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Zusammenfassung

In der Plasmaphysik sind Modelle warmer dichter Materie, wie das homogene Elek-
tronengas, von zunehmender Wichtigkeit. Durch Fehler bei analytischen Näherungen
und Schwierigkeiten bei theoretischen Modellen, zum Beispiel die Berücksichtigung der
Coulomb-Wechselwirkung aller Elektronen im homogenen Elektronengas oder das aus
der Spinstatistik resultierende Pauli-Prinzip, gibt es einen Bedarf an ab initio Simula-
tionen der thermodynamischen Eigenschaften des Elektronengases unter verschiedenen
Temperaturen und Kopplungsstärken.

Eine Möglichkeit, solche durchzuführen, sind auf Feynmans Pfadintegralformalismus
basierende Quanten-Monte Carlo-Techniken. Diese sind allerdings stark von dem fermion-
ischen Vorzeichenproblem beeinträchtigt, welches teilweise durch die Verwendung ver-
schiedener komplementärer Formulierungen umgangen werden kann. Eine dieser For-
mulierungen ist durch den in zweiter Quantisierung beschriebenen Configuration Path
Integral Monte Carlo Algorithmus gegeben.

In dieser Bachelorarbeit werden zwei Ideen ausgearbeitet, deren Ziel die Verbesserung
dieses Algorithmus ist. Der erste Teil untersucht Propagatoren höherer Ordnung bei
der Herleitung der thermodynamischen Zustandssumme und zeigt, wie man kanonisch
diskrete Simulationen beliebiger Ordnung durchführen kann. Im zweiten Teil wird ein
Weg untersucht, den Konfigurationsraum des aktuellen Algorithmus zu reduzieren, indem
eine alternative Herleitung herangezogen wird, die zur analytischen Berechnung gefalteter
Integrale durch die Residuen einer inversen Laplace-Transformation führt.
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Abstract

In plasma physics, models of warm dense matter like the uniform electron gas have
become increasingly important. Because of the errors in some analytical approximations
and the difficulties with some theoretical models, such as the simultaneous Coulomb
interaction of all electrons in the uniform electron gas or the spin statistics which imply the
Pauli principle, there is a need for ab initio simulations of the thermodynamic properties
of the electron gas in different temperature ranges and coupling strengths.

One way to do this is with quantum Monte Carlo techniques which are based on Feyn-
man’s path integral formulation but suffer from the fermion sign problem. This can be
partly circumvented by choosing different, complementary representations. One of these
is given by Configuration Path Integral Monte Carlo, formulated in second quantization.

This bachelor’s thesis provides two main ideas which could lead to improving Con-
figuration Path Integral Monte Carlo. The first part explores higher order propagators
in the derivation of the thermodynamic partition function and shows a canonical way to
perform discrete simulations with arbitrary order. The second part shows a way to reduce
the configuration space of the current algorithm by performing an alternative derivation
which leads to the analytic computation of convoluted integrals by means of residues of
an inverse Laplace transform.
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Chapter 1

Introduction

Our world as we see it today is on small scales described by the incredibly accurate theory
of quantum mechanics. Of all quantum mechanical particles, which are divided into fermi
and bose particles, typical objects of interest are electrons and ions. Recently, an area
of growing significance has been the description of systems of electrons under extreme
conditions [1]. For example, the interior of giant planets and brown and white dwarfs is
expected to contain warm dense matter [2, 3, 4], a state of high density and temperatures
at the order of the Fermi energy. An important theoretical model as a description base
is the uniform electron gas [5, 6]. Because of the great difficulties and approximations
that have to be made in analytical calculations, it is of particular importance to be able
to perform numerical simulations for computing thermodynamic properties.

One of the most successful computational methods at low temperatures is density
functional theory [7, 8, 9]. However, especially for finite temperatures in the warm dense
matter regime, these become unreliable so that other approaches are necessary. Very
prominent are quantum Monte Carlo simulations, which are based on a path integral
formulation [10]. These, though, are severely restricted due to the so-called fermion sign
problem [11], which is shown to be NP-hard [12]. Since the fermion sign problem is
representation-dependent, it can be partly circumvented by considering different bases
which have different ranges of application [6, 13].

A representation which turned out to be complementary to the standard Path Integral
Monte Carlo simulation performed in position space was Configuration Path Integral
Monte Carlo, proposed by Schoof et al. [14, 15, 16]. Here, the operators were looked at in
second quantization instead, while the sampled Monte Carlo paths resembled Fock states
in occupation number representation. These two formulations, together with various
other improvements and optimizations, cover a wide range of parameters, leaving only a
gap at temperatures below the Fermi temperature T < 0.5TF with moderate coupling
rs ≈ 2− 6 [13].
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This bachelor’s thesis develops different approaches which may increase the range of
applicability of the Configuration Path Integral Monte Carlo algorithm to greater coupling
strength (rs & 2, depending on parameters like temperature and particle number) by
trying to develop a second quantization analogue to Permutation Blocking Path Integral
Monte Carlo by Dornheim et al [17, 18] and grouping configuration paths together. In
this thesis we will consider two independent ideas.

After a brief introduction to the foundations of Monte Carlo and the Configuration
Path Integral algorithm in particular, the first part addresses the possibility of higher
order expansions, which naturally arise in the derivation of the path integral formulation
of the canonical partition function. It is shown that higher order corrections to the
partition function do not have a notable influence on the current Monte Carlo algorithm,
which is based on so-called “continuous time”. Simultaneously, the proof also provides
a way to address Configuration Path Integral Monte Carlo in “discrete time”, but with
arbitrary order.

The second part of this thesis starts from the current formulation of the canonical
partition function and aims to reduce the configuration space which is sampled during
the Monte Carlo procedure, thus improving the algorithm. It is joined by a number of
analytic aspects and ideas which provide several ways of implementing such a “reduced”
algorithm and show starting points for alternative methods which could be investigated.



Chapter 2

Foundations

2.1 Second quantization and statistical physics

An essential quantity in statistical physics is the canonical partition function Z of a
canonical ensemble, given by

Z = Tr e−βH ,

with the Hamiltonian H and inverse temperature β = 1
kBT

. This can be used to derive
the expectation values of certain observables of the system. As an example, its average
energy is given by

E = 〈H〉 = − ∂

∂β
ln(Z).

One way to evaluate the trace and simultaneously sample observable quantities is using
Monte Carlo simulations. These depend on the chosen basis in which the trace will be
calculated.

In Configuration Path Integral Monte Carlo (short: CPIMC) this is done using the
second quantization occupation number representation of N -particle states. First, one
should specify a complete orthonormal system (CONS) of underlying one-particles basis
states {|si〉 : i ∈ N} (e.g. plane waves). For our purposes we assume an ideal system
in which the states of the N -particle Hilbert space H are tensor product states, i.e.
|si1 · · · siN 〉 = |si1〉1 · · · |siN 〉N and H(N) = H1 ⊗ · · · ⊗ HN with |s〉i ∈ Hi where all the
single-particle Hamiltonians hi with Hilbert space Hi have the same structure.

In a physical system of identical particles this representation carries redundant infor-
mation as there can be no difference between the physical states of e.g. |s1s2〉 and |s2s1〉.
In other words, we cannot know whether particle 1 is in state 1 and particle 2 is in state
2 or it is the other way around. For the fermionic systems of our interest exchanging any
two particles must only change the phase of the state by π (or equivalently, flip the sign):
|s1s2〉 = −|s2s1〉 This enforces the Pauli principle so that no state can be occupied twice.

3



4 CHAPTER 2. FOUNDATIONS

Note that this is not in contradiction to the indistinguishability of the corresponding
physical states. Any measurable physical quantity will depend only on the absolute value
of the amplitude squared so that the signs cancel.

Antisymmetrizing the states removes the unphysical redundancy:

|si1 · · · siN 〉− := 1√
N !

∑
π∈SN

sgn(π)|si1〉π(1) · · · |siN 〉π(N)

= 1√
N !

det (|sik〉l)
N
k,l=1 .

In occupation number representation we now first agree on an (arbitrary but fixed)
order of the single-particle basis states. Since we have already established a numbering,
we will order the basis states accordingly by |s1〉, |s2〉, . . . .

We now write this as
|n〉 := |n1 n2 n3 · · · 〉

where ni ∈ {0, 1} denotes the number of particles in basis state |si〉. As an example, we
would have |s3s1〉− = −|s1s3〉− = (−1) · |1 0 1 0 0 0 · · · 〉. These properly antisymmetrized
N -particle states {|n〉 : n ∈ {0, 1}N} inherit from {|si〉 : i ∈ N} the property of consti-
tuting a complete orthonormal system for the antisymmetrized N -particle Hilbert space
H(N)
− .

The formulation established up to this point might already seem sufficient. One key
ingredient though that is still missing is the introduction of creation and annihilation
operators, which will allow us to express previously known operators in the second quan-
tization formalism.

For this we first allow changes in the particle number by looking at the exterior
algebra, also called Fock space,

F :=
∞⊕
N=0
H(N)
− = H(0)

− ⊕H
(1)
− ⊕H

(2)
− ⊕ . . . .

Next, define the creation operator a†i and the annihilation operator ai (which are mutually
adjoint) by

a†i | · · ·ni · · · 〉 := (−1)
∑i−1

k=0 nk δni,0| · · ·ni + 1 · · · 〉

ai | · · ·ni · · · 〉 := (−1)
∑i−1

k=0 nk δni,1| · · ·ni − 1 · · · 〉.

The sign is chosen is such a way that for any i, j ∈ N the commutation relations

{a†i , a
†
j} = 0 = {ai, aj}, {a†i , aj} = δij
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are satisfied, where the anti-commutator has been defined as {A,B} := AB +BA. As a
side result we note that these operators provide a way of creating all Fock states from the
vacuum state |0〉 := |0 0 0 · · · 〉. As an example, |101000 · · · 〉 = a†1a

†
3|0〉. More generally,

|n〉 =
( ∞∏
i=1

(
a†i
)ni) |0〉,

where one has to be careful with preserving the order.

An important theorem is that any one-particle operator B = ∑∞
i=1Bi (Bi acts on the

i-th particle) can be expressed in second quantization as [19]

B =
∞∑

i,j=1
bija

†
iaj

with bij := 〈si|B|sj〉. Similarly, any two-particle operator B = 1
2
∑∞
i,j=1Bi,j can be

expressed as
B = 1

2

∞∑
i,j,k,l=1

bijkla
†
ia
†
jalak.

2.2 Monte Carlo simulation

2.2.1 Configuration Path Integral Monte Carlo

Suppose we have an N -particle system and want to calculate Z = Tr e−βH in second
quantization. A simple idea would be to define ε := β/M (with M ∈ N) and evaluate

Z = Tr e−βH =
∑
n

〈n|e−βH |n〉 =
∑
n

〈n|
(
e−εH

)M
|n〉

≈
∑
n

∑
n1

· · ·
∑
nM−1

〈n|1− εH|n1〉 · · · 〈nM−1|1− εH|n〉.

The summations are over all N -particle Fock basis states |n〉 ∈ H(N)
− , which we have

mentioned earlier to constitute a complete orthonormal basis for H(N)
− . This idea lies at

the heart of Configuration Path Integral Monte Carlo, whose de facto representation of
Z is exhibited in greater detail in Chapter 3.

The use of Monte Carlo techniques now stems from the fact that there is a large
number of possible configurations involved which have to be summed up (later, some
integrals will be involved as well). The high dimension of this summation / integration
practically prohibits most other techniques.
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2.2.2 Metropolis algorithm

In principle, we arrive (by CPIMC or some other formulation) at an expression of the
form

Z =
∑∫
C

W (C),

where the summation / integration is executed over all possible paths C with correspond-
ing weights W (C). In the CPIMC example from above, a path would be determined
by C = (n, n1, . . . , nM) with given M , whereas the actual CPIMC formulation derived
in Chapter 3 has configurations C = (K,n, n1, . . . , nK−1, τ1, . . . , τK) with the number of
kinks (configuration changes) K and imaginary times τi at which these changes occur.

Now, our goal is to calculate expectation values of observables A given in the form

〈A〉 = 1
Z

∑∫
C

A(C)W (C) =
∑∫
C A(C)W (C)∑∫
CW (C) .

This could be interpreted as sampling A by a probability distribution W (C) if all W (C)
were positive. One can always achieve this by defining the sign S(C) := sgn(W (C)) and
writing

〈A〉 =
∑∫
C A(C)S(C)|W (C)|∑∫
C S(C)|W (C)| = 〈AS〉

′

〈S〉′

with the ensemble averaging 〈·〉′ via Z ′ := ∑∫
C |W (C)|. This is where the fermion sign

problem arises, as small average signs 〈S〉′ lead to large uncertainty in measuring 〈A〉.

Another problem is our ignorance of the value of Z ′, which is needed to ensure the
weights are properly normalized to p(C) := |W (C)|/Z ′ and really resemble a probability
distribution. In the Metropolis algorithm [20] this is circumvented by only looking at
transition probabilities p(Ci → Cj) and requiring they meet the detailed balance condition

p(Ci) p(Ci → Cj) = p(Cj) p(Cj → Ci).

One can verify that a solution is given by

p(Ci → Cj) = min
{

1, p(Cj)
p(Ci)

}
= min

{
1, |W (Cj)|
|W (Ci)|

}
,

which removes the need to know the normalization factor Z ′.

Finally, and roughly speaking, one can perform the simulation by generating a Markov
chain, i.e. starting with configuration C0 and proposing Ci+1 with the help of Ci and
p(Ci → Ci+1). The resulting states {Ci : i = 1, 2, . . . } are known to be distributed
according to p(C). For more details see e.g. [21, 16].



Part I

Higher Order CPIMC
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Chapter 3

Canonical Partition Function

We now begin with deriving the standard continuous time formulation of the partition
function in CPIMC [14, 15]. One way to do this is starting with a discrete time formu-
lation and performing the limit to continuous time. We choose this path as it provides
a way to investigate higher order corrections. Unless otherwisely stated, we will always
identify n0 ≡ n ≡ nK , τ0 ≡ 0 and τK+1 ≡ β.

The usual problem is that, in Z = Tr e−βH , the offdiagonal part of the Hamiltonian
H prohibits an exact evaluation. In the following we will split H into a diagonal and an
offdiagonal part, writing H = D+ Y . This means that D and Y are constructed in such
a way that 〈n|D|m〉 ∼ Dn δnm and 〈n|Y |n〉 = 0. For M ∈ N define ε := β

M
. We can then

write
Z = Tr e−βH =

∑
n

〈n|e−βH |n〉 =
∑
n

〈n|
(
e−εH

)M
|n〉,

where the summation is executed over every N -particle Fock state. This enables us to
approximate

e−εH = 1− εH +O(ε2),

up to second order. Taking the product of M such approximations therefore yields

Z =
∑
n

〈n|
(
1− εH +O(ε2)

)M
|n〉 =

∑
n

〈n|(1− εH)M |n〉+O(ε)

=
∑

n0=nM

∑
n1

· · ·
∑
nM−1

M∏
i=1
〈ni−1|1− εH|ni〉+O(ε).

If we now split H into D and Y , we get

〈n|1− ε(D + Y )|m〉 =

1− εDn n = m

−εYn,m n 6= m
.

9
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Here we have defined Dn := 〈n|D|n〉 and Yn,m := 〈n|Y |m〉. One can also write

〈n|1− εH|m〉 =

e
−εDn n = m

−εYn,m n 6= m
+O(ε2)

instead, committing an error of magnitude O(ε2), which does not change the total order
of the partition sum. Hence, rewriting the summation of the partition sum based on the
latter expression and in terms of the number of kinks (a kink is defined as a Y -term in
the summation. Physically, this is where the configurations change in a given path), we
get

Z =
M∑
K=0
K 6=1

M∑
l1=1
· · ·

M∑
lK=lK−1+1

∑
n

∑
n1

· · ·
∑
nK−1

e−ε
∑K

i=0 Dni (li+1−li−1)(−ε)K
K∏
i=1

Yni−1,ni .

Here we implicitly require ni 6= ni+1 for all i. Also, n0 := n =: nK , l0 := 0 and
lK+1 := M + 1 in the summation. In the continuous time limit M →∞ we have

εli → τi and
M∑

li=li−1+1
ε→

∫ β

τi−1
dτi.

Therefore we arrive at

Z =
∞∑
K=0

∑
n

∑
n1

· · ·
∑
nK−1

∫ β

0
dτ1· · ·

∫ β

τK−1
dτK (−1)K e−

∑K

i=0 Dni (τi+1−τi)
K∏
i=1

Yni−1,ni (3.1)

≡
∑∫
C

W (C),

where a path C is determined by C = (K,n0, . . . , nK−1, τ1, . . . , τK) and has a weight

W (C) = (−1)K e−
∑K

i=0 Dni (τi+1−τi)
K∏
i=1

Yni−1,ni .

This formulation has proven itself, especially for the uniform electron gas at warm
dense matter conditions, numerous times [14, 22, 13]. In this model the Hamiltonian con-
sists of Coulomb-interacting electrons with a compensating positive background charge.
The two configuration parameters of the uniform electron gas are the reduced temperature
θ = kBT/EF (with the Fermi energy EF ) and the Wigner-Seitz radius

rs =
( 3

4πn

)1/3
· 1
aB
,

in units of the Bohr radius aB and dependent on the density n. Due to the fermion sign
problem, CPIMC is restricted to θ/rs & 1 and applicable up to densities of order rs ∼ 1.



Chapter 4

Higher Order Approximation

We will now generalize the previous expression by introducing factors ci, i ∈ {1, . . . ,M}.
The idea is the following: If we replace expressions of the type (1−εH) by (1−ciεH), the
ci could maybe be optimized to yield an overall higher order of the discrete-time partition
function

Z =
∑
n

〈n|(1− c1εH) · · · (1− cMεH)|n〉.

Since M becomes arbitrarily large, optimizing all the ci independently is a difficult
task. We will therefore handle the ci by introducing a periodicity, i.e. ci = ci+P for some
P ∈ N. Then, taking the limit P →∞ becomes the final expression.

The idea is to try to find a factorization which results in a trace of higher order,
similar to the work of Chin and Sakkos [23, 24] which led to Permutation Blocking PIMC
[17, 18]. A problem is that until now there is no known way of evaluating e−εY (Y is
the offdiagonal part of the Coulomb potential) in second quantization. Previously, this
was always approximated linearly. The following sections seek to improve the order via
optimizing the ci, without having to evaluate higher order terms like Y 2 or Y 3 directly.

4.1 Periodicity P = 2

Since M is very large, we can always assume that M ∈ P N = {P, 2P, 3P, . . . }. In the
limit M →∞ this does not make a difference. In the following, let P = 2. One can write

e−βH =
(
e−2εH

)M/2
.

In the standard expression we would then proceed to approximate

e−2εH = e−εHe−εH = (1− εH)(1− εH) +O(ε2).

11
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We will now try to increase this order of approximation by introducing c1 and c2. First,
Taylor-expanding up to O(ε3), we have

e−2εH = 1− 2εH + 2(εH)2 +O(ε3).

If we could now find some ci such that

1− 2εH + 2(εH)2 = (1− c1εH)(1− c2εH),

we are finished and have

e−2εH = (1− c1εH)(1− c2εH) +O(ε3).

The existence of such ci is given by the following lemma.

Lemma 4.1. For every P ∈ N there exist c1, . . . , cP ∈ C \ {0} such that

e−PεH = (1− c1εH) · · · (1− cP εH) +O(εP+1).

Proof. Let P ∈ N. Define the formal polynomial

fP (X) :=
P∑
n=0

(−P )n
n! Xn ≡

P∑
n=0

anX
n ∈ R[X].

It is evident that e−PεH = fP (εH) + O(εP+1). By the fundamental theorem of algebra
the complex numbers are algebraically closed. Equivalently, there exist x1, . . . , xP ∈ C,
the roots of fP , such that

fP (X) = P P

P ! (x1 −X) · · · (xP −X).

By comparing coefficients we get

1 = a0 = P P

P ! x1 · · ·xP .

This also implies that all xi 6= 0. Factoring out results in

fP (X) = P P

P ! x1 · · ·xP︸ ︷︷ ︸
=1

(
1− 1

x1
X
)
· · ·

(
1− 1

xP
X
)
.

Therefore, defining ci := 1/xi 6= 0, we have fP (X) = (1− c1X) · · · (1− cPX) and thus

e−PεH = fP (εH) +O(εP+1) = (1− c1εH) · · · (1− cP εH) +O(εP+1).
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We do not have to know the actual values of the ci, though for P = 2 it is straight-
forwardly checked that c1 = 1 + i and c2 = 1 − i satisfy the requirements. This creates
another problem: Because the ci are in general not real but complex, we run into trouble
with the Monte Carlo simulation. This can be fixed by regrouping terms. First, though,
we will have a closer look at the ci.

By comparing coefficients in the proof of the previous lemma we get various useful
identities. As an example, in the case P = 2, we have 1−2X+2X2 = (1−c1X)(1−c2X) =
1− (c1 + c2)X + c1c2X

2. This means c1 + c2 = 2 and c1c2 = 2, which we will use in the
following. Similar identities hold for P > 2.

The terms are now regrouped depending on the so-called “kink order”. In the case of
P = 2 we differentiate between no kinks, simple kinks and twofold kinks (This does not
refer to the kink type, i.e. T2 or T4, which arise with the Coulomb potential in second
quantization [15]). The goal is to evaluate

〈n|e−2εH |m〉 =
∑
n1

〈n|1− c1εH|n1〉〈n1|1− c2εH|m〉+O(ε3).

Case 1: No kink. This is only the case if n = n1 = m. Then we get

〈n|1− c1εH|n1〉〈n1|1− c2εH|m〉 = (1− c1εDn)(1− c2εDn)

= f2(εDn) = e−2εDn +O(ε3).

Case 2: Simple kink. If n = m, we would either have zero or two kinks. Therefore,
in this case we must have n 6= m. Also, n1 = n or n1 = m. Else there would be two kinks
as well. If n1 = n, then

〈n|1− c1εH|n〉〈n|1− c2εH|m〉 = (1− c1εDn)(−c2εYn,m).

Similarly, for n1 = m

〈n|1− c1εH|m〉〈m|1− c2εH|m〉 = (−c1εYn,m)(1− c2εDm).

Since both cases occur in the partition function, we can add them together to get

−εYn,m(c2 − c1c2εDn + c1 − c1c2εDm) = −εYn,m(c1 + c2 − c1c2ε(Dn +Dm))

= −εYn,m(2− 2ε(Dn +Dm))

= −2ε Yn,me−ε(Dn+Dm) +O(ε3)
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Grouping the terms in this way therefore results in real-valued weights.

Case 3: Twofold kink. For a twofold kink we have n 6= n1 6= m (this does not imply
n 6= m. n = m is still possible). Therefore, with c1c2 = 2,

〈n|1− c1εH|n1〉〈n1|1− c2εH|m〉 = (−c1εYn,n1)(−c2εYn1,m) = (−2ε)2 1
2!Yn,n1Yn1,m.

With this, the canonical partition function can be written in a similar fashion as
before. First, though, we introduce some new terminology.

K. K will always depict the total number of kinks, counted with their order (a twofold
kink adds two kinks to the total number of kinks).

Np. For given kink positions l1, . . . , lK , Np = Np(l1, . . . , lK) will denote the number of
p-fold kinks. We therefore have ∑∞p=1 p ·Np = K.

As an example: Let (l1, . . . , l7) = (1, 2, 2, 2, 4, 5, 9). Then N1 = 4, N3 = 1 and
Np = 0 for p 6∈ {1, 3}: We have “three kinks at once” at discrete time position 2
and four simple kinks at times 1, 4, 5 and 9.

R. Again for l1, . . . , lK given, R = R(l1, . . . , lk) is a kink-dependent “remainder” term
given by

R =
∞∏
p=1

(
1
p!

)Np
.

Since almost all Np are zero, R does not diverge for any configuration l1, . . . , lK . In
the example from above we would find R = 14 · ( 1

3!)
1 = 1

6 .

δ
N≤p. This Kronecker delta is 1 if for all q > p Nq = 0, i.e., δ

N≤p := ∏∞
q=p+1 δNq ,0.

Ti. For given l1, . . . , lK and i ∈ {1, . . . , K}, Ti denotes the order of the kink at location
li. That is, Ti = Ti(l1, . . . , lK) = |{j ∈ {1, . . . , K} : lj = li}| ≥ 1. In the previous
example this amounts to T1 = 1, T2 = 3, T3 = 0, T4 = 1 and so on.

We can now write the canonical partition function as

Z =
M∑
K=0
K 6=1

M/2∑
l1=1
· · ·

M/2∑
lK=lK−1

∑
n

∑
n1

· · ·
∑
nK−1

e−ε
∑K

i=0(Dni2(li+1−li−1)+ri)(−2ε)K
K∏
i=1

Yni−1,ni RδN≤2.

Here we have defined (with TK+1 := 2) an extra factor depending on the kink order,

ri :=

Dni +Dni+1 Ti+1 = 1

0 Ti+1 = 2
.
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l1 l2

n0, n3

n2

n1

(discrete) imaginary time l
st
at
e
n

Figure 4.1: At (discrete) imaginary time l1 is a second order kink: The path goes from n0 over
n1 to n2, all in one instant. At l2 is a first order kink from n2 to n3 = n0.

Note the resemblance to the first order canonical partition function in the previous chap-
ter. We can actually write the former version similarly to the latter: Change the sum-
mation from li = li−1 + 1 to li = li−1 and compensate this by adding δ

N≤1. Next, add R
(as this will always be equal to one). Note that all the occurrences of 2 are due to the
periodicity P = 2. In the previous formulation [14], which corresponds to P = 1, they
disappear. Finally, define ri := 0.

The limit M → ∞. We perform the limit to continuous time in a similar fashion as
before. The difference is that we now have

2ε li → τi and
M/2∑
li=li−1

2ε→
∫ β

τi−1
dτi.

First, observe that the −ε ri terms in the exponent vanish with ε→ 0. We then arrive at

Z =
M∑
K=0
K 6=1

∫ β

0
dτ1· · ·

∫ β

τK−1
dτK

∑
n

∑
n1

· · ·
∑
nK−1

e−
∑K

i=0 Dni (τi+1−τi)(−1)K
K∏
i=1

Yni−1,ni RδN≤2.

This differs from the result of the previous chapter (corresponding to P = 1) only by the
factor Rδ

N≤2. First, this does not render the previous P = 1 case wrong: We have R = 1
almost everywhere. Only when τi = τi+1 for some i we get a different weight. But this is
a set of measure zero and therefore does not change the total integration result Z.

Second, let us look at the P = 1 case again: δ
N≤1 ensures that R is always equal to

one since there are only simple kinks allowed. Thus, the missing of this factor was not
noticeable previously. Still, the second order result suggests that one has to prohibit τi =
τi+1 in the classical algorithm or allow it but compensate this by adding the corresponding
factor R.

Third, we will generalize this to an arbitrary periodicity P in the following section.
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As the above expression for Z suggests, we will find that in the continuous limit the only
difference is a factor Rδ

N≤P . Taking the limit P → ∞ yields δ
N≤P → 1, so merely the

additional factor R = R(τ1, . . . , τK) = ∏∞
p=1

(
1
p!

)Np(τ1,...,τK)
remains. We arrive at

Z ≡
∑∫
C

W (C)

with paths C still determined by C = (K, τ1, . . . , τk, n0, . . . , nK−1) and

W (C) = e−
∑K

i=0 Dni (τi+1−τi)(−1)K
K∏
i=1

Yni−1,ni R(τ1, . . . , τK).

4.2 Arbitrary periodicity

Now assume arbitrary periodicity P and, again, M ∈ P N. We write

e−βH = (e−PεH)M/P

with ε = β/M . By Lemma 4.1 we find c1, . . . , cP 6= 0 satisfying

e−PεH = (1− c1εH) · · · (1− cP εH) +O(εP+1).

As in the previous section, we insert identities to get

〈n|e−PεH |nP 〉 =
∑
n1

· · ·
∑
nP−1

〈n|1− c1εH|n1〉 . . . 〈nP−1|1− cP εH|nP 〉+O(εP+1).

Again we can now have kink orders from zero up to P . Let κ ∈ {0, . . . , P} be the
kink order. For given kink order κ and starting position n, this means that there must
be κ distinct states ∈ {|n1〉, . . . , |nP 〉} which differ from their predecessors. Each of
those higher order kinks should be characterized by κ and the κ + 1 states {|n(0)〉 =
|n〉, |n(1)〉, . . . , |n(κ)〉} We therefore follow the lead of case P = 2 and group all possible
summation entries together which belong to the given higher order kink:

Case 1: No kink. In this case we have only one state |n〉 and therefore

〈n|1− c1εH|n〉 · · · 〈n|1− cP εH|n〉 = (1− c1εDn) · · · (1− cP εDn) = e−PεDn +O(εP+1)

by definition of the ci.
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Case 2: Kink of order κ ≥ 1. Here we have states |n〉, . . . , |n(κ)〉. This implies a
non-empty summation and a term of

∑
1≤l1<···<lκ≤P

l1−1∏
i0=1
〈n(0)|1− ci0εH|n(0)〉 · 〈n(0)|1− cl1εH|n(1)〉

· . . . ·
lκ−1∏

iκ−1=lκ−1+1
〈n(κ−1)|1− ciκ−1εH|n(κ−1)〉 · 〈n(κ−1)|1− clκ−1εH|n(κ)〉

·
P∏

iκ=lκ+1
〈n(κ)|1− ciκεH|n(κ)〉.

This also starts to resemble a path in the continuous time limit: At positions li we have
a jump, else the configurations stay the same. We factor out the offdiagonal terms and
write this as

(−ε)κYn(0),n(1) · · ·Yn(κ−1),n(κ)

∑
1≤l1<···<lκ≤P

l1−1∏
i0=1
〈n(0)|1− ci0εH|n(0)〉

· . . . ·
P∏

iκ=lκ+1
〈n(κ)|1− ciκεH|n(κ)〉 · cl1 · · · clκ .

The summation term, when substituting 〈n(i)|1 − cjεH|n(i)〉 = 1 − cjεDn(i) , is just a
polynomial in ε. Luckily this polynomial does not have to be known exactly. Its order 0
term though is given by ∑

1≤l1<···<lκ≤P

cl1 · · · clκ−1 = P κ

κ! .

This can be shown by looking at the proof of Lemma 4.1. Clearly, by its last expression
for fP , the above is just equal to the term of order κ of the polynomial fP (−X). But
this is just, by definition of fP , P

κ

κ! .

Factoring this out results in

(−Pε)κ
κ! Yn(0),n(1) · · ·Yn(κ−1),n(κ) · g(ε)

with a polynomial g of the form g(X) = 1+a1X+ · · ·+aP−κX
P−κ. The exact expression

for g does not matter. In fact, in the previous case of P = 2 replacing it by an exponential
(in such a way that the error is of magnitudeO(εκ+1)) was merely a cosmetic modification.
This is where the e−εri extra factor came from, which vanishes in the continuous time
limit. Next, perform said limit. We can write Z as

Z =
M∑
K=0
K 6=1

M/P∑
l1=1
· · ·

M/P∑
lK=lK−1

∑
n

∑
n1

· · ·
∑
nK−1

e−Pε
∑K

i=0 Dni (li+1−li−1)(−Pε)Kg(ε)
K∏
i=1

Yni−1,ni RδN≤P .
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As before, the sum limit of M/P comes from the fact that we factorized

e−βH = (e−PεH)M/P .

In the continuous time limit M →∞ this becomes

Pεli → ti and
M/P∑
li=li−1

Pε→
∫ β

τi−1
dτi.

Also, because ε = β/M → 0, g(ε) → 1 (this is what was mentioned earlier: The extra
factor vanishes). The remaining expression is

Z =
M∑
K=0
K 6=1

∫ β

0
dτ1· · ·

∫ β

τK−1
dτK

∑
n

∑
n1

· · ·
∑
nK−1

e−
∑K

i=0 Dni (τi+1−τi)(−1)K
K∏
i=1

Yni−1,ni RδN≤P .

We have therefore proved

Theorem 4.2. In the continuous time limit, higher order corrections to the partition
function Z occur only on a set of measure zero.

Any factorization of the exponential e−βH will necessarily have to coincide with e−βH

itself up to some order.

Example 4.3. First, as always, denote ε := β/M and H = D + Y . Now assume
we would like to investigate a higher order expansion of e−εH in the form of e−εH =
1− εH + ε2

2 H
2 +O(ε3) = 1− εD− εY + ε2

2 D
2 + ε2

2 Y
2 + ε2

2 DY + ε2

2 Y D +O(ε3). By the
previous theorem, or explicitly by the section on periodicity P = 2 (replacing ε′ := ε/2,
M ′ := 2M), this would yield in the continuous time limit only a minor change on a set
of measure zero, which does not have an impact on Z.

Example 4.4. In the next example, again with ε := β/M and H = D + Y , we express
e−εH = e−

ε
2De−εY e−

ε
2D +O(ε3). Assume we would like to preserve the property that this

is accurate up to O(ε3). Still, this differs to 1− εH + ε2

2 H
2 only by an error of O(ε3) and

therefore yields the same partition function as the previous example in the continuous
time limit.

Concluding, we have shown that in the continuous time limit higher order corrections,
though they do exist, do not impact Z because they only occur on configurations in a set
of measure zero. This limits higher order expansions to discrete time CPIMC, for which
we have given in theory an algorithm for evaluating an arbitrary expansion order by
first factorizing using complex numbers and then regrouping these to stay at real-valued
weights.
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Simple CPIMC

19





Chapter 5

Simplified Partition Function

5.1 Derivation of a simplified partition function

In the following, we will derive another formulation of the Configuration Path Integral
Monte Carlo algorithm. Because of the high level of complexity in some formulas, Sec-
tion 7.3 provides a fully fledged example to follow along with. It will therefore occasionally
be referenced to, when expedient.

The reformulation can be started in three different ways. One of them is a complex
factorization as before and the second amounts to evaluating the integrals in Eq. (3.1).
The third starts right from the exponential series. We will choose this path for the
derivation, but we shall later see (by comparing coefficients) that we have effectively
solved the integrals. The reason for not solving these directly is that one encounters a
number of special cases for every configuration that appears at least twice in the path.
This makes it difficult to formulate a closed expression based on the integrals.

We have (splitting H into H = D + Y and sorting by the order K of Y )

e−βH =
∞∑
n=0

(−β)n
n! (D + Y )n =

∞∑
K=0

∞∑
l=K

(−β)l
l!

∑
i0+···+iK=l−K

Di0Y Di1 . . . DiK−1Y DiK .

Inserting identity operators yields

Z = Tr e−βH =
∞∑
K=0

∑
n

∑
n1

· · ·
∑
nK−1

∞∑
l=K

(−β)l
l!

K∏
i=1

Yni−1,ni

∑
i0+···+iK=l−K

K∏
j=0

Dij
nj
.

Now, have a look at the last term. We will first define the complete homogeneous sym-
metric polynomial of degree l in k variables by

hl(X1, . . . , Xk) :=
∑

i1+···+ik=l

k∏
j=1

X
ij
j .

21
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The first few of these are given below (X := X1, Y := X2).

l = 0 l = 1 l = 2 l = 3
k = 1 1 X X2 X3

k = 2 1 X + Y X2 +XY + Y 2 X3 +X2Y +XY 2 + Y 3

.

We therefore get

Z =
∞∑
K=0

∑
n

∑
n1

· · ·
∑
nK−1

K∏
i=1

Yni−1,ni

∞∑
l=K

(−β)l
l! hl−K(Dn0 , . . . , DnK ). (5.1)

In general one can find Dni = Dnj for some i 6= j ∈ {0, . . . , K}. To be precise, this
always occurs at least once: We already know that, by definition, Dn0 = DnK (= Dn).
But let’s first assume they are all different (we will later take the limit where some factors
are equal). It is then known [25, Theorem 1.2.1] that for l ≥ K

hl−K(X0, . . . , XK) =
K∑
i=0

X l
i∏

j 6=i
(Xi −Xj)

. (5.2)

As a mathematical trick and to simplify our further calculations, we will now use this
expression as definition of hl−K for 0 ≤ l < K (hence, negative indices on h). The
following lemma shows that the so defined terms actually vanish, which will later enable
us to simplify Eq. (5.1).

Lemma 5.1. For 0 ≤ l < K, it holds that hl−K(X0, . . . , XK) ≡ 0.

Proof. Let K ≥ 1 and 0 ≤ l < K. By definition,

hl−K(X0, . . . , XK) =
K∑
i=0

X l
i∏

j 6=i
(Xi −Xj)

.

For X1, . . . , XK fixed, the first summand can be viewed as a rational function in X0:

f(X0) := X l
0

K∏
j=1

(X0 −Xj)
.

Since l < K and all Xj, j ∈ {1, . . . , K} differ from each other, we can apply the theorem
of partial fraction decomposition to obtain ci, i ∈ {1, . . . , K} with

X l
0

K∏
j=1

(X0 −Xj)
= f(X0) =

K∑
i=1

ci
X0 −Xi

.
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From the right hand side one can immediately see a way to get the coefficients, namely

ci = lim
X0→Xi

(X0 −Xi)f(X0) = lim
X0→Xi

X l
0

K∏
j=1
j 6=i

(X0 −Xj)
= X l

i

K∏
j=1
j 6=i

(Xi −Xj)
.

Substituting these coefficients into the partial fraction decomposition results in

X l
0

K∏
j=1

(X0 −Xj)
= −

K∑
i=1

ci
Xi −X0

= −
K∑
i=1

X l
i∏

j 6=i
(Xi −Xj)

.

Therefore,

hl−K(X0, . . . , XK) =
K∑
i=0

X l
i∏

j 6=i
(Xi −Xj)

= X l
0

K∏
j=1

(X0 −Xj)
+

K∑
i=1

X l
i∏

j 6=i
(Xi −Xj)

= 0.

This lemma implies we can expand the following summation (which occurs in Eq. (5.1))
from l = K to l = 0 and hence further rearrange the term.

∞∑
l=K

(−β)l
l! hl−K(X0, . . . , XK) =

∞∑
l=0

(−β)l
l! hl−K(X0, . . . , XK)

=
K∑
i=0

1∏
j 6=i(Xi −Xj)

∞∑
l=0

(−βXi)l
l!

=
K∑
i=0

e−βXi∏
j 6=i(Xi −Xj)

. (5.3)

If all Dni were different, we could substitute this directly into the partition sum.
Unfortunately this is not the case, so that it looks like we would encounter a zero in
the denominator of Eq. (5.2) for Dni = Dnj (i 6= j). This singularity must be artificial,
as one can verify by looking at the definition of the complete homogeneous symmetric
polynomials. To obtain the correct value, one has to carefully take the limit Dni → Dnj .

Lemma 5.2. Let f : (X0 − ε,X0 + ε)→ R be a smooth function, l ≥ 0. Then,

lim
X1,...,Xl→X0

l∑
i=0

f(Xi)
l∏

j=0
j 6=i

(Xi −Xj)
= 1
l!f

(l)(X0).

Proof. Assume l > 0 (l = 0 is clear by definition). First, Taylor-expand f(Xi) around
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X0 up to order l:

f(Xi) = f(X0) + f ′(X0) (Xi −X0) + · · ·+ 1
l!f

(l)(X0) (Xi −X0)l +O
(
(Xi −X0)l+1

)
.

Collecting all those terms, we will now look at each derivative order k individually.
k = 0: These terms taken together amount to

l∑
i=0

f(X0)
l∏

j=0
j 6=i

(Xi −Xj)
= f(X0)

l∑
i=0

1
l∏

j=0
j 6=i

(Xi −Xj)
= f(X0) h0−l(X0, . . . , Xl) = 0

by Lemma 5.1.

0 < k < l: The first term i = 0 does not contain any derivative of f , the rest stays
pretty much the same.

l∑
i=1

1
k!f

(k)(X0) (Xi −X0)k
l∏

j=0
j 6=i

(Xi −Xj)
= f (k)(X0)

k!

l∑
i=1

(Xi −X0)k−1

l∏
j=1
j 6=i

(Xi −Xj)

︸ ︷︷ ︸
=0

= 0.

One way to see that the last term is zero is the following: First, expand

(Xi −X0)k−1 =
k−1∑
j=0

(
k − 1
j

)
Xj
i (−X0)k−1−j.

We then have

f (k)(X0)
k!

k−1∑
j=0

(
k − 1
j

)
(−X0)k−1−j

l∑
i=1

Xj
i

l∏
j=1
j 6=i

(Xi −Xj)

︸ ︷︷ ︸
=hj−(l−1)(X1,...,Xl)=0

= 0,

again by Lemma 5.1 since j ≤ k − 1 < l − 1.

k = l: We can expand (Xi − X0)l−1 in the same way as before using the Binomial
coefficients. We again see that all terms Xj

i where j < l− 1 vanish. What remains is the
case j = l − 1, or

f (l)(X0)
l!

l∑
i=1

X l−1
i

l∏
j=1
j 6=i

(Xi −Xj)

︸ ︷︷ ︸
=hl−1−(l−1)(X1,...,Xl)=1

= f (l)(X0)
l! ,

since h0(X1, . . . , Xl) = 1.
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k > l : These finally are the terms that do not vanish by themselves but through the
limiting procedure instead. Again, we have

f (k)(X0)
k!

l∑
i=1

(Xi −X0)k−1

l∏
j=1
j 6=i

(Xi −Xj)
.

For every single term it then follows by evaluating the limits successively that

lim
X1,...,Xl→X0

(Xi −X0)k−1

l∏
j=1
j 6=i

(Xi −Xj)
= lim

Xi,...,Xl→X0

(Xi −X0)k−1

(Xi −X0)i−1
l∏

j=i+1
(Xi −Xj)

= lim
Xi,...,Xl→X0

(Xi −X0)k−i
l∏

j=i+1
(Xi −Xj)

= lim
Xi+1,...,Xl→X0

0 = 0.

Here, it came into play that k > l ≥ i, therefore k− i > 0 and the limit Xi → X0 ensures
the term to become zero.

We are now ready to look at the canonical partition function a final time. For a
given path C = (K,n, n1, . . . , nK−1), let M be the number of distinct Dni ’s and lj, j ∈
{1, . . . ,M} their multiplicity. Denote their value by Dj. This is also demonstrated in
7.3.1.

We have already shown in Eq. (5.3) that

∞∑
l=K

(−β)l
l! hl−K(X0, . . . , XK) =

K∑
i=0

e−βXi

K∏
j=0
j 6=i

(Xi −Xj)
. (5.4)

Since the complete homogeneous symmetric polynomials are symmetric, we can swap the
order of the Xi’s as we like (this property is also found in the classical continuous time
partition function). Only the offdiagonal parts Y depend on the actual order of the con-
figuration states. First we partition (X0, . . . , XK) into (X1

1 , . . . , X
l1
1 , . . . , X

1
M , . . . , X

lM
M ).

For every i in the summation in Eq. (5.4) we can already insert all Xj in the denominator
for which Xi 6= Xj: Define for k ∈ {1, . . . ,M}

fk(X) := e−βX

M∏
j=1
j 6=k

(X −Dj)lj
.



26 CHAPTER 5. SIMPLIFIED PARTITION FUNCTION

We can then write Eq. (5.4) also as

M∑
k=1

lk∑
i=1

fk(X i
k)

lk∏
j=1
j 6=i

(X i
k −X

j
k)
.

Now, to evaluate at X i
k = Dk for every k ∈ {1, . . . ,M}, i ∈ {1, . . . , lk}, we may insert

X1
k = Dk and then investigate the limit X2

k , . . . , X
lk
k → Dk. Apply Lemma 5.2 to obtain

(after an index shift)

∞∑
l=K

(−β)l
l! hl−K(Dn0 , . . . , DnK ) =

M∑
k=1

1
(lk − 1)!f

(lk−1)
k (Dk) ≡

M∑
k=1

T [fk, Dk, lk − 1]. (5.5)

Here, T [f, x0, k] denotes the k-th Taylor coefficient of f around x0 (starting at k = 0),
i.e. T [f, x0, k] = 1

k!f
(k)(x0) (see 7.3.2).

5.2 Taylor-coefficient formulation of the partition func-
tion

The last expression from Eq. (5.5) is what we can finally substitute into Eq. (5.1) to
obtain

Theorem 5.3. The canonical partition function Z can be expressed as

Z =
∞∑
K=0

∑
n

∑
n1

· · ·
∑
nK−1

M∑
k=1

T [fk, Dk, lk − 1]
K∏
i=1

Yni−1,ni . (5.6)

Here, as before, M = |{Dni : i ∈ {0, . . . , K}}| = |{Dk, k ∈ {1, . . . ,M}}| and lk =
|{i ∈ {0, . . . , K} : Dni = Dk}| as well as

fk(X) := e−βX

M∏
j=1
j 6=k

(X −Dj)lj
. (5.7)

With simpler configurations C = (K,n1, . . . , nK−1) and with corresponding weights

W (C) =
K∏
i=1

Yni−1,ni

M∑
k=1

T [fk, Dk, lk − 1] (5.8)

we can write
Z =

∑∫
C

W (C).
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By now it should be clear that, in the title of part II, the emphasis should be laid on
Simplified Configurations PIMC rather than Simplified CPIMC.

Remark 5.4. Another way to define configurations would be to split up the sum over
k ∈ {1, . . . ,M} and express paths through C ′ = (K, k, n1, . . . , nK−1) and weights

W (C ′) = T [fk, Dk, lk − 1]
K∏
i=1

Yni−1,ni .

This has the benefit of simplifying later calculations, e.g. those of observables, and
therefore should be taken into consideration.

Remark 5.5. If we now compare the resulting partition function with the classical con-
tinuous time CPIMC version from Chapter 3, Eq. (3.1), we see that it must also hold
that

(−1)K
∫ β

0
dτ1· · ·

∫ β

τK−1
dτK e−

∑K

i=0 Dni (τi+1−τi) =
M∑
k=1

T [fk, Dk, lk − 1]

(which can also be verified for some exemplary test cases). We have therefore also solved
the integrals.

5.3 Reexpressing the Taylor coefficients

Up to now, in a simulation the main task would be to evaluate Taylor coefficients, which
may be done numerically, though this approach would result in problems when numeri-
cally differentiating up to very high orders.

A further improvement we can make is the analytical expression of the Taylor coeffi-
cients, which circumvents the relatively low maximum order possible to achieve through
numerical differentiation.

Recall from Eq. (5.7) the definition

fk(X) = e−βX

M∏
j=1
j 6=k

(X −Dj)lj
= e−βX

K∏
j=0

Dnj 6=Dk

(X −Dnj)
.

Another way to get T [fk, Dk, lk − 1] is the following: By definition, if we can express fk
as

fk(X) =
∞∑
j=0

aj(X −Dk)j,



28 CHAPTER 5. SIMPLIFIED PARTITION FUNCTION

we have T [fk, Dk, lk − 1] = alk−1. First, write

fk(X) = e−βDk
e−β(X−Dk)∏

j(X −Dk +Dk −Dnj)

= e−βDke−β(X−Dk) 1∏
j(Dk −Dnj)

∏
j

1
1− X−Dk

Dnj−Dk

= e−βDk∏
j(Dk −Dnj)

e−β(X−Dk)∏
j

∞∑
ij=0

(
X −Dk

Dnj −Dk

)ij
.

Here we have used the geometric series for values of X near to Dk. We are still looking
to express fk as a power series in (X −Dk), hence we express the exponential factor as

e−β(X−Dk) =
∞∑
l=0

(−β)l
l! (X −Dk)l.

Also, the whole latter product term can be written using homogeneous polynomials as

∏
j

∞∑
ij=0

(X −Dk)ij
(Dnj −Dk)ij

=
∞∑
i0=0

∞∑
i1=0

. . . (X −Dk)i0+i1+...∏
j

(−1)ij
(Dk −Dnj)ij

=
∞∑
l=0

(−1)l(X −Dk)l
∑

i0+i1+...=l

∏
j

1
(Dk −Dnj)ij

=
∞∑
l=0

(−1)l(X −Dk)lhl
(

1
Dk −Dn0

,
1

Dk −Dn1

, . . .

)

=
∞∑
l=0

(−1)l hl(Ik,0, Ik,1, . . . ) (X −Dk)l.

In the last step we have defined Ik,j := 1
Dk−Dnj

. The entries of hl are all Ik,j which are
finite, i.e. one entry for every j ∈ {0, . . . , K} with Dnj 6= Dk. In total, this means that
we have K − lk possible values of j.

Last, we multiply the previous two terms and subsequently extract the coefficient of
order (X −Dk)lk−1:

T [fk, Dk, lk − 1] = e−βDk


K∏
j=0

Dnj 6=Dk

Ik,j


lk−1∑
l=0

βlk−1−l

(lk − 1− l)!hl(Ik,0, Ik,1, . . . ). (5.9)

How this expression could look for a simple path is also demonstrated in 7.3.3.



Chapter 6

Observables

The formulation discussed here necessarily comes with its own estimators for observables.
These are usually derived using derivatives of the partition function. The problem is that
the fk themselves can depend on this variable but also the expansion point Dk. This is
the case if all the Dj are dependent on the variable in question, as in Example 6.3.

Let us now analyze this behavior in more detail. Consider a smooth function f(x, α).
We want to take the derivative with respect to α of T [f(·, α), x0(α), k] for some k. That
is, we want to calculate

∂

∂α

1
k!

(
∂

∂x

)k ∣∣∣∣
x=x0(α)

f(x, α) = 1
k!∂α

[
(∂kxf)(x0(α), α)

]
.

This can be done by the multidimensional chain rule and yields

1
k!
[
(∂k+1
x f)(x0(α), α) · x′0(α) + (∂α∂kxf)(x0(α), α)

]
= 1
k!∂

k
x

∣∣∣
x=x0(α)

[(∂xf)(x, α) · x′0(α) + (∂αf)(x, α)] .

Here we applied Schwarz’s theorem to interchange the derivatives of α and x. Also, as
x′0(α) is seen as a constant by ∂x, we can leave it in the domain of ∂kx . The result itself
looks like a Taylor coefficient again: We find

∂αT [f(·, α), x0(α), k] = T [(∂xf)(·, α) · x′0(α) + (∂αf)(·, α), x0(α), k]. (6.1)

Example 6.1 Average energy. As a first example, consider the average energy. We
have

〈H〉 = − 1
Z

∂Z

∂β
= − 1

Z

∑∫
C

∂W (C)
∂β

.

The only dependence of W (C) on the temperature is in the fk = fk(X, β). Since the

29



30 CHAPTER 6. OBSERVABLES

expansion point Dk does not depend on β itself, we have D′k(β) = 0. Also, ∂βfk(X, β) =
−Xfk(X, β) by Eq. (5.7). Therefore, by Eq. (6.1),

∂βT [fk(·, β), Dk, lk − 1] = T [0 + (∂βfk)(·, β), Dk, lk − 1] = T [−X fk(X, β), Dk, lk − 1].

Inserting this into the above expression for 〈H〉 results in

〈H〉 = 1
Z

∑∫
C


M∑
k=1

T [X fk(X), Dk, lk − 1]
M∑
k=1

T [fk(X), Dk, lk − 1]

W (C).

Choosing the paths proposed in Remark 5.4 would simplify 〈H〉 to

〈H〉 = 1
Z

∑∫
C′

(
T [Xfk(X), Dk, lk − 1]
T [fk(X), Dk, lk − 1]

)
W (C ′).

Even further, since X = (X −Dk) +Dk and T [(X − a)f(X), a, n] = T [f(X), a, n− 1],

〈H〉 = 1
Z

∑∫
C′
E(C ′)W (C ′)

with
E(C ′) = Dk + T [fk, Dk, lk − 2]

T [fk, Dk, lk − 1] .

This is demonstrated in 7.3.4.

Example 6.2 Heat capacity at constant volume. The heat capacity at constant
volume is related to the average energy by

CV = ∂

∂T
〈H〉

∣∣∣
V

= −β2 ∂

∂β
〈H〉

∣∣∣
V

(setting the Boltzmann constant kB = 1). Therefore,

CV = −β2
( 1
Z2 (∂βZ)2 − 1

Z
∂2
βZ
)

= −β2 〈H〉2 + β2

Z

∑∫
C′
∂2
βW (C ′)

= 1
Z

∑∫
C′
C(C ′)W (C ′)

with

C(C ′) = β2D2
k + β22Dk

T [fk, Dk, lk − 2]
T [fk, Dk, lk − 1] + β2T [fk, Dk, lk − 3]

T [fk, Dk, lk − 1] − β
2 〈H〉2 .
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Note that we have only derived here the expression with paths from Remark 5.4.

Example 6.3 Average occupation number. Next we will investigate the average
occupation numbers. For a given configuration ni denote the occupation number of
the p-th state by ni,p. With the expression in second quantization H = ∑

i,j hija
†
iaj +

1
2
∑
i,j,k,l wijkla

†
ia
†
jalak we have

〈np〉 = 1
Z

−1
β
∂hppZ.

Only the diagonal part D of H depends on hpp and is given by ∂hppDni = ni,p.

Again, we will look at fk = fk(X, hpp). This case is a little bit more complex than
the previous one since fk depends on hpp (all the Dj in fk depend on hpp) and Dk itself
as well. We have by Eq. (5.7)

(∂Xfk)(X, hpp) = fk(X, hpp) ·

−β − M∑
j=1
j 6=k

lj
X −Dj

 .

As said earlier, D′k(hpp) = nk,p. Last, we have

(∂hppfk)(X, hpp) = fk(X, hpp) ·

 M∑
j=1
j 6=k

lj
X −Dj

·D′j(hpp)︸ ︷︷ ︸
=nj,p

 .

Eq. (6.1) then shows that (using α := hpp )

〈np〉 = 1
Z

∑∫
C


M∑
k=1

T [Nk,p(X) fk(X), Dk, lk − 1]
M∑
k=1

T [fk(X), Dk, lk − 1]

W (C)

with
Nk,p(X) := nk,p + 1

β

M∑
j=1
j 6=k

lj(nk,p − nj,p)
X −Dj

.

The physical interpretation of this estimator could be as follows: The average occupation
number is roughly impacted by the size of the fluctuations (nk,p−nj,p), weighted by how
“near” its energy Dj is to Dk. A close energy level with small fluctuations can be as
important as a distant energy level with much higher fluctuations.
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Chapter 7

Further Investigations

7.1 Analytical reformulation

We repeat the partition function from Theorem 5.3:

Z =
∞∑
K=0

∑
n

∑
n1

· · ·
∑
nK−1

M∑
k=1

T [fk, Dk, lk − 1]
K∏
i=1

Yni−1,ni . (7.1)

This can be further modified using complex analysis. By Cauchy’s integral formula one
can also write

T [fk, Dk, lk − 1] = 1
(lk − 1)!f

(lk−1)
k (Dk) = 1

2πi

∫
∂Bεk (Dk)

fk(z)
(z −Dk)lk

dz

where ∂Bεk(Dk) is the standard contour integral around Dk with some radius εk > 0, i.e.
the integral along the curve γ : [0, 2π]→ C, t 7→ Dk + εk e

it. Note that

fk(z)
(z −Dk)lk

= 1
(z −Dk)lk

e−βz

M∏
j=1
j 6=k

(z −Dj)lj
= e−βz

M∏
j=1

(z −Dj)lj
= e−βz

K∏
l=0

(z −Dnl)
=: f(z)

where we have reversed the partition of the Dni ’s in the last step. Also note that this
does not depend on the k anymore. Therefore, we can write

T [fk, Dk, lk − 1] = 1
2πi

∫
∂Bεk (Dk)

f(z) dz =: Res(f,Dk).

We will now assume that all Dk are bounded from below by some −D ∈ R, i.e. Dk > −D
for all k. Consider the integration path ΓR,−D := [−D+ iR,−D− iR]⊕ γR,−D, where we
first integrate from −D + iR to −D − iR and then along γR,−D : [−π/2, π/2] → C, t 7→

33
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−D +Reit in the complex plane. By the residue theorem we have

lim
R→∞

1
2πi

∫
ΓR
f(z) dz =

∑
z∈C,Re z>0

Res(f, z) =
M∑
k=1

Res(f,Dk) =
M∑
k=1

T [fk, Dk, lk − 1]

since the Dk are the only non-zero residues of f . Also,

lim
R→∞

∣∣∣∣∫
γR
f(z) dz

∣∣∣∣ ≤ lim
R→∞

∫
γR

|e−βz|
K∏
l=0
|z −Dnl |

|dz|

≤ lim
R→∞

∫ π/2

−π/2

eβD−βR cos(t)

K∏
l=0

(R−D −Dnl)
Rdt→ 0

by the dominated convergence theorem. Therefore, only the [−D + iR,−D − iR] path
remains:

M∑
k=1

T [fk, Dk, lk − 1] = lim
R→∞

1
2πi

∫
[−D+iR,−D−iR]

f(z)dz = −1
2πi

∫ −D+i∞

−D−i∞
f(z) dz

= −1
2πi

∫ −D+i∞

−D−i∞

e−βz

K∏
l=0

(z −Dnl)
dz

= (−1)K+2

2πi

∫ D+i∞

D−i∞

eβz

K∏
l=0

(z +Dnl)
dz

= (−1)KL−1{F (s)}(β)

with the inverse Laplace transform L−1 by the Bromwich integral formula and

F (s) := 1
K∏
l=0

(s+Dnl)
.

If we compare this with the integral expression

M∑
k=1

T [fk, Dk, lk − 1] = (−1)K
∫ β

0
dτ1 · · ·

∫ β

τK−1
dτKe

−
∑K

i=0 Dni (τi+1−τi),

we find that this is given by a rather simple inverse Laplace transform. Namely,
∫ β

0
dτ1 · · ·

∫ β

τK−1
dτKe

−
∑K

i=0 Dni (τi+1−τi) = L−1{F (s)}(β).
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This could have also been shown, or seen, in another way: With the Heaviside step
function Θ(t) one finds

L−1
{

1
s+Dni

}
(β) = Θ(β)e−βDni =: ei(β),

so that by the convolution theorem the integral expression is equal to (e0∗e1∗ . . .∗eK)(β).
This is easily demonstrated at the representative example of K = 1 kinks:

(e0 ∗ e1)(β) =
∫ ∞
−∞

dτ1e0(τ)e1(β − τ) =
∫ ∞
−∞

dτ1Θ(τ1)e−Dn0τ1Θ(β − τ1)e−Dn1 (β−τ1)

=
∫ β

0
dτ1e

−Dn0τ1e−Dn1 (β−τ1) =
∫ β

0
dτ1e

−
∑K

i=0 Dni (τi+1−τi).

That observation could have been an alternative starting point for the derivation of the
partition function.

Further, this analysis may lead to a simpler Monte Carlo integration algorithm in
the Laplace-transformed space, possibly evaluating also observables there. Problems lie
in the difficulty of the back transformation to the real system afterwards, as this can
come at a high numerical cost, as well as whether it is possible to express observables
in a closed form suitable for Monte Carlo. Also, instead of one inverse temperature β,
the quantities would have to be evaluated at many Laplace-transformed temperatures s
in order to perform a numerical Laplace-transform inversion. On the other hand, once
these were computed, one could obtain in principle the observables at all wanted system
temperatures at once (compute the observables as functions of β, so to speak), though in
practice this may prove to be numerically too challenging.

Another possible future investigation is the following: In the weights of each path,
given by Eq. (5.8), the dependence on the length of each kink (determined through the
τi) was eliminated. What remains is a dependence on the way the kinks are ordered,
determined by the offdiagonal parts Yni−1,ni . Maybe these can be grouped together so
that the ordering of the kinks does not matter as well. Then, the partition function would
drastically be simplified: Only different configurations and the numbers how often they
occur have to be given (which in turn makes it easier to calculate the Taylor coefficients).
As an example, the paths (n0, n1, n2, n0) and (n0, n2, n1, n0) can be grouped together
as {(n0, 2), (n1, 1), (n2, 1)} or similarly, because their offdiagonal parts and their Taylor
coefficients are equal.
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7.2 Considerations for a numerical implementation

There are a number of things to consider in a possible numerical simulation. The first,
and most obvious, is that in order to calculate the Taylor coefficients it seems like one
has to know the multiplicities. That is, one has to know the diagonal parts Dni of each
configuration ni and has to be able to compare them in a stable way.

This could be done by choosing internal units in which these become integer or rational
valued. For example, the kinetic energy can be easily expressed in an exact way if all wave
vectors are Z-valued. Since the diagonal part of the Hamiltonian usually also contains a
contribution of the potentialW , the diagonal part ofW has to be expressable in a similar
way. Alternatively, one could change the splitting H = D + Y into H = T + W , which
easens the evaluability of the Taylor coefficients as well as some Monte Carlo updates
(using the update set proposed by Schoof [15]). As an example, exciting an orbital which
is not part of any kink changes the weight (in the formulation of Remark 5.4) by

W (C ′2) = e−β∆T W (C ′1)

since

T [f ′k(X), Tk + ∆T, lk − 1] = T [f ′k(X + ∆T ), Tk, lk − 1] = e−β∆T T [fk, Tk, lk − 1]

because all Ti change by the same amount ∆T and therefore (X + ∆T ) − T ′i = X − Ti.
The drawback of this method would be the need to implement T0-Kinks, i.e. what was
previously Yni−1,ni can now have a diagonal part.

Alternatively, one can maybe determine whether two diagonal parts are equal solely
based on the configuration, though this is unlikely with increasing degeneracy of energy
modes.

Of course there are plenty of other ways for a numerical implementation. E.g., one
could store the maximum diagonal part of a configuration and use fixed point numbers be-
tween 0 and 1. But the last possibility we are going to consider is particularly interesting
because of its analytic background.

As shown in the previous section, the Taylor coefficients resemble the residues of a
function f :

M∑
k=1

T [fk, Dk, lk − 1] =
M∑
k=1

Res(f,Dk).

Since f as defined before is meromorphic, one can expect a continuous dependence of
f on the Di and hence also a continuous dependence of the residues. This means, as
an example, that paths (Dn0 , . . . , Dni , . . . , DnK ) and (Dn0 , . . . , Dni +dε, . . . , DnK ) should
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have similar weights for small dε. In other words, even though there is a conceptual
difference (different multiplicites and derivative orders), the numerical difference may be
neglegible.

Last, we will look at what types of Hamiltonians could benefit the most from this for-
mulation or are expected to have a certain impact on its performance. Since the Taylor
coefficients mainly depend on the differences of diagonal parts, it could be an advantage
to consider Hamiltonians where the diagonal parts of the potential (not the whole Hamil-
tonian) depend little on the given occupation, that is, are highly degenerate. Also, the
degeneracy of the whole diagonal part of the Hamiltonian likely has an impact, as it is
important for the number and order of the Taylor coefficients. That said, degeneracy of
the energy levels of the Hamiltonian seems to be a factor which could be highly influential
on the efficiency of the algorithm.

7.3 An exemplary configuration path

This section is intended as a read-along to the previous chapters. Everything mentioned
here will have been referenced to earlier.

7.3.1 Notation. We will first look at the notation for a concrete path. Suppose we have a
path with 3 Kinks (K = 3). Hence, there are three different configurations: n = n0 = n3,
n1 and n2. Let the diagonal parts of the Hamiltonian be Dn0 = Dn3 = a, Dn1 = b and
Dn2 = a. Note that, although n2 6= n3, they can still have the same diagonal part. An
example for this would be momenta k and −k in the ideal Fermi gas.
Continuing the investigation, we have for the number of distinct Dni ’s

M = |{Dni : i ∈ {0, . . . , 3}}| = |{a, b}| = 2.

Define D1 := a and D2 := b. Their corresponding multiplicities are l1 = 3 and l2 = 1.

7.3.2 Taylor coefficients. Next, we will calculate the Taylor coefficients. With li and
Di as in 7.3.1, we have

f1(X) = e−βX

(X −D2)l2 = e−βX

X − b
,

f2(X) = e−βX

(X −D1)l1 = e−βX

(X − a)3 .

Therefore,

T [f1, D1, l1 − 1] = T [f1, a, 2] = 1
2f
′′
1 (a) = e−βa

a− b

[
1

(a− b)2 + β

a− b
+ β2

2

]
,
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T [f2, D2, l2 − 1] = T [f2, b, 0] = f2(b) = e−βb

(b− a)3 .

This implies for the integrals in the partition function Eq. (3.1) (to repeat, Dn0 = Dn2 =
Dn3 = a, Dn1 = b)

(−1)3
∫ β

0
dτ1

∫ β

τ1
dτ2

∫ β

τ2
dτ3e

−Dn0 (τ1−0)−Dn1 (τ2−τ1)−Dn2 (τ3−τ2)−Dn3 (β−τ3)

= T [f1, D1, l1 − 1] + T [f2, D2, l2 − 2] = e−βa − e−βb

(a− b)3 + β
e−βa

(a− b)2 + β2

2
e−βa

a− b
.

One can check that this is indeed equal to the result obtained by direct integration.

7.3.3 Reexpression of Taylor coefficients. T [f2, b, 0] can be directly calculated. The
differentiation for X = a, as demonstrated in 7.3.2, can also be retrieved from the formula
in Eq. (5.9). First, one has

I1,j = 1
D1 −Dnj

= 1
a−Dnj

,

so
I1,0 = I1,1 = I1,3 = 1

a− a
=∞, I1,2 = 1

a− b
.

By Eq. (5.9) this means that

T [f1, a, 2] = e−ba I1,2

2∑
l=0

β2−l

(2− l)!hl(I1,2) = e−βa

a− b

2∑
l=0

β2−l

(2− l)!I
l
1,2

= e−βa

a− b

[
β2

2 + β

a− b
+ 1

(a− b)2

]
,

which is in perfect agreement with the result from 7.3.2.

7.3.4 Observables. We now want to compute 〈H〉. We will consider paths C ′ instead of
C as described in Remark 5.4. In Example 6.1, E(C ′) was shown to be

E(C ′) = Dk + T [fk, Dk, lk − 2]
T [fk, Dk, lk − 1] .

For the path C ′ = (K = 3, k = 1, n0, . . . , n2) with diagonal parts as before this implies

E(C ′) = a+ T [f1, a, 1]
T [f1, a, 2] = a+

β + 1
a−b

β2

2 + β
a−b + 1

(a−b)2

.

The path C ′ = (K = 3, k = 2, n0, . . . , n2), on the other hand, has

E(C ′) = b+ T [f2, b,−1]
T [f2, b, 0] = b.



Chapter 8

Conclusions

In this bachelor’s thesis we have investigated various approaches to further improve the
Configuration Path Integral Monte Carlo algorithm by Schoof et al. [14].

It was shown that the use of higher order approximations does not induce a notable
change in the continuous time version of the CPIMC formulation of the canonical partition
function, whereas it could make the discrete time algorithm more efficient. On the other
hand, a similar approach was done for Path Integral Monte Carlo (PIMC) in coordinate
representation which resulted in the Permutation Blocking PIMC algorithm [17, 18].
There, the algorithm depended explicitly on the finite length of imaginary time slices
β/M , splitting them into smaller, non-equidistant slices which were evaluated differently
and subsequently grouped together. The higher order approximations, in some sense,
provide a CPIMC analogue to Permutation Blocking PIMC, though less permutations
are grouped together. A difference is that the sub-slices are multiplied by a complex
instead of a real factor and therefore cannot be physically seen as slices in imaginary
time anymore. The need for this is ultimately due to the fact that it allows to circumvent
the problem that the offdiagonal part Y of the Hamiltonian cannot be easily evaluated
up to arbitrary order Y n and must be split instead.

The second part was concerned with whether there is a way to reduce the configura-
tion space in continuous time Configuration Path Integral Monte Carlo. Reducing the
number of states (or kinks) in all configurations is unlikely as this seems to always involve
analytically calculating sums over all possible states. On the other hand, the imaginary
times τ1, . . . , τK which occur in configurations are artificial, as in principle all possible
time slice configurations are integrated over. We have therefore addressed the question
whether the integration could be performed in a reasonably laborious way.

This turns out to be the case and may improve the accuracy of further simulations
as well as simplifying the Monte Carlo update types, while simultaneously complicating
weight and observable calculations. At the current point this modification seems unlikely
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to have an impact on the fermion sign problem as the paths which are grouped together
through integrating are all of the same sign.

There was also found a connection to the Laplace transform of a rather simple-looking
rational function, which may provide an entry point for further analysis and perhaps
even a resulting alternative algorithm. For example, using associativity and commuta-
tivity properties of the convolution operator could enable another regrouping of terms
in the continuous time CPIMC canonical partition function. Alternatively, performing
Monte Carlo simulations in the Laplace-transformed space potentially provides a tool to
extrapolate to, or evaluate, an increased range of temperatures.

Nevertheless, the applicability and possible impact are to be investigated by future
numerical simulations.
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