes

become negligible for sufficiently fast ions, it is important to examine the validity of the

considered approximations. To this end, the final section of Ref. [214] contains benchmark

calculations for protons and alpha particles penetrating through single-layer graphene.

With some model adjustments to ensure the applicability to real graphene, it is possible

to achieve convincing agreement with the experimentally supported SRIM results [315].

Having found that electronic correlations in the lattice can have a profound impact
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on the slowing down of the incident projectile, it was reasonable to further investigate

the characteristics of the emerging many-body states. As elaborated in, e.g., Secs. 2.1.1

and 4.2, the decreased mobility in strongly interacting Hubbard systems goes together

with the formation of correlated doublons. Since the double occupation is expected to

be minimal in the (half-filled) groundstate of electronic lattices, this suggests that the

exposition of energetic ions could favor the emergence of doublons. Upon closer analysis,

this turned out to be well quantifiable not only during the impact of the projectile;

the double occupation remains at an increased level even after the field of the ion has

vanished—corresponding to the existence of stable doublons. This came as a surprise since

comparable observations of doublon manifestation processes involved mainly spatially

delocalized excitation scenarios [321–328]. Ref. [41] demonstrates and discusses this novel

doublon-formation protocol on several levels. An exactly solvable twelve-site Hubbard

cluster that represents a simplified honeycomb flake is used to show the substantial growth

in the double occupation when exposed to fast protons and alpha particles. The effect is

then quantified in terms of the projectile’s velocity. Interestingly, the local densities of

the lattice quickly go back to a homogeneous distribution after the impact. This implies

that the system is driven into a so called “prethermalized” [329, 330] doublon state. To

shine more light on the underlying mechanism, a carefully selected minimal two-site model

is analyzed regarding its energy levels during the excitation. With this, the doublon

formation is successfully explained by a Landau–Zener transition [331, 332]—a driven

transition at the point of an avoided energy crossing [328, 333]—between a single-particle

state and a doublon state. The remainder of Ref. [41] is dedicated to the question how the

described excitation protocol can be used to generate stable doublons in larger 1D and 2D

systems. Obviously, the effect of a single energetic ion becomes progressively insignificant

when the system size is gradually increased. Multiple sequential excitations, however, allow

for a successively increased average double occupation up to dav = 0.25, as is demonstrated

for Hubbard chains and hexagonal lattices up to Nb = 54. These calculations only became

possible with an efficient NEGF description involving the GKBA and the second-order

Born selfenergy and its massively parallelized implementation, which has been provided

by the author. It should be noted that the subsequently developed G1–G2 scheme (see

Sec. 3.1) is able to push the limits even further. This will be demonstrated in an upcoming

publication [256].

As elaborated in Sec. 2.1, the NEGF method gives access to a variety of observables

including detailed information about the individual energy contributions. In the context

of ion stopping, this is further explored in Ref. [215] where the results of the previous

two papers are complemented and an additional perspective with TDDFT calculations is

added. The TDDFT part has been conceptualized by Lukas Deuchler and Eckhard Pehlke.

Based on earlier analyses of different stopping scenarios [309, 310, 334–338] they applied a

TDDFT description to the impact of neutral and ionized hydrogen atoms on an Al(111)

surface which captures charge transfer and energy dissipation. Additional investigations

following this ansatz can be found in Ref. [339]. The NEGF part of Ref. [215] again focuses

on proton stopping in finite honeycomb clusters. Ehrenfest–Green-functions calculations

are used to give a detailed breakdown of several energy contributions and the average

double occupation. The extensive parameter scan that was provided by the author allows

for a fully time-dependence analysis covering a wide range of initial projectile velocities.
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Comparable NEGF simulations with a local selfenergy (provided by Karsten Balzer) are

used to take a closer look at the occurrences of correlation-enhanced stopping power for

impact energies below 1 keV, that were already mentioned in the description of Ref. [214].

Finally, Ref. [215] discusses the benefits and disadvantages of the considered TDDFT and

NEGF approaches on ion stopping and explores how both methods can be combined to

refine the predictive capability.
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A combined nonequilibrium Green functions–Ehrenfest dynamics approach is developed that allows for a
time-dependent study of the energy loss of a charged particle penetrating a strongly correlated system at zero
and finite temperatures. Numerical results are presented for finite inhomogeneous two-dimensional Fermi-
Hubbard models, where the many-electron dynamics in the target are treated fully quantum mechanically and the
motion of the projectile is treated classically. The simulations are based on the solution of the two-time Dyson
(Keldysh-Kadanoff-Baym) equations using the second-order Born, third-order, and T-matrix approximations
of the self-energy. As application, we consider protons and helium nuclei with a kinetic energy between 1
and 500 keV/u passing through planar fragments of the two-dimensional honeycomb lattice and, in particular,
examine the influence of electron-electron correlations on the energy exchange between projectile and electron
system. We investigate the time dependence of the projectile’s kinetic energy (stopping power), the electron
density, the double occupancy, and the photoemission spectrum. Finally, we show that, for a suitable choice of
the Hubbard model parameters, the results for the stopping power are in fair agreement with ab initio simulations
for particle irradiation of single-layer graphene.
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I. INTRODUCTION

The interaction of particles with matter is a fundamental
aspect of physics and allows one to measure their properties
in colliding-beam or beam-target experiments. Conversely,
the irradiation of matter by particles can be used also as a
diagnostic tool to probe the static and dynamic properties of
matter itself. In soft collisions of heavy charged particles,
such as ions, with a solid, typically the electrostatic force,
i.e., the Coulomb interaction, has the largest impact, leading
to excitation and ionization of electrons in the target material
and thus to the loss of kinetic energy of the projectile [1]. For
nonrelativistic projectile velocities of the order of or larger
than the Fermi velocity (∼106 m/s in metals), theoretical
approaches based on scattering theory [2] or on the response
functions of the homogeneous electron gas [3], can give a
quantitative description of the energy transferred during the
collision process but neglect the precise atomic composition
of the target.

Regarding first-principles modeling in the same velocity
regime, recent theoretical progress is due to time-dependent
density functional theory (TDDFT), which has been applied
to describe the slowing down of charged particles in a
variety of solids, including metals [4–6], semimetals [7,8]
and clusters [9,10], narrow-band-gap semiconductors [11], and
insulators [12,13]. Taking into account primarily the excitation
of valence electrons, these simulations yield satisfactory
results for the electronic stopping power (the transfer of energy
to the electronic degrees of freedom per unit length traveled by
the projectile) and work for a wide range of impact energies. On
the other hand, one can quite generally determine the stopping
power of energetic ions in matter using the SRIM code [14],
which uses the binary collision approximation in combination
with an averaging over a large range of experimental situations

*balzer@rz.uni-kiel.de

to provide energy loss and range tables for many materials and
gaseous targets. In principle, TDDFT and SRIM can include
effects of electron-electron correlations on the stopping be-
havior, either by using exchange-correlation potentials beyond
the local density approximation in TDDFT, e.g., [15,16], or
by including static exchange and correlation contributions to
the interaction energy between overlapping electron shells in
SRIM. Despite these capabilities, both methods have, however,
difficulties to approach strong Coulomb correlations, which
are crucial, e.g., in transition-metal oxides [17] or specific
organic materials [18]. In addition, we note that SRIM does
account neither for the exact crystal structure of the material
nor dynamic (i.e., time-dependent) changes in the target during
the collision process, which limits its applicability.

It is, therefore, interesting to consider an alternative
approach to the stopping power that does not have these
limitations: nonequilibrium Green functions (NEGF) [19,20].
This method allows one to systematically include electron-
electron correlations via a time-dependent many-body self-
energy, and it has recently successfully been applied to strongly
correlated lattice systems as well [21]. Particular advantages
of the NEGF approach are that it is not limited to either weak
or strong coupling and that it is particularly well suited to study
finite-sized clusters and spatially inhomogeneous systems
on a self-consistent footing. While the NEGF approach is
computationally very demanding, in recent years efficient nu-
merical schemes have been developed to solve the underlying
Keldysh-Kadanoff-Baym equations (KBE) [22–29].

Here, we extend the NEGF approach by including the
interaction with a classical projectile using an Ehrenfest-type
approach that is well established in TDDFT simulations. Our
goal is to develop a full time-dependent and space-resolved
description, which is necessary as the projectile induces local
time-dependent changes to the electron density and to the local
band structure. This allows us, in particular, to consider finite
clusters of size L, which are of substantial current interest.
Furthermore, we study the size dependence of the response

2469-9950/2016/94(24)/245118(13) 245118-1 ©2016 American Physical Society
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to the projectile. At the same time, the thermodynamic limit
of the stopping power (cluster size L approaching infinity)
is more difficult and expansive to obtain, as it requires an
extrapolation of results for different L. Nevertheless, we obtain
good agreement with existing results for macroscopic systems.

To implement this approach, we choose, as a first applica-
tion, the energy deposition of simple ions (protons and alpha
particles), where there is no interatomic electron dynamics,
in planar two-dimensional honeycomb clusters, in which the
electron dynamics is well described in terms of a Fermi-
Hubbard model. To investigate the importance of electronic
correlation effects, we vary the coupling strength from small to
moderate values (up to U/J = 4) and test various self-energy
approximations, such as the second Born and the much more
involved T-matrix approximation. The results are compared to
mean-field (Hartree) results, which are provided by the same
NEGF program.

The paper is organized as follows. In Sec. II, we define the
model Hamiltonian, discuss the interaction potential between
projectile and target, and describe the self-consistent compu-
tational scheme, which allows us to calculate the correlated
electron dynamics on the honeycomb clusters. In Sec. III, we
review the equilibrium properties of the target system, which
are sensitive to correlations, and then present the main results
for the stopping dynamics in Sec. IV. Here, we primarily
focus on the effect of electron-electron correlations on the
energy transfer, analyze the time-dependent collision process
for a wide range of projectile velocities, and consider different
initial states and temperatures. In Sec. V, we finally discuss
the application of the used model to graphene and conclude
the paper with Sec. VI, outlining possible future work.

II. COMPUTATIONAL SETUP

A. Model

To study the stopping dynamics of a classical charged
particle which passes through a (strongly) correlated system,
we consider a finite lattice of electrons described by a
single-band Fermi-Hubbard model and monitor the transfer
of energy during the collision process. Taken as a whole,
the lattice system is electrically neutral, i.e., the electronic
charges are compensated by corresponding opposite charges
located at the site coordinates Ri . The general stopping
mechanism is mediated by the bare Coulomb interaction
between the projectile, the fixed background charges, and the
target electrons which are initially in equilibrium. Throughout,
we focus on positively charged ions as projectiles, which, when
approaching the lattice, induce a confinement potential to the
electrons and thus initiate a nonequilibrium electron dynamics.
In turn, the ions (of mass mp and charge Zpe) react to any
charge redistribution on the lattice and change their position
and kinetic energy accordingly.

As lattice systems, we choose circular honeycomb clusters,
which are oriented in the xy plane and have a finite number of
honeycombs, yielding in total L sites (see Fig. 1 for an illus-
tration). We consider a half-filled system in the paramagnetic
phase and, to generate realistic results, set the lattice spacing
to a0 = 1.42 Å, which corresponds to the carbon-carbon bond
length in graphene [30]. Using a nearest-neighbor hopping J

x
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FIG. 1. Lattice structure of circular honeycomb clusters with L =
24 (black) and 54 sites (blue). The green point indicates the position
where the projectile hits the lattice plain. For further reference, we
label four sites in the center of the clusters, where we will monitor
the time-dependent electron density in Sec. IV B. Furthermore, a0

denotes the lattice spacing, J (U ) is the nearest-neighbor hopping
(the onsite interaction), and Wii is the local energy defined in Eq. (2).

and an onsite Coulomb repulsion U , the Hamiltonian for the
lattice electrons is then given by

He(t) = −J
∑

〈i,j〉,σ
c
†
iσ cjσ + U

∑
i

(
ni↑ − 1

2

)(
ni↓ − 1

2

)

+
∑
ij,σ

Wij (t)c†
iσ cjσ , (1)

where the operator c
†
iσ (ciσ ) creates (annihilates) an electron

with spin σ on site i, niσ = c
†
iσ ciσ denotes the electron density,

and Wij are the matrix elements of the confinement potential
induced by the projectile. In Sec. IV, we imply localized
electronic wave functions ϕi(r) ∝ δ(r − Ri), for which we can
resort to the diagonal components of this potential:

Wii(t) = − e2

4πε0

Zp

|rp(t) − Ri | , (2)

where rp(t) denotes the time-dependent position of the projec-
tile, −e is the electron charge, and ε0 the vacuum permittivity.
Moreover, in Sec. V, we improve this model by including also
terms Wij (t) with |i − j | = 1, which locally renormalize the
nearest-neighbor hopping [cf. Eq. (14)].

For convenience, we measure J and U in electron volts,
define U/J as the interaction strength for the electrons, and
use t0 = �/J as the unit of time. Unless otherwise stated, we
use J = 2.8 eV (which is typical for graphene [31]) to fix the
time scale.

B. Computational method

To compute the classical motion of the projectile with an
initial velocity drp/dt = (0,0,vz), we solve Newton’s equation
with the total potential

V (rp,t) = e2

4πε0

∑
i

ZpZi(t)

|rp(t) − Ri | (3)

created by all lattice charges [here, Zi(t) = 1 − ∑
σ 〈niσ 〉(t)

denotes the net charge on the lattice site i]. For the solution we
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use a three-dimensional velocity-Verlet algorithm. Motivated
by TDDFT calculations [7], we set the initial position of the
incident ion to rp = (− 1

6a0, −
√

3
3 a0, − z) (see the centroid

point of the green dashed triangle in Fig. 1). These coordinates
have been found to give similar stopping results for the
highly symmetric honeycomb lattice compared to calculations,
where one averages over many different collision sites. This
allows us to avoid averaging over many trajectories and
to directly compare to previous TDDFT results (Sec. V).
Furthermore, the initial z position is chosen such that the
measured energy transfer becomes independent of the initial
conditions (typically z � 10a0).

To compute the correlated time evolution of the lattice
electrons, we use a quantum statistical approach based on the
one-particle nonequilibrium Green function (NEGF)

Gijσ (t,t ′) = − i

�
〈TCciσ (t)c†

jσ (t ′)〉, (4)

which is defined on the Keldysh time contour C [32] and can
be interpreted as a two-time generalization of the one-particle
density matrix

〈ρijσ 〉(t) = 〈c†
iσ cjσ 〉 = −i� Gjiσ (t,t+). (5)

On the contour, TC furthermore denotes the time-
ordering operator, 〈TC . . .〉 = tr[TC exp(S) . . .]/tr[TC exp(S)]
with S = −i/�

∫
C ds He(s) defines the ensemble average, and

the notation t+ means that the time t+ is infinitesimally larger
along C than t . The equations of motion of the greater and less
components of the NEGF (4),

G>
ijσ (t,t ′) = − i

�
〈ciσ (t)c†

jσ (t ′)〉,
(6)

G<
ijσ (t,t ′) = i

�
〈c†

jσ (t ′)ciσ (t)〉,

follow from the time evolution of the creation and anni-
hilation operators in the Heisenberg representation and are
known as the two-time Keldysh-Kadanoff-Baym equation
(KBE) [19,20,23]:∑

k

[i� ∂tδik − hikσ (t)]G≷
kjσ (t,t ′)

= δC(t,t ′)δij +
∑

k

{∫
C
ds 	ikσ (t,s)Gkjσ (s,t ′)

}≷
. (7)

Here, δC denotes the delta function on the contour, and hijσ (t) is
the time-dependent effective one-particle Hamiltonian, which
explicitly includes the Hartree contribution to the electron-
electron interaction, i.e.,

hijσ (t) = − Jδ〈i,j〉︸ ︷︷ ︸
=Jij

+ {
Wii(t) + U

[〈niσ̄ 〉(t) − 1
2

]}
δij , (8)

with the density 〈niσ 〉(t) = −i�G<
iiσ (t,t). On the right-hand

side of Eq. (7), the contour integral defines the memory kernel
of the KBE, in which 	ijσ (t,t ′) denotes the correlation part
of the self-energy [i.e., the mean-field part is excluded as it
is contained in Eq. (8)]. Systematic expressions for the self-
energy can be constructed by many-body perturbation theory,
e.g., using diagram techniques [20,33]. Below, we treat the

correlation self-energy 	 in different approximations, which
conserve particle number, momentum, and energy.

C. Many-body approximations

We consider the correlation self-energy 	 in the following
approximations:

(1) As the simplest self-energy beyond the (Hartree) mean-
field level, we consider the second-order Born approximation
(2B),

	
2B,≶
ijσ (t,t ′) = �2U 2G

≶
jiσ (t,t ′)G≶

jiσ̄ (t,t ′)G≷
ij σ̄ (t ′,t), (9)

which includes all irreducible diagrams of second order in
the interaction U . Aside from the full evaluation of this
self-energy, we will consider, in addition, the local (in space)
second Born approximation, which includes only the diagonal
components 	2B

iiσ of the self-energy (9). This approximation
substantially reduces the numerical complexity, as it allows to
solve the KBE via particularly efficient schemes [34–36]. We
note that the 2B approximation is a perturbation theory result
and, therefore, becomes less accurate when U increases.

(2) We consider the particle-particle T-matrix (TM) self-
energy, which sums up the whole Born series including
diagrams of all orders in U and is given by [37]

	TM
ijσ (t,t ′) = i� Tij (t,t ′)Gjiσ̄ (t ′,t), (10)

with the effective interaction

Tij (t,t ′) = −i� U 2Gijσ (t,t ′)Gijσ̄ (t,t ′)

+ i� U
∑

k

∫
C
ds Gikσ (t,s)Gikσ̄ (t,s)Tkj (s,t ′).

The T-matrix approximation has been found to perform very
well in the regime of small (or large) density, i.e., away
from half-filling [33,37,38]. If the number of electrons and
holes become comparable, however, particle-hole interaction
processes gain in importance, which are not captured by the
particle-particle T-matrix.

(3) In order to accurately treat strongly correlated systems,
we also consider the third-order approximation [38], which
exactly takes into account all self-energy contributions up
to O(U 3). This approximation has been found advantageous
around half-filling, in particular, for small to moderate inter-
action strengths [38].

(4) We also consider the generalized Kadanoff-Baym
ansatz (GKBA) of Lipavský et al. [39], which has recently
attracted growing attention [28,29,33,40]. By reconstructing
the two-time Green function Gijσ (t,t ′) from its time-diagonal
value, the GKBA provides a way to substantially reduce
the numerical effort of the computation of the NEGF, while
still accurately accounting for particle number and energy
conservation and correlations. Here, we will apply the GKBA
to the second-order Born self-energy using mean-field type
propagators (HF-GKBA) (for details see Refs. [29,33]). This
allows us to increase the simulation duration and extend the
calculations to lower projectile energies (see Sec. IV D).

With these self-energies, the KBE (7) is solved together
with its adjoint equation by a self-consistent time propagation
scheme in the two-time plane, starting from a given initial-state
Green function at t,t ′ = 0. For details on the numerical
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solution of the two-time KBE including the above approxima-
tions, we refer the reader to Refs. [23,25,27,33]. To investigate
the influence of the initial state of the many-electron system on
the dynamics and the energy loss of the projectile, we consider
two relevant cases. For the example of the system being
initially in the ground state (we set kBT = β−1 = 0.01 eV and
note that the case of finite temperature is discussed separately
in Sec. IV E), we consider the following:

(A) The stationary correlated equilibrium state, which is
formed via a relaxation that starts in the Hartree ground
state (see Sec. III for details). This is, of course, only an
approximation to the true ground state but it substantially
reduces the computation time.

(B) The fully correlated ground state. It is obtained
via a time-dependent procedure (adiabatic switch-on of the
interaction U ) (see, e.g., Refs. [33,41] for details).

For the case of half-filling (chemical potential μ = 0), the
Hartree ground state of Hamiltonian (1) (with Wij ≡ 0) is
independent of U and is given by the density matrix

〈ρijσ 〉(t = 0) = −i� G<
jiσ (0,0)

= −i�
∑

k

v∗
kivkjfβ(εk,μ), (11)

where εk (vk) are the eigenvalues (eigenvectors) of the hopping
matrix (J)ij = Jδ〈i,j〉, and fβ(ε,μ) = 1/(eβ(ε−μ) + 1) is the
Fermi-Dirac distribution.

III. LATTICE PROPERTIES PRIOR TO THE IMPACT

In this section, we solve the KBE (7) without the incident
projectile and compute central equilibrium properties of
the honeycomb clusters primarily in the local second Born
approximation. First, we analyze the double occupations

〈di〉 = 〈ni↑ni↓〉 = − i�
U

∑
k

∫
C
ds 	ikσ (t,s)Gkiσ (s,t+) (12)

on the lattice sites i, which contain important information
about the correlations in the system.

In Fig. 2, we show results for the average double occupation
〈d〉av = 1

L

∑
i〈ni↑ni↓〉 on clusters of different size L, which

is established over time, when the system is prepared in
the Hartree ground state [Eq. (11), case (A)]. We find that
the emerging double occupation is practically independent of
the system size, which is even the case for larger values of
the interaction strength. The value 〈d〉av is, up to U/J � 4, in
reasonable agreement with exact quantum Monte Carlo data
(black triangles) for the extended honeycomb lattice [42]. The
right panel of Fig. 2 gives details on the time dependence
of the double occupation during this (fictitious) relaxation.
Clearly, the sudden switch-on of the correlation part of the
self-energy at t = 0 leads to an oscillatory transient response,
after which the double occupation rapidly reaches a new
(correlated) stationary value. The site densities (〈niσ 〉 = 0.5)
remain constant during this relaxation because we consider an
undoped system with particle-hole symmetry. We note that this
final state is a stationary correlated state, which slightly differs
from the correlated ground state as it has a slightly larger total
energy (due to correlation-induced heating [43,44]) (cf. the
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0 1 2 3 4

d
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U/J
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t/t0
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L=54
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3rd order: L=54
TM: L=54
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FIG. 2. Left panel: average double occupation 〈d〉av on the
honeycomb clusters with L = 24, 54, and 96 sites for different
interaction strengths U/J in the local second Born, third-order,
and T-matrix approximations, using the initial state (A). The black
triangles correspond to exact data for the extended honeycomb lattice
(taken from Ref. [42]). Right panel: time evolution of 〈d〉av for the
local second Born calculations starting from the Hartree ground state
[Eq. (11)], for which 〈d〉av = 〈di〉 = 〈ni↑〉〈ni↓〉 = 0.25.

spectral weight discussed below). Nevertheless, the excellent
agreement with the reference data confirms the reliability of
this procedure, which is computationally efficient as it requires
comparatively few time steps.

Finally, the stationary values of the double occupations
allow us to test the accuracy of the different approximations
for the self-energy. The T-matrix result is accurate up to
about U/J = 1.5 but for larger coupling starts to deviate from
the reference. The third-order approximation and the local
second Born result are very close to each other and work
substantially better up to U/J = 3.5. Since the correlated
states (A) and (B) are particle-hole symmetric, in an exact
calculation, the third-order contributions to the self-energy
would perfectly cancel each other [21,38,45]. Therefore, in the
T-matrix approximation, the leading term beyond second order
becomes unbalanced, which explains the poor performance in
Fig. 2. For the same reason, both a full second Born calculation
and a third-order simulation would be exact up to O(U 3),
which also is the origin for the high accuracy of the local
second Born results. These findings give us confidence to use
the comparatively simple local second Born approximation for
most simulations below [46].

Second, we study the photoemission spectrum, which is
directly obtained from the less component G<

iiσ (t,t ′) of the
nonequilibrium Green function (for details, see the Appendix).
In Fig. 3, we present the photoemission signal I1(ω) of the
cluster with L = 54 sites recorded at the central site 1 (as
labeled in Fig. 1). We show results for different values of U/J

with a probe pulse arriving at some time after the transient
regime (for the computational details and the specific probe
pulse parameters, see Appendix A). In the case of half-filling,
the Hartree approximation (	 = 0) yields a photoemission
signal with a few pronounced peaks which are independent
of U/J . On the other hand, correlations lead to an essential
broadening of the whole spectrum and, in particular, to single-
particle energies beyond the cutoff energy ωcutoff = −3J of the
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FIG. 3. (a) Photoemission signal I1(ω) for the honeycomb cluster
with L = 54 sites in Hartree approximation (U independent) and
in local second Born approximation for different U/J , using the
initial state (A) of Sec. II C. Black dashed line: spectrum of the
extended lattice at U/J = 0 (e.g., Refs. [48,49]), black solid line:
spectrum for U/J = 5, as obtained from a cluster-DMFT calculation
[from Ref. [47] and also shown in panel (b)]. (b) Comparison of
the photoemission signal I1(ω) at U/J = 5 for local second Born
calculations with different initial states. Green line: spectrum [as in
panel (a)] for the initial state (A). Red line: correlated ground state (B).

noninteracting system (see the black dashed line and compare
also with Fig. 11 in Appendix A). Moreover, this broadening
is accompanied by a shift of the main peak (around ω = −J )
towards the Fermi energy, ωF = 0, as a function of the
interaction strength. For U/J = 5 (green dashed-dotted line),
we finally observe that the photoemission spectrum becomes
rather flat due to enhanced occupations of single-particle
energies above the Fermi level. These occupations originate
from the fact that the equilibrated state is not the ground
state of the system. On the contrary, if we first prepare the
correlated ground state (B) (recall Sec. II C) and then propagate
the nonequilibrium Green functions in time, we obtain a
photoemission spectrum as shown by the red solid line in
Fig. 3(b). If we compare it, for example, to a cluster-DMFT
(CDMFT) study [47] for the extended honeycomb lattice
(black solid line), we find a very good agreement. However,
the finite spectral resolution introduced by the probe pulse
does not allow us to recover the emergence of a small energy
gap [48], which exists at finite onsite interactions U/J .

In summary, we conclude from Figs. 2 and 3 that already the
local second Born approximation is able to capture important
electron correlation properties of the honeycomb clusters. As
the considered equilibrium properties are adequately described
up to U/J ≈ 3 . . . 4, we will likewise analyze the stopping
dynamics in Sec. IV up to this regime of interaction strengths.

IV. STOPPING DYNAMICS

A. Energy loss of the projectile

We now simulate collisions of protons (Zp = 1) with
honeycomb clusters of size L = 24 and 54. To characterize
the stopping dynamics, we consider different impact kinetic
energies Ekin = 1

2mpṙ2
p(t = 0), ranging from below 1 keV to

about 0.5 MeV, and measure the energy loss Se, defined as the
change of the projectile’s kinetic energy after passing through
the lattice:

Se = Ekin(t = 0) − Ekin(t → ∞). (13)

As function of Ekin(t = 0), this quantity yields the energy loss
spectrum, which is similar to the stopping power spectrum
(spectrum of dissipated power per length) for the case of
homogeneous media. Below, we specify the kinetic energy
of the proton in units of keV/u, where u denotes the unified
atomic mass unit.

We begin with the analysis of Se for the smaller cluster
[see Fig. 4(a)]. In Hartree approximation (black lines), we find
a pronounced maximum of the energy loss in the regime of
considered energies, which is the behavior known from the
stopping power of nonrelativistic ions (we note, however, that
the position of the maximum is typically at larger energies,
compare with Sec. V). When U is increased, the peak height
decreases and, at the same time, the peak slightly shifts towards
larger proton energies. At large impact energies, the curves for
different interaction strength approach each other, leading to a
rather generic scaling of the energy loss as ∝v−a

z ln(bv2
z ) (with

fit parameters a,b > 0). Thus, the high-energy tail is consistent
with predictions from the nonrelativistic Bethe formula [1]. On
the other hand, for low energies, the change of the energy loss
is closer to ∼vz.

Next, we examine the influence of electron-electron corre-
lations [cf. the red curves in Fig. 4(a)], which represent local
second Born calculations for the initial state (A) of Sec. II C,
where the lattice system has equilibrated before the impact
of the proton. For small interactions U/J � 2, we find that
corrections to the Hartree approximation are rather small. On
the contrary, for U/J = 4, we observe clear deviations from
the mean-field picture, with a decrease of Se over a large energy
window and a slight increase around Ekin ≈ 1 keV/u.

In Fig. 4(b), we present the same analysis for the larger
honeycomb cluster with L = 54 sites, including results for
various approximations of the self-energy. While Se becomes
generally larger compared to the smaller cluster, we notice
that correlations have the same effect of reducing the energy
loss for proton energies of Ekin � 5 keV/u, as was observed
for L = 24. At the same time, the low-energy tail behaves
differently: here we find a scaling ∝ln(vz). Moreover, we
observe that all considered self-energies lead to very similar
stopping results. In particular, there is very good agreement
between the local and full second-order Born approximation,
which indicates that here it is sufficient to treat correlations
locally. We emphasize again that a nonlocal self-energy (with
	ij �= 0) or a more complex self-energy (including higher-
order diagrams) generally brings about a drastic increase of the
computation time, particularly on a large time grid, which is
required to study the impact of slow projectiles. For this reason,
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BALZER, SCHLÜNZEN, AND BONITZ PHYSICAL REVIEW B 94, 245118 (2016)

0

5

10

15

20

0.1 1 10 100 1000

S e
/e
V

Ekin/(keV/u)

(a) L=24 U/J=0
U/J=2
U/J=4
Hartree

2B (local): (A)

∝ v−az ln(bv2z )

∝ vz

0

5

10

15

20

0.1 1 10 100 1000

S e
/
eV

Ekin/(keV/u)

(b) L=54 U/J=0
U/J=2
U/J=4
Hartree

2B (local)
2B (full)
3rd order

TM
(A)

∝ ln(vz)

0

5

10

15

20

0.1 1 10 100 1000

S e
/
eV

Ekin/(keV/u)

(c) L=24

a

b

U/J=0
U/J=2
U/J=4
Hartree

2B (local): (A)
2B (local)
2B (full)
3rd order

TM
(B)

FIG. 4. Energy loss Se for protons passing through honeycomb
clusters of size L = 24 [panels (a) and (c)] and L = 54 [panel (b)].
In all panels, the value of the onsite interaction U/J is encoded in
the line style, and the black lines indicate the results of the Hartree
approximation. In panel (a), the red curves show the energy loss in
the local second Born approximation with initial state (A). In panel
(b), we present the same analysis for the larger cluster, including
results of the full second Born (yellow), the third-order (blue), and
the T-matrix approximation (green). Panel (c) shows the influence
of initial correlations, comparing the second Born results of panel
(a) to local and full second Born, third-order, as well as T-matrix
calculations for the initial state (B). The arrows in panel (c) indicate
the two situations analyzed in more detail in Fig. 5.

we show results beyond the local second Born approximation
in Fig. 4(b) only for correspondingly large proton energies.

Standard stopping power calculations of a charged particle
usually consider the target material in the ground state before

the collision. This is, however, not the case for our simulations
with the initial condition (A) and self-energies beyond mean
field. To quantify the effect of this systematic inconsistency,
we repeat some of the simulations with the initial state (B)
[see Fig. 4(c) for L = 24 and U/J = 4]. As a result, we
observe that the form of the correlated initial state has a non-
negligible influence on the energy loss of the projectile. In fact,
we find that the self-consistent correlated ground state [case
(B)] yields energy losses which are overall closer to those of the
Hartree approximation. Nevertheless, there remain significant
differences between correlated and mean-field calculations,
most importantly around the maximum of the curves.

B. Time-dependent density response of the electron system

To gain insight into the effect of correlations on Se and
the physical mechanisms, we now analyze the response of the
lattice electrons to the approaching projectile for a fixed value
of the interaction strength U/J = 4. The general scenario
is as follows. During the early stage of the dynamics, the
electrons (initially distributed uniformly over the cluster with
〈niσ 〉 = 0.5) start to accumulate close to the impact point
and, thus, create a negative net space charge, which attracts
and accelerates the proton towards the cluster. After passing
through the lattice plane, the proton then loses kinetic energy,
depending on the nonadiabatic response of the electron density.
For two different proton energies [indicated by arrows labeled
a and b in Fig. 4(c)], the precise dynamics is shown in Fig. 5.
There, we compare the Hartree approximation to the local
second Born approximation for both considered initial states
(A) and (B).

The difference in the time scale on which the observables
change during the collision process is evident: While at a
kinetic energy around 1 keV/u, the electron density and the
double occupation in the center of the honeycomb cluster
change on a time scale of a few inverse hopping times, t0 =
�/J , they change on a time scale comparable to t0 for the much
faster proton (∼10 keV/u). This difference has immediate
consequences for the energy transfer to the lattice: From
Fig. 5(b) (fast proton), we find that the exchange of energy
between projectile and target occurs mainly during the stage
of electron accumulation. Together with a retarded response
of the electron density in the second Born approximation
[dotted and solid lines in panel (b)], this translates into a faster
proton (of a few eV) after the collision, as compared to the
mean-field calculation (dashed line). On the contrary, for the
slow proton, the energy loss is defined by both the buildup and
the removal stage of the charge-induced confinement potential.
For this reason it, is not a priori obvious how Se is altered
by correlations. This is also confirmed by the difference of
the two second Born calculations [cf. in particular the center
panel in Fig. 5(a)]. Here, the calculation which starts from the
correlated ground state (dotted line) shows a density response
rather close to the Hartree approximation [50], whereas the
simulation which uses the equilibrated Hartree ground state as
initial state (solid line) yields an energy transfer that is
clearly larger than the mean-field result. The time evolution
of the double occupation is, however, almost identical in both
correlated cases, but significantly different from the mean-field
approximation [see the bottom panel in Fig. 5(a)].
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FIG. 5. Coupled proton-electron dynamics for the honeycomb
cluster with L = 24 sites for two different proton energies, Ekin =
0.96 keV/u (left panels) and 11.82 keV/u (right panels), corre-
sponding to the arrows shown in Fig. 4(c). The coupling strength is
fixed, U/J = 4, and three many-body approximations are compared
(see inset). Top panels: change of the projectile’s kinetic energy
�Ekin(t) = Ekin(t) − Ekin(t = 0) as function of time. Center panels:
time evolution of the electron density averaged over the central sites
labeled 1 to 4 in Fig. 1, i.e., 〈N4〉(t) = 1

4

∑4
i=1〈niσ 〉(t). Bottom panels:

time evolution of the double occupation 〈d1〉(t) = 〈n1↑n1↓〉(t) on the
site 1, which is closest to the impact point of the projectile.

C. Time-dependent electron spectral properties

An even closer look at the electronic excitations dur-
ing the collision process is provided by the time-resolved
photoemission spectrum I (ω,tp) = I−1

0

∑L
i=1 Ii(ω,tp), with

normalization factor I0. Our NEGF approach directly yields
this quantity (see Appendix), and we present the results in
Fig. 6 for two different probe times tp. Prior to the impact of
the proton (tp = 0), the spectrum corresponds to the correlated
ground state [we use initial state (B)] of the system and is, thus,
analogous to the one discussed in Fig. 3(b). Note, however, that
here we use U/J = 4, and we average over the whole cluster
and use a different probe pulse. At a later time, when the
projectile just passes the lattice plane (tp ∼ 4.1t0), we observe
a spectrum which indicates a strong redistribution of electrons
in the lower Hubbard band, particularly towards lower energies
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FIG. 6. Time-resolved photoemission spectrum I (ω,tp) =
I−1

0

∑L

i=1 Ii(ω,tp) of a cluster with L = 24 and U/J = 4 for the
stopping dynamics of a proton with energy Ekin = 11.82 keV/u [the
scenario is similar to Fig. 5(b)]. The calculations are performed in full
second Born approximation with a correlated initial state [case (B)].
Red curve: initial state, black dashes: ground state of an infinite
system at U/J = 0. Blue line: spectrum when the projectile passes
through the lattice plane. Green line: “final” state after the collision.
To resolve the spectrum at the different stages of the dynamics, we
have set the probe pulse width here to τ = 2t0 (cf. Appendix A).

(blue line in Fig. 6). This redistribution is, obviously, a result
of the negative electronic confinement potential induced to
the lattice electrons by the projectile and corresponds to a net
energy loss of the electron system. Finally, at time tp � 9t0,
the proton has passed through the lattice and is located far
enough such that it does not affect the electrons anymore. We,
therefore, measure a state of the electrons that is close to the
“final” state. This state is characterized by a net energy gain of
the electron system [as was shown in the top panel of Fig. 5(b)].
Here, we can resolve the spectral distribution of this energy:
a substantial amount of electrons is being excited (above the
Fermi level, ωF = 0) into the upper Hubbard band. Of course,
on a longer time scale (part of) this energy will be transferred
from the electrons to lattice vibrations (phonons), but this is
beyond the present model.

D. Projectile energy loss within the generalized
Kadanoff-Baym ansatz

In this section, we analyze the generalized Kadanoff-Baym
ansatz (GKBA) that was discussed in Sec. II C. This approxi-
mation has recently attracted growing attention [28,29,33,40]
because it provides a way to significantly reduce the numerical
effort of the computation of the NEGF, while still preserving
the conservation laws of the chosen many-body approxima-
tions. Here, we apply the GKBA to reconstruct the two-time
Green function Gijσ (t,t ′) for second Born self-energies from
its time-diagonal value by using Hartree propagators (see
Ref. [33] for details). For the present setup, the GKBA allows
us to extend the full second Born calculations of Fig. 4(b)
towards significantly longer times and, thus, to lower proton
impact energies. We also note that, for finite systems which
are strongly excited, the GKBA has been found to be free of
certain artifacts of the two-time simulations [29], while being
of comparable accuracy than the latter.
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FIG. 7. Energy loss for the honeycomb cluster with L = 54 sites
in second Born approximation. Comparison of the full two-time
simulation and the GKBA (see text for details). Black and red solid
lines are the same as in Fig. 4(b); red dashed and blue dotted curves:
GKBA results for the initial states (A) and (B), respectively.

In Fig. 7, we present such GKBA simulations for both initial
states, (A) and (B), as discussed above. For the initial state (A),
we find a qualitative agreement with the analogous two-time
calculations. At the same time, the GKBA simulations yield
a systematically lower energy loss Se for proton energies
of Ekin � 5 keV/u than the two-time simulations. In the
present case, the projectile induces a rather strong and
nonlocal perturbation, which is typically well described by
the GKBA [29]. Whether the GKBA or two-time results for
the stopping power are more accurate is presently unknown,
as there are no exact results available, and this remains to be
resolved in future studies.

Finally, we perform GKBA simulations with the fully
correlated initial state (B). This leads to significantly increased
results for the energy loss spectrum of the protons (blue dotted
curve), which are closer to the mean-field result. The most
striking achievement is that the GKBA simulations can be
extended towards projectile energies around 200 eV. Interest-
ingly, for these energies, the stopping power is significantly
increased, as compared to the mean-field result. At the same
time, with the use of Hartree propagators, we lose direct access
to the correlated spectral functions.

E. Finite temperatures

For slow projectiles, we have seen in Secs. IV A and IV D
that the inclusion of electron-electron correlations can lead
to a slight increase of the energy loss in comparison to the
mean-field treatment of the collision process. As this effect
seems to be larger for a lattice system which is initially not
in the self-consistent ground state [and thus has a nonzero
effective temperature, cf. initial state (A)], it is worthwhile
to discuss in more detail the influence of a finite electron
temperature on the stopping dynamics.

In contrast to other approaches, the effect of finite tempera-
ture is straightforwardly incorporated in the NEGF formalism,
where temperature effects enter the KBE via the initial state
defined in Eq. (11). In Fig. 8, we perform Hartree and
second Born calculations for L = 24 and different inverse
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FIG. 8. Temperature dependence of the energy loss Se for the
honeycomb cluster with L = 24 sites and U/J = 4. Black lines:
zero-temperature Hartree calculations, as in Fig. 4(a). Colored lines:
Hartree results for different temperatures. Symbols: local second Born
results for the same temperatures βJ = 5, 1.5, 1, and 0.5. (a) Local
second Born calculations with initial state (A). (b) GKBA calculations
as in Sec. IV D with initial state (B).

temperatures βJ � 100. For βJ = 5, which corresponds to
an electron temperature of kBT = 0.56 eV (or about T =
6500 K) for a hopping amplitude of J = 2.8 eV, we measure
energy loss spectra (cf. the yellow curves) that are still very
close to the ground-state results of Fig. 4(a). For higher
temperatures, βJ < 5, on the other hand, we observe that
the energy loss systematically decreases with temperature,
whereas the maximum of the spectrum shifts to slightly
lower energies. These trends continue even for higher electron
temperatures (obviously, this refers to a nonequilibrium state,
where the electron temperature is decoupled from the lattice)
(see the red, blue, and green solid curves).

To understand the origin of the reduction of the energy
loss with temperature, we investigate in Fig. 9 the time
dependence of the proton energy and of the local electron
density computed in mean-field approximation. Obviously, a
temperature increase reduces the local enhancement of the
electron density, as thermal fluctuations reduce the coherent
response of the electrons to the projectile.

Finally, electron correlations are important even at the
highest temperature considered [βJ = 0.5 (T ≈ 65000 K for
J = 2.8 eV)], where the interaction energy U is still twice as
large as the thermal energy. Here, compared to the mean-field
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FIG. 9. Time-dependent energy change �Ekin(t) = Ekin(t) −
Ekin(t = 0) of the proton (upper panels) and electron density
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i=1〈niσ 〉(t) at the four sites around the impact point

(lower panels) for four different temperatures. Same cases (Hartree
dynamics, U/J = 4) as shown in Fig. 8.

model, we observe that the local second Born calculations
yield a clear shift of the whole spectrum towards smaller en-
ergies. Furthermore, the maximum energy loss is substantially
reduced (with a peak value of the second Born calculation
that is only about half of the mean-field result, Fig. 8(a)],
which shows that the relative importance of correlations
seems to increase with reduction of the temperature βJ .
This unexpected behavior is due to the reduction of quantum
diffraction effects with temperature, leading to an increased
electron localization, which will be investigated in more detail
elsewhere.

V. APPLICATION TO GRAPHENE

As a supplementary investigation, we examine, in this
section, whether the coupled NEGF-Ehrenfest approach can
be applied also to study the collision of charged particles with
real (low-dimensional) materials. As example, we consider
a two-dimensional sheet of graphene. As was shown in
Refs. [51,52], the equilibrium properties of graphene [30,49]
are well described through an extended Hubbard model with
a nearest-neighbor hopping J on the honeycomb lattice
using, beyond the onsite interaction U , additional nonlocal
Coulomb interactions Vij , that are known to stabilize the
Dirac semimetallic phase [53]. However, it is not clear a
priori whether this model holds also out of equilibrium. In
particular, the present situation of the impact of a charged
particle corresponds to a (locally) very strong excitation,
driving the system far away from equilibrium. This question
can only be answered by direct simulations of this process

and by comparison to reliable reference data for the stopping
power.

In order to map this extended Hubbard model to the
Hamiltonian of the form (1) with purely local interactions,
we follow Ref. [31] and use an effective onsite interaction
U ′ = U − V̄ = 1.6J , where V̄ denotes a weighted average
over the nonlocal contributions. Although this approximation
has limitations, e.g. [52], it is agreed to be, at least, qualitatively
correct. Moreover, we extend the Hamiltonian of Sec. II in two
regards:

(i) We take into account the existence of four valence
electrons per site. This means we consider (instead of a
single-band model) a system with four independent Hubbard
bands of equal hopping and interaction parameters, which
together describe the dynamics of the four electrons provided
by each sp2-hybridized carbon atom in the graphene sheet. We
are aware of the fact that such an approach excludes the specific
nature of the σ and π bonds as well as possible (sp-)interband
transitions. The main advantage of this model is, however, that
it can be straightforwardly implemented by setting the local
net charges Zi in Eq. (3) to Zi = 4(1 − ∑

σ 〈niσ 〉), leaving
open a single parameter, the hopping amplitude J , which we
will use below to adjust the maximum energy transfer.

(ii) We account for the fact that the incident projectile can
influence the electron mobility on the lattice. This includes
local changes to the electron’s kinetic energy which originate
from the presence of the off-diagonal matrix elements of
the interaction potential Wij between the projectile and the
electrons on the lattice. Below, we approximate such a
renormalization of the hopping to be proportional to the
average potential energy between neighboring sites, i.e., we
define an effective time- and site-dependent hopping amplitude

Jij (t) =
{−J + Wij (t), |i − j | = 1

0, otherwise (14)

where

Wij (t) = γ
Wii(t) + Wjj (t)

2
. (15)

The proportionality factor γ can be interpreted as the strength
of the orbital overlap and will be used as a second fit parameter
below (see Appendix B for details).

We note that the ansatz (14) neglects corrections of the
form Wij with |i − j | > 1, which is justified because the wave
functions of next-nearest and more distant neighbors have
in general a much smaller overlap. Nevertheless, a further
improved treatment of the off-diagonal components may be
important for future studies since the projectile induces strong
perturbations to the system.

In Fig. 10, we present stopping results for protons and alpha
particles (Zp = 2) for the model parameters J = 3.15 eV and
γ = 0.55. To obtain reasonable agreement with ab initio
TDDFT and SRIM data for the planar infinitely extended
graphene sheet [7,8], we consider cluster sizes as large as L =
384, which are easily treated in Hartree approximation. The
neglect of correlations is justified due to the relatively small
onsite interaction strength of U/J = 1.6 (recall Sec. IV A).
This expectation is confirmed by performing additional local
second Born simulations for L = 54 (green circles) that lie on
top of the Hartree curves [cf. Figs. 10(a) and 10(b)]. Generally,
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FIG. 10. Energy loss of (a) hydrogen ions (H+) and (b) alpha
particles (He2+) penetrating through a single layer of graphene. In
both panels, the strength of the Coulomb interaction is U/J = 1.6,
the fit parameters are J = 3.15 eV and γ = 0.55, and the initial z

position of the projectile is z = 20a0. The Hartree results for different
cluster sizes, ranging from L = 24 (bottom) to L = 384 (top), are
shown by different line styles. For the cluster with L = 54 sites, we
also performed second Born calculations (green circles) showing that
correlation corrections are rather small in this case. For a detailed
discussion of the U , J , and γ dependence, see Appendix B. The
black symbols and lines correspond to ab initio TDDFT calculations
and SRIMdata, respectively (taken from Refs. [7,8]).

we find that the energy transfer increases with the cluster size,
which is consistent with results for graphene clusters discussed
in Ref. [9]. In Fig. 10(a), the curves Se(Ekin) tend to converge
for large L and, for practically all considered proton energies,
well approach the energy loss given by the reference data.

Finally, an important test of the model is provided by
Fig. 10(b). There, we use exactly the same model parameters J

and γ to simulate the energy loss for collisions of single-layer
graphene with bare helium nuclei (He2+). Without further
adjustments, we recover good agreement with the available
reference data, including the increase of the overall magnitude
of Se compared to the case of protons and, in addition, the shift
of the maximum energy loss towards larger kinetic energies.

Given the simplicity of the model Hamiltonian, it is
interesting that our NEGF-based approach reveals the correct
trends for a fairly realistic system. On the other hand, however,
we have to note also problems of the model. In particular,
at the low-energy tail of the energy loss curve, we observe

significantly larger values compared to the TDDFT simulation
in the case of alpha particles [cf. the red curve in Fig. 10(b)].
The origin of these discrepancies is not fully clear yet, and,
therefore, in this range, additional correlated simulations as
well as improvements to the model are required in the future.

VI. CONCLUSIONS

In summary, we have presented a combined nonequilibrium
Green functions and classical Ehrenfest dynamics approach
to the interaction of a nonrelativistic charged particle with a
(strongly) correlated system. Our approach allows for a fully
time-dependent treatment and is, thus, able to resolve nonadi-
abatic processes in the electronic subsystems. To explore the
role of electronic correlations, we performed solutions of the
two-time Keldysh-Kadanoff-Baym equations using different
many-body approximations for the self-energy: the second
Born, third-order, and the T-matrix approximations. This
enabled us to demonstrate that electron-electron correlations
do significantly influence the slowing down of a charged
projectile in, both, the low and high-energy limits. The high
computational effort of the NEGF simulations has limited us to
projectile energies of 1 keV, as lower impact energies increase
the interaction time with the lattice and, in turn, the computing
time. To extend the simulations to lower energies, we have ap-
plied the generalized Kadanoff-Baym ansatz (GKBA), which
is substantially more efficient. Interestingly, these simulations
predict an energy loss well above the mean-field model,
indicating that correlations can enhance the slowing down of a
(slow) projectile. How accurate these results are is not known
at the moment. This requires further analysis via full two-time
simulations, the use of improved self-energies such as T-matrix
self-energies, as well as independent TDDFT simulations.

Of particular current interest is the energy loss of low-
energy (below 1 keV) charged particles in solid materials. An
important field of applications are low-temperature plasmas.
Questions of interest include the stopping power in materials
with very strong electronic correlations (e.g., lattice models
with U/J � 10) or for magnetically ordered systems or
insulators, where the stopping power can vanish below a
certain threshold [54]. Furthermore, it will be important to
extend the model beyond the Hubbard model to better capture
realistic material properties, e.g., by using a Kohn-Sham basis.
This, however, will drastically increase the computational
requirements.

Additional questions of interest at low energies concern the
inclusion of all relevant dissipation mechanisms, in particular,
inelastic mechanisms such as phonons, impact excitation,
and ionization or reemission of particles. Further relevant
processes include neutralization of the ion before impact and
capture (sticking), which is expected to cause deviations from
the linear velocity scaling. Finally, it will be important to also
consider more complex charged projectiles that are different
from bare ionic cores. Here, intraionic electronic excitations
play an important role in the stopping dynamics, e.g., [55].

From a technological point of view, it would furthermore
be interesting to explore whether the energy deposition can
be externally controlled, e.g., by time-dependent (laser) fields,
which excite the target material before or during the impact.
The potential effect of such an out-of-equilibrium situation
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was demonstrated by an analysis of an increased temperature
of the electronic subsystem. For such kinds of nonequilibrium
investigations, our NEGF-based approach represents an op-
timal toolbox, as it handles external fields self-consistently
and nonperturbatively and can include arbitrary scattering
processes in a systematic way.
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APPENDIX A: TIME-RESOLVED
PHOTOEMISSION SPECTRUM

As an essential test for the numerics and the time prop-
agation of the KBE (7), we verify here whether the correct
spectrum and bandwidth are recovered from the two-time
NEGF in the limit of an infinite honeycomb lattice. To this
end, we compute the photoemission spectrum for vanishing
onsite interaction [U = 0 in Hamiltonian (1)] and consider
clusters of different size L.

We consider the photoemission signal of a reference site i,
which is given by [56]

Ii(ω,tp) = −i

∫
dt

∫
dt ′ s(t − tp)s(t ′ − tp)eiω(t−t ′)G<

iiσ (t,t ′)

(A1)

at some probe time tp. The function s(t) thereby describes the
envelope of the probe pulse and is chosen to be of Gaussian
form, i.e.,

s(t) = 1

τ
√

2π
e−t2/(2τ 2), (A2)

where we set τ = 4t0 with t0 = �/J and J = 2.8 eV.
Figure 11 shows the spectrum I1(ω) for honeycomb clusters

with up to L = 216 sites at a probe time tp = 8t0, where,
to evaluate the integral in Eq. (A1), we have computed the
nonequilibrium Green function up to t,t ′ = 15t0. Aside from
some pulse-induced peak broadening, we observe that the
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FIG. 11. Photoemission spectrum I1(ω) for different uncorrelated
honeycomb clusters of size L, measured at a probe time tp = 8t0 with
τ/t0 = 4 [cf. Eq. (A1)]. The black dashed line shows the density of
states in the valence and conduction band of the extended honeycomb
lattice at half-filling, e.g., Refs. [48,49].

smaller clusters reveal only a few single-particle states, which
are due to the finite system size. On the other hand, the spectra
of the larger clusters (L > 96 sites) approach already well the
density of states in the lower (valence) band of the extended
honeycomb lattice (cf. the black dashed line).

APPENDIX B: ADAPTATION OF THE MODEL
TO GRAPHENE

In order to model the impact of protons on a single sheet
of graphene, we have tuned in Sec. V the hopping amplitude
J and the orbital overlap parameter γ [defined in Eq. (14)]
such that the energy loss spectrum is in good agreement
with first-principles and SRIM data. By performing Hartree
calculations, we show in Fig. 12 in more detail how the
energy transfer Se varies when these parameters are changed.
Moreover, we discuss the influence of the ratio of the onsite
Coulomb interaction U to the hopping J .

From Fig. 12(a), we observe that the interaction strength
mainly influences the energy transfer below about 20 keV/u,
whereas the high-energy tail remains unchanged. In the course
of this, the low-energy tail as well as the maximum energy
loss increase fairly linearly with U/J . Figure 12(b) shows
that the hopping amplitude and the overlap parameter γ
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FIG. 12. Proton stopping dynamics as in Sec. V, but for different
parameters U , J , and γ in Hartree approximation. The system size is
L = 54. (a) Influence of the onsite interaction U for fixed J = 3.2 eV
and γ = 0. (b) Influence of the hopping amplitude J and the orbital
overlap γ for fixed interaction strength of U/J = 1.6.
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affect the energy transfer substantially more than the Coulomb
interaction. For a fixed value U/J = 1.6, a larger value of J

(i.e., an increase of the general electron mobility on the lattice)
leads to a larger energy loss, independently of the initial kinetic

energy of the projectile. On the other hand, if we increase the
hopping locally by choosing γ > 0, we find that the energy
transfer becomes considerably smaller, which is accompanied
by a shift of the maximum of Se towards larger kinetic energies.
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Strongly correlated systems of fermions have a number of exciting collective properties. Among them,
the creation of a lattice that is occupied by doublons, i.e., two quantum particles with opposite spins, offers
interesting electronic properties. In the past a variety of methods have been proposed to control doublon
formation, both, spatially and temporally. Here, a novel mechanism is proposed and verified by exact
diagonalization and nonequilibrium Green functions simulations—fermionic doublon creation by the
impact of energetic ions. We report the formation of a nonequilibrium steady state with homogeneous
doublon distribution. The effect should be particularly important for strongly correlated finite systems, such
as graphene nanoribbons, and directly observable with fermionic atoms in optical lattices.
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Strongly correlated systems are attracting increasing
interest in many fields including dense plasmas [1], warm
dense matter [2], dusty plasmas [3], and ultracold atoms
[4]. Among the most intriguing phenomena in strongly
correlated quantum systems of both fermions and bosons is
the formation of doublons—pairs of repulsively bound
particles occupying the same lattice site [5]. In recent years,
there have been many attempts to study the dynamics of
doublons after a correlated system is driven out of equi-
librium leading to many surprising results. “Quantum
distillation”—the spatial separation of doublons and single
fermions—was observed in Refs. [6,7]. The nonequili-
brium expansion dynamics of a fermionic particle cloud
following a confinement quench and its slowing down due
to doublon formation has been studied experimentally in a
2D optical lattice [4] and theoretically by 2D quantum
simulations using nonequilibrium Green functions (NEGF)
[8]. Also, the external control of doublons by an interaction
quench [9], by periodically modulating an optical lattice
[10–12], by external electric fields [13–18] or by optical
excitation [19] has been proposed. Furthermore, the
dynamics of heteronuclear doublons [20] and the spatial
transfer of doublons via topological edge states [21] have
been studied.
Previous setups of doublon manipulation involved spa-

tially homogeneous systems containing a large number of
fermions triggering their collective response to a spatially
delocalized excitation. In contrast, in this Letter we predict
a novel mechanism to induce and control the formation of
doublons in a finite system where the excitation is localized
in space and time. The most interesting examples are finite
graphene clusters (e.g., “nanoribbons,” GNR) that are
fabricated in a controlled way, e.g., Refs. [22–24], and
are accurately characterized experimentally [25–27]. In
contrast to graphene, GNR have a finite band gap [28–30]

that can be tuned by varying the system size and geometry
[31], giving rise to exciting electronic correlation effects and
optical and transport properties [32]. The doublon excitation
mechanism we are proposing is driven by energetic ions
penetrating a strongly correlated finite system and deposit-
ing energy (“stopping power,” e.g., Refs. [33–36]).
We demonstrate the mechanism by exact diagonalization
simulations, and a physical explanation is given with an
analytical model in terms of the Landau-Zener effect [37].
We then investigate how the doublon number depends on the
cluster size in one and two dimensions by performingNEGF
simulations and demonstrate the emergence of a stationary
nonequilibrium state with homogeneous doublon distribu-
tion. Finally, we show that the effect can be further enhanced
by using a sequence of excitations.
Model.—We consider strongly correlated electrons in a

single-band finite Hubbard model containing L sites with
nearest-neighbor hopping J and on-site interaction U,

Ĥ ¼ −J
X
hi;jiσ

ĉ†iσ ĉjσ þ U
X
i

n̂i↑n̂i↓ þ
X
iσ

WiðtÞn̂iσ; ð1Þ

where n̂iσ ¼ ĉ†iσ ĉiσ is the density, σ denotes the spin, and
WiðtÞ ¼ −Ze2=½4πϵ0jrðtÞ − rij� describes the interaction of
the electron at lattice site ri with a positive ion of charge Ze
moving on a classical trajectory rðtÞ, neglecting nonlocal
contributions, Wij ¼ δijWi. We denote W0 ¼ e2=ð4πϵ0aÞ
and measure energies, times, and lengths in units of J,
ℏJ−1, and the lattice constant a, respectively. The quantities
of central interest are the site-resolved density, niσ , and
double occupation di, the cluster average of d, and its long-
time limit after passing of the projectile:

niσðtÞ ¼ hn̂iσðtÞi; diðtÞ ¼ hn̂i↑ðtÞn̂i↓ðtÞi; ð2Þ
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davðtÞ¼
1

L

XL
i¼1

diðtÞ; d∞av ¼ lim
t→∞

1

Δt

ZtþΔt

t

dt̄davðt̄Þ: ð3Þ

Results for a finite 2D cluster.—In Figure 1, we present
solutions of the system (1) for an exemplary 2D half-filled
Hubbard nanocluster with L ¼ 12 sites, obtained by time-
dependent exact diagonalization (CI) starting at t ¼ 0 from
the ground state. The trajectory of the ion is set to rðtÞ ¼
ð0; 0; zþ vztÞwith velocity vz and initial z position such that
Wiðt ¼ 0Þ → 0, ∀ i. We use W0 ¼ 14.4J, which corre-
sponds to a force J=a ¼ 1 eV=Å. Figure 1(a) shows the time
evolution for an on-site interaction U ¼ 10J, vz ¼ 2aJ=ℏ,
andZ ¼ 1 and 2, where the expectationvalues are computed
as hÔiðtÞ ¼ hψðtÞjÔjψðtÞi, with the many-electron
wave function jψðtÞi ¼ fT exp½−ði=ℏÞ R t

0 dsĤðsÞ�gjψð0Þi
and time-ordering operator T. During the time of impact
(t ¼ 5ℏ=J), both nBσ and dB (nAσ and dA) increase
(decrease). After departure of the projectile the electron
densities return (close) to their initial value niσ ¼ 0.5.

In contrast, the spatiotemporal evolution of the double
occupation [38] is such that dA;B remain above their initial
value, particularly forZ ¼ 2. Thus, the projectile has created
a significant number of stable doublons, indicating the
emergence of a stationary nonequilibrium (“prethermal-
ized” [39,40]) state. This is quantified in Figs. 1(b) and 1(c)
by the asymptotic value of the average double occupation,
d∞av (3). A striking result is the nonmonotonic dependence of
d∞av on the projectile velocity with a maximum around
vz ∼ ð1…3ÞaJ=ℏ. Moreover, also the dependence on U is
nonmonotonic: d∞av exhibits a single maximum which is in
the range of U ∼ 5J, for Z ¼ 1, and U ∼ 12J, for Z ¼ 2.
Further, d∞av, increases with the projectile charge. We note
that in the present setup we consider a projectile with
constant kinetic energy; for a discussion on the energy
transfer see Ref. [35]. Also, reducing the hopping J between
the A sites (along the edges of the cluster), does not
significantly change the results [41].
Analytical model.—To understand the main mechanism

of the doublon formation, we consider a Hubbard dimer at
half-filling and develop a Landau-Zener (LZ) description
[9,18,37]. The dimer is excited by a time-dependent energy
WðtÞ ¼ −W0 exp½−t2=ð2τ2Þ� on one site, which well
mimics the projectile. Here the interaction duration with
the projectile τ > 0 is inversely proportional to the pro-
jectile velocity vz, and we use W0 ¼ 2U. In the basis
fj↑;↓i; j↓;↑i; j↑↓; 0i; j0;↑↓ig, the Hamiltonian

ĤdimerðtÞ ¼

0
BBBB@

WðtÞ 0 −J −J
0 WðtÞ J J

−J J U þ 2WðtÞ 0

−J J 0 U

1
CCCCA; ð4Þ

is straightforwardly diagonalized for all times.
Figure 2(a) shows the evolution of all four eigenenergies,

E0 ≤ E1 ≤ EU ≤ E2, (the explicit expressions are given in
the Supplemental Material [41]) forU ¼ 10J as function of
WðtÞ. Starting in the triplet ground state (E0), for t ¼ −∞,
the dimer undergoes a transition to the second excited state
(EU) via an avoided crossing with probability p whenWðtÞ
is switched on sufficiently fast. Using a reduced two-level
Landau-Zener picture, the probability that the dimer, for
t ¼ þ∞, remains in state EU can be approximated by a
twofold (forward-backward) passage of the avoided level
crossing:

PE0→EU
¼ 2pð1 − pÞ; ð5Þ

with the LZ transition probability for a single diabatic
passage of the crossing (for details see Ref. [41]),

pðτ;UÞ ¼ exp

�
−
πe1=2½minWðtÞðEU − E0Þ�2τ
2ℏW0jdðEU − E0Þ=dWj

�
: ð6Þ

(a)

(b)

(c)

FIG. 1. Ion impact-induced doublon formation in a two-dimen-
sional Hubbard nanocluster (top left, black points) with L ¼ 12
sites, nearest-neighbor hopping J and on-site interaction U.
(a) Time evolution of the electron density niσ (top) and double
occupation di (bottom) on sites A (blue) and B (red) for a positive
charge with Z ¼ 1 (solid lines) and Z ¼ 2 (dash-dotted lines)
impacting the system at U ¼ 10J with velocity vz ¼ 2aJ=ℏ in
point C ¼ ð0; 0; 0Þ. The green curves show the mean density,
nσðtÞ=L ¼ ð1=LÞPi niσðtÞ ¼ 0.5, and double occupation davðtÞ,
Eq. (3), respectively. (b) and (c) Increase of the double occupa-
tion, d∞av − davð0Þ [inset in (b) shows davð0Þ], as a function of vz
for different U and Z ¼ 1 (Z ¼ 2), where the thin dash-dotted
gray curves correspond toU ¼ U� ¼ 5.4J (U ¼ U� ¼ 10.8J), as
derived from the dimer model below.
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From Fig. 2(b), we observe that, around WðtÞ ¼ −W0, the
level spacing and its derivative are almost independent of
U; therefore, the probabilities p and PE0→EU

only depend
(for fixed U) on the duration τ of the excitation.
Figures 2(c) and 2(d) show d∞av, in the dimer, for U ¼

5J and 15J (black curves), together with the exact solution
of Eq. (4). The most striking result is that d∞av can reach
(and remain at) 0.5, for an optimal choice of τ, which is
well captured by the LZ picture where this corresponds to
the probability (6), p ¼ 1=2, of creating a doublon on
site one. Overall we observe that, for U ≳ 10J, our
model (5) reproduces the envelope of d∞avðτÞ very well,
although it does not capture the oscillations that are
proportional to the field W0 and are due to transient Bloch
oscillations [43].
With insight from the dimer model, we find the param-

eters that maximize d∞av, in the 12-site cluster of Fig. 1:
(i) the optimal interaction strength is U�=J ≈ Z × 5.4;
(ii) for U ¼ U�, the optimal velocity v�z decreases linearly
with Z [41]. The result is shown by the thin gray dash-
dotted line in Fig. 1(b) [Fig. 1(c)]. The striking agreement
of the peak height and position with the CI result for
L ¼ 12 confirms that our model captures the correct
physics: local doublon formation via a twofold passage
of an avoided level crossing.

Maximizing the doublon number in larger 1D and 2D
systems.—We now turn to finite Hubbard clusters with
lower symmetry than the one in Fig. 1 starting with a 1D
half-filled chain with L ¼ 8 sites, U ¼ 20J and periodic
boundary conditions which we solve exactly. To investigate
how the spreading of the doublons along the chain
changes compared to the dimer case we use the same
local excitation, WðtÞ, applied only to site 1. As shown in
Fig. 3(b), now the average doublon number reaches only
d∞av ≈ 0.08, at t ≈ 15ℏJ−1. To increase d∞av further, we apply
a second identical excitation to site one which indeed raises
d∞av to 0.145. Repeating this procedure periodically allows
for a successive increase until a value d∞av ≈ 1=4 is reached.
This final value is consistent with the time evolution of the
many-particle energy spectrum

Sðℏω; tÞ ¼
X
i

jhψðtÞjEiij2e−fðℏω−½Ei−UL=4�Þ2=2ðℏω0Þ2g; ð7Þ

where jEii denote the energy eigenstates, which is shown
in Fig. 3(c) for a level broadening ℏω0 ¼ J. The final
energy spectrum (t > 200ℏJ−1) becomes symmetric around
ω ¼ 0, therefore providing on average two doublons in
the system, corresponding to d∞av → 1=4. Moreover, we
observe that the double occupation (just as the density)
becomes homogeneous along the chain, cf. Fig. 3(b), and

(a)

(b)

(c)

(d)

FIG. 2. Hubbard dimer of Eq. (4). (a) Evolution of the
eigenenergies as a function of WðtÞ, for U ¼ 10J. The initial
and final state corresponds to W ¼ 0, and the impact of the
projectile to −W=J ¼ 20; its trajectory is sketched above the
figure. (b) Eigenenergy difference, E ¼ EU − E0, as function of
WðtÞ forW0 ¼ 2U and different values of U. (c) and (d) Asymp-
totic double occupation, for U ¼ 5J and 15J as function of τ.
Blue: CI data [usingΔt ¼ 50ℏJ−1 in Eq. (3)], black line: Landau-
Zener result based on Eq. (5), thin dashed lines: exact minimum
and maximum values of davðtÞ.

(a)
(d)

(b)

(c)

FIG. 3. Evolution of a half-filled Hubbard chain with L ¼ 8
sites and U ¼ 20J subject to multiple excitations at site 1.
(a) Applied field, WðtÞ, with τ ¼ 0.5ℏJ−1 and peak separation
ts ¼ 10ℏJ−1. (b) Dynamics of the mean double occupation davðtÞ
of Eq. (3). (c) Time evolution of the energy spectrum Sðℏω; tÞ,
Eq. (7) with ℏω0 ¼ J. (d) Doublon formation process for
different filling fractions f ¼ Nσ=L, where Nσ denotes the
number of electrons of spin σ.
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that the correlation part of the interaction energy vanishes
almost completely [not shown], indicating the approach
of a mean-field state. In Fig. 3(d), we furthermore inves-
tigate the same scenario for different fillings [44]
(Nσ ¼

P
i niσ ¼ 1; 2;…; 7), which shows that the change

of double occupation with respect to the initial ground state
is largest for half-filling.
In order to test whether our doublon production protocol

can be realized also in larger systems and 2D setups as well,
we have performed extensive NEGF simulations for L up to
54 of long duration, t ≤ 400ℏJ−1, which enables us to
consider up to Nx ¼ 39 localized excitations of the same
form as in Fig. 3(a). We used second-order Born self-
energies within the generalized Kadanoff-Baym ansatz with
Hartree-Fock propagators (HF-GKBA), as explained in
detail in Refs. [8,35,45,46]. From benchmarks against
density matrix renormalization group simulations [47] we
expect that these simulations are reliable forU=J ≲ 4. Tests
against our present CI data for small systems confirm the
high quality of the NEGF results and indicate that they yield
a lower bound to d∞av, the exact result being 5%–15% higher.
In Fig. 4 we show the asymptotic double occupation, d∞av,

for W0 ¼ 2U ¼ 8J, for 1D chains, Fig. 4(a), and 2D
honeycomb lattice fragments, Fig. 4(b). Clearly, the suc-
cessive increase of d∞av with Nx is confirmed for larger
systems. Also, for fixed Nx, we observe a decrease of d∞av
with L, as expected. Extrapolating to larger values ofNx we
expect that for all systems d∞av will reach at least 0.25.

Summary and discussion.—We have presented a novel
scenario for the production of doubly occupied electronic
states in correlated finite 1D and 2D Hubbard clusters that
is based on the impact of energetic ions. We have reported
CI results for system sizes L ≤ 12 that were complemented
by nonequilibrium Green functions simulations for L ≤ 54.
The physical mechanism has been made transparent by
analytically solving the relevant dimer problem in the
presence of an ion impact: it is the formation of avoided
level crossings between bands of different doublon number,
cf. Fig. 3, and it is straightforwardly extended to multiple
sequential excitations. For the case that the system is not
coupled to a bath [as in our simulations] we observed
formation of a stationary homogeneous doublon population
which provides another example for pre-thermalization
phenomena [17,40,48,49] that recently have attracted high
interest. More generally, we have presented a new scenario
of nonequilibrium dynamics without thermalization [50,51]
that is driven by a rapid, spatially localized single-particle
potential quench instead of an interaction quench. While in
the homogeneous state we observe doublon occupations up
to 0.25, as in previous homogeneous excitation scenarios,
e.g., Refs. [11–18], we have shown [cf. Figs. 2(c) and 2(d)]
that, for inhomogeneous states in finite systems, signifi-
cantly higher final values can be achieved. Moreover, the
flexibility of the excitation protocol should allow for further
optimization. We have verified (see Fig. 1 and Ref. [41])
that the same protocol can be realized also with Coulomb
interaction where the long range interaction even enhances
the doublon number.
Our results are directly applicable to finite correlated

solid state systems, such as graphene nanoribbons [23–31],
that are exposed to energetic ions [36]. For moderately
correlated systems with typical parameters J ¼ 1 eV and
a ¼ 1 Å, ion velocities vz ∼ 1aJ=ℏ are required which
translates into kinetic energies of 120 eV (480 eV) for
protons (alpha particles). These values are well feasible
with ion guns or in low-temperature high-pressure plasmas
[52], where the present effect should have a strong influence
on the stopping power [33–35] and may offer new optical
and transport applications.Of course, for the case ofmultiple
excitations, one would need to consider spatial variations of
the impact point, energy, and time delay between impacts.
These issues are easily studied within the dimer model and
with our NEGF approach as well. Furthermore, for these
systems the coupling to the environment (bath) and the
associated dissipation effectswill have to be included,which
sets an upper limit for the lifetime of the nonequilibrium
doublon state in the range of several hundred femtoseconds.
Since the timescale of the doublon formation is of the order
of 1–10 fs we expect that the presented scenario of multiple
ion impacts can be realized.
Suitable candidates to verify this scenario experimentally

are fermionic atoms in optical lattices. While direct ion
impact will be less efficient, due to the weaker short range

(a)

(b)

FIG. 4. Asymptotic double occupation (3) for (a) 1D chains and
(b) 2D half-filled honeycomb clusters of different size L and
U ¼ 4J from NEGF simulations. The number of excitations, Nx,
which are performed on one of the innermost sites, is indicated in
the figure. Insets show davðtÞ, for L ¼ 24 and Nx ¼ 40.
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charge-atom interaction [53], a promising approach is to
mimic the projectile dynamics via suitable time-dependent
local variation of the lattice potentials [54]. This would
open the way to simulate, with cold atoms, ion stopping in
condensed matter, including correlated materials.

We thank S. Kuhr for valuable information on the exper-
imental issues related to Ref. [54]. This work was supported
by HPC resources of Grant No. shp00015 at the North-
German Supercomputing Alliance (HLRN).
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This supplement contains additional information on 1. the Landau–Zener dimer model, 2. additional
simulation results that analyze the influenc of reduced hopping rates at the edge of finite honeycomb clusters,
and 3. additional simulation results for the case of long range Coulomb interaction.

1 Time-dependent Landau–Zener model for a dimer interacting with
a projectile

The Landau–Zener (LZ) model [1] has been applied to doublon formation in optical lattices where the lattice
depth or interaction strength were changed adiabatically [2, 3]. Here we extend the model to a different
situation: the interaction of a classical projectile with a strongly correlated dimer. In this case, the external
potential varies non-monotonically (see Fig. 2.a of the main text) reaching its (negative) maximum when the
projectile is in the cluster plane. Therefore, a LZ transition will occur only if the system remains in the upper
state after a two-fold (forward and backward) passage of the avoided level crossing.

As explained in the paper this problem can be solved exactly by diagonalizing the time-dependent hamiltonian.
The four energy eigenvalues of the dimer, E0 ≤ E1 ≤ EU ≤ E2, before the impact are well known and given by

E0 =
1

2

(
U −

√
16J2 + U2

)

E1 = 0

EU = U

E2 =
1

2

(
U +

√
16J2 + U2

)

Furthermore, in the presence of the potential W (t) the solutions become

E0(t) = R1(t)

E1(t) = W (t)

EU (t) = R2(t)

E2 =
1

2

(
U +

√
16J2 + U2

)

where R1 and R2 are the first and second root of the third-order polynomial equation

R3 + (−2U − 3W )R2 + (−4J2 + U2 + 2W 2 + 4UW )R− 2UW 2 + 4J2U + 4J2W − U2W = 0 . (S1)

The four solutions are shown in Figure 2.a of the main text versus W (t). Starting in the triplet ground
state (E0), for t = −∞, the dimer undergoes a transition to the second excited state (EU ) via an avoided
crossing when W (t) is switched on sufficiently fast. Using a reduced two-level Landau–Zener picture, the
probabilities to find the system at maximum field W (t) in states EU and E0 can be approximated by p and
(1− p), respectively, where p denotes the LZ transition probability for a single diabatic passage of the crossing,

p = exp

(
− 2πV 2

~|dE/dt|

)
, V =

1

2
minW (t)E , (S2)

1



and E = EU − E0. To evaluate Eq. (S2) we use dE
dt = dE

dW
dW
dt = − dE

dW
tW (t)
τ2 , set t = ±τ [turning points of

W (t)] and obtain

p = exp

(
− 2π e1/2 V 2τ

~W0|dE/dW |

)
. (S3)

From Fig. 2.b of the main text, we furthermore observe that V and dE/dW are almost independent of U :
2V ≈ 2.826J and |dE/dW | ≈ 0.976, around W (t) = −W0, therefore, the probability p only depends (for fixed
U) on the duration τ of the excitation.
When the projectile is leaving the dimer, the system is then transferred via another avoided level crossing

from E0 at maximum field to EU at zero field with a conditional probability (1−p)p and from EU at maximum
field to EU at zero field with a conditional probability p(1− p). The overall probability that the dimer, for
t = +∞, remains in state EU after the twofold (forward and backward) passage of the avoided level crossing
can therefore be approximated by:

PE0→EU
= 2p(1− p) , (S4)

With insight from the dimer model, we find parameters for particularly efficient doublon formation in the
12-site cluster of Fig. 1 of the main text: (i) the optimal on-site interaction is U∗ ≈ 1

2W
∗, where W ∗ = Z ·10.8J

denotes the maximum induced potential averaged over the sites A and B; thus U∗ = 5.4J for Z = 1 (U∗ = 10.8J
for Z = 2), cf. the thin grey dash-dotted line in Fig. 2.b (2.c). (ii) For U = U∗, the velocity v∗z , that maximizes
d∞av, decreases linearly with Z. This follows from the Landau–Zener condition, d

dτ PE0→EU
(τ) = 0, which is

solved by

(τ∗)−1 =
2π e1/2 V 2

~W0|dE/dt| log(2)
∝ v∗z . (S5)

2 Impact of reduced hopping rates at the cluster edge
In the main text, we considered the intra-cluster hopping to be uniform and isotropic. However, it is well
known that sites at the cluster edges may have a different connectivity or a specific saturation [4], leading
to a modified hopping to neighboring sites. In Fig. S1, we analyze the effect of anisotropy on the doublon
formation mechanism by reducing the hopping parameter between the A sites in the 12-site cluster of Fig. 1
of the main text to a value J ′ < J , according to a larger, spatial separation of the A sites compared to the
distance AB. We find similar results for d∞av as a function of the ion velocity vz for a charge with Z = 1, where
the doublon yield is rather low. On the other hand, for Z = 2, the doublon number appears even larger, as the
reduction of the hopping makes the system more similar to the Hubbard dimer, where a maximum double
occupation of 0.5 can be achieved by our excitation protocol as shown in Fig. 2.c, d.

3 NEGF results for Coulomb interaction. Correlation effects
In the main text, we presented in Fig. 4 results of nonequilibrium Green functions (NEGF) simulations for the
asymptotic mean doublon number as a result of a sequence of excitations with Gaussian time-dependence that
all occurred on one site. While this protocol is the easiest to test in an optical lattice setup, for ion stopping
in a correlated finite condensed matter system the projectile-electron interaction is, of course, Coulombic. To
test what is the effect of the long-range Coulomb interaction on the doublon formation scenario here we repeat
the simulations using the Coulomb potential between ion and the electrons. The quantitative results depend
on a large variety of parameters including the impact point (and its possilble variation) and the timing of the
subsequent impacts. For better comparison with the results in the main text we retain equal time intervals
between impacts and use the same impact point – in the cluster center, as in Fig. 1. The NEGF simulations
used second order Born selfenergies within the generalized Kadanoff-Baym ansatz as described in Refs. [5, 6].
The high accuracy of these simulations was verified by benchmarks against DMRG results in Ref. [7]. The
comparison with the results presented in Fig. 4 reveals that all trends reported in the main text remain valid
also for Coulomb interaction. In fact, the long-range character of the projectile-electron interaction even
enhances doublon production since the projectile interacts simultaneously with many electrons and thereby
deposits more energy.
The figure also contains results of a time-dependent Hartree–Fock calculation (inset of lower figure) that

exhibits completely wrong behavior as it neglects correlation effects that are of crucial importance for the present
dynamics. Already the initial state (half filling) reveals the incorrect mean doublon number, dHF

av (0) = 0.25
because, in Hartree–Fock, dHF

i = 〈n̂i↑〉〈n̂i↓〉, cf. Eq. (2). Thus, dHF
av only follows the one-particle density which
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Figure S1: Ion-impact induced doublon formation in the two-dimensional Hubbard nano-cluster of Fig. 1 of
the main text at U = 10J , where we have reduced the hopping amplitude between the A sites (along
the edges of the 12-site cluster) from J to J ′ = 0.5J (dashed) and J ′ = 0.1J (dotted), respectively.
The red (blue) lines show d∞av as function of the projectile’s velocity vz for a positive charge of
Z = 1 (Z = 2). A reduced hopping at the edges favors doublon excitation in finite clusters, in
particular for high projectile charge, except for very small velocities.

exhibits a completely different time dependence than the correlated doublon number, cf. Fig. 1.a. This
confirms that the present scenario, in particular, the Landau–Zener transition (see above) is a correlation
effect.
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Figure S2: Asymptotic mean double occupation for a charged projectile interacting by a Coulomb potential
with all electrons of the system for U = 4J . a) 1D chains and b) 2D half-filled honeycomb clusters
of different size L. The number of excitations, Nx, which are performed in the cluster center, is
indicated in the figure. All main trends are as for Gaussian-type excitation on a single site (Fig. 4),
but the doublon number is enhanced. Results of NEGF simulations (second order Born selfenergies)
with the HF-GKBA, for details see Refs. [5, 6]. Insets show the time-dependence dav(t), for L = 24
and Nx = 40. The grey curve in the lower picture corresponds to a time-dependent Hartree–Fock
calculation.
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The energy loss of charged particles in matter has been studied for many decades,
both, analytically and via computer simulations. While the regime of high projec-
tile energies is well understood, low energy stopping in solids is more challenging
due to the importance of non-adiabatic effects and electronic correlations. Here
we consider two problems: the charge transfer between substrate and projectile
and the role of electronic correlations, specifically formation of doubly occupied
lattice sites in the material during the stopping process. The former problem is
treated by time-dependent density functional theory simulations and the latter by
non-equilibrium Green functions.

KEYWORDS

charge transfer, doublon formation, nonequlibrium Green functions, stopping power,
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1 INTRODUCTION

The impact of ions on a solid surface is of prime importance for plasma physics and surface science and has been studied
for decades, both, experimentally and theoretically. The theoretical approaches include scattering theory[1] or uniform electron
gas models.[2] Here the primary input is the dynamic inverse dielectric function (or dynamic structure factor, DSF) for which
electron gas models or recently developed quantum Monte Carlo methods[3] can be applied. Recently, also ab initio simula-
tions of ion stopping based on time-dependent density functional theory (TDDFT) were reported for metals,[4] semimetals,[5] or
boron nitride and graphene sheets[6] and other materials. These simulations account primarily for valence–electron excitation.
Good results for the stopping power of high energy ions in matter are also provided by the SRIM code[7] that uses the binary
collision approximation in combination with an averaging over a large range of experimental situations. Stopping power simu-
lations have also been extensively applied for plasmas using kinetic equations. Here, again, the energy loss is usually computed
by integrating of the DSF of the plasma which can be understood as a linear-response approach. At the same time, time-resolved
simulations have been performed based on quantum kinetic theory[8,9] which allow one to go beyond the linear response approx-
imation. This is of particular importance in case of strong excitation or for the treatment of fast non-adiabatic processes in the
target.

Aside from high-density plasmas (warm dense matter), for example, Zylstra et al.[10] and Kremp et al.,[11] ion stopping is
also of central relevance for low-temperature plasmas in contact with a solid surface. This latter system is in the focus of the
present paper. In these plasmas most of the ions are usually in equilibrium with the neutral gas and are at room temperature. In
addition, close to the surface (in the plasma sheath) ions may be accelerated by the sheath electric field up to keV energies, for
a recent overview on plasma–surface simulations see Bonitz et al.[12] Even though the overall behavior of the stopping power as
a function of ion impact energy is understood, for low-temperature plasmas special questions remain open. This includes: how
does charge transfer between substrate and ion occur (neutralization of projectile)? How does it depend on the impact energy
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and on the substrate material? In what distance from the target does it occur? Furthermore, how does the stopping behavior
change in the case of nontrivial targets that either have a complicated surface morphology, nanostructuring or exhibit strong
electronic correlations? Answers to these questions are not only of fundamental interest but are also important for applications
as they may give rise to new plasma–surface combinations with non-traditional properties.

The goal of the present paper is to address some of these questions that are of relevance for low-temperature plasmas. We
present time-resolved non-adiabatic simulations of ion stopping that are capable of resolving the electronic processes in the
projectile and in the target. In particular, we concentrate on two questions. The first is the charge transfer between a metallic sub-
strate and an incoming proton which we treat via TDDFT (c.f., Section 2). The second question is the change of stopping power
in correlated nano-scale materials. Here we apply non-equilibrium Green functions (NEGF)–Ehrenfest simulations, extending
the recent work of Balzer et al.[13,14] The NEGF approach is introduced in Section 3 and applied to finite honeycomb Hubbard
clusters. Finally, in Section 4 we discuss how the two complementary approaches might be combined in the future in order to
achieve a comprehensive description of ion and electron dynamics at the plasma–solid interface.

2 TDDFT SIMULATIONS OF CHARGE TRANSFER AND ION STOPPING

In this section we present ab initio molecular dynamics (MD) simulations for the neutralization of an ion, H+, incident on a sim-
ple metal surface, Al(111), which we have carried through using the Octopus code.[15–17] The metal substrate is represented by a
cluster. The coupled system of the ions and the electrons is described in an approximate way by using Ehrenfest dynamics.[15,18]

The Al atomic coordinates will be kept fixed during the time-dependent simulation, but this restriction could easily be lifted
without any significant additional computational effort. The electrons are described within TDDFT.[15,19,20] The time-dependent
Kohn–Sham equations, which in case of a local potential v read (in atomic units)

i
𝜕𝜓j(r, t)
𝜕t

= −1
2
𝛻2𝜓j(r, t) +

(
v(r, t) + ∫ d3r′ n(r′, t)

∣ r − r′ ∣
+ vXC(r, t)

)
𝜓j(r, t) , (1)

are integrated together with the Ehrenfest equation of motion. The electron density is calculated from the sum over the probability
densities of the time-dependent Kohn–Sham states that are occupied in the initial state, which itself is constructed by combining
the separately calculated electronic Kohn–Sham ground-states of the metal atom cluster and the incident particle. The adiabatic
approximation is applied to the exchange–correlation (XC) potential vXC, and, in addition, an approximate XC functional from
ground-state DFT is used:

vXC(r, t) ≈ vapprox
XC ([n(., t)], r) . (2)

In case of a proton incident on a metal surface, the electronic system is initially strongly locally excited. This is different
from the case of an atom, for example H0, scattered at the surface.[21] The adiabatic approximation of the XC potential will
be a more serious approximation in case of the strongly locally electronically excited system. In particular, Auger transitions
are not expected to be accounted for.[22,23] However, this is not a major restriction in case of the present simulations, because
Merino et al.[24] have concluded from their study using a model Hamiltonian that at the low H+ kinetic energies considered
here (below keV) the charge transfer is dominated by resonant processes. Finally, we note that the TDDFT–MD simulations we
present below refer to the valence electrons only. The core electronic states of the metal atoms have been incorporated into an
ionic pseudopotential. Moreover, also the s-wavefunction of the H-atom is pseudoized.

Important insight into proton neutralization at Al surfaces has been achieved by various authors using rate equations[25,26] or
(Newns–Anderson-type) model Hamiltonians.[24,27–30] While strong correlation effects can be incorporated into model Hamil-
tonians, the advantage of the direct simulation of the charge transfer process using a TDDFT code like Octopus lies in the
ab initio determination of the time-dependent electron density (i.e., screening and charge transfer), the effective potential, and
hence the time-dependent electron tunnelling probabilities.

TDDFT–MD simulations of ions accounting for resonant charge transfer have been carried out by other authors before, for
example, for the interaction of Li+ with an Al58-cluster by Moss et al.,[31] for a proton scattered at a Li4-cluster by Castro et al.,[32]

and collisions with carbon nanostructures by Krasheninnikov et al.,[33] or DNA fragments by Seraide et al.,[34] or graphene
fragments by Bubin et al.,[35] or graphene and boron nitride by Zhao et al.,[6] and for Cl− incident on a MoSe2 monolayer by
Wang et al.[36] This has lead to many significant scientific advances. However, there are open questions concerning, for example,
the resonant charge transfer in particular at low kinetic energies and the effect of the approximation to the XC-potential.[37,38]

Moreover, technological advances allow for the treatment of more extended systems. Here we present a TDDFT-MD simulation
of the charge transfer and energy dissipation for an H+ ion with initial kinetic energy 2 eV ... 50 eV incident on an Al(111) metal
surface (modelled by a cluster), and compare to the energy dissipation in case of an incident H-atom.

Technical details of the TDDFT-MD simulations are summarized below.
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FIGURE 1 (a) Visualization of Al-cluster and simulation box in case of H–Al on-top collision; graphic produced using the vmd software.[40] (b) Charge
transfer from the Al(111) target to the H+ projectile incident on an Al on-top site as obtained from the TDDFT-MD simulations (Equation (3)). The
uppermost Al-layer is located at z= 0 bohr. (c) Comparison of charge transfer for H+-projectile incident on an Al-hollow or on-top site and comparison
between GGA and LDA results. (d) Comparison of the variation of the electronic excitation energy (Equations (4) and (5)) and (e) the kinetic energy of the
H+ or H0 projectile incident on the Al(111) fcc hollow-site. The H penetrates the surface and propagates through the first two layers inside the Al-cluster until
it is reflected at the third Al-layer

2.1 Computational details

The Octopus code (version 6) by Rubio et al.[15–17] has been employed for all TDDFT-MD simulations presented in this paper.
The adiabatic approximation is applied to vxc, together with the Perdew–Burke–Ernzerhof (PBE) generalized gradient approx-
imation (GGA) for exchange and correlation from ground-state DFT (PBE-GGA)[39]. The Al(111) surface is modelled by a
cluster containing either 172 Al-atoms (for H+ incident at the Al(111) hollow site) or 188 Al-atoms (for H+ incident at the
on-top site). The Al-clusters have been created by cutting out half-spheres from a (111)-oriented substrate with lattice con-
stant of 4.047 Å as determined from ground-state DFT calculations with the convergence parameters and pseudopotential as
described below. The uppermost Al-layer has been fixed and an ionic relaxation of the remaining Al-atoms has been performed.
The simulation has been performed inside a user-defined region (see Figure 1a) that fits into a cube with edge size 60 bohr,
and a minimum distance between atoms and the boundary of the user-defined region of 12 bohr. The FFT for solving the Pois-
son equation requires a box with twice the edge length of the cube described above. Ions are represented by norm-conserving
Troullier–Martins pseudopotentials[41] created with FHIPP.[42] In case of the Al atom, 10 electrons are treated as frozen-in core
states. The non-local pseudopotential is p-local in case of Al and s-local in case of H. The following cut-off radii have been used
for the creation of the pseudpotentials: r𝐴𝑙1s = 1.791 bohr, r𝐴𝑙2p = 1.974 bohr, r𝐴𝑙3d = 2.124 bohr, rH

1s = 1.276 bohr, rH
2p = 1.276 bohr.

Fourier components of the pseudopotentials beyond the cut-off determined by the real-space mesh size are filtered using the
method of Tafipolsky and Schmid[43] as supplied within Octopus. The Kohn–Sham wavefunctions are sampled on a real-space
grid. We have used a spacing Δx= 0.5 bohr. As a test, we have carried through simulations with either smaller spacings ≥0.4
bohr or larger cluster (302 atoms for H+ towards the on-top position). The electronic ground state of the Al-cluster has been
determined using a Methfessel–Paxton smearing[44] with a small smearing parameter of 20 meV.

In case of the H+ projectile, the bare H-pseudopotential has been added to the simulation box. In case of the H0 projectile, in
addition the spin-polarized ground-state Kohn–Sham wavefunction of the H-atom has been calculated and added to the set of
wavefunctions. The initial distance between target and projectile is set to 16 bohr. An initial velocity has been assigned to the
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projectile, corresponding to a kinetic energy of 2, 10, or 50 eV. The initial-state Kohn–Sham wavefunction of the H-atom has
been multiplied with a boost phase factor.[22,45] The Al atomic positions were kept fixed during the simulations. A time step of
0.02 atomic time units (0.5 attoseconds) has been used for the propagation of the Kohn–Sham wavefunctions. The exponent in
the propagator is approximated using the exponential midpoint rule, and a fourth-order Taylor expansion of the exponential is
used as implemented in Octopus[46].

2.2 Charge transfer H+/Al(111)

The charge transfer from the Al-substrate to the H+ projectile as derived from the TDDFT-MD simulations is shown in Figure 1b
for the initial condition that the projectile is incident on the on top-site of the Al(111) surface. Only the incoming part of the
trajectory—before the H–Al head-on collision—is analysed. As the eigenvalue of the hydrogen 1 s level is located inside the
valence band of bulk Al, resonant neutralization via elastic tunnelling of the electron from the metal to the proton is possible.[24]

In order to quantify the charge transfer q(t) to the incident H+ ion we project the time-dependent Kohn–Sham wavefunctions
|𝜓 j(t)⟩ onto the H1s-orbital |1 s⟩. Including the occupation f j this yields the local charge of the H-ion

q(t) =
∑

j
fj ∣⟨1s|𝜓j(t)⟩|2 . (3)

In Figure 1b the transferred charge is plotted as a function of the distance of the projectile from the Al-surface. The neu-
tralization of the proton occurs at a distance between 4 and 6 bohr in front of the surface, depending on proton velocity. This
is consistent with the respective distance obtained by Jouin and Gutierrez.[26] The H+ neutralization has been reported in the
literature[29] to be very efficient. As the slower projectile spends a longer time at a certain separation in front of the metal sur-
face, the neutralization of the slower particle occurs at larger separation from the surface. The charge on the H finally exceeds
a value of 1.0. Negatively charged hydrogen is well known, for example, in case of metal hydrides.[47] The quantitative value
(as compared to other definitions of local ionic charges) may be partially affected by the overlap of the H1s wavefunction with
the electronic states of the Al-cluster. The data may be useful for the parametrization of the H–Al interaction in many-particle
model Hamiltonians.

As can be read from the results for the charge transfer to a proton with initial kinetic energy of 10 eV shown in Figure 1c,
the charge-transfer dynamics is rather insensitive to the point of incidence on the Al-surface. This was to be expected in view
of the small corrugation of the effective potential and electron density far above the metal surface layer. However, we note a
significant sensitivity of the charge-transfer dynamics on the choice of the approximation—here local-density approximation
(LDA) versus PBE-GGA—applied to the electronic ground-state XC-energy functional. We suggest that this may be due to
differences in the description of the electronic ground state of the H-atom.

There is a well-known difficulty to describe long-range correlations with semilocal approximations for the XC energy func-
tional in ground-state calculations[48]. For example, when describing the dissociation of H2 with a semilocal XC-functional,
an artificial transition to a spin-polarized system is in general used to describe total energies at large atom separation.[48,49] In
time-dependent simulations of H0 incident on a metal surface, the H0 atom has been assumed to be electronically spin-polarized
at large separations from the surface and loses spin polarization when interacting with the surface.[50,51] We also use an ini-
tially spin-polarized H0-atom in the present simulations in Section 2.3. In case of H+ incident on the Al-cluster in the present
calculation the initial configuration is spin-unpolarized and there is no term in the Hamiltonian that could break this sym-
metry during time evolution. We therefore suspect that the exchange-correlation effects are not well accounted for by the
present spin-unpolarized semilocal approximation to vXC, and more advanced approximations would be desirable.[48] For the
model-Hamiltonian calculations, the problem of correlation has been approached using, for example, as approximation for the
correlation in multiple-level systems U →∞.[30]

It is argued that no electron–electron relaxation (Auger effect) occurs when the present adiabatic XC-functionals are
employed.[22,23] Theoretical work on the He+/Al system shows that in case of the projectile velocity range applied here, the
Auger channel is the relevant one in order to be able to describe the experiment.[52–55] First test calculations within the frame-
work described above for a He+ ion (Ekin = 2 H) incident on an Al(111) surface, confirm that Auger processes do not show in the
calculations performed using an adiabatic GGA XC-functional. Hence, other methods beyond the TDDFT-MD with adiabatic
GGA have to be used if Auger transitions are to be considered.

2.3 Energy dissipation for H+, H0 projectiles penetrating the Al-surface

TDDFT-MD simulations of an H+ or an H0 projectile starting 16 bohr above the hollow site of the Al(111) surface facet of
the Al-cluster with an initial kinetic energy of 10 eV show—in agreement with similar previous TDDFT-MD simulations for
H0 by Lindenblatt et al.[21,56]—that the projectile (in case of H+ after neutralization) penetrates the Al-surface. It propagates
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through the top two metal layers before it is reflected at the third atomic layer in a head-on collision. In Figure 1d the variation
of the electronic excitation energy with respect to its initial value is plotted versus the distance of the projectile from the surface
(defined by the position of the top layer Al atoms). In case of the uncharged H0 this equals the electronically nonadiabatic
energy, which is defined by the difference between the electronic energy in the time-dependent simulation and the energy of
the electronic ground state at frozen-in atomic coordinates R(t)= (R1(t), ..., RN(t)):

ΔEH0

nonad:=Etd(t) − Egs(R(t)) . (4)

In case of a proton incident on the surface, in addition the energy needed to ionize an H-atom, i.e. to transfer one electron
from the H0-atom to the Al-cluster, has been subtracted for the sake of easier comparison to the case of H0:

ΔEH+

nonad:=Etd(t) − Egs(R(t)) − (Eion(H) − WA(Al-cluster)) . (5)

All energies refer to DFT calculations with PBE-GGA applied to vXC. In Figure 1e the kinetic energies of the H+ and H0

projectiles are visualized. The neutral H0 projectile approaches the surface, accelerates inside the chemisorption well and trans-
verses the adsorption position (at 1.89 bohr) where it gains the adsorption energy of 1.93 eV. This results in an increase of
the kinetic energy of the projectile, however, part of the kinetic energy of the projectile is dissipated into electron–hole pair
excitations.[21] The charged projectile H+ is accelerated towards the surface due to the image-charge attraction.[57] The image
plane of Al(111) is located at zimage = 3.49 bohr in front of the surface, according to Chulkov and Silkin.[58] The image-charge
potential 1/(4[z− zimage]) that would be induced in case of an infinitely large surface slab is included in Figure 1d by the brown
dashed curve. In case of the finite cluster utilized here, the attractive potential will deviate from the simple image-potential
form. The kinetic energy gain of about 0.54 eV due to attraction by the image charge of a proton starting infinitely far away
from a plane surface and reaching a surface separation of 16 bohr is not accounted for in our calculation. As can be seen by
comparing Figure 1d and e, while the kinetic energy increases due to image-charge attraction, the electronic excitation energy
decreases by about the same amount (brown dashed curve in Figure 1d). This is in line with the conservation of total energy.
Note that Egs in Equation (5) refers to the electronic ground state, that is, an uncharged H0. Thus the change of electrostatic
energy due to polarization of the Al-cluster by the proton is included in ΔEH+

nonad. At a surface separation between 4.5 and 6.0
bohr, the partially charged H+ loses kinetic energy. This region coincides with the region where the charge transfer occurs (see
Figure 1c). The deacceleration of the projectile is ascribed to Coulomb repulsion between the projectile and the Al-cluster. In
case of an infinitely large substrate and in the adiabatic limit the charge transferred to the projectile will, in the electrostatic
case, come from infinity. Hence we have to be aware that the above Coulomb repulsion effect will be limited to the finite-size
clusters. The cluster-size convergence is expected to be slow. Thus we cannot easily generalize the result of the rather similar
variation of the kinetic energy of the H+ and H0 projectile at distances smaller than 4.5 bohr from our cluster calculation to the
case of a metallic half space. However, as far as the interaction with the Al-cluster used in the simulations is concerned, the
H+ loses its charge in front of the surface and the variation of the electronic excitation energy comes out very similar when the
projectile propagates within the metal cluster. This is in line with the observation that final projectile charges do not depend on
the charge state of the incident particle for the given H+/Al system and velocity range by, for example, Zimny et al.[25], Jouin
et al.,[26] and Torralba et al.[29] The similar behavior between H+ and H0 incident on, for example, a graphene sheet has been
noted before in TDDFT-MD calculations by Krasheninnikov et al.[33]

For clarity we point out that, while not immediately deducable from Figure 1d and e, the neutralization of the H+ in front of
the surface is associated with a strong energy transfer into hole excitations of the metal substrate as the hole tunnels from the
proton into the metal.

Stopping power for protons in bulk Al has been discussed and analysed in detail by several authors using
TDDFT-dynamics[4,59,60] or linear-response theory.[61,62] A neutral hydrogen atom impinging on the Al(111) surface and pene-
trating into the crystal has been studied before in Lindenblatt et al.[21,56] Theory for bulk electronic stopping agrees with experi-
mental data, especially in the low-energy range subject to the present investigation. For comparison, in Figure 1d we include the
stopping power derived from a linear-friction ansatz[21] (black curve) as well as an extrapolation of data from Schleife et al.[60]

and PSTAR[63] (red curve). The starting point of both curves is chosen to coincide with the commencing electron–hole pair cre-
ation. Thus we agree with previous work[4,21,59–62] that electronic stopping of hydrogen (after neutralization) within the Al-metal
can reliably be simulated by TDDFT. At the same time, many questions remain to be solved, for a discussion see Section 4.

3 NEGF–EHRENFEST APPROACH TO ION STOPPING IN CORRELATED MATERIALS

3.1 Theory overview

A method that allows for a systematic treatment of electronic correlations in a solid-state material and, at the same time,
of inhomogeneity effects induced by an external excitation are (real-time) NEGF.[64–67] The central quantity is the one-particle
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NEGF

G𝑖𝑗𝜎(t, t′) = −iℏ⟨TCc𝑖𝜎(t)c†𝑗𝜎(t
′)⟩ (6)

which appears as a two-time generalization of the one-particle density matrix 𝜌𝑖𝑗𝜎(t) = − i
ℏ

G𝑗𝑖𝜎(t, t+), where the notation t+

means t= t+ 𝜀 with 𝜀>0 → 0, and G determines all time-dependent one-particle observables. In the definition of the NEGF,
c†𝑖𝜎 (ci𝜎) are creation (annihilation) operators in the Heisenberg picture for electrons in a single-particle orbital |i⟩ with spin
projection 𝜎, and the expectation value is computed with the equilibrium density operator of the system. Furthermore, times
are running along the Keldysh contour C, with TC denoting ordering of operators on C.[65,68,69] The equations of motion for the
NEGF are the two-time Keldysh–Kadanoff–Baym equations (KBE)[65]

∑
k
[iℏ𝜕t𝛿𝑖𝑘 − h𝑖𝑘𝜎(t)]G𝑘𝑗𝜎(t, t′) = 𝛿C(t − t′)𝛿𝑖𝑗 +

∑
k
∫C

dsΣ𝑖𝑘𝜎(t, s)G𝑘𝑗𝜎(s, t′) (7)

∑
k

G𝑖𝑘𝜎(t, t′)[−iℏ
←−
𝜕 t′𝛿𝑘𝑗 − h𝑘𝑗𝜎(t′)] = 𝛿C(t − t′)𝛿𝑖𝑗 +

∑
k
∫C
𝑑𝑠𝐺𝑘𝑗𝜎(t, s)Σ𝑖𝑘𝜎(s, t′) (8)

a set of two integro-differential equations, where the Hamiltonian h(t) contains the one-particle kinetic, potential and mean-field
energy, whereas correlation effects are contained in the two-time selfenergy Σ(t, t′) that can be approximated as a functional of
the NEGF according to a diagrammatic many-body perturbation expansion. Note, that in the given form of the KBE we do not
consider spin changes and assume a paramagnetic system.

As an approximation for the selfenergy beyond the Hartree–Fock (HF) level (for which Σ= 0 and mean-field contributions are
incorporated in h(t)), we consider in the present work the second-order Born (2B) approximation,[64,65] which conserves total
energy, particle number and momentum and is specified in Equation (12) below for the case of a local Hubbard-type interaction.
For more advanced expressions for the selfenergy, such as GW, T matrix or third order, for example, Schlünzen et al.[70,71] In
addition to the use of the 2B approximation, we simplify the solution of the KBE in one of two ways:

i we apply the generalized Kadanoff–Baym ansatz (GKBA) with HF propagators, as proposed in Ref. [72], to reduce the
computational effort of solving the KBE (7) and (8) from a scaling ∼ T tot

3 with the total simulation duration to ∼ T tot
2, see

Lipavský et al.[73] for details,
ii we consider the selfenergy to be local in space, Σij𝜎(t, t′)= 𝛿ijΣi𝜎(t, t′), for which the KBE can be solved very efficiently

using the auxiliary-Hamiltonian representation introduced in Hermanns et al.[74]

Both strategies allow us to reach sufficiently long propagation times that are needed to treat electronic excitations during
charged-particle stopping scenarios with sub-keV impact energies. To include an external moving charge (projectile) into the
KBE simulations, we choose an NEGF–Ehrenfest approach which was first presented in Balzer et al.[13] and applied in Balzer
et al.[14] and Bonitz et al.[75] In the course of this, the trajectory r(t) of the projectile is calculated on the fly by Ehrenfest
dynamics using a classical potential that is derived from the Coulomb interaction between the projectile’s charge Ze and the
time-dependent total charge density 𝜌(R, t) of all constituents of the material.

As a prototype model for a correlated material, we consider single-band Hubbard nano clusters with a 2D honeycomb struc-
ture, the interparticle distance a0 = 1.42 Å and L sites that have spatial coordinates Ri. With a nearest-neighbour hopping J and
an on-site Coulomb interaction U, the cluster Hamiltonian reads

H = −J
∑
⟨i,j⟩𝜎

c†𝑖𝜎c𝑗𝜎 + U
∑

i

(
ni↑ −

1
2

)(
ni↓ −

1
2

)
+
∑
𝑖𝜎

Wi(t)c†𝑖𝜎c𝑖𝜎 (9)

where ni𝜎 = ci𝜎
† ci𝜎 is the electron density, and ⟨i, j⟩ indicates summation over nearest neighbours. In our calculations, we chose

the hopping parameter as J = 2.8 eV, which results from a mapping of ab initio calculations to graphene-type systems in the
tight-binding approximation.[76,77] This choice provides a typical setting with a realistic synchronization of the projectile–lattice
time scales. Furthermore, the last term of Equation (9) describes the Coulomb interaction of the lattice electrons with the
projectile in terms of a time-dependent on-site energy

Wi(t) = − 1
4𝜋𝜀0

𝑍𝑒2

∣ r(t) − Ri ∣
. (10)

Throughout, we consider the case of half filling and measure times in units of t0 =ℏ/J. Inside the KBE, the many-body
Hamiltonian (9) translates into a one-particle Hamiltonian

h𝑖𝑗𝜎(t) = −J𝛿⟨i,j⟩ +
[
U
(
⟨n𝑖𝜎(t)⟩ − 1

2

)
+ Wi(t)

]
𝛿𝑖𝑗 . (11)
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Note that, for Hubbard systems, the Fock terms of the mean field are absent. In addition, we employ the second Born (2B)
selfenergy of the form

Σ2B
𝑖𝑗𝜎(t, t

′) = ℏ2U2[G𝑖𝑗𝜎(t, t′)]2G𝑙𝑗𝜎(t′, t) (12)

where, in the special case of a “local” selfenergy (local 2B), the site-off-diagonal components are neglected, as mentioned
above. The trajectory along which the projectile passes through the cluster is calculated from the potential

V(t) = 𝑍𝑒2

4𝜋𝜀0

∑
i

𝜌(Ri, t)
∣ r(t) − Ri ∣

(13)

where 𝜌(Ri, t) = −
∑
𝜎

(
⟨n𝑖𝜎(t)⟩ − 1

2

)
is the total charge density on the cluster, assuming a positive background that results from

the atomic cores in a real material. As initial conditions we use r(t−∞)= (x0, y0,−z0), where z0 is chosen such that the projec-
tile penetrates the cluster at half the simulation time, and dr/dt(t−∞)= (0, 0, v0), performing calculations for a perpendicular
incidence, with the honeycomb cluster located in the xy-plane.

A central observable which characterizes the stopping process is the energy loss of the projectile (P),

S = EP
kin(t+∞) − EP

kin(t−∞) (14)

where EP
kin(t−∞) ≡ EP

kin,0 = 1
2
𝑚𝑣2

0 and EP
kin(t+∞) denote the initial and final kinetic energies, before and after passing through

the cluster, respectively. Further important observables are the different energy contributions on the cluster, that is, the kinetic,
potential, and interaction energy:

Ekin(t) = ℜ

[
−J

∑
𝑖𝑗
𝛿⟨i,j⟩𝜌𝑗𝑖(t)

]
, Epot(t) = ℜ

[∑
i

Wi(t)𝜌𝑖𝑖(t)

]
and (15)

E𝑖𝑛𝑡(t) =
iℏ
2
ℑ

[∑
𝑖𝑗

∫C
𝑑𝑠Σ𝑖𝑗(t, s)G𝑗𝑖(s, t+)

]
(16)

where the latter is decomposed into mean field (Hartree–Fock) and correlation energy according to EHF(t)=ℜ[
∑

iU𝜌ii(t)] and
Ecorr(t)=Eint(t)−EHF(t). Furthermore, we analysed the evolution of the local and cluster-averaged double occupation,

di(t) = ⟨ni↑(t)ni↓(t)⟩ = − iℏ
U

∑
k
∫C

dsΣ𝑖𝑘(t, s)G𝑘𝑖(s, t+), davg(t) =
1
L

L∑
i=1

di(t) (17)

where spin indices are omitted.

3.2 Time-resolved energy exchange between projectile and cluster

Below we present numerical results of the KBE coupled to the semiclassical projectile dynamics, as introduced in Balzer
et al.[13] We consider two honeycomb clusters that are described by the Hubbard model (9) containing L= 24 and L= 54 sites,
respectively, see Figure 4 for a sketch of the former. We start by giving an overview of the general dynamical behavior of
correlated 2D systems during the impact of a charged particle. For the 54-site cluster, the results are shown in Figure 2 for the

case of a proton, penetrating the lattice at the centroid point C with RC =
(
− 1

6
a0,−

√
3

3
a0, 0

)
. We apply the NEGF approach

including the GKBA, as introduced in Section 3.1, to study the coupled projectile–lattice dynamics. Thereto, we first generate
the correlated ground state of the electrons on the lattice via an adiabatic-switching procedure, where the interaction U of the
system is slowly ramped to its final value during the initial time-propagation interval (see Schlünzen and Bonitz[67] for details).
We consider the case of U = 4 J—a configuration that allows for the build-up of correlations. Once the interacting ground state
is reached, the projectile dynamics starts by solving the coupled Equations (9) to (13). For a broad range of projectile energies,
10−1 keV/u< EP

kin,0< 103 keV/u, we compute the dynamical evolution of relevant energies of both, the lattice electrons and the
proton. The results are shown in Figure 2. For better comparability, all quantities are plotted as a function of the time-dependent
projectile position zP(t). To further illustrate the dependence of the relevant observables on the ion impact energy we show
slices for three different ion–surface distances, zP/a0 = 0, 2.5, 5, corresponding to the impact time (zP = 0) and two slightly later
times, in Figure 3.

Consider first the kinetic energy of the projectile that is shown in part (e) of Figures 2 and 3. The energy loss of the projectile
to the cluster can be seen from a vertical cut through Figure 2e at large zP. One clearly recognizes the familiar bell-shaped
dependence on the impact energy with a single peak around 10 keV/u. On the other hand, looking at horizontal cuts provides
the time dependence of the proton energy: before the impact (negative zP) the proton gains energy because it is attracted by the
electrons of the cluster, whereas after the impact the proton loses energy to the electrons (more than it had gained before), see
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FIGURE 2 Evolution of relevant energies during the impact of a proton at point C (c.f., Figure 4) on a 54-site honeycomb cluster at correlation strength
U = 4 J for different initial kinetic energies in the range 10−1 keV/u<EP

kin,0 < 103 keV/u, indicated on the y-axis. The x-axis contains the current height of the
proton, zP(t), (impacting from the left) above the cluster plane. Since the projectile velocity is almost constant, the height is a measure of time. (a): potential
energy, (b): Hartree–Fock energy, (c): kinetic energy, (d): correlation energy, and (f): average double occupation of the lattice electrons; (e): kinetic energy
loss of the projectile. The colour scale is shown to the right of each figure. To ease the analysis of the data, three vertical cuts at zP = 0; 2.5; 5 through each
graph are shown in Figure 3

also Figure 3e. A general discussion of this behavior has been given in Balzer et al.[13] Here we provide more details of the
physics including a breakup of the energy gain of the electrons into different contributions: potential energy in the field of the
projectile, kinetic energy, mean-field energy, and correlation energy.

The potential energy of the cluster electrons in the Coulomb field of the projectile, Equation (15), is shown in Figure 2a. While,
in the absence of the projectile this energy is zero, during the impact the attraction of the electrons towards the projectile impact
point gives rise to a large (negative) energy—electrons are confined in a potential well centred at the impact point. For each pro-
jectile energy, EP

kin,0, the potential energy is perfectly symmetric with respect to the impact point zP = 0. This demonstrates that
there is no drift of the ion in x- and y-direction during the penetration process. Next consider the kinetic energy of the electrons,
Figure 2c, and compare it to the kinetic energy of the projectile, Figure 2e. For any vertical cut through the figures (constant
zP > 0) the two energies are essentially mirror images of each other. The maximum energy reduction of the projectile (maximal
stopping) is observed slightly below EP

kin,0 = 10 keV/u, exactly where the electrons experience the highest kinetic-energy gain.
This is even more clearly visible in blue and green curves in Figure 3c and e. Figure 2b shows the Hartree–Fock part of the inter-
action energy of the electrons. It is directly proportional to the electron density, compare Equation (16) and, thus, illustrates the
density response to the projectile. Note the striking difference in the two limiting cases of low and high ion energy, respectively:
for low EP

kin,0, the electron density adiabatically follows the external excitation, leading to a symmetric bell-shaped curve, sim-
ilar to Epot. In contrast, for high-energy ions, the interaction time is too short for the electronic system to respond, therefore the
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FIGURE 3 Same as Figure 2, but for three cuts at fixed values zP of the proton coordinate (height above the plane): in the cluster plane (zP = 0, red line) and
two distances after the impact (blue and green), see inset of top right figure

density and, thus, EHF do not change significantly—even during the particle impact. The physics inbetween these two limits is
dominated by an increasingly delayed and broadened response of the electron density, due to the build up of electron–electron
correlations. The same trends are seen also in Figure 3c: for example, the red curve demonstrates the reduction of the electronic
density response with increasing projectile speed. Consider now the correlation energy of the electrons, Ecorr, Equation (16),
and the closely related average doublon number, davg, Equation (17), that are displayed in Figures 2(d) and (f), respectively. Both
quantities show a very similar behavior that resembles that of the Hartree–Fock energy, EHF, compare figure part (b). Thus, both
quantities mainly following the evolution of the density, as well, which is also seen in Figure 3, compare parts (d, f) to part (b).

The time-dependent re-distribution of the energy gained by the electrons between kinetic, mean-field and correlation energy
can be clearly seen in Figure 3(b-d), compare the red and green curves. When the projectile departs towards positive zP,
the kinetic energy always increases because the potential well that has trapped the electrons is removed. At the same time,
Hartree–Fock and correlation energy decrease, for impact energies below 10 keV/u, compare Figure 3b and d. In contrast, for
impact energies exceeding approximately 10 keV/u (25 keV/u) the Hartree–Fock (correlation) energy increase.

3.3 Correlated-energy dissipation for impact energies below 1 keV

In this section, we perform additional simulations for an L= 24-site honeycomb cluster (c.f., visualization in Figure 4), where
we focus, in particular, on correlation effects at small proton energies. To reach sufficiently long simulation times, in this case,
we do not perform an adiabatic switching on of the interaction U but start from the Hartree ground state, for the inclusion
of a correlated initial state, see Semkat et al.[78,79]. In this case the proton impact should occur only after the initial transient
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FIGURE 4 (a) and (b): Energy loss S(EP
kin,0) of a proton passing through a 24-site honeycomb cluster (J = 2.8 eV, a0 = 1.42 Å.) at three correlation strengths

U/J = 0, 2, 4, for two different impact points marked in the bottom right figure: C (−a0∕6,−a0∕
√

3, 0), red lines) and S (cluster center, blue lines). (b) The
same data as (a) on a logarithmic scale to better resolve the low-energy behaviour. For U/J = 4, we include, in addition to the Hartree calculations, results
obtained in the local second-order Born approximation (local 2B). Note that, at impact energies below 2 keV, electron–electron correlations tend to increase
the energy loss compared to the mean-field result. (c): Time evolution of the density N4(t) and double occupation D4(t), as defined in the text (averages over
the four green sites in the bottom right figure), for the impact energy EP

kin,0 = 1 keV. The red arrow marks the ion-induced doublon excitation that is observed
in the correlated simulations

dynamics which are caused by the sudden (nonadiabatic) switch on of the 2B selfenergy. These transient dynamics also change
the initial Hartree double occupation davg(t−∞) = 1

2L

∑
𝑖𝜎⟨n𝑖𝜎(t−∞)⟩ = 0.25 to some smaller value (for details see Balzer et al.[13]).

Extending the work of Balzer et al.,[13] we consider in the following two different initial positions of the proton: the points S
(cluster center, blue) and C (centroid point, red) as sketched in Figure 4.

Figure 4a and b shows the energy loss in a broad range of proton energies between 0.05 and 25 keV/u for three different
values of the interaction strength U/J ≤ 4. For the point C (red curves), the peak position of the energy loss is located roughly
around 10 keV/u, while, for the point S (blue curves), the maximum of the stopping power varies between 4 keV/u (U = 0) and
15 keV/u (U/J = 4). Generally, we observe that, in the investigated regime, an increase of the interaction strength U leads to
a smaller energy loss for fixed impact parameters. Moreover, when the energy is decreased below 0.1 keV/u, the energy loss
rapidly vanishes, in a mean-field description, due to a rather instantaneous change of the charge density on the cluster, which
we attribute to the onset of the adiabatic-response regime.

In the next step, we examine the influence of electron–electron correlations on the energy loss. In the 2B approximation
for a moderate interaction strength of U/J = 4, we find clear deviations from the Hartree results. Around EP

kin,0 = 1 keV/u, the
correlated result for the stopping power significantly exceeds the Hartree result, for the starting point C, while for the point S
the correlated results remain close to the mean-field result. When the impact energy is further reduced the situation changes.
For the impact point C correlated and uncorrelated simulations do not differ systematically. In contrast, for impact point S the
correlated calculation leads to a significantly increased energy loss compared to the mean-field simulation. Moreover, at and
below 0.2 keV/u, the energy loss seems to be dominated by correlation effects, as the mean-field results rapidly vanish, for point
S. This low-energy behavior needs further investigation since here also effects beyond the second-Born approximation might
become important.
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Let us now return to the impact energy EP
kin,0 = 1 keV/u. We expect that the increased energy loss obtained in the local 2B

calculations for the starting point C, is a consequence of enhanced doublon formation on the cluster, triggered by the interaction
with the proton along the excitation protocol discussed in Balzer et al.[14] This protocol connects single-electron and doublon
states in a strongly correlated Hubbard model via nonadiabatic Landau–Zener transitions. As an indication that such excitations
play a crucial role, we mention that, for the case C, the maximum value of the interaction energy with the proton at the nearest
lattice site, |Wi= 2(t)|, is about twice as large as the electron–electron interaction strength U, which was found to be the optimum
condition for ion-induced doublon excitation in Balzer et al.[14] In contrast, this energy is of the order of U, for the impact point
S. For cases where the maximum value of the interaction with the proton is smaller, ∣W ∣ ≲U, doublon production should be
not as efficient as for on-site energies W ≳ 2U, compare Balzer et al.[14] and Bonitz et al.[75]

Additional support for these arguments is obtained from an analysis of the time evolution of the electron density and double
occupation on the cluster. In Figure 4c, we show two quantities: N4(t) = 1

4

∑4
𝛼=1⟨n𝛼𝜎(t)⟩ and D4(t) = 1

4

∑4
𝛼=1 d𝛼(t), that is,

the density and doublon number averaged over the four sites that are nearest to the impact point C, compare the green sites
labelled 1 to 4 in the cluster sketch of Figure 4. We observe that, after the impact, the relaxation of the density towards the
equilibrium value N4 = ⟨ni𝜎⟩= 0.5 is slightly different for the cases C and S. In the former case, the density in 2B approximation
remains larger than the Hartree result whereas, in the latter case the second-Born result is slightly lower, at least up to the time
t− timpact ≈ 2.5ℏJ−1. From the quantity D4 we find that this difference in the evolution of the densities is associated with a larger
doublon number after the impact, in a correlated simulation, for the case C, see the red arrow. Also, note, that we have computed
D4 in Hartree approximation with the full mean-field NEGF G(t, t′) according to Equation (17) instead of evaluating just the
uncorrelated part Duncorr

4 = 1
4

∑4
𝛼=1 ⟨n𝛼𝜎(t)⟩2, that has the equilibrium limit D4(t−∞)= 0.25.

Even though the effect of doublon excitation is not strong, in the present case, recent simulations have confirmed the
importance of this effect, as will be discussed in Section 4.

4 CONCLUSIONS AND OUTLOOK

In this article we presented new results of time-dependent quantum simulations for the dynamics of ions near a solid surface.
Such processes are of prime importance for the interaction of plasmas with solids where many questions remain poorly under-
stood. We focused on two important aspects of ion stopping in nanoscale solid systems exposed to low-energy projectiles: (a)
the charge transfer from the surface to the projectile and (b) the modification of the projectile energy loss in case of a target
material with strong electronic correlations. While the former problem was studied using time-dependent DFT simulations,
the latter one was studied using NEGF simulations for small honeycomb Hubbard clusters. The results for the two problems are
summarized below before we discuss future developments.

In our TDDFT simulations we have used an adiabatic GGA for the exchange–correlation potential and, thus, restricted our-
selves to a resonant charge-transfer process. A proton incident on an Al(111) surface serves as a well-established model system,
which has been studied intensely for a long time using model Hamiltonians.[24,27–30] The strength of TDDFT-MD lies in the
ab initio material-specific description of the time-dependent charge and energy transfer and the screening. Tunnelling rates
differ from estimates from electronic ground-state theory. Limitations of the approach are due to the adiabatic approxima-
tion for exchange and correlation plus the semilocal approximation applied to the exchange–correlation energy functional of
ground-state DFT, and improvements pose an open problem.

In our NEGF simulations we have concentrated on electronic correlation effects in the stopping of ions. We have confirmed
that, at impact energies below 1 keV correlations tend to increase the energy transfer to the target, compared to an uncorrelated
(Hartree) simulation. Among the possible mechanisms is the excitation of doublons in the target. In Bonitz et al.[75] it was shown
that, for a proper choice of impact energy, and for a more strongly coupled hexagon cluster (U/J ≥ 10) of size L= 12 an ion
impacting in the cluster center may excite a large doublon number that does not decay after the projectile has left. Moreover, it
was shown in Balzer et al.[14] and Bonitz et al.[75] that, in the case of multiple ion impacts, the doublon number can be increased
further.

Let us now discuss the combined treatment of the two effects. Even though charge transfer is most likely not relevant for
the kinetic energy loss of the projectile, it may well affect the electronic processes in the target, including doublon excitations.
Answering these questions, though, requires a combination of the two simulation methods. However, presently none of the
two methods is capable of incorporating the missing effect. Present approximations to the exchange–correlation potential in
TDDFT simulations do not describe strongly correlated systems and, thus, cannot treat doublon formation in the target. On
the other hand, NEGF simulations of charge transfer have recently been attempted for simple model systems (1D Hubbard
chains) in Bonitz et al.[12,75]. However, these simulations did not include a realistic treatment of the impacting ion. Here, a
combination with TDDFT could be the basis for major progress. A possible combination could be via a Newns–Anderson
model for the projectile where TDDFT provides selfconsistent model parameters. A second promising combination of the two
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methods consists in the derivation of improved exchange–correlation functionals for TDDFT that include finite-temperature
effects[80,81] and their benchmarking by NEGF simulations. This will be particularly important for the treatment of Auger-type
processes in the interaction of an ion or atom with the surface which are straightforwardly described within NEGF already with
second-order Born selfenergies, for example, Bonitz et al.[12] and Covito et al.[82] These combinations of TDDFT and NEGF are
expected to be of high importance for the development of accurate simulations of low-temperature plasma–surface interaction.
Moreover, such combinations should also be of high interest for other fields including surface physics and chemistry.
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Chapter 5

Other Works

The key ambition of the present thesis is the further development of the NEGF method in

theory and application. Indeed, the author’s extensive theoretical improvements presented

in Sec. 2.1 have rendered the potential of hitherto untapped selfenergy approximations

practically accessible, thereby opening up new avenues for future research. The following

section discusses a particularly interesting example that focuses on light-driven graphene

nanoribbons (GNRs)—a material that has attracted wide attention but is notoriously

hard to describe.

5.1 Optical Properties of Graphene Nanoribbons

Graphene [157] exhibits an astonishingly high carrier mobility following from its unique

band structure and its two-dimensional configuration [161]. In order to utilize its potential

in modern nanoelectronics, it is essential to find a way to manufacture a finite band gap

in graphene. A particularly encouraging realization has been the usage of the quantum

confinement in finite graphene fragments [173, 174]. A systematical way to control the

confinement-induced band gap is provided by GNR structures (straps of graphene with a

finite width in the direction of one symmetry axis), which can be reliably fabricated in

different sizes [173, 174, 180–185]. Recent laser experiments with graphene-based structures

have revealed the existence of the so-called carrier-multiplication (CM) or impact-excitation

effect [31–35]—an Auger-type process where one excited electron can raise another electron

above the band gap—in monolayer graphene [194, 195] and graphene nanotubes [192,

193]. This is especially interesting for photovoltaic applications of graphene, as it might

improve the achievable efficiency beyond the Shockley–Queisser limit [340, 341]. For

GNRs the experimental confirmation has not yet been achieved. While CM effects have

been theoretically predicted for GNRs on a conceptual level [35] a rigorous correlated

nonequilibrium-dynamics description has been missing. The proper characterization of

time-dependent nonequilibrium situations in finite GNRs imposes great challenges to any

theoretical method due to the increased electronic coupling. The NEGF approach that was

advanced by the author does not only meet these challenges in an efficient way but gives
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access to the important time-resolved spectral information as well. With large contribution

of Jan-Philip Joost the author’s NEGF implementation was adapted to simulate laser-

excited GNR systems. The results are published in the following publication,1 Ref. [216].

As shown in Ref. [342], GNRs are accurately described in an extended Hubbard model

that additionally incorporates hopping processes to second- and third-nearest neighbor

sites and a finite orbital overlap. In Ref. [216] this model is combined with the GW

selfenergy to capture electron–hole correlations that are important at and near half filling.2

The first-order (HF) and second-order (SOA) selfenergies are applied for comparison as

well. To further adjust the approach the theoretical band gap for nanoribbons with up to

112 carbon atoms is matched to experimental data [344, 345]. In benchmark calculations

for the spectral quantities it is demonstrated that the resulting description conceptually

improves the equilibrium dispersion relation compared to existing DFT+LDA results [345].

As a proof of concept, the approach is then applied to a 30-site GNR which is excited

by a linearly polarized laser pulse. It is shown that the photoemission spectrum exhibits

an energetic redistribution of the electrons in the upper Hubbard band, even after the

laser field has vanished. As this is not visible in mean-field calculations, the observed

behavior is clearly caused by Auger-type electron–electron scattering effects—such as the

above-mentioned carrier multiplication—which again confirms the necessity of a correlated

nonequilibrium description. The detailed characterization of the correlation effects at

hand is left open for an upcoming publication. The observations are highly relevant

for future experiments, which can be guided by the theoretical predictions of Ref. [216].

Finally, Green-function studies of GNRs are further developed in Ref. [119] where a

groundstate formalism is used to predict topological effects that match experimental

results.

1J.-P. Joost, N. Schlünzen, and M. Bonitz, Phys. Status Solidi B, 256, 1800498 (2019). Copyright

Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.
2A comparable approach on the mean-field level has been successfully applied to GNRs in Ref. [343]
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Femtosecond Electron Dynamics in Graphene
Nanoribbons – A Nonequilibrium Green Functions
Approach Within an Extended Hubbard Model

Jan-Philip Joost,* Niclas Schlünzen, and Michael Bonitz

A new approach to study the correlated femtosecond electron dynamics in
finite graphene clusters, such as nanoribbons, is presented here. The systems
are described by an extended Hubbard model that takes into account the
overlap of adjacent orbitals and hopping between up to third-nearest
neighbors. The model is solved by the nonequilibrium Green functions
approach combined with different self-energy approximations, including the
second-Born and GW self-energy, to take into account electronic correlations.
The description allows us to predict the correlated nonequilibrium dynamics
of excited graphene nanostructures of arbitrary geometry containing up to
100 carbon atoms for up to 25 fs.

1. Introduction

Since the first experimental discovery of its unique features in
2004[1] the interest in graphene has grown rapidly. As the first
truly two-dimensional material it exhibits a number of unique
mechanical, optical, and electronic properties which make
graphene a promising candidate for various technological
applications of the future.[2–6] However, as graphene is a
semimetal, the absence of a band gap prevents the realization of
next-generation graphene-based nanoelectronics.[7] Therefore,
large effort was put into creating semiconducting graphene
materials that retain its remarkable transport properties. While
some methods focus on substrate-induced[8,9] or strain-
induced[10,11] band gaps, the most promising approach, at the
moment, is obtaining a band gap through the effect of quantum
confinement in finite graphene nanostructures[12,13] such as
graphene nanoribbons (GNRs). The electronic properties and
especially the low energy spectrum of the π-electrons are strongly
influenced by the edge structure of the nanoribbons. Depending
on the shape of the edges one distinguishes between armchair
graphene nanoribbons (AGNR) and zigzag graphene nano-
ribbons (ZGNR).

A detailed understanding of these finite
graphene nanostructures is of high impor-
tance for current research. Due to the
recently developed new synthetization
methods of graphene nanoribbons,[14–18]

the number of exciting experiments in-
creased drastically over the last years.[19–25]

Therefore, an accurate theoretical descrip-
tion of these systems in nonequilibrium
and particularly of their time-resolved
spectral properties is needed. However,
finite graphene nanostructures, especially
in nonequilibrium, are extremely complex,
inhomogeneous systems that put high
requirements on any theory that attempts
to describe them accurately. A proper

theory has to describe finite systems that are experimentally
accessible. Such systems typically include up to 100 carbon
atoms.[17,26,27] Further, the approach has to take into account the
finite overlap of the atomic orbitals and describe moderate
electronic correlations. Additionally, the two-dimensional geom-
etry of the graphene honeycomb lattice has to be modeled.
Finally, the theory has to be able to describe the correlated
nonequilibrium dynamics of the system for up to several
femtoseconds within a reasonable amount of computational
time. In conclusion, one has to find a model that allows for an
accurate description of these systems while at the same time
remains numerically manageable.

A method that fulfills all these requirements is the theory of
real-time nonequilibrium Green functions (NEGF) due to
Keldysh.[28,29] It allows for a self-consistent dynamics of
correlated electrons fully obeying conservation laws. Themethod
contains a single input quantity – the self-energy Σ, see Section 3
– and would be exact if the exact Σ ¼ Σ G½ � was used. But in
practice, of course, approximations are used. Nevertheless, the
accuracy of NEGFsimulations has been carefully tested in recent
years, for example, refs. [30,31], and – with the appropriate
choice of the self-energy – allows for reliable and predictive
simulations. At the same time, NEGF simulations are
computationally demanding and the effort scales cubically with
the basis dimension. A link between accuracy and low numerical
effort is provided by using Hubbard-type lattice models, for
example, ref. [32], and we will, therefore, follow this strategy in
the present paper as well. At the same time we will improve the
model compared to earlier simulations, by using an extended
Hubbard model where the model parameters are provided by ab
initio approaches as discussed in Section 2. Using this approach
we obtain accurate ground-state results for graphene
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nanoribbons including the band gap, the momentum dispersion
and the spectral function. Further the first nonequilibrium
results for the electron dynamics following a short laser pulse are
presented and demonstrate the strength of the NEGF approach.

This paper is organized as follows. In Section 2, we introduce
the extended Hubbard model and formulate a systematic many-
body description on the mean-field level. This is extended to
correlation effects in Section 3 where the NEGF approach is
introduced. Our numerical results are presented in Section 4
starting with ground-state properties and concluding with
correlated electron dynamics in response to a short laser pulse.
We conclude with an outlook in Section 5.

2. Extended Hubbard Model

The elementary constituent of graphene is carbon, the sixth
element of the periodic table. As such, it contains six electrons
that are in the configuration 1s22s22p2 if the carbon is in the
ground state. That is, two electrons are close to the nucleus and
occupy the innermost 1s-shell while the other four fill the outer
shells of the 2s and 2p orbitals. However, in the presence of other
carbon atoms one electron from the 2s orbital is excited to the 2p
orbital and forms covalent σ-bonds between the atoms. The
quantum-mechanical superposition of the remaining 2s electron
with n of the 2p states is called spn hybridization.[33]

The structure of graphene is obtained by the planar sp2

hybridization. The three hybridized orbitals are oriented in a
plane and havemutual angles of 120�. This lets the carbon atoms
arrange in a hexagonal structure, the so-called honeycomb
lattice. The remaining unhybridized 2pz orbital is oriented
perpendicular to the plane. Due to the non-negligible overlap
between these orbitals of adjacent atoms, they form the so-called
π-bonds.[34] These half-filled bands are responsible for most of
graphene’s interesting electronic properties.

2.1. Tight-Binding Model

A commonly used model when describing graphene-based
systems is the tight-binding approximation (TB) which is easy to
solve due to its simplistic nature.[35] In this model, the
aforementioned 2pz atomic orbitals are a common choice for
the underlying basis set ~ii�� which, in general, is non-orthogonal.
The non-vanishing overlap of these single-particle orbitals is
taken into account by the overlap matrix

~Sij ¼ h~i ~ji
�� ð1Þ

where the special case of an orthonormal basis is equivalent to
~Sij ¼ δij.

In the TB approximation the graphene system is described by
the single-particle Hamiltonian

Ĥ
TB ¼

X
ijkl

~S
�1
ik
~h
TB
kl
~S
�1
lj

~iih~j�� �� ð2Þ

with the corresponding matrix elements ~h
TB
kl ¼ h~kjĤ

TBj~li which
in general include the kinetic part and the on-site potential as

well as any possible external single-particle excitations. The
Hamiltonian Ĥ

TB
possesses a complete set of orthonormal

eigenstates Ψnij , which are given by a linear combination of the
atomic orbitals ~ii�� ,

jΨni¼
X
i

~ani j~ii ð3Þ

These eigenstates and the corresponding eigenvalues En of
the Hamiltonian are determined by the stationary Schrödinger
equation

Ĥ
TB

Ψni ¼ En Ψnijj ð4Þ

which can be transformed into a generalized eigenvalue problem
by multiplying from the left with the bra vector h~jj resulting inX

i

h~jjĤTBj~ii~ani ¼
X
i

h~jj~ii~ani En ð5Þ

This set of linear equations can be written in matrix form as

~H
TB~A ¼ ~S~AE ð6Þ

where ~H
TB
, ~A, and ~S contain thematrix elements ~h

TB
ji , ~ani , and ~Sji,

respectively. E is a diagonal matrix with the eigenvalues En.
To solve Equation (6) one can apply the symmetric Löwdin

orthogonalization[37] which leads to a standard eigenvalue
problem

HTBA ¼ AE ð7Þ

that is defined in a new orthogonal basis iij which are denoted
without a tilde. Both basis sets are connected by the square root
of the overlap matrix via

jii¼
X
k

j~ki~S�
1
2

ki ð8Þ

Further, the matrices containing the matrix elements of the
Hamiltonian and the expansion coefficients of the eigenstates
transform as

HTB ¼ ~S
�1

2 ~H
TB~S

�1
2 ð9Þ

A ¼~S
1
2~A ð10Þ

Thus, in the TB approximation the system is defined by the
matrix elements of the single-particle Hamiltonian ~h

TB
ij and the

overlap matrix ~Sij.
A common way to get a set of parameters that closely

reproduce the electronic properties of graphene and graphene
nanostructures is to fit the resulting TB band structure against
ab initio results of DFT calculations.[35,36,38] In practice, often
only the orbital overlap of up to the third-nearest-neighbor atoms
is considered which results in seven fitting parameters. An
illustration of the three nearest neighbors of a single site in a
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graphene lattice is depicted in Figure 1. The resulting matrix
elements of the Hamiltonian are then given by

~h
TB
ij ¼ �J δij~E2p þ~tij

� � ð11Þ

where J is the hopping amplitude which is used for normaliza-
tion, ~E2p is the 2pz on-site energy of a carbon atom and~tij are the
hopping matrix elements defined as

~tij ¼

~t1; if i; jð Þ is 1 NN

~t2; if i; jð Þ is 2 NN

~t3; if i; jð Þ is 3 NN

0; else

8>>>><>>>>: ð12Þ

In a similar fashion, the elements of the overlap matrix are
given by three parameters as

~Sij ¼ δij þ

~s1; if i; jð Þ is 1 NN

~s2; if i; jð Þ is 2 NN

~s3; if i; jð Þ is 3 NN

0; else

8>>>><>>>>: ð13Þ

In Table 1, some parameter sets are presented that have
shown to reliably reproduce the DFT band structure of different
graphene systems.

However, while this approach is reasonable for infinite
graphene sheets where electronic correlations are commonly
thought to be weak, it provides insufficiently accurate results for
finite graphene structures such as nanoribbons. For the latter, it

is known that the reduction of screening that is due to the
quantum confinement, results in stronger electron–electron
correlations and the emergence of a band gap which cannot be
described sufficiently well by DFT (LDA) calculations.[12,39]

Instead, it was found that including quasiparticle corrections
using the G0W0 approximation results in a larger band gap that
is in better agreement with experimental findings.[26,40] Thus,
the tight-binding approach presented above that is able to
reproduce DFT band structures has to be extended to include
correlations.

2.2. Extension to Hartree–Fock

In a first step electron interactions can be included on the
Hartree–Fock (HF) level. Since this case can still be described by
an effective single-particle Hamiltonian, only the matrix
elements ~h

TB
ji in Equation (6) have to be replaced by the ones

of the new Hamiltonian containing mean-field interactions
while the rest of the derivation in Section 2.1 remains
untouched.

To derive the HF Hamiltonian it is convenient to express it in
second quantization. The creation and annihilation operators
obey the same transformation relation between the two basis sets
as the single-particle orbitals, cf. Equation (8). Thus, in the
nonorthogonal basis the generalized operators, cf. Equation (18),
that create and annihilate an electron with spin σ on site i can be
written as

~̂c
†
i;σ ¼

X
k

ĉ†k;σ
~S

1
2
ki ð14Þ

~̂c i;σ ¼
X
k

~S
1
2
ikĉk;σ ð15Þ

Since the overlap matrix S is real and symmetric it follows
immediately from Equations (14) and (15) that the creation and
annihilation operators fulfill the known involutivity condition

 
~bc †i;σ
!†

¼ ~̂c i;σ ð16Þ

Additionally, as is the case of the orthonormal basis, two
creation and two annihilation operators anticommute

~̂c
†
i;σ ;

~̂c
†
i;τ

n o
¼ ~̂c i;σ ; ~̂c i;τ

n o
¼ 0 ð17Þ

However, the anticommutation relation between a creation
operator and an annihilation operator is modified and contains
the overlap matrix

~̂c
†
j;σ ;

~̂c
i;τ

n o
¼ δστ~Sij ð18Þ

which for ~Sij ¼ δij reduces to the familiar anticommutator in an
orthonormal basis.

Figure 1. Illustration of the positions of neighboring sites in the graphene
honeycomb lattice. The three nearest neighbors (1NN) of the white site
are marked in red, the six second-nearest neighbors (2NN) in blue and the
three third-nearest neighbors (3NN) in green.
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The action of a creation operator ~̂c
†
i;σ and annihilation operator

~̂c i;σ on an arbitrary N-particle state nf gij is defined as

~̂c
†
i;σ nf gi ¼ 1� ni;σ

� � �1ð Þαi;σ�� �� nf gi;σi;

~̂c i;σ j nf gi ¼
X
k

nk;σ �1ð Þαk;σ ~Sik nf gk; σij ð19Þ

where the notation j nf gi;σi and j nf gi;σi denotes that a particle
with spin σ was added or removed at site i, respectively, ni;σ is the
occupation number of the orbital corresponding to site i and spin
σ and αk;σ ¼

P
l<knl;σ .

In the basis of these canonical operators given in Equa-
tions (14) and (15), a Hamiltonian including single-particle and
two-particle contributions has the form

Ĥ ¼
X
ijkl

σ 2 "; #f g

~S
�1
ik
~h
TB
kl
~S
�1
lj
~̂c
†
i;σ
~̂c j;σ

þ 1
2

X
ijklmnpq

σ; τ 2 "; #f g

~S
�1
im
~S
�1
jn ~wστστ

mnpq
~S
�1
pk
~S
�1
ql
~̂c
†
i;σ
~̂c
†
j;τ
~̂c l;τ~̂c k;σ ð20Þ

where the matrix elements of the interaction ~wστστ
mnpq do not allow

for spin flips and the single-particle contribution ~h
TB
kl is assumed

to be spin independent. Further, the matrix elements of the
effective single-particle Hartree–Fock Hamiltonian, the so called

Fock matrix ~h
eff
ij , are given by[41]

~h
eff
ij ¼ ~h

TB
ij þ

X
klmn

σ; τ 2 "; #f g

~wτστσ
imjn � ~wσσσσ

imnj

� �
~S
�1
nl ~ρlk;σ

~S
�1
km ð21Þ

where ~ρlk;σ ¼ h~̂c
†
k;σ
~̂c l;σi is the element of the reduced density

matrix in the nonorthogonal basis.[42]

Inserting these matrix elements in Equation (6) for ~H results
in the well-known Roothaan–Hall equations[43–45]

~F~A ¼ ~S~AE ð22Þ

with ~F containing the matrix elements ~h
eff
ij . Again, a Löwdin

orthogonalization results in a standard eigenvalue problem in
the orthonormal basis

FA ¼AE; ð23Þ

with

F ¼ ~S
�1

2~F~S
�1

2 ð24Þ

Since the Fock matrix contains the elements of the density
matrix, Equation (23) has to be solved self consistently until
convergence is reached.

A similar approach was already successfully applied by
Hancock et al.[46] for transport calculations in graphene
nanoribbons using a Hubbard type on-site interaction of the
form

~wστστ
ijkl ¼ Uδijδikδilδστ ð25Þ

where δστ ¼ 1� δστ enforces Pauli blocking and U is a free
parameter that corresponds to the strength of the interaction. For
these interaction elements the Fock matrix becomes

~h
eff
ij ¼ ~h

TB
ij þ δijU

X
kl

~S
�1
il ~ρlk

~S
�1
ki ð26Þ

with ~ρlk :¼ ~ρlk;" þ ~ρlk;#. However, as discussed in Section 2.1, a
pure mean-field approach is not sufficient to correctly describe
finite graphene nanosystems. For an accurate treatment one has
to take into account electronic correlations. Therefore, we will
extend the description systematically using the formalism of
nonequilibrium Green functions (NEGF) that is described in the
next section. Since it is convenient to treat the NEGFapproach in
an orthonormal basis, it is useful to also express the Fock matrix
in this basis. Using Equations (21) and (24) results in

heffij ¼ hTBij þ
X
kl

σ; τ 2 "; #f g

wτστσ
ikjl � wσσσσ

iklj

� �
ρlk;σ ð27Þ

with the matrix elements in the orthonormal basis given by

hTBij ¼
X
kl

~S
�1

2
ik
~h
TB
kl
~S
�1

2
lj ð28Þ

ρij;σ ¼
X
kl

~S
�1

2
ik ~ρkl;σ

~S
�1

2
lj ð29Þ

Table 1. Various parameter sets for the hopping (cf. Equation (12)) and overlap (cf. Equation (13)) matrix in the extended Hubbard model.

Structure Set J [eV] E
�
2p J½ � t�1 J½ � t�2 J½ � t�3 J½ � S

�
1 S

�
2 S

�
3

2D Graphene 1NN 2.7 0 1 – – – – –

3NN[35](Reich2002) 2.97 0.094 1 0.025 0.111 0.073 0.018 0.026

Graphene nanoribbons 3NN[36](Tran2017) 2.756 0.068 1 0.026 0.138 0.093 0.079 0.070

For homogeneous graphene the parameters are taken from Reich et al.[35] and for GNRs from Tran et al.[36]

www.advancedsciencenews.com www.pss-b.com

Phys. Status Solidi B 2019, 256, 1800498 © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1800498 (4 of 14)



wστστ
ijkl ¼

X
mnpq

~S
�1

2
im
~S
�1

2
jn ~wστστ

mnpq
~S
�1

2
pk
~S
�1

2
ql ð30Þ

In the special case of an on-site Hubbard interaction, cf.
Equation (25), the interaction elements in the orthonormal basis
reduce to

wστστ
ijkl ¼ Uδστ

X
m

~S
�1

2
im
~S
�1

2
jm
~S
�1

2
mk
~S
�1

2
ml ¼: wijklδστ ð31Þ

Finally, the spin-resolved Fock matrix is then given by

heffij;" #ð Þ ¼ hTBij þ
X
kl

wikjlρlk;# "ð Þ ð32Þ

which will later on be used in the propagation of the
nonequilibrium Green functions, see Section 3.1.

3. Nonequilibrium Green Functions Approach

The single-particle Green function G is the central property in
the nonequilibrium Green functions approach. It is defined on
the Keldysh time contour C as[47,48]

Gσ
ij z; z

0ð Þ ¼ � i
�h
hTCĉi;σ zð Þĉ†j;σ z0ð Þi ð33Þ

where h. . .i is the ensemble average and the creation and
annihilation operator are defined in an orthonormal basis. Due
to the spin symmetry of the considered systems the spin indices
will be neglected in the further discussion and the Green
function will be simplified to[49]

Gij z; z
0ð Þ :¼ G"ij z; z

0ð Þ ¼ G#ij z; z
0ð Þ ð34Þ

In order to make the complex-time Green function
numerically accessible, it is useful to define real-time contour
components of the Green function based in the relative positions
of the complex times z and z0 on the contour, namely the less
G<ð Þ, greater G>ð Þ, retarded GR

� �
, and advanced GA

� �
component that are defined as

G<
ij t; t0ð Þ ¼ � 1

i�h
hĉ†j t0ð Þĉ i tð Þi ð35Þ

G>
ij t; t0ð Þ ¼ 1

i�h
hĉ i tð Þĉ†j t0ð Þi ð36Þ

GR
ij t; t

0ð Þ ¼ Θ t; t0ð Þ G>
ij t; t0ð Þ �G<

ij t; t0ð Þ
� �

ð37Þ

GA
ij t; t

0ð Þ ¼ Θ t0; tð Þ G<
ij t; t0ð Þ �G>

ij t; t0ð Þ
� �

ð38Þ

where Θ t; t0ð Þ denotes the Heaviside step function.

As a generalization of the single-particle density matrix,
ρij ¼ hĉ†j ĉ ii, onto the two-time plane the Green function carries

all information about the single-particle density on the time
diagonal

ρij tð Þ ¼ �i�hG<
ij t; tð Þ ð39Þ

With this, one gets access to the time-dependent expectation
value of any single-particle operator Â1, such as the single-
particle energy, via

hÂ1i tð Þ ¼ �i�h
X
ij

AijG
<
ji t; tð Þ ð40Þ

One should note that when combined with the TB approach
presented in Section 2.1 the orthonormal basis of the Green
function does not correspond to the nonorthogonal basis of the
2pz atomic orbitals of the carbon lattice. For the density matrix
the transformation to the physical basis can be performed by the
inverse of Equation (29) which leads to

~ρij¼
X
kl

~S
1
2
ikρkl

~S
1
2
lj ð41Þ

In this basis the occupation on a single lattice site i is then
given by

hρ̂iii¼
X
k

~S
�1
ik ~ρki ð42Þ

Since the Green function is defined as a two-time quantity (cf.
Equation (33)), it also gives access to the spectral properties of the
system. The local spectral function is given by a Fourier
transform with respect to the relative time,

Ai ωð Þ ¼ i�h
Z

dt dt0e�iω t�t0ð Þ G>
ii t; t0ð Þ � G<

ii t; t0ð Þ� � ð43Þ

The sum over all local contributions of the spectral function
results in the density of states (DOS) of the system.
Combining the temporal transform in Equation (43) with a
spatial one results in an expression for the full energy
dispersion relation

A ω; kð Þ ¼ i�h
Ns

X
ij

e�ik i�jð Þ
Z

dt dt0e�iω t�t0ð Þ

� G>
ij t; t0ð Þ �G<

ij t; t0ð Þ
h i ð44Þ

Another important quantity is the time-resolved photoemis-
sion spectrum[50,51]

A< ω;Tð Þ ¼ �i�h
X
i

Z
dt dt0Sκ t� Tð ÞSκ t0 � Tð Þ

�e�iω t�t0ð ÞG<
ii t; t0ð Þ ð45Þ
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as it allows for direct comparison with photoemission
experiments. Here, S is a Gaussian function to simulate the
probe pulse that is used in corresponding experiments

Sκ tð Þ ¼ 1

κ
ffiffiffiffiffi
2π
p exp � t2

2κ2


 �
ð46Þ

with a given pulse width κ.

3.1. Equations of Motion

The time evolution of the Green function on the Keldysh contour
is given by the Kadanoff–Baym equations (KBEs),[52]

X
l

i�h
d
dz

δil � hTBil zð Þ
� 

Glj z; z0ð Þ

¼ δijδC z; z0ð Þ þ
X
l

Z
C
dz Σil z; zð ÞGlj z; z0ð Þ

ð47Þ

and the adjoint equation. The KBEs would be formally exact if
the self-energy Σ in the collision integral on the right hand side of
the equation was known. However, for most system the exact
self-energy is not accessible. Hence, approximations to the
NEGF scheme are introduced via proper choices of the self-
energy. A more detailed discussion on the approximations used
here is given in Section 3.2. The self-energy can be separated into
a time-diagonal mean-field contribution and a correlation part

Σ z; z0ð Þ ¼ δC z; z0ð ÞΣHF zð Þ þ Σcorr z; z0ð Þ ð48Þ

Due to the contour delta distribution δC z; z0ð Þ the Hartree–
Fock part of the self-energy can be included into theHamiltonian
on the left side of Equation (47) resulting in an effective single-
particle Hamiltonian that is equivalent to the Fock matrix in
Equation (27). Now the KBE can be written as

X
l

i�h
d
dz

δil � heffil zð Þ
� 

Glj z; z0ð Þ

¼ δijδC z; z0ð Þ þ
X
l

Z
C
dz Σil z; zð ÞGlj z; z

0ð Þ
ð49Þ

where the self-energy Σ t; t0ð Þ :¼ Σcorr t; t0ð Þ only contains the
correlation part.

In practice, the KBEs are solved for the less and greater real-
time components of the Green function. In order to get
access to the full single-particle information of the system, it
is necessary to obtain G> t; t0ð Þ and G< t; t0ð Þ in the
complete t; t0ð Þ-plane. However, due to the symmetry relation

GO
ij t; t0ð Þ ¼ � GO

ji t0; tð Þ
h i�

each of the two KBEs (Equation (49)

and the adjoint) has to be solved for only one real-time
argument and component of the Green function. One possible
choice of equations is:

X
l

i�h
d
dt
δil � heffil tð Þ

� 
G>

lj t; t0ð Þ ¼ I 1ð Þ;>
ij t; t0ð Þ ð50Þ

X
l

G<
il t; t0ð Þ �i�h d

 

dt0
δil � hefflj t0ð Þ

" #
¼ I 2ð Þ;<

ij t; t0ð Þ ð51Þ

where on the right-hand side the collision integrals I 1ð Þ;> and
I 2ð Þ;< are introduced. They are defined as

I 1ð Þ;>
ij t; t0ð Þ :¼

X
l

Z 1
ts

dt ΣR
il t;�tð ÞG>

lj t;t0ð Þ þ Σ>
il t; tð ÞGA

lj t; t0ð Þ
n o

ð52Þ

I 2ð Þ;<
ij t; t0ð Þ :¼

X
l

Z 1
ts

dt GR
il t;�tð ÞΣ<

lj t;t0ð Þ þ G<
il t; tð ÞΣA

lj t; t0ð Þ
n o

ð53Þ

with the starting time ts, see Section 3.3 for a discussion. This
way, G< t; t0ð Þ is propagated above and G> t; t0ð Þ below the time
diagonal. For t ¼ t0 either one of them can be calculated while the
other one can be accessed by the symmetry relation on the time
diagonal

G>
ij t; tð Þ �G<

ij t; tð Þ ¼ � i
�h
δij ð54Þ

Likewise, the collision integrals I 1ð Þ;> t; t0ð Þ and I 2ð Þ;< t; t0ð Þ have
to be calculated for times t > t0 and t< t0 only, respectively. To
this end a new notation is introduced for a general contour
quantity A,

A tPt0ð Þ :¼ A t; t0ð Þ tPt0
�� ð55Þ

This results in three equations of motion for the full two-
time propagation of the real-time components of the Green
function:

i�h
d
dt
G>

ij t � t0ð Þ¼
X
l

heffil tð ÞG>
il t � t0ð Þ

þI 1ð Þ;>
ij t � t0ð Þ ð56Þ

�i�h d
dt0

G<
ij t 	 t0ð Þ ¼

X
l

G<
il t 	 t0ð Þhefflj t0ð Þ

þI 2ð Þ;<
ij t 	 t0ð Þ ð57Þ

i�h
d
dt
G<

ij t; tð Þ ¼ heff tð Þ;G< t; tð Þ
h i

ij

þI 1ð Þ;>
ij t; tð Þ � I 2ð Þ;<

ij t; tð Þ ð58Þ
In order to solve these equations of motion, the collision

integrals that appear in Equations (56)–(58) have to be expressed
in terms ofG< t< t0ð Þ andG> t > t0ð Þ. Using the definition of the
advanced and retarded Green function and self-energy (cf.
Equations (37) and (38)) one arrives, after some calculations, at
the following expressions for the collision integrals at a given
time step T :
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I 1ð Þ;>
ij T > t0ð Þ ¼

Z t0

ts

d�t
X
k

Σ>
ik T > �tð ÞG<

kj
�t < t0ð Þ

n

� Σ<
ki
�t < Tð ÞG>

jk t0 > �tð Þ
��� o

þ
Z T

t0
d�t
X
k

Σ>
ik T > �tð ÞG>

kj
�t > t0ð Þ

n

þ Σ<
ki
�t < Tð Þ� ��

G>
kj
�t > t0ð Þ

o
ð59Þ

I 2ð Þ;<
ij t < Tð Þ ¼

Z t

ts

d�t
X
k

G>
ik t > �tð ÞΣ<

kj
�t <Tð Þ

n

� G<
ki
�t < tð ÞΣ>

jk T > �tð Þ
� ��o

þ
Z T

t
d�t
X
k

G<
ik t < �tð ÞΣ<

kj
�t < Tð Þ

n

þG<
ik t< �tð Þ Σ>

jk T > �tð Þ
� ��o

ð60Þ

for the off-diagonal elements and

I 1ð Þ;>
ij T;Tð Þ ¼

Z T

ts

d�t
X
k

Σ>
ik T > �tð ÞG<

kj
�t < Tð Þ

n

� Σ<
ki
�t < Tð ÞG>

jk T > �tð Þ
� �� o

ð61Þ

I 2ð Þ;<
ij T;Tð Þ ¼

Z T

ts

d�t
X
k

G>
ik T > �tð ÞΣ<

kj
�t <Tð Þ

n

� G<
ki
�t < Tð ÞΣ>

jk T > �tð Þ
� �� o
¼ � I 1ð Þ;>

ji T;Tð Þ
� � �

ð62Þ

for the timediagonal. These equationdoonly dependonG< t < t0ð Þ,
G> t > t0ð Þ, Σ< t < t0ð Þ, and Σ> t > t0ð Þ. Therefore, if it is possible to
express the self-energy in terms of the less and greater components
of the Green function – which is possible for all relevant
approximations, cf. Section 3.2 – the propagation scheme will be
closed. Examples for application of this NEGF scheme to Hubbard
clusters can be found for example, in refs. [32,53–55]. Computa-
tional details will be presented in Section 3.3.

3.2. Self-Energy Approximations

The exact self-energy Σ contains the full N-particle information
of the system. However, since in most cases the exact solution is
not known one has to develop many-body approximations
(MBA) to the self-energy. For this, as shown in Equation (48),

the self-energy can be separated into a Hartree–Fock and a
correlation contribution. The time-diagonal mean-field part can
be included in an effective single-particle Hamiltonian and the
remaining self-energy contains only the correlation part, cf.
Equation (49).

The mean-field Hamiltonian was derived in Section 2.2 and
its elements are given by the Fock matrix, cf. Equation (32). For a
Hubbard-type on-site interaction that is considered here, the
matrix elements of the interaction in the orthonormal basis are
defined in Equation (31). The corresponding diagram is depicted
in Figure 2. Due to the spin delta δστ the exchange contribution
vanishes and only the direct mean-field diagram remains.

While in the nonorthogonal basis the strength of the on-site
interaction is defined by the parameter U, in the orthonormal
basis this leads to a local interaction, cf. Equation (31)

wijkl ¼ U
X
m

~S
�1

2
im
~S
�1

2
jm
~S
�1

2
mk
~S
�1

2
ml ð63Þ

For higher-order approximations to the correlation self-energy
this would result in a high numerical complexity. In order to
reduce the numerical effort, here, only the diagonal contribution
to the interaction

Ui :¼ wiiiiU
X
m

~S
�1

2
im
~S
�1

2
im
~S
�1

2
mi
~S
�1

2
mi ð64Þ

is taken into account. This approximation is valid if the
overlap matrix ~S – and consequently ~S

�1
2 – has mainly diagonal

contributions which is the case for the considered parameter set,
cf. Table 1 and Equation (13). Further, it allows for a fast
calculation of higher-order self-energy contributions. The two
approximations specifically used in this work are presented in
the following using a generalized time-dependent U tð Þ for the
adiabatic switching procedure, cf. Section 3.3.

The second-Born (2B) approximation is the most simple
approach to add correlations to the self-energy. The idea is to
describe the scattering event between two particles by consider-
ing only the first term in the Born series.[47] This results in the
following expression for the 2B self-energy

Σ2B;>
ij T > t0ð Þ ¼ �h2Ui Tð ÞUj t

0ð ÞG>
ij T > t0ð ÞG>

ij T > t0ð ÞG<
ji t0 < Tð Þ

ð65Þ

Figure 2. Feynman diagrams for the self-energy approximations used in
this work: Hartree–Fock (HF), second-order Born approximation (2B),
and Hedin’s GW approximation.
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Σ2B;<
ij t < Tð Þ ¼ �h2Ui tð ÞUj Tð ÞG<

ij t < Tð ÞG<
ij t < Tð ÞG>

ji T > tð Þ
ð66Þ

It includes all terms up to second order in the interactionU but
no higher-order terms. Thus, it is a reasonable approachwhen the
interaction strength is low. From a numerical point of view the 2B
self-energy is easy to calculate since no integration over a time
argument has to be performed. A diagrammatic representation is
shown in Figure 2. More details can be found in refs. [47,56,57].

The GW approximation is a more sophisticated approach that
takes the dynamically screened interaction between particles into
account. The real-time components of the self-energy are given by

ΣGW;>
ij T > t0ð Þ ¼ i�hW<;""

ji t0 < Tð ÞG>
ij T > t0ð Þ ð67Þ

ΣGW;<
ij t < Tð Þ ¼ i�hW<;""

ij t < Tð ÞG<
ij t < Tð Þ ð68Þ

The less component of the same-spin screened interaction
W<;"" has to be calculated in an iterative manner. For this, it is
convenient to define the retarded and advanced component of
the two-particle Fock-like Green function

GF;R
ij t > t0ð Þ ¼ G>

ij t > t0ð ÞG<
ji t0 < tð Þ

� G<
ji t0 < tð Þ

� ��
G>

ij t > t0ð Þ
� � � ð69Þ

GF;A
ij t < t0ð Þ ¼ G<

ij t < t0ð ÞG>
ji t0 > tð Þ

� G>
ji t0 > tð Þ

� ��
G<

ij t < t0ð Þ
� �� ð70Þ

Now, the same-spin screened interaction is given by

W<;""
ij t < Tð Þ ¼ �i�hUi tð ÞGF;<

ij t < Tð ÞUj Tð Þ

�i�hUi tð Þ
X
k

Z t

ts

d�tGF;R
ik t > �tð ÞW<;"#

kj
�t <Tð Þ

�i�hUi tð Þ
X
k

Z t

ts

d�t GF;<
ki

�t < tð Þ
� ��

WA;"#
kj

�t < Tð Þ

�i�hUi tð Þ
X
k

Z T

t
d�tGF;<

ik t < �tð ÞWA;"#
kj

�t < Tð Þ

ð71Þ

It depends on the different-spin screened interaction

W<;"#
ij t < Tð Þ ¼ �i�hUi tð ÞGF;<

ij t < Tð ÞUj Tð Þ

�i�hUi tð Þ
X
k

Z t

ts

d�tGF;R
ik t > �tð ÞW<;""

kj
�t < Tð Þ

�i�hUi tð Þ
X
k

Z t

ts

d�t GF;<
ki

�t < tð Þ
� ��

WA;""
kj

�t < Tð Þ

�i�hUi tð Þ
X
k

Z T

t
d�tGF;<

ik t < �tð ÞWA;""
kj

�t < Tð Þ

ð72Þ

that, again, contains the same-spin screened interaction
W<;"". Additionally, these two coupled equations depend on the
advanced components of the same- and different-spin screened
interaction that are given by

WA;""
ij t < Tð Þ ¼ �i�hUi tð ÞGF;A

ij t < Tð ÞUj Tð Þ

þi�hUi tð Þ
X
k

Z T

t
d�tGF;A

ik t < �tð ÞWA;"#
kj

�t < Tð Þ

ð73Þ

WA;"#
ij t < Tð Þ ¼ i�hUi tð Þ

X
k

Z T

t
d�tGF;A

ik t< �tð ÞWA;""
kj

�t < Tð Þ

ð74Þ

In order to solve this system of coupled equations
numerically, first, the two advanced components of the screened
interaction are calculated. On the time diagonal a solution can be
immediately found for both:

WA;""
ij T;Tð Þ ¼ �i�hUi Tð ÞGF;A

ij T;Tð ÞUj Tð Þ ð75Þ

WA;"#
ij T;Tð Þ ¼ 0 ð76Þ

Next, Equations (73) and (74) can be solved simultaneously in
an iterative manner for every time t starting from the diagonal.
After that, Equations (71) and (72) are iterated until convergence
for every time step t, this time starting at ts. This way, the less and
greater component of the GW self-energy can be computed
according to Equations (67) and (68).

Due to its integral (Dyson) equation structure the GW
approach contains contributions up to infinite order in U.
Therefore, it is much more challenging than the 2B approxima-
tion, from a numerical perspective. But this effort is warranted
because the GW approximation has shown very good results for
systems near half filling, where screening effects are impor-
tant.[58] Furthermore, it is frequently used for band structure and
photoemission calculations.[59,60] The first three diagrams of the
GW approximation are depicted in Figure 3. A detailed
derivation of these equations and the corresponding expressions
for other self-energies can be found in ref. [61].

With the self-energies given in Equations (65)–(68) the
propagation scheme for the real-time components of the Green
function is closed.

3.3. Numerical Solution of the Keldysh–Kadanoff–Baym
Equations for GNR

Despite the application of the diagonal Hubbard interaction the
numerical solution of the KBEs remains a challenging task. For a
given time step T, first, the effective single-particle Hamiltonian
heffij (cf. Equation (32)) and the chosen self-energy (cf. Equations
(65)–(68)) have to be calculated from the Green functions. Now
all quantities are known that are needed to determine the
collision integrals I 1ð Þ;> and I 2ð Þ;< via Equations (59)–(62). Next,
the components of the Green function can be propagated one
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time step further to T þ Δ using Equations (56)–(58), where Δ is
the time step size. Before the actual propagation is started the
ground state of the system has to be calculated, which is done via
adiabatic switching. A detailed description of this procedure is
given in ref. [32]. An alternative procedure to obtain the ground
state is the inclusion of the imaginary-time branch in the
Keldysh time contour.[47,62] Both methods have their advantages,
adiabatic switching results in additional propagation time while
the imaginary branch leads to the occurrence of extra terms in
the collision integrals.[63]

Since the calculation of the self-energies and collision
integrals require the Green function on the complete two-time
plane, the computational memory demand and calculation time
of the propagation algorithm show a quadratic and cubic scaling,
respectively, with respect to both, the basis size and the number
of time steps.

In order to nevertheless keep the numerical challenges in
check a lot of sophisticated improvements have beenmade to the
propagation techniques of the NEGF scheme. For the solution of
the KBEs a fourth-order Runge–Kutta method is used while the
time integrals occurring in the calculation of the self-energies
and the collision integrals are determined using high-order
Newton–Cotes and Fourier extension algorithms.

From a performance perspective, another crucial part of the
propagation scheme is the huge number ofmatrixmultiplications
which can be parallelized with respect to the spatial and temporal
indices. In theory, this can be utilized to massively speed-up the
simulation on an appropriate architecture. Therefore, all calcu-
lations in this work have been performed using graphics
processing units (GPUs) that are known to greatly outperform
CPUs when it comes to parallel calculations.[64]

In the past, our NEGF simulations have been carefully tested
for convergence with respect to the time step where, among
others, particle number and total energy conservation are
monitored, for example, Ref. [31], and also time reversibility[65,66]

is verified. For small systems tests against exact diagonalization

calculation are performed. Additionally, comparisons with 2D
cold atom experiments[32,67] and 1D density-matrix renormali-
zation group (DMRG) calculations[30] showed excellent accuracy
of our simulations.

4. Results

The system of interest in this paper are so-called graphene
nanoribbons (GNR) which are quasi-one-dimensional slices of
graphene. Because of their typical width of only a few
nanometers they exhibit various remarkable properties such
as enhanced electron correlations due to quantum confinement
effects.[39]

The electronic properties and especially the low energy
spectrum of the π-electrons is strongly influenced by the edge
structure of the nanoribbons. Depending on the shape of the
edges one distinguishes between armchair (AGNR) and zigzag
graphene nanoribbons (ZGNR). While the model presented in
Sections 2 and 3 is applicable to both types of nanoribbons, here
we will focus our attention on hydrogen-passivated AGNRs. The
width N of the ribbons is defined as the number of dimer lines
while the length L is given by the number of zigzag lines as
illustrated in Figure 3.

4.1. Ground-State Results: Band Gap, Dispersion, and
Spectral Function

The extended Hubbard model introduced in Sections 2 and 3
contains eight free parameters. For the seven tight-binding
parameters we choose the set proposed by Tran et al.[36], cf.
Table 1, that has been created to accurately reproduce the LDA
band structure for a wide range of GNRs including different
edge structures and various widths. The final free parameter of
the model, the on-site interaction U, has to be adjusted to best
reproduce the band structure and band gap of GNRs observed in
experiments and theory that goes beyond LDA by including
quasiparticle corrections. A convenient choice for the system for
which the value ofU can be fit is the GNR with an armchair edge
and a width of seven dimer lines (7-AGNR) which is depicted in
Figure 4. On the one hand this system has a small width which
reduces the numerical effort of our calculations and, on the other
hand, its ground-state properties such as the band structure and
band gap have been explored in detail both theoretically and
experimentally.[12,26,68–70]

However, most experiments and theoretical works study long
7-AGNRs the band gaps of which are converged toward the value
of the respective GNR for L!1. Since our calculations are for
ribbons of finite length L we have to consider the influence of
finite-size effects on our results before comparing with
theoretical and experimental values for the band gap. For this
reason in Figure 4, we plot the size of the band gap Eg for
7-AGNRs of different lengths L within our model with the
interaction set toU ¼ 0 which is equivalent to the extended tight-
binding model. The high numerical costs allow for calculations
up to a length of L ¼ 16 which corresponds to a basis size of
Ns ¼ 112. The band gap is given by calculating the energy
dispersion, cf. Equation (44), and determining the difference

Figure 3. Illustration of the structure of an armchair graphene
nanoribbon (AGNR). The width N ¼ 7ð Þ and the length L ¼ 7ð Þ of the
graphene ribbon is defined as the number of dimer and zigzag lines of
carbon atoms, respectively. Here, a 7-AGNR is shown. The dashed
rectangle defines the unit cell of the ribbon. In Figure 1 the positions of the
nearest neighbors in a GNR are depicted.
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between the lowest peak in the upper subband and the highest
peak in the lower subband at the high symmetry point K in the
first Brillouin zone of graphene.

Since the band gap of the shorter ribbons L ¼ 4; . . . ; 8 is
highly modified due to finite-size effects we perform an
exponential fit through the data of the longer ribbons
L ¼ 10; . . . ; 16 which is shown as the solid black line in Figure 4.
The value of the fit for L!1 is shown as dotted line and shows
excellent agreement with the LDA gap of 
1.6 eV for the
7-AGNR with infinite length. This is not surprising since the
parameter set used was fit to match the LDA band structure of
GNRs. As a comparison, the band gap predicted by the tight-
binding model considering only nearest-neighbor hopping is
considerably smaller with Eg ¼ 1:25 eV. In the following, we
adjust the value of U for a system of length L ¼ 16. For this size
the deviation of the band gap compared to the infinite system is
about 0.1 J. Thus, when comparing our results for U > 0 we
expect the observed gap to be 
0.1 J larger due to finite-size
effects than it would be for an infinite ribbon.

In order to obtain a reasonable value for the interaction U, in
Figure 5 we compare the band gap of our HF, 2B and GW
calculations using U ¼ 0; . . . ; 3:5J for a 7-AGNR of length
L ¼ 16 against various theoretical and experimental results for
similar 7-AGNRs in the form of horizontal lines. As already
mentioned, these reference data describe the converged band
gap for long ribbons L!1ð Þ on top of different interacting
substrates.

Setting U ¼ 0 the HF, 2B and GW self-energies produce the
same band gap of Eg 
 0:7J which is equal to the data of Figure 4
for L¼ 16. As a result it is roughly 0.1 J above the LDA result for
free-standing ribbons with L!1 due to finite-size effects as
established in Figure 4. For HF the band gap is nearly
independent of U and only slightly decreases by 
0.025 J from
U ¼ 0 to U ¼ 3:5J. The 2B self-energy on the other hand shows
an opening of the band gap starting atU 
 2J which results in a
band gap at U ¼ 3:5J that is about 0:02J larger than for U ¼ 0.
Using the GW self-energy the band gap also starts to open at
U 
 2J. However, at U ¼ 3:5J the gap already has a size of 
1 J,
which is an increase of 0.3 J compared to U ¼ 0. A similar

dependence of the band gap on the on-site interaction has been
observed for the one-dimensional Hubbard chain.[71] However,
here the band gap increase due to correlations in the case of 2B
andGW is not as strong as in the 1D case. This is likely due to the
larger bandwidth of the graphene honeycomb lattice (6J)
compared to the one-dimensional chain lattice (4J) which is
why an interaction of U ¼ 3:5J is less significant in the former
case than in the latter.

In order to assess the quality of our results for the size of the
band gap we compare to various reference data in Figure 5.
While LDA calculations produce good results for weakly
correlated homogeneous graphene,[72] for graphene nanorib-
bons it was found that electronic correlation effects are more
important and that quasiparticle corrections G0W0ð Þ to LDA
greatly increase the band gap to Eg ¼ 3:7 eV.[12] However, in the
presence of a substrate that influences the band structure of the
ribbons through screening effects smaller band gaps are
observed. Measurements of 7-AGNRs on a Au(111) and NaCl
surface revealed a band gap of Eg ¼ 2:37 eV and Eg ¼ 2:9 eV,
respectively, which are between the prediction of LDA and
G0W0.

[26,70] Taking into account screening effects theoretically
through image-charge corrections GW þ ICð Þ leads to a reduced
band gap of Eg ¼ 2:3� 2:7 eV compared to G0W0.

[69]

Considering finite-size effects the GW self-energy for an
interaction strength of U ¼ 3:5J nicely reproduces the band gap
found including image-charge corrections (GWþ IC) and
measured for 7-AGNRs on Au(111).

To highlight the influence of the interaction U in the left two
panels of Figure 6, we show the band structure (cf. Equation (44)
for the energy dispersion) of the 7-AGNR of length L ¼ 16

Figure 4. Band gap Eg for 7-AGNRs of different length L. The results of our
model for U ¼ 0 are shown as triangles. The black solid line corresponds
to an exponential fit through the data points for L ¼ 10; . . . ; 16 and its
asymptotic value for L!1 is marked by the dotted line. As a comparison
the band gap for an infinite 7-AGNR predicted by the nearest-neighbor
tight-binding model and LDA are shown as dashed lines.[68] Figure 5. Band gap Eg of 7-AGNRs with a length of L ¼ 16 within the

extendedHubbardmodel using the HF (teal squares), 2B (orange circles),
and GW (green triangles) self-energy as a function of the on-site
interaction U. As a reference various theoretical and experimental band
gaps for infinite 7-AGNRs are added. The results for free-standing GNRs
are marked by dashed lines for the nearest-neighbor tight-binding model
and LDA,[68] and by a dotted line for G0W0.

[12] The blue rectangle shows
the area considering image-charge corrections[69] and the gold and gray
solid lines correspond to measurements for GNRs on Au(111)[70] and
NaCl,[26] respectively.
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considered in Figure 5 for a HF calculation withU ¼ 0 and aGW
calculation using U ¼ 3:5J. In the right panel, we plot the
corresponding DOS, cf. Equation (43). The HF result is
compared to the LDA band structure marked by the dashed
black lines. As expected they match up nicely with some small
deviations due to finite-size effects, one of them is the peak at
ω ¼ 0J which was found to vanish for L!1. In the middle
panel the dashed lines again show the LDA band structure, but
shifted in such a way that the band gap corresponds to the
experimental result of Eg ¼ 2:37 eV for 7-AGNRs on Au(111).
As found in Figure 5, the GW self-energy with U ¼ 3:5J nicely
reproduces the band gap. Thus, in the vicinity of the band gap the
shifted LDA result agrees with theGW band structure. However,
the higher energy regions are strongly affected by correlation
effects which is especially noticeable in the DOS where satellites
appear for ω < �2J and ω > 3J which is outside the scope of the
LDA. Therefore, the shifted LDA band structure is not accurate
outside of the direct vicinity of the band gap.

In conclusion, we choose U ¼ 3:5J for the on-site interaction
of the extended Hubbard model. It should be mentioned that
despite only fit to 7-AGNRs, the model presented here is able to
accurately describe a broad range of AGNRs. On the one hand,
the set of TB parameters by Tran et al.[36] was created to perform
well for all kinds of nanoribbons with different width and edge
structure and, on the other hand, it was found by Yang et al.[12]

that the influence of quasiparticle corrections results in a similar
increase of the band gap compared to LDA calculations for all
small AGNRs. Thus, the introduced parameter set combined
with an on-site interaction of U ¼ 3:5J should be applicable to a
broad range of AGNRs. Of course the value ofU can be changed
and determined in similar fashion if other geometries or edge
shapes are to be described.

4.2. Laser-Pulse-Excited Electron Dynamics in GNR

In the following we evaluate the performance of the different
self-energy approximations in the non-equilibrium regime using
a 5-AGNR with a length of L ¼ 6. Nanoribbons of this type and
size can be produced through bottom-up synthesis.[17] The
system starts in the ground state and is subsequently excited by a

laser pulse of the form

Elaser tð Þ ¼ E0 cos ω0 t� t0ð Þ½ �e�
t�t02ð Þ
2σ2 ð77Þ

with a laser amplitude of E0 ¼ 0:1Je�1a�1, where e is the
elementary charge and a ¼ 0:142 nm is the lattice constant of
the system. Furthermore, a laser frequency of ω0 ¼ 2J is used
and the standard deviation of the Gaussian is set to σ ¼ 4:35J�1.
The shape of the laser pulse at t0 ¼ 0 is depicted as a solid black
line in the upper panel of Figure 7. The laser excitation is treated
within the dipole approximation resulting in a single-particle
excitation

f i tð Þ ¼ �ri � eElaser tð Þ ð78Þ

which is justified because the wavelength λ0 ¼ 224:9 nm of the
laser pulse is a lot larger than the size l 
 1 nm of the system.
The excitation enters in Equation (11) as an additional time-
dependent local on-site energy. In the following the direction of
the electric field is set to be parallel to the armchair edge of the
ribbons.

In order to study the response of the nanocluster to the laser
excitation, we consider the time- and energy-resolved occupation
of carriers in the conduction band. For that reason, we determine
the time-dependent photoemission spectrum, cf. Equation (45),
using a probe pulse width of κ ¼ 2:5J�1 at four different times,
tJ ¼ �30; 0; 20; 50, that are sketched in the upper panel of
Figure 7 by the Gaussians of different colors. The different
snapshots show the system in the ground state, during the laser
interaction, directly after the laser pulse decayed and long after
the laser excitation (
12 fs), respectively.

In the lower panel of Figure 7, the photoemission spectrum
around the Fermi energy ωF ¼ 0 is depicted for all four times for
the HF, 2B, andGW self-energies. In the ground state only states
below the Fermi energy are occupied. The small spectral weight
above ω ¼ 0 is due to the broadening of the highest occupied
state in the valence band ω < 0ð Þ because of the finite width κ of
the probe pulse. In general, during the interaction with the laser
pulse with a frequency of ω0 ¼ 2J electrons are excited from
ω 
 �1J to ω 
 1J. The precise shape of the excited carrier

Figure 6. The left and middle panel show the energy dispersion of a 7-AGNR with a length of L ¼ 16. The colormap corresponds to NEGF calculations
using the HF (left) and GW (middle) self-energy with U ¼ 0 and U ¼ 3:5J, respectively. The dashed black lines mark the LDA band structure with the
original LDA band gap (left)[26] and shifted to obtain the band gapmeasured for 7-AGNRs on Au(111) (middle).[70] The right panel shows the DOS for the
NEGF results.
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distribution differs slightly for the distinct self-energies which is
likely due to the different descriptions of the band structure and
the resulting possible single-particle transitions. Nevertheless,
the direct single-particle excitation by the laser pulse is already
well reproduced by the HF self-energy.

However, for the correct description of the electron dynamics
after the laser pulse correlation effects have to be included. For
the HF self-energy the total spectral weight in the conduction
band ω > 0ð Þ decreases slightly after the laser-pulse amplitude
vanishes. However, the general shape of the distribution
remains the same because collision processes that could lead
to a redistribution of the occupation are not contained in the
mean-field description. In contrast, using the 2B self-energy that
takes into account collision events between electrons a
considerable shift of the excited carrier occupation can be
observed after the laser-pulse interaction. Even for long times
(
12 fs) after the excitation the system has not reached a steady
state yet. Instead, the number of particles in the valence band
seems to increase. One possible explanation for this are carrier
multiplication effects that were predicted[73–76] and experimen-
tally observed[20,22,77,78] for various graphene structures. In this
mechanism, highly-excited electrons can excite additional
electrons from the valence to the conduction band through
collisions. In total this results in an increase of the carrier density
in the conduction band but a decrease of their mean energy. This
effect will be studied in greater detail in a forthcoming paper.

The GW approximation observes a similar redistribution of
the excited carriers toward lower energies with a simultaneous
increase in the electron density. However, between tJ ¼ 20 and

tJ ¼ 50 this effect is considerably smaller than for the 2B self-
energy. Nonetheless, both the 2B and theGW self-energy contain
electron–electron collision effects which lead to the increase of
carriers in the conduction band. Since HF does not include these
kind of scattering events, going beyond the mean-field level is
essential for the correct description of the observed electron
dynamics. Therefore, previously developed extended TB and
mean-field models[46,79,80] are not suitable for the electron
dynamics considered here.

5. Conclusions and Outlook

In this paper, we have developed a new approach to describe
the time-resolved nonequilibrium dynamics and spectral
properties of finite graphene nanoclusters. Our description is
based on an extension of the standard Hubbard model that is
solved by the nonequilibrium Green functions (NEGF)
approach to include correlations. Due to its concise nature
the Hubbard model greatly reduces the computational
demands of the description of finite systems. For the correct
description of finite graphene nanostructures the standard
Hubbard model has to be extended to take into account the
overlap of the π -orbitals in the graphene honeycomb lattice.
Here, hopping and overlap between up to third-nearest
neighbors is included. The parameter set is taken from Tran
et al.[36] that was created to accurately describe finite graphene
systems. Additionally, to determine the on-site interaction U
the band gap and band structure of a 7-AGNR has been
compared to various theoretical and experimental
results.[12,26,68–70] It was found that the width of the band
gap of 7-AGNRs on Au(111) is well reproduced using the GW
self-energy and an interaction of U ¼ 3:5J.

Furthermore, we investigated the response of a 5-AGNR with
a length of L ¼ 6 to a laser-pulse excitation and compared the
results of the HF, 2B, and GW self-energies. Taking correlation
effects into account appeared to be mandatory for the correct
description of the electron dynamics in the nanoribbon
following the laser pulse interaction. On the mean-field level
the general shape of the electron distribution in the conduction
band did not change for long times (
12 fs) after the laser pulse
excitation. In contrast for the 2B and GW self-energy an increase
of the particle number in the upper band was observed even after
the interaction with the laser has vanished. This could indicate
the presence of carrier multiplication effects that will be further
investigated in an upcoming paper.

The flexibility of the presented approach allows us to describe
not only GNRs but finite graphene structures in general with any
possible lattice geometry. In fact, there is a variety of systems
with different edge structures that exhibit intriguing proper-
ties[7,81–83] that could be analyzed using this model in the future.
One interesting system is carbon nanotubes (CNTs) which have
a similar structure to GNRs.[84] In the presented approach of the
extended Hubbard model and the NEGF method CNTs can be
described as GNRs with periodic boundary conditions perpen-
dicular to the ribbon axis. Therefore, it is easy to also extend the
investigations to CNTs. Of course, the parameter set might have
to be adjusted if the systems differ strongly from the GNRs
considered here.

Figure 7. The lower panels show the time-dependent photoemission
spectrum for a 5-AGNR with a length of L ¼ 6 at four different times
before, during and after a laser excitation for the HF (left), 2B (middle),
and GW (right) self-energy at U ¼ 3:5J. In the upper panel, the four times
are marked, with respect to the pump laser pulse (black line), by Gaussian
functions that correspond to the probe pulse.
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Chapter 6

Summary and Outlook

6.1 Summary and Discussion

The description of correlated many-body quantum systems under nonequilibrium conditions

is among the most formidable challenges of statistical physics. Due to the lack of small

parameters in this context, any approach has to capture the full complexity of the

intricate interplay between quantum correlations and the irreducible disorder of general

nonequilibrium. On the other hand, correlated nonequilibrium systems are at the heart of

many modern experiments that constantly push the envelope of technological progress.

The primary goal of the present thesis is the rigorous description of correlated lattice

systems out of equilibrium. Quantum lattice system are remarkably scalable—from

minimal test-bed examples to isolate driving mechanisms and do benchmark analyses up

to larger clusters of direct practical relevance. Hence, lattice systems provide a unique

environment to investigate dynamical correlation effects. The NEGF method is specifically

constructed to meet the challenging demands of the arising complex states in such systems.

However, there were severe limitations and methodological weaknesses that had to be

overcome for the effective applicability of the framework. In this regard, the present

thesis displays a number of theoretical breakthroughs that have significantly increased the

consistency, the accuracy, and the computational reach of the NEGF method. These game-

changing methodological advances have rendered the implementation of different modern

applications possible for the first time. On this footing, remarkable new predictions of

interesting nonequilibrium effects for ultracold atoms in optical lattices and finite graphene

nanostructures are presented in this thesis.

6.1.1 Methodological Improvements Towards a Rigorous Description

of Correlated Finite Systems Out of Equilibrium

The improvements of the NEGF method within this thesis eradicate three substantive

central flaws to achieve the primary goal and to put NEGF theory in an overall better
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position. Concretely, these flaws are the insufficient theoretical foundation for the steep de-

mands of state-of-the-art applications, the accurate higher-order selfenergy approximations

being practically inaccessible, and the notoriously unfavorable cubic time scaling.

6.1.1.1 Improving the Theoretical Foundation (I)

As part of his master’s studies, the author has started the development of more precise

numerical integration schemes for NEGF simulations in Ref. [290]. Building on this

foundation, these higher-order techniques were subsequently further refined by the author

in cooperation with Jan-Philip Joost (see, e.g., Sec. 2.1.1 and Ref. [346]). Early in 2016,

a much-noticed publication by Adrian Stan [202] seriously questioned the credibility of

the NEGF technique by predicting the existence of a universal unphysical attractor. The

considerable experience with the numerical behavior of the KBE put N.S. and J.-P.J. in

the position to carefully reexamine Stan’s analysis. As a result, his observations could

be identified as numerical artifacts of the used integration techniques with insufficient

resolution (Sec. 4.1). The rather drastic claims considering the inherent structure of the

KBE were unambiguously proven wrong, which constitutes an important verification of the

consistency of the NEGF framework. The concomitant controversy clearly demonstrates

the prime importance of numerical stability and reliable convergence checks.

Motivated by this, the author and Miriam Scharnke established time-reversal sym-

metry as an additional stability test for NEGF calculations. To this end—and for the

first time—a formal proof for time-reversibility in the KBE was given, which depends on

a single general condition: Φ derivability of the selfenergy (Sec. 3.2). This legitimizes

the use as a numerical convergence check, i.e. reversing the sign of the Hamiltonian and

propagating back to the initial state, which is extremely sensitive to numerical errors and,

thus, constitutes a valuable tool for succeeding NEGF studies. Furthermore, a similar

condition was derived for time-reversal symmetry in the related RDO technique.

On the basis of these theoretical developments, the author was confident to close

another gap pertaining the practicability of the NEGF method. Prior to the PhD studies

of the author, there has been no reliable specification of the accuracy of the NEGF method,

particularly in the context of experimentally relevant lattice systems. This shortcoming

was remedied in Ref. [212] (Sec. 4.1). Here, NEGF simulations for nonequilibrium sit-

uations in large correlated lattice systems were compared to quasi-exact DMRG data.

Beyond that, the influence of the GKBA was analyzed and various higher-order selfenergy

approximations were applied. The results show an overall close agreement between both

methods. DMRG and NEGF exhibit complementary applicability ranges with respect to

the interaction strength, which can be gaplessly connected within a combined description.

Finally, the exact DMRG result is typically enclosed between the full NEGF curve and

the GKBA data. This behavior can be used as a powerful accuracy check for simulations

of larger 2D or 3D systems, where no DMRG data can be generated.

Another potential weakness of Green-function techniques, which has been observed

frequently, is the occurrence of artificial solution multiplicity [196–201]. The multival-

uedness of specific many-body approximations under certain conditions can—when left
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unanalyzed—cause significant accuracy drops in the prediction of some observables. For

this reason, the author and others studied a conclusive example of solution multiplicity for

correlated lattice systems (Sec. 3.3). It was shown that in such a case, different stable

equilibrium states link to different degrees of spatial symmetry. By enforcing specific

symmetry constraints, these states could be distinctly reproduced. Furthermore, it was

demonstrated for the SOA selfenergy that the accuracy of the spectral function drastically

improves by allowing asymmetry in the system, whereas the density matrix becomes

inaccurate. Thus, a “dilemma” situation is present, much in the sense of Löwdin’s original

symmetry dilemma [277]. These theoretical insights into the inherent structure of Green-

function approaches are highly valuable for practical applications, as deliberate symmetry

constraints can be utilized to optimize the method’s performance with respect to specific

desired observables.

6.1.1.2 Improving the Selfenergy Accessibility (II)

Within the framework of NEGF theory, the selfenergy terms are generally constructed with

respect to orders of the interaction strength. When it comes to the description of strong-

coupling effects, the inclusion of higher-order terms to the selfenergy becomes indispensable.

Unfortunately, more sophisticated many-body approximations significantly increase the

computational effort of the simulations. Hence, the research for practically relevant systems

was predominantly limited to only the HF and SOA selfenergies [101]. The author provided

the theoretical foundation to expand these boundaries in his master’s thesis and early PhD

studies (Sec. 2.1.1), where the TMA (TPP) was set up and implemented for considerably

large lattice systems. The TPP approximation accounts for particle–particle scattering

terms, which are particularly important in the description of nonequilibrium expansion

dynamics (cf. Sec. 4.2). In order to predict the dynamics in more general strong-coupling

situations, the author further generalized the NEGF approach by additionally invoking the

TPH for particle–hole scattering terms, the GWA for dynamical-screening effects, as well

as the FLEX selfenergy that combines all previous contributions (Sec. 2.1.2). Furthermore,

a novel selfenergy approximation was established in this context: the TOA that includes all

terms up to the third order in the interaction strength (Secs. 2.1.2 and 4.1). The extensive

review article [79] contains in-depth derivations for all previous approximations and shows

how the equations are efficiently set up for bosons and fermions in several representative

basis choices. For optimal accessibility, N.S., S.H., and J.-P.J. implemented all mentioned

selfenergies and provided a GPU-accelerated high-performance code for fermionic lattice

systems.

Having multiple (differently constructed) many-body approximations at hand raises

the question of the best performance and accuracy. One pivotal outcome of the author’s

studies is the characterization of specific applicability ranges for these approximations

in the context of lattice systems. By specifically taking into account the respective

preconditions of the system of interest, this allows for an optimal choice within the NEGF

framework. Relevant parameters in this process include the density of the system and

the interaction strength. For an overall reliable performance, the TOA has proven to be
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a suitable selection throughout the parameter space (Secs. 2.1.2 and 4.1). Within this

thesis, an additional important observation was made for the TPH approximation, namely

the violation of physical conservation laws following from the inclusion of particle–hole

exchange terms (Sec. 2.1.4).

6.1.1.3 Achieving the Scaling Limit (III)

The methodological pinnacle of this thesis is the development of the G1–G2 scheme

(Sec. 3.1). It provides a convincing solution to the problem of unfavorable computational

scaling properties within NEGF theory, which raises the framework onto the next level. In

particular, the G1–G2 scheme is an exact reformulation of the HF-GKBA in terms of the

time-diagonal elements of the single-particle and two-particle Green functions. By this

approach, the O (N2
t ) scaling of the HF-GKBA with the SOA selfenergy can be reduced

to O (N1
t ), which constitutes the universal scaling limit for time-propagation schemes.

Remarkably, even the inherently more complex resummation selfenergies that feature a

cubic time scaling within the HF-GKBA translate into a time-linear G1–G2 form. This

was initially derived for the GWA in Ref. [114], and later also demonstrated for the TPP,

and TPH approximations in Ref. [208]. In line with the central goal of this thesis, the

G1–G2 scheme was adapted to the Hubbard model in order to render the description of

correlated lattice systems possible. It is important to note that the G1–G2 scheme is in

no way limited to lattice systems. A particularly promising future application is given by

the uniform electron gas (UEG), for which the scheme has already been set up.

As the new-found approach features a single-time differential equation for the two-

particle Green function, inevitably also the numerical scaling with the basis size is changed

in comparison the original HF-GKBA. However, this drawback is convincingly compensated

by the time-scaling advantage, so that the overall numerical scaling is far superior for all

practically relevant systems; it is demonstrated in Ref. [114] that speed-up factors of 104

are easily attainable for representative simulations. Furthermore, the scaling with the

basis size for the Hubbard model could be further improved from O (N5
b) to O (N4

b) in

Ref. [208] by analytically accounting for the cancellation of specific terms.

As described above, different many-body approximations such as the T matrices and

GWA capture specific types of scattering processes. This leads to the situation that the

nature of the many-body state determines the accuracy of the applied approach. Therefore,

it is expedient to search for universal approximations that unify several classes of scattering

terms. Within the G1–G2 scheme, the TPP, TPH and GWA approaches can be combined

in a remarkably simple, but selfconsistent way. This results in the DSL approximation—the

most consistent portrayal of dynamical correlation effects in this context. The DSL-G1–G2

approach is implemented and tested in Ref. [208] with promising outcome. Beyond that,

the novel TOA selfenergy that has proven to provide accurate results in the context of

two-time NEGF simulations is combined with the G1–G2 scheme in Sec. 3.1.2, alongside

with the DSL-related FLEX approximation. With these developments, the G1–G2 scheme

now exhibits the same (or even a larger) versatility as the ordinary NEGF framework

within the KBE formulation.
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For these reasons, the time-linear G1–G2 scheme is particularly well suited to meet the

challenges of the investigation of nonequilibrium phenomena in correlated finite systems. A

first practical demonstration of this new paradigm is presented in the subsequent outlook

(Sec. 6.2), which also includes an overview of further possible applications for future

research. In addition, it is noted that the methodological advances from Sec. 3.1 have

already been embraced by other groups and form the basis for new avenues of developments

and applications [205, 206].

6.1.2 Application to Correlated Lattice Systems Under

Nonequilibrium Conditions

The abovementioned methodological breakthroughs have successively introduced new

possibilities for the accurate simulation of excited lattice systems on experimentally

relevant parameter scales. With accordingly refined NEGF tools, the author accomplished

significant advances in the description of interesting many-body phenomena in ultracold-

atom lattices and excited graphene fragments. Both systems are notoriously hard to

describe due to the interplay of electronic correlations and nonequilibrium effects.

6.1.2.1 Ultracold Atoms in Optical Lattices

An important outcome of the author’s work is the analysis and prediction of fermionic

expansion scenarios in multi-dimensional lattice systems that can be realized in experiments

with ultracold atoms in periodic optical traps (Secs. 2.1.1 and 4.2). In the respective

NEGF studies, the driving mechanisms for the characteristic expansion dynamics was

identified and a convincingly close agreement with recent experiments for 2D systems

could be achieved. In particular, a two-time NEGF approach based on the TPP selfenergy

was used to describe the time evolution of initially confined particle clouds in 1D, 2D,

and 3D lattices. The author showed that the expansion dynamics undergoes several

ultrafast characteristic phases, which are linked with the build-up of correlation. In the

final (saturated) phase, the dynamical separation between single particles and effectively

bound particle pairs was observed, which confirms the effect of quantum distillation.

Overall, the simulation results exhibited the exact same behavior as has been found

in experiments for fermionic 2D expansion in optical lattices [140]. To enable a direct

comparison, an extensive system-size study was carried out that ultimately allowed the

author to extrapolate the data to the macroscopic limit. The respective results fully match

the measurements within the given experimental accuracy. This convincing agreement is

unmatched by any other applicable approach in this context.

Beyond that, it was possible to spatially resolve the fermionic correlations in the

system: the entanglement emerges at the edges of the particle cloud and spreads towards

the center and the outer region of the lattice. These insights are important for the

understanding of expansion experiments in optical lattices and can even guide future

measurements with the recently developed quantum-gas microscopes [146–150].
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6.1.2.2 Finite Graphene Nanostructures

The most relevant and far-reaching predictions within this thesis are made in the context of

finite graphene nanostructures that are excited by impacting energetic ions. To be precise,

it was found that a) the presence of electronic correlations in the material significantly

influences the energy exchange to the projectile and b) that the incident ions can induce

the formation of stable doublons (Secs. 2.2 and 4.3). This was achieved by applying the

NEGF approach to hexagonal Hubbard lattice systems. In a first feasibility study [214],

the effects of strong lattice interactions and finite temperature on the stopping power of

the projectile was investigated using several selfenergy approximations within two-time

and GKBA calculations. It was demonstrated that the coupling of the lattice electrons

decreases their mobility and thus significantly reduces the amount of transferred energy

from the incident ion. Therefore, it leads to a generally decreased stopping power. This

effect even gains relative importance for finite temperatures. The applied model was

verified by a comparison with experimentally supported benchmark data.

The interesting backcoupling effect between the ion and the lattice raises the question

of the precise nature of the ensuing many-body state in the material. In a thorough

analysis [41], the author and others discovered a fascinating new phenomenon: the

ion-impact-induced formation of stable correlated doublons. This effect was predicted

on different length scales by applying analytic calculations, exact computations, and

NEGF simulations. Furthermore it was demonstrated that multiple sequential excitations

constitute an efficient mechanism to successively increase the number of doublons even

further. This remarkable result stands out in comparison with other observations for

doublon manifestation that depend on spatially delocalized excitations [321–328]. The

properties of the doublon-production effect by projectile excitation have been further

explored in two subsequent publications. In a topical review [207], the previous results

were complemented by measurements of the spatially resolved double occupation and the

time evolution of the spectral function. An extensive parameter study for the velocity

of the incident ions was published in Ref. [215] were the time-dependent change of the

separate energy contributions was analyzed in detail. As a result, the parameter space for

the optimal effectiveness of doublon formation was successfully narrowed down. This is

not only highly relevant for ion-sputtering experiments with graphene-based materials,

but could also directly be conveyed to ultracold atoms in optical lattices, were the ion

impact can be simulated by the highly versatile laser optics (cf. Sec. 4.2).

As an additional outcome of the developments of this thesis, the NEGF approach was

also used to describe laser-excited GNRs (Sec. 5.1). By applying the GW selfenergy to an

extended Hubbard model it was possible to predict the appearance of electronic Auger

effects after the laser beam has vanished. These results clearly surpass the predictive

power of mean-field approaches, which were included for comparison. The observations

serve as a potential reference for future experimental photoemission-spectroscopy studies

of GNRs.
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6.2 Outlook

The extensive theoretical developments and subsequent practical applications presented

in this thesis have opened up new avenues for interesting future research. This includes

further studies in the scope of the discussed topics, as well as subjects going substantially

beyond. A selection of particularly promising research applications is listed below.

• As demonstrated within this thesis, the NEGF method is able to accurately predict

the dynamics of experiments with ultracold atoms in optical lattices. In the continu-

ously ongoing refinement process of optical lattices as quantum simulators, the NEGF

approach is therefore a well-suited candidate to provide valuable reference data.

Since a large fraction of cold-gas experiments is performed with effectively bosonic

atoms [144, 145, 151–153], it would be highly beneficial to expand the approach

accordingly. In this regard, an NEGF implementation for the Bose-Hubbard model

is most expedient. The required selfenergy equations for this basis choice are already

included in Ref. [79] (Sec. 2.1.2). With this description, a different class of exciting

collective phenomena is within reach, such as Bose–Einstein condensation in optical

lattices.

• Much in the spirit of Ref. [246], the NEGF approach to ion stopping can be used as

part of a joint description of plasma–solid interface scenarios. This would include

other computational tools, such as PIC or fluid simulations on the plasma side,

to combine with. A more direct interaction process between the energetic plasma

ions and the solid system could be simulated by including charge transfer via an

embedding-selfenergy scheme [207, 246, 247]. Furthermore, one would need to

describe larger materials than considered in this thesis. A practicable pathway to

approach this problem has been opened by the drastic scaling advantages of the

G1–G2 scheme (see also Secs. 6.2.1 and 6.2.2).

• The NEGF description of laser-driven GNR systems has revealed the occurrence of

Auger effects after the excitation has vanished. These effects can be studied in more

detail by considering more observables provided by the two-time Green functions.

Furthermore, this approach can easily be generalized to carbon nanotubes (CNTs)

by applying periodic boundary conditions to the edges of the ribbons. Auger effects

in CNTs are of great interest both in theory [347, 348] and experiments [192, 193,

349].

• The most auspicious result of this thesis is the development of the G1–G2 scheme

with its game-changing linear time scaling. This method is particularly promising

in conjunction with the in-depth DSL approximation in its exchange-corrected

form (i.e. completed DSL, see Sec. 3.1.2.1). In fact, elaborate long-time DSL

calculations for Hubbard systems have revealed a new kind of stability issues, in the

form of gradually off-drifting eigenvalues of the two-particle Green function. Albeit

being equally present in previous GKBA calculations, these issues have not been
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observed before for Green functions due to the limited propagation times. For RDO

simulations, a similar behavior has been investigated, e.g., in Refs. [100, 259]. In

this context, the methods of trace consistency and purification (see, e.g., Refs. [100,

350, 351]) have been proposed as promising solutions to the problem. Therefore,

a consequent next step for the G1–G2 scheme is to apply these concepts to Green

functions, which will be discussed in an upcoming publication [262]. Both ideas

rely on small gradual corrections in every time step to keep the calculations within

the physically expected range. Inevitably, such procedures slowly start to alter the

intrinsic memory of the simulation. The validity of these approximations can then

be adequately tested with the numerical verification of time-reversal symmetry (cf.

Sec. 3.2).

• The G1–G2 scheme is well-suited to describe atoms and molecules in a spatially

continuous basis. As shown in Ref. [114], a tremendous speed-up is expected compared

to previous NEGF studies in this context [124–126]. Concretely, the description

of irradiated krypton with the DSL-G1–G2 method is particularly promising. It

is conjectured in Ref. [126] that a many-body approximation on the level of DSL

should be sufficient to predict the experimentally validated transition to Kr3+, which

previously used approaches failed to describe.

• The uniform electron gas (UEG) is a versatile model for many-body physics in general,

as it is applied to a wide range of systems ranging from quantum plasmas [117]

to warm–dense matter [10] and electrons in metals [352]. Specifically for WDM

systems, a proper description of nonequilibrium effects is indispensable [30]. Moreover,

dynamical observables, such as the dynamic structure factor, are of key importance for

WDM diagnostics [10]. This plays to the strengths of the NEGF technique in general.

The description of the UEG within the G1–G2 scheme in particular is expected

to provide a speed-up factor of up to O (N2
t ) in comparison to previous NEGF

studies [353]. This will potentially allow for analyses on a larger, experimentally

relevant scale.

The G1–G2 scheme is expected to shift the boundaries of NEGF applications in many

ways. Indeed, it has already opened up new possibilities for the description of correlated

finite lattice systems that are currently investigated in the author’s group. The following

two sections include early-stage G1–G2 results for excited graphene nanostructures that

have been previously out of reach.

6.2.1 G1–G2 Approach to Ion Stopping in Large Graphene Fragments

By means of the NEGF technique and the HF-GKBA in combination with the SOA

selfenergy, the author managed to predict ion-impact-induced doublon production in

graphene-like honeycomb flakes of up to L = 54 atoms (Ref. [41], Sec. 4.3). The G1–G2

scheme allows one to generalize these results to higher-order many-body approximations,
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larger systems and longer time evolutions. Very recently, these perspectives have been par-

tially explored in two bachelor’s theses by Franziska Reiser [354] and Lotte Borkowski [355].

Here, the author includes impressive results from Ref. [355] that demonstrate the new

possibilities in this context.

In Ref. [355], the SOA-G1–G2 approach is applied for multiple-impact scenarios in

honeycomb flakes. As a starting point, Ref. [355] successfully reproduces the results of

Figs. 4 and S2 in Ref. [41]. Subsequently, the analysis focuses on a larger hexagonal lattice

of L = 96 sites. An overview of the system can be found in Fig. 6.1. The results for this

lattice are included in Fig. 6.2. First, the system is excited with a sequence of 50 ion

impacts at a fixed impact point. The results are illustrated as golden curves for the total

energy E (top left) and the average double occupation dav (bottom left). As one can see,

both quantities share an overall increasing trend with growing number of excitations. This

confirms the predictions of Ref. [41] as the increase of dav corresponds to the formation of

correlated doublons. Interestingly, the double occupation initially exhibits a minimum

after few excitations. For smaller systems this behavior could not be observed due to

overlay effects with finite-size-induced fluctuations. As dav is expected to be minimal

in the groundstate [41], it would be interesting to verify and analyze this trend in the

future. The blue curves in Fig. 6.2 refer to the results for randomly distributed impact

points within a circle of radius r = a0. These variations can be regarded as a first step

towards more realistic ion-stopping descriptions for plasma–solid interface situations or

ion-sputtering experiments. Clearly, all previous observations are confirmed for random

impact points—albeit in attenuated form as less energy is transferred to the lattice. This

is due to an overall-reduced average potential since the impact points are statistically more

distant to the lattice electrons.

In this particular example, the G1–G2 scheme has allowed to study systems of nearly

twice the size as before for three times as long propagation times. The large system size is

indispensable to distinguish real physical behaviour from artificial finite size effects. The

results will be included in an upcoming publication [256].

6.2.2 G1–G2 Approach to Laser-Excited GNR Heterostructures

Within this thesis, the NEGF approach has been successfully applied to light-driven finite

GNR structures (Sec. 5.1). In this study, the graphene fragments have been modeled

with an extended Hubbard Hamiltonian. An even more realistic description for graphene

nanostructures can be achieved with the so-called Pariser–Parr–Pople (PPP) model [356,

357]. This lattice model was developed in 1953 [358–360] and relies on a full interaction

matrix Vij as opposed to the scalar Hubbard U . There are different possible choices for

the matrix Vij, all of which can be understood as an interpolation between the on-site

Hubbard U and a long-range Coulomb interaction. The most common choices are the
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Figure 6.1 – Overview of honeycomb clusters of different sizes. The lattices of 24, 54,

and 96 sites are colored in black, blue, and violet, respectively. J and U denote the

parameters of the Hubbard Hamiltonian for nearest-neighbor hopping and on-site

interaction. The lattice constant a0 describes the distance between two lattice atoms.

Wi denotes the Coulomb interaction with the charged projectile acting on the lattice

site i. More details on the model can be found in Sec. 4.3. The figure is taken from

Ref. [355] with permission from the author.
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Figure 6.2 – Multiple ion impact for fixed and random positions on a 96-site honeycomb

cluster. Results for the fixed (random) impact point are depicted in gold (blue). Top

left: time evolution of the total energy of the lattice including the adiabatic-switching

procedure. Bottom left: time evolution of the average double occupation. Right:

illustration of the impact points within the innermost hexagon of the lattice. The

random impact points are labeled chronologically in ascending order. The calculations

are performed for U = 4J and an initial projectile velocity of vp = 3a0/t0 with t0 = ~/J .

The figure is taken from Ref. [355] with permission from the author.
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Ohno parametrization [361]

Vij =
U

[
1 +

(
rij
r0

)2
]1/2

, (6.1)

the Mataga–Nishimoto parametrization [362, 363]

Vij =
U

1 +
rij
r0

, (6.2)

and the exponential1 form [364]

Vij = U exp

(
−rij
r0

)
. (6.3)

Here, rij = |ri − rj| is the absolute distance between the lattice-site positions ri and

rj, and r0 = e2ke
U

is a characteristic unit length with the Coulomb constant ke. The

increased complexity of the interaction matrix results in an unfavorable numerical scaling

in comparison to the Hubbard model. This conjuncture renders the PPP model unfeasible

for two-time NEGF approaches.2 With the new-found G1–G2 scheme, however, this hurdle

is compensated by the immense time-scaling advantages. It is therefore most desirable to

apply the PPP model in a G1–G2 description of excited graphene nanostructures.

In order to derive the G1–G2 equations for the PPP model, one starts from the

EOMs in the general basis and substitutes the interaction tensor as wijkl = Vijδikδjl. For

the completed DSL approximation, this applies to the Eqs. (3.10), (3.12) and (3.67).

For spin-up electrons, the single-particle EOM attains the form (again, the spin-down

components follow from the replacement ↑↔↓)

i~
d

dt
G<,↑
ij (t)−

[
hHF,↑(t), G<,↑(t)

]
ij

=
[
I↑ +

(
I↑
)†]

ij
(t) , (6.4)

where the Hartree–Fock Hamiltonian becomes3

hHF,↑
ij (t) = h

(0)
ij (t)− i~δij

∑

k

Vik(t)
[
G<,↑
kk (t) +G<,↓

kk (t)
]

+ i~Vij(t)G<,↑
ij (t) , (6.5)

and the collision integral is given by

I↑ij(t) = −i~
∑

k

Vik(t)
[
G↑↓↑↓ikjk (t) + G↑↑↑↑ikjk (t)

]
. (6.6)

Obviously, the solution of single-particle EOM requires the knowledge of two spin compo-

nents for the two-particle Green function. In the following, the EOMs for G are given in

1This interaction is not motivated from the Coulomb potential but is related to a Yukawa screening

instead.
2Exceptions to this are the SOA and GWA approaches, for which a comparable scaling can be achieved [79].
3Here, the interaction matrix is given a time dependence to account for adiabatic-switching procedures.
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the most practical form for numerical applications. With the two-particle Hartree–Fock

Hamiltonians,

h
(2),HF
↑↓,ijkl(t) = δjlh

HF,↑
ik (t) + δikh

HF,↓
jl (t) and (6.7)

h
(2),HF
↑↑,ijkl(t) = δjlh

HF,↑
ik (t) + δikh

HF,↑
jl (t) , (6.8)

the two-particle EOMs become

i~
d

dt
G↑↓↑↓ijkl (t) =

[
h

(2),HF
↑↓ (t),G↑↓↑↓(t)

]
ijkl

+ Ψ−,↑↓↑↓ijkl (t) + Π↑↓↑↓ijkl (t)−
[
Π↓↑↓↑lkji (t)

]∗

+ Λpp,↑↓↑↓
ijkl (t)−

[
Λpp,↑↓↑↓
klij (t)

]∗
+ Λph,↑↓↑↓

ijkl (t)−
[
Λph,↑↓↑↓
klij (t)

]∗
and (6.9)

i~
d

dt
G↑↑↑↑ijkl (t) =

[
h

(2),HF
↑↑ (t),G↑↑↑↑(t)

]
ijkl

+ Ψ−,↑↑↑↑ijkl (t) + Π↑↑↑↑ijkl (t)−
[
Π↑↑↑↑lkji (t)

]∗

+ Λpp,↑↑↑↑
ijkl (t)−

[
Λpp,↑↑↑↑
klij (t)

]∗
+ Λph,↑↑↑↑

ijkl (t)−
[
Λph,↑↑↑↑
klij (t)

]∗
. (6.10)

In these equations, the two-particle source terms are given as

Ψ−,↑↓↑↓ijkl (t) = G<,↑
ik (t)G<,↓

jl (t) [Vij(t)− Vkl(t)]
+ i~G<,↑

ik (t)
∑

p

Vip(t)G
<,↓
jp (t)G<,↓

pl (t)− i~G<,↑
ik (t)

∑

p

Vkp(t)G
<,↓
jp (t)G<,↓

pl (t)

+ i~G<,↓
jl (t)

∑

p

Vpj(t)G
<,↑
ip (t)G<,↑

pk (t)− i~G<,↓
jl (t)

∑

p

Vpl(t)G
<,↑
ip (t)G<,↑

pk (t)

(6.11)

and

Ψ−,↑↑↑↑ijkl (t) = G<,↑
ik (t)G<,↑

jl (t) [Vij(t)− Vkl(t)]−G<,↑
il (t)G<,↑

jk (t) [Vij(t)− Vlk(t)]
+ i~G<,↑

ik (t)
∑

p

Vip(t)G
<,↑
jp (t)G<,↑

pl (t)− i~G<,↑
ik (t)

∑

p

Vkp(t)G
<,↑
jp (t)G<,↑

pl (t)

+ i~G<,↑
jl (t)

∑

p

Vpj(t)G
<,↑
ip (t)G<,↑

pk (t)− i~G<,↑
jl (t)

∑

p

Vpl(t)G
<,↑
ip (t)G<,↑

pk (t)

− i~G<,↑
il (t)

∑

p

Vip(t)G
<,↑
jp (t)G<,↑

pk (t) + i~G<,↑
il (t)

∑

p

Vlp(t)G
<,↑
jp (t)G<,↑

pk (t)

− i~G<,↑
jk (t)

∑

p

Vpj(t)G
<,↑
ip (t)G<,↑

pl (t) + i~G<,↑
jk (t)

∑

p

Vpk(t)G
<,↑
ip (t)G<,↑

pl (t) .

(6.12)

The polarization contributions in Eqs. (6.9) and (6.10) become

Π↑↓↑↓ijkl (t) =− i~G<,↓
jl (t)

∑

p

Vjp(t)
[
G↑↓↑↓ipkp (t) + G↑↑↑↑ipkp (t)

]

+ i~G<,↓
jl (t)

∑

p

Vlp(t)
[
G↑↓↑↓ipkp (t) + G↑↑↑↑ipkp (t)

]

+ i~
∑

p

Vjp(t)G
<,↓
pl (t)G↑↓↑↓ijkp (t)− i~

∑

p

Vpl(t)G
<,↓
jp (t)G↑↓↑↓ipkl (t) and (6.13)
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Π↑↑↑↑ijkl (t) =− i~G<,↑
jl (t)

∑

p

Vjp(t)
[
G↑↓↑↓ipkp (t) + G↑↑↑↑ipkp (t)

]

+ i~G<,↑
jl (t)

∑

p

Vlp(t)
[
G↑↓↑↓ipkp (t) + G↑↑↑↑ipkp (t)

]

+ i~
∑

p

Vjp(t)G
<,↑
pl (t)G↑↑↑↑ijkp (t)− i~

∑

p

Vpl(t)G
<,↑
jp (t)G↑↑↑↑ipkl (t) . (6.14)

The particle–particle scattering terms of Eqs. (6.9) and (6.10) are included via

Λpp,↑↓↑↓
ijkl (t) = Vij(t)G↑↓↑↓ijkl (t) + i~

∑

p

G<,↑
ip (t)Vpj(t)G↑↓↑↓pjkl (t)

+ i~
∑

p

G<,↓
jp (t)Vip(t)G↑↓↑↓ipkl (t) and (6.15)

Λpp,↑↑↑↑
ijkl (t) = Vij(t)G↑↑↑↑ijkl (t) + i~

∑

p

G<,↑
ip (t)Vpj(t)G↑↑↑↑pjkl (t)

+ i~
∑

p

G<,↑
jp (t)Vip(t)G↑↑↑↑ipkl (t) . (6.16)

Finally, the particle–hole scattering terms of Eqs. (6.9) and (6.10) are given as

Λph,↑↓↑↓
ijkl (t) =− i~

∑

p

G<,↑
ip (t)Vpl(t)G↑↓↑↓pjkl (t) + i~

∑

p

G<,↓
pl (t)Vip(t)G↑↓↑↓ijkp (t) and (6.17)

Λph,↑↑↑↑
ijkl (t) =− i~

∑

p

G<,↑
ip (t)Vpl(t)G↑↑↑↑pjkl (t) + i~

∑

p

G<,↑
pl (t)Vip(t)G↑↑↑↑ijkp (t)

− i~G<,↑
il (t)

∑

p

Vip(t)
[
G↑↑↑↑pjkp(t)− G↑↓↑↓pjpk(t)

]

+ i~G<,↑
il (t)

∑

p

Vlp(t)
[
G↑↑↑↑pjkp(t)− G↑↓↑↓pjpk(t)

]
. (6.18)

These equations account for all terms of the completed DSL approximation [Eq. (3.67)].

Other approximations that have been discussed in this thesis can be obtained by neglecting

specific terms. The results have been derived and implemented by the author and Jan-

Philip Joost.

As discussed in Sec. 5.1, GNRs feature interesting electronic characteristics due to the

confinement-enhanced correlations. Recently, an exciting class of GNR systems has raised

particular attention: GNR heterostructures [365–371]. The characteristic geometries of

these system cause the existence of topological states that can fundamentally change the

electronic properties of the GNRs. A specific example of these heterostructures—namely

an alternating sequence of 7- and 9-armchair GNRs (AGNRs)—was recently analyzed in

theory [119] and experiment [251]. Here, the theoretical study [119] involved equilibrium

Green functions to predict the spatially resolved groundstate-energy distribution. The

introduced G1–G2 approach using the PPP model allows one to directly describe ultrafast

nonequilibrium dynamics in this heterostructure system. As a proof of concept, Fig. 6.3

contains results by Jan-Philip Joost for the 96-site unit cell [251]. Here, the system is driven

by a circularly polarized laser (top right). From the single-particle Green function one has

access to the spatially resolved kinetic energy Ekin, which is shown for the groundstate
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Figure 6.3 – Snapshots of the spatially resolved kinetic energy in a 96-site GNR het-

erostructure during a laser excitation. Top left: initial (groundstate) distribution of

Ekin in the interatomic orbitals. Bottom: laser-induced change of the kinetic energy

after t = 7 fs (left) and t = 14 fs (right). Top right: time evolution of the laser amplitude

in x direction. The circularly polarized laser has a frequency of ~ωLaser = 4 eV and a

maximal amplitude of E0 = 0.1. The PPP model uses the Ohno parametrization [cf.

Eq. (6.1)] with U = J . The figure has been created by Jan-Philip Joost.

of the ribbon (top left). One can see that it is most pronounced on the edges of the

system due to the reduced number of neighboring atoms to distribute the energy. The

bottom of Fig. 6.3 shows two snapshots (t = 7 fs and t = 14 fs) of the kinetic-energy

change relative to the initial state. Overall, the laser excitation leads to a non-localized

redistribution of Ekin. Interestingly, one can observe small energy excesses at the edges

and—remarkably—at the junctions between the 7-AGNR and the 9-AGNR segments. This

conjuncture emphasizes the special role of the junction regions within the heterostructure

system. A precise characterization of the observed behavior is an interesting topic for

future investigations.

To summarize, the DSL-G1–G2 scheme for the PPP model that has been presented in

this outlook provides a systematic and efficient way to predict ultrafast dynamics in finite

graphene nanostructures. The promising application of light-driven GNR heterostructures

has been demonstrated to be within reach of the new approach. Other interesting

applications are finite graphene fragments exposed to ionic radiation (cf. Sec. 4.3) and

current-signal transmission through GNR systems [372–374], which is relevant for, e.g.,

next-generation DNA-sequencing methods [372, 375–377].
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List of Acronyms

AGNR armchair graphene nanoribbon

BBGKY Bogolyubov–Born–Green–Kirkwood–Yvon

CM carrier multiplication

CNT carbon nanotube

CPT charge–parity–time

CPU central processing unit

DFT density-functional theory

DiagMC diagrammatic Monte Carlo

DMFT dynamical mean-field theory

DMRG density-matrix renormalization group

DNA deoxyribonucleic acid

DSL dynamically screened ladder

EOM equation of motion

FLEX fluctuating-exchange approximation

GKBA generalized Kadanoff–Baym ansatz
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GNR graphene nanoribbon

GPU graphics processing unit

GWA GW approximation

HDD homogeneous density distribution

HF Hartree–Fock

HF-GKBA Hartree–Fock generalized Kadanoff–Baym ansatz

IIT integrated-information theory

KBE Keldysh–Kadanoff–Baym equations

LDA local-density approximation

NEGF nonequilibrium Green functions

PIC particle in cell

PPP Pariser–Parr–Pople

RDO reduced density operators

RTQMC real-time quantum Monte Carlo

SOA second-order Born approximation

SRIM the stopping and range of ions in matter

TDDFT time-dependent density-functional theory

TDHF time-dependent Hartree–Fock

TMA T -matrix approximation

TOA third-order approximation
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TPH particle–hole T -matrix

TPP particle–particle T -matrix

trARPES time-resolved, angle-resolved photoemission spectroscopy

UEG uniform electron gas

WDM warm dense matter
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Appendix B

List of Contributions to International
Conferences

2014

• Dresden, Germany, DPG spring meeting (poster):

Green functions approach to Hubbard nano–clusters with the GKBA and T–matrix

approximation

– Niclas Schlünzen, Sebastian Hermanns, and Michael Bonitz

2015

• Berlin, Germany, DPG spring meeting (poster):

Nonequilibrium Green functions approach to transport properties in strongly coupled

finite quantum systems

– Niclas Schlünzen, Sebastian Hermanns, and Michael Bonitz

• Lund, Sweden, Progress in Non-equilibrium Green’s Functions (PNGF

VI) (contributed talk):

Nonequilibrium Green functions approach to transport and diffusion in strongly

coupled finite quantum systems

– Niclas Schlünzen, Sebastian Hermanns, Michael Bonitz, and Claudio Verdozzi

• Bad Honnef, Germany, WEH seminar: Isolated Quantum Many-Body

Systems out of Equilibrium (poster):

Dynamics of strongly correlated fermions—first principle results for two and three

dimensions

– Niclas Schlünzen, Sebastian Hermanns, Michael Bonitz, and Claudio Verdozzi

→ This contribution has been awarded the Best Poster Prize.
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• Bad Honnef, Germany, WEH seminar: Isolated Quantum Many-Body

Systems out of Equilibrium (shared lecture with Michael Bonitz):

Ultrafast dynamics of strongly correlated fermions – a Nonequilibrium Green func-

tions approach

– Michael Bonitz and Niclas Schlünzen

2016

• Hannover, Germany, DPG spring meeting (contributed talk):

Dynamics of strongly correlated fermions—first principle results for two and three

dimensions

– Niclas Schlünzen, Sebastian Hermanns, Jan-Philip Joost, and Michael Bonitz

• Lausanne, Switzerland, CECAM workshop: Ultra-fast phenomena in

quantum physics: a challenge for theory & experiment (shared talk with

Michael Bonitz):

Ultrafast Dynamics of Strongly Correlated Fermions - a Nonequilibrium Green

Functions Approach

– Michael Bonitz, Niclas Schlünzen, Sebastian Hermanns, Karsten Balzer, and Jan-

Philip Joost

2017

• Dresden, Germany, DPG spring meeting (poster):

Nonequilibrium dynamics of correlated fermions in lattice systems: A benchmark

analysis of the nonequilibrium Green functions approach

– Niclas Schlünzen, Jan-Philip Joost, Fabian Heidrich-Meisner, and Michael Bonitz

• Kiel, Germany, Strongly Coupled Coulomb Systems 2017 (invited talk):

Ab initio simulations of the transport of strongly correlated fermions

– Niclas Schlünzen, Jan-Philip Joost, and Michael Bonitz

2018

• Berlin, Germany, DPG spring meeting (poster):

Doublon Formation by Ions Impacting a Strongly Correlated System

– Karsten Balzer, Niclas Schlünzen, Maximilian Rodriguez Rasmussen, and Michael

Bonitz
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2019

• Regensburg, Germany, DPG spring meeting (poster):

Nonequilibrium Green Functions for Excited Lattice Systems—A Case Study of the

Artificial Damping

– Niclas Schlünzen, Jan-Philip Joost, and Michael Bonitz

• Kiel, Germany, KBEt2 workshop: Solving the Two-time Kadanoff-Baym

Equations. Status and Open Problems (invited talk):

A Selfenergy Cookbook — State-of-the-Art Computing for the NEGF Key Ingredient

– Niclas Schlünzen, Jan-Philip Joost, and Michael Bonitz

2020

• Virtual, 62nd Annual Meeting of the APS Division of Plasma Physics

(contributed talk):

Quantum Dynamics of Electrons Made Fast: Achieving Linear Time-Scaling for

Nonequilibrium Green Functions

– Niclas Schlünzen, Jan-Philip Joost, Christopher Makait, and Michael Bonitz
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Appendix C

Full List of Publications

1. S. Hermanns, N. Schlünzen, and M. Bonitz, Hubbard nanoclusters far from equilib-

rium, Phys. Rev. B, 90, 125111 (2014)

2. M. Bonitz, N. Schlünzen, and S. Hermanns, Toward a Nonequilibrium Green

Functions Approach to Diffusion in Strongly Coupled Finite Quantum Systems,

Contrib. Plasma Phys., 55, 152 (2015)

3. N. Schlünzen, S. Hermanns, M. Bonitz, and C. Verdozzi, Dynamics of strongly

correlated fermions: Ab initio results for two and three dimensions, Phys. Rev. B,

93, 035107 (2016)

4. N. Schlünzen and M. Bonitz, Nonequilibrium Green Functions Approach to Strongly

Correlated Fermions in Lattice Systems, Contrib. Plasma Phys., 56, 5 (2016)

5. K. Balzer, N. Schlünzen, and M. Bonitz, Stopping dynamics of ions passing through

correlated honeycomb clusters, Phys. Rev. B, 94, 245118 (2016)

6. N. Schlünzen, J.-P. Joost, F. Heidrich-Meisner, and M. Bonitz, Nonequilibrium

dynamics in the one-dimensional Fermi-Hubbard model: Comparison of the nonequi-

librium Green-functions approach and the density matrix renormalization group

method, Phys. Rev. B, 95, 165139 (2017)

7. M. Scharnke, N. Schlünzen and M. Bonitz, Time reversal invariance of quantum

kinetic equations: Nonequilibrium Green functions formalism, J. Math. Phys., 58,

061903 (2017)

8. N. Schlünzen, J.-P. Joost, and M. Bonitz, Comment on “On the unphysical solutions

of the Kadanoff-Baym equations in linear response: Correlation-induced homogeneous

density-distribution and attractors”, Phys. Rev. B, 96, 117101 (2017)

9. M. Bonitz, M. Scharnke, and N. Schlünzen, Time-reversal invariance of quantum

kinetic equations II: Density operator formalism, Contrib. Plasma Phys., 58, 1036

https://doi.org/10.1103/PhysRevB.90.125111
https://doi.org/10.1002/ctpp.201400065
https://doi.org/10.1103/PhysRevB.93.035107
https://doi.org/10.1103/PhysRevB.93.035107
https://doi.org/10.1002/ctpp.201610003
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10. K. Balzer, M. Rodriguez Rasmussen, N. Schlünzen, J.-P. Joost, and M. Bonitz,

Doublon Formation by Ions Impacting a Strongly Correlated Finite Lattice System,

Phys. Rev. Lett., 121, 267602 (2018)

11. N. Schlünzen, K. Balzer, M. Bonitz, L. Deuchler, and E. Pehlke, Time-dependent

simulation of ion stopping: Charge transfer and electronic excitations, Contrib.

Plasma Phys., 59, e201800184 (2019)

12. J.-P. Joost, N. Schlünzen, and M. Bonitz, Femtosecond Electron Dynamics in

Graphene Nanoribbons – A Nonequilibrium Green Functions Approach Within an

Extended Hubbard Model, Phys. Status Solidi B, 256, 1800498 (2019)

13. M. Bonitz, K. Balzer, N. Schlünzen, M. Rodriguez Rasmussen, and J.-P. Joost,

Ion Impact Induced Ultrafast Electron Dynamics in Finite Graphene-Type Hubbard

Clusters, Phys. Status Solidi B, 256, 1800490 (2019)

14. N. Schlünzen, S. Hermanns, M. Scharnke, and M. Bonitz, Ultrafast dynamics

of strongly correlated fermions - Nonequilibrium Green functions and selfenergy

approximations, J. Phys. Condens. Matter, 32, 103001 (2020)

15. N. Schlünzen, J.-P. Joost, and M. Bonitz, Achieving the Scaling Limit for Nonequi-

librium Green Functions Simulations, Phys. Rev. Lett., 124, 076601 (2020)

16. J.-P. Joost, N. Schlünzen, and M. Bonitz, G1-G2 scheme: Dramatic acceleration

of nonequilibrium Green functions simulations within the Hartree-Fock generalized

Kadanoff-Baym ansatz, Phys. Rev. B, 101, 245101 (2020)
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the one-dimensional Hubbard model, Contrib. Plasma Phys., Early View, DOI:
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https://doi.org/10.1103/PhysRevLett.121.267602
https://doi.org/10.1002/ctpp.201800184
https://doi.org/10.1002/ctpp.201800184
https://doi.org/10.1002/pssb.201800498
https://doi.org/10.1002/pssb.201800490
https://doi.org/10.1088/1361-648X/ab2d32
https://doi.org/10.1103/PhysRevLett.124.076601
https://doi.org/10.1103/PhysRevB.101.245101
https://doi.org/10.1002/ctpp.202000220
https://doi.org/10.1002/ctpp.202000220


463

References

1K.-C. Chao and R. A. Greenkorn, Thermodynamics of Fluids : An Introduction to

Equilibrium Theory (M. Dekker, New York, 1975).

2J. Prausnitz, R. Lichtenthaler, and E. de Azevedo, Molecular Thermodynamics of

Fluid-Phase Equilibria (Prentice Hall PTR, New Jersey, 1999).

3D. Young, B. Munson, T. Okiishi, and W. Huebsch, A Brief Introduction to Fluid

Mechanics (Wiley, 2010).

4P. Simon and Y. Gogotsi, “Materials for electrochemical capacitors”, Nanoscience and

technology: a collection of reviews from Nature journals, 320–329 (2010).

5M. V. Fedorov and A. A. Kornyshev, “Ionic Liquids at Electrified Interfaces”, Chemical

Reviews 114, 2978–3036 (2014).

6B. Parida, S. Iniyan, and R. Goic, “A review of solar photovoltaic technologies”,

Renewable and Sustainable Energy Reviews 15, 1625–1636 (2011).

7N. Vogel, Surface Patterning with Colloidal Monolayers, Springer Theses (Springer,

Berlin, 2012).

8F. Chen, Introduction to Plasma Physics (Springer US, New York, 2012).

9F. Graziani, M. Desjarlais, R. Redmer, and S. Trickey, Frontiers and Challenges in

Warm Dense Matter, Lecture Notes in Computational Science and Engineering (Springer

International Publishing, Cham, 2014).

10T. Dornheim, S. Groth, and M. Bonitz, “The uniform electron gas at warm dense matter

conditions”, Physics Reports 744, 1–86 (2018).

11M. Bonitz, T. Dornheim, Z. A. Moldabekov, S. Zhang, P. Hamann, H. Kählert, A.
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238A. Kalvová, B. Velický, and V. Špička, “Beyond the Generalized Kadanoff–Baym

Ansatz”, physica status solidi (b) 256, 1800594 (2019).

https://doi.org/10.1103/PhysRevB.80.115107
https://doi.org/10.1063/1.3089567
https://doi.org/10.1103/PhysRev.127.1391
https://doi.org/10.1103/PhysRev.127.1391
https://doi.org/10.1142/S0217979299000436
https://doi.org/10.1142/S0217979299000436
https://doi.org/10.1063/1.1884965
https://doi.org/10.1063/1.1884965
https://doi.org/10.1103/PhysRevB.72.235109
https://doi.org/10.1103/PhysRevB.72.235109
https://doi.org/10.1103/PhysRev.118.1417
https://doi.org/10.2307/25470707
https://doi.org/10.2307/25470707
https://doi.org/10.1371/journal.pcbi.1003588
https://doi.org/10.1371/journal.pcbi.1003588
https://doi.org/10.1038/nrn.2016.44
https://doi.org/10.1038/nrn.2016.44
https://doi.org/10.1002/pssb.201800447
https://doi.org/10.1002/pssb.201800447
https://doi.org/10.1002/pssb.201800501
https://doi.org/10.1002/pssb.201800469
https://doi.org/10.1002/pssb.201800594


References 479

239M. Hyrkäs, D. Karlsson, and R. van Leeuwen, “Diagrammatic Expansion for Positive

Spectral Functions in the Steady-State Limit”, physica status solidi (b) 256, 1800615

(2019).

240E. Perfetto and G. Stefanucci, “The Dissection Algorithm for the Second-Born Self-

Energy”, physica status solidi (b) 256, 1800573 (2019).
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