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Zusammenfassung

Das Hubbard-Modell sagt für stark korrelierte Systeme die Möglichkeit voraus,
dass zwei Elektronen auf einem Gitterplatz ein Quasiteilchen, ein sogenanntes
Doublon, formen, was zum erhalten der Doppelbesetzung führt. In dieser Arbeit
wird der die Erzeugung von Doublons druch die Wechselwirkung mit einem
geladenen Teilchen untersucht. Dazu wird mit numerisch exakten Methoden
die Dynamik des Teilchens, das durch ein zweidimensionales hexagonales Gitter
stößt, simuliert. Die Erzeugung stabiler Doppelbesetzung im System wird in
Abhängigkeit von verschiedenen Parametern analysiert. Zum besseren Verständnis
der Abläufe wird zudem zusätzlich ein vereinfachtes System betrachtet, das aus
nur zwei Gitterpunkten besteht.





Summary

For strongly correlated system the Hubbard model predicts the possibility of the
formation of a quasi-particle consisting of two electrons on the same site. These
particles are called doublons. In this thesis production of such doublons on a
two dimensional lattice system due interaction with a positively charged particle
penetrating the lattice is analyzed. The dynamics and the doublon creation with
regard key setup parameters are examined. To get a ground level understanding
of the doublon formation, a simplified two site system additionally considered.
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Chapter 1

Introduction

The interaction of condensed matter surfaces with particles is of high interest for
research in plasma physics and condensed matter physics. Its examination is key
to understanding plasma-surface effects that can change the properties of the solid,
which is also very interesting for applications in material science. Therefore, a lot
of effort has been devoted to theoretically describing this interaction ([28], [5], [3])
This task has, however, proven itself to be very difficult. Due to the complexity
of condensed matter systems, elaborate theoretical models are needed, which
require a lot of computing power. Through developments in in-situ experiments
in plasma ([23], [15], [13]) and experiments with ultra cold lattices ( [22], [26]),
the actual dynamics might now become experimentally accessible.

The setup studied in this thesis consists of a two dimensional lattice penetrated
by a positively charged projectile. Considering the lattice to be on the surface
plane of a solid which is in contact with a plasma, this setup can be understood
as a simplified model to examine the effects of the plasma’s ions on the solid.
To describe the lattice, the Hubbard model is used. This model has had great
success since its introduction in 1963( [11] ).
Its main advantage over the popular single particle models for electrons in

condensed matter is that correlation effects between the electrons are considered.
This allows to describe systems in which correlation between the electrons has
a substantial effect on their behaviour. One aspect of the Hubbard model is
that two electrons on one lattice site in strongly correlated systems are predicted
to form a quasi particle, called doublon, which leads to the number of doubly
occupied sites being stable. This effect is particularly interesting, because the
number of doubly occupied sites has a big influence on the electrical properties of
the solid. In this thesis the possibility and extent of doublons being produced
due to the charged projectile is examined.

The method used for the simulation presented in this thesis is so called exact prop-
agation, wherein the Hamiltonian is diagonalized to obtain the groundstate and
propagated in time using the time-dependent SchrÃ¶dinger equation. Therefore,
the obtained results are numerically exact with regard to the used model. However
with exact propagation only relatively small systems can be treated, because
the number of basis states grows exponentially with the number of contained
electrons ([8]).
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The systems considered are 12-site two dimensional honeycomb-type lattices.
The honeycomb lattice is very interesting, because there are real materials, like
graphene, with this quasi two dimensional structure.These materials have received
a lot of scientific attention in recent years (e.g. [20]). On those lattices the effect
of particle induced doublons is studied.

The aim of this thesis is to provide a ground level examination of this effect.
The projectile induced dynamics and the dependency of doublon production
and stability on different simulation parameters, e.g. the projectile velocity, are
studied. While the presented model is not in any way a complete description
of plasma surface interaction, the examined effects could help to develop such a
description. For example, the used model can be expanded later on to also cover
other important effects, like ionization and multiple penetration. The results
obtained from this thesis can serve as reference and basis to further develop the
model, for example to examine larger systems.

In the beginning of this thesis, the theoretical background necessary is pre-
sented, including the Hubbard model, some numerical methods and the projectile
interaction. In the next part the general setup and lattice structure considered
for the simulations are discussed. Thereafter, the obtained results are shown and
analyzed. In this section, the observed dynamics are presented and discussed.
Following this section, the doublon production and its correlation with other
quantities are examined. In order to do that, the setup is simulated and analyzed
under varying extents of correlation, projectile velocity and starting position.
Finally a simplified model is introduced to get a better ground level understanding
of the events leading to the observed doublon production.



Chapter 2

Theory

In this chapter, the theoretical background needed in this thesis is presented.
The first part introduces the basic principles of second quantization and the
Hubbard model, which is used to theoretically describe the examined systems.
The second part deals with the theoretical concept of exact propagation needed
to understand the simulations done for this thesis. Additionally, the Lanctos
algorithm, a numerical method used to compute the ground state, is presented.

2.1 Second quantization

The second quantization is a formalism used to describe many particle quantum
systems. They are categorized by their occupation numbers of the single particle
orbitals. To cover all possible particle numbers, one considers the direct sum of
all N -particle Hilbert spaces HN , the so called Fock space:

F =
⊕
N∈N

HN . (2.1)

Any state in F can now be written as a linear combination of states of the form:

|Ψ〉 = |n1, n2, n3, ...〉 . (2.2)

Here ni is the occupation number of the i-th orbital. The states are orthonormal-
ized in a way that:

〈Ψ|Ψ′〉 =
∏
i

δni,n′i . (2.3)

If the orbitals are known, every information about the system is accessible with
this representation. In second quantization any operator can be expressed via
the creation- and annihilation operators ĉ† and ĉ , which can be defined by their
acting on an arbitrary state. For Fermions, in analogy to [6] and [25], they are
given as:

ĉ†i |..., ni, ...〉 :=
√
ni + 1 (−1)ai |..., ni + 1, ...〉 δni,0, (2.4)

ĉi |..., ni, ...〉 :=
√
ni (−1)ai |..., ni − 1, ...〉 δni,1, ai =

∑
k<i

nk. (2.5)

The creation operator ĉ†i increases the occupation number ni by one. The
annihilation operator ĉi decreases ni by one. The kronecker delta ensures that
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the Pauli principle is obeyed. The second prefactor ai accounts for the anti-
commutation relations between the operators:

{ĉ†i , ĉ
†
i′} = {ĉi, ĉi′} = 0, (2.6)

{ĉi, ĉ†i′} = δi,i′ . (2.7)

Using ĉ†i and ĉi, one can now define the occupation number operator for the i-th
orbital ni:

n̂i |..., ni, ...〉 = ĉ†i ĉi |..., ni, ...〉
=
√
ni (−1)ai ĉ†i |..., ni − 1, ...〉 δni,1

= ni |..., ni, ...〉 . (2.8)

With these definitions for ĉ and ĉ†, a single particle operator B̂1 acting on states
in a system with N single particle orbitals becomes:

B̂1 =
N∑

i,j=1

〈i| b̂1 |j〉 ĉ†i ĉj =
N∑

i,j=1

bij ĉ
†
i ĉj, (2.9)

where bij is the respective matrix element of the operator B̂2. Any two particle
operators in such a system B̂2 can then be expressed in the following way:

B̂2 =
1

2!

N∑
i,j,k,l=1

〈ij| b̂2 |kl〉 ĉ†i ĉ
†
j ĉlĉk =

1

2

N∑
i,j,k,l=1

bijklĉ
†
i ĉ
†
j ĉlĉk, (2.10)

where the ordering of creation and annihilation operators is due to their anti-
commutation relations. A Hamiltonian, consisting of the single particle operator
for the kinetic energy and an external potential T̂ and the two particle operator
Ŵ for the interaction between the particles, becomes:

Ĥ =
N∑

i,j=1

tij ĉ
†
i ĉj +

1

2

N∑
i,j,k,l=1

wijklĉ
†
i ĉ
†
j ĉlĉk, (2.11)

where the coefficients tij and wijkl can be computed as the matrix elements of
the respective operators in space representation (see [12]). Assuming a distance
dependent potential like the Coulomb-Interaction, they can be calculated as:

tij =

∫
d3~r Φ∗i (~r)

(
−~2∇2

2m
+ v(~r)

)
Φj(~r), (2.12)

wijkl =

∫
d3 ~rd3~r′Φ∗i (~r)Φ

∗
j
~r′V (|~r − ~r′|)Φk(~r)Φl(~r′). (2.13)

2.2 The Hubbard model

The Hubbard Model is a simple approximation for condensed matter systems. It
is the simplest many particle model that can not be reduced to a single particle
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theory ( [1]). However, a lot of valuable and very interesting results have been
obtained with this approach in the field of condensed matter physics ( [24], [10]).
It has been applied successfully to understand ferromagnetism, superconductivity,
etc.

In the Hubbard model, the solid state system is approximated by a static lattice
structure for the atomic cores. The electrons are assumed to be found in orbitals
dislocated around the lattice position of the cores. In second quantization the
Hamiltonian then is of the form eq. 2.11.

The following assumptions are made in the Hubbard model: tij is assumed
to be zero when i and j are not nearest neighbors and a constant value −J
whenever they are. This assumption makes sense for tightly bound electrons,
where the Φi’s in 2.12 can be assumed to be Fourier-transformed Bloch-functions,
so called Wannier functions. This leads to the overlap in 2.12 being small for
non nearest neighbors. The on-site terms tii are neglected, because they may be
absorbed into to the chemical potential in a grand canonical model [10].

Because of the screening due to the electric field of the cores, interaction between
electrons is only taken into account if they are on the same site. Therefore, in the
interaction term two electrons on the same lattice site contribute the value U to
the energy, while electrons on different lattice sites do not contribute to the energy.

Under those assumptions the Hubbard Hamiltonian has a much simpler form and
can be written as:

Ĥ = T̂ + Ŵ = −J
∑
〈i,j〉,α

ĉ†iαĉjα + U
∑
i

n̂i↑n̂i↓. (2.14)

The first term T̂ is called the hopping term, where one electron with spin α on
site j is destroyed and one is created on site i. As a consequence of electrons
never changing spin when hopping, Ĥ commutes with the total number operator
for ↑-electrons N̂↑ and the number operator for ↓-electrons N̂↓. Thus the number
of ↑-electrons and ↓-electrons cannot change. The < i, j >-symbol signifies that
only nearest-neighbor-indices are considered in the sum. The prefactor J is called
the hopping constant. The second term Ŵ represents the on-site interaction
with the so called interaction strength, U . All properties of the Hamiltonian are
contained in the lattice structure and the relative interaction strength U/J .

2.2.1 The non interacting case

For the non interacting case the Hubbard Hamiltonian can be solved with low
effort in momentum space. For simplicity, the one dimensional case is treated.
For U = 0 the Hubbard Hamiltonian then becomes:

Ĥ = −J
∑

<i,j>,α

ĉ†iαĉjα. (2.15)
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To Fourier transform this Hamiltonian, the expressions for ĉ and ĉ† in momentum
representation are needed:

ĉ†mα =
1√
N

∑
k

e−ikmˆ̃c†kα, (2.16)

ĉmα =
1√
N

∑
k

eikmˆ̃ckα. (2.17)

where N is the total number of sites in the system. On a finite lattice the
momentum k has discrete values ki = 2πi

N
, with i ∈ {0, 1, ..., N}. ˆ̃c†kα and ˆ̃ckα are

the creation- and annihilation operators in momentum space, which create or
annihilate an electron with momentum k and spin α. Inserting these expressions
in 2.15 leads to:

Ĥ = −J
∑

<m,n>,α

ĉ†mαĉnα = − J
N

∑
<m,n>,α

∑
k,k′

e−ikmˆ̃c†kαeik′nˆ̃ckα

= − J
N

∑
m

(
e−ikmeik′(m+1) + e−ikmeik′(m−1)

) ∑
k,k′,α

ˆ̃c†kα
ˆ̃ckα

= −J
∑
k,k′,α

ˆ̃c†kα
ˆ̃ckα

(
eik′ + e−ik′

) 1

N

∑
m

e−i(k′−k)m

= −J
∑
k,k′,α

ˆ̃c†kα
ˆ̃ckα2cos k′ δk′,k =

∑
k,α

−2Jcos k n̂kα (2.18)

As one can see, the Hamiltonian becomes diagonal in momentum representation.
The dispersion relation is εk = −2Jcosk. One can thus see any electron in this
case has an energy between −2J and +2J .

For U 6= 0 however, the Hubbard Hamiltonian cannot be solved analytically
by just transforming into momentum space. For large U the Hamiltonian can be
transformed and the effective doublon Hamiltonian can be derived, which leads
to double occupation being preserved for large U in small systems. This allows
the definition of doublons.

2.2.2 Effective doublon Hamiltonian

In this section, the effective doublon Hamiltonian is derived. For large U/J the
behaviour of states with high double occupation is examined. This is done in
analogy to [16]. To treat the behaviour of doubly occupied states, first, the hole
operator ĥiα = 1̂− n̂iα is defined, which returns the number of holes at lattice
site i with spin α. Now the hopping term T̂ of the Hamiltonian can be rewritten
using the relation 1̂ = ĥiα + n̂iα:

T̂ = −J
∑

<i,j>,α

1̂ ĉ†iαĉjα 1̂ (2.19)
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= −J
∑

<i,j>,α

(
ĥiα + n̂iα

)
ĉ†iαĉjα

(
ĥjα + n̂jα

)
= T̂0 + ˆT−1 + T̂1,

with:

T̂−1 := −J
∑

<i,j>,α

ĥiαĉ
†
iαĉjαn̂jα, (2.20)

T̂0 := −J
∑

<i,j>,α

n̂iαĉ
†
iαĉjαn̂jα + ĥiαĉ

†
iαĉjαĥjα, (2.21)

T̂1 := −J
∑

<i,j>,α

n̂iαĉ
†
iαĉjαĥjα. (2.22)

(2.23)

It is easy to see that the number of doubly occupied sites is lowered by T̂−1,
increased by T̂1 and unchanged by T̂0. For m ∈ {−1, 0, 1} one gets the relations:[

V̂ , T̂m

]
= mUT̂m, (2.24)

T̂i
†

= T̂−i. (2.25)

Thus the Transformation

Ĥ ′ = eiŜĤe−iŜ = Ĥ +

[
iŜ, Ĥ

]
1!

+

[
iĤ,

[
iŜ, Ĥ

]]
2!

+ ..., (2.26)

using

Ŝ = − i

U

(
T̂1 − T̂−1

)
(2.27)

is unitary, because Ŝ is self-adjoint due to 2.25; and in first order with 2.24 the
Hamiltonian becomes:

Ĥ ′
(1)

= T̂0 + V̂ +
1

U

([
T̂1, T̂−1

]
+
[
T̂0, T̂−1

]
+
[
T̂1, T̂0

])
+O(U−2). (2.28)

From this equation it can already be seen that for large U/J the number of doubly
occupied sites is preserved in the Hubbard model. Therefore, the two electrons
in a doubly occupied site can be viewed as a unit, this quasi particle is called
a doublon. By neglecting the O(U−2)-terms one can now derive the effective
doublon Hamiltonian which governs the behaviour of doublons ([16]):

Ĥdoub =
J2

U

∑
<i,j>

d̂†i d̂j +
∑
i,j

Vijn̂
d
i n̂

d
j , (2.29)

where d̂†i = ĉ†i↑ĉ
†
i↓ is the creation operator , d̂i = ĉi↑ĉi↓ is the annihilation operator

and n̂di = d̂†i d̂i is the occupation number operator for doublons. Vij =∞ for i = j

because of the Pauli principle and Vij = −J2

U
if i and j are nearest neighbors

else Vij = 0. Using this model the dynamics of doublons have been successfully
examined ([17], [4]).



8 The Hubbard model

2.2.3 Hubbard dimer

Generally, the Hubbard Hamiltonian can not be solved analytically for U 6= 0. For
a two site system however, an analytical solution can be found by diagonalizing
the Hamiltonian. Because the Hamiltonian doesn’t change the total number
of spin-up and spin-down electrons, this section only concentrates on the half
filled case with two electrons in the system. In this case, the Hamiltonian can be
written in matrix form with the four basis states:

|Ψ1〉 = |↑, ↓〉 = ĉ†2↓ĉ
†
1↑ |0〉 ,

|Ψ2〉 = |↓, ↑〉 = ĉ†1↓ĉ
†
2↑ |0〉 ,

|Ψ3〉 = |↓↑,−〉 = ĉ†1↓ĉ
†
1↑ |0〉 ,

|Ψ4〉 = |−, ↓↑〉 = ĉ†2↓ĉ
†
2↑ |0〉 .

In this basis Ĥ becomes (see [21]):

H =


0 0 −J −J

0 0 J J

−J J U 0

−J J 0 U,

 (2.30)

where the sign of the J-elements is due to the commutation relations of the
operators in 2.6 and 2.7. This 4 × 4 matrix can be diagonalized analytically
by solving the characteristic polynomial and then calculating the eigenvectors
or rewriting Ĥ in another basis representation which uses the symmetry of
the Hubbard Hamiltonian. This leads to the eigenvalues and their respective
eigenvectors:

E− =
U

2
−
√
U2 + 16J2

2
,
∣∣Ψ−〉 =

(− |Ψ1〉+ |Ψ2〉) + E−

2J
(|Ψ3〉+ |Ψ4〉)√

2 +
(
E−√

2J

)2
,

E+ =
U

2
+

√
U2 + 16J2

2
,
∣∣Ψ+

〉
=

(|Ψ2〉 − |Ψ1〉) + E+

2J
(|Ψ3〉+ |Ψ4〉)√

2 +
(
E+√

2J

)2
,

E0 = 0,
∣∣Ψ0
〉

=
|Ψ1〉+ |Ψ2〉√

2
, (2.31)

EU = U,
∣∣ΨU

〉
=
|Ψ4〉 − |Ψ3〉√

2
.

The eigenvalues‘ dependency on U/J is illustrated in 2.1. For large U/J E+

approaches EU and E− approaches E0. For large U/J the gap between these
two pairs of eigenenergies is called the Hubbard gap. The eigenenergies E− and
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E0 are in the so called lower Hubbard band and EU and E+ are in the upper
Hubbard band of the dimer.
For this simple system, it is easy to see that for U/J > 2 any doublon has an

infinite lifespan, because its interaction energy of 2t cannot be dissipated in the
two site system. The stability of doublons and the doublon Hamiltonian, which
predicts its dynamics and behaviour on big systems, are both consequences of
the problem in energy dissipation for doubly occupied states.

Figure 2.1: Energy eigenvalues in units of J of the Hubbard dimer as a function
of the relative interaction strength U/J

2.3 Exact propagation

In this section, the theoretical background for the specific simulation is presented.
At the start of the simulation, the ground state is computed by diagonalizing the
Hamiltonian, so the ground state is numerically exact. The problem with the
diagonalization of the Hubbard Hamiltonian is the huge basis dimension even at
a few sites. This makes all matrix-vector-operations extensive and leads to high
memory consumption when saving the large matrices and vectors. Therefore, a
numerical treatment that approximates the ground sate but drastically reduces
computational effort and memory usage is needed. To maximize the size of
systems possibly observable with this method, the needed computational effort
and memory usage had to be reduced. To this end the Lanczos method was
used to diagonalize the Hamiltonian. This algorithm is presented below. The
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calculated ground state is then propagated in time with the time-dependent
SchrÃ¶dinger equation (TDSE).

2.3.1 Lanczos Method

The Lanczos algorithm can be used to approximate the eigenvalues and eigen-
vectors of an arbitrary N -dimensional self-adjoint matrix H. The algorithm
commutes a tridiagonal M -dimensional matrix T , the eigenvalues and eigenvec-
tors of which approximate those of H. The description of the Lanczos algorithm
is done in analogy to [18].

The algorithm starts with an arbitrary normalized vector |Ψ0〉 6= 0 that is
not to be an eigenvector of H. Then from |Ψ0〉 M vectors Ψi are computed
recursively through |Ψ−1〉 = |0〉:∣∣Ψ′i+1

〉
= H |Ψi〉 − ai |Ψi〉 − bi |Ψi−1〉 , (2.32)

where ai = 〈Ψi|H |Ψi〉 and bi = 〈Ψi−1|H |Ψi〉. Now |Ψi+1〉 is computed by
normalizing |Ψ′i〉:

|Ψi+1〉 =

∣∣Ψ′i+1

〉√〈
Ψ′i+1

∣∣Ψ′i+1

〉 . (2.33)

One can see that this set of M vectors is orthogonal through mathematical
induction:

Base case for n = 1 vectors: Trivially, the set is orthogonal when only con-
sisting of one vector |Ψ0〉 6= |0〉.

Induction step: Assume that |Ψ0〉 , ..., |Ψn〉 are orthogonal. Now
∣∣Ψ′n+1

〉
is orthog-

onal to all previous vectors:

〈Ψn|Ψn+1〉 =
1√〈

Ψ′n+1

∣∣Ψ′n+1

〉 (〈Ψn|H |Ψn〉 − an 〈Ψn|Ψn〉 − bn 〈Ψn|Ψn−1〉)

=
1√〈

Ψ′n+1

∣∣Ψ′n+1

〉 (〈Ψn|H |Ψn〉 − 〈Ψn|H |Ψn〉 − 0)

= 0 (2.34)

also

〈Ψn−1|Ψn+1〉 =
1√〈

Ψ′n+1

∣∣Ψ′n+1

〉 (〈Ψn−1|H |Ψn〉 − an 〈Ψn−1|Ψn〉 − bn 〈Ψn−1|Ψn−1〉)

=
1√〈

Ψ′n+1

∣∣Ψ′n+1

〉 (〈Ψn−1|H |Ψn〉 − 0− 〈Ψn−1|H |Ψn〉)

= 0 (2.35)
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and for i < n− 1 we get:

〈Ψi|Ψn+1〉 =
1√〈

Ψ′n+1

∣∣Ψ′n+1

〉 (〈Ψi|H |Ψn〉 − an 〈Ψi|Ψn〉 − bn 〈Ψi|Ψn−1〉)

=
〈Ψi|H |Ψn〉√〈

Ψ′n+1

∣∣Ψ′n+1

〉 . (2.36)

H is hermitian, this yields:

〈Ψi|H |Ψn〉 =
(〈

Ψ′i+1

∣∣+ ai 〈Ψi|+ bi 〈Ψi−1|
)
|Ψn〉

=
〈
Ψ′i+1

∣∣Ψn

〉
+ ai 〈Ψi|Ψn〉+ bi 〈Ψi−1|Ψn〉

= 0. (2.37)

Thus 〈Ψi|Ψn+1〉 = 0 and the orthogonality is shown via mathematical induction.

Furthermore, it can be seen that H becomes tridiagonal in the Lanczos ba-
sis, because of:

H |Ψn〉 =
∣∣Ψ′n+1

〉
+ an |Ψn〉+ bn |Ψn−1〉

= bn+1 |Ψn+1〉+ an |Ψn〉+ bn |Ψn−1〉 . (2.38)

With the transformation matrix S = (|Ψ0〉 ... |ΨM−1〉) H becomes:

T = S†HS =



a0 b1 . . . 0

b1 a1 b2 .

. b2 . .

. . bM−2 .

. bM−2 aM−2 bM−1

0 . . . bM−1 aM−1


. (2.39)

The eigenvalues of the M -dimensional matrix T can now be computed using
methods like QR decomposition. For M = N calculated vectors, the Matrix T
is similar to H, thus the eigenvalues of T are also eigenvalues of H and for any
eigenstate |x〉 of T the state |y〉 = S |x〉 is an eigenstate of H. For M < N the
extreme eigenvalues get approximated the fastest (see [9] and [18]). In practice,
the dimension of the Lanczos basis is much smaller than the dimension of H. For
ground state calculations good results can be achieved with M around 100. For
the results presented in this thesis, M was set to 300. The main advantage of
this method is that the actual calculation of the eigenvalues and -vectors is done
on the relatively small matrix T . The computing of the Lanczos basis has the
complexity of O(m ·N2), whereas QR-decomposition is O(N3) [9].
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2.3.2 Time Propagation

The Dynamics of any quantum mechanical system are governed by the time-
dependent SchrÃ¶dinger equation:

i~
∂

∂t
|ψ〉 = Ĥ |Ψ〉 (2.40)

Thus the system can be propagated using the time-evolution operator Û(t, t0):

|Ψ(t)〉 = Û(t, t0) |Ψ(t0)〉 , (2.41)

with
Û(t, t0) = e

− i
~
∫ t
t0
Ĥ(t′)dt′

. (2.42)

For small time steps ∆t, the Hamiltonian is assumed to be constant. Thus the
time propagation can be done with:

|Ψ(t+ ∆t)〉 = e−
i
~ Ĥ(t)∆t |Ψ(t)〉 , (2.43)

where the exponential function is approximated by its Taylor polynomial. For
lim

∆t→0
, this method of time propagation would still be exact. Due to numerical

limitations in choosing the time step and evaluating the exponential function,
however, it becomes less accurate the longer the system is propagated in time. In
the simulations done for this thesis, the time step is variable, becoming smaller the
more the Hamiltonian changes to optimize the usage of computational capacities.

2.4 Landau-Zener effect

The Landau-Zener effect describes non-adiabatic transitions at an avoided crossing
of linearly traversed energy levels. This presentation follows Rubbmark et al. [19].
Consider an unperturbed Hamiltonian Ĥ0 with the eigenstates |1〉 and |2〉. With
both Ĥ0 and the eigenvalues E1 and E2, but not the eigenstates, depending on
some parameter q one gets:

Ĥ0(q) |1〉 = E1 |1〉 , (2.44)
Ĥ0(q) |2〉 = E2 |2〉 . (2.45)

The unperturbed eigenenergies are assumed to have the form shown in fig. 2.2,
where they degenerate for some value of q and vary linearly around this crossing.

Now a perturbation is considered that breaks the degeneracy at the crossing.
With a perturbation V̂ , that is supposed to be independent of q, the Hamiltonian
can be written as:

Ĥ(q) = Ĥ0(q) + V̂ . (2.46)

Using the basis states |1〉 and |2〉, Ĥ can be written in matrix form and becomes

H =

 ε1(q) 1
2
E0eiΦ

1
2
E0eiΦ ε2(q)

 , (2.47)
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Figure 2.2: Eigenenergies of the unperturbed system (red) E1, E2 and the per-
turbed system (black) Ea, Eb as a function of the parameter q. The
unperturbed eigenenergies are assumed to linearly depend on q. The
energy gap at the avoided crossing is E0 = 2| 〈1| V̂ |2〉 |.

where

ε1(q) = E1(q) + 〈1| V̂ |1〉 , (2.48)
ε2(q) = E2(q) + 〈2| V̂ |2〉 , (2.49)

〈1| V̂ |2〉 =
1

2
E0eiΦ, 0 ≤ Φ ≤ 2π. (2.50)

The eigenenergies now are

Ea(q) =
1

2

(
(E1 + E2) +

√
E(q)2 + E2

0

)
, (2.51)

Eb(q) =
1

2

(
(E1 + E2)−

√
E(q)2 + E2

0

)
, (2.52)

with E(q) = E1(q) − E2(q), which becomes E(q) = const. · q in the vicinity of
the crossing. The respective eigenvectors are

|a〉 (q) = cos

(
Θ(q)

2

)
e−i Φ

2 |1〉+ sin

(
Θ(q)

2

)
ei Φ

2 |2〉 , (2.53)

|b〉 (q) = −sin

(
Θ(q)

2

)
e−i Φ

2 |1〉+ cos

(
Θ(q)

2

)
ei Φ

2 |2〉 , (2.54)

with tanΘ(q) = E0

E(q)
. To describe the possible transition, the most important

quantities are the energy difference ∆E = E0 at the avoided crossing and its
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width
q0 =

E0∣∣dE
dt

∣∣ . (2.55)

To calculate the dynamics of the full Hamiltonian, the TDSE has to be solved:

i~
∂

∂t
|ψ〉 = Ĥ |Ψ〉 . (2.56)

An arbitrary state |Ψ〉 (t) can be written in the basis of |1〉 and |2〉:

|Ψ(t)〉 = C1(t)ei
∫ 0
t E1dt

′ |1〉+ C2(t)ei
∫ 0
t E2dt

′ |2〉 . (2.57)

Substituting this into the TDSE and using the definitions of eq 2.48 leads to the
decoupled equations

C̈1(t)− ß

~
E(t)Ċ1 +

E2
0

4
C1 = 0, C̈2(t) +

ß

~
E(t)Ċ2 +

E2
0

4
C2 = 0. (2.58)

Now the case of q depending linearly on time and thus E(t) = αt is considered.
Given a system prepared in state |a〉, the probability of a transition into |b〉 then
becomes

Pab = e−
2π
~ E0q0 = e−

2π
~
E2

0
|α| . (2.59)

This probability is now only dependent on the energy gap at the avoided crossing
and the gradient of the energy difference.

2.5 Projectile interaction

In the simulation a positively charged projectile with charge q and a fixed
starting velocity vertically penetrates a two dimensional lattice, also see Balzer,
SchlÃ¼nzen, and Bonitz [3]). Because all simulations consider a half filled lattice,
the lattice as a whole is neutrally charged. While the position of the atomic cores
on the lattice are assumed to be fixed, the dynamic of the electrons is strongly
influenced by the electric field induced by the projectile. The interaction between
the projectile and an electron on site i is assumed to be the Coulomb potential:

Wii(t) = − eq

4πε0

1

|~rp(t)−Ri|
, (2.60)

where ~rp(t) is the current projectile position and Ri is the position of the site the
electron is on. Because the electrons are considered to be localized on the sites,
it is clear that for i 6= j Wij(t) = 0. This single particle term has to be added to
the Hamiltonian from eq. 2.14. Using eq. 2.9 the Hamiltonian now reads:

Ĥ(t) = −J
∑
〈i,j〉,α

ĉ†iαĉjα + U
∑
i

n̂i↑n̂i↓ +
∑
i

Wii(t) (n̂i↑ + n̂i↓) . (2.61)
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To calculate the retroactive effect of the lattice on the projectile, the classi-
cal equation of motion is used:

~F (t) = ∇W (t) = ∇

(∑
i

eq

4πε0

1

|~rp(t)−Ri|
(2− n̂i↑ − n̂i↓)

)
= mp~̈r. (2.62)

The projectile then gets propagated by solving this equation for discrete time
values at intervals of the small time step ∆t:
By calculating the acceleration ~a(t) = ~̈r(t), the velocity ~v can be computed for
the next time step. Advancing one time step, ~r(t + ∆t) can be computed by
averaging over the velocity:

~r(t+ ∆t) = ~r(t) +
~v(t) + ~v(t+ ∆t)

2
∆t. (2.63)





Chapter 3

Model and setup

For this thesis, small honeycomb systems with a 12-site lattice are simulated to
understand the projectile induced doublons. The dynamical evolution of the dou-
ble occupation and density on the different lattice sites is accessible through exact
propagation. With this setup, the dependency of the induced double occupation
on projectile velocity and interaction strength is studied.

All simulations are done at half filling, i.e. with 12 electrons in the 12-site
model. Also, the total number of ↑-electrons and ↓-electrons is the same for all
considered systems. As mentioned in 2.2 these numbers cannot change, when
using the Hubbard model. Thus the number D of basis states for the Hubbard
Hamiltonian with N sites becomes:

D =

(
N
N
2

)
·
(
N
N
2

)
, (3.1)

The hopping constant for the Hubbard Hamiltonian is set to J = 1eV , while the
relative interaction strength U/J is varied to study the importance of correlation
effects on the induced doublons. The value J = 1eV is not chosen with the aim to
simulate any specific real material, nevertheless this value is chosen to be realistic.
In comparison, the hopping amplitude for graphene is Jgraphene = 2.8eV and for
silicene it is Jsilicene = 1.14eV , see SchÃ¼ler et al. [20].

In this simulation time is measured in units of t0, with

t0 =
~
J

= 6.58212 · 10−16s. (3.2)

As seen in section 2.2.1, for the non interacting case the kinetic energy of the
electrons has the magnitude of J . Thus, considering the TDSE, t0 is a good
choice for the time unit, because the dynamics are expected to happen on this
timescale. The lattice parameter a0 is chosen to be a0 = 1.42Å, which is the
lattice parameter for graphene. The charge q is chosen in a way that

W0 = − eq

4πε0a0

= 50eV. (3.3)

While this, too, is not chosen to describe any specific setup, the interaction is
of the correct magnitude, as for example for q = 2e and a0 = 1.42Å one would
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Figure 3.1: A 24 site lattice with
the used 12 site system
highlighted in red. The
red lines between lattice
sites represent the pos-
sibility of hopping be-
tween those sites with
the hopping constant J .
The on-site interaction is
U .

get 28.8eV . The projectile is initially moving along the z-axis: ~v0 = v0~ez. The
lattice lies in the plane at z = 0. The projectile has a fixed starting distance of
zp(t = 0) = 100Å from the lattice. At this distance, the field of the electrons is
very much screened by the atomic cores, because the distance is a lot bigger than
the extent of the lattice, which is only a few , dlattice ≤ 5.

While the duration of each simulation depends on the projectile velocity, the
duration is always chosen in a way that the projectile, which has started at
zp(t = 0), penetrates the lattice at around 40% of the simulation time. Thus the
system has enough time to evolve after the projectile has passed, which enables
the examination of stable changes to the lattice induced by the projectile.

3.1 Honeycomb Lattice

Considering two dimensional lattice types, the honeycomb lattice is particularly
interesting because real materials like graphene, magnesium ([7]) or pnictogens
([14]) have this structure. Therefore, the studies of particle induced doublons in
this thesis have been done on honeycomb-structured lattices.
To make the simulation via exact propagation possible when using the Hubbard
Hamiltonian, the system has to be small in order to minimize the number of basis
states. For this thesis, a symmetric lattice is chosen to retain the symmetries of
the honeycomb lattice.

Because a 24 site setup , see 3.1, could not be treated with the available com-
putational resources, the simulations are done on a reduced honeycomb lattice.
This lattice consists of 12 sites. For 12 sites at half-filling with 6 ↑-electrons and
6 ↓-electrons the number of basis states becomes

(
12
6

)
·
(

12
6

)
= 853776, which is a

large number, but the Hamiltonian can still be diagonalized using the Lanczos
method. For 24 sites at half-filling with 6 ↑-electrons and 6 ↓-electrons, there
would already be more than 7 · 1012 basis states. When just cutting out 12 sites of
the 24-site lattice, the six outer sites only have one nearest neighbour each. With
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Figure 3.2: The reduced honeycomb lat-
tice with the sites A and B
highlighted, which represent
all red and blue sites. The
starting positions C and S
are projected into the lattice
plane

the Hubbard Hamiltonian highly depending on the number of nearest neighbours
each site has, just using the 12 sites would not represent the honeycomb lattice ac-
curately. Therefore, hopping is considered to be possible between two neighbored
outer sites, with the same hopping constant t as for nearest neighbors, see3.1.
With this change to the lattice model, the number of nearest neighbors is the same
as for the honeycomb lattice of infinite size as far as the Hubbard Hamiltonian is
concerned. The only difference is now the lattice symmetry. Symmetry based
deviations, however, are expected to occur for any small sized finite systems.
This way of reducing the honeycomb system is preferred over alternatives such
as periodic boundary conditions. These would, for example, connect the outer
sites to those on the opposite edges of the lattice, but the possibility of hopping
between these sites would be even lower in a real lattice and the symmetry would
be changed as well.

The projectile penetrates the lattice at z = 0. The starting position of the
projectile is first chosen to be C = (0, 0, 100Å), far above the center of the 12-site
system as shown in 3.1. To examine the influence of the initial projectile position
on the results, this position is later changed to S = (

√
3

3
a0,−1

6
a0, 0), which was

predicted to be the passing location with the most average behaviour by DFFT
calculations for graphene ([27]) , which has the honeycomb structure discussed
here. When considering the projectile position C, the symmetry of the setup
ensures that at any given time the lattice properties of the sites are only dependent
on their distance to C. Thus the full system information is accessible when only
looking at sites A and B. This simplifies the discussion of the results for the
densities and double occupation, because the graphs for just two sites have to be
discussed.





Chapter 4

Results and analysis

When the projectile passes through the lattice, the force it creates on the lattice
electrons prompts them to move towards it. After the projectile has passed, the
projectile has a lower kinetic energy than before. This energy was transferred to
the lattice. One cause of this energy loss is the creation of stable doublons in the
lattice.

In this chapter, the results of the simulations done for this thesis are shown
and discussed. First the dynamics happening, that lead to the production of
doublons on the lattice, are presented and discussed. Secondly the doublon
production is analyzed by varying projectile velocity, interaction strength and the
initial projectile position. The correlation of the increase in double occupancy
and stopping of the projectile is examined. Finally a simplified to two-site model
is introduced to get a better understanding of the doublon production induced
by the projectile. The Landau-Zener effect is used as an approach to describe the
important transitions on this two site model.

4.1 Dynamics

The energy transfer and the dynamics happening on the lattice can be analyzed
by looking at the evolution of the density and the double occupation. For a
starting velocity v0 = 5Å/t0 the time dependent density, double occupation and
projectile energy are shown in this section. The penetration point is C. Thus,
only the two lattice sites A and B are considered, see chapter 3.
As for the density ni = 〈n̂i〉Ψ, it can be seen that the starting value is ni = 1

for all U for both sites. This is due to the symmetry of the Hamiltonian when
the field of the projectile is not present. Every site has three nearest neighbours
with the hopping amplitude J and the same on-site interaction strength U .

When the projectile approaches the lattice closely, the induced force on the
electrons makes them shift towards site A. This results in the density on site A
increasing, and thus decreasing at site B, due to conservation of the total particle
number: nB = 1− nA. Right after the projectile passes the lattice at t ∼ 20t0,
the density on site A reaches its maximum value.
When looking at this maximum value for the density, no simple dependency

on the interaction strength can be observed. The maximum density on site A is



22 Dynamics

Figure 4.1: Time evolution of density, double occupation on sites A and B and
projectile energy for the starting velocity v0 = 5Å/t0 and the ini-
tial projectile position C = (0, 0, 100Å) for U/J = 2, 4, 6, 10, 16, 20.
Results for U/J = 0 are not presented due to significant deviations
compared to the results obtained by Balzer [2]
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Figure 4.2: Starting values dtot,start for simulated U/J . Difference of remaining
total double occupation dtot,rem and maximum total double occupation
dtot,max to its starting value for various U/J at v0 = 5Å/t0.

higher for U/J = 10 than for the higher and lower interaction strengths presented.
It seems to have a maximum for a certain U/J for this projectile velocity.
With the projectile moving away from the lattice plane, for times > 20t0 the

density at site A decreases again. The speed of this motion seems to be lower
the larger U/J . At the end of the simulation, the nA- and nB-values oscillate
around the starting value. In absence of the projectile potential, the electrons
again spread over the lattice. The observed oscillation is very likely due to the
finite size of the lattice and the high symmetry of the system. In a larger system,
the density could dissipate further after the passing of the projectile, which would
lead to a lower oscillation amplitude. For a lattice of infinite size, no oscillations
are expected. The oscillation amplitudes are in general larger for smaller U/J ,
which can be explained by weaker damping through the onsite repulsion, that
blocks the oscillations, when the site is occupied.

The starting values of the double occupation depend on the choice of the interac-
tion strength. This is because, with increasing U/J , the ground state, which is
the eigenstate with the lowest energy, needs to have lower double occupation. For
various U/J this dependency can be seen in fig. ?? for the total double occupancy
which in this setup due to the symmetry is simply: dtot = 6 · (dA + dB)

When the projectile comes closer to the lattice and the electrons move to site
A, the double occupation on site A increases and decreases at site B, as would be
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Figure 4.3: linear regression for the dissipation of the double occupation on site A

expected. The maximum of the double occupation on site A correlates with the
maximum of the density, as expected. The same dependency on the interaction
strength is observed.
While the sum of densities on sites A and B is constant, for the double

occupation dA(t) + dB(t) this is not true. When the projectile passes the lattice,
the total double occupation increases and reaches its maximum value right after
the projectile penetrates the lattice, at the same time as the double occupation on
site A is maximal. This built up double occupation, however, does not completely
vanish again for U/J > 0. For U > 0 the increase in double occupation leads to
an increase in lattice energy that cannot be dissipated on the finite size system.
For U > J the thoughts in 2.2.2 also predict a conservation of double occupation.
Therefore, the particle induced double occupation can be interpreted as the
creation of doublons on site A. The total double occupation is the most important
quantity to measure the appearance of doublons, even when dislocated over the
lattice sites.
When the distance of the projectile increases, the total double occupation

decreases. For late times, if U > 0, the double occupation on all sites approaches
some value higher than the initial one, because the doublon governed by the
Hamiltonian in 2.29 is then fully dislocated on the system. As for the dissipation
time, it can be seen very clearly that the dissipation of the double occupation
over the lattice is slower the larger U/J . For low U/J the dissipation is hard to
analyze due to the short timescale and the oscillations. For some large U/J the
the dissipation speed is analyzed and shown in fig. 4.3. A linear regression is
done for the dissipation of the double occupation on site A, where the doublon
is created. The gradients of the regression function are plotted over the inverse
relative interaction strength J/U . The error bars are due to the regression errors.
The plot shows a good agreement with the theory of 2.2.2, which predicts the
propagation time of the doublons to be proportional to the inverse interaction
strength, because the effective hopping constant is ([17]).
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In the last graph, the projectile energy during the simulation is shown for each
U/J . Its initial value is the same for all U/J , because the same starting velocity
is considered. Neglecting any interaction with the lattice at the distance of 100Å,
the initial projectile energy becomes:

Ep(0) =
1

2
mp~v

2
0 = 3.0121keV. (4.1)

When the projectile is moving close to the lattice, its energy increases. The lattice
electrons move towards the inner sites, while the positively charged atomic cores do
not change their position. This results in the projectile being accelerated. When
moving away, the the projectile gets slowed down and thus its energy decreases.
At a far distance from the lattice, when the projectile is barely interacting with it,
its energy is lower than initially. This energy difference is called stopping power:

Sp = Ep(tmax)− Ep(0), (4.2)

where Ep(t) is the projectile energy and tmax is the maximum time of the sim-
ulation. This energy loss can be explained with the delayed reaction of the
lattice electrons, which results in the projectile being slowed down more when
moving away by the electrons that are already on site A, than accelerated when
moving towards the lattice. For the considered projectile velocities, the stopping
power is small compared to the initial projectile energy. Thus the projectile is
approximately moving at a constant speed, except for when passing the lattice.
Because of energy conservation, the stopping power also measures the energy

transferred to the lattice. For U/J > 0, one reason for the increased lattice energy
is a larger double occupation. The correlation between stopping power and the
remaining double occupation is discussed ?? in the next section.

4.2 Analysis of the doublon production

When observing doublon production, the most interesting quantity is the total
double occupation on the lattice, mainly the difference of the remaining value
drem after the projectile is gone and the initial one dstart, which is a measurement
of the stable increase in double occupation due to doublons. The remaining
double occupation is calculated by averaging over the total double occupation
for t > 0.7tmax. During this time, the double occupation has been observed to
be stable, or at least oscillating around a certain value, for all simulations done.
Because the oscillations are highly stable and symmetric after t = 0.7tmax, the
computed relative errors of this averaging are in any case (except for U=0, which
is not treated) smaller than 1%.

To take into account the impact of the initial projectile position on the doublon
production, the results for the two different initial projectile positions S and C
are compared, see sec 3.
The results for C that are used in this section have been obtained by Balzer

[2]. The main difference to the other simulation results presented in this thesis is
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the projectile velocity being constant. This means that the retroactive effect of
the lattice on the projectile is neglected. Thus the projectile does not get slowed
down or accelerated and moves with the constant velocity v0, this corresponds
to an infinite projectile mass. This should not make a huge difference when
considering most projectile velocities simulated, because of the high projectile
energies. As seen in the previous section for v0 = 5Å/t0, the projectile energy is
of a much larger magnitude than the changes induced by the lattice, which leads
to the velocity barely changing. For low velocities however the energy transfer to
the lattice might be of the magnitude of the kinetic energy. For v0 = 0.5Å/t0, for
example, the initial projectile energy is only around 30eV .

Figure 4.4: Difference of remaining total double occupation and double occupation
at t = 0 for various v0 at U/J = 10.

To evaluate the impact of this difference, simulations calculated by Balzer [2]
have been reproduced with the projectile mass m = mp for various U/J and v0.
The comparison shown in fig 4.4 for U/J = 10 generally indicates a very good
agreement. For low projectile velocities, however, the differences in the results
increase.
For v0 < 1 the agreement would not expected to be as good, because of the

kinetic projectile energy being of the same magnitude as the stopping power. For
higher velocities, the results from Balzer [2] can, however, be compared to those
obtained for the initial projectile position S using m = mp.
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Figure 4.5: Increase in double occupation after the projectile has passed and at
its maximum over U/J . Different projectile velocities are considered
from v0 = 1Å/t0 to v0 = 100Å/t0.

4.2.1 Dependency on U/J

As seen in section 4.1, the production of doublons strongly depends on the
interaction strength of the system. For U/J = 0, no doublons can form. The
larger U/J , the greater the stability of created doublons. But for highly correlated
systems the forming of doublons drastically increases the lattice energy. In
the limit of large U/J , the double occupation thus cannot increase due to the
projectile interaction. Therefore, the double double occupation is expected to
have a maximum value for some finite interaction strength. This can be seen
in fig 4.5. The exact position of this maximum seems to be dependent on the
projectile velocity and on the initial position of the projectile. The dependence
on the initial projectile position suggests the doublon production to be highly
dependent on the symmetry of the whole setup. This is substantiated by the
connection of remaining and maximum double occupation on the lattice, as those
quantities correlate even for relatively small interaction strengths. This correlation
also implies the doublons to be stable for relatively small U/J , leading to the
assumption that the remaining double occupation for U/J ≥ 2 directly depends
on the dynamics occurring right after the projectile penetrates the lattice.

For high projectile velocities, the position of the maximum in doublon produc-
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tion shifts towards smaller interaction strengths. This can be explained by the
short reaction time of the lattice electrons at high projectile velocities and the
increasing on-site repulsion for electrons on one site, which hinders the electrons
in creating doublons on the sites closest to the projectile.

4.2.2 Dependency on v0

To understand the dependence on the projectile velocity, it is best to consider the
limiting cases. For a very low projectile velocity, the reaction time of the system
increases more and more. If the projectile mass is considered to be infinite, the
system behaves adiabatically in the limit for low v0, which means that it is always
in equilibrium due to the long reaction time. In this case the process is completely
time reversible. Therefore, the system has to remaining the groundstate at the
end of the simulation.
For a finite projectile mass, the limiting case for low velocity would be the

projectile simply moving towards the lattice, but not passing it. However, in all
simulations presented in this thesis, the projectile velocity was sufficiently high
to pass the lattice and never be fully stopped. Therefore, this limiting case does
not need to be considered. Nevertheless, lower energy transfer to the lattice is
expected to happen in both cases, due to the more adiabatic behaviour of the
system.
For very high projectile velocities, the reaction time of the lattice electrons is

very short. In the limiting case, no double occupation could be built up. The
system would stay in the same state, because there would be no time to react to
the changing Hamiltonian.

This leads to the expectation for the doublon production to have a maximum
regarding a changing projectile velocity, as was the case regarding changing
U/J . As can be seen in fig. ??, the doublon production for high v0 behaves as
expected. For the projectile position S the doublon production lowers for small
projectile velocities, leaving a single maximum. For C, other maximums can
be seen. The largest maximum is the one at the highest v0. The comparison
of the results for C and S, leads to the assumption that the other maxima are
due the high symmetry of the setup with regard to the initial projectile position
C. The behaviour is reminiscent of oscillations, which could be caused by the
many different symmetries of this setup. For the projectile position S, these other
maxima are not observed.

The general character of the dependency on U/J seems to be highly dependent
on the specific system symmetry, although the trends for very low and high v0

imply the existence of at least one maximum, which is, in all considered cases,
situated at smaller velocities.

4.2.3 Maximum doublon production

Motivated by the existence of maxima looking individually at interaction strength
as well as projectile velocity, now the existence of a maximum with regard to
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Figure 4.6: Dependency of the doublon production on the projectile velocity for
the two initial projectile positions C and S and relative interaction
strengths U/J = 2, 5, 7, 12. For the projectile velocity a logarithmic
scale is used. The results for the projectile position C where obtained
by Balzer [2]

both parameters is inspected. Figure 4.7 and figure 4.8 show surface-plots for the
remaining double occupation, dependent on the relative interaction strength and
the initial projectile velocity. The expected maximum can be clearly seen in both
setups. However, its exact position differs from the expectation formed in the
previous analysis. For S, the maximum is at U/J = 9(+1,−2), v0 = 3(±1)Å/t0
with drem− dstart = 2.13. For C, it can be found at U/J = 15± 3, v0 = 3± 1Å/t0
with rem − dstart = 2.77. The uncertainties for the positions of the maxima
are due the resolution of the grid used to scan the parameters U/J and v0.
Although the interaction strengths of the maxima for C and S as well as their
extent differ significantly, this result allows to somewhat specify the intervals
where large doublon production is expected for this setup: U/J ∈ [7, .., 20] and
v0inÅ/t0 ∈ [2, ..., 10]. The maximum increase in double occupation is 2.13 or
2.77, which for the 12 site system would mean an increase in double occupation
of 0.18 or 0.23.
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Figure 4.7: The remaining increase in double occupation on the lattice dependent
on U/J and v0 for all simulated parameters and the initial projectile
position S . The interpolation for this plot was done with gnuplot. The
maximum is at U/J = 9 and v0 = 3Å/t0, with drem − d[start] = 2.13
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Figure 4.8: Surface-plot for the remaining increase in double occupation on the
lattice dependent on U/J and v0 for all simulated parameters and the
initial projectile position C, generated from the results obtained by
Balzer [2]. Interpolation for this plot was done using gnuplot. The
maximum is at U/J = 15 and v0 = 3Å/t0, with drem − d[start] = 2.77
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4.3 Doublon creation and stopping power

Another interesting aspect is the stopping effect that the doublon production has
on the projectile. The energy increase of the lattice due the increase in double
occupation can be calculated by:

Ed = (drem − dstart) (4.3)

In figure 4.9, this energy is compared to the stopping power for various U/J ,
using initial projectile position S, although the same correlation behaviour is
observed for C. Comparison shows that the correlation of stopping power dras-
tically increases the higher U/J . While the doublon production has close to
no influence for U/J = 2, at U/J = 5 around half of the energy transferred to
the lattice is stored in doublons. For U/J ≥ 12, the effect of doublon creation
completely dominates the stopping of the particle. This interrelation of doublon
production and stopping power is very plausible, considering that the energy per
doublon linearly increases, whereas the possibility of energy dissipation lowers
with increasing U/J . The strong correlation of doublon creation and stopping
power also marks the importance of the studied effect when describing highly
correlated systems. However, to accurately evaluate its influence in stopping an
ion at a realistic surface, models including other energy dissipation possibilities,
like ionization effects and phonons, would be needed.
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Figure 4.9: Energy increase due to double occupation Ed and stopping power S
over the projectile velocity, for U/J = 2, 3, 5, 7, 13, 16

4.4 Two-site setup

To better understand the doublon production in the projectile setup, a relatively
simple setup is considered: A two site setup. The setup is presented in 4.10. It
consists of two lattice sites at r1 = (0, 0, 0) and r2 = (a0, 0, 0) with a0 = 1.42.
The starting position of the projectile is rp(0) = (2a0, 0, 100Å). Due to the high
projectile velocities considered, the projectile can be assumed to move nearly
parallel to the z axes. For this projectile velocity and interaction strength the
projectile moves less than 0.02Å away from x = 2a0. Due to the symmetry of

Figure 4.10: The two site setup with the lattice highlighted in red, consisting of
the sites 1 and 2 with the initial position of the projectile P projected
into the lattice plane

the honeycomb setup when considering the projectile position C, its dynamics
are expected to be similar to those of the two site setup. In fig. 4.11 the time
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Figure 4.11: Density and double occupation of the two site setup for V0 = 5Å/t0
and U/J = 4

dependent density and double occupation observed when simulating the two-site
setup are shown exemplary for v0 = 6Å/t0 and U/J = 4. Although the results
are quantitatively different from those of 4.1, qualitatively they are very similar.
The electron density on site 1 increases as the projectile comes closer and a higher
double occupation is build up. When the projectile is moving away, the double
occupation spreads out over the lattice sites, but the total double occupation
stays at a higher level than initially. This indicates that doublon production
can be observed studying this model. Although this being is a far less realistic
setup, the main advantage of this model is its simplicity. The Hamiltonian for
this system is the Hamiltonian for the dimer with an additional term for the
projectile interaction:

Ĥ(t) = −J
∑
〈i,j〉,α

ĉ†iαĉjα + U
∑
i

n̂i↑n̂i↓ +
∑
i

Wii(t) (n̂i↑ + n̂i↓) (4.4)

Using the basis of 2.2.3 for half filling the Hamiltonian in matrix form becomes:

H =


W11 +W22 0 −J −J

0 W11 +W22 J J

−J J U + 2W11 0

−J J 0 U + 2W22

 (4.5)

This matrix can be diagonalized analytically. For a projectile moving parallel to
the z-axis, the eigenvalues of this Hamiltonian for U/J = 4 can be seen in fig.
4.12. At a large projectile distance those eigenvalues converge towards the dimer
eigenvalues calculated in 2.2.3. However with the projectile close to the lattice
the eigenenergies drastically change. All eigenenergies lower due to the negative
interaction potential. The projectile breaks the symmetry between sites 1 and 2.
The eigenstates also change, which can be seen for example when looking at their
double occupation, see fig. 4.13. As can be seen in fig. 4.12 the perturbation
induced by the projectile prompts EU to overcome the Hubbard gap.
For doublons to be created in the process it is necessary that for large t the

states
∣∣ΨU

〉
and |Ψ+〉 are occupied. Therefore at some point a transition into one

of those states has to happen.
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Figure 4.12: Eigenvalues of the Hubbard dimer depending on the projectile posi-
tion on the z-axis. Using U/J = 4

Figure 4.13: double occupation of the eigenstates for U/J = 4 depending on the
projectile position zp
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Figure 4.14 shows the full time dependent energy spectrum of the two-site
setup for U/J = 4 and v(0) = 6/t0. This is available due to the low number of
basis states of the system. The pixelated and broadened spectrum is due to the
resolution when saving and plotting the spectrum, which in reality consists of
delta-functions. The system behaves as one would predict from just looking at
its eigenvalues. Fist an excitation into

∣∣ΨU
〉
is observed. Later a crossing into

|Ψ+〉 is happening, when the eigenvalues EU and E+ approach again.
However no excitation from the groundstate into |Ψ0〉 is observed. If treating

the whole setup with perturbation theory, although the perturbation by the
projectile is not small, this crossing is expected to be forbidden due to its matrix
element V−0 being zero:

V−0 =
〈
Ψ−
∣∣ (W11 (n1↑ + n1↓) +W22 (n2↑ + n2↓))

∣∣Ψ0
〉

=
〈
Ψ−
∣∣ (W11 (n1↑ + n1↓) +W22 (n2↑ + n2↓))

|Ψ1〉+ |Ψ2〉√
2

=
(〈Ψ2| − 〈Ψ1|) + E+

2J
(〈Ψ3| − 〈Ψ4|)√

2 +
(
E+√

2J

)2

(W11 +W22)(|Ψ1〉+ |Ψ2〉)√
2

=
(W11 +W22)− (W11 +W22)√

4 +
(

2E+√
2J

)2
(4.6)

= 0 (4.7)

Figure 4.14: The time dependent energy spectrum for U/J = 4 and v0 = 6Å/t0
and the time dependent exact eigenvalues of the system for U/J = 4
and v0 = 6Å/t0. The eigenvalues are computed by using the time
dependent projectile position to calculate the interaction

When looking at the time dependent spectrum, one can see the transitions,
occur at the time of the difference of respective eigenvalues being minimal. For
the first transition from |Ψ−〉 to

∣∣ΨU
〉
this is illustrated in fig. 4.15
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Figure 4.15: The time dependent difference of energy eigenvalues EU and E−

with the minimum at t ∼ 16.4t0 on the left. The energy spectrum at
16.4t0 on the right, This is the time when the transition into

∣∣ΨU
〉

can first be observed.

4.4.1 Landau-Zener approach

The structure of the eigenvalues in fig. 4.12 motivates a closer look at the avoided
crossing from |Ψ−〉 to |Ψ0〉. The Landau-Zener theory provides a possible approach
to describe this crossing. It would predict the transitions to happen right at the
time when the difference in the eigenenergies is lowest, which is in agreement
with the observations. The transition probability would then be given by the
Landau-Zener formula, see eq ??, and depend only on the minimum difference of
the eigenenergies ∆Emin and the change in time dE

dt
of the eigenenergies close to

the crossing.
In the following, the first avoided crossing from fig. 4.15 before the penetration

is considered. Its transition probability would be expected to have a significant
impact on the doublon production. First, the transition probabilities for different
U/J are approximately calculated. The time change of the energy difference is
treated with linear regression to enable the use of the Landau-Zener formula, see
fig. ??. For the calculation of the transition probability, a constant projectile
velocity is again assumed. The regressions are down as shown in fig 4.16 When
considering the change in the eigenvalue difference d∆E

dt
, the Landau-Zener formula

becomes:
P−U = e−

2π
~

∆E2
min

1
2

∣∣d∆E
dt

∣∣ (4.8)

When the regression gradients g(U) are used in units of eV/t0 with t0 = ~/eV
and ∆Emin is in eV the formula becomes:

P−U = e−4π∆E2
min

|g|
, (4.9)

where d∆E
dt

= v0
d∆E
dzp

.

Using the regression gradients and averaging for the asymmetry sites for v0 =
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Figure 4.16: EU −E− dependent on the projectile position for different U/J with
the graphs of the respective linear regression

4Å/t0 leads to the probabilities shown in fig. 4.17. While the obtained probabili-
ties are too small to explain the doublon production, the dependence on U has a
maximum, as is necessary to explain the behaviour of the system. This approach
might yield better results when considering both slopes of the crossing, which
would lead to higher transition probabilities. Additionally, the second crossing
after the projectile has passed the lattice could be considered. This section of the
thesis can only be seen as a very basic approach to understanding the occurring
dynamics. With more advanced methods, a quantitatively accurate description
might be possible.
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Figure 4.17: comparison of the transition probability and dmax − dstart for v0 =
10Å/t0





Chapter 5

Conclusions and outlook

In this thesis, the method of exact propagation was used to study the possibility
and extent of doublon production in two dimensional honeycomb clusters. The
projectile induced dynamics that lead to the creation of doublons in the system
were analyzed. The doublons’ dissipation speed dependent on the interaction
strength was observed and was found to be in good agreement with the the-
ory. The impact of interaction strength, projectile velocity and initial projectile
position on the system were observed. The doublon production was found to
have a maximum, which depends on interaction strength and projectile veloc-
ity. However, this maximum is also highly dependent on the setup symmetry,
i.e. initial projectile position. Nevertheless, the area in which the maximum is
situated could be roughly determined using the obtained results. On a two site
setup that shows qualitatively similar behaviour to the honeycomb lattice, the
specific transitions leading to the doublon production could be observed. This
offers the opportunity to study the doublon production by directly looking at the
important transitions. One possible approach to treat these transitions might
be the Landau-Zener formula, which was briefly presented. Although the results
obtained with this formula using the most basic methods and inspecting only
one possible transition could not explain the behaviour of the system, a more
elaborate execution of this theory might lead to much better results.

The data obtained by the simulations done for this thesis can later on be used as
a reference when evolving the model further. The next steps in advancing the
model could consist of including the possibility of ionization effects and examining
the effect of multiple ions penetrating the lattice. With a more extensive model,
the importance of doublon creation for plasma surface processes could then be
evaluated. Additionally the size of the system could be increased, to study the
dissipation of the doublons over more than 12 lattice sites. When moving towards
larger systems, the method of non equilibrium green functions could be used,
which as already been successfully applied to honeycomb systems of 24 or more
sites ([21], [3]).

If, under any circumstances, the local double occupation could be increased
without the doublons instantly dissipating all over the system, an experimentally
measurable change in the system properties would be predicted. This could,
for example, then be experimentally verified by treating materials like graphite
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or intercalation, which have a quasi two dimensional surface, with plasma and
measuring their conductivity.
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