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Abstract
Warm dense matter (WDM) has been an active research field in the past decades. It is an exotic
state ofmatter with densities at and beyond that of a solid but temperatures around 1, 000, 000 𝐾 .
Besides its natural occurrence in astrophysical objects it can be generated in laboratories to-
day. It is even of high economic and ecologic interest since this state of matter appears in a
hydrogen fusion approach, the inertial confinement fusion (ICF). Its theoretical treatment is
very challenging since it shares properties with both solids and plasmas. In particular, WDM
produced in laboratories demands a nonequilibrium quantum description as it is usually gener-
ated using shock waves or similarly drastic methods, where it is driven far out of equilibrium,
and quickly expands afterwards.

In quantum kinetic theory, in particular nonequilibriumGreen functions and reduced density
matrices, non-Markovian equations that accurately include nonideality and dynamical screen-
ing effects (𝐺𝑊 , or also known as RPA) have been known for many decades. These remain
numerically challenging due to the occurrence of memory. The recently found G1–G2 scheme
gives an equivalent description of 𝐺𝑊 and even better approximations, but can even treat the
correlation effects time-locally.

In this work the presently known formulations of the 𝐺𝑊 approximation are discussed first
and compared regarding feasibility for uniform Coulomb systems, a commonly used model for
plasmas. It is found that the computational demands of the G1–G2 scheme for 3D systems are
too high for present computers, especially if the system is not isotropic. In the numerical sec-
tion of this thesis methods are discussed that reduce the RAM demand, the bottleneck of these
methods, and allow quick computations. In contrast to earlier implementations the methods
discussed allow to make most efficient use of the assumed symmetries of the system. An al-
gorithm to solve the 𝐺𝑊 approximations is presented. Its implementation is used to study the
stopping power of awarm dense plasma that is experienced by a proton or an electron projectile.
The non-Markovian 𝐺𝑊 results are compared to prevalent Markovian methods, in particular
the Markovian RPA linear response stopping power. The proton results agree well with the
linear response data, whereas the electron result is reduced significantly. The key differences
leading to this behavior is the projectile mass. The mechanism behind this is derived from the
non-Markovian 𝐺𝑊 collision integral.
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Kurzfassung
Warme dichte Materie (WDM) war in den letzten Jahrzehnten ein sehr aktives Forschungsfeld.
Sie ist ein Materiezustand mit Dichten eines Festkörpers und noch höheren, mit zugleich Tem-
peraturen von etwa 1.000.000 𝐾.Neben ihrem natürlichen Auftreten in astrophysikalischen Ob-
jekten kann sie heutzutage in Laboren erzeugt werden. Sie ist sogar von hohem ökonomischen
und ökologischen Interesse, da dieser Materiezustand in einem Wasserstofffusionsansatz, der
Trägheitsfusion (ICF), auftritt. Die theoretische Beschreibung ist außerordentlich schwierig,
da WDM sowohl Eigenschaften von Festkörpern als auch Plasmen besitzt. Künstliche WDM
auf der Erde benötigt insbesondere eine Nichtgleichgewichtsbeschreibung mit Berücksichti-
gung von Quanteneffekten, da sie üblicherweise mittels Schockwellen oder ähnlich drastischen
Methoden erzeugt wird, wobei das System weit aus dem Gleichgewicht getrieben wird, und an-
schließend schnell expandiert.

In derQuanten-kinetischen Theorie, zu der u.a. Nichtgleichgewichtsgreenfunktionen (NEGF)
und reduzierte Dichtematrizen zählen, sind bereits seit Jahrzehnten nicht-Markov’sche Gle-
ichungen bekannt, welche Nichtidealität und dynamische Abschirmung präzise beschreiben
(𝐺𝑊 , auch bekannt als RPA). Diese bleiben aber weiterhin numerisch aufwendig wegen des
Auftretens von Gedächtniseffekten. Das vor Kurzem aufgestellte G1–G2-Schema ist eine äquiv-
alente Umformulierung der 𝐺𝑊 -Näherung und noch besserer Näherungen, aber kann die Ko-
rrelationseffekte sogar zeitlokal behandeln.

In dieser Arbeit werden zunächst die bekannten Formulierungen der 𝐺𝑊 -Näherung disku-
tiert und im Hinblick auf ihre numerische Umsetzbarkeit auf einem Computer untersucht.
Das betrachtete Modell ist dabei das homogene Coulomb-Gas, welches oft zur Beschreibung
von Plasmen verwendet wird. Es stellt sich heraus, dass das G1–G2-Schema in 3D-Plasmen
für heutige Computer noch zu aufwendig ist, vor allem, wenn das System nicht isotrop ist.
Der numerische Abschnitt dieser Arbeit behandelt numerische Neuerungen, welche den RAM-
Bedarf, welcher die Größe der Rechnungen begrenzt, senken und schnelle Berechnungen er-
lauben. Im Vergleich zu früheren Implementierungen nutzen die vorgestellten Methoden die
angenommene Zylindersymmetrie des Systems voll aus. Ein Algorithmus zur Lösung der 𝐺𝑊 -
Gleichungen wird vorgestellt. Seine Implementierung in einem Computerprogramm wird ge-
nutzt, um das Bremsvermögen eines warmen dichten Plasmas auf ein Protonen- oder Elek-
tronenprojektil zu untersuchen. Die so berechneten nicht-Markov’schen Ergebnisse werden
mit dem weiter verbreiteten Markov’schen Grenzfall, nämlich der RPA im Rahmen der linear-
response-Theorie, verglichen. Die Ergebnisse für das Protonenprojektil stimmen gut überein,
bei den Elektronenprojektilen gibt es hingegen starke Abweichungen. Der zentrale Unterschied
zwischen den Projektilsorten ist die Masse. Der Mechanismus, der zu den unterschiedlichen
Ergebnissen führt, wird aus dem nicht-Markov’schen 𝐺𝑊 -Stoßintegral abgeleitet.
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1. Introduction
Warm dense matter [1–3] (WDM) has been a very active research field in the past two decades.
It is an exotic state ofmatter that occurs at densities at and above that of a solid and temperatures
around 1, 000, 000 𝐾 , cf. also Fig. 1.1. In nature, WDM can be found in astrophysical objects [4–
6], such as brown and white dwarfs, neutron stars or the interior of our sun. On earth, it can be
generated and investigated in laboratories under tremendous effort, for example by means of Z-
pinches [7] or shock compression using free electron lasers such as LINAC [8] or the European
XFEL [9]. UnderstandingWDM is also of high economic and ecologic interest since the inertial
confinement fusion (ICF) [10, 11], a promising approach to hydrogen fusion, involves matter in
this state. As one of the most recent breakthroughs, ignition has been achieved [12].

The theoretical description of warm dense matter is highly challenging, since its density
and temperature domain is such that neither classical plasma nor pure solid state theory yield
accurate results. In this state, electrons exert quantum behavior and the interaction energy
is on the scale of the kinetic energy. An accurate description thus needs to account for both
dynamical screening and strong coupling at the same time. Among the most used theoreti-
cal approaches are Quantum Kinetic Theory [13, 14], Quantum Hydrodynamics [15], Density
Functional Theory [16, 17], Time-Dependent Density Functional Theory [18] and Quantum
Monte Carlo (QMC) simulations [19, 20]. Most of these methods are also applicable to solids.
Out of these, QMC yields the most precise ab initio results for warm dense matter but is, so far,
limited to equilibrium. Laboratory WDM, on the other hand, is generated using shock waves
of some form and expands afterwards. The description of these experiments thus requires a
nonequilibrium formalism to describe the ever-changing conditions. The development of new
methods that are applicable to nonequilibrium has thus been very active since.

In particular, the stopping of fast particles in these plasmas is an interesting quantity: Su-
perthermal particles, e.g. helium cores generated by hydrogen fusion, are stopped by the sur-
rounding medium, which in turn is heated up. In fact, there is a well-researched strategy that
revolves around using a dense particle beam to ignite a plasma, cf. Refs. [21–23]. Being depen-
dent on a lot of parameters of the plasma, such as density, temperature, ionization state, the
stopping power serves as a useful diagnostic tool.

The stopping power has been investigated over many decades in many density and temper-
ature regions. Most approaches however, such as linear response, are Markovian [24–26]. This
means that stationarity of the target system is implicitly assumed. In order to account for ef-
fects due to the nonequilibrium nature of laboratory WDM, the dynamics of the correlations of
target particles, especially the electrons, must be regarded.

QuantumKinetic Theories, in particular ReducedDensityMatrices andNonequilibriumGreen
functions, allow a precise non-Markovian description of the correlation dynamics mentioned
above via their collision integrals that contain information about all previous single-particle
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Figure 1.1.: Sketch of the occurrence of warm dense matter in the density/temperature plane, taken
from Ref. [3]. Given are also the isolines of the Brückner parameter 𝑟𝑠 and the quantum
degeneracy parameter Θ, both defined in sect. 2.3.2. WDM approximately spans the region
𝑟𝑠 = 0.1...10, Θ = 0.1...10.

distributions. Expressions for the description of nonequilibrium screening dynamics (GW ap-
proximation) and for the description of strong coupling (T-matrix) exist and can even easily be
combined [27] in the G1–G2 scheme, a reformulation, which drastically reduces the computa-
tional cost in some systems, cf. Refs. [28, 29]. Quantum kinetic approaches can be applied to a
variety of system geometries and symmetries, but are often applied to finite systems [30, 31] or
to uniform systems. Uniform plasmas can be modelled using the uniform electron gas model
and generalizations to the multi-component case.

This thesis focuses on the application of Nonequilibrium Green functions using the Gener-
alized Kadanoff–Baym ansatz [32] to uniform systems. As it turns out, the G1–G2 scheme is
actually computationally quite expensive for 3D systems, especially if isotropy is not assumed.
Scaling considerations give insight into which method is the least expensive to tackle a given
system geometry. 3D cylinder symmetric systems in particular allow the investigation of many
interesting physical situations, e.g. one-sided particle beams impinging on the system or time-
dependent electric fields. Numerical techniques that are useful for the efficient computation of
dynamics using the GW selfenergy are introduced. These techniques are used in a computer
program to calculate the stopping power of a uniform warm dense plasma acting on a proton
projectile or on an electron projectile, the results of which are compared to corresponding RPA
linear response stopping powers [25].
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1.1. Thesis outline
Chapter 1 Introduction

Chapter 2 Nonequilibrium many-body theory
After a short introduction into second quantization the Nonequilibrium Green functions
are defined. Their physical meaning and contained information is discussed. Their equa-
tions of motion are derived, which couple to higher-order Green functions. The self-
energy is defined, for which approximations, in particular Hartree–Fock, second order
approximation, and the 𝐺𝑊 approximation are explained. The Generalized Kadanoff–
Baym ansatz (GKBA) for a simplification of the equations and a time-local reformulation,
the G1–G2 scheme, are introduced. This chapter ends with an introduction into spatially
uniform systems and the specification of all needed quantities for this type of system.

Chapter 3 Simulation variants for spatially uniform systems
The most used selfenergy approximations in the past, SOA and GWA, are available in
equivalent forms with very different numerical scalings. For GWA, a third reformulation
exists which is sketched in this chapter. The scalings of all methods are compared for dif-
ferent system dimensions and symmetries, showing that 3D cylinder symmetric plasmas
are least expensive using the ’old’ method. Long time GKBA simulations are perturbed
by aliasing. The final section of this chapter revisits the scalings in view of this problem.

Chapter 4 Numerical implementation (cylinder symmetric plasma)
The selfenergies considered can be computed efficiently using Fourier transformations.
The assumed cylinder symmetry can be used to reduce memory demand and compu-
tational cost by means of a Hankel transform, of which the numerical treatment is de-
scribed. After some general remarks regarding discretization and quadrature formulas
used, the 𝐺𝑊 simulation procedure is explained in two steps: The computation of colli-
sion integrals in second order approximation already contains a lot of the subprocedures
of 𝐺𝑊 , but is a bit more clear. Then the additional complexity of the 𝐺𝑊 Dyson integral
is introduced and it is explained, how it modifies the SOA algorithm.

Chapter 5 Application to stopping power
The previously described computer program is used to compute the time-dependent stop-
ping power. At first, the setup to model the stopping process in a NEGF calculation is
explained. In particular, we are interested in proton projectiles and electron projectiles.
Electron projectiles, due to their indistinguishability with electrons of the target, need
modified equations of motion, in comparison to proton projectiles. Next, the simulation
results are presented: time-dependent distribution functions, their time-derivatives, and
the change of observables over time. Stopping power is extracted from the result and
compared to static RPA results. Agreement and disagreement can be explained analyti-
cally.

Chapter 5 Conclusion and outlook
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2. Nonequilibrium many-body theory
Abstract: This chapter gives an introduction to the Nonequilibrium Green functions. In par-
ticular, it covers their definition, the information contained in them, their equations of motion
including approximations to the effective two-particle interaction (selfenergy) and another use-
ful approximation, the Generalized Kadanoff–Baym ansatz (GKBA). The G1–G2 scheme, a novel
reformulation of the GKBA with different numerical scalings, is introduced next. This chapter
closes with an introduction into uniform systems and their implications for Green functions
calculations and the G1–G2 scheme.

2.1. Nonequilibrium Green functions (NEGF)

2.1.1. Time-dependent Schrödinger equation
Dynamics of quantum systems follow the Schrödinger equation [33]

iℏ d
d𝑡 |Ψ(𝑡)⟩ = �̂� |Ψ(𝑡)⟩, (2.1)

where |Ψ(𝑡)⟩ is a state vector, and �̂� is the Hamiltonian of the system. A relativistic generaliza-
tion is the Dirac equation [34]. These equations can be solved analytically only in the simplest
cases. With growing particle number the numerical treatment becomes exponentially more
involved. This can be seen in spatial coordinate representation,

Ψ(𝑡, r1𝜎1, ..., r𝑛𝜎𝑛) = ⟨r1𝜎1, ..., r𝑛𝜎𝑛|Ψ(𝑡)⟩ . (2.2)

The solution on a discretized spatial grid of 𝑁 grid points involves in total 𝑁 𝑛 values of Ψ
for each spin configuration, making this approach viable only for few-particle systems. In
practice, the Schrödinger equation is solved using the Configuration Interaction (CI) method.
Another severe limitation of this approach is that it allows only pure states, whereas for finite
temperature problems, statistical ensembles [35] are relevant.

Various methods have been developed to reduce the computational effort needed to treat
quantum-many-body problems numerically. While the underlying theories are exact, they all
depend on quantities, e.g. exchange-correlation potential or selfenergy. These quantities cap-
ture the many-body effects, whose exact forms are unknown and thus are approximated in
practical calculations. The most common methods are

• Density Functional Theory (DFT) [36, 37]: DFT was initially a pure ground-state theory,
but it has been generalized to finite temperature [38]. The core idea behind practical
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DFT is to map the interacting (ground) state in an external potential onto a noninter-
acting state in an effective potential, introducing the exchange-correlation potential. It
is often combined with a molecular dynamics simulation for the ions. Due to its low
computational cost DFT is suitable to simulate rather large sections of a solid. This is
especially true in comparison to the following methods.

• Time-Dependent Density Functional Theory (TDDFT) [39]: In a time-dependent external
field, the interacting many-body state is mapped onto a noninteracting state in a time-
dependent effective potential, which depends on all previous times. In most applications,
adiabatic approximations are used. That means, a time-local exchange-correlation poten-
tial from DFT is applied instead. Just as DFT, TDDFT is often combined with molecular
dynamics and can be used for rather large system sizes.

• Reduced Density Matrices (RDMs) [14, 40]: RDMs simplify the description of the full
𝑁 -particle density matrix, but retain the ability to describe ensembles and can be used
to compute expectation values of few-particle observables. Their equations of motion
couple to higher-order RDMs, yielding the BBGKY hierarchy [41]. While being highly
accurate, their computational scaling makes them viable only for smaller system sizes.
RDMs can be applied to nonequilibrium or to equilibrium, where simplifications occur.

• Nonequilibrium Green functions (NEGF) [14, 42–44]: NEGF can be understood as a two-
time dependent generalization to the RDMs, which also grants access to spectral informa-
tion. NEGF are computationally even more expensive than RDMs. As the most general
approach, NEGF also yield the most accurate results out of the many-body methods men-
tioned, but simulations are limited to small system sizes and ultrashort time scales. NEGF
are related to equilibrium Green functions. Their theory provides a method to system-
atically construct more accurate selfenergy approximations that are applicable in both
cases.

2.1.2. Second quantization

Throughout this thesis, the following in principle applies: if ± or ∓ is used in a formula, the
upper sign is valid for bosons and the lower sign is valid for fermions.

Second quantization is a way to formulate quantum mechanics for an unfixed number of
particles and it is also the approach that leads to field quantization, which forms the basis for
many more advanced quantum theories such as quantization of electronmagnetism, Klein–
Gordon field, Dirac field, Quantum Chromodynamics, and the Yang–Mills theory.

Wave functions of multiple indistinguishable particles are (anti-)symmetric under particle
exchange, i.e.

Ψ(r1𝜎1, .., r𝑖𝜎𝑖, .., r𝑗𝜎𝑗 , .., r𝑛𝜎𝑛) = ±Ψ(r1𝜎1, .., r𝑗𝜎𝑗 , .., r𝑖𝜎𝑖, .., r𝑛𝜎𝑛) . (2.3)

The 𝑛-particle space of (anti-)symmetric states is denoted as H(𝑛)
± . The Hilbert space needed to
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formulate second quantization, the Fock space [45], is defined as

F±(𝐻) =
∞
⨁
𝑛=0

H(𝑛)
± . (2.4)

Thismeans, it is defined as theHilbert space completion of the direct sum of all (anti-)symmetric
𝑛-particle Hilbert spaces. The 0-particle Hilbert space contains only |0⟩, the vacuum state, and
is isomorphic to ℂ.

Let {|𝜙𝑛⟩} be a complete orthonormal basis of the one-particle Hilbert space. Then the (anti-
)symmetrized product states (Slater determinants[46] or permanents) form an orthonormal ba-
sis of the (anti-)symmetrized Fock space. These normalized basis states are usually written in
occupation number representation. This means that the product state consisting of single particle
orbitals |𝜙𝑛1⟩, ..., |𝜙𝑛𝑚⟩ with multiplicities 𝛼1, ..., 𝛼𝑚 is written as

index:

|0, ..., 0, 𝛼1
↑
𝑛1

, 0, ..., 0, 𝛼2
↑
𝑛2

, 0, ..., 0, 𝛼𝑚
↑
𝑛𝑚

, 0, 0, ...⟩, (2.5)

with 𝛼𝑖 in the positions 𝑛𝑖 and 0’s everywhere else. For fermions only 𝛼𝑖 ∈ {0, 1} is possible due
to Pauli blocking, which is why there also the notations |𝑛1, 𝑛2, ..., 𝑛𝑚⟩ and |{𝑛}⟩ are common. In
the bosonic case all natural numbers are allowed. Such states are called Fock states.

On this basis, we define the annihilation operator �̂�𝑖 and the creation operator �̂�†𝑖 , which
link the 𝑛-particle subspace to the 𝑛 + 1 and the 𝑛 − 1-particle subspace respectively, which is
why they are also called ladder operators. Through linearity these operators are defined on the
whole Fock space. The actions of these operators on a Fock state are given by

�̂�†𝑖 | 𝑛1, 𝑛2, ..., 𝑛𝑖, ...⟩ = (±1)𝛼√1 ± 𝑛𝑖 | 𝑛1, 𝑛2, ..., 𝑛𝑖 + 1, ...⟩ (2.6)
�̂�𝑖 | 𝑛1, 𝑛2, ..., 𝑛𝑖, ...⟩ = (±1)𝛼√𝑛𝑖 | 𝑛1, 𝑛2, ..., 𝑛𝑖 − 1, ...⟩, (2.7)

where 𝛼 = ∑𝑖
𝑗=1 𝑛𝑗 induces (anti-)symmetry of the states. The factor √1 − 𝑛𝑖 for the creator in

the fermionic case already introduces Pauli blocking: The creation of a particle in an occupied
orbital yields 0. The occupancy number operator is a simple combination of the two ladder
operators,

�̂�𝑖 | 𝑛1, 𝑛2, ..., 𝑛𝑖, ... ⟩ ∶= �̂�†𝑖 �̂�𝑖 | 𝑛1, 𝑛2, ..., 𝑛𝑖, ... ⟩ = 𝑛𝑖 | 𝑛1, 𝑛2, ..., 𝑛𝑖, ... ⟩ . (2.8)

All Fock states are eigenstates of this operator and 𝑛𝑖 is the eigenvalue.
The ladder operators obey the following commutator (anti-commutator) relations for bosons

(fermions):

[�̂�†𝑖 , �̂�†𝑗 ]∓ = 0 ,
[�̂�𝑖, �̂�𝑗]∓ = 0 , (2.9)

[�̂�𝑖, �̂�†𝑗 ]∓ = 𝛿𝑖,𝑗
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with [�̂�, �̂�]∓ ≡ �̂��̂� ∓ �̂��̂�. These relations are valid on the whole Fock space and not just simple
Fock states, which is why they are usually used in formal derivations, instead of Eqs. (2.6) and
(2.7).

Using these two operators, we can easily write down any 𝑛-particle operator �̂�(𝑛) in a form
that is defined on the whole Fock space. For arbitrary 1-particle operators �̂�(1) and 2-particle
operators �̂�(2) we get

�̂�(1) = ∑
𝑖,𝑗
⟨ 𝑖 | �̂�(1) | 𝑗 ⟩�̂�†𝑖 �̂�𝑗 =∶ ∑

𝑖,𝑗
𝐴(1)
𝑖𝑗 �̂�†𝑖 �̂�𝑗 , (2.10)

�̂�(2) = ∑
𝑖,𝑗,𝑘,𝑙

⟨ 𝑖𝑗 | �̂�(2) | 𝑘𝑙 ⟩�̂�†𝑖 �̂�†𝑗 �̂�𝑙 �̂�𝑘 =∶ ∑
𝑖,𝑗

𝐴(2)
𝑖𝑗𝑘𝑙 �̂�†𝑖 �̂�†𝑗 �̂�𝑙 �̂�𝑘 , (2.11)

where 𝐴(1)
𝑖𝑗 and 𝐴(2)

𝑖𝑗𝑘𝑙 are the matrix elements of the operators.
If we apply this to a general Hamiltonian, we get the second quantized version

�̂� (𝑡) = ∑
𝑖𝑗

ℎ(0)𝑖𝑗 �̂�†𝑖 �̂�𝑗
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

�̂� (0)

+ 1
2 ∑𝑖𝑗𝑘𝑙

𝑤𝑖𝑗𝑘𝑙 �̂�†𝑖 �̂�†𝑗 �̂�𝑙 �̂�𝑘
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

�̂�

+ ∑
𝑖𝑗

𝑈 ext𝑖𝑗 (𝑡) �̂�†𝑖 �̂�𝑗
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

�̂� ext

, (2.12)

where the first term, �̂� (0), accounts for single-particle contributions, such as kinetic energy
and some static external field, the second term �̂� accounts for two-particle interactions. The
third term, �̂� ext(𝑡), adds the possibility for a time-dependent perturbation, e.g. given by a time-
dependent external field.

2.1.3. Heisenberg picture
In the Schrödinger picture physical states are time-dependent according to the Schrödinger
equation. Using the unitary time propagation Operator, �̂� (𝑡 , 𝑡′), which satisfies

iℏ d
d𝑡 �̂� (𝑡 , 𝑡

′) = �̂� (𝑡) �̂� (𝑡 , 𝑡′) , �̂� (𝑡 , 𝑡1) �̂� (𝑡1, 𝑡′) = �̂� (𝑡, 𝑡′) , (2.13)

the time-dependence of a state can be written as |𝜓 (𝑡)⟩ = �̂� (𝑡, 𝑡0) | 𝜓0⟩. We compute the time-
dependent expectation value of some Schrödinger operator according to

⟨�̂�⟩(𝑡) = ⟨𝜓 (𝑡) | �̂�𝑆(𝑡) | 𝜓 (𝑡)⟩ = ⟨𝜓0 | �̂� (𝑡0, 𝑡) �̂�𝑆(𝑡) �̂� (𝑡 , 𝑡0) | 𝜓0⟩ =∶ ⟨𝜓0 | �̂�𝐻 (𝑡) | 𝜓0⟩ , (2.14)

where we combined �̂�𝑆(𝑡) with the time propagation operators into a Heisenberg operator
�̂�𝐻 (𝑡), and instead |𝜓0⟩ is treated as time-independent. Its equation of motion, the Heisenberg
equation, is derived by computing the time derivative

d
d𝑡 �̂�𝐻 (𝑡) = i

ℏ [�̂�𝐻 , �̂�𝐻 ]− + (𝜕�̂�𝑆
𝜕𝑡 )

𝐻
, (2.15)
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where Eq. (2.13) and its adjoint were used.
Of particular interest for NEGF theory are the Heisenberg equations of motion for the anni-

hilation and creation operator, where in the following the index 𝐻 is omitted. From the second
quantized version of the Hamiltonian, Eq. (2.12), and using the (anti-)commutator relation in
Eq. (2.9), we find the equations of motion of the ladder operators,

iℏ d
d𝑡 �̂�𝑖(𝑡) = ∑

𝑗
{ℎ(0)𝑖𝑗 + 𝑈 ext𝑖𝑗 (𝑡)} �̂�𝑗(𝑡) +∑

𝑗𝑘𝑙
𝑤𝑖𝑗𝑘𝑙 �̂�†𝑗 (𝑡) �̂�𝑙(𝑡) �̂�𝑘(𝑡) , (2.16)

−iℏ d
d𝑡 �̂�

†
𝑖 (𝑡) = ∑

𝑗
�̂�𝑗(𝑡) {ℎ(0)𝑗𝑖 + 𝑈 ext𝑗𝑖 (𝑡)} +∑

𝑗𝑘𝑙
�̂�†𝑗 (𝑡) �̂�†𝑘 (𝑡) �̂�𝑙(𝑡) 𝑤𝑗𝑘𝑖𝑙 . (2.17)

2.1.4. Nonequilibrium Green functions
Motivation

Let ̂𝜌0 be the density operator describing an ensemble at 𝑡0. Then the density operator at time 𝑡 is
given by ̂𝜌(𝑡) = �̂� (𝑡, 𝑡0) ̂𝜌0�̂� (𝑡0, 𝑡) and we can compute the time-dependent ensemble expectation
value of some observable �̂� via

⟨�̂�⟩(𝑡) = Tr {�̂� (𝑡 , 𝑡0) ̂𝜌0 �̂� (𝑡0, 𝑡) �̂�} = Tr { ̂𝜌0 �̂� (𝑡0, 𝑡) �̂� �̂� (𝑡 , 𝑡0)} = Tr { ̂𝜌0 �̂�𝐻 (𝑡)} , (2.18)

where we haved used the cyclic invariance of the trace operator and identified the Heisenberg
variant of the observable �̂�. Now consider for example a one-particle operator �̂� in second
quantization in this expression

⟨�̂�⟩(𝑡) = Tr{ ̂𝜌0∑
𝑖𝑗

𝐴𝑖𝑗 �̂�†𝑖 (𝑡) �̂�𝑗(𝑡) } = ∑
𝑖𝑗

𝐴𝑖𝑗Tr { ̂𝜌0 �̂�†𝑖 (𝑡) �̂�𝑗(𝑡)} = ∑
𝑖𝑗

𝐴𝑖𝑗 ⟨�̂�†𝑖 (𝑡) �̂�𝑗(𝑡)⟩ ̂𝜌0
. (2.19)

This shows that the time-dependent expectation values of all single-particle observables can be
computed, given that ⟨�̂�†𝑖 (𝑡) �̂�𝑗(𝑡)⟩ ̂𝜌0

for all combinations of 𝑖 and 𝑗 are known.

Definition of the NEGF

The NEGF are a generalization of the correlators mentioned above, in three ways:

• Arbitrary even numbers of ladder operators are allowed, half of them annihilators and
half of them creators. These quantities naturally appear in the equations of motion.

• Each ladder operator depends on its own time argument 𝑡𝑖. Through this, the NEGF give
access to spectral information by Fourier transformingwith respect to the time difference.

• Time arguments 𝑡𝑖 are generalized to times on the Keldysh time contour [47] 𝑧𝑖. Through
this generalization of times, time integrals and time ordering,Wick’s theorem and the dia-
gram techniques known from equilibriumGreen function theory remain valid in nonequi-
librium. However, this is not within the scope of this thesis.
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Figure 2.1.: The Keldysh contour. For every physical time 𝑡 there is one contour time on the forward
branch, 𝑡−, and one on the backward branch, 𝑡+. The contour starts at 𝑡0−, the forward branch
variant of the initial time 𝑡0. It goes to 𝑡 = ∞ and then back to 𝑡0+, the backward branch
variant of 𝑡0.

In addition all operators are ordered along the time contour by the contour ordering operator
T𝐶 . The definition of the 𝑁 -particle NEGF is given by

𝐺(𝑁 )
𝑖1,...,𝑖𝑁 ,𝑗1,...,𝑗𝑁 (𝑧1, ..., 𝑧𝑁 , 𝑧′1, ..., 𝑧′𝑁 ) ∶=

1
(iℏ)𝑁 ⟨T𝐶 {�̂�𝑖1(𝑧1)...�̂�𝑖𝑁 (𝑧𝑁 ) �̂�

†
𝑗𝑁 (𝑧′𝑁 )...�̂�

†
𝑗1(𝑧′1)}⟩ ̂𝜌0

. (2.20)

The Keldysh time contour, see Fig. 2.1, splits any physical time 𝑡 into two times, one on the
forward branch 𝑡− and one on the backward branch 𝑡+. The operator T𝐶 orders the operators
according to their contour time arguments, with later times moved to the left. For example, all
times on the backward branch are later than times on the forward branch. In that sense, the
times from Fig. 2.1 are ordered 𝑡0− ≤ 𝑡− < 𝑡+ ≤ 𝑡0+.

In the following we write ⟨...⟩ ≡ ⟨...⟩ ̂𝜌0 and use 𝑧, 𝑧′ for contour times, where it does not
matter which branch they are on.

Equations of motion (Martin–Schwinger hierarchy)

The equations of motion of the NEGF are acquired by partial differentiation of Eq. (2.20) with
respect to a contour time 𝑧𝑖 or 𝑧′𝑖 and using the equations of motion for the ladder operators,
Eqs. (2.16) and (2.17). The most important case is that of the one-particle NEGF (1pNEGF),
which we will just call 𝐺.
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iℏ 𝜕
𝜕𝑧𝐺𝑖𝑗(𝑧, 𝑧

′) = iℏ 𝜕
𝜕𝑧

1
iℏ ⟨T𝐶 {�̂�𝑖(𝑧) �̂�†𝑗 (𝑧′)}⟩

= 𝛿𝐶(𝑧, 𝑧′) 𝛿𝑖𝑗 + ⟨T𝐶 {[𝜕𝑧 �̂�𝑖(𝑧)] �̂�†𝑗 (𝑧′)}⟩
= 𝛿𝐶(𝑧, 𝑧′) 𝛿𝑖𝑗 +∑

𝑘
ℎ(0)𝑖𝑘 (𝑧) 1

iℏ ⟨T𝐶 {�̂�𝑘(𝑧) �̂�†𝑗 (𝑧′)}⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐺𝑘𝑗(𝑧,𝑧′)

+ ∑
𝑘𝑚𝑛

𝑤𝑖𝑘𝑚𝑛 1iℏ ⟨T𝐶 {�̂�†𝑘 (𝑧+) �̂�𝑛(𝑧) �̂�𝑚(𝑧) �̂�†𝑗 (𝑧′)}⟩

= 𝛿𝐶(𝑧, 𝑧′) 𝛿𝑖𝑗 +∑
𝑘
ℎ(0)𝑖𝑘 (𝑧) 𝐺𝑘𝑗(𝑧, 𝑧′) ± ∑

𝑘𝑚𝑛
𝑤𝑖𝑘𝑚𝑛 1

iℏ ⟨T𝐶 {�̂�𝑚(𝑧) �̂�𝑛(𝑧) �̂�†𝑘 (𝑧′) �̂�†𝑗 (𝑧+)}⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
iℏ𝐺(2)

𝑚𝑛𝑗𝑘(𝑧,𝑧,𝑧′,𝑧+)

= 𝛿𝐶(𝑧, 𝑧′) 𝛿𝑖𝑗 +∑
𝑘
ℎ(0)𝑖𝑘 (𝑧) 𝐺𝑘𝑗(𝑧, 𝑧′) ± iℏ∑

𝑘𝑚𝑛
𝑤𝑖𝑘𝑚𝑛 𝐺(2)

𝑚𝑛𝑗𝑘(𝑧, 𝑧, 𝑧′, 𝑧+) . (2.21)

The 𝛿𝐶(𝑧, 𝑧′) is a generalization of the Dirac delta distribution to the Keldysh contour. It
accounts for the case, where the two operators change their ordering and their expectation
value instantly changes due to the (anti-)commutator relations. Then the time derivative of the
ladder operators was inserted, introducing two additional ladder operators in the last term. The
1pNEGF is identified easily. In order to find an expression containing the 2pNEGF, the ladder
operators were swapped, which also gave rise to the ±1 factor. To ensure the correct ordering,
an infinitesimally shifted time 𝑧± = 𝑧 ± 𝜖, 𝜖 → 0 was introduced. In a similar way one can
treat the derivative with respect to the second time argument, 𝑧′, which can also be acquired
by taking the Hermitian conjugate of the expression above,

−iℏ 𝜕
𝜕𝑧′𝐺𝑖𝑗(𝑧, 𝑧

′) = 𝛿𝐶(𝑧, 𝑧′) 𝛿𝑖𝑗 +∑
𝑘
𝐺𝑖𝑘(𝑧, 𝑧′) ℎ(0)𝑘𝑗 (𝑧′) ± iℏ∑

𝑘𝑚𝑛
𝐺(2)
𝑖𝑘𝑚𝑛(𝑧, 𝑧′−, 𝑧′, 𝑧′) 𝑤𝑚𝑛𝑗𝑘 . (2.22)

We see that the dynamics of the 1pNEGF couple to the two-particle NEGF 𝐺(2).
In textbook discussions the interaction is often generalized to be dependent on two times:

𝑤 ⟶ 𝑤(𝑧, 𝑧′) = 𝑤𝛿𝐶(𝑧, 𝑧′). In this notation the equations of motion for the 𝑁 -particle NEGF
are given, see Ref. [44], by

∑
𝑙
(iℏ𝛿𝑘𝑙 𝜕

𝜕𝑧𝑘
− ℎ(0)𝑘𝑙 (𝑧𝑘))𝐺(𝑁 )

𝑖1..𝑙 ..𝑖𝑁 ,𝑗1..𝑗𝑁 (𝑧1..𝑧𝑘 ..𝑧𝑁 , 𝑧′1..𝑧′𝑁 ) =

= ±iℏ∑
𝑙𝑚𝑛

∫𝐶d ̄𝑧 𝑤𝑘𝑙𝑚𝑛(𝑧𝑘 , ̄𝑧) 𝐺(𝑁+1)
𝑖1..𝑚..𝑖𝑁 𝑛,𝑗1..𝑗𝑁 𝑙(𝑧1.. ̄𝑧..𝑧𝑁 ̄𝑧, 𝑧′1...𝑧𝑁 ̄𝑧+)

+
𝑁
∑
𝑙=1

(−1)𝑙+𝑘𝛿(𝑧′𝑙 , 𝑧𝑘) 𝐺(𝑁−1)
𝑖1..��𝑖𝑙 ..𝑖𝑁 ,𝑗1..��𝑗𝑘 ..𝑗𝑁 (𝑧1..�𝑧𝑙 ..𝑧𝑁 , 𝑧

′1..��𝑧′𝑘 ..𝑧′𝑁 ) , (2.23)
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∑
𝑙
(−iℏ𝛿𝑙𝑘 𝜕

𝜕𝑧′𝑘
− ℎ(0)𝑙𝑘 (𝑧′𝑘)) 𝐺(𝑁 )

𝑖1..𝑖𝑁 ,𝑗1..𝑙 ..𝑗𝑁 (𝑧1..𝑧𝑁 , 𝑧′1..𝑧′𝑘 ..𝑧′𝑁 ) =

= ∓iℏ∑
𝑙𝑚𝑛

∫𝐶d ̄𝑧 𝐺(𝑁+1)
𝑖1..𝑖𝑁 𝑙 ,𝑗1..𝑚..𝑗𝑁 𝑛(𝑧1..𝑧𝑁 ̄𝑧−, 𝑧′1.. ̄𝑧..𝑧𝑁 ̄𝑧) 𝑤𝑚𝑛𝑘𝑙( ̄𝑧, 𝑧′𝑘)

+
𝑁
∑
𝑙=1

(−1)𝑙+𝑘𝛿(𝑧′𝑘 , 𝑧𝑙) 𝐺(𝑁−1)
𝑖1..��𝑖𝑘 ..𝑖𝑁 ,𝑗1..��𝑗𝑙 ..𝑗𝑁 (𝑧1..��𝑧𝑘 ..𝑧𝑁 , 𝑧

′1..��𝑧′𝑙 ..𝑧′𝑁 ) . (2.24)

Again, the dynamics of the 𝑁 -particle NEGF couple to the 𝑁 + 1-particle NEGF. The term
coupling to the 𝑁 − 1-particle NEGF is due to operator swapping and the commutators. These
equations are known as the Martin–Schwinger hierarchy. The solution of the complete hierar-
chy is equivalent to the solution of the time-dependent Schrödinger equation, but unfortunately
not less costly. In practical solution the hierarchy is usually truncated and only the 1-particle
NEGF is kept. Correlation effects are included in the selfenergy Σ, as introduced in the follow-
ing.

The selfenergy

We define the selfenergy Σ as that two-contour-time matrix that fulfills the equations

iℏ 𝜕
𝜕𝑧𝐺𝑖𝑗(𝑧, 𝑧

′) = 𝛿𝐶(𝑧, 𝑧′) 𝛿𝑖𝑗 +∑
𝑘
ℎ(0)𝑖𝑘 (𝑧) 𝐺𝑘𝑗(𝑧, 𝑧′) +∑

𝑘
∫𝐶 d ̄𝑧 Σ𝑖𝑘(𝑧, ̄𝑧) 𝐺𝑘𝑗( ̄𝑧, 𝑧′) , (2.25)

−iℏ 𝜕
𝜕𝑧′𝐺𝑖𝑗(𝑧, 𝑧

′) = 𝛿𝐶(𝑧, 𝑧′) 𝛿𝑖𝑗 +∑
𝑘
𝐺𝑖𝑘(𝑧, 𝑧′) ℎ(0)𝑘𝑗 (𝑧′) +∑

𝑘
∫𝐶 d ̄𝑧 𝐺𝑖𝑘(𝑧, ̄𝑧) Σ𝑘𝑗( ̄𝑧, 𝑧′) , (2.26)

i.e. effectively replacing 𝐺(2) and substituting it with a simpler quantity. The selfenergy is a
unique functional of 𝐺 and is dependent on all previous physical times (causality), but in most
situations its exact form is unknown. There are however systematic methods to in principle
construct approximations of arbitrary accuracy, see Ref. [44] for a textbook introduction. These
approximations quickly become computationally highly expensive. In practice thus only a few
approximations are used, where the cost could be reduced by means of special resummation
techniques. Some of those will be discussed in section 2.1.5.

Let 𝐺0 be the noninteracting 1pNEGF. Then the integral equations

𝐺𝑖𝑗(𝑧, 𝑧′) = 𝐺0𝑖𝑗(𝑧, 𝑧′) +∑
𝑘𝑙

∫𝐶 d ̄𝑧 d ̄̄𝑧 𝐺0
𝑖𝑘(𝑧, ̄𝑧) Σ𝑘𝑙( ̄𝑧, ̄̄𝑧) 𝐺𝑙𝑗( ̄̄𝑧, 𝑧′) , (2.27)

𝐺𝑖𝑗(𝑧, 𝑧′) = 𝐺0𝑖𝑗(𝑧, 𝑧′) +∑
𝑘𝑙

∫𝐶 d ̄𝑧 d ̄̄𝑧 𝐺𝑖𝑘(𝑧, ̄𝑧) Σ𝑘𝑙( ̄𝑧, ̄̄𝑧) 𝐺0
𝑙𝑗( ̄̄𝑧, 𝑧′) (2.28)

are called Dyson equations for the 1pNEGF and they are equivalent to the integro-differential
equations (2.25) and (2.26). The Dyson equations are especially useful if one is interested in
equilibrium properties: Then all functions are only dependent on the difference between the
time arguments. In this case, the Dyson equation can be simplified through Fourier transform
with respect to the difference between its two time arguments.
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t0
t0

t0 +

t0 i

t =

Figure 2.2.: Initial correlations in the Konstantinov-Perel formalism. Two times on the vertical track
correspond to a pure equilibrium Green function calculation. Starting from thermal equi-
librium, perturbations can be introduced and the response of the system can be studied.

Initial correlations

There are mainly two ways to incorporate initial equilibrium correlations into NEGF calcula-
tions:

• Extend the Keldysh contour and introduce an imaginary time branch, cf. Fig. 2.2

• Start from an uncorrelated ideal thermal distribution and adiabatically switch on the in-
teraction, cf. Fig. 2.3

The first kind of extension, the Konstantinov-Perel formalism, links the NEGF theory to the
theory of imaginary time equilibrium Green functions, the so-called Matsubara Green func-
tions. Given the formal exponential expression for the time evolution operator, �̂� (𝑡 , 𝑡′),

�̂� (𝑡 , 𝑡′) = ̂𝑇 exp ( 1
iℏ ∫

𝑡

𝑡′
d ̄𝑡 �̂� ( ̄𝑡)) , (2.29)

the canonical density operator can be formally written as

̂𝜌0 = 1
𝑍 exp (−𝛽�̂�) = 1

𝑍 �̂� (𝑡0 − iℏ𝛽, 𝑡0) , (2.30)

as a propagation in imaginary time. Here 𝑍 = Tr (exp−𝛽�̂�) is the canonical partition function.
Such a calculation typically starts with solving the equilibrium Green function problem, i.e. the
Matsubara formalism. Then a time-dependent perturbation is switched on and the response
of the system can be investigated, starting from the equilibrium state. This nonequilibrium
formalism is also called the Konstantinov-Perel formalism. In this thesis another necessary ap-
proximation, the Generalized Kadanoff–Baym ansatz (GKBA), is used, which is not compatible
with this formalism.
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t0
t0

t0 +

t =

Figure 2.3.: Initial correlations using adiabatic switching. At 𝑡 → −∞ the system is in some noninter-
acting thermal state. Then the interaction is switched on and reaches its full value at 𝑡0,
generating an interacting initial state.

The second approach to initial correlations is called adiabatic switching, with an extension
of the contour as sketched in Fig. 2.3. We start at 𝑡 = −∞, where the system is noninteracting
and in thermal equilibrium. Then the interaction strength is switched on adiabatically, i.e.
𝑤 ⟶ 𝑤(𝑡) = 𝑤 ⋅𝑓 (𝑡) for a smooth switching function [48] with lim𝑡→−∞ 𝑓 (𝑡) = 0, 𝑓 (𝑡 ≥ 𝑡0) = 1,
which reaches its full strength at 𝑡 = 𝑡0. The ideal switching function is increasing infinitely
slowly, thereby not introducing any additional excitation into the system at any time. The
applicability of this procedure is supported by the Gell-Mann and Low theorem [49], which
states that eigenstates of the noninteracting Hamiltonian, using this procedure, evolve into an
eigenstate of the interacting Hamiltonian.

This formalism, i.e. without the explicit vertical track, is also called the Keldysh formalism.
It is compatible with the GKBA and thus the only possible choice for this work.

Real-time components

Quantities on the Keldysh contour are mathematically difficult objects. In practice, we make a
transition to components depending on two real times. Let 𝑘(𝑧, 𝑧′) be a contour quantity, e.g. a
1pNEGF. We define the greater " > " and less " < " components by fixing the times to branches
on the contour:

𝑘>(𝑡, 𝑡′) ∶= 𝑘(𝑡+, 𝑡′−) , 𝑘<(𝑡, 𝑡′) ∶= 𝑘(𝑡−, 𝑡′+). (2.31)

In the case of 𝑘 = 𝐺, the orders of the ladder operators are now fixed, i.e. we define

𝐺>𝑖𝑗 (𝑡, 𝑡′) ∶= 1
iℏ ⟨�̂�𝑖(𝑡) �̂�†𝑗 (𝑡′)⟩ , 𝐺<𝑖𝑗 (𝑡, 𝑡′) ∶= ± 1

iℏ ⟨�̂�†𝑗 (𝑡′) �̂�𝑖(𝑡)⟩ . (2.32)

𝑁 -particle quantities would have 𝑁! such components, but those are not studied in this work.
The " > " (" < ") component of 𝐺𝑖𝑗 can be interpreted as complex transition amplitudes: A
particle (hole) is created in state 𝑗 (𝑖) at time 𝑡′ (𝑡). This modified system is then propagated to
time 𝑡 (𝑡′), where a particle (hole) in state 𝑖 (𝑗) is annihilated again. As discussed before, for equal
times this probes the occupation of the states in the system. The analysis of the Green function
at two different times, especially after a transition into the frequency domain, contains a lot of
information about the dynamical response of the system to the added particle (hole).
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The retarded and advanced components, 𝑘R/A, are in general given by the expressions

𝑘R(𝑡, 𝑡′) ∶= 𝑘𝛿 (𝑡) 𝛿(𝑡 − 𝑡′) + Θ(𝑡 − 𝑡′) [𝑘>(𝑡, 𝑡′) − 𝑘<(𝑡, 𝑡′)] , (2.33)

𝑘A(𝑡, 𝑡′) ∶= 𝑘𝛿 (𝑡) 𝛿(𝑡 − 𝑡′) − Θ(𝑡′ − 𝑡) [𝑘>(𝑡, 𝑡′) − 𝑘<(𝑡, 𝑡′)] . (2.34)

However, the 𝑘𝛿 (𝑡) component of the relevant 1-particle functions, which appear in this thesis,
vanishes, so that only the difference term remains. For the methods used in this thesis these
components are the most important. The latter components are also called spectral components.
The spectral function,𝐴(𝑇 , 𝜔), is accessible from the spectral Green function components by first
making a transition to center of mass times and relative times, 𝐺R/A(𝑇 , Δ𝑡), taking its Fourier
transform with respect to Δ𝑡, 𝐺R/A(𝑇 , 𝜔) and then computing

𝐴(𝑇 , 𝜔) = iℏ [𝐺R(𝑇 , 𝜔) − 𝐺A(𝑇 , 𝜔)] . (2.35)

The entry 𝐴𝑗𝑗(𝑇 , 𝜔) of the spectral function describes the probability that an added or removed
fermion1 with the single-particle state 𝑗 at time 𝑇 has the energy 𝜔. The density of states (DOS)
is also directly accessible from the spectral function by tracing over all single-particle states,
i.e.

𝐷(𝑇 , 𝜔) = ∑
𝑗
𝐴𝑗𝑗(𝑇 , 𝜔) , (2.36)

which describes the number of existing single-particle states for a given energy ℏ𝜔.
Many products in contour calculus are of convolution type2. i.e. for two contour quantities

𝑎, 𝑏 we compute 𝑐 = 𝑎 ⋅ 𝑏 as

𝑐(𝑧, 𝑧′) = ∫𝐶 d ̄𝑧 𝑎(𝑧, ̄𝑧) 𝑏( ̄𝑧, 𝑧′) . (2.37)

The Langreth-Wilkins rules, see Ref. [50], state that the components of 𝑐 can be computed
from the components of 𝑎 and 𝑏 by using non-contour integrals. In the Keldysh formalism, i.e.
without imaginary branch, we have

𝑐≷(𝑡, 𝑡′) =
∞

∫
𝑡0

d ̄𝑡 𝑎R(𝑡, ̄𝑡)𝑏≷( ̄𝑡 , 𝑡′) +
∞

∫
𝑡0

d ̄𝑡 𝑎≷(𝑡, ̄𝑡) 𝑏A( ̄𝑡 , 𝑡′) , (2.38)

𝑐R/A(𝑡, 𝑡′) =
∞

∫
𝑡0

d ̄𝑡 𝑎R/A(𝑡, ̄𝑡) 𝑏R/A( ̄𝑡 , 𝑡′) . (2.39)

1This is more complex for bosons.
2Of course, Eq. (2.37) or Eqs. (2.38) and (2.39) do not contain the usual convolution expression. This form

however can be achieved in the equilibrium case where only the time difference Δ𝑡 = 𝑡′ − 𝑡 matters.
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In particular, when applied to the first hierarchy equation, we find the real-time Kadanoff–Baym
equations (KBE):

iℏ 𝜕
𝜕𝑡 𝐺

≷
𝑖𝑗 (𝑡, 𝑡′) = ∑

𝑘
ℎ(0)𝑖𝑘 (𝑡) 𝐺≷

𝑘𝑗(𝑡, 𝑡′) +∑
𝑘
∫
𝑡

𝑡0
d ̄𝑡 ΣR𝑖𝑘 (𝑡, ̄𝑡) 𝐺≷

𝑘𝑗( ̄𝑡 , 𝑡′) +∑
𝑘
∫
𝑡′

𝑡0
d ̄𝑡 Σ≷𝑖𝑘(𝑡, ̄𝑡) 𝐺A𝑘𝑗 ( ̄𝑡 , 𝑡′) ,

(2.40)

−iℏ 𝜕
𝜕𝑡 𝐺

≷
𝑖𝑗 (𝑡, 𝑡′) = ∑

𝑘
𝐺≷
𝑖𝑘(𝑡, 𝑡′) ℎ(0)𝑘𝑗 (𝑡′) +∑

𝑘
∫
𝑡

𝑡0
d ̄𝑡 𝐺R𝑖𝑘 (𝑡, ̄𝑡) Σ≷𝑘𝑗( ̄𝑡 , 𝑡′) +∑

𝑘
∫
𝑡′

𝑡0
d ̄𝑡 𝐺≷

𝑖𝑘(𝑡, ̄𝑡) ΣA𝑘𝑗( ̄𝑡 , 𝑡′) .

(2.41)

In the Konstantinov-Perel formalism we have three more components: the Matsubara compo-
nent 𝑘𝑀 with both times on the imaginary branch, and the 𝑘⌈ and 𝑘⌉ components with one time
on the real and one time on the imaginary branch. Accordingly, the Langreth-Wilkins in this
formalism contain additional integrals.

2.1.5. Selfenergy approximations
The exact selfenergy Σ from Eq. (2.25),(2.26) contains the full information about the many-
body system. Since this exact information is only known in very special model situations, in
practice many-body approximations are needed. The selfenergy is usually split into the time-
local Hartree–Fock part, ΣHF(𝑧, 𝑧′) ∼ 𝛿𝐶(𝑧, 𝑧′), and the correlation part Σcorr

Σ(𝑧, 𝑧′) = ΣHF(𝑧, 𝑧′) + Σcorr(𝑧, 𝑧′). (2.42)

While the Hartree–Fock part is known exactly, the correct description of correlation poses a
much more difficult task and is usually only possible in an approximate manner.

Any approximation to the many-body effects should fulfill basic conservation laws (given the
corresponding symmetries), i.e. particle number conservation, energy conservation, momen-
tum conservation and angular momentum conservation. If one chooses the strategy of finding
an approximate 𝐺(2), a sufficient criterion for conservation found by Kadanoff and Baym, cf.
Refs. [51, 52], is that 𝐺(2) is symmetrical under particle exchange, i.e.

𝐺(2)
𝑖𝑗𝑘𝑙(𝑧1, 𝑧2, 𝑧+1 , 𝑧+2 ) = 𝐺(2)

𝑗𝑖𝑙𝑘(𝑧2, 𝑧1, 𝑧+2 , 𝑧+1 ) . (2.43)

In particular, this applies to the Hartree–Fock approximation, where we write

𝐺(2)
𝑖𝑗𝑘𝑙(𝑧1, 𝑧2, 𝑧3, 𝑧4) = 𝐺𝑖𝑘(𝑧1, 𝑧3) 𝐺𝑗𝑙(𝑧2, 𝑧4) ± 𝐺𝑖𝑙(𝑧1, 𝑧4) 𝐺𝑗𝑘(𝑧2, 𝑧3) = 𝐺(2)

𝑗𝑖𝑙𝑘(𝑧2, 𝑧1, 𝑧4, 𝑧3) . (2.44)

It turns out that finding an approximate 𝐺(2) is not the most natural approach to many-body
dynamics. A derivation similar to that of Eq. (2.43) yields four conditions that Σ has to fulfill to
be conserving. The particle number should be conserved in any closed system. The affiliated
condition is that

∑
𝑘
∫𝐶 d ̄𝑧 [Σ𝑖𝑘(𝑧1, ̄𝑧) 𝐺𝑘𝑖( ̄𝑧, 𝑧+1 ) − 𝐺𝑖𝑘(𝑧1, ̄𝑧) Σ𝑘𝑖( ̄𝑧, 𝑧+1 )] = 0 . (2.45)



Nonequilibrium Green functions (NEGF) 17

Momentum is only conserved in spatially uniform systems, which is why the condition is writ-
ten in spatial coordinate representation,

∫ℝ𝑛
dx1 dx2 ∫𝐶 d ̄𝑧 [Σ(x1𝑧1, x2 ̄𝑧) ∇1𝐺(x2 ̄𝑧, x1𝑧+1 ) − 𝐺(x1𝑧1, x2 ̄𝑧) ∇1Σ(x2 ̄𝑧, x1𝑧+1 )] = 0, (2.46)

where ∇1 acts on the first coordinate argument, i.e. x2. Angular momentum conservation is
guaranteed, if

∫ℝ𝑛
dx1 dx2 ∫𝐶 d ̄𝑧 r1 × [Σ(x1𝑧1, x2 ̄𝑧) ∇1𝐺(x2 ̄𝑧, x1𝑧+1 ) − 𝐺(x1𝑧1, x2 ̄𝑧) ∇1Σ(x2 ̄𝑧, x1𝑧+1 )] = 0 , (2.47)

and energy is conserved if

∫ℝ𝑛
dx1 dx2 ∫𝐶 d ̄𝑧{14

d
d𝑧1

[Σ(x1𝑧1, x2 ̄𝑧) 𝐺(x2 ̄𝑧, x1𝑧+1 ) + 𝐺(x1𝑧1, x2 ̄𝑧) Σ(x2 ̄𝑧, x1𝑧+1 )]

− [Σ(x1𝑧1, x2 ̄𝑧) ( d
d𝑧1

𝐺(x2 ̄𝑧, x1𝑧+1 )) + ( d
d𝑧1

𝐺(x1𝑧1, x2 ̄𝑧)) Σ(x2 ̄𝑧, x1𝑧+1 )] } = 0 .
(2.48)

Fortunately, Baym found a large class of approximations that already fulfill all these conditions,
the Φ-derivable approximations, cf. Ref. [51]. Consider an arbitrary functional of 𝐺 that we call
Φ. Then

Σ𝑖𝑗(𝑧, 𝑧′) = 𝛿Φ[𝐺]
𝛿𝐺𝑗𝑖(𝑧′, 𝑧+)

, (2.49)

i.e. the functional derivative of Φ with respect to 𝐺, is a conserving selfenergy approximation.
The Second Order Approximation (SOA) and the 𝐺𝑊 Approximation (GWA), that will both be
explained in this chapter, are Φ-derivable, and thus conserving approximations. The Hartree–
Fock approximation can be cast into a selfenergy form that is also Φ-derivable.

Contour algebra can greatly be visualized using Feynman diagrams, but they can even be
used to derive approximations. Every diagram, e.g. in Eq. (2.55), represents a formula consist-
ing of Green functions, interactions and products of convolution type, cf. Eq. (2.37). Prefactors
are usually included into the rules how to interpret a given diagram. In diagrammatic formal-
ism, the Φ functional is a so called vacuum diagram, i.e. all Green function lines and interaction
lines are closed. Functional derivatives are computed by cutting every Green function line once
and adding up the resulting diagrams, as is demonstrated in practice in Ref. [48]. Diagrams can
be classified by order of interaction or by similarities in the structure. Resummation techniques
have been found to treat entire series of certain types of diagrams (𝐺𝑊 , T-matrix approxima-
tions) at once. A detailed introduction into diagrammatic techniques unfortunately is beyond
the scope of this thesis. The interested reader is referred to the book by Stefanucci and Van
Leeuwen, Ref. [44], which gives a thorough introduction into these methods.

In the following the three approximations that are the most important for this work are
introduced:
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• The Hartree–Fock approximation is the simplest approximation and forms the basis for
the later discussed HF-GKBA.

• The SOA is the simplest approximation which goes beyond mean-field.

• The GWA is the simplest approximation that includes dynamical screening and treats
plasmons in a similar way as particles. Since dynamical screening is an important mech-
anism in dense plasmas, here the 𝐺𝑊 Approximation is by far the best out of these three.

Hartree–Fock Approximation

The Hartree–Fock (HF) selfenergy can be found from the Hartree–Fock two-particle Green
function,

𝐺(2),HF
𝑖𝑗𝑘𝑙 (𝑧1, 𝑧2, 𝑧3, 𝑧4) = 𝐺𝑖𝑘(𝑧1, 𝑧3) 𝐺𝑗𝑙(𝑧2, 𝑧4) ± 𝐺𝑖𝑙(𝑧1, 𝑧4) 𝐺𝑗𝑘(𝑧2, 𝑧3) . (2.50)

The first term, the Hartree term, describes two particles/holes propagating in time without
interacting with each other. The second term, the Fock term, accounts for effects due to (anti-
)symmetry of the wave functions, i.e. for exchange effects in the mean-field. Since it fulfills Eq.
(2.43), we already know that it is conserving. We compute the collision integral from Eq. (2.21)
and get

±iℏ∑
𝑘𝑚𝑛

𝑤𝑖𝑘𝑚𝑛𝐺(2),HF
𝑚𝑛𝑗𝑘 (𝑧, 𝑧, 𝑧′, 𝑧+) = ±iℏ∑

𝑘𝑚𝑛
𝑤𝑖𝑘𝑚𝑛 [𝐺𝑚𝑗(𝑧, 𝑧′) 𝐺𝑛𝑘(𝑧, 𝑧+) ± 𝐺𝑚𝑘(𝑧, 𝑧+) 𝐺𝑛𝑗(𝑧, 𝑧′)]

(2.51)

= ±iℏ∑
𝑘𝑚𝑛

[𝑤𝑖𝑘𝑚𝑛 ± 𝑤𝑖𝑘𝑛𝑚] 𝐺𝑛𝑘(𝑧, 𝑧+) 𝐺𝑚𝑗(𝑧, 𝑧′) (2.52)

= ∑
𝑚

∫𝐶 d ̄𝑧 ΣHF𝑖𝑚 (𝑧, ̄𝑧) 𝐺𝑚𝑗( ̄𝑧, 𝑧′), (2.53)

where we defined the HF selfenergy ΣHF𝑖𝑘 (𝑧, ̄𝑧) = ±iℏ𝛿𝐶(𝑧, ̄𝑧)∑
𝑘𝑛
[𝑤𝑖𝑘𝑚𝑛 ± 𝑤𝑖𝑘𝑛𝑚] 𝐺𝑛𝑘(𝑧, 𝑧+). We

identify the less Green function 𝐺<
𝑛𝑘(𝑡) = 𝐺𝑛𝑘(𝑧, 𝑧+), 𝑡 being the real time corresponding to 𝑧,

since the 𝑧+ time argument makes sure that the contour ordering always yields the < compo-
nent.

The insertion of Eq. (2.50) into the adjoint first hierarchy equation, Eq. (2.22), leads to the
same expression for the selfenergy. The diagrammatic expansion shows two properties of this
approximation:

1. The HF approximation contains all diagrams with singular time dependence (contour 𝛿).
It follows that no memory integral occurs, which makes it inexpensive (but also inaccu-
rate) in comparison to higher order approximations.

2. It contains all terms that are first order in the interaction.
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Since the HF selfenergy is time-local, it is typically combined with the single-particle Hamilto-
nian, to find an effective HF Hamiltonian,

ℎHF𝑖𝑗 (𝑡) ∶= ℎ(0)𝑖𝑗 ± iℏ∑
𝑘𝑛

[𝑤𝑖𝑘𝑗𝑛 ± 𝑤𝑖𝑘𝑛𝑗] 𝐺<
𝑛𝑘(𝑡, 𝑡), (2.54)

and only the correlation part of selfenergy approximations is written into the collision integral
on the right in Eqs. (2.25) and (2.26).

With regard to the aim to discuss spatially uniform gases, it is noteworthy that the Hartree–
Fock approximation, as all mean-field theories, does not describe any collisions in this system.
Algebraically, this is a consequence of the diagonality of 𝐺 and Σ in its basis indeces, as will be
discussed in Sect. 2.3. The diagrams representing the Hartree–Fock approximation are

�Σ =� + � . (2.55)

Solid lines with an arrow represent a Green function 𝐺, i.e. a particle. Wiggly lines represent
the interaction 𝑤 . In order to get some physical intuition about Feynman diagrams and the
selfenergy, let us revisit the Dyson equation, Eq. (2.27), whose diagram representation is given
by

�
=
�

+
�Σ . (2.56)

Here, the dashed line with an arrow represents the noninteracting Green function, 𝐺0. The
Dyson equation describes that the propagation amplitude of the particle (hole) from 𝑡1 to 𝑡2 rep-
resented by 𝐺 has a contribution from the propagation without interactions inside the system
(𝐺0), and a contribution that is divided into three steps: First, the particle (hole) is propagated
freely to 𝑡3. Then it performs a few explicit collisions with other particles described by the
selfenergy Σ during the time interval [𝑡3, 𝑡4]. The last time interval, [𝑡4, 𝑡2] is propagated using
the interacting Green function 𝐺. Each diagram in Σ corresponds to an individual scattering
process. These processes can greatly be imagined for direct terms, e.g. Hartree, but are more
counterintuitive for exchange diagrams, e.g. Fock. The Hartree term represents a direct inter-
action between two uncorrelated particles.
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Second Order Approximation (SOA)

The SOA, as the name suggests, includes all diagrams up to second order in the interaction,
i.e.

�Σ =� + � + � + � . (2.57)

The first two diagrams are the Hartree–Fock diagrams, which are of first order in the interac-
tion. The third diagram is called the second order direct diagram and the fourth one is called the
second order exchange diagram. The correlation diagrams translate into

ΣSOA𝑖𝑗 (𝑧, 𝑧′) = ±(iℏ)2 ∑
𝑚𝑛𝑝𝑞𝑟𝑠

[𝐺𝑚𝑛(𝑧, 𝑧′) 𝐺𝑝𝑞(𝑧, 𝑧′) 𝑤𝑖𝑠𝑝𝑚(𝑧) 𝑤𝑞𝑛𝑗𝑟 (𝑧′) 𝐺𝑟 𝑠(𝑧′, 𝑧)

± 𝑤𝑖𝑞𝑟𝑚(𝑧) 𝐺𝑚𝑛(𝑧, 𝑧′) 𝑤𝑛𝑠𝑗𝑝(𝑧′) 𝐺𝑝𝑞(𝑧′, 𝑧) 𝐺𝑟 𝑠(𝑧′, 𝑧)] . (2.58)

Being second order in the interaction, this approximation is suitable to describe weakly inter-
acting systems. The second order diagrams, in contrast to Hartree–Fock, do not contain the
contour 𝛿, and the memory integral can thus not be simplified. The selfenergy at time (𝑧, 𝑧′)
is dependent only on Green functions at the same or at transposed times, in contrast to higher
selfenergy approximations. We will see in the context of the GKBA, how this leads to a strong
computational simplification.

As we will see in the numerics section the second order exchange diagram is difficult to
compute for uniform gases, which is why that diagram is usually neglected. The direct diagram
by itself is conserving as well.

GW Approximation (GWA)

In general, the expansion of Σ in a power series of 𝑤 is a bad approach: It is known to converge
slowly, and in the case of metals it even is diverging. Lars Hedin [53] therefore proposed to
include multiple diagram parts that end with interaction lines into an effective, screened inter-
action𝑊 , represented by a double wiggly line, cf. Eq. (2.59). In the GWA, that Hedin proposed,
the Dyson equation of 𝑊 is written as

�
=
�

+
�

, (2.59)

which is in full notation:

𝑊𝑖𝑗𝑘𝑙(𝑧, 𝑧′) = 𝑤𝑖𝑗𝑘𝑙(𝑧, 𝑧′) ± iℏ ∑
𝑝𝑞𝑟𝑠

𝑤𝑖𝑝𝑘𝑞(𝑧) ∫𝐶 d ̄𝑧 𝐺𝑞𝑟 (𝑧, ̄𝑧) 𝐺𝑠𝑝( ̄𝑧, 𝑧)𝑊𝑟 𝑗𝑠𝑙( ̄𝑧, 𝑧′) . (2.60)
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The loop, the 𝐺𝐺 product, is also known as the zeroth order polarizability. The GWA is named
after its expression for the exchange-correlation part of the selfenergy,

Σxc𝑖𝑗 (𝑧, 𝑧′) = iℏ∑
𝑘𝑙

𝐺𝑘𝑙(𝑧, 𝑧′+)𝑊𝑖𝑙𝑘𝑗(𝑧, 𝑧′) , (2.61)

or in Feynman diagrams,

�Σ =� + � . (2.62)

The 𝐺𝑊 diagram is the Fock diagram, just with the screened interaction instead of the bare
interaction. By iterating the Dyson equation, Eq. (2.59), in the 𝐺𝑊 diagram, we get

�Σc = � +� +� + ... . (2.63)

The 𝐺𝑊 selfenergy contains an infinite amount of diagrams with increasing numbers of inter-
actions. The restriction is that all diagrams are of the structure seen above. This diagrammatic
expansion also demonstrates the physics that are described by the 𝐺𝑊 approximation: The first
term describes a two-part collision: A particle (hole) interacts with an particle-hole pair at 𝑡3,
creating a polarization. This polarization and the initial particle (hole) propagate in time until
they interact a second time at 𝑡4. The second diagram describes an additional mechanism: The
polarization induces another polarization, which then in turn interacts with the initial parti-
cle (hole). This process can be continued with arbitrary numbers of intermediate polarization
steps and as such self-consistently describes dynamical screening. In a more pictorial manner:
A test particle polarizes the environment, which in turn polarizes the environment a second
time, which polarizes the environment a third time, and so on. This does not happen instantly,
and the screening takes some time to adapt to changes in the system.

The screened interaction can also be regarded as the plasmon Green function [14], where𝑊<
describes the occupation of the plasmon modes. The dynamics of plasmons and particles are
coupled in the 𝐺𝑊 approximation. The 𝐺𝑊 approximation is numerically quite demanding,
since the Dyson equation (2.60) introduces memory into the dynamics of 𝑊 , and some entry
𝑊(𝑧, 𝑧′) cannot be solely computed from 𝐺(𝑧, 𝑧′) and 𝐺(𝑧′, 𝑧). Full two-time calculations using
𝐺𝑊 are not possible for uniform systems due to a divergence appearing in the q → 0 limit, cf.
Ref. [54]. This divergence, however, is removed by using the GKBA, introduced in Sect. 2.1.6,
also cf. Ref. [55] for a derivation.

Due to its high numerical cost, the 𝐺𝑊 approximation has often approximated in the past for
an additional time by replacing 𝐺 or 𝑊 in the Dyson equation with a noninteracting one: The
𝐺0𝑊0 approximation is the least costly one, cf. Refs. [56–58]. More expensive are 𝐺0𝑊 and 𝐺𝑊0
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[59]. The group of H. Haug used a relaxation time approximation to simplify the polarizability
[60] which allowed an approximate solution of the equations. A fully self-consistent numerical
implementation of the 𝐺𝑊 approximation with GKBA was used by Bányai et al. [61] to predict
the buildup of screening of newly generated carriers following a laser pulse in GaAs on the
time scale of the plasma period. This was later confirmed experimentally by Leitenstorfer et
al., cf. Refs. [62, 63].

Hedin’s equations [53] are a useful tool to construct better approximations than 𝐺𝑊 : This is
achieved by using a better approximation to the so-called vertex function, Γ. Accordingly, these
approximations are called vertex corrected or written 𝐺𝑊Γ. To my knowledge, such approxima-
tions so far have only been applied to equilibrium.

Other approximations

The selfenergies discussed above are the ones relevant for this thesis. There aremore commonly
used approximations, cf. the review paper by Schlünzen [48], with their own advantages, that
are only sketched in the following.

If one chooses to expand the selfenergy in powers of the interaction 𝑤 , one finds the Born
series, whereof the first order (HF) and the Second Order Approximation have been introduced.
The Third Order Approximation [48] (TOA) contains 10 additional diagrams with 3 interaction
lines. Summation techniques similar to that of GW (but with regard to a different type of
diagrams) lead to the 𝑇 -Matrix Approximations (TMA); In a similar manner to 𝐺𝑊 , in the 𝑇 -
matrix approaches a second integral equation has to be solved simultaneously, the Lippmann-
Schwinger equation for the 𝑇 -matrix [64]. Originating from scattering theory, the T-matrix
selfenergies excel at describing strong coupling, multiple scatterings and bound states.

These selfenergies typically are not used for dynamics in uniform systems3. The TOA uses
diagrams that are extremely difficult to compute. Due to long-range interactions in the electron
gas, the T-matrix selfenergies are also very expensive to compute. The TMA shines in model
systems with strongly localized interaction, such as the Hubbard model, cf. Sect. B.1.

2.1.6. Generalized Kadanoff–Baym ansatz (GKBA)

The time-diagonal values of 𝐺< are directly related to the 1pRDM, 𝜌≷ = ±iℏ𝐺≷, hence the
time diagonal propagation is considered the most important for many applications. The time-
diagonal KBE is acquired by combining the usual KBEs (2.38) and (2.39),

iℏ d
d𝑡 𝐺

<𝑖𝑗 (𝑡, 𝑡) − [ℎHF(𝑡), 𝐺<(𝑡, 𝑡)]𝑖𝑗 = ∑
𝑘
∫
𝑡

𝑡0
d ̄𝑡 {Σ>𝑖𝑘(𝑡, ̄𝑡) 𝐺<

𝑘𝑗( ̄𝑡 , 𝑡) − Σ<𝑖𝑘(𝑡, ̄𝑡) 𝐺>
𝑘𝑗( ̄𝑡 , 𝑡)} + ℎ.𝑐.. , (2.64)

where the commutator [ℎHF(𝑡) 𝐺<(𝑡, 𝑡)]𝑖𝑗 = ∑𝑘 ℎHF𝑖𝑘 (𝑡) 𝐺<
𝑘𝑗(𝑡, 𝑡) − 𝐺<

𝑖𝑘(𝑡, 𝑡) ℎHF𝑘𝑗 (𝑡) is introduced.

This equation is exact, if all the time off-diagonal values 𝐺≷(𝑡, 𝑡′) are known. The idea by
Lipavský et al [32] was to reconstruct these values from the time-diagonal values of 𝐺≷,making

3At least not in the present non-Markovian form, i.e. with memory integrals.
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the approach effectively dependent on only one time. They derived an expression for the exact
reconstruction, which for 𝑡1 ≥ 𝑡2 is given by

𝐺≷
𝑖𝑗 (𝑡1 ≥ 𝑡2) = −iℏ∑

𝑘
𝐺R𝑖𝑘 (𝑡1, 𝑡2) 𝐺≷

𝑘𝑗(𝑡2, 𝑡2) +∑
𝑘𝑙

𝑡1

∫
𝑡2

d ̄̄𝑡
𝑡2

∫
𝑡0

d ̄𝑡 𝐺R𝑖𝑘 (𝑡1, ̄̄𝑡 ) Σ≷𝑘𝑙( ̄̄𝑡 , ̄𝑡) 𝐺A𝑙𝑗 ( ̄𝑡 , 𝑡2)

+∑
𝑘𝑙

𝑡1

∫
𝑡2

d ̄̄𝑡
𝑡2

∫
𝑡0

d ̄𝑡 𝐺R𝑖𝑘 (𝑡1, ̄̄𝑡 ) ΣR𝑘𝑙 ( ̄̄𝑡 , ̄𝑡) 𝐺≷
𝑙𝑗 ( ̄𝑡 , 𝑡2) (2.65)

and for 𝑡1 < 𝑡2 is given by

𝐺≷
𝑖𝑗 (𝑡1 < 𝑡2) = +iℏ∑

𝑘
𝐺≷
𝑖𝑘(𝑡1, 𝑡1) 𝐺A𝑘𝑗 (𝑡1, 𝑡2) −∑

𝑘𝑙

𝑡1

∫
𝑡2

d ̄̄𝑡
𝑡2

∫
𝑡0

d ̄𝑡 𝐺R𝑖𝑘 (𝑡1, ̄̄𝑡 ) Σ≷𝑘𝑙( ̄̄𝑡 , ̄𝑡) 𝐺A𝑙𝑗 ( ̄𝑡 , 𝑡2)

−∑
𝑘𝑙

𝑡1

∫
𝑡2

d ̄̄𝑡
𝑡2

∫
𝑡0

d ̄𝑡 𝐺≷
𝑖𝑘(𝑡1, ̄̄𝑡 ) ΣA𝑘𝑙 ( ̄̄𝑡 , ̄𝑡) 𝐺A𝑙𝑗 ( ̄𝑡 , 𝑡2) . (2.66)

Since so far no explicit solution to these equations is known, the reconstruction is often ap-
proximated by dropping the integral terms, yielding

𝐺≷
𝑖𝑗 (𝑡1, 𝑡2) = −iℏ∑

𝑘
(𝐺R𝑖𝑘 (𝑡1, 𝑡2) 𝐺≷

𝑘𝑗(𝑡2, 𝑡2) − 𝐺≷
𝑖𝑘(𝑡1, 𝑡1) 𝐺A𝑘𝑗 (𝑡1, 𝑡2)) . (2.67)

Of course, if one aims to use the spectral components computed from 𝐺≷(𝑡1, 𝑡2), nothing is
won, since we need the components we want to reconstruct for the reconstruction itself. Thus
some kind of approximation has to be used and depending on it is the accuracy of the resulting
simulation. Mainly due to efficiency reasons, the free GKBA and the Hartree–Fock-GKBA4 are
very successful:

𝐺R/A,HF
𝑖𝑗 (𝑡1, 𝑡2) = ± 1

iℏΘ (±[𝑡1 − 𝑡2]) exp { 1
iℏ ∫

𝑡1

𝑡2
d ̄𝑡 ℎHF( ̄𝑡) }

𝑖𝑗
, (2.68)

where for once the upper sign is for the R component and the lower sign is for the A com-
ponent. The free GKBA is gotten from the HF case by neglecting the mean-field part. The
reconstruction and thus propagation on the off-diagonal is a lot simpler than in the full two-
time case, since no collision integral (and thus selfenergies) need to be computed there. Free

4In the interpretation of the Feynman diagrams, the interacting Green functions were used, i.e. between two
explicit collisions, the particles are evolved in time under the full influence of all particles. GKBA results on
the other hand have to be interpreted in such a way that basically the same collision processes happen (time-
diagonal), but that between these explicit collisions described by the selfenergy, the particles evolve without
two-particle interactions or in mean-field, instead of experiencing additional collisions in the meantime.
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and HF-GKBA are still conserving and are in great parts equivalent to the Reduced Density
Matrix formalism [14], but the NEGF approach allows a more systematic theory of selfenergy
approximations. A GKBA calculation can be regarded as a standard NEGF calculation, where
the collision integral is dropped in the off-diagonal propagation. Since the computation of the
selfenergy is the most difficult part, this corresponds to a significant computational simplifi-
cation. In free GKBA case, and if no explicit time dependence of ℎ(0) is given, it simplifies
even more. More sophisticated approaches to approximate 𝐺R/A, constructed by approximat-
ing expressions from its Dyson equation, are described in Ref. [65], called correlated GKBA.
The HF- and the free GKBA are undamped: Green functions do not decline towards the time
off-diagonal, which they would do in most two-time calculations[66]. Dampening could be
introduced using the correlated GKBA approach, effectively limiting the duration of memory
effects.

The spectral function, given in Eq. (2.35), is computed from the time off-diagonal of 𝐺. Since
the off-diagonal is reconstructed on HF-level, it cannot be expected to find a good spectral
function in the HF-GKBA [67]. A different approach to finding the spectrum is to introduce
some ’kick’ perturbation (’kick spectrum’) into the system and analyze the time-dependent
response of the density to it using a Fourier transform, as was demonstrated in Ref. [54]: Since
on the time-diagonal, the collision integral appears in the equation of motion, selfenergy effects
beyond HF are included in the density dynamics.

2.2. The G1–G2 scheme

In this section a short introduction into the G1–G2 scheme is given without too much detail.
This is due to the fact that most calculations in this thesis were not made using the G1–G2
scheme due to scaling difficulties, as discussed in Sect. 3.2.1.

Here and in the following we define 𝐺≷
𝑖𝑗 (𝑡) ∶= 𝐺≷

𝑖𝑗 (𝑡, 𝑡) for all bases. The time-diagonal KBE
is given by

iℏ d
d𝑡 𝐺

<𝑖𝑗 (𝑡, 𝑡) − [ℎHF(𝑡), 𝐺<(𝑡, 𝑡)]𝑖𝑗 = ∑
𝑘
∫
𝑡

𝑡0
d ̄𝑡 {Σ>𝑖𝑘(𝑡, ̄𝑡) 𝐺<

𝑘𝑗( ̄𝑡 , 𝑡) − Σ<𝑖𝑘(𝑡, ̄𝑡) 𝐺>
𝑘𝑗( ̄𝑡 , 𝑡)} + ℎ.𝑐. , (2.69)

where the collision integral stems from some term of the form Tr2𝑤12𝐺(2)
12 , cf. Eqs. (2.21) and

(2.22). The idea [28, 29] now is to find a function G𝑖𝑗𝑘𝑙(𝑡) dependent on one real time, that
restores this original structure of the hierarchy, i.e. that fulfills

𝐼𝑖𝑗(𝑡) = ∑
𝑘
∫
𝑡

𝑡0
d ̄𝑡 {Σ>𝑖𝑘(𝑡, ̄𝑡) 𝐺<

𝑘𝑗( ̄𝑡 , 𝑡) − Σ<𝑖𝑘(𝑡, ̄𝑡) 𝐺>
𝑘𝑗( ̄𝑡 , 𝑡)} = ±iℏ∑

𝑘𝑙𝑝
𝑤𝑖𝑘𝑙𝑝(𝑡)G𝑙𝑝𝑗𝑘(𝑡) . (2.70)

One then chooses a selfenergy approximation, inserts the expression into the formula above
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and identifies some interaction part. For example, in SOA one finds

𝐼𝑖𝑗(𝑡) = (iℏ)2 ∑
𝑘𝑝𝑞𝑟𝑠𝑢

𝑤𝑖𝑘𝑙𝑝(𝑡)
𝑡

∫
𝑡0

d ̄𝑡 𝑤±𝑞𝑟𝑠𝑢(𝑡) [𝐺>
𝑙𝑞(𝑡, ̄𝑡) 𝐺>𝑝𝑟 (𝑡, ̄𝑡) 𝐺<

𝑗𝑘( ̄𝑡 , 𝑡) 𝐺<𝑢𝑗( ̄𝑡 , 𝑡) − (> ↔ <)] , (2.71)

where the (anti-)symmetrized interaction 𝑤±
𝑖𝑗𝑘𝑙 = 𝑤𝑖𝑗𝑘𝑙 ± 𝑤𝑖𝑗𝑙𝑘 is used. Comparing this with Eq.

(2.70), one readily finds that apart from prefactors, the integral is G which we are looking for.
Its equation of motion follows from Leibniz’ rule and the application of GKBA to the 𝐺≷ under
the integral. The derivation is more difficult for 𝐺𝑊 and the T-matrix selfenergies.

One finds different equations of motion for each selfenergy. The SOA result is

iℏ d
d𝑡G𝑖𝑗𝑘𝑙(𝑡) − [ℎ(2),HF,G]𝑖𝑗𝑘𝑙 = Ψ±

𝑖𝑗𝑘𝑙(𝑡), (2.72)

where

[ℎ(2),HF,G] = ∑
𝑝

{ℎHF𝑖𝑝 (𝑡)G𝑝𝑗𝑘𝑙(𝑡) + ℎHF𝑗𝑝 (𝑡)G𝑖𝑝𝑘𝑙(𝑡) − G𝑖𝑗𝑝𝑙(𝑡) ℎHF𝑝𝑘 (𝑡) − G𝑖𝑗𝑘𝑝(𝑡) ℎHF𝑝𝑙 (𝑡)} (2.73)

is a two-particle commutator and the source term Ψ± is given by

Ψ±
𝑖𝑗𝑘𝑙(𝑡) = (iℏ)2 ∑

𝑝𝑞𝑟𝑠
{𝐺>𝑖𝑝(𝑡) 𝐺>𝑗𝑞(𝑡) 𝑤±𝑝𝑞𝑟𝑠(𝑡) 𝐺<

𝑟𝑘(𝑡) 𝐺<
𝑠𝑙 (𝑡) − (> ↔ <)} . (2.74)

The other selfenergies mentioned in Sect. 2.1.5 are represented by some small modifications:

𝐺𝑊 : The (anti-)symmetrized interaction is replaced by the normal one, and we add Π𝑖𝑗𝑘𝑙(𝑡) −
[Π𝑙𝑘𝑗𝑖(𝑡)]∗ to the right, where

Π𝑖𝑗𝑘𝑙(𝑡) = ±(iℏ)2 ∑
𝑝𝑞𝑟𝑠

𝑤𝑟𝑞𝑠𝑝(𝑡) [𝐺>𝑗𝑟 (𝑡) 𝐺<
𝑠𝑙 (𝑡) − 𝐺<𝑗𝑟 (𝑡) 𝐺>

𝑠𝑙 (𝑡)]G𝑖𝑝𝑘𝑞(𝑡) . (2.75)

TPP: The particle-particle channel of the T-matrix is included by adding Λpp
𝑖𝑗𝑘𝑙 − [Λpp

𝑘𝑙𝑖𝑗(𝑡)]
∗
to

the right, where

Λpp
𝑖𝑗𝑘𝑙(𝑡) = (iℏ)2 ∑

𝑝𝑞𝑟𝑠
[𝐺>𝑖𝑟 (𝑡) 𝐺>𝑗𝑠 (𝑡) − 𝐺<𝑖𝑟 (𝑡) 𝐺<𝑗𝑠 (𝑡)] 𝑤𝑟 𝑠𝑝𝑞(𝑡)G𝑝𝑞𝑘𝑙(𝑡) . (2.76)

TPH: The particle-hole channel of the T-matrix is included by adding Λph
𝑖𝑗𝑘𝑙 − [Λph

𝑘𝑙𝑖𝑗(𝑡)]
∗
to the

right, where

Λph
𝑖𝑗𝑘𝑙(𝑡) = (iℏ)2 ∑

𝑝𝑞𝑟𝑠
[𝐺>𝑖𝑟 (𝑡) 𝐺<

𝑠𝑙 (𝑡) − 𝐺<𝑖𝑟 (𝑡) 𝐺>
𝑠𝑙 (𝑡)] 𝑤𝑟𝑝𝑞𝑠(𝑡)G𝑞𝑗𝑘𝑝(𝑡) . (2.77)



26 Spatially uniform systems

All these terms are completely time-local and thus no explicit memory integral needs to be
calculated, but instead the 4-index quantity G must be handled. This linear time scaling of CPU
time and memory usage, which is independent from the number of time steps, makes the G1–
G2 scheme the preferred method for long simulations, if the computer can handle this large
G.

By adding all these bonus terms to the equation of motion, we find a new approximation,
the Dynamically Screened Ladder Approximation, which contains all diagrams from the three
approximations and thus includes both, dynamical screening and strong coupling effects. After
fixing its instabilities using methods called purification and enforcing contraction consistency,
cf. Ref. [27], the DSL was found to be the most precise out of these approximations, at least for
1D Hubbard chains [27], where exact reference data is available.

Being a component of 𝐺(2), through G we have direct access to two-particle observables and
the pair distribution function. The reconstruction of such quantities is also possible but difficult
using the memory formalism, cf. Ref. [68] for a discussion of the SOA case.

2.3. Spatially uniform systems

In Subsect. 2.3.1, the second quantized Jellium Hamiltonian is derived, along the lines of the
book by Giuliani and Vignale [69]. Jellium is one of the simplest models of uniform systems,
describing electrons in front of a uniform positive background, and it is a goodmodel for the de-
scription of metals. It is readily generalized to more complex systems, such as multi-component
plasmas containing ions or electron-hole plasmas that can be excited in semiconductors. Jellium
is thus the starting point. The ground state energy of the uniform electron has been computed
using diffusion quantum Monte Carlo by Ceperley and Alder, cf. Ref. [70], which is the basis
for one of the most important approximations to the DFT exchange-correlation functional, the
Local Density Approximation (LDA) [71], and is thus also applied in approximate form to the in-
homogeneous electron gas. The electron gas in equilibrium at warm dense matter conditions is
a lot more complex and has successfully been studied using Path Integral Monte Carlo (PIMC),
cf. Ref. [3] for a recent review. The application to nonequilibrium is far more challenging and
has been done in an approximate matter using NEGF and RDM [14, 55], which opens a win-
dow to various applications such as plasmas or semiconductors in laser fields [54, 72] or carrier
relaxation processes following a laser pulse [61, 73].

2.3.1. The Jellium Hamiltonian

Starting from a very clear first quantized Hamiltonian, a second quantized variant in momen-
tum representation is derived. During the transition, the Coulomb interaction is regularized,
which removes the diverging interaction term 𝑣0.

Consider a 𝑑-dimensional cubic box of length 𝐿 containing 𝑛 particles, where we define the
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first quantized Hamiltonian

�̂� =
𝑁
∑
𝑖=1

p̂2𝑖
2𝑚 + 1

2
𝑁
∑
𝑖≠𝑗=1

𝑒2
|r̂𝑖 − r̂𝑗 |

+ �̂�𝑒−𝑏 + �̂�𝑏−𝑏 , (2.78)

where the last two terms account for electron-background and background-background inter-
action. The background is assumed to be uniform and positive, which yields the electrostatic
energy expressions

�̂�𝑒−𝑏 = −𝑒2 ∫ dr ∫ dr′ �̂�(r) 𝑛𝑏(r
′)

|r − r′| , (2.79)

�̂�𝑒−𝑏 = 𝑒2
2 ∫ dr ∫ dr′ 𝑛𝑏(r) 𝑛𝑏(r

′)
|r − r′| , (2.80)

where the local particle number operator is defined as �̂�(r) = ∑𝑁
𝑖=1 𝛿(r − r̂𝑖). To ensure conver-

gence, we consider the statically screened Yukawa or Debye potential, 𝑣(𝑟 , 𝜅), and express it
through a Fourier series, 𝑤q(𝜅)

𝑤(𝑟 , 𝜅) = 𝑒2 exp (−𝜅𝑟)𝑟 = 1
𝐿𝑑 ∑q

𝑤q(𝜅) exp (ir ⋅ q) , 𝑤q(𝜅) = ∫𝑤(r, 𝜅) exp (−ir ⋅ q) dr . (2.81)

The Coulomb potential is regained by choosing the limit 𝜅 → 0 at an appropriate point in the
derivation. Using these relations and defining

�̂�q =
𝑁
∑
𝑖=1

𝑒−iq⋅r̂𝑖 , (2.82)

the Hamiltonian can be cast into the form

�̂� = ∑
𝑖

p̂2𝑖
2𝑚 + 1

2𝐿𝑑 ∑q
𝑤q(𝜅) [�̂�−q �̂�q − �̂�] − 𝑤0(𝜅) 𝑛𝑏 �̂� + 1

2𝑤0(𝜅) 𝑛
2𝑏 𝐿𝑑 , (2.83)

where �̂� is the total particle number operator for the electrons. If the particle number density
is fixated at 𝑛, we have the relation �̂� = 𝑛𝐿𝑑 = 𝑛𝑏𝐿𝑑 .Now in the q = 0 case, we find that �̂�0 = �̂� ,
and we can simplify that part of the Hamiltonian:

(�̂�𝑒−𝑏)q=0 + (�̂�𝑏−𝑏)q=0 + (�̂�𝑒−𝑒)q=0
𝐿𝑑 = −𝑛 𝑤0(𝜅)2𝐿𝑑 , (2.84)

which tends to zero in the thermodynamic limit, i.e. 𝐿 → ∞ while 𝑛 = const. In the thermody-
namic limit this term thus does not appear and cancels exactly with the background terms and
we get

�̂� = ∑
𝑖

p̂2𝑖
2𝑚 + 1

2𝐿𝑑 ∑
q≠0

𝑤q(𝜅) [�̂�−q�̂�q − �̂�] . (2.85)
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At this point, it is safe to perform the 𝜅 → 0 limit, as the diverging term at q = 0 is gone.
If we now insert the second quantized operators

�̂�q = ∑
𝑖
𝑒−iq⋅r𝑖 = ∑

k𝜎,k′𝜎 ′
⟨ k𝜎 | 𝑒−iq⋅r | k′𝜎 ′ ⟩ �̂�†k𝜎 �̂�k′𝜎 ′ = ∑

k𝜎
�̂�†k−q,𝜎 �̂�k,𝜎 (2.86)

and

�̂� = ∑
k𝜎

�̂�†k𝜎 �̂�k𝜎 (2.87)

as well as the second quantized expression for the kinetic energy, we arrive at

�̂� = ∑
k𝜎

ℏ2𝑘2
2𝑚 �̂�†k,𝜎 �̂�k,𝜎 +

1
2𝐿𝑑 ∑

q≠0
𝑤𝑞 ∑

k1𝜎1,k2𝜎2
�̂�†k1+q,𝜎1 �̂�

†
k2−q,𝜎2 �̂�k2,𝜎2 �̂�k1,𝜎1 . (2.88)

This is the result for some electron gas with a uniform positive background that exactly can-
cels the electronic charge. The generalization to semiconductors works similarly, but the band
structure must be taken into account:

�̂� = ∑
k𝜎𝛼

𝜖𝛼 (k) �̂�†k,𝜎 ,𝛼 �̂�k,𝜎 ,𝛼 +
1
2𝐿𝑑 ∑

q≠0
∑

k1𝜎1𝛼1𝛽1
k2𝜎2𝛼2𝛽2

𝑤𝛽1𝛽2,𝛼1𝛼2
k1k2q �̂�†k1+q,𝜎1𝛽1 �̂�

†
k2−q,𝜎2𝛽2 �̂�k2,𝜎2𝛼2 �̂�k1,𝜎1𝛼1 . (2.89)

Here, 𝜖𝛼 (k) describes quasiparticle energy in band 𝛼 and crystal momentum k. The interaction
is now dependent on all momenta and the bands involved.

The multi-component case is derived similarly to the Jellium case: instead of considering
𝑛𝑏(r) to be a function that is in fact not really dependent on its argument, we consider it to be
an operator like �̂�(r) for the electrons. The q = 0 considerations can be worked out analogously
to find

�̂� = ∑
k𝜎𝛼

ℏ2𝑘2
2𝑚𝛼

�̂�†k,𝜎 ,𝛼 �̂�k,𝜎 ,𝛼 +
1
2𝐿𝑑 ∑

q≠0
∑
k1𝜎1𝛼1
k2𝜎2𝛼2

𝑤𝛼1𝛼2𝑞 �̂�†k1+q,𝜎1,𝛼1 �̂�
†
k2−q,𝜎2,𝛼2 �̂�k2,𝜎2,𝛼2 �̂�k1,𝜎1,𝛼1 , (2.90)

where the third index describes the particle species. Since particle spin and particle species
enter this Hamiltonian with the same structure (diagonal in kinetic energy, no flips or particle
conversion during interaction), the spin index 𝜎𝑖 from now on also includes the particle species
index and the sums have to be interpreted to also go over all particle species.

Statically screened interaction

The expressions for the gas particles are in the basis of momentum eigenstates,

⟨ r𝜎 ′ | k𝜎 ⟩ = 𝛿𝜎𝜎 ′ 1
√𝐿𝑑

exp (− 1
iℏk ⋅ r) , (2.91)
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where 𝜎 is a combined index that includes spin and the particle species, and k is chosen in such
a way that the function fulfills periodic boundary positions at the box ends. We compute the
interaction matrix element for a 3D box of length 𝐿,

⟨ k1𝜎1, k2𝜎2 | �̂� | k3𝜎3, k4𝜎4 ⟩

= 𝛿𝜎1𝜎3𝛿𝜎2𝜎4
𝐿6 ∫ℝ3 ∫𝐿3 exp {

i
ℏ(k3 − k1) ⋅ r1 + (k4 − k2) ⋅ r2}

𝑍1𝑍2𝑒2𝑒−𝜅|r1−r2|
|r1 − r2|

dr1 dr2

= 𝛿𝜎1𝜎3𝛿𝜎2𝜎4
𝐿3

4𝜋𝑍1𝑍2𝑒2
|k3 − k1| + 𝜅2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑤𝜎1𝜎2
|k3−k1|∶=

𝛿k1+k2,k3+k4 . (2.92)

We see that the interaction potential, through its homogeneity in space, conserves the mo-
mentum in each collision, does not change spins of the particles, and is only dependent on the
amount of momentum transferred.

While in the 𝐺𝑊 approximation screening is handled by the Dyson equation, i.e. we must
use the bare Coulomb potential 𝜅 = 0, this would drastically overestimate the effective inter-
action between particles in SOA calculations. Hence in this thesis, for SOA calculations, static
Thomas–Fermi screening will be used, cf. Sect. 2.3.6.

2.3.2. Plasma parameters
Equilibrium plasmas are completely specified by the density and the energy per particle, and
maybe the ion composition. There are however dimensionless parameters that are mostly used
instead, which better characterize the plasma and describe the dominant effects.

Wigner–Seitz radius 𝑟𝑠
The Wigner–Seitz radius (or Brückner parameter) 𝑟𝑠 is the radius of that sphere that contains
exactly one electron, in units of the Bohr radius 𝑎𝐵 = ℏ2

𝑚𝑒2 . In 3 dimensions it is given by

𝑟𝑠 = ( 3
4𝜋𝑛)

1
3 1
𝑎𝐵

. (2.93)

It is often called coupling parameter, since it not only directly describes the density, but also
whether the kinetic energy term or the interaction term dominates. It can be shown that for
small 𝑟𝑠 , i.e. high density, the kinetic term dominates the interaction term, and thus it is then a
weakly coupled plasma, and vice versa.

In Alkali metals 𝑟𝑠 typically has values between 3 and 6. Since semiconductors can be weakly
excited, we can find far greater 𝑟𝑠 values there. In the warm dense matter (WDM) regime, which
in parts is also accessible in inertial confinement fusion (ICF) experiments, 𝑟𝑠 values around 1
can be found, in astrophysical objects even lower.
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Quantum Degeneracy Parameter Θ
The second dimensionless parameter that will be used in this thesis is the quantum degeneracy
parameter Θ. It is given by Θ = 𝑘𝐵𝑇

𝜖𝐹 ,where 𝜖𝐹 = 𝑝2𝐹/2𝑚 is the Fermi energy of the free gas. The
Fermi momentum 𝑝𝐹 is only dependent on the density and in 3D it can be computed as follows:

spin
↓2 4𝜋

3
𝑝3𝐹

(2𝜋ℏ)3 = 𝑛 ⇒ 𝑝𝐹 = 𝜋ℏ (3𝑛𝜋 )
1
3 . (2.94)

A higher Θ corresponds to a broader Fermi function, which means that Pauli blocking and thus
degeneracy become weaker.

2.3.3. NEGF for the uniform electron gas
The Jellium Hamiltonian in a box of length 𝐿 acts on the Hilbert space of all wave functions
that are periodic on the box boundaries, but they can in principle still be non-uniform. If the
correlation length of the gas is small compared to the length scale of inhomogeneities, it is a
reasonable approach to model the gas to be uniform locally. In a uniform system, only rela-
tive coordinates are relevant for one-particle quantities, i.e. the 1pNEGF in spatial coordinate
representation has the form

𝐺𝜎𝜎 ′(r𝑧, r′𝑧′) = 𝐺𝜎𝜎 ′(r − r′, 𝑧𝑧′) . (2.95)

We now take the Fourier transform with respect to the spatial coordinates [14], which yields
the momentum representation (basis transformation to plain waves) variant of the 1pNEGF,

𝐺p𝜎,p′𝜎 ′(𝑧, 𝑧′) = 1
𝐿𝑑 ∫𝐿𝑑 dr dr

′𝑒−
i
ℏ (p⋅r−p′r′)𝐺𝜎𝜎 ′(r − r′, 𝑧, 𝑧′)

= 1
𝐿𝑑 ∫𝐿𝑑 dr

′𝑒−
i
ℏ (p−p′)⋅r′ ∫𝐿𝑑 d(r − r′) 𝐺𝜎𝜎 ′(r − r′, 𝑧, 𝑧′) = 𝛿pp′𝐺p,𝜎𝜎 ′(𝑧, 𝑧′) . (2.96)

Since the Hamiltonian does not allow spin flips or the conversion of the particle species, we
can conclude that 𝐺 is also diagonal in that index. This means that our ’final’ Green function
assumes the reduced form 𝐺p𝜎 (𝑧𝑧′).

Now we can show that Σ has the same reduced form: Since we postulate spatial uniformity,
the KBE, Eqs. (2.25),(2.26), take the form

iℏ 𝜕
𝜕𝑧𝐺p𝜎 (𝑧, 𝑧

′) = 𝛿𝐶(𝑧, 𝑧′) +∑
𝑘
ℎ(0)p𝜎 (𝑧) 𝐺p𝜎 (𝑧, 𝑧′) +∑

k𝜆
∫𝐶 d ̄𝑧 Σp𝜎,k𝜆(𝑧, ̄𝑧) 𝐺k𝜆( ̄𝑧, 𝑧′) 𝛿k,p 𝛿𝜎,𝜆

= 𝛿𝐶(𝑧, 𝑧′) +∑
𝑘
ℎ(0)p𝜎 (𝑧) 𝐺p𝜎 (𝑧, 𝑧′) + ∫𝐶 d ̄𝑧 Σp𝜎,p𝜎 (𝑧, ̄𝑧) 𝐺p𝜎 ( ̄𝑧, 𝑧′)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐼p𝜎 (𝑧,𝑧′)

, (2.97)
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i.e. we also only consider themomentum/spin-diagonal of the selfenergy, Σp𝜎 (𝑧, 𝑧′). We see that
some summations become trivial due to the diagonality of 𝐺 (and the momentum conserving
structure of 𝑤 ), which reduces the computational cost in momentum representation.

The ’loop’ diagram, the zeroth order polarization function, is another quantity that is diago-
nal, and a key building block for direct SOA and the 𝐺𝑊 approximation:

�
= 𝜋q(𝑧, 𝑧′) = iℏ∑

p𝜎
(±)𝜎𝐺p+q,𝜎 (𝑧, 𝑧′) 𝐺p,𝜎 (𝑧′, 𝑧) , (2.98)

where ±𝜎 takes into account that the multiple particle species can be a mix of Fermions and
Bosons. The sum is of the form of a convolution, which can be computed extremely fast us-
ing the convolution theorem and a Fourier transform, significantly simplifying the numerical
cost of such integrations. The details about the practical realization of this is explained in the
numerics chapter. Also, the momentum representation expression will be presented in that
chapter, where efficient evaluation methods are also discussed.

2.3.4. Thermodynamic limit

Themomenta appearing under the sums are dependent on the box length: Given a d-dimensional
cubic box of length 𝐿, momenta can only assume the values 2𝜋ℏ𝐿−1ℤ𝑑 due to the boundary
conditions. This means that each momentum value takes a volume of (2𝜋ℏ/𝐿)𝑑 in momentum
space. In the thermodynamic limit, 𝐿 → ∞, we thus find the transition

∑
p

⟶ ∫
dp

(2𝜋ℏ)𝑑 . (2.99)

In the thermodynamic limit, momenta can assume continuous values. Momentum dependen-
cies of functions are thus written in the form 𝑓 (p) instead of 𝑓p in the thermodynamic limit5.

2.3.5. Observables in uniform systems using NEGF

Expectation values of 𝑠-particle operators �̂�(𝑠) can be acquired from reduced density matrices
̂𝐹 (𝑠) [14] by

⟨�̂�(𝑠)⟩ = 1
𝑠!Tr (

̂𝐹 (𝑠)�̂�(𝑠)) . (2.100)

5In numerical applications the momentum space needs to be discretized. This discretization implicitly corre-
sponds to a transition back to finite box sizes. In fact, it even implicitly corresponds to a transition to a lattice
system, since a discretized momentum grid also does not reach infinities. Many uniform gas calculations can
thus be mapped on lattice systems with a dense Hamiltonian matrix and long-range interaction.
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Since 𝐹 (1)(𝑡) = ±iℏ𝐺<(𝑡, 𝑡), and because of the diagonal structure of 𝐺, single particle expecta-
tion values are given by

⟨�̂�(1)⟩ (𝑡) = ±iℏ∑
p𝜎

𝐺<p𝜎 (𝑡, 𝑡)𝐴(1)p𝜎 = ∑
p𝜎

𝑓p𝜎 (𝑡) 𝐴(1)p𝜎 , (2.101)

where the single-particle distribution function 𝑓 has been introduced. Its values are the occu-
pation numbers of the states |p𝜎⟩. Important examples for matrix elements of single-particle
observables are the moments of p:

• 0th moment, density: 𝐴(1)p𝜎 = 1

• 1st moment, momentum: 𝐴(1)p𝜎 = p

• 2nd moment, kinetic energy: 𝐴(1)p𝜎 = 𝑝2/2𝑚𝜎
The two-particle expressions in the thermodynamic limit are given by

𝐹 (2),𝛼𝛽(k, p, q) = (iℏ)2 [(±)𝛼 (±)𝛽𝐺<𝛼 (k) 𝐺<
𝛽 (p) 𝛿(q) ± 𝐺<𝛼 (k) 𝐺<

𝛽 (p) 𝛿(k − q − p)𝛿𝛼𝛽 + G𝛼𝛽(k, p, q)] ,

(2.102)

⟨�̂�(2)⟩𝐻 (𝑡) = 1
2(iℏ)

2∑
𝛼𝛽

(±)𝛼 (±)𝛽 ∫ dk
(2𝜋ℏ)𝑑

dp
(2𝜋ℏ)𝑑 𝐺

<𝛼 (k, 𝑡) 𝐺<
𝛽 (p, 𝑡) 𝐴(2)

𝛼𝛽 (k, p, 0) , (2.103)

⟨�̂�(2)⟩𝐹 (𝑡) = 1
2(iℏ)

2∑
𝛼
(±)𝛼 ∫ dk

(2𝜋ℏ)𝑑
dp

(2𝜋ℏ)𝑑 𝐺
<𝛼 (k, 𝑡) 𝐺<𝛼 (p, 𝑡) [𝐴(2)𝛼𝛼 (k, p, k − p)]

∗
, (2.104)

⟨�̂�(2)⟩𝑐 (𝑡) = 1
2(iℏ)

2∑
𝛼𝛽

∫ dk
(2𝜋ℏ)𝑑

dp
(2𝜋ℏ)𝑑

dq
(2𝜋ℏ)𝑑 G𝛼𝛽(k, p, q, 𝑡) [𝐴

(2)
𝛼𝛽 (k, p, q)]

∗
, (2.105)

where the first term of ̂𝐹 (2) represents the Hartree GF, the second term the Fock GF, and the
third term the correlation part of the two particle GF, the pivotal quantity of the G1–G2 scheme.
The expectation value of �̂�(2) has three contributions, stemming from the three parts of ̂𝐹 (2).
A general two-particle observable might demand knowledge of G, but this is not the case for
the interaction energy: Here, the Hartree part vanishes due to assumed charge neutrality of the
system. The two remaining parts are given by

⟨�̂�⟩𝐹 (𝑡) = 1
2(iℏ)

2∑
𝛼
(±)𝛼 ∫ dk

(2𝜋ℏ)𝑑
dp

(2𝜋ℏ)𝑑 𝑍
2𝛼 𝐺<𝛼 (k, 𝑡) 𝐺<𝛼 (p, 𝑡) 𝑤(k − p)

= 1
2 iℏ∑𝛼

(±)𝛼 ∫ dk
(2𝜋ℏ)𝑑 ℎ

HF𝛼 (k, 𝑡) 𝐺<𝛼 (k, 𝑡) − 1
2 ⟨

̂𝑇 ⟩ (𝑡) , (2.106)

⟨�̂�⟩𝑐 (𝑡) = 1
2(iℏ)

2∑
𝛼𝛽

𝑍𝛼𝑍𝛽 ∫ dk
(2𝜋ℏ)𝑑

dp
(2𝜋ℏ)𝑑

dq
(2𝜋ℏ)𝑑 G

𝛼𝛽(k, p, q, 𝑡) 𝑤(q) = 1
2 iℏ∑𝛼 ∫

dp
(2𝜋ℏ)𝑑 𝐼𝛼 (p, 𝑡) ,

(2.107)
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where ̂𝑇 is the kinetic energy operator, ℎHF𝛼 (p, 𝑡) is the (Hartree–)Fock Hamiltonian given by

ℎHF𝛼 (p, 𝑡) = 𝑝2
2𝑚𝛼

+ iℏ∫ dk
(2𝜋ℏ)𝑑 𝑍

2𝛼 𝑤(k − p) 𝐺<𝛼 (p, 𝑡) , (2.108)

and 𝐼𝛼 (p, 𝑡) is the time-diagonal collision integral given by

𝐼𝛼 (p, 𝑡) = ∫
𝑡

𝑡0
d ̄𝑡 [Σ>𝛼 (p, 𝑡 , ̄𝑡) 𝐺<𝛼 (p, ̄𝑡 , 𝑡) − Σ<𝛼 (p, 𝑡 , ̄𝑡) 𝐺>𝛼 (p, ̄𝑡 , 𝑡)] . (2.109)

This shows that the interaction energy is also directly accessible without the G1–G2 scheme.

2.3.6. Lindhard theory for static screening
The Yukawa potential is dependent on the screening constant 𝜅. One way to obtain an estimate
for 𝜅 is Lindhard’s theory, thoroughly described in Ref. [74]. Lindhard’s theory describes the
response of the uniform gas in first order perturbation theory and yields the expression

𝜖(q, 𝜔) = 1 −∑
k𝜎

𝑤𝜎𝜎q
𝑓k−q,𝜎 − 𝑓k,𝜎

ℏ(𝜔 + i𝛿) + 𝐸k−q,𝜎 − 𝐸k,𝜎
, (2.110)

where 𝑓k,𝜎 (𝑡) = 𝐺<
k,𝜎 (𝑡, 𝑡) is the momentum distribution function and 𝐸k,𝜎 are the single-particle

energies. Here we approximate these by the kinetic energies, i.e. 𝐸k,𝜎 = 𝑘2/2𝑚𝜎 .
In order to find a screening constant, we first take the static limit, i.e. 𝜔 → 0, which yields

𝜖(q, 0) = 1 −∑
k𝜎

𝑤𝜎𝜎
|q|

𝑓k−q,𝜎 − 𝑓k,𝜎
𝐸k−q,𝜎 − 𝐸k,𝜎

. (2.111)

Nowwe consider the long wavelength limit, q → 0,where we can write the differences in terms
of gradients

𝜖(q, 0) = 1 −∑
k𝜎

𝑤𝜎𝜎
|q|

−q ⋅ ∇𝑓k,𝜎
− 1
2𝑚𝜎

2q ⋅ k
. (2.112)

Now we focus on the isotropic 3D case in the continuum limit, i.e. ∑k ⟶ ∫ dk(2𝜋ℏ)−3. With-
out loss of generality, we assume q ∥ e𝑧 . Since ∇𝑓𝜎 (𝑘) ∥ k, the expression becomes

𝜖(q, 0) = 1 −∑
𝜎

𝑤𝜎𝜎
|q| ∫

d𝑘 d𝜗 d𝜑
(2𝜋ℏ)3

��𝑞𝜕𝑘𝑓𝜎 (𝑘)����cos(𝜗)
1
𝑚𝜎�

����𝑞𝑘 cos(𝜗)
𝑘�2 sin(𝜗)

= 1 − 4𝜋ℏ𝑒2
𝑞2 ∑

𝜎
𝑍 2𝜎 ∫

d𝑘 d𝜗 d𝜑
(2𝜋ℏ)3 𝑚𝜎𝑓𝜎 (𝑘) sin(𝜗) = 1 + (4𝜋)2ℏ𝑒2

𝑞2 4𝜋 ∑
𝜎

𝑍 2𝜎 ∫ d𝑘
(2𝜋ℏ)3𝑚𝜎𝑓𝜎 (𝑘).

(2.113)
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In the last step integration by parts was used. If we define

𝜅2 = 2𝑒2
𝜋ℏ2 ∑𝜎

𝑍 2𝜎𝑚𝜎 ∫ d𝑘 𝑓𝜎 (𝑘), (2.114)

the dielectric function can be cast in the form 𝜖(q, 0) = 𝑞2+𝜅2
𝑞2 , and consequently we have

𝑤(q, 𝜅) = 𝑤(q, 𝜅 = 0)
𝜖(q, 0) =

4𝜋𝑒2
𝑞2

𝑞2+𝜅2
𝑞2

= 4𝜋𝑒2
𝜅2 + 𝑞2 , (2.115)

the expression for the Yukawa potential, but with an estimate for 𝜅. In an anisotropic system
an approach to use this result is to average 𝑓 over all angles first, and then apply the formula, as
was applied in Ref. [75]. Since this approach can also be applied to time-dependent distribution
functions, the screening constant can be adapted, too. A time-dependent screening constant
however makes the simulation non-energy-conserving and should not be used, if energies are
the focus of the calculation.

2.3.7. G1–G2 equations for the uniform multi-component gas
Since the HF-Hamiltonian is diagonal (single-particle Green function is diagonal, and the in-
teraction conserves momentum), the commutator [ℎHF, 𝐺≷] vanishes, and the single-particle
equation takes the simple form [29]

iℏ d
d𝑡 𝐺

≷p𝜎 (𝑡) = ±iℏ∑
kq

∑
𝜆
𝑤𝜆𝜎
|q| (𝑡)G𝜆𝜎

kpq(𝑡) + ℎ.𝑐., (2.116)

where G𝜆𝜎
kpq(𝑡) is short for

G𝜆𝜎
kpq(𝑡) ∶= G𝜆𝜎𝜆𝜎

k−q,p+q,k,p(𝑡). (2.117)

These ’momentum conserving’ components ofG are sufficient to describe the correlations, since
their equations of motion only couple to components with the same ’momentum conserving’
structure. In the same way as in the general basis, Eq. (2.72), we start with the SOA equation

iℏ d
d𝑡G

𝜆𝜎
kpq − G𝜆𝜎

kpq

ΔHF,(2)
kpq,𝜆𝜎∶=

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(ℎHFk−q,𝜆(𝑡) + ℎHFp+q,𝜎 (𝑡) − ℎHFk,𝜆(𝑡) − ℎHFp,𝜎 (𝑡))
= (iℏ)2 [𝑤𝜆𝜎

|q| ± 𝛿𝜎𝜆𝑤𝜎𝜎
|k−p−q|(𝑡)] {𝐺>

k−q,𝜆(𝑡) 𝐺>p+q,𝜎 (𝑡) 𝐺<
k,𝜆(𝑡) 𝐺<p,𝜎 (𝑡) − (>⟷<)}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Ψ𝜆𝜎
kpq∶=

,

(2.118)

with the Hartree–Fock Hamiltonian given in Eq. (2.108). The modifications that represent
advanced selfenergy approximations are given by:
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𝐺𝑊 Drop the ±𝛿𝜎𝜆𝑤𝜎𝜎
|k−p−q|(𝑡) on the right side, and add Π𝜆𝜎

kpq(𝑡) − [Π𝜎𝜆
p+q,k−q,q(𝑡)]

∗
to the right

side, where

Π𝜆𝜎
kpq = (±)𝜎 (iℏ)2 [𝐺>p+q,𝜎 (𝑡) 𝐺<p,𝜎 (𝑡) − 𝐺<p+q,𝜎 (𝑡) 𝐺>p,𝜎 (𝑡)]∑

p′𝛼
𝑤𝜆𝛼
|q| (𝑡)G𝜆𝛼

kp′q(𝑡) . (2.119)

TPP Add Λpp,𝜆𝜎
kpq (𝑡) − [Λpp,𝜆𝜎

k−q,p+q,−q(𝑡)]
∗
to the right side, where

Λpp,𝜆𝜎
kpq (𝑡) = (iℏ)2 [𝐺>

k−q,𝜆(𝑡) 𝐺>p+q,𝜎 (𝑡) − 𝐺<
k−q,𝜆(𝑡) 𝐺<p+q,𝜎 (𝑡)]∑

q′
𝑤𝜆𝜎
|q′−q|(𝑡)G𝜆𝜎

kpq′(𝑡) .

(2.120)

TPH Add Λph,𝜆𝜎
kpq (𝑡) − [Λph,𝜆𝜎

k−q,p+q,−q(𝑡)]
∗
to the right side, where

Λph,𝜆𝜎
kpq (𝑡) = (iℏ)2 [𝐺>

k−q,𝜆(𝑡) 𝐺<p,𝜎 (𝑡) − 𝐺<
k−q,𝜆(𝑡) 𝐺>p+q,𝜎 (𝑡)]∑

q
𝑤𝜆𝜎
|q′|(𝑡)G𝜆𝜎

k,p−q′,q+q′(𝑡) .

(2.121)

We see that indeed only the ’momentum conserving’ components of G are relevant for the
dynamics. We also see that all these approximations need the same order of memory, where
objects of the size of G are the largest. It is less evident that TPP and TPH are in fact slower
than 𝐺𝑊 or SOA by one order of the number of basis states, 𝑁𝐵 ∶ While they have one sum
over momentum states, just as 𝐺𝑊 , the TPP and TPH sums have 3 external momentum indeces,
meaning O(𝑁 3𝐵) such sums must be computed, whereas 𝐺𝑊 ’s sum only has two external inde-
ces. In fact, a 𝐺𝑊 code runs at a similar speed as an SOA code, since the sum (or a symmetry
equivalent) is computed for the collision integral anyway and can be reused. The SOA exchange
diagram is by no means harder to compute than the direct diagram in the G1–G2 scheme. In
conclusion: If computer memory is sufficient to support these large tensor quantities, all these
selfenergy approximations become viable at once. A discussion of the viability of the G1–G2
scheme with the 𝐺𝑊 approximation, with a comparison to the standard and an intermediate
approach, is given in Sect. 3.

2.3.8. Initial correlations, adiabatic switching

In principle, G(𝑡0) can be chosen arbitrarily and the system (𝐺≷,G) can still be propagated. The
question which initial correlations correspond to situations that are physical has been discussed
before in the formalism of reduced density matrices [65, 76, 77]. Any binary correlations G(𝑡0)
certainly can serve as initial correlatios, if they are result of some preceding time propagation.
This in particular includes initial correlations that were generated by adiabatic switching, but
also applies to arbitrary nonequilibrium situations. Calculations in the G1–G2 scheme are suit-
able to be interrupted at some point of time, have the current 𝐺≷ and G data stored, and be
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restarted at the later time. These stored 𝐺≷,G values then serve as initial correlations for the
continued calculation.

In the memory formalism, arbitrary initial correlations [77] can be included by a function
𝑐(k, p, q, 𝑡0). The collision integral due to 𝑐 is computed according to

𝐼 IC(k, 𝑡 , 𝑡′) = −2iℏ5𝐿𝑑 ∫
dp

(2𝜋ℏ)𝑑 ∫
dq

(2𝜋ℏ)𝑑 𝑤(q)×

× 𝐺R(k − q, 𝑡, 𝑡0) 𝐺R(p + q, 𝑡, 𝑡0) 𝑐(k, p, q, 𝑡0) 𝐺A(p, 𝑡0, 𝑡′) 𝐺A(k, 𝑡0, 𝑡′) . (2.122)

In the case that we want to compute 𝑐 from a preceding propagation, for SOA we set

𝑐(k, p, q, 𝑡0) = iℏ
𝐿𝑑 ∫

𝑡0

𝑡−
d ̄𝑡 𝑤(q) [𝐺>(k − q, 𝑡0, ̄𝑡), 𝐺>(p + q, 𝑡0, ̄𝑡) 𝐺<(k, ̄𝑡 , 𝑡0) 𝐺<(p, ̄𝑡 , 𝑡0) − (>⟷<)] .

(2.123)

The expressions above are valid in full two-time calculations. In the GKBA case it is not a
practical approach: Since 𝑐 has the same index structure and thus the same memory demand
as G, the approach above combined with memory integrals contains the difficult parts of both
worlds: difficult basis scaling with 𝑐/G and difficult scaling with number of time steps from
the memory integral. The G1–G2 scheme can be regarded as pushing the initial correlations
idea to the extreme: After every time step, the ’new’ correlations are included into the initial
correlations, for which the G equation was found, and thus only this term needs to be evaluated
for the propagation of 𝐺≷.

The condition ’must be obtainable through physical processes’ for initial correlations is a
criterion that is difficult to check for a given G(𝑡0). For example, in the SOA case in a uniform
gas, we can choose an arbitrary 𝐺≷, and find a G that freezes the single-particle distribution
(and 2p-correlations):

iℏ d
d𝑡G

𝜆𝜎
kpq(𝑡)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

set to 0

− G𝜆𝜎
kpqΔ

HF,(2)
kpq,𝜆𝜎 = Ψ𝜆𝜎

kpq (2.124)

⇔ G𝜆𝜎
kpq = −

Ψ𝜆𝜎
kpq

ΔHF,(2)
kpq,𝜆𝜎

, (2.125)

where the abbreviations from Eq. (2.118), dependent on 𝐺≷, were used. The expression on the
right is understood as limit, if ΔHF,(2)

kpq,𝜆𝜎 = 0. Since Ψ and ΔHF,(2) are both real, we conclude that
G is real, too. Since the single particle equation of motion is given by

iℏ d
d𝑡 𝐺

≷p𝜎 (𝑡) = ±iℏ∑
kq

∑
𝜆
𝑤𝜆𝜎
|q| (𝑡)G𝜆𝜎

kpq(𝑡) + ℎ.𝑐., (2.126)
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Figure 2.4.: Some exotic distribution function on the left. Time derivative of the distribution function
after 4.0 a.u. for some uncorrelated initial state and some initial correlations according to Eq.
(2.125). The derivative for the correlated initial state is on the order of machine precision
and thus confirms that these initial correlations make the distribution stationary.

i.e. only the imaginary part of G contributes to the dynamics of 𝐺≷, the system is stationary.
In Fig. 2.4 this is demonstrated for a 1D quantum wire6: A very exotic distribution is chosen
and the dynamics of an uncorrelated start and a correlated start according to Eq. (2.125) are
compared. The initial correlations make the distribution indeed stationary. It is questionable if
this distribution function can ever be achieved in an experiment, let alone be made stationary.
This suggests that many initial correlations are unattainable through physical processes, but a
rigorous proof is still missing.

Initial correlations through adiabatic switching

A suitable choice for initial correlations can be computed using the adiabatic switching method
with an extended contour which has already been discussed in Fig. 2.3. NEGF calculations
without the G1–G2 scheme however have high computational costs proportional to 𝑁 3𝑡 (except
SOA with GKBA: 𝑁 2𝑡 ) and RAM demand of 𝑁 2𝑡 (except SOA with GKBA: 𝑁 1𝑡 ). These nonlinear
scalings make the adiabatic switching process quite costly; especially, since long switching
times are desirable according to the adiabatic connection.

In practical calculations one chooses a process that is the object of the study. The simulation
of this process requires a certain amount of in-simulation time and a certain size and resolution
of the momentum grid (cf. numerics section). The switching time then is chosen as long as
possible with regard to ressources to reduce perturbations caused by the switching process.
Skipping the switching process corresponds to an uncorrelated start which is only suitable

6The model and interaction potential are derived in Ref. [69], Appendix A. Convergence parameters: 207 𝑘
points in the range [−22 𝑎−1𝐵 , 22 𝑎−1𝐵 ], Time step length is 0.0015 𝑎.𝑢. ≈ 0.0364 as, static 𝜅 = 0.5 𝑎−1𝐵 , and wire
radius (harmonic trap) is 0.5 𝑎𝐵
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to describe a system where the charge carriers are newly generated. This is e.g. the case in
semiconductors after an ultrashort laser pulse.



39

3. Simulation variants for spatially
uniform systems

Abstract: This chapter is devoted to finding the best computational method for SOA and GW
calculations of uniform systems. First, the numerical scalings with convergence parameters for
uniform systems of various dimensions and symmetries are discussed. A 2D test calculation
shows that the RAMdemand of the G1–G2 scheme is very high and extrapolation of the scalings
lead to the conclusion that 3D calculations (especially without isotropy) demand toomuch RAM
for today’s computers. 3D cylinder symmetric GW calculations are best done in the ’normal
way’, i.e. by solution of the Dyson equation. The last part of this chapter discusses the scalings
of the methods again, this time in view of aliasing.

3.1. Another reformulation of GW
In this subsection the reconstruction of G from 𝑊≷(𝑡, 𝑡′) and 𝐺≷(𝑡, 𝑡′) is described, where an
auxiliary quantity, a ’decomposition components’ of the inverse dielectric function, 𝜖−1,≷kq𝛼 (𝑡, 𝑡′) is
defined. After that, a new, fully equivalent 𝐺𝑊 propagation scheme is introduced, which makes
use of the simpler equations of these components, and whose scalings with time step numbers
𝑁𝑡 and basis size𝑁𝐵 lie between those of the G1–G2 scheme and the traditional memory integral
method.

Reconstruction of G

The derivation of the G1–G2 scheme for the 𝐺𝑊 approximation in abitrary basis [29] starts
with the equation

G𝑖𝑗𝑘𝑙(𝑡) = ±∑
𝑝𝑞

∫
𝑡

𝑡0
d ̄𝑡 [𝜀−1,>𝑙𝑝𝑗𝑞 (𝑡, ̄𝑡)GF,>

𝑖𝑞𝑘𝑝(𝑡, ̄𝑡) − 𝜀−1,<𝑙𝑝𝑗𝑞 (𝑡, ̄𝑡)GF,<
𝑖𝑞𝑘𝑝(𝑡, ̄𝑡)] , (3.1)

where GF,≷
𝑖𝑗𝑘𝑙 (𝑡, 𝑡′) = 𝐺≷

𝑖𝑙 (𝑡, 𝑡′) 𝐺≶
𝑗𝑘(𝑡′, 𝑡) and 𝜀−1,≷𝑖𝑗𝑘𝑙 (𝑡, 𝑡′) fulfills the Dyson equation

𝜀−1,≷𝑖𝑗𝑘𝑙 (𝑡, 𝑡′) = ±iℏ∑
𝑝𝑞

𝑤𝑝𝑗𝑞𝑙(𝑡′)GF,≷
𝑘𝑞𝑖𝑝(𝑡, 𝑡′) (3.2)

± iℏ ∑
𝑝𝑞𝑟𝑠

𝑤𝑗𝑟 𝑙𝑠(𝑡′)[ ∫
𝑡

𝑡0
d ̄𝑡 (GF,>

𝑘𝑞𝑖𝑝(𝑡, ̄𝑡) − GF,<
𝑘𝑞𝑖𝑝(𝑡, ̄𝑡)) 𝜀−1,≶𝑟𝑝𝑠𝑞 (𝑡′, ̄𝑡) + ∫

𝑡′

𝑡0
d ̄𝑡 GF,≷

𝑘𝑞𝑖𝑝(𝑡, ̄𝑡) (𝜀−1,>𝑟𝑝𝑠𝑞 (𝑡′, ̄𝑡) − 𝜀−1,<𝑟𝑝𝑠𝑞 (𝑡′, ̄𝑡))] .
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From the Dyson equation in momentum representation,

𝜀−1,≷kq𝛼 (𝑡, 𝑡′) = ±iℏ𝑤q 𝐺≷
k+q,𝛼 (𝑡, 𝑡′) 𝐺≶

k,𝛼 (𝑡′, 𝑡) (3.3)

± iℏ𝑤q ∫
𝑡′

𝑡0
d ̄𝑡 𝐺≷

k+q,𝛼 (𝑡, ̄𝑡) 𝐺≶
k,𝛼 ( ̄𝑡 , 𝑡) [𝜀−1,<q ( ̄𝑡 , 𝑡′) − 𝜀−1,>q ( ̄𝑡 , 𝑡′)]

± iℏ𝑤q ∫
𝑡

𝑡0
d ̄𝑡 [𝐺>

k+q,𝛼 (𝑡, ̄𝑡) 𝐺<
k,𝛼 ( ̄𝑡 , 𝑡) − 𝐺<

k+q,𝛼 (𝑡, ̄𝑡) 𝐺>
k,𝛼 ( ̄𝑡 , 𝑡)] 𝜀−1,≷q ( ̄𝑡 , 𝑡′) ,

we find that 𝜀−1,≷k𝛼,p𝛽,k′𝛼 ′,p′𝛼 ′ ∼ 𝛿k+p′,k+p𝛿𝛼,𝛼 ′𝛿𝛽𝛽′ , and that apart from the 𝛿 ’s it has no further

dependence on p, p′, 𝛼 , 𝛼′. We thus write 𝜀−1,≷kq𝛼 (𝑡, 𝑡′) ≡ 𝜀−1,≷k,𝛼,p,𝛽,k+q,𝛼,p+q,𝛽(𝑡, 𝑡′). By tracing out
k and 𝛼 , we get the usual inverse dielectric function, that was already used in the expression
above:

𝑊≷q (𝑡, 𝑡′)
𝑤q(𝑡)

= 𝜀−1,≷q (𝑡, 𝑡′) = ∑
k𝛼

𝜀−1,≷kq𝛼 (𝑡, 𝑡′). (3.4)

With this generalized inverse dielectric function we can write G as

G𝛼𝛽
kpq(𝑡) = ±∫ d ̄𝑡 [𝜀−1,>pq𝛽 (𝑡, ̄𝑡) 𝐺>

k−q,𝛼 (𝑡, ̄𝑡) 𝐺<
k,𝛼 ( ̄𝑡 , 𝑡) − 𝜀−1,<pq𝛽 (𝑡, ̄𝑡) 𝐺<

k−q,𝛼 (𝑡, ̄𝑡) 𝐺>
k,𝛼 ( ̄𝑡 , 𝑡)] . (3.5)

While the reconstruction of G itself is often too difficult to carry out, these formulas are useful as
a starting point to find formulas for two-particle quantities. For example, the pair distribution
function 𝑔 is given by

𝑔𝛼𝛽(r) = (iℏ)2∑
kpq

exp(iq ⋅ r) (𝐺<
k𝛼 𝐺<

p𝛽 𝛿q ± 𝐺<
k𝛼 𝐺<

p𝛽 𝛿k−q−p𝛿𝛼𝛽 + G𝛼𝛽
kpq) . (3.6)

By inserting the reconstruction of G into this formula, we find the following expression for the
correlation part of the pair distribution function, only dependent on 𝑊≷ and 𝜋≷ ∶

𝑔corr(r) = (iℏ)2
i ∫

dq
(2𝜋ℏ)𝑛 exp(iq ⋅ r) ∫ d ̄𝑡 [𝑊

>(q, 𝑡 , ̄𝑡)
𝑤(q, 𝑡) 𝜋>(−q, 𝑡, ̄𝑡) − 𝑊<(q, 𝑡 , ̄𝑡)

𝑤(q, 𝑡) 𝜋<(−q, 𝑡, ̄𝑡)] .
(3.7)

A new scheme involving 𝜀−1,≷kq𝛼
We differentiate Eq. (3.3) with respect to 𝑡1 using the GKBA. In total 6 terms appear from partial
derivatives of 𝐺≷, and one from the differentiation of the integral boundary. The 6 terms can
easily be combined and we find the compact formula

iℏ 𝜕
𝜕𝑡 𝜀

−1,≷
kq𝛼 (𝑡 ≥ 𝑡′) = [ℎHFk+q,𝛼 (𝑡) − ℎHFk,𝛼 (𝑡)] 𝜀−1,≷kq𝛼 (𝑡, 𝑡′) (3.8)

± iℏ𝑤q [𝐺>
k+q(𝑡, 𝑡) 𝐺<

k (𝑡, 𝑡) − 𝐺<
k+q(𝑡, 𝑡) 𝐺>

k (𝑡, 𝑡)] 𝜀−1,≷q (𝑡, 𝑡′).
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This equation can be used to do the off-diagonal propagation of 𝜀−1,≷ more efficiently, since no
memory integral goes into this propagation. The time-diagonal propagation follows from the
Dyson equation (3.3) on the time-diagonal:

𝜀−1,≷kq𝛼 (𝑡, 𝑡) = ±iℏ𝑤q𝐺≷
k+q,𝛼 (𝑡, 𝑡) 𝐺≶

k,𝛼 (𝑡, 𝑡) (3.9)

± iℏ𝑤q ∫
𝑡

𝑡0
d ̄𝑡 [𝐺>

k+q,𝛼 (𝑡, ̄𝑡) 𝐺<
k,𝛼 ( ̄𝑡 , 𝑡) 𝜀−1,<q ( ̄𝑡 , 𝑡) − 𝐺<

k+q,𝛼 (𝑡, ̄𝑡) 𝐺>
k,𝛼 ( ̄𝑡 , 𝑡) 𝜀−1,>q ( ̄𝑡 , 𝑡)] .

A direct solution of this equation is rather difficult, since on the r.h.s. the (traced) inverse
dielectric function appears which couples different components of 𝜀−1,≷kq𝛼 . We differentiate it
with respect to 𝑡 . This yields many terms that are all simple to compute:

iℏ d
d𝑡 𝜀

−1,≷
kq𝛼 (𝑡, 𝑡) = ± iℏ𝑤q [( d

d𝑡 𝐺
≷
k+q,𝛼 (𝑡, 𝑡)) 𝐺≶

k𝛼 (𝑡, 𝑡) + 𝐺≷
k+q,𝛼 (𝑡, 𝑡) (

d
d𝑡 𝐺

≶
k𝛼 (𝑡, 𝑡))] (3.10)

± (iℏ)2𝑤q 𝐺≷
k+q,𝛼 (𝑡, 𝑡) 𝐺≶

k,𝛼 (𝑡, 𝑡) 𝜀−1,<q (𝑡, 𝑡) − (>⟷<)

± iℏ𝑤q (ℎHFk+q,𝛼 (𝑡) − ℎHFk,𝛼 (𝑡)) ∫
𝑡

𝑡0
d ̄𝑡 [𝐺>

k+q,𝛼 (𝑡, ̄𝑡) 𝐺<
k,𝛼 ( ̄𝑡 , 𝑡) 𝜀−1,<q ( ̄𝑡 , 𝑡) − (>⟷<)]

± iℏ𝑤q ∫
𝑡

𝑡0
d ̄𝑡 𝐺>

k+q,𝛼 (𝑡, ̄𝑡)𝐺<
k,𝛼 ( ̄𝑡 , 𝑡) [iℏ

𝜕
𝜕𝑡 𝜀

−1,<q (𝑡, ̄𝑡)]
∗
− (>⟷<) .

Eqs. (3.8) and (3.10) are sufficient to propagate 𝜀−1 or rather the screened interaction𝑊 in time.
Memory integrals only appear in the time-diagonal propagation, which leads to a CPU scaling
of O(𝑁 2𝑡 ) with the time step number 𝑁𝑡 , which lies inbetween O(𝑁 3𝑡 ) for the standard method
and O(𝑁𝑡) in the G1–G2 scheme.

3.2. Uniform plasmas
Plasmas of various dimensions and symmetries exist in different fields of physics. 1D plasmas,
i.e. plasmas with negligible radial extent, are quite exotic. These so-called quantum wires can
be generated by combining different types of semiconductors and thereby producing well. Also,
the thin filament produced via magnetic confinement by the Z machine [7] can be regarded 1-
dimensional. An application of the G1–G2 scheme to dense 1D plasmas has been studied by F.
Borges-Fajardo et al [78].

2D plasmas, in comparison, are a lot more common. Similarly to quantum wires they can be
generated using different semiconductor layers. However, most applications include Honey-
comb lattices of some kind: Since the discovery of graphenemonolayers [79], extensive research
went into the question how to adjust its properties, which led to the discussion of Graphene
nanoribbons (GNRs). GNRs have been a hot research topic in the past decade, as they became
widely available experimentally [80, 81]. Computationally, GNRs have also been treated us-
ing the Hubbard model and extensions with a focus on strong correlations using NEGF, cf.
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Refs. [30, 31, 82]. Today the focus has shifted again towards macroscopic 2D systems, such as
graphene monolayers but especially towards transition metal dichalcogenides (TMDCs)[83, 84]
and (twisted) bilayers of these [85, 86]. These layers have the structure of a honeycomb lattice,
which are discussed in Sect. B.2. The description of such systems using the Hubbard model
is better done in momentum representation, as it reduces the complexity of the equations that
arise, if the system is uniform. An introduction into the Hubbard systems and its application
to uniform lattice systems is given in Appendix B.

The usual gaseous plasmas are the most obvious example of a 3D plasma. These span many
magnitudes of densities and temperatures, from the interstellar space to warm dense matter.
Bulk semiconductors contain the so-called electron-hole plasma. Without external fields many
system quickly become isotropic. If the system is perturbed in a preferred direction, e.g. by
an external particle beam or external linearly polarized laser field (B part neglected), it as-
sumes cylindrical symmetry, making this symmetry assumption sufficient for a lot of interest-
ing physics. The fully anisotropic also often appears, but of course is the most expensive.

Symmetries usually allow a simplification of the equations. Different methods profit to a
different degree. To what extent this happens, and which method is preferred for which system,
is the topic of this section.

3.2.1. Scaling of SOA, GW in different dimensions, symmetries,
reformulations

In this subsection, the CPU and RAM scalings for the SOA and 𝐺𝑊A are discussed.

Symmetries in 1D, 2D and 3D

There are many possible symmetries in k space that could be considered. However, most
of them have identical scaling orders. So in the following only 1D anisotropic systems, 2D
isotropic and anisotropic systems, and 3D isotropic and cylinder symmetric systems, and 3D
systems without k space symmetry will be discussed. Systems with other symmetries, such as
inversion symmetry or mirror symmetry have the scaling orders of the anisotropic systems,
but lower coefficients. In that sense the choice of symmetries is representative for all possible
symmetries.

If the system is invariant under a symmetry operation 𝑆, and we have a quantity 𝑓 dependent
on an 𝑛-tuple of k space vectors (k1, , .., k𝑛), we can conclude that

𝑓 (𝑆k1, .., 𝑆k𝑛) = 𝑓 (k1, .., k𝑛). (3.11)

This will be used, e.g. for Gkpq, to find a lower dimensional tuple k space and by doing so
reducing the CPU and RAM demand of such calculations by some orders.

Isotropic systems are invariant under any rotation (and any mirror). By using a rotation 𝑆1,
the tuple of k vectors can be represented by a symmetry equivalent tuple, where k1 ∥ e𝑖 and
e𝑖 is an arbitrary direction vector (in 3D we choose w.l.o.g. e𝑖 = e𝑧). This already reduces the
effective dimension for the tuple by 2 in 3D and by 1 in 2D. In 3D, a further dimension reduction



Uniform plasmas 43

is possible: Suppose k1 ∥ e𝑧 , then we can apply a rotation 𝑆2 around the 𝑧 axis in such a way,
that 𝑆2k2 ∈ {k ∈ ℝ3 | 𝑘𝑥 ≥ 0, 𝑘𝑦 = 0}. 𝑆2 does not change k1, since it is on the 𝑧 axis. For k3
another symmetry can reduce the size of the tuple k space: the mirror symmetry, where the
𝑥 − 𝑧 plane is the mirror, can be used to represent the tuple by a symmetry equivalent tuple
where (k3)𝑦 ≥ 0, thus halving the tuple k space. This is only a minor reduction, since the
dimension stays the same. The last step in a similar form can be applied to 2D and k2.

Cylinder symmetric systems are invariant under any rotations around the 𝑧 axis and any
mirror that include the 𝑧 axis. Consider again a tuple (k1, ..., k𝑛), we can in the first step only
rotate in such a way that k lies in the 𝑥 − 𝑧 plane, reducing the effective dimension of the tuple
k space by 1. Using a mirror, we find a symmetry equivalent tuple where (k2)𝑦 ≥ 0.

Systems without symmetry do not allow such dimensional reductions.

It becomes apparent, that symmetries are especially useful, if the quantities depend only
on very few k vectors. For example, in an isotropic system we have 𝐺≷

k𝛼 , which is effectively

described by a 1D quantity, instead of 3D or 2D. 𝜀−1,≷kq𝛼 and G𝛼𝛽
kpq have more dependencies, and

their dimensions cannot be reduced as efficiently.

Computational scalings

In this subsection the computational scalings are discussed. The k point grid is assumed to
be cartesian, but the implications from the scalings listed below also apply to other coordinate
systems. Let𝑁𝑥 be the number of k space grid points in one dimension, and𝑁𝑡 be the number of
time steps for the whole simulation. The scalings for the G1–G2 scheme and the intermediate
scheme follow quite straightforwardly from the formulas. The scalings for the standard GKBA
follow from numerical tweaks that are discussed in chapter 4.

Table 3.1 shows the CPU and RAM scalings occuring in the GKBA and the G1–G2 method
for the SOA. The GKBA method has an additional factor 𝑁𝑡 in all scalings, compared to the
G1–G2 scheme, but scales a lot better with 𝑁𝑥 . This is due to the fact that all quantities neces-
sary for SOA GKBA simulations are only dependent on one momentum, which excels at using
symmetries.

CPU RAM
GKBA G1–G2 GKBA G1–G2

1D O(𝑁 2𝑡 𝑁𝑥 ln𝑁𝑥) O(𝑁𝑡𝑁 3𝑥 ) O(𝑁𝑡𝑁𝑥) O(𝑁 3𝑥 )
2D

isotropic O(𝑁 2𝑡 𝑁 2𝑥 ) O(𝑁𝑡𝑁 5𝑥 ) O(𝑁𝑡𝑁𝑥) O(𝑁 5𝑥 )
anisotropic O(𝑁 2𝑡 𝑁 2𝑥 ln(𝑁𝑥)) O(𝑁𝑡𝑁 6𝑥 ) O(𝑁𝑡𝑁 2𝑥 ) O(𝑁 6𝑥 )

3D
isotropic O(𝑁 2𝑡 𝑁𝑥 ln𝑁𝑥) O(𝑁𝑡𝑁 6𝑥 ) O(𝑁𝑡𝑁𝑥) O(𝑁 6𝑥 )
cylindric O(𝑁 2𝑡 𝑁 3𝑥 ) O(𝑁𝑡𝑁 8𝑥 ) O(𝑁𝑡𝑁 2𝑥 ) O(𝑁 8𝑥 )

anisotropic O(𝑁 2𝑡 𝑁 3𝑥 ln𝑁𝑥) O(𝑁𝑡𝑁 9𝑥 ) O(𝑁𝑡𝑁 3𝑥 ) O(𝑁 9𝑥 )

Table 3.1.: Numerical scalings for direct SOA in different dimensions and symmetries. The GKBA CPU
scalings are due to symmetry adapted convolution techniques, as discussed in Chap. 4.
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CPU RAM
GKBA 𝜀−1,≷kq𝛼 G1–G2 GKBA 𝜀−1,≷kq𝛼 G1–G2

1D O(𝑁 3𝑡 𝑁𝑥 ln𝑁𝑥) O(𝑁 2𝑡 𝑁 2𝑥 ) O(𝑁𝑡𝑁 3𝑥 ) O(𝑁 2𝑡 𝑁𝑥) O(𝑁𝑡𝑁 2𝑥 ) O(𝑁 3𝑥 )
2D

isotropic O(𝑁 3𝑡 𝑁 2𝑥 ) O(𝑁 2𝑡 𝑁 3𝑥 ) O(𝑁𝑡𝑁 5𝑥 ) O(𝑁 2𝑡 𝑁𝑥) O(𝑁𝑡𝑁 3𝑥 ) O(𝑁 5𝑥 )
anisotropic O(𝑁 3𝑡 𝑁 2𝑥 ln(𝑁𝑥)) O(𝑁 2𝑡 𝑁 4𝑥 ) O(𝑁𝑡𝑁 6𝑥 ) O(𝑁 2𝑡 𝑁 2𝑥 ) O(𝑁𝑡𝑁 4𝑥 ) O(𝑁 6𝑥 )

3D
isotropic O(𝑁 3𝑡 𝑁𝑥 ln𝑁𝑥) O(𝑁 2𝑡 𝑁 3𝑥 ) O(𝑁𝑡𝑁 6𝑥 ) O(𝑁 2𝑡 𝑁𝑥) O(𝑁𝑡𝑁 3𝑥 ) O(𝑁 6𝑥 )
cylindric O(𝑁 3𝑡 𝑁 3𝑥 ) O(𝑁 2𝑡 𝑁 5𝑥 ) O(𝑁𝑡𝑁 8𝑥 ) O(𝑁 2𝑡 𝑁 2𝑥 ) O(𝑁𝑡𝑁 5𝑥 ) O(𝑁 8𝑥 )
anisotropic O(𝑁 3𝑡 𝑁 3𝑥 ln𝑁𝑥) O(𝑁 2𝑡 𝑁 6𝑥 ) O(𝑁𝑡𝑁 9𝑥 ) O(𝑁 2𝑡 𝑁 3𝑥 ) O(𝑁𝑡𝑁 6𝑥 ) O(𝑁 9𝑥 )

Table 3.2.: Numerical scalings for 𝐺𝑊A in different dimensions and symmetries. The GKBA CPU scal-
ings are due to symmetry adapted convolution techniques, as discussed in Chap. 4.

Table 3.2 also shows CPU and RAM scalings for the 𝐺𝑊 approximation. Here we have three
methods to compare: GKBA, the method discussed above using 𝜀−1,≷kq𝛼 , and the G1–G2 scheme.

It depends on the ratio between 𝑁𝑥 and 𝑁𝑡 which method should be preferred. For very long
calculations, the G1–G2 scheme is obviously the method of choice since the RAM usage does
not depend on 𝑁𝑡 . However, the high 𝑁𝑥 scaling in 3D makes any G1–G2 calculations com-
putationally extremely demanding and strongly limits its applicability. In fact, aliasing effects
will always occur in sufficiently long simulations, and they can be postponed by increasing 𝑁𝑥
(cf. also Sect. 3.3 about aliasing). This means: in order to compute long G1–G2 simulations
reliably, a large 𝑁𝑥 is necessary.

In the next subsection a 2D isotropic electron relaxation using the G1–G2 scheme and the𝐺𝑊
approximation is presented to give an impression about the size of 𝑁𝑥 and CPU time necessary.

3.2.2. Test simulation of G1–G2 in 2D, isotropic

Figure 3.1 shows the relaxation of an isotropic 2D electron gas1 starting from an uncorrelated
and spin-symmetric nonequilibrium distribution. Since 𝐺𝑊 does not explicit distinguish be-
tween spin ↑↑ and ↑↓ configurations, Gkpq(𝑡) (independent of spins) is sufficient to describe
two-particle correlations. With 𝑁𝑥 = 64 on a half axis, i.e. on the momentum range [0, 𝑝co],
where the cutoff momentum is given by 𝑝co = 20 ℏ𝑎−1𝐵 , one fully symmetry reduced G data
structure includes

64 × [(2 × 64 − 1) × 64] × [(2 × 64 − 1) × (2 × 64 − 1)] = 8, 390, 176, 768 (3.12)

complex numbers. Assuming complex numbers based on two double precision numbers which
occupy 8 Byte each, we compute a memory demand of

8, 390, 176, 768 × 16Byte = 134, 242, 828, 288Byte (3.13)

12D slab model inside harmonic trap, as described in Ref. [69], Appendix A. Slab thickness is 0.2 𝑎𝐵 . RK4 time
stepper, time step length of 0.024188 as.
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Figure 3.1.: 2D isotropic relaxation starting from an uncorrelated initial nonequilibrium distribution
using 𝐺𝑊 selfenergy. The cutoff was chosen at 𝑝co = 20 ℏ𝑎−1𝐵 with 64 basis vectors on the
interval [0, 𝑝co].

for each instance of G.Depending on the order of the propagation scheme, a different number of
instances is needed: The Euler scheme uses two (current state and a derivative), Heun’s method
can be implemented using three (current state and two derivatives) or the classical 4th-order
Runge–Kutta (RK4) scheme can be implemented using four instances. The latter corresponds to
a RAM demand of roughly 0.5TB which are recalculated and rewritten multiple times in each
time step. G in a similar 3D isotropic or 2D anisotropic with the same number of k-points per
coordinate axis would require ≈ 64×0.5TB = 32TB which is not feasible on today’s computers.
The G1–G2 scheme has thus not been used for 3D calculations in this thesis.

Figure 3.1b demonstrates that the energy conservation is weakly violated with these param-
eters, especially towards longer simulation times. Shown are 5000 time steps with a length of
0.001 𝑎.𝑢. using a semi-analytical propagation scheme. The calculation took 36 hours on a su-
percomputer using 128 cores on 8 nodes. The propagation scheme is described in Appendix C.
It has been used instead of the classical Runge–Kutta scheme in order to reduce computational
cost under the assumption that two particle correlations evolve on a shorter time scale than
the one-particle distribution. Using an RK4 stepper, the energy conservation is better but the
calculation is slower and the memory demand much higher.

In order to get better results we either have to use more expensive stepping methods, better
convergence parameters, or even both. Bothmeasures drastically increase the demand for RAM
and computational power.

3.3. Dephasing and aliasing
Aliasing is a fundamental problem that arises in the discretization of some continuous function
or signal 𝑓 . The Nyquist-Shannon sampling theorem states that a angular frequency 𝜔 in the
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spectrum of 𝑓 that is sampled with a density of Δ𝑡 can only be correctly identified if at least
two sampling points per period exist, i.e.

2𝜋
𝜔 ⋅ Δ𝑡 ≥ 2 . (3.14)

If this condition is not fulfilled, Fourier transforms will wrongly identify a lower frequency, an
’alias’, hence the name aliasing.

Uniform systems described in momentum representation (or in spatial representation, too)
depend on continuous variables. In this section it is demonstrated how aliasing appears in
GKBA-type algorithms, and how it appears in G1–G2 type algorithms. It is shown that longer
calculations require a finer k point grid, and thus revised scaling tables are presented in the
final subsection.

3.3.1. Aliasing in GKBA-type algorithms
The time off-diagonal elements in GKBA can be written as

𝐺≷
k𝛼 (𝑡 ≥ 𝑡′) = 𝐺≷

k𝛼 (𝑡′, 𝑡′) exp (
1
iℏ ∫

𝑡

𝑡′
d ̄𝑡 ℎHFk𝛼 ( ̄𝑡)) . (3.15)

For fixed 𝑡 , 𝑡′, consider 𝐺≷
k𝛼 (𝑡 ≥ 𝑡′) as a signal in the variable k. 𝐺≷

k𝛼 (𝑡′, 𝑡′) is purely imaginary,
but the exponential function with imaginary argument evokes oscillations that are in general
faster (faster in regard to k variation) with larger time difference |𝑡 − 𝑡′|. Since in practice only a
finite number of k points can be considered, these oscillations can only be captured with finite
sampling, i.e. with finite spacing Δ𝑘.

For some more detailled analysis, free GKBA is considered instead. The gradient of 𝐺≷
k𝛼 (𝑡 ≥𝑡′) can be computed

∇𝐺≷
k𝛼 (𝑡 ≥ 𝑡′) = [∇𝐺≷

k𝛼 (𝑡′, 𝑡′) +
1
iℏ𝐺

≷
k𝛼 (𝑡′, 𝑡′)

k
𝑚𝛼

(𝑡 − 𝑡′)] exp ( 1
iℏ

𝑘2
2𝑚(𝑡 − 𝑡′)) . (3.16)

The absolute value of the first term is independent of 𝑡 , and is neglected in the following, since
𝑡 − 𝑡′ is assumed to be large. We find

∇𝐺≷
k𝛼 (𝑡 ≥ 𝑡′) = 1

iℏ
k
𝑚𝛼

(𝑡 − 𝑡′)𝐺≷
k𝛼 (𝑡 ≥ 𝑡′) . (3.17)

𝐺≷
k𝛼 (𝑡 ≥ 𝑡′) thus oscillates locally around kwith a ’frequency’ of k(𝑡−𝑡′)

ℏ𝑚𝛼
with respect to variation

of k. We write down the Nyquist condition,

| 2𝜋
Δ𝑘 ⋅ 𝑘(𝑡−𝑡′)ℏ𝑚𝛼

| = 2𝜋ℏ𝑚𝛼
Δ𝑘 ⋅ |𝑘|(𝑡 − 𝑡′) ≥ 2 , (3.18)
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which shows that for sufficiently large 𝑡 − 𝑡′, undersampling appears in all k points. Since the
selfenergies used practically in this thesis make use of the convolution theorem and Fourier
transforms, it is now plausible that aliasing appears at some point of time. Aliasing however
is not limited to convolution type calculations, but also other integrations easily get perturbed
by too coarse sampling.

The condition (3.18) can be used to find a rough estimate about the time scale, where aliasing
has not occurred (too much) yet: Choose a characteristic momentum 𝑘. Near equilibrium this
could be the Fermi momentum or thermal momentum. Then we find the estimate

𝑡 − 𝑡0 ≲
𝜋ℏ𝑚𝛼
Δ𝑘 ⋅ |𝑘| . (3.19)

Since often a cutoff momentum 𝑘max is fixed, and the number of k points per dimension, 𝑁𝑥 ,
can be varied, this can be formulated as

𝑡 − 𝑡0 ≲
𝜋ℏ𝑚𝛼

2𝑘max ⋅ |𝑘|
𝑁𝑥 . (3.20)

In conclusion, in order to simulate a long physical time using some uncorrelated GKBA, 𝑁𝑥
must be chosen sufficiently large, making the long-time scaling of this method effectively even
worse.

It should be noted that in two-time calculations this problem is drastically reduced, as the
correlation selfenergy includes an imaginary part that dampens the off-diagonal NEGF. Cor-
related GKBA approaches are expected to express similar behaviour, but this remains to be
checked.

3.3.2. Aliasing in G1–G2 type algorithms
The G1–G2 scheme elegantly avoids two-time dependent Green functions that express oscilla-
tory behaviour. Being equivalent to the GKBA, similar oscillations appear in another location,
namely in G. In this section the SOA case is discussed. Other selfenergy approximations also
contain the SOA terms, and the additional terms further obfuscate the following analysis. It
remains an open question if higher selfenergy terms reduce aliasing.

The G equation in SOA with free GKBA is given by

iℏ d
d𝑡G

𝛼𝛽
kpq(𝑡) − Δ𝐸𝛼𝛽kpq ⋅ G𝛼𝛽

kpq(𝑡) = Ψ𝛼𝛽
kpq(𝑡) . (3.21)

The dynamics of different index combinations are coupled only indirectly through their influ-
ence on the single-particle GF 𝐺. In order to further analyze this highly nontrivial equation it
is assumed that 𝐺≷(𝑡) has negligible time-dependence. The resulting differential equation has
a stationary solution that has been discussed in Sect. 2.3.8, and it will be called G𝛼𝛽,stat

kpq here.

Suppose initial values G𝛼𝛽
kpq(𝑡0) are given, then the solution of the differential equation is given

by

G𝛼𝛽
kpq(𝑡) ≈ G𝛼𝛽,stat

kpq + [G𝛼𝛽
kpq(𝑡0) − G𝛼𝛽,stat

kpq ] exp ( 1
iℏΔ𝐸

𝛼𝛽
kpq ⋅ [𝑡 − 𝑡0]) , (3.22)
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if Δ𝐸𝛼𝛽kpq ≠ 0. Again, oscillations with respect to k, p or q variation appear, whose phase factor
increases with 𝑡 − 𝑡0, i.e. in long calculations.

Now we again consider a gradient, with respect to k (or p). Since

Δ𝐸𝛼𝛽kpq =
1

2𝑚𝛼
[(k − q)2 − k2] + 1

2𝑚𝛽
[(p + q)2 − p2] = 1

𝑚𝛽
p ⋅ q − 1

𝑚𝛼
k ⋅ q + 2 [ 1

2𝑚𝛼
+ 1
2𝑚𝛽

] 𝑞2 ,
(3.23)

the gradient of the energy difference is ∇kΔ𝐸𝛼𝛽kpq = −q/𝑚𝛼 . Thus the total gradient becomes

∇kG𝛼𝛽
kpq(𝑡) = ∇kG𝛼𝛽,stat

kpq + exp ( 1
iℏΔ𝐸

𝛼𝛽
kpq ⋅ [𝑡 − 𝑡0]) ∇k [G𝛼𝛽

kpq(𝑡0) − G𝛼𝛽,stat
kpq ]

− q 1
iℏ𝑚𝛼

[𝑡 − 𝑡0] [G𝛼𝛽
kpq(𝑡0) − G𝛼𝛽,stat

kpq ] exp ( 1
iℏΔ𝐸

𝛼𝛽
kpq ⋅ [𝑡 − 𝑡0]) . (3.24)

Neglecting the first two terms, since for large [𝑡 − 𝑡0] the third term dominates, we find

∇kG𝛼𝛽
kpq(𝑡) ≈

−q
iℏ𝑚𝛼

[𝑡 − 𝑡0] (G𝛼𝛽
kpq(𝑡) − G𝛼𝛽,stat

kpq ) . (3.25)

This approximate differential equation has a solution that oscillates with a frequency of 𝑞[𝑡 −
𝑡0]/ℏ𝑚𝛼 . This is a similar frequency to that in the GKBA case, where 𝑘 instead of 𝑞 appeared.

In the collision integral,

𝐼p𝛽 = ±iℏ∑
kq

∑
𝛼

𝑣𝛼𝛽|q| (𝑡)G
𝛼𝛽
kpq(𝑡) ⟶ ±iℏ∑

𝛼
∫ dk
(2𝜋ℏ)𝑑

dq
(2𝜋ℏ)𝑑 𝑣

𝛼𝛽
|q| (𝑡)G

𝛼𝛽
kpq(𝑡) , (3.26)

this fast oscillating function G appears under the momentum integrals. In order to accurately
compute these integrals from a discretized G, the sampling theorem has to be fulfilled: Simple
integrals are the 0 component of the Fourier spectrum. If the signal is undersampled, this 0
component gets changed by aliases, which corresponds to integral errors. We get the estimates

𝑡 − 𝑡0 ≲
𝜋ℏ𝑚𝛼

2𝑘max ⋅ |𝑞|
𝑁𝑥 , (3.27)

𝑡 − 𝑡0 ≲ 𝜋ℏ
2𝑘max ⋅ (|𝑝|/𝑚𝛽 + |𝑘|/𝑚𝛼 )

𝑁𝑥 , (3.28)

where the second estimate stems from a similar analysis with regard to the q gradient. Small
𝑞 are more relevant than large 𝑞, since 𝑤q becomes large only at small 𝑞. Thus the second
estimate, with the characteristic 𝑝 and 𝑘, is smaller and in general the relevant estimate.

3.3.3. A revision of the scalings for long simulation durations
In the previous two subsections it was established that a simulation with a long duration re-
quires a sufficiently fine k point grid. It was found that the maximum simulation time is propor-
tional to 𝑁𝑥 , the number of k space vectors along one axis. For long simulation times we thus
have 𝑁𝑥 ∼ 𝑁𝑡 and all 𝑁𝑥 can be converted into 𝑁𝑡 in the tables from subsection 3.2.1, yielding
the two tables below.
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CPU RAM
GKBA G1–G2 GKBA G1–G2

1D O(𝑁 3𝑡 ln𝑁𝑡) O(𝑁 4𝑡 ) O(𝑁 2𝑡 ) O(𝑁 3𝑡 )
2D

isotropic O(𝑁 4𝑡 ) O(𝑁 6𝑡 ) O(𝑁 2𝑡 ) O(𝑁 5𝑡 )
anisotropic O(𝑁 4𝑡 ln(𝑁𝑡)) O(𝑁 7𝑡 ) O(𝑁 3𝑡 ) O(𝑁 6𝑡 )

3D
isotropic O(𝑁 3𝑡 ln𝑁𝑡) O(𝑁 7𝑡 ) O(𝑁 2𝑡 ) O(𝑁 6𝑡 )
cylindric O(𝑁 5𝑡 ) O(𝑁 9𝑡 ) O(𝑁 3𝑡 ) O(𝑁 8𝑡 )

anisotropic O(𝑁 5𝑡 ln𝑁𝑡) O(𝑁 10𝑡 ) O(𝑁 4𝑡 ) O(𝑁 9𝑡 )

Table 3.3.: Effective SOA scalings for large 𝑁𝑡 with consideration of aliasing, 𝑁𝑥 ∼ 𝑁𝑡 .

CPU RAM
GKBA 𝜀−1,≷kq𝛼 G1–G2 GKBA 𝜀−1,≷kq𝛼 G1–G2

1D O(𝑁 4𝑡 ln𝑁𝑡) O(𝑁 4𝑡 ) O(𝑁 4𝑡 ) O(𝑁 3𝑡 ) O(𝑁 3𝑡 ) O(𝑁 3𝑡 )
2D

isotropic O(𝑁 5𝑡 ) O(𝑁 5𝑡 ) O(𝑁 6𝑡 ) O(𝑁 3𝑡 ) O(𝑁 4𝑡 ) O(𝑁 5𝑡 )
anisotropic O(𝑁 5𝑡 ln(𝑁𝑡)) O(𝑁 6𝑡 ) O(𝑁 7𝑡 ) O(𝑁 4𝑡 ) O(𝑁 5𝑡 ) O(𝑁 6𝑡 )

3D
isotropic O(𝑁 4𝑡 ln𝑁𝑡) O(𝑁 5𝑡 ) O(𝑁 7𝑡 ) O(𝑁 3𝑡 ) O(𝑁 4𝑡 ) O(𝑁 6𝑡 )
cylindric O(𝑁 6𝑡 ) O(𝑁 7𝑡 ) O(𝑁 9𝑡 ) O(𝑁 4𝑡 ) O(𝑁 6𝑡 ) O(𝑁 8𝑡 )
anisotropic O(𝑁 6𝑡 ln𝑁𝑡) O(𝑁 8𝑡 ) O(𝑁 10𝑡 ) O(𝑁 5𝑡 ) O(𝑁 7𝑡 ) O(𝑁 9𝑡 )

Table 3.4.: Effective 𝐺𝑊A scalings for large 𝑁𝑡 with consideration of aliasing, 𝑁𝑥 ∼ 𝑁𝑡 .
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4. Numerical implementation (cylinder
symmetric plasma)

Abstract: This chapter covers numerical considerations regarding convolution-based selfen-
ergy approximations. First, 3D Fourier transforms are rewritten as a combination of a 1D
Fourier transform and a Hankel transform, which has been implemented in the Gnu Scien-
tific Library (GSL). After an introduction the necessary discretizations in time and momentum
space, the algorithms for SOA and GWA calculations are explained in detail. For didactic rea-
sons, first the SOA algorithm is explained. The GW algorithm agrees in a few parts and is then
introduced as a more complex modification of the SOA algorithm.

4.1. Fourier transformation in cylindric symmetry
In the direct SOA term and in the 𝐺𝑊 approximation only convolution type momentum inte-
grals appear, cf. Sects. 4.4 and 4.5. This type of momentum integrals are favorable, since their
numerical cost can be drastically reduced using the convolution theorem: Let 𝐴(k) and 𝐵(k) be
functions in momentum space. Then the convolution [𝐴 ∗ 𝐵](k) is given by

(𝐴 ∗ 𝐵)k = ∫ dq𝐴(k − q) 𝐵(q) . (4.1)

The Fourier transform of the convolution is given by

F [𝐴 ∗ 𝐵] (r) = F[𝐴](r) ⋅ F[𝐵](r) , (4.2)

where the conventional prefactor 1 for the forward transform and (2𝜋)−𝑑 for the backward
transform was used. The convolution can thus be computed as

[𝐴 ∗ 𝐵](k) = F−1 [F[𝐴] ⋅ F[𝐵]] (k) . (4.3)

The numerical advantage of this formulation is that for functions 𝐴, 𝐵 on a discretized grid
a very efficient algorithm Fourier transform algorithm exists, the Fast Fourier transform (FFT)
algorithm [87]. Fortunately, today many libraries offering optimized FFT algorithms exist, e.g.
the FFTW library [88] and variants optimized for Intel® CPUs in the Intel® Math Kernel Li-
brary[89] (MKL) or cuFFT[90], a library optimized for use on NVIDIA GPUs. In fact, these
three libraries have highly compatible interfaces which allows the optimized portation of code
to new machines.
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For a 𝑑 dimensional grid of𝑁 grid points per dimension, the FFT has a complexity ofO(𝑁 𝑑 log𝑁).
However, if the functions to be transformed fulfill symmetries, the grid dimension can be re-
duced (cf. Sect. 3.2.1), and sometimes, e.g. in cylindric symmetry, algorithms can be derived
that are even more efficient dann the 𝑑-dimensional FFT.

4.1.1. Fourier-Hankel transform
Let 𝑓 (k) = 𝑓 (𝑘𝑧 , 𝑘𝜚) be a cylinder symmetric function. The Fourier transform then is cylinder
symmetric, too, and we can write

F𝑥𝑦𝑧[𝑓 ](𝑟𝑧 , 𝑟𝜚) = ∫
∞

−∞
d𝑘𝑧 ∫

∞

0
d𝑘𝜚 ∫

2𝜋

0
d𝑘𝜑 𝑘𝜚𝑓 (𝑘𝑧 , 𝑘𝜚) exp (−i [𝑘𝑧𝑟𝑧 + 𝑘𝜚𝑟𝜚 cos 𝑘𝜑])

= ∫
∞

−∞
d𝑘𝑧 exp (−i𝑘𝜚𝑟𝜚)∫

∞

0
d𝑘𝜚 𝑘𝜚𝑓 (𝑘𝑧 , 𝑘𝜚) ∫

2𝜋

0
d𝑘𝜑 exp (−i𝑘𝜚𝑟𝜚 cos 𝑘𝜑)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=2𝜋𝐽0(𝑘𝜚 𝑟𝜚)

= 2𝜋F𝑧 [H0𝜚[𝑓 ]] (𝑟𝑧 , 𝑟𝜚) = 2𝜋H0𝜚 [F𝑧[𝑓 ]] (𝑟𝑧 , 𝑟𝜚), (4.4)

where the Bessel function of first kind 𝐽0 was identified as the angular integral. The remaining
𝑘𝜚 integral is then identified as the zeroth order Hankel transform, whose general expression is

H𝜈 [𝑓 ](𝑟) = ∫
∞

0
d𝑘 𝑓 (𝑘) 𝑘 𝐽𝜈(𝑘𝑟) . (4.5)

The Fourier transform with respect to the 𝑧 coordinate/momentum is efficiently treated with
the FFT algorithm. For the Discrete Hankel transform (DHT) a lot of approaches exist with
their own advantages and disadvantages. In particular, there are faster but less accurate [91,
92], and slower but more accurate methods. In the following section, a highly precise algorithm
will be presented. As the applications show, CPU time is currently seldom the computational
bottleneck, but RAM demand is, so the choice is well met.

4.1.2. Discrete Hankel transform, k-point grid
The DHT method used in this thesis for cylinder symmetric problems has been developed by
H. Fisk Johnson [93] and D. Lemoine [94]. Its derivation is sketched here to give an impression
about its strengths and weaknesses (what is exact, what is approximated, and how). Let 𝑓 ∶
ℝ+ → ℂ be a Hankel transformable function, i.e.

𝐹𝜈(𝑅) = ∫
∞

0
𝑓 (𝑥) 𝐽𝜈(𝑥𝑅) 𝑥 d𝑥 (4.6)

exists for all 𝑅 ≥ 0, which is fulfilled if and only if

∫
∞

0
𝑓 (𝑥)√𝑥 d𝑥 (4.7)
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converges absolutely and exists. The inverse transform is given by the same expression, but
𝑥 ↔ 𝑅.An underlying assumption of the discrete method proposed by the authors above is that
𝑓 (𝑡) for 𝑡 ≥ 𝑇 for some 𝑇 ∈ ℝ+. Choose an 𝑁 ∈ ℕ and let 𝑗𝑁 be the 𝑁 -th zero of 𝐽𝜈(𝑥). Using
the variable 𝑟 = 𝑅𝑇/𝑗𝑛, the transformations can be written as

𝐹𝜈(𝑟 𝑗𝑛/𝑇 ) = 𝑇 2 ∫
1

0
𝑓 (𝑥𝑇 ) 𝐽𝜈(𝑥𝑟𝑗𝑛) 𝑥 d𝑥 , (4.8)

𝑓 (𝑥𝑇 ) = 𝑗2𝑁
𝑇 2 ∫

∞

0
𝐹𝜈(𝑟 𝑗𝑁/𝑇 ) 𝐽𝜈(𝑥𝑟𝑗𝑁 ) 𝑟 d𝑟 . (4.9)

𝑓 (𝑥𝑇 ) is expanded in a series of Bessel functions,

𝑓 (𝑥𝑇 ) = {
∞
∑
𝑚=1

2𝐶𝑚
𝐽 2𝜈+1(𝑗𝑚)𝐽𝜈(𝑗𝑚𝑥), 0 ≤ 𝑥 ≤ 1

0, 1 < 𝑥 < ∞
, (4.10)

𝐶𝑚 = ∫
1

0
𝑥 𝑓 (𝑥𝑇 ) 𝐽𝜈(𝑗𝑚𝑥) d𝑥 , (4.11)

where all terms 𝑚 ≥ 𝑁 are dropped, i.e. 𝐶𝑚 = 0 is assumed. Using the property

𝐹𝜈(𝑗𝑚/𝑇 ) = 𝑇 2 𝐶𝑚 , (4.12)

Eq. (4.10) becomes

𝑓 (𝑥𝑇 ) = {
𝑁−1
∑
𝑚=1

2𝐹𝜈 (𝑗𝑚/𝑇 )
𝐽 2𝜈+1(𝑗𝑚)𝑇 2 𝐽𝜈(𝑗𝑚𝑥), 0 ≥ 𝑥 ≥ 1

0 1 < 𝑥 < ∞
. (4.13)

In particular for 𝑥 = 𝑗𝑖/𝑗𝑁 , we find a discrete backward transform,

𝑓 (𝑗𝑖𝑇/𝑗𝑁 ) = 1
𝑇 2

𝑁−1
∑
𝑚=1

𝑌𝜈(𝑚, 𝑖) 𝐹𝜈(𝑗𝑚/𝑇 ) , (4.14)

with the matrix 𝑌𝜈(𝑚, 𝑖) = 2𝐽𝜈(𝑗𝑖𝑗𝑚/𝑗𝑁 )/𝐽 2𝜈+1(𝑗𝑚). Using the orthogonality relation (ref. [93])

4
𝐽 2𝜈+1(𝑗𝑚)𝑗2𝑁

𝑁−1
∑
𝑝=1

𝐽𝜈(𝑗𝑚𝑗𝑝/𝑗𝑁 )𝐽𝜈(𝑗𝑖𝑗𝑝/𝑗𝑁 )
𝐽 2𝜈+1(𝑗𝑝)

= 𝛿𝑚,𝑖, for 𝑚, 𝑖 < 𝑁 , (4.15)

the discrete forward transform can be found,

𝐹(𝑗𝑚/𝑇 ) = 𝑇 2
𝑗2𝑁

𝑁−1
∑
𝑖=1

𝑌𝜈(𝑚, 𝑖) 𝑓 (𝑗𝑖𝑇/𝑗𝑁 ) . (4.16)
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Figure 4.1.: Distance between neighboring zeros of 𝐽0(𝑥)

In conclusion: this discrete transformation is exact on the space of truncated Fourier-Bessel
series, Eq. (4.10). Even if the transformed function is not of this type, its discrete values are im-
plicitly interpolated using a Fourier-Bessel expansion, and the interpolant is then transformed
exactly. This behavior is in fact analogous to that of discrete Fourier transforms. The or-
thogonality relation, Eq. (4.15), guarantees that in the discrete case a successive forward and
backward transform always yield unity.

The expressions above dictate how the discretization has to be done, if one aims to use these
equations: Let 𝑇 be the ’cutoff’, i.e. for 𝑡 ≥ 𝑇 the function to be transformed is 0, and we wish
to use 𝑁 − 1 grid points between 0 and 𝑇 for 𝑁 > 2, we have to choose

𝑡𝑛 =
𝑇 𝑗𝑛
𝑗𝑁

, (4.17)

i.e. a non-equidistant grid. In the case 𝜈 = 0 the first Bessel zero is not in 𝑥 = 0. Figure 4.1
shows the first distances between neighboring Bessel zeros. The distance quickly converges
towards 𝜋 , and the deviations from an equidistant grid of spacing 𝜋 start at less than 1% and
become quickly even smaller.

4.1.3. A library for Discrete Hankel transforms
Luckily, the method from the subsection before is implemented in the Gnu Scientific Library
(GSL) [95] and is declared in the header file gsl_dht.h. The library offers constructors of a DHT
object, gsl_dht *gsl_dht_new(size_t size, double nu, double xmax), an application
method int gsl_dht_apply(const gsl_dht *t, double *f_in, double *f_out), and some
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utility to identify the sampling points, double gsl_dht_x_sample(const gsl_dht *t, int
n) (starting domain) and double gsl_dht_k_sample(const gsl_dht *t, int n) (Fourier
domain). It should be noted that the application method applies the coefficients of the forward
transform. The backward transform is gotten by using the forward transform and applying
an additional prefactor of 𝑇 4/𝑗2𝜈,𝑀 . The DHT method uses whatever optimized linear algebra
packages it can find, e.g. the Intel MKL BLAS. Since the method is based on matrix-vector
multiplications, the runtime for the transform of a vector of length𝑁𝑥 isO(𝑁 2𝑥 ). In order to have
similar spacings in 𝑧 directions and in 𝜌 direction, the 𝑧 axis is discretized by O(𝑁𝑥) samples.
For a cylinder symmetric Fourier transform, thusO(𝑁𝑥) such DHTs are needed, yielding a total
scaling of O(𝑁 3𝑥 ). Fast Fourier transform along the 𝑧 axis has a runtime of O(𝑁𝑥 log(𝑁𝑥)) and
is thus not the expensive part of a cylinder symmetric Fourier transform.

4.2. Discretization in momentum space and time

4.2.1. Discretization in momentum space

The phase space of uniform gases is infinite and continuous and can be parametrized by ℝ𝑑 .
Computers however, cannot deal with an infinite number of data, and thus coarser model is
necessary, i.e. a finite k-point grid1. The first simplification is the assumption that for large
momentum values the states are approximately unoccupied and that scattering processes do not
occupy them. In short, all momentum values above or below a certain threshold are neglected,
introducing a cutoff momentum 𝑘co. This finite phase volume still contains an infinite number
of k-points. It must thus be discretized to achieve a finite grid.

The discretization used here is rectilinear, i.e. the 𝑧 and the 𝜌 axis each are discretized yielding
a number of samples {𝑧0, .., 𝑧𝑁𝑧 } and {𝜌0, .., 𝜌𝑁𝜌 } respectively. The 𝜌 − 𝑧 plane is discretized
using the cartesian product, {𝑧0, .., 𝑧𝑁𝑧 } × {𝜌0, .., 𝜌𝑁𝜌 }. Since in 𝑧 direction a standard Fourier
transform has to be approximated, and the method of choice is the FFT, the 𝑧 axis is discretized
equidistantly. The 𝜌 axis is discretized using the Bessel zeros from the section before to allow
the usage of the DHT method.

While in principle it is possible to choose cutoff and number of k-points separately for the
two axes, it is plausible that often the demands in the two dimensions are similar. The cutoff 𝑘co
is thus chosen identically on both axes (because of cylinder symmetry this describes a cylinder
of length 2𝑘co and radius 𝑘co). Between 0 and 𝑘co on both axes, 𝑁𝑥 values are chosen according
to the requirements for the transformation. An exemplary grid is shown in Fig. 4.2.

The usage of FFT to do the transform in 𝑧 direction implies that a 2𝑘co-periodicity is assumed,
and 𝐺≷

𝑘𝜌 ,𝑘𝑧+2𝑘co,𝛼 = 𝐺≷
𝑘𝜌 ,𝑘𝑧 ,𝛼 . In practice, only one of the boarders, ±𝑘co, needs to be stored

because of this translation symmetry. The cutoff in turnmust be chosen large enough to prevent
artifacts of this unwanted periodicity.

1Some problems of such finite grids were already discussed in Sect. 3.3.
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Figure 4.2.: Exemplary grid suitible for the GSL DHT in combination with FFT for 𝑁𝑥 = 10.

Discretized expectation value integrals

Expectation values of single-particle observables �̂� with matrix elements 𝐴k𝛼 in the thermo-
dynamic limit can be computed according to

⟨�̂�⟩ (𝑡) = ±iℏ∑
𝛼

∫ dk
(2𝜋ℏ)3𝐴𝛼 (k) 𝐺<𝛼 (k, 𝑡 , 𝑡)

= ±i 2𝜋ℏ
(2𝜋ℏ)3 ∑𝛼 ∫ d𝑘𝑧 ∫ d𝑘𝜌 𝐴𝛼 (𝑘𝜌 , 𝑘𝑧) 𝐺<𝛼 (𝑘𝜌 , 𝑘𝑧 , 𝑡 , 𝑡) 𝑘𝜌 . (4.18)

In order to perform these integrals on the discrete grid, suitable quadrature formulas are needed.
Integration along the 𝑧 axis can be done using the weights 𝑘ci/𝑁𝑥 , which are the weights that
correspond to the exact integration of a Fourier interpolant, the 0 component of the transform.
Integration in 𝜌 direction involves nonequal integrations weights due to the grid points not
being equidistant.

In particular, integrations of the form

∫
∞

0
𝑓 (𝑥) 𝑥 d𝑥 (4.19)

are needed. Luckily, C. Frappier and P. Olivier [96] have found a quadrature formula for this
type of integral with samples at the same 𝑥 values as the DHT method above, which makes it
suitable in this situations. It is given by

∫
∞

0
[𝑓 (𝑥) + 𝑓 (−𝑥)] 𝑥 d𝑥 ≈ 2𝑇 2

𝑗2𝑁

∞
∑
𝑘=1

1
[𝐽 ′0(𝑗𝑘)]

2 [𝑓 (𝑗𝑘𝑇𝑗𝑁
) + 𝑓 (−𝑗𝑘𝑇𝑗𝑁

)] . (4.20)
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In order to apply this quadrature to the problems at hand, 𝑓 is set to zero at negative values or
equivalently, assume 𝑓 to be symmetric and apply the factor 1/2 afterwards. Since all functions
are assumed to be zero at 𝑥 values beyond the cutoff, the sum can be truncated after the first
𝑁 − 1 terms. The quadrature formula is exact for all entire functions of exponential type that
decay fast enough [96]. An entire function that is set to 0 in an open subset is 0 everywhere
(Taylor expansion is valid everywhere for entire functions). The expression above thus can in
our situation only be exact in the case that 𝑓 ≡ 0, but nevertheless gives excellent integration
results that are based on an implicit Fourier-Bessel expansion, similar to the ideas that led to
the DHT.

4.2.2. Discretization in time, stepper and quadrature
In addition to quadratures suitable for momentum integrals, quadrature formulas for the mem-
ory integrals are needed. Depending on the propagation method of the differential equations
(also called stepper in the following), 𝐺≷ and Σ≷ values are available only at certain points of
time. While error control of the integration of the differential equations is possible through
so-called embedded Runge–Kutta formulae [97], these methods vary the step size. Quadrature
formulas can in principle be derived for unevenly distributed time samples, but make the pro-
cedure a lot more complicated.

In this thesis the versatile 4th order Runge–Kutta (RK4) stepper in combination with a versa-
tile time integral quadrature were used. The time integration quadrature is based on the exact
integration of Lagrange polynomials, that was used in the Master theses by N. Schlünzen [98]
and J.-P. Joost [67] before. Let 𝑥1, .., 𝑥𝑛 sample points of a function 𝑓 with values 𝑓1, .., 𝑓𝑛 at these
points. The Lagrange polynomials are given by

𝐿𝑖(𝑥) = ∏
𝑚≠𝑖

𝑥 − 𝑥𝑚
𝑥𝑖 − 𝑥𝑚

(4.21)

with the property that 𝐿𝑖(𝑥𝑛) = 𝛿𝑖𝑛. The polynomial interpolation of 𝑓 is thus given by

ℑ[𝑓 ](𝑥) ∶=
𝑛
∑
𝑚=1

𝑓𝑚 𝐿𝑚(𝑥) . (4.22)

As a polynomial, this expression is straightforward to integrate, which yields linear combina-
tion of the 𝑓𝑚,

𝑡1

∫
𝑡0
𝑓 (𝑥) d𝑥 ≈

𝑡1

∫
𝑡0
ℑ[𝑓 ](𝑥) d𝑥 =

𝑛
∑
𝑚=1

𝑓𝑚 ∫
𝑡1

𝑡0
𝐿𝑚(𝑥) d𝑥 . (4.23)

If the 𝑥𝑖 are equidistant and setting 𝑡0 = 𝑥1, 𝑡1 = 𝑥𝑛, one finds the famous closed Newton–Cotes
formulas. These quadrature formulas are able to integrate polynomials of degree 𝑛 exactly. If
the function 𝑓 is not a polynomial, the usage of high-order polynomial integration often leads
to large errors (cf. ”Runge’s phenomenon” [99]). It is thus wise to use composite schemes (large
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interval is distributed into many smaller intervals) and lower order polynomial interpolation.
The most famous composite scheme is the trapezoidal rule. Following a code sample by N.
Schlünzen and J.-P. Joost [100] an overlapping composite scheme is used: For up to 7 sampling
points, the standard Newton–Cotes formulas from the literature are used.

Number of samples 𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6 𝑤7
1 0
2 1

2
1
2

3 1
3

4
3

1
3

4 3
8

9
8

9
8

3
8

5 28
90

128
90

48
90

128
90

28
90

6 95
288

375
288

250
288

250
288

375
288

95
288

7 246
840

1296
840

162
840

1632
840

162
840

1296
840

246
840

Table 4.1.: Newton–Cotes integration weights for up to 7 samples. The spacing factor is omitted in the
weights above.

For 𝑛 ≥ 8 sampling points, consider the following: 5 points are needed to determine the
coefficients of a fourth-order interpolation polynomial. Let 𝐼𝑚(𝑥), 1 ≤ 𝑛 ≤ 𝑛 − 4 be the interpo-
lation polynomial based on the samples with numbers 𝑚,𝑚+1, 𝑚 +2, 𝑚 +3, 𝑚 +4. The interval
[𝑥𝑚, 𝑥𝑚+1] is interpolated by a different number of polynomials, depending on 𝑚: [𝑥1, 𝑥2] by
one, [𝑥2, 𝑥3] by two, [𝑥3, 𝑥4] by three, [𝑥4, 𝑥5] by four polynomials, and analogously at the other
’end’ of the integration interval. The ’inner’ intervals are interpolated by 5 different polynomi-
als. The idea now is for each such interval to average between the integrals of all interpolation
polynomials. For example, the first weights are given by

𝑤1 = ∫
2

1
𝐼1(𝑥) d𝑥 = 17

48 , (4.24)

𝑤2 = 1
2 (∫

3

2
𝐼1(𝑥) + 𝐼2(𝑥) d𝑥) = 59

48 , (4.25)

𝑤3 = 1
3 (∫

4

3
𝐼1(𝑥) + 𝐼2(𝑥) + 𝐼3(𝑥) d𝑥) = 43

48 . (4.26)

The result of this procedure are the following weights (without the spacing factor):

Runge–Kutta fourth order stepper

Consider an ordinary differential equation

d
d𝑡 𝑦(𝑡) = 𝑓 (𝑡, 𝑦(𝑡)) (4.27)
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𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 to 𝑤𝑛−5 𝑤𝑛−3 𝑤𝑛−2 𝑤𝑛−1 𝑤𝑛17
48

59
48

43
48

49
48 1 49

48
43
48

59
48

17
48

Table 4.2.: Integration weight factors for more than 𝑛 > 7 equidistant sampling points, based on over-
lapping fourth order polynomial interpolation.

and suppose 𝑦 is known at time 𝑡 . We want to compute the function value 𝑦(𝑡 + Δ𝑡). We can
write

𝑦(𝑡 + Δ𝑡) = 𝑦(𝑡) + ∫
𝑡+Δ𝑡

𝑡
d𝑦
d𝑡 ( ̄𝑡) d ̄𝑡 = 𝑓 (𝑡) + Δ𝑡 d𝑦

d𝑡 (𝑡
′) (4.28)

for some 𝑡′ ∈ [𝑡, Δ𝑡], if 𝑦 ′ is continuous. The aim of advanced steppers is to find a good estimate
for the average derivative d𝑦

d𝑡 (𝑡′). In the classical Runge–Kutta scheme, this is computed as
follows:

d𝑦
d𝑡 (𝑡

′) ≈ 1
6 (𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) , where (4.29)

𝑘1 = 𝑓 (𝑡, 𝑦(𝑡)) (4.30)

𝑘2 = 𝑓 (𝑡 + 1
2Δ𝑡, 𝑦(𝑡) +

1
2Δ𝑡𝑘1) (4.31)

𝑘3 = 𝑓 (𝑡 + 1
2Δ𝑡, 𝑦(𝑡) +

1
2Δ𝑡𝑘2) , (4.32)

𝑘4 = 𝑓 (𝑡 + Δ𝑡, 𝑦(𝑡) + Δ𝑡𝑘3) . (4.33)

This method has a consistency error of fourth order: This means that the error of one step is of
order O ((Δ𝑡)5) . Since the number of steps necessary to compute a fixed interval [𝑡0, 𝑡1] grows
with ∼ 1

Δ𝑡 , and errors accumulate, the error of the final value, 𝑦(𝑡1), (neglecting the higher order
terms, arising from error propagation) is of order O ((Δ𝑡)4).

4.3. Real-time equations of motion for 𝐺𝑊 in the uniform
gas

In this section it is assumed that the species-dependence of the interaction factorizes, 𝑤𝛼𝛽q =
𝑍𝛼𝑍𝛽𝑤q as it is the case for the Coulomb potential. The charge numbers 𝑍𝛼 , 𝑍𝛽 are arranged in
the following expressions in such a way that the quantities and formulas becomemore compact.
The expressions for SOA and 𝐺𝑊A from Sect. 2.1.5 in the case of uniform gases after applying
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the Langreth rules and using GKBA can be cast into the following form:

iℏ 𝜕
𝜕𝑡 𝐺

≷
k𝛼 (𝑡 ≥ 𝑡′) = ℎHFk𝛼 (𝑡) 𝐺≷

k𝛼 (𝑡, 𝑡′) , (4.34)

−iℏ 𝜕
𝜕𝑡′𝐺

≷
k𝛼 (𝑡 ≤ 𝑡′) = ℎHFk𝛼 (𝑡′) 𝐺≷

k𝛼 (𝑡, 𝑡′) , (4.35)

ℎHFk𝛼 (𝑡) =
𝑘2
2𝑚𝛼

+ iℏ𝑍 2𝛼 ∑
p
𝑤k−p 𝐺<p𝛼 (𝑡, 𝑡) . (4.36)

These two equations stem from the GKBA and are used to propagate 𝐺≷(𝑡, 𝑡′) away from the
time-diagonal. The expression for the Hartree–Fock potential only includes the Fock contribu-
tion, since in uniform charge-neutral systems the Hartree contribution vanishes. On the time-
diagonal, the commutator of 𝐺≷ with ℎHF is 0 (both are diagonal), but the collision integral 𝐼
enters the equation of motion:

iℏ d
d𝑡 𝐺

≷
k𝛼 (𝑡, 𝑡) = [𝐼 + 𝐼†]k𝛼 (𝑡) , (4.37)

𝐼k𝛼 (𝑡) =
𝑡

∫
𝑡0
Σ>k𝛼 (𝑡, ̄𝑡) 𝐺<

k𝛼 ( ̄𝑡 , 𝑡) − Σ<k𝛼 (𝑡, ̄𝑡) 𝐺>
k𝛼 ( ̄𝑡 , 𝑡) d ̄𝑡 , (4.38)

Σ≷k𝛼 (𝑡1, 𝑡2) = iℏ𝑍 2𝛼 ∑
k′

𝑊≷
k′−k(𝑡1, 𝑡2) 𝐺≷

k′𝛼 (𝑡1, 𝑡2) , (4.39)

𝑊≷q (𝑡1, 𝑡2) = 𝜋≷q (𝑡1, 𝑡2) 𝑤q(𝑡1) 𝑤q(𝑡2) + 𝑤q(𝑡1)
𝑡1

∫
𝑡0
𝜋Rq (𝑡1, ̄𝑡) 𝑊≷q ( ̄𝑡 , 𝑡2) d ̄𝑡

+ 𝑤q(𝑡1)
𝑡2

∫
𝑡0
𝜋≷q (𝑡1, ̄𝑡) 𝑊Aq ( ̄𝑡 , 𝑡2) d ̄𝑡 , (4.40)

𝜋≷q (𝑡1, 𝑡2) = iℏ∑
k′𝛽

(±)𝛽𝑍 2𝛽𝐺≷
k′+q,𝛽(𝑡1, 𝑡2) 𝐺≶

k′,𝛽(𝑡2, 𝑡1) . (4.41)

Given above are the 𝐺𝑊A equations. The direct SOA equations are gotten if the two integral
terms in Eq. (4.40) are dropped. It is noteworthy that in the equations above only the non-
singular part of𝑊(𝑡, 𝑡′) ⟶ 𝑊(𝑡, 𝑡′) −𝑤 𝛿(𝑡, 𝑡′) is written and used. The singular part is instead
included in the Fock contribution of the Hartree–Fock Hamiltonian, and thus only contributes
to the off-diagonal propagation.

4.4. Second-Order Approximation
In this section an algorithm for the SOA is presented. SOA calculations already contain many
of the steps that 𝐺𝑊 calculations use. It is thus discussed first in order to make it easier to
understand the 𝐺𝑊 algorithm, Sect. 4.5.
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T

T

t1

t2

(a) Propagation in the two-time plane: Off-diagonal
(blue) using a HF-propagator, time-diagonal (red) in-
cludes the collision integral 𝐼 .

T

T

t1

t2

I(T) = dt (T, t)G(t, T)

(T
,t

)

G(t, T)

(b) Computation of the collision integral 𝐼 at time 𝑇 is
dependent on 𝐺 and Σ values where one time argu-
ment is the current time 𝑇 each.

Figure 4.3.: Sketch of the 𝐺, Σ values necessary to propagate by one time step in GKBA.

SOAGKBA calculations consist of two parts each time step: off-diagonal propagation using a
Hartree–Fock Hamiltonian, and time-diagonal propagation using the collision integral. In this
section it is discussed how these two can be computed efficiently. The following numerics are
inspired by the book by M. Bonitz and D. Semkat, Ref. [101], and by Ref. [102].

4.4.1. Necessary data structures
NEGF, as a function depending on two times, the ’two-time plane’, are usually propagated by
gradually extending the ’area’ of known 𝐺 values. The area of known 𝐺 values is extended
away from the time-diagonal and along the time-diagonal. The GKBA can be understood as a
simplification of the off-diagonal propagation, depicted by blue arrows in Fig. 4.3a and given
by Eqs. (4.34) and (4.35). For the propagation from 𝑇 to 𝑇 +Δ𝑇 , only the HF-Hamiltonian at the
time 𝑇 is needed. The off-diagonal propagation does not have any dependencies apart from the
edges {𝑇 }×[0, 𝑇 ] and [0, 𝑇 ]×{𝑇 }.The collision integral only enters the time-diagonal propagation.
Figure 4.3b shows that 𝐺≷ and Σ≷ are only needed with time arguments on the same very two
edges. A look at the SOA equations shows that Σ≷ on the edge again only depends on 𝐺≷ on
the edges. (This changes in 𝐺𝑊A.)

In Appendix A a few very useful time transposition properties for 𝐺, 𝜋,𝑊 and relations be-
tween 𝜋>, 𝑊> and 𝜋<, 𝑊< are derived. Since

𝐺≷(𝑡1, 𝑡2) = −[𝐺≷(𝑡2, 𝑡1)]∗ (4.42)
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it is sufficient to explicitly store 𝐺>(𝑡1, 𝑡2) for 𝑡1 ≥ 𝑡2 and 𝐺<(𝑡1, 𝑡2) for 𝑡1 ≤ 𝑡2. These times allow
the immediate computation of 𝜋>(𝑡1 ≥ 𝑡2). Using the property

𝜋≷q (𝑡1, 𝑡2) = −[𝜋≷q (𝑡2, 𝑡1)]∗ = −[𝜋≶−q(𝑡1, 𝑡2)]∗ = 𝜋≶−q(𝑡2, 𝑡1) (4.43)

we immediately get the < component and all time transpositions as well, and can thus compute
𝐼 from the knowledge of the edges only.

4.4.2. Computing HF energies
Since the Hartree–Fock energy of uniform 3D Coulomb gases takes the form

ℎHFk𝛼 (𝑡) =
𝑘2
2𝑚𝛼

+ iℏ∫
dp

(2𝜋ℏ)3 [𝑤
𝛼𝛼
k−p𝐺<p𝛼 (𝑡, 𝑡)] , (4.44)

the Fock potential can be written as

𝜀𝐹k𝛼 (𝑡) =
iℏ

(2𝜋ℏ)3 [𝑤
𝛼𝛼 ∗ 𝐺<𝛼 (𝑡, 𝑡)] (k), (4.45)

where ∗ denotes the convolution operation. The efficient numerical evaluation of the Fock
energy 𝜀𝐹𝛼 (𝑡), by making use of the convolution theorem, is thus as follows:

𝜀𝐹𝛼 (𝑡) = iℏ
(2𝜋ℏ)3IFT [FT(𝑤

𝛼𝛼 )FT(𝐺<𝛼 (𝑡, 𝑡))] , (4.46)

where FT and IFT are the numerical Fourier transform and inverse Fourier transform explained
in Sect. 4.1. This procedure computes the Fock energies on the whole k-point grid at once.

4.4.3. Computing collision integrals
Let 𝑆 be the inversion operator, i.e. 𝑆𝑓 (k) = 𝑓 (−k). The inversion operator commutes with the
Fourier transform. 𝜋≷ can be written as a convolution,

𝜋≷q (𝑡1, 𝑡2) = iℏ∑
𝛽
(±)𝛽 ∫ dk′

(2𝜋ℏ)3𝐺
≷
k′+q,𝛽(𝑡1, 𝑡2)𝑆𝐺≶

−k′,𝛽(𝑡2, 𝑡1) (4.47)

= iℏ
(2𝜋ℏ)3 ∑𝛽

(±)𝛽𝑍 2𝛽 [𝐺≷(𝑡1, 𝑡2) ∗ 𝑆𝐺≶(𝑡2, 𝑡1)]q . (4.48)

The first integrand of the collision integral, Σ>(𝑇 ≥ ̄𝑡)𝐺<( ̄𝑡 ≤ 𝑇 ), can thus be computed using
the following recipe (omitting the momentum index in the following; quantities with a tilde ̃
denote Fourier transformed quantities, i.e. in real space instead of momentum space):

1. Transform 𝐺: �̃�>(𝑇 , ̄𝑡) = FT [𝐺>(𝑇 , ̄𝑡)] , �̃�<( ̄𝑡 , 𝑇 ) = FT [𝐺<( ̄𝑡 , 𝑇 )] for all species/spins.

2. Compute �̃�>(𝑇 , ̄𝑡) as sum over (±)𝛽𝑍 2𝛽 �̃�>(𝑇 , ̄𝑡) 𝑆�̃�<( ̄𝑡 , 𝑇 ) for all species/spins 𝛽 .
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3. Transform �̃�> back: 𝜋>(𝑇 , ̄𝑡) = iℏ
(2𝜋ℏ)3IFT [�̃�>(𝑇 , ̄𝑡)].

4. Multiply 𝜋> by the interactions: 𝑊>(𝑇 , ̄𝑡) = 𝜋>(𝑇 , ̄𝑡) 𝑤(𝑇 ) 𝑤( ̄𝑡).
5. Transform �̃�> ∶ �̃�>(𝑇 , ̄𝑡) = FT [𝑊>(𝑇 , ̄𝑡)].
6. Multiply and find Σ̃>(𝑇 , ̄𝑡) = �̃�>(𝑇 , ̄𝑡) �̃�>(𝑇 , ̄𝑡) for all species/spins.
7. Transform Σ back: Σ>(𝑇 , ̄𝑡) = 𝑍 2𝛼 iℏ

(2𝜋ℏ)3IFT [Σ̃>(𝑇 , ̄𝑡)] for all species/spins.

8. Multiply by 𝐺<( ̄𝑡 , 𝑇 ) for all species/spins.
For the calculation of Σ<(𝑇 ≥ ̄𝑡) 𝐺>( ̄𝑡 ≤ 𝑇 ), it can be reused that �̃�>(𝑇 , ̄𝑡) has already been
computed. Since 𝑊<(𝑇 , ̄𝑡) = − [𝑆𝑊>(𝑇 , ̄𝑡)]∗, we get with the rule for Fourier transforms of
complex conjugate functions (i.e. F [𝑓 ∗] (𝑢) = F[𝑓 ]∗(−𝑢), i.e. F[𝑓 ∗] = 𝑆F[𝑓 ]∗ ):

9. Compute �̃�<(𝑇 , ̄𝑡) = − [�̃�>(𝑇 , ̄𝑡)]∗.
10. Multiply and find Σ̃<(𝑇 , ̄𝑡) = �̃�<(𝑇 , ̄𝑡) �̃�<(𝑇 , ̄𝑡), where �̃�<(𝑇 , ̄𝑡) = −𝑆 [�̃�( ̄𝑡 , 𝑇 )]∗ for all

species/spins.

11. Transform Σ back: Σ<(𝑇 , ̄𝑡) = 𝑍 2𝛼 iℏ
(2𝜋ℏ)3IFT [Σ̃<(𝑇 , ̄𝑡)] for all species/spins.

12. Multiply by 𝐺>( ̄𝑡 , 𝑇 ) = −[𝐺>(𝑇 , ̄𝑡)]∗ for all species/spins.

The steps above are repeated for all ̄𝑡 ≤ 𝑇 .
After that, use the integration weights introduced in Sect. 4.2.2 to compute

𝐼𝛼 (𝑇 ) =
𝑇

∫
𝑡0
[Σ>𝛼 (𝑇 , ̄𝑡) 𝐺<𝛼 ( ̄𝑡 , 𝑇 ) − Σ<𝛼 (𝑇 , ̄𝑡) 𝐺>𝛼 ( ̄𝑡 , 𝑇 )] d ̄𝑡 . (4.49)

4.4.4. Application of ℎHF and 𝐼
Eqs. (4.34) and (4.35) can in principle be solved using stepper methods, but for large momenta
k, the Hartree–Fock energies can become very large, and the oscillations thus very fast. Time
steps must be sufficiently small to properly compute these oscillations, otherwise the amplitude
increases infinitely or is dampened, depending on the exact stepping method. It is then efficient
to make use of the very slow changes of ℎHF over time:

𝐺>
k𝛼 (𝑡 + Δ𝑡 ≥ 𝑡′) = 𝐺>

k𝛼 (𝑡, 𝑡′) exp(
1
iℏ

𝑡+Δ𝑡

∫
𝑡

ℎHFk𝛼 ( ̄𝑡) d ̄𝑡) ≈ 𝐺>
k𝛼 (𝑡, 𝑡′) exp (

1
iℏℎ

HFk𝛼 (𝑡) Δ𝑡) , (4.50)

𝐺<
k𝛼 (𝑡′ ≤ 𝑡 + Δ𝑡) = 𝐺<

k𝛼 (𝑡′, 𝑡) exp(−
1
iℏ

𝑡+Δ𝑡

∫
𝑡

ℎHFk𝛼 ( ̄𝑡) d ̄𝑡) ≈ 𝐺<
k𝛼 (𝑡′, 𝑡) exp (−

1
iℏℎ

HFk𝛼 (𝑡) Δ𝑡) . (4.51)
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This complex exponential can directly be calculated by the computer, and the absolute value
stays constant, as it should be. This method thus increases the stability.

The collision integral can straightforwardly be applied,

𝐺≷
k𝛼 (𝑇 + Δ𝑡, 𝑇 + Δ𝑡) = 𝐺≷

k𝛼 (𝑇 , 𝑇 ) +
Δ𝑡
iℏ 2ℜ𝔢(𝐼k𝛼 (𝑇 )). (4.52)

These are of course the formulas for the explicit Euler method, but it is readily generalized
to the RK4 scheme. The only unusual part is the propagation to the off-diagonal: Here we have
to average between the four HF-energies from the four substeps according to the RK4 weights.
This, however, has little impact, since the dynamics on the time-diagonal are slow compared to
the off-diagonal dynamics.

4.5. GW Approximation
In this section numerical aspects of 𝐺𝑊 calculations are discussed. The first two subsections
describe the discretization and solution of the𝑊 Dyson equation. The third subsection sketches
the procedure of the program quite detailed, which is depicted in the flowcharts of the fourth
subsection.

4.5.1. Discretization of the Dyson Equation
The 𝐺𝑊 propagation is widely similar to that of SOA calculations, just the screened potential
𝑊 obeys a more difficult equation. The Dyson equation,

𝑊≷q (𝑡1, 𝑡2) = 𝜋≷q (𝑡1, 𝑡2) 𝑤q(𝑡1) 𝑤q(𝑡2) + 𝑤q(𝑡1)
𝑡1

∫
𝑡0
𝜋Rq (𝑡1, ̄𝑡) 𝑊≷q ( ̄𝑡 , 𝑡2) d ̄𝑡

+ 𝑤q(𝑡1)
𝑡2

∫
𝑡0
𝜋≷q (𝑡1, ̄𝑡) 𝑊Aq ( ̄𝑡 , 𝑡2) d ̄𝑡 , (4.53)

is discretized by approximating the integrals using a quadrature formula. This means that the
integral is replaced by a sum over discrete points, multiplied by weight factors w(1)/(2)𝑖 for the
first and second integral. Let𝑊≷q (𝑖, 𝑗) be the discretized version of𝑊≷q (𝑡1, 𝑡2), i.e. 𝑡1 = 𝑖 ⋅ DT, 𝑡2 =
𝑗 ⋅ DT for 𝑖, 𝑗 ∈ ℕ0, and with the time step length DT. This yields for the > component:

𝑊>q (𝑖, 𝑗) = 𝜋>q (𝑖, 𝑗) , 𝑤q(𝑖) , 𝑤q(𝑗) + 𝑤q(𝑖)
𝑖

∑
𝑛=0

w
(1)𝑛 {𝜋>q (𝑖, 𝑛) − 𝜋<q (𝑖, 𝑛)} 𝑊>q (𝑛, 𝑗)

+ 𝑤q(𝑖)
𝑗
∑
𝑛=0

w
(2)𝑛 𝜋>q (𝑖, 𝑛) {𝑊<q (𝑛, 𝑗) − 𝑊>q (𝑛, 𝑗)} . (4.54)
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The solution of this form is inconvenient since the computation of unknown 𝑊> values in-
cludes the knowledge of 𝑊< values (second sum), of which some are unknown, too. Bányai
et al. [61] used the symmetry 𝑊<q (𝑖, 𝑗) = 𝑊>−q(𝑗, 𝑖) to remove the dependence on 𝑊< in the
Dyson equation. This works very well, even if parallelized (different times computed in par-
allel, cf. Sect. 4.5.5), especially on a single computation node. A different way to annihilate
the 𝑊<-dependence is to make use of the symmetry 𝑊<q (𝑖, 𝑗) = −[𝑊>−q(𝑖, 𝑗)]∗. This approach is
convenient because the times are not transposed, which means the computation of such sums
does not demand access to additional times than those appearing in Eq. (4.54), i.e. memory can
be better distributed among the computation nodes. The resulting expression,

𝑊>q (𝑖, 𝑗) = 𝜋>q (𝑖, 𝑗) 𝑤q(𝑖) 𝑤q(𝑗) + 𝑤q(𝑖)
𝑖

∑
𝑛=0

w
(1)𝑛 {𝜋>q (𝑖, 𝑛) − 𝜋<q (𝑖, 𝑛)}𝑊>q (𝑛, 𝑗)

− 𝑤q(𝑖)
𝑗
∑
𝑛=0

w
(2)𝑛 𝜋>q (𝑖, 𝑛) {[𝑊>−q(𝑛, 𝑗)]∗ + 𝑊>q (𝑛, 𝑗)} , (4.55)

can be solved for the unknown values.

4.5.2. Numerical solution scheme for the Dyson equation

Assuming𝑊>q (𝑖, 𝑗) is known on the square {0, 1, .., 𝑚} × {0, 1, .., 𝑚}, and 𝐺 is known on the square
{0, 1, .., 𝑚+1}× {0, 1, .., 𝑚+1}, the aim is to extend the𝑊> square to {0, 1, .., 𝑚+1}× {0, 1, .., 𝑚+1}
for the computation of the collision integral.

If 𝑚 + 1 = 𝑖 > 𝑗, the explicit solution is given by

𝑊>q (𝑖 > 𝑗) = 1
1 + 𝑤q(𝑖) w(1)𝑖 {𝜋>q (𝑖, 𝑖) − 𝜋<q (𝑖, 𝑖)}

×

× [𝜋>(𝑖, 𝑗) 𝑤q(𝑖) 𝑤q(𝑗) + 𝑤q(𝑖)
𝑖−1
∑
𝑛=0

w
(1)𝑛 {𝜋>q (𝑖, 𝑛) − 𝜋<q (𝑖, 𝑛)}𝑊>q (𝑛, 𝑗)

− 𝑤q(𝑖)
𝑗
∑
𝑛=0

w
(2)𝑛 𝜋>q (𝑖, 𝑛) {[𝑊>−q(𝑛, 𝑗)]∗ + 𝑊>q (𝑛, 𝑗)} ] . (4.56)

This is used to extend the square of known 𝑊> values to {0, 1, .., 𝑚 + 1} × {0, 1, .., 𝑚}, as demon-
strated in Figs. 4.4a and 4.4b.

This progress then can be mirrored using 𝑊>q (𝑡1, 𝑡2) = − [𝑊>q (𝑡2, 𝑡1]
∗
, and thus the values at

times {0, 1, .., 𝑚 + 1} × {0, 1, .., 𝑚 + 1} ⧵ (𝑚 + 1, 𝑚 + 1) are known, depicted in Fig. 4.4c.
In order to find the corner value at (𝑚 + 1, 𝑚 + 1), the formula (4.56) must be modified, since

𝑊>q (𝑚 + 1, 𝑚 + 1) appears in both sums. In fact, since the integration boundaries are the same,
the integration weights become identical, and we find the discretized ’time-diagonal’ Dyson
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T

T

t1

t2

(i, j)
(T, t2)

(a) The discretized Dyson equation for 𝑡2 ≤ 𝑇 − Δ𝑡 only
contains one unknown value.

T

T

t1

t2

(i, j)
(T, t2)

(b) By solving the discretized Dyson equation, the
square is extended to the right.

T

T

t1

t2

(c) By using time transposition symmetry, the newly ac-
quired𝑊 > values are used to extend the square to the
top.

T

T

t1

t2

(i, i)
(T, T)

(d) Only one entry of the larger square is unknown. It
can be found in a similar way to substep (a)

Figure 4.4.: Sketch of the strategy to extend the square of known𝑊 >(𝑖, 𝑗) values. The shaded area shows
the known values at each substep. 𝜋≷(𝑡, 𝑡′) is known on the outer edges from 𝐺≷, with one
time argument being 𝑇 . Blue, cyan, red and orange lines depict the integration paths: Bluish
colors for 𝑊 >, reddish colors for 𝜋≷. Dark colors: first integral term 𝜋R𝑊 >; light colors:
second integral term 𝜋>𝑊A.
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equation

𝑊>q (𝑖, 𝑖) = 𝜋>q 𝑤q(𝑖)2 + 𝑤q(𝑖)
𝑖

∑
𝑛=0

w
(1)𝑛 {−𝜋>q (𝑖, 𝑛) [𝑊>−q(𝑛, 𝑖)]

∗ − 𝜋<q (𝑖, 𝑛)𝑊>q (𝑛, 𝑖))} . (4.57)

Since 𝑊>q (𝑖, 𝑖) is purely imaginary, we have − [𝑊>−q(𝑖, 𝑖)]
∗ = 𝑊>−q(𝑖, 𝑖). In this equation, in con-

trast to the nondiagonal case before, the unknown 𝑊>q (𝑖, 𝑖) and 𝑊>−q(𝑖, 𝑖) values are coupled, i.e.
the Dyson equation above is a 2 × 2 inhomogeneous equation system for 𝑊>±q(𝑖, 𝑖):

( 𝐴q 𝐵q
𝐵−q 𝐴−q

) (𝑊
>q (𝑖, 𝑖)

𝑊>−q(𝑖, 𝑖)) = ( 𝐶q
𝐶−q) , (4.58)

where the coefficients 𝐴q, 𝐵q and the inhomogeneity 𝐶q are given by

𝐴q = 1 + 𝑤q(𝑖) w(1)𝑖 𝜋<q (𝑖, 𝑖) , (4.59)

𝐵q = −𝑤q(𝑖) w(1)𝑖 𝜋>q (𝑖, 𝑖) , (4.60)

𝐶q = 𝜋>q 𝑤q(𝑖)2 + 𝑤q(𝑖)
𝑖−1
∑
𝑛=0

w
(1)𝑛 {−𝜋>q (𝑖, 𝑛) [𝑊>−q(𝑛, 𝑖)]

∗ − 𝜋<q (𝑖, 𝑛)𝑊>q (𝑛, 𝑖)} . (4.61)

By virtue of Cramer’s rule, this can be solved to find

𝑊>q (𝑖, 𝑖) =
𝐶q𝐴−q − 𝐵q𝐶−q
𝐴q𝐴−q − 𝐵q𝐵−q

, (4.62)

depicted in Fig. 4.4d. With this, the extension to the larger square is complete23.

4.5.3. Computing collision integrals and HF energies
The Hartree–Fock Hamiltonian and off-diagonal propagation are the same as described in the
SOA section. Apart from the significantly more involved computation of 𝑊≷, the 𝐺𝑊 propa-
gation is similar to the SOA propagation:

For all ̄𝑡 ≤ 𝑇 do:

1. Transform 𝐺: �̃�>(𝑇 , ̄𝑡) = FT [𝐺>(𝑇 , ̄𝑡)] , �̃�<( ̄𝑡 , 𝑇 ) = FT [𝐺<( ̄𝑡 , 𝑇 )] for all species/spins.

2. Compute �̃�>(𝑇 , ̄𝑡) as sum over (±)𝛽𝑍 2𝛽 �̃�>(𝑇 , ̄𝑡) 𝑆�̃�<( ̄𝑡 , 𝑇 ) for all species/spins 𝛽 .
2Of course, one can try and solve the Dyson equation of the ’upper’ edge instantly – which yields a dense

equation system for 𝑊 > on the edge. However, this approach is slower by one order of 𝑁𝑡 (utilizing QR or LU
factorization), and has equal memory demand (𝜋≷ values on the whole plane are needed in this approach). It
is thus not viable.

3In higher order propagation schemes, it is only necessary to replace the outer edge repeatedly for the substeps.
The ’completed’ earlier steps can be kept.
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3. Transform �̃�> back: 𝜋>(𝑇 , ̄𝑡) = iℏ
(2𝜋ℏ)3IFT [�̃�>(𝑇 , ̄𝑡))] .

These three steps must be completed before continuing, as substep 4a) depends on all of these
values of 𝜋>.

4. Propagate 𝑊 according to previous section:

a) Extend to the right.

b) Use time transposition symmetry.

c) Compute corner value.

Now continue computing Σ>(𝑇 , ̄𝑡) 𝐺<( ̄𝑡 , 𝑇 ) for ̄𝑡 ≤ 𝑇 ∶

5. Transform �̃�> ∶ �̃�>(𝑇 , ̄𝑡) = FT [𝑊>(𝑇 , ̄𝑡)] .

6. Multiply and find Σ̃>(𝑇 , ̄𝑡) = �̃�>(𝑇 , ̄𝑡) �̃�>(𝑇 , ̄𝑡) for all species/spins.

7. Transform Σ back: Σ>(𝑇 , ̄𝑡) = 𝑍 2𝛼 iℏ
(2𝜋ℏ)3IFT [Σ̃>(𝑇 , ̄𝑡)] for all species/spins.

8. Multiply by 𝐺<( ̄𝑡 , 𝑇 ) for all species/spins.

For the calculation of Σ<(𝑇 ≥ ̄𝑡) 𝐺>( ̄𝑡 ≤ 𝑇 ), use the >↔< symmetry of 𝑊 :

9. Compute �̃�<(𝑇 , ̄𝑡) = −[�̃�>(𝑇 , ̄𝑡)]∗.

10. Multiply and find Σ̃<(𝑇 , ̄𝑡) = �̃�<(𝑇 , ̄𝑡) �̃�<(𝑇 , ̄𝑡), where �̃�<(𝑇 , ̄𝑡) = −𝑆[�̃�( ̄𝑡 , 𝑇 )]∗ for all
species/spins.

11. Transform Σ back: Σ<(𝑇 , ̄𝑡) = 𝑍 2𝛼 iℏ
(2𝜋ℏ)3IFT [Σ̃<(𝑇 , ̄𝑡)] for all species/spins.

12. Multiply by 𝐺>( ̄𝑡 , 𝑇 ) = −[𝐺>(𝑇 , ̄𝑡)]∗ for all species/spins.

After that, as in SOA, integrate

𝐼𝛼 (𝑇 ) =
𝑇

∫
𝑡0
[Σ>𝛼 (𝑇 , ̄𝑡) 𝐺<𝛼 ( ̄𝑡 , 𝑇 ) − Σ<𝛼 (𝑇 , ̄𝑡) 𝐺>𝛼 ( ̄𝑡 , 𝑇 )] d ̄𝑡 (4.63)

(all p at once), using a quadrature formula.
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4.5.4. Flowchart of the program

Start

Read input file

Initialize 𝐺≷(𝑡0, 𝑡0)
self-consistent
Hartree–Fock

End of time loop?

Compute derivative I
Apply derivative I

Output

Compute derivative II
Apply derivative II

Compute derivative III
Apply derivative III

Compute derivative IV
Apply derivative IV

Combine I-IV
into V (RK4)

Apply derivative V

No

Finalize output

End

Yes

Figure 4.5.: Flowchart for the simulation program ’JelliumCyl’ on large scale. Flowcharts of the parts
are on the next pages.
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Input data 𝐺>p (𝑇 ≥ 𝑡), 𝐺<p (𝑡 ≤ 𝑇 ) 𝑊>p (𝑇 > 𝑡), 𝑊>p (𝑡 < 𝑇 )

FT all 𝐺≷q → 𝐺≷r

𝐺>r (𝑇 ≥ 𝑡 , 𝐺<r (𝑡 ≤ 𝑇 ) IFT [𝐺<r (𝑇 , 𝑇 )𝑣r]

IFT all [𝐺≷r 𝐺≶r ]

𝜋≷p (𝑡 ≤ 𝑇 ), 𝜋≷p (𝑇 ≥ 𝑡)

Solve Dyson equation

𝑊>p (𝑇 ≥ 𝑡), 𝑊>p (𝑡 ≤ 𝑇 )

FT all 𝑊>p → 𝑊>r

IFT all [𝑊≷r 𝐺≷r ]

Σ≷p (𝑇 ≤ 𝑡)

Integrate
∫ Σ>p (𝑇 , ̄𝑡)𝐺<p ( ̄𝑡 , 𝑇 ) − Σ<p (𝑇 , ̄𝑡)𝐺>p ( ̄𝑡 , 𝑇 )d ̄𝑡

𝐼p(𝑇 ) ℎHFp (𝑇 )Return

Figure 4.6.: Flowchart for ’Compute derivative’. Prefactors are omitted in this depiction. Blue par-
allelograms indicate temporary quantities, red rectangles indicate data that are needed in
subsequent steps.
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Input data 𝐼p(𝑇 ) 𝐺>p (𝑇 ≥ 𝑡), 𝐺<p (𝑡 ≤ 𝑇 ) ℎHFp (𝑇 )

time-diagonal
propagation

time off-diagonal
propagation

𝐺>p (𝑇 + Δ𝑡 ≥ 𝑡), 𝐺<p (𝑡 ≤ 𝑇 + Δ𝑡)Output data

Figure 4.7.: Flowchart for ’Apply derivative’.

Input data: 𝛽, 𝑛

Set 𝐸(0)p = 𝑝2
2𝑚

Bisection: Vary 𝜇, until
𝐺<,(0)p = 1

±iℏ
1

exp(𝛽[𝐸(0)p −𝜇])∓1
yields correct density 𝑛. Set 𝑘 = 0

𝑘++, Set
𝐸(𝑘)p = 𝛼ℎHFp [𝐺<,(𝑘−1)] + (1 − 𝛼)𝐸(𝑘−1)

Bisection: Vary 𝜇, until
𝐺<,(𝑘)p = 1

±iℏ
1

exp(𝛽[𝐸(𝑘)p −𝜇])∓1
yields correct density 𝑛.

𝐺<,(𝑘) − 𝐺<,(𝑘−1) < 𝜀? Set 𝐺<(𝑡0, 𝑡0) = 𝐺<,(𝑘),
Set 𝐺>(𝑡0, 𝑡0) = 𝐺<(𝑡0, 𝑡0) ± 1

iℏ

No

Yes

Figure 4.8.: Flowchart for self-consistent Hartree–Fock initialization of 𝐺≷.
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4.5.5. Parallelization
The program has to manage large amounts of data and do a lot of computational work. Paral-
lelization for the use with distributed memory on multiple computation nodes and the use of
many CPU cores is thus advisable. Two important principles in parallelization are:

• Distribute workload evenly among nodes (minimize downtime of nodes).

• Minimize communication needed between nodes.

The largest data structure by far is𝑊>𝑞𝑧 ,𝑞𝜚 (𝑡1, 𝑡2), a 2D array in time and a 2D array in momentum,
i.e. in total a 4D array. The only one step that induces the O (𝑁 3𝑡 ) scaling is substep (b) of the
solution of Dyson’s equation. It is thus most important to find a good distribution of 𝑊> on
the multiple nodes, and then parallelize this substep.

T

T

t1

t2

1
2
3
1
2
3
1
2
3
1

Figure 4.9.: Distribution of 𝑊 > onto multiple computation threads, demonstrated for exemplary 3
threads. The numbers on the right represent the thread responsible for the solution of the
Dyson equation on the given slice. Some exemplary integration paths are also sketched, cf.
Fig. 4.4b

.

Considering the algorithm to solve the Dyson equation as shown above, it is efficient to dis-
tribute 𝑊>(𝑡1, 𝑡2) into disjunct slices with constant 𝑡2 (horizontal slices), such that the integrals
in the Dyson equation can be computed on one node. This distribution is pictured in Fig. 4.9.
Each node needs access to𝑊> on the whole slice and 𝜋≷ on the edge: 𝜋≷ is thus stored multiple
times, on each node.

For simpler steps, such as the computation of 𝜋 , it is not always clear whether it is useful to
parallelize it: Exchanging data between nodes takes time, and for smaller tasks it is more effi-
cient to just let each node do the computation themselves than to distribute the work and share
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Figure 4.10.: Computation time of a GW calculation as a function of number of threads. Simulation
parameters: 500 time steps, and 80 grid points in radial, 160 grid points in 𝑧 direction, one
particle species.

the results afterwards. The code used in this thesis however does parallelize the computation
of 𝜋 . So far, no tests were made to compare this to the non-distributed idea, it should however
not matter that much, as it is not the bottleneck.

Figure 4.9 suggests that the nodes acquire new slices in always the same order. This is chosen
in order to distribute the work evenly:

1. The number of slices each node is responsible for differs only by maximum 1.

2. The solution of the Dyson equation on one slice uses two integrals: one with a long
integration interval (same length for all slices), and one with a shorter length. During
the propagation, when the Dyson equation must be solved on a ’new’ slice, this slice gets
assigned to the node that up to this point had the shortest integration intervals. The node
with the least work load thus gets the new slice.

The program has been tested with different numbers of MPI threads in a relatively small
setup, which yields the times computation times in Fig. 4.10. They show that this small simula-
tion is already 94.3% parallelized, a quota which should only increase with longer calculations:
In short calculations, non-parallelized computational work necessary for initialization and over-
head from data exchange matter more in relation to the parallelized parts of the propagation.



74 Convergence parameters

4.6. Convergence parameters
In order to keep the descriptions of simulation parameters short in the following chapter, the
numerical convergence parameters are defined in this section. Their names are written in type-
writer font, since they are also the names of input parameters of the program.

The momentum grid is rectangular. It spans a rectangle of

[−CUTOFFMOMENTUM + E_GOFFSET, CUTOFFMOMENTUM + E_GOFFSET] × [0, CUTOFFMOMENTUM] ,
(4.64)

in the 𝑝𝑧×𝑝𝜌 plane, where CUTOFFMOMENTUM is themomentum cut-off in atomic units [ℏ𝑎−1𝐵 ], and
E_GOFFSET is a parameter that shifts the whole grid for the electrons. There is a second offset
parameter, I_GOFFSET, which describes the same for the ions4. This parameter is necessary to
construct a momentum grid that is able to support the large momenta of ion projectiles.

This rectangle of momentum values is sampled according to section 4.2.1 using 2×NKR values
in 𝑧 direction and NKR values in 𝜚 direction. The momentum spacing in 𝑧 direction, DKR =
CUTOFFMOMENTUM/NKR is implicitly defined by the other two grid parameters. The momentum
spacing in 𝜚 is roughly of the same magnitude, but it is not equidistant, as described in section
4.2.1.

The time stepping is defined by the time step length in atomic units [ℏ/𝐸𝐻 ] ≈ [24.188 as],
DT, and the number of time steps, PROPT.

The memory demand of a calculation can be estimated to be roughly

RAM demand ≈ 2NKR2 × PROPT2 × 16Byte (4.65)

for the dynamically screened potential𝑊 which is by far the most memory consuming quantity
in a𝐺𝑊 calculation (in comparisonGKBAGreen functions are rather cheap). A calculationwith
NKR = 100 and PROPT = 1000, for example, already uses 320GiB with quadratic scaling in both,
PROPT and NKR.

4These parameters can be set to change dynamically by setting E_FLOATINGGRID or I_FLOATINGGRID to true:
Then the program shifts the grid position if the mean momentum of the distribution supported by the grid
deviates too much from the grid’s center.
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5. Application to stopping power
Abstract: This section is devoted to the stopping power of dense plasmas acting on proton
and electron projectiles. First, the simulation setup is explained. Second, rather raw simulation
results are presented and discussed: time-dependent projectile distribution functions and their
time-derivatives. From the time-dependent observables the stopping power can be extracted.
Finally, the computed non-Markovian results are compared with Markovian RPA results. The
agreement of proton results and the disagreement of the electron results is discussed analyti-
cally.

5.1. Simulation setup

5.1.1. Plasma target velocity scale separation
A gaseous plasma, the ’target’, consists of unbound electrons and at least one ion species. It is
known from classical Lenard-Balescu equation[103–105],

𝜕𝑓 (v, 𝑡)
𝜕𝑡 = −8𝜋

4𝑛0
𝑚2𝑒

∇v ⋅ ∫ dk∫ dv′ k ⊗ k 𝜑2(𝑘)
|𝜀(k, k ⋅ v)|2

⋅ 𝛿(k ⋅ [v − v′]) [𝑓 (v)∇v′𝑓 (v′) − 𝑓 (v′)∇v𝑓 (v)] , (5.1)

that the conservation of kinetic energy described by the 𝛿-function is especially fulfilled for
particles of identical velocity, v = v′. A consequence is, that particles of similar velocity collide
especially intensively. Similar conclusions can be drawn from the Markov limit of the second-
order approximation in the reduced-density matrix formalism, cf. Ref. [14] and Sect. 5.4.2.

These 𝛿-functions only become sharp in the long-time limit and if single-particle distribu-
tions are weakly time-dependent. On short time-scales the 𝛿-functions are smoothened and
temporarily allow non-conserving collisions, but are still peaked in such a way that collisions
which preserve single-particle energies (high density→ exchange energies are small compared
to kinetic energies) are preferred. The conclusion that mainly particles of identical velocity
collide thus remains valid in non-Markovian short-time dynamics.

From the Maxwellian distribution function,

𝑓 (v) = 𝑛 ( 𝑚
2𝜋𝑘𝐵𝑇

)
3/2

exp ( 𝑚𝑣2
2𝑘𝐵𝑇

) , (5.2)

it can be seen that the velocity scale of a nondegenerate plasma goes as 𝑣 ∼ 𝑚−1/2, or goes
as 𝑣 ∼ 𝑚−1 in the highly degenerate case (Fermi distribution, 0K). In fully ionized isothermal
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two-component plasma consisting of electrons (′𝑒′) and ions (′𝑖′) with a mass ratio of at least
1836 (proton), the velocity scales of the two components are thus strongly separated1. For the
application to stopping power calculations this means, that

• collisions between the projectile and target ions are negligible on electronic velocity
scales,

• on ionic velocity scales electronic contributions to stopping power are small and only
v-linear (friction, cf. [106]).

In this thesis the focus is on the electronic velocity scales. Target ions are thus neglected in the
calculations and only target electrons are considered.

5.1.2. Simulation procedure to compute stopping powers
In the following the setup to compute the stopping power of the electron gas felt by a projectile
of a given mass 𝑚𝑖 and momentum pprojectile is described.

First, a correlated electron gas is created: In order to do this, the gas is first initialized self-
consistently on Hartree–Fock level. After that, the interaction in the correlation part is slowly
turned on (Adiabatic Switching, Sect. 2.3.8), which yields a correlated electron gas. The gas is
assumed to be spin-symmetric. The ionic distribution function is initialized to be 0 everywhere
and its propagation can thus be skipped in this part of the simulation.

Now, at time 𝑇 = 𝑡𝑏 , a narrow and flat Gaussian Φprojectile is added to the ionic distribution
function, i.e. 𝐺≷

p𝜎𝑖(𝑇 , 𝑇 ) ⟶ 𝐺≷
p𝜎𝑖(𝑇 , 𝑇 )∓ i

ℏΦ
projectilep , the Green function at earlier times remains

unchanged. The Gaussian is chosen to be so narrow that it represents only projectiles of a
single velocity. The height of the Gaussian on the order of 10−12 represents the limit of single
projectiles being stopped by the target plasma, where projectile-projectile interactions can be
neglected.

After the introduction of projectiles into the system, their distribution function starts to
evolve over time. The stopping power in media is usually described as the energy loss per units
distance. Since the Gaussian was chosen to be narrow (monochromatic), it can be expressed as
(𝑛𝑏 is the projectile number density)

d𝐸kin
d𝑥 = 1

𝑛𝑏
(d𝑥
d𝑡 )

−1 d
d𝑡 ⟨𝐸kin⟩ =

1
𝑣𝑛𝑏

d
d𝑡 ⟨𝐸kin⟩ . (5.3)

Ion projectiles carry huge amounts of kinetic energy compared to the energy loss on the time
scale of a few correlation times. This implies that the approach to compute the stopping power
using Eq. (5.3) and finite differences is badly conditioned and leads to large errors in standard
double precision. This problem can be bypassed by swapping the order of expectation value
computation and time derivative, which yields the formula taken from Ref. [107],

d𝐸kin
d𝑥 = ±iℏ 1

𝑛𝑏
∑
𝜎

∫
dp

(2𝜋ℏ)3
p ⋅ v
𝑣

d
d𝑡 𝐺

<𝜎𝑖(p, 𝑡 , 𝑡) . (5.4)

1In an electron-hole plasma the mass ratio usually is smaller and the velocity scales cannot always be separated
as clearly.
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Figure 5.1.: Exemplary stopping setup. The grey distribution function represents the target’s electronic
velocity distribution. The very sharp red distribution represents the projectiles which are
stopped by the target plasma. The plotted projectile distribution function above is multi-
plied by 4 ⋅ 107 to make it visible on the scale of the electronic distribution function. Shown
is the setup for electron projectiles, the peak for proton projectiles is slimmer by a factor of
1/1836.
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The numerical condition of this computation can be improved even further: Since the particle
number is conserved, the substitution p = p̃ + ⟨p⟩ yields

d𝐸kin
d𝑥 = ±iℏ 1

𝑛𝑏
∑
𝜎

∫
dp̃

(2𝜋ℏ)3
p̃ ⋅ v
𝑣

d
d𝑡 𝐺

<𝜎𝑖(p̃ + ⟨p⟩, 𝑡 , 𝑡) , (5.5)

where the integrand now is magnitudes smaller, differences in the integrand can be resolved
better, and the computation is thus better conditioned.

Strictly speaking, these formulas only describe the loss of kinetic energy in the 𝑧 direction. As
will be shown in section 5.3, this is the only relevant part in calculations with proton projectiles:
Even after some relaxation of the distribution function, the 𝑧 momentum is of the order of
several 1000 ℏ𝑎−1𝐵 , whereas the relevant 𝜚 momenta are below 3 ℏ𝑎−1𝐵 . The 𝜚 contributions of
the kinetic energy are thus negligible for heavy projectiles.

In contrast, the distribution function of lightweight projectiles such as electrons quickly
broadens significantly. The 𝜚 component then also notably contributes to the kinetic energy
and this formula is not adequate to compute the stopping power there. Luckily, the numerical
condition of numerical derivatives is much better for lightweight projectiles, since they lose a
notable portion of their kinetic energy, and we can compute the stopping power using usual
numerical differentiation.

5.2. Distinction between projectile and target electrons
We are not only interested in the stopping power acting on protons which are heavier then
electrons by a mass ratio of 1836, but also the stopping power acting on projectile electrons.
Quantum mechanical electrons however are not distinguishable. The separation of the elec-
trons into target and projectiles thus does not make sense in a strict quantummechanical sense.
However, the approximations used in this thesis, i.e. direct SOA and 𝐺𝑊A, allow a distinction2,
just as one can do in classical plasma simulations. This is demonstrated in the following.

We separate a distribution function 𝑓𝛼 (p, 𝑡) into two ’groups’,

𝑓𝛼 (p, 𝑡) = 𝑓 (1)𝛼 (p, 𝑡) + 𝑓 (2)𝛼 (p, 𝑡) . (5.6)

We need equations of motion of 𝑓 (1)𝛼 (p, 𝑡) and 𝑓 (2)𝛼 (p, 𝑡) that fulfill
d
d𝑡 𝑓𝛼 (p, 𝑡) =

d
d𝑡 𝑓

(1)𝛼 (p, 𝑡) + d
d𝑡 𝑓

(2)𝛼 (p, 𝑡) , (5.7)

since then all time-dependent single-particle observables are identical between the undivided
approach and the two-groups approach, a necessary condition. This can be achieved by making
a few modifications to the GKBA and the usual two-component equations of motion:

2Indirect terms would allow the exchange of particles between the two groups. They would retain their particle
numbers. In the approach described here, they would quickly adapt their distribution functions until they are
identical, 𝑓 (1)𝛼 (p, 𝑡) = 𝑔 𝑓 (2)𝛼 (p, 𝑡), up to a rescaling factor 𝑔.
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• The single-particle energies in the HF-GKBAmust remain the same. This means ℎHF𝛼 (p, 𝑡)
is computed from 𝑓 (1)𝛼 (p, 𝑡) + 𝑓 (2)𝛼 (p, 𝑡) instead of from only one group (compared to the
two-component case)

• If both groups partially occupy a quantum state, scattering into this state is reduced by
Pauli blocking. Pauli blocking is described by the factors 𝐺> which on the time-diagonal
is given by (fermion) 𝐺>𝛼 (p, 𝑡 , 𝑡) = 1

iℏ [1 − 𝑓𝛼 (p, 𝑡)]. Here, again, the sum of the contribu-
tion of the two groups is used to compute the time-diagonal 𝐺>.

A straightforward calculation shows that using these modification the polarization function
𝜋(q, 𝑡 , 𝑡′) is identical in the two approaches, given that (5.6). It follows that 𝑊 is also identical.
One can then show that Eq. (5.7) is fulfilled. Since initially, at 𝑡 = 𝑡′ = 𝑡0, Eq. (5.6) is fulfilled,
the derivatives match, too, at 𝑡0. Analogously to a mathematical induction follows that the two
approaches give identical (total) expectation values. The two groups approach however allows
to consider observables of the ’projectile’ group separated from the target group.

Figure 5.2 demonstrates the equality of total ensemble expectation values on the example of
the time-dependent kinetic energy.
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Figure 5.2.: Time-dependent kinetic energy per particle in a nonequilibrium setup. 1 group: Gaussian
initial distribution (height 0.6, 𝜎2 = 2Ha), uncorrelated start without adiabatic switching.
2 groups indist.: Gaussian separated into two identical Gaussians of half height, 0.3, and
propagated according to the modifications from Sect. 5.2. 2 groups dist.: Same separation,
but without modifications. 1 group and 2 groups indist. yield identical observables up
to rounding errors. It is significantly different from the calculation with distinguishable
particles, demonstrating numerically the correctness of the two groups approach.
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5.3. Relaxation of the projectile momentum distribution
function

Figure 5.3 shows time-dependent projectile distribution functions for the two considered projec-
tile types, protons and electrons. The convergence parameters are given DT = 0.005, CUTOFFMOMENTUM =
12 with NKR = 80 for the electron calculations and NKR = 100 for the ion calculations3. It is
visible that the projectiles scatter in all directions but prefer scattering towards the momen-
tum 0. This corresponds to stopping in average and is visible from the final distributions that
are stretched and slightly shifted towards 0. Energy and momentum loss of these particular
simulations are also shown in Fig. 5.4. These figures show that the difference in mass and
therefore in momentum or kinetic energy carried plays a significant role in the amount of dy-
namics appearing: Over the course of the simulation, the ion projectiles lost around 150 𝑒𝑉 of its
kinetic energy of roughly 522, 850 𝑒𝑉 , approximately 0.029%. The electrons lost around 100 𝑒𝑉
of its roughly 280 𝑒𝑉 of kinetic energy, i.e. approximately 35.7%. Over the time, the situation
of the electron projectiles has changed fundamentally, whereas the proton distribution broad-
ened and strechted a bit but the situation (velocity distribution) stayed essentially the same. A
consequence of these barely changing conditions for the proton projectiles is the nearly linear
loss of kinetic energy and momentum over time, cf. also Sect. 5.4.3. Such behaviour cannot be
observed to this extent with the electron projectiles. It is hence straightforward to define the
stopping power for the ion projectiles. Since the energy loss of electron projectiles is changing
over time it is not fully characterizable using one parameter.

Figure 5.5 gives a more detailed look into the time-dependent distribution functions via their
time-derivatives, for three different mean velocities for the two projectile types each. The
derivatives show the drift of the distribution function towards 0 more clearly. Two features
stand out: First, the scattering of slow projectiles is less directed than the scattering of fast
projectiles. Second, the scattering of electron projectiles is reduced in comparison to proton
projectiles of similar velocity. This is especially true for slow projectiles. In this case this can
be explained by the influence of Pauli blocking: Electron projectiles primarily scatter into states
of a momentum similar to the original momentum. However, if the projectiles are slow, these
states are already partially occupied by the target electrons. Since fermionic states can only be
occupied once, the scattering into these states is thus reduced. This effect diminishes towards
higher projectile velocities.

3The degree of energy conservation achieved for the given parameters is shown in Appendix D.
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(a) Initial proton projectile momentum distribution
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(b) Initial electron projectile momentum distribution
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(c) Time-evolved proton projectile momentum distribu-
tion
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(d) Time-evolved electron projectile momentum distri-
bution

Figure 5.3.: Time-evolution of the projectile distribution functions for proton and electron projectiles
of similar velocity: Proton average velocity is 8400 ⋅ (𝑚𝑒/𝑚𝑝) ≈ 4.57 ℏ(𝑎𝐵𝑚𝑒)−1, electron
average velocity is 4.5 ℏ(𝑎𝐵𝑚𝑒)−1. Both distribution functions relax in a similar way: they
become broader but are stretched towards 0 indicating momentum and kinetic energy loss.
𝑡 = 0 corresponds to the time when the projectile distribution is introduced into the system,
after the adiabatic switching.
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(a) Time-dependent projectile kinetic energy
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(b) Time-dependent projectile momentum

Figure 5.4.: Time-dependent observables from the calculations shown in Fig. 5.3. The electron projec-
tile transfers a larger portion of its kinetic energy and momentum to the target electrons,
compared to the proton projectile.

5.4. Non-Markovian and time-dependent stopping power

5.4.1. Description of the findings, comparison between proton and
electron projectiles

Figs. 5.6 and 5.7 show the time-dependent stopping powers (Eq. (5.3)) for an array of different
projectile velocities. While the ion data are available far beyond the Bragg peak (stopping
maximum), this has not been possible for the electrons due to numerical constraints: In order
to account for indistinguishability effects (via 𝐺> → 𝜋 and ℎHF), the projectile distribution must
be carried by an identical momentum grid as the target electronic distribution. If the projectile
distribution is too close to the grid borders, errors will occur: The projectiles partially scatter
away from the 0 momentum. Due to the discrete Fourier techniques used for convolutions, a
particle that crosses the border of the finite grid in ±𝑧 direction reenters the calculation on the
other end of the grid. This is unphysical in plasmas (such effects can be physical in solids when
crossing Brillouin zone borders) and thus greatly perturb the results.

Indistinguishability effects however diminish for high-velocity electron projectiles: Since
projectiles primarily scatter into states with similar momentum as the original state the target
states are then unoccupied by the target plasma. This implies that Pauli-blocking is negligible
in this limit. On the other hand, the change of single-particle HF-energies (needed for the HF-
GKBA) becomes negligible, if the projectiles are fast. This can be seen from the formula of
ℎHF,

ℎHF𝛼 (p, 𝑡) = 𝑝2
2𝑚 + iℏ∑

k

4𝜋𝑍 2𝛼 𝑒2
|k − p|2𝐺

<𝛼 (k, 𝑡 , 𝑡) . (5.8)

An electron only affects the exchange energy of states with similar momentum. If the distri-
butions are separated this effect between them diminishes. It is thus justified to compute stop-
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Figure 5.5.: 𝜕𝑡𝑓projectile(p, 𝑡)/𝑛projectile for the two projectile types and different projectile velocities. Tar-

get parameters: 𝑟𝑠 = 1, Θ = 1. The point of time is 29 𝑎𝑠 after the introduction of the
projectiles into the system. The division by the density normalizes the derivatives, since
the projectile densities are slightly different. Dynamics of slow electrons, cf. Fig. 5.5b, is
significantly reduced due to Pauli blocking, compared to protons, cf. Fig. 5.5a.
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ping powers for electron projectiles in the high-velocity limit using ’distinguishable’ electrons:
These particles follow the same numerics as proton projectiles, just with a differently signed
charge (which only appears squared anyway) and with the mass of an electron4. Stopping pow-
ers of these fictional particles in the low velocity limit are also of interest: They separate effects
due to small mass from the effects due to indistinguishability and allow a better understanding.
The stopping power as a function of time and velocity is shown in Fig. 5.8.

In the case of proton projectiles of high velocity, Fig. 5.6, the stopping power quickly builds
up and then is constant, as has already been noted in the previous section. If the projectiles
are slow, however, the buildup process takes longer and does not reach a constant value during
these calculations, but is oscillating instead, with roughly twice the plasma frequency5. The
findings are qualitatively different in the case of electron projectiles, cf. Fig. 5.7: For high ve-
locities, the stopping power temporarily reaches a maximum and then slowly declines again.
Oscillations in the low-velocity region can be found here, too, with the same frequency. The
maximum stopping power is found at higher velocities compared to the case of proton pro-
jectiles. This is especially visible in the distinguishable ’electron’ plot, Fig. 5.8, where higher
projectile velocities can be included.

5.4.2. Quantum Lenard-Balescu equation
The nonequilibrium 𝐺𝑊 equations are difficult to handle analytically. One often considers the
so-called Markov-limit of quantum kinetic equations (cf. [14], chapter 10.3.1), which bans the
memory-dependence from the equations in two steps

1. The memory integral at time 𝑡 is dependent on the distribution function 𝑓 (𝑡′) at all earlier
times, 𝑡′ ≤ 𝑡 . Under the assumption that 𝑓 changes slowly during a correlation time, one
can approximate 𝑓 (𝑡′) ≈ 𝑓 (𝑡). The resulting collision integral only depends on 𝑓 (𝑡) and
the initial time 𝑡0

2. The dependence on the initial time, 𝑡0, is removed by assuming the limit 𝑡0 → −∞.
This way, one finds the quantum Lenard-Balescu collision integral (which in this context
is complete time derivative of the distribution function, 𝜕𝑡𝑓 = 𝐼 ),

𝐼𝐿𝐵𝛼 (p1, 𝑡) = 2𝜋
ℏ ∑

𝛽
∫

dp2
(2𝜋ℏ)3 ∫

dq
(2𝜋ℏ)3 |

𝑍 2𝛼𝑤(q)
𝜀(q, 𝐸𝛼p1 − 𝐸𝛼p1−q + i𝛿, 𝑡) |

2
𝛿 (𝐸𝛼p1 + 𝐸𝛽p2 − 𝐸𝛼p1−q − 𝐸𝛽p2+q) ×

× {𝑓𝛼 (p1 − q)𝑓𝛽(p2 + q) [1 ± 𝑓𝛼 (p1)] [1 ± 𝑓𝛽(p2)]
− 𝑓𝛼 (p1)𝑓𝛽(p2) [1 ± 𝑓𝛼 (p1 − q)] [1 ± 𝑓𝛽(p + q)] }|𝑡 . (5.9)

4Since the signs of the charges do not appear in these calculations, this can also be interpreted as the stopping
of positrons, where pair annihilation is neglected.

5This is also the frequencies at which the long wavelength plasmon distribution oscillates due to rather short
switching times, cf. Appendix E. This should be fixed if the switching time is sufficiently long.
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Figure 5.6.: Stopping power of proton projectiles as function of time and projectile velocity

Figure 5.7.: Stopping power of electron projectiles as function of time and projectile velocity
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In the Markov-limit it contains the same single-particle energy conserving 𝛿 function as the
MQL. The inverse dielectric function in the Markov limit is given by the RPA result, the Lind-
hard formula,

𝜀RPA(q, 𝜔 + i𝛿, 𝑡) = 1 − 𝑤q∑
𝛽

𝑍 2𝛽 ∫
dk

(2𝜋ℏ)3
𝑓𝛽(k, 𝑡) − 𝑓𝛽(k + q, 𝑡)
𝐸𝛽k − 𝐸𝛽k+q + ℏ𝜔 + i𝛿

. (5.10)

Markovian quantum kinetic equations have been used before to study stopping power. In par-
ticular, the expression derived from the Quantum Lenard-Balescu, cf. Refs. [107, 108], is given
by

d𝐸kin
d𝑡 = 2𝑍 2𝑏 𝑒2

𝜋𝑣2
∞

∫
0

d𝑘
𝑘

ℏ𝑘2/2𝑚𝑏+𝑘𝑣

∫
ℏ𝑘2/2𝑚𝑏−𝑘𝑣

d𝜔 [𝜔 − ℏ𝑘2
2𝑚𝑏

] Im 𝜀−1RPA(𝑘, 𝜔) 𝑛𝐵(𝜔) , (5.11)

where 𝑛𝐵(𝜔) = [exp(ℏ𝜔/𝑘𝐵𝑇 )]−1 is the plasmon Bose distribution. This expression does not
include modifications necessary to describe Pauli-blocking effects arising from indistinguisha-
bility of projectile electrons.

5.4.3. Comparisons
Given a plasma, stopping power is usually written as a simple function of the projectile velocity,
𝑆(𝑣). In order to compare to other methods, the time-dependent data must be condensed into
single stopping values. Fig. 5.9 demonstrates the strategy used in this thesis. First of all, the
proton stopping power quickly reaches saturation (apart from some smaller oscillations) after
a short buildup time. The 𝑧 component of the stopping power acting on an electron projectile
quickly builds up but then steadily declines. This reflects the quick changes to the projectile
distribution function. The full stopping power, i.e. ̇𝐸kin/𝑣, is more stable over time and includes
the relevant 𝜚 component of the kinetic energy. Velocity dependent stopping values are then
estimated by computing average and standard deviation of the time-dependent stopping power
over a period of time. The corresponding velocity value is computed from the average velocity
during the same time window.

The stopping values using this approach are given in Fig. 5.10. Also included are data using
the RPA Markov limit [109] (linear response), given by Eq. (5.11). The RPA stopping formula
has been evaluated for an ideal dispersion of the target electrons. Also given in the figure are
statically screened SOA stopping values which are significantly lower than their 𝐺𝑊 counter-
parts.

𝐺𝑊 and SOA

The SOA yielding smaller stopping values than the RPA is an effect that has been observed in
previous Markovian calculations before as well [110]. This effect becomes especially strong in
the high density range, such as it is the case here. The time-dependent SOA stopping power
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Figure 5.8.: Stopping power of distinguishable ’electron’ projectiles as function of time and projectile
velocity
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Figure 5.9.: Time-dependent stopping power. The stopping power acting on the proton quickly reaches
a nearly constant value. Regarding the electron projectile, it is notable that the 𝑧 component
of the stopping power changes more over time than the ’full’ stopping power.
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Figure 5.10.: Stopping powers for various projectile types and methods. Note, that the 𝑧 component
of the 𝐺𝑊 stopping power is always positive, whereas the full stopping power becomes
negative for projectiles that are both slow and lightweight. 𝑣𝑡ℎ = √3𝑘𝐵𝑇/𝑚𝑒 is used as
definition of the thermal velocity in the upper velocity scale.
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does not oscillate, cf. Appendix F, which reinforces the assumption that it is the oscillations of
the plasmon occupation that leads to the fluctuation of the 𝐺𝑊 stopping power.

Negative stopping values at low velocities

The full 𝐺𝑊 stopping powers of lightweight particles becomes negative at low projectile ve-
locities while they stay positive for proton projectiles. This, too, has been observed in static
RPA calculations, cf. Ref. [108]. At a given velocity 𝑣 , a proton has significantly more kinetic
energy than an electron. The full electron stopping power changes its sign around the thermal
velocity6: Below that, the projectiles are heated up by the target, which manifests itself as neg-
ative stopping power. For a proton to carry less kinetic energy than an average target electron,
it must have a velocity that is smaller by a factor of roughly √1836 ≈ 43. Such velocities are
not included in this figure and will be investigated in the future7.

Differences between ’distinguishable’ and indistinguishable electron projectiles

The calculations of electron projectiles and ’distinguishable electrons’ are different in the low-
velocity range but converge in the high-velocity limit. This is due to the fact that the projectiles
scatter via the coulomb interaction 𝑤(q) = 4𝜋/𝑞2, which clearly prefers scattering into states
with small changes of the projectile momentum. This means, that if the incoming electron
projectile has a momentum well beyond a few fermi momenta, the states it will scatter into
are unoccupied. On the other hand, if its momentum is small, its ’neighbouring momenta’ are
occupied and the scattering will be inhibited by the Pauli principle. Generally, since the target
distribution is maximal at p = 0, scattering towards p = 0 becomes less efficient than scattering
away from p = 0 ∶ This means that the heating up of the electron projectile distribution is
enhanced compared to the distinguishable counterpart. In other words, the stopping power is
lowered (and heating increased).

Comparison of 𝐺𝑊 with static RPA

The proton results of 𝐺𝑊 and RPA agree very well, at least in the range [0, 3 𝑣𝐹 ]. Beyond this
range, we observe increasing deviations. These are consequences of different requirements:
Since the dispersion around high-velocity protons becomes steeper, a finer momentum grid is
necessary. It is expected that a reduction of the grid spacing cures these deviations and that
they are just a numerical error.

The ’electronic’ RPA data in Fig. 5.10 are given for the case of ’distinguishable electrons’.
The RPA data and the 𝐺𝑊 data disagree strongly at all velocities.

So why does the static limit of 𝐺𝑊 , the RPA agree well for proton projectiles, but disagrees
strongly for the lightweight particles? Over the course of the simulation, the projectile distribu-
tion functions broaden. The assumption of slowly changing distribution functions, one of the

6Here, the Maxwellian RMS thermal velocity, 𝑣𝑡ℎ = √3𝑘𝐵𝑇/𝑚𝑒 , is used as a scale. Of course this only represents
the kinetic energy of particles well in the low-degeneracy limit.

7At these velocities the radial kinetic energy change will matter. This means that the ’full’ stopping power and
the 𝑧 component will not agree well anymore, and we have to resort to the ’full’ method.
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core assumption of the static limit, is thus not justified. As we have seen from the simplified
collision integrals in Sect. 5.4.2, the efficiency at which a collision between two particles can
happen depends on the energy balance. Energy offsets do not matter, but the slope ∇𝐸𝑎p and the
second derivative, ∇ ⊗ ∇𝐸𝑎p do. Over the course of a calculation, the proton projectiles change

their momentum p slightly to p + Δq with |Δq| ≪ |p|. Since ∇𝐸𝑝p = v𝑝 ≈ v𝑝 + Δq
𝑚𝑝

= ∇𝐸𝑝p+Δq, the
single particle energy slope around the momenta occupied by projectiles before and after first
collisions is nearly the same.

The 𝐺𝑊 equations discussed in this thesis up until now are given in a form that is useful for
numerical solutions. Eq. (10.38) in Ref. [14] uses three nested time integrals to equivalently
express the collision integral in terms of 𝑊R/A instead of 𝑊≷. The generalization to multiple
components is given in the form

𝐼𝛼 (p, 𝑡) = 1
ℏ4 ∑q

𝑍 2𝛼 ∫
𝑡

𝑡0
d𝑡2 ∫

𝑡2

𝑡0
d𝑡4 𝑈 0,R𝛼 (p − q, p, 𝑡 , 𝑡2) Φ<𝛼 (p − q, p, 𝑡2) Ψ<

𝛽 (q, 𝑡 , 𝑡2, 𝑡4)

+ c.c. − (>⟷<) , (5.12)

where Ψ, which contains the parts of the formula not further relevant for this discussion, is
given by

Ψ(q, 𝑡, 𝑡2, 𝑡4) = ∑
k𝛽

𝑍 2𝛽 𝑊A(q, 𝑡4, 𝑡2)[ ∫
𝑡4

𝑡0
d𝑡3𝑊R(q, 𝑡 , 𝑡3) 𝑈 0,A

𝛽 (k + q, k, 𝑡3, 𝑡4) Φ<
𝛽 (k + q, k, 𝑡3)

+ ∫
𝑡

𝑡4
d𝑡3𝑊R(q, 𝑡 , 𝑡3) 𝑈 0,A

𝛽 (k + q, k, 𝑡3, 𝑡4) Φ<
𝛽 (k + q, k, 𝑡4)] , (5.13)

and the short forms Φ≷𝛼 (p − q, p, 𝑡2) = 𝑓 ≷𝛼 (p − q, 𝑡)𝑓 ≶𝛼 (p, 𝑡) and 𝑓 < = 𝑓 , 𝑓 > = (1 ± 𝑓 ) and the
free retarded electron-hole propagator 𝑈 0,R is given by

𝑈 0,R𝛼 (p − q, p, 𝑡 , 𝑡2) = Θ[(𝑡 − 𝑡2)] exp {− i
ℏ ∫

𝑡

𝑡2
d ̄𝑡 [ (p − q2)

2𝑚𝛼
− p2
2𝑚𝛼

]} (5.14)

= Θ[(𝑡 − 𝑡2)] exp {− i
ℏ ∫

𝑡

𝑡2
d ̄𝑡 [−q ⋅ v + 𝑞2/2𝑚𝛼]} , (5.15)

and analogously for the 𝛽 species. The contribution of the projectiles to Ψ (through 𝑊R/A) is
negligible due to low density. Now we write the energy loss over time using this form of the
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collision integral,

d
d𝑡 ⟨

̂𝑇𝛼⟩ (𝑡) = ∑
p

p2
2𝑚𝛼

𝐼𝛼 (p, 𝑡)

= 1
ℏ4𝑍

2𝛼 ∑
pq

p2
2𝑚𝛼 ∫

𝑡

𝑡0
d𝑡2 ∫

𝑡2

𝑡0
d𝑡4 𝑈 0,R𝛼 (p − q, p, 𝑡 , 𝑡2) Φ<𝛼 (p − q, p, 𝑡2) Ψ<

𝛽 (q, 𝑡 , 𝑡2, 𝑡4)

+ c.c. − (>⟷<) (5.16)

= 1
ℏ4𝑍

2𝛼 ∑
pq

1
2 [

p2 − (p − q)2
2𝑚𝛼

]∫
𝑡

𝑡0
d𝑡2 ∫

𝑡2

𝑡0
d𝑡4 𝑈 0,R𝛼 (p − q, p, 𝑡 , 𝑡2) Φ<𝛼 (p − q, p, 𝑡2)

× Ψ<
𝛽 (q, 𝑡 , 𝑡2, 𝑡4) + c.c. − (>⟷<) , (5.17)

where the kinetic energy expression has been symmetrized in order to fit the expression in the
electron hole propagator 𝑈 0,R. Since the projectile distribution is assumed to be negligibly flat,
we use 𝑓 > ≡ 1, and the kinetic energy loss takes the form

d
d𝑡 ⟨

̂𝑇𝛼⟩ (𝑡) = 1
ℏ4𝑍

2𝛼 ∑
pq

1
2 [

q2 − 2q ⋅ p
2𝑚𝛼

]∫
𝑡

𝑡0
d𝑡2 ∫

𝑡2

𝑡0
d𝑡4 exp {− i

ℏ ∫
𝑡

𝑡2
d ̄𝑡 [q

2 − 2q ⋅ p
2𝑚𝛼

]}

× 𝑓 <𝛼 (p − q, 𝑡2) Ψ<
𝛽 (q, 𝑡 , 𝑡2, 𝑡4) + c.c. − (>⟷<) , (5.18)

As discussed before, 𝑓 <𝛼 only is occupied in the vicinity of the mean projectile momentum, p̄.
In this range, (q2 − q ⋅ p) /2𝑚𝛼 is nearly constant with regard to the p integration, and we find

d
d𝑡 ⟨

̂𝑇𝛼⟩ (𝑡) = 1
ℏ4𝑍

2𝛼 ∑
q

1
2 [

q2 − q ⋅ p̄
2𝑚𝛼

]∫
𝑡

𝑡0
d𝑡2 ∫

𝑡2

𝑡0
d𝑡4 exp {− i

ℏ ∫
𝑡

𝑡2
d ̄𝑡 [q

2 − q ⋅ p̄
2𝑚𝛼

]}

×∑
p
𝑓 <𝛼 (p − q, 𝑡2) Ψ<

𝛽 (q, 𝑡 , 𝑡2, 𝑡4) + c.c. − (>⟷<) . (5.19)

Here, the time-dependent distribution function does not explicitly enter the stopping power, as
long as p/𝑚𝛼 is a good approximation to p/𝑚𝛼 . With this we have an analytical explanation
why even though the proton projectile distribution function changes over time, static methods
still agree well. In a more pictorial manner, e.g. Fig. 5.11: The protons start scattering during
the correlation time with the target and exchange tiny amounts of momentum, barely chang-
ing the velocity. When transferring momentum, the particles transfer kinetic energy given by
(q2 − 2q ⋅ p)/2𝑚𝛼 = q2/2𝑚𝛼 − v ⋅ q. The energy transfer rate stays the same for the first con-
secutive collisions (after a long time, of course, thermalization will occur) and it turns out, that
this is enough to justify taking the static limit. On the other hand, for the lightweight electron
projectiles, we find similar broadening of the projectile distribution in momentum space. This
however corresponds to a significant change of velocity of the particle, and consecutive colli-
sions transfer a different amount of energy. The free propagators can thus not be approximated
by using the mean momentum, since different parts of the projectile distribution function be-
have very differently. The stationarity assumption of the projectile distribution which leads to
the quantum Lenard-Balescu equation, eq. (5.9), is thus not justified for electron projectiles.
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(b) Exemplary sketch of the mechanism for electron
projectiles

Figure 5.11.: The different curvatures of the dispersion, experienced by proton and by electron pro-
jectiles. The mean velocity in both subfigures is the same. After some initial broadening
during correlation buildup, the electron distribution function spans a range where the gra-
dient of the dispersion changes, thereby changing the scattering properties of the different
particles at different ’ends’ of the distribution. In contrast, the slope for proton projectiles
is nearly constant. Even after some initial scatterings, the proton projectiles continue to
perceive the target electrons in a similar way and to build up energy loss until the static
result is reached.
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6. Conclusion and outlook
This thesis studied two topics: The viability and scalings of similar up to equivalent GKBA
Green function/reduced density matrix methods for uniform systems, and the non-Markovian
effects of 𝐺𝑊 on the stopping power in uniform warm dense plasmas.

The G1–G2 scheme was hoped to tackle the scaling problem with the number of time steps,
𝑁𝑡 , that occurs in long-time simulations using NEGF and the GKBA. While it does in principle
allow arbitrary long simulations, it turns out that its base memory demand is extraordinary
high for uniform systems in 2 or 3 dimensions, especially if isotropy is not assumed. This is
worsened by the fact that aliasing occurs in the usual free or HF-GKBA.

Correlated GKBA and therefore off-diagonal damping methods could cure the aliasing and
allows an increase in efficiency by memory truncation [111, 112]. This would benefit both, the
G1–G2 scheme and especially the usual memory integral methods, for both numerical and for
physical reasons. It is therefore of high future interest. The scalings discussed concern only
the SOA and the 𝐺𝑊A. Since the TMA or the DSLA are currently not feasible in the memory
integral approach (or in the DSLA case, not even known) and their memory demand is not
higher in the G1–G2 scheme (compared to SOA and 𝐺𝑊A), the latter might be the method of
choice which makes these approximations accessible in the future.

First tests have shown that the G1–G2 scheme can also be applied to uniform honeycomb lat-
tice models with extraordinary stability, even with rather small convergence parameters. This
stability is expected to be a property of the chosen Brillouin zone samples, so it should also
be given in the older formalism. This is of relevance since the aliasing problems in principle
also exist here. For future applications to TMDCs the method of choice thus depends on the
selfenergy approximation: SOA and 𝐺𝑊 are preferably used in the memory integral approach,
the other selfenergies are more accessible in the G1–G2 scheme.

Many physical questions, e.g. the one-directional particle beams studied in this thesis, or
the electric field part of linearly polarized lasers, can be studied using a cylinder symmetric
description. Due to scaling difficulties of the G1–G2 scheme the memory integral approach has
been used to study cylinder symmetric plasmas using the 𝐺𝑊A and the SOA. In order to do so, a
variety of numerical procedures has been combined in a simulation program. 𝐺𝑊 calculations
contain two expensive parts: Fourier transforms and time integrals. Previous implementations
[102] used a 3D grid k point grid where symmetry equivalent grid points are identified, and
3D Fourier transforms are utilized. The implementation in this thesis reduces the number of
stored k points even further (they are all in a plane) by use of a Hankel transform. Integrations
have been employed via quadrature formulas that have proven to be accurate in the past.A
comparisonwith alternative numerical methods, on the other hand, so far has not beenmade. In
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particular, there are better quadrature formulas that yield more precise time integrals, e.g. using
spline integration. Regarding Fourier transforms, or rather in cylindric symmetry, discrete
Hankel transforms: Of the methods known to me the most precise method has been used.

There are faster methods and for practical reasons it would be interesting to see in future
developments, how much speed up of the whole program is possible (time integrals are not
accelerated) and how large the accuracy losses might be. Simulation time is usually limited by
the memory needed to store the screened potential 𝑊 , so a speed up of the calculation would
not allow us to reach longer in-simulation times. Speed-ups would however give the user more
flexibility to explore new functionalities of the program or to quickly get an overview about
new physical situations, before more expensive and precise simulations can be performed to
secure the results.

Another promising approach to reduce memory demand and accelerate full two-time NEGF
calculations has recently been employed by Jason Kaye and Denis Golež [113]. The basic idea
is to identify the relevant contributions in the two-time quantities using a singular value de-
composition and compress the data cleverly. Similar ideas might be suitable to improve future
GW-GKBA calculations.

A newly written program utilizing discrete Hankel transformations has been used to investi-
gate non-Markovian effects on the stopping power in the 𝐺𝑊 approximation. In order to model
this, the electronic part of a target plasma has been simulated. Correlations are introduced us-
ing adiabatic switching before projectiles represented by a small monochromatic distribution
function are added to the system. This distribution function (and the target distribution as well,
even though its time-dependence is negligible due to small projectile densities) is propagated
in time, giving access to the time-dependent kinetic energy per particle and other observables.
In particular, the stopping power, i.e. kinetic energy loss per distance, is accessible this way.
Three different projectile types are investigated: Protons, electrons and an artificial particle
type with the mass of an electron but distinguishable from one (’distinguishable electron’). The
proton stopping power has been found to agree very well with results within the static limit
of the 𝐺𝑊 approximation. It turns out that the reason for this are the rather small changes of
projectile velocity with each collision, which is a necessary assumption in its analytical expla-
nation. In contrast, the lightweight projectiles exchange the same magnitude of momentum as
protons do, which on the other hand corresponds to significant changes in the velocity of the
projectiles: The assumption of a static monochromatic distribution of lightweight projectiles
hence is not realistic. The static limit is thus not applicable here, which is also confirmed by the
numerical results: The non-Markovian 𝐺𝑊 stopping values are significantly reduced compared
to the static limit, where only data for ’distinguishable electrons’ are currently available1. The
stopping power of the electrons is even more reduced compared to ’distinguishable electrons’
which is due to Pauli-blocking caused by target electrons, which weakens scattering towards
p = 0.

Particularly for low projectile velocities, oscillations with double the plasma frequency in the
time-dependent stopping power are observed, but whose time average is well explained by the

1An extension of the static formula to indistinguishable projectile/particle systems is work in progress.
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analysis. So far, the physical meaning of this is not clear. This could be an artifact of rather
short switching times, which were used since longer times make the calculations significantly
more expensive. In particular, the plasmon occupations oscillate a bit in these calculations, with
the double plasma frequency in the long wavelength limit. This conjecture is further reinforced
by the fact that oscillations of such kind do not appear in SOA, which does not treat plasmons
dynamically. To investigate this, next calculations will thus include a reduction of the basis size
and in turn an increase of the time step number to let the plasmon dynamics relax more before
the projectiles are added.

So far, the ionic target background has been neglected due to numerical reasons and since
its influence is only expected at very low velocities, which can be seen from the Markov limit.
Apart from collisions such a background can affect the dynamics of the screened potential.
The ion background can efficiently be included in a static and classical manner, of which the
influence should be studied in the future.

The projectile densities in the simulations presented in this thesis are many magnitudes
smaller than target particle densities in order to model single projectiles being stopped in the
plasma. However, high density particle beams are of interest in context of the fast ignition
fusion, a type of inertial confinement fusion where the particle beam is used to compress and
heat up the hydrogen target capsule. In this situation, the beam particles significantly con-
tribute to the plasmon dynamics which can significantly change the outcome. However, the
𝐺𝑊 method presented in this thesis can take these effects into account and should be applied
to dense particle beams in the future.
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A. Useful NEGF relations in uniform
systems

This appendix contains a collection of formulas and relations for Green functions and related
quantities in uniform systems that are useful in either analytical investigations or numerical
implementations.

A.1. Relations for one-particle Green function

Time transposition symmetry of 𝐺≷

𝐺≷
k𝛼 (𝑡, 𝑡′) = −[𝐺≷

k𝛼 (𝑡′, 𝑡)]∗ (A.1)

Time diagonal relation between 𝐺> and 𝐺<

𝐺>
k𝛼 (𝑡, 𝑡′) = 𝐺<

k𝛼 (𝑡, 𝑡′) +
1
𝑖ℏ (A.2)

Generalized Kadanoff–Baym ansatz

𝐺≷
k𝛼 (𝑡, 𝑡′) = 𝑖ℏ𝐺Rk𝛼 (𝑡, 𝑡′) 𝐺≷

k𝛼 (𝑡′, 𝑡′) − 𝑖ℏ𝐺≷
k𝛼 (𝑡, 𝑡) 𝐺Ak𝛼 (𝑡, 𝑡′)

with the approximate spectral components 𝐺R/A
k𝛼 which obey in HF-approximation

𝑖ℏ 𝜕
𝜕𝑡 𝐺

R/A
k𝛼 (𝑡, 𝑡′) = ℎHFk𝛼 (𝑡) 𝐺R/A

k𝛼 (𝑡, 𝑡′) + 𝛿(𝑡, 𝑡′) (A.3)

−𝑖ℏ 𝜕
𝜕𝑡′𝐺

R/A
k𝛼 (𝑡, 𝑡′) = ℎHFk𝛼 (𝑡′) 𝐺R/A

k𝛼 (𝑡, 𝑡′) + 𝛿(𝑡, 𝑡′) (A.4)

This implies the following off-diagonal equations of motion for 𝐺≷ (informal)

𝑖ℏ 𝜕
𝜕𝑡 𝐺

≷
k𝛼 (𝑡 ≥ 𝑡′) = ℎHFk𝛼 (𝑡) 𝐺≷

k𝛼 (𝑡, 𝑡′) (A.5)

−𝑖ℏ 𝜕
𝜕𝑡′𝐺

≷
k𝛼 (𝑡 ≤ 𝑡′) = ℎHFk𝛼 (𝑡′) 𝐺≷

k𝛼 (𝑡, 𝑡′) (A.6)
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A.2. Relations for zeroth order polarization function

Zero-order Polarization 𝜋≷ is defined as

𝜋≷q (𝑡, 𝑡′) = −𝑖ℏ∑
k𝛼

𝐺≷
k+q,𝛼 (𝑡, 𝑡′) 𝐺≶

k𝛼 (𝑡′, 𝑡) (A.7)

If we define ∗ as convolution operator and 𝑆 as inversion operator, 𝑆𝑓k = 𝑓−k, we can write 𝜋≷
as a convolution according to

𝜋≷q (𝑡, 𝑡′) = −𝑖ℏ∑
𝛼
[𝐺≷(𝑡, 𝑡′) ∗ 𝑆𝐺≶(𝑡′, 𝑡)]q𝛼 , (A.8)

an expression, that can be computed via FFT.
Time transposition symmetry follows from the relation for 𝐺≷

𝜋≷q (𝑡′, 𝑡) = −𝑖ℏ∑
k𝛼

𝐺≷
k+q,𝛼 (𝑡′, 𝑡) 𝐺≶

k𝛼 (𝑡, 𝑡′) = −𝑖ℏ∑
k𝛼

[𝐺≷
k+q,𝛼 (𝑡, 𝑡′) 𝐺≶

k𝛼 (𝑡′, 𝑡)]∗ = −[𝜋≷q (𝑡, 𝑡′)]∗

(A.9)

Relation between 𝜋> and 𝜋<

𝜋≷q (𝑡, 𝑡′) = −𝑖ℏ∑
k𝛼

𝐺≷
k+q,𝛼 (𝑡, 𝑡′)𝐺≶

k,𝛼 (𝑡′, 𝑡) = −𝑖ℏ∑
k𝛼

[𝐺≶
k,𝛼 (𝑡, 𝑡′)]∗[𝐺≷

k+q,𝛼 (𝑡′, 𝑡)]∗

= −𝑖ℏ∑
k𝛼

[𝐺≶
k−q,𝛼 (𝑡, 𝑡′)]∗[𝐺≷

k,𝛼 (𝑡′, 𝑡)]∗ = −[𝜋≶−q(𝑡, 𝑡′)]∗ = −[𝑆𝜋≶q (𝑡, 𝑡′)]∗ (A.10)

All symmetries in conclusion:

𝜋≷q (𝑡, 𝑡′) = −[𝜋≷q (𝑡′, 𝑡)]∗ = −[𝑆𝜋≶q (𝑡, 𝑡′)]∗ = 𝑆𝜋≶q (𝑡′, 𝑡) (A.11)

The generalization to particles with a charges 𝑞𝛼
𝜋≷q (𝑡, 𝑡′) = −𝑖ℏ∑

k𝛼
𝑞2𝛼 𝐺≷

k+q,𝛼 (𝑡, 𝑡′) 𝐺≶
k𝛼 (𝑡′, 𝑡) (A.12)

fulfills the same symmetries.
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A.3. Relations for GW screened potential 𝑊
Dyson equations for non-singular part of 𝑊 in multi-component systems

𝑊≷q (𝑡, 𝑡′) = ∓𝑤q(𝑡) 𝑤q(𝑡′) 𝜋≷q (𝑡, 𝑡′)

∓ 𝑤q(𝑡) [∫
𝑡

𝑡0
(𝜋>q (𝑡, ̄𝑡) − 𝜋<q (𝑡, ̄𝑡))𝑊≷q ( ̄𝑡 , 𝑡′)d ̄𝑡 + ∫

𝑡′

𝑡0
𝜋≷q (𝑡, ̄𝑡) (𝑊<q ( ̄𝑡 , 𝑡′) − 𝑊>q ( ̄𝑡 , 𝑡′)) d ̄𝑡]

(A.13)

𝑊≷q (𝑡, 𝑡′) = ∓𝑤q(𝑡) 𝑤q(𝑡′) 𝜋≷q (𝑡, 𝑡′)

∓ [∫
𝑡

𝑡0
(𝑊>q (𝑡, ̄𝑡) − 𝑊<q (𝑡, ̄𝑡)) 𝜋≷q ( ̄𝑡 , 𝑡′)d ̄𝑡 + ∫

𝑡′

𝑡0
𝑊≷q (𝑡, ̄𝑡) (𝜋<q ( ̄𝑡 , 𝑡′) − 𝜋>q ( ̄𝑡 , 𝑡′)) d ̄𝑡] 𝑤q(𝑡′)

(A.14)

A function 𝑊 is a solution to one of these equations then and only then, if it is also a solution
to the other one.
Diagrams tell that𝑊also has a dependence on the particle types interacting, but this factorizes
for Coulomb type interactions:

𝑊≷𝛼𝛽q (𝑡, 𝑡′) = 𝑊≷q (𝑡, 𝑡′)𝑞𝛼𝑞𝛽 (A.15)

Thiswas used in theDyson equations above, but needs to be respected, when put into selfenergy
formulas.

The second order term follows the relation (cf. Eq. (A.11))

𝑊≷
q,𝑆𝑂𝐴(𝑡, 𝑡′) = −[𝑊≷

q,𝑆𝑂𝐴(𝑡′, 𝑡)]∗ (A.16)

Next we show, that this relation is also true for the whole 𝑊. We start with the first version of
Dyson’s equation:

− [𝑊 ≷q (𝑡′, 𝑡)]∗

= ∓𝑤q(𝑡)𝑤q(𝑡′)[−𝜋≷q (𝑡′, 𝑡)]∗ ∓ 𝑤q(𝑡′) [−∫
𝑡′

𝑡0
(𝜋>q (𝑡′, ̄𝑡) − 𝜋<q (𝑡′, ̄𝑡))𝑊 ≷q ( ̄𝑡 , 𝑡)d ̄𝑡 − ∫

𝑡

𝑡0
𝜋≷q (𝑡′, ̄𝑡) (𝑊 <q ( ̄𝑡 , 𝑡) − 𝑊 >q ( ̄𝑡 , 𝑡)) d ̄𝑡]

∗

(A.17)

= ∓𝑤q(𝑡)𝑤q(𝑡′)𝜋≷q (𝑡, 𝑡′) ∓ [∫
𝑡

𝑡0
𝜋≷q (𝑡′, ̄𝑡) (𝑊 >q ( ̄𝑡 , 𝑡) − 𝑊 <q ( ̄𝑡 , 𝑡)) d ̄𝑡 + ∫

𝑡′

𝑡0
𝜋≷q (𝑡′, ̄𝑡) (𝑊 <q ( ̄𝑡 , 𝑡) − 𝑊 >q ( ̄𝑡 , 𝑡)) d ̄𝑡]

∗
𝑤q(𝑡′)

(A.18)

Now we use Eq. (A.11) and use Eq. (A.16), which can be seen as initial condition for the Dyson equations at (𝑡0, 𝑡0)

= ∓𝑤q(𝑡)𝑤q(𝑡′)𝜋≷q (𝑡, 𝑡′) ∓ [∫
𝑡

𝑡0
(𝑊 >q (𝑡, ̄𝑡) − 𝑊 <q (𝑡, ̄𝑡)) 𝜋≷q ( ̄𝑡 , 𝑡′)d ̄𝑡 + ∫

𝑡′

𝑡0
𝑊 ≷q (𝑡, ̄𝑡) (𝜋>q ( ̄𝑡 , 𝑡′) − 𝜋<q ( ̄𝑡 , 𝑡′)) d ̄𝑡] 𝑤q(𝑡′) (A.19)

= 𝑊 ≷q (𝑡, 𝑡′) (A.20)

In the last line the second form of Dyson’s equation has been used.
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Similarly we directly see for the second order term (cf. Eq. (A.11))

𝑊>q,𝑆𝑂𝐴(𝑡, 𝑡′) = 𝑆𝑊<q,𝑆𝑂𝐴(𝑡′, 𝑡) (A.21)

For the complete 𝑊 then follows similarly to the relation above

𝑆𝑊 <q (𝑡′, 𝑡)

= ∓𝑤q(𝑡′)𝑤q(𝑡)𝑆𝜋<q (𝑡′, 𝑡) ∓ 𝑤q(𝑡′)𝑆 [∫
𝑡′

𝑡0
(𝜋>q (𝑡′, ̄𝑡) − 𝜋<q (𝑡′, ̄𝑡))𝑊 <q ( ̄𝑡 , 𝑡)d ̄𝑡 + ∫

𝑡

𝑡0
𝜋<q (𝑡′, ̄𝑡)(𝑊 <q ( ̄𝑡 , 𝑡) − 𝑊 >q ( ̄𝑡 , 𝑡))d ̄𝑡] (A.22)

= ∓𝑤q(𝑡)𝑤q(𝑡′)𝜋>q (𝑡, 𝑡′) ∓ [∫
𝑡

𝑡0
(𝑊 >q (𝑡, ̄𝑡) − 𝑊 <q (𝑡, ̄𝑡)) 𝜋>q ( ̄𝑡 , 𝑡′)d ̄𝑡 + ∫

𝑡′

𝑡0
𝑊 ≷q (𝑡, ̄𝑡) (𝜋>q ( ̄𝑡 , 𝑡′) − 𝜋>q ( ̄𝑡 , 𝑡′)) d ̄𝑡] 𝑤q(𝑡′) (A.23)

= 𝑊 >q (𝑡, 𝑡′) (A.24)

In conclusion, the relations for 𝑊 are completely analogous to those for 𝜋 ∶

𝑊≷q (𝑡, 𝑡′) = −[𝑊≷q (𝑡′, 𝑡)]∗ = −[𝑆𝑊≶q (𝑡, 𝑡′)]∗ = 𝑆𝑊≶q (𝑡′, 𝑡) (A.25)

In isotropic systems, the inversion operator can be dropped which yields the expressions that
are found in Ref. [61].
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B. Uniform lattice models

B.1. Homogeneous rectangular lattices
Rectangular lattices are a lot simpler to describe than honeycomb lattices, cf. Sect. B.2. This
section serves to give a quick introduction into the Hubbard Model in momentum representa-
tion for this simpler system before it is applied to the more complex honeycomb lattice.

Hubbard Model

The Hubbard model [114] is a lattice model that was initially developed to describe electrons in
a solid that are closely bound to lattice atoms (’sites’) and that do not exert interaction with elec-
trons on other sites. It is usually defined in a site-spin basis |𝑖𝛼⟩ where the overlap is neglected,
i.e. ⟨𝑖𝛼|𝑗𝛽⟩ = 𝛿𝑖𝑗𝛿𝛼𝛽 . The Hubbard Hamiltonian is given by

�̂� = −𝑡 ∑
⟨𝑖𝑗⟩,𝛼

�̂�†𝑖𝛼 �̂�𝑗𝛼 + 𝑈 ∑
𝑖
�̂�𝑖↑�̂�𝑖↓, (B.1)

where ⟨𝑖𝑗⟩ denotes that sites 𝑖 and 𝑗 are nearest neighbours. The 𝑈 = 0 limit yields the well-
known tight binding model. The Hubbard model has been extended to models where hopping
is also allowed to next-nearest neighbours and where orbital overlap is included [115]. Another
important generalization is the Pariser–Parr–Pople model (PPP)[116–118] which accounts for
long range interaction potentials that go beyond on-site. While these are not treated in this the-
sis explicitly, the derivations in these sections can easily be extended to go beyond the Hubbard
model.

Basis states, first Brillouin zone

We consider an infinite square 2D lattice with lattice constant 𝑎 spanning the 𝑥𝑦 plane, i.e.
every site has an upper, a lower, a left and a right neighbour, and the hopping probability is the
same for all directions. Now we assume the system to be periodic every 𝑁𝑥 sites in 𝑥 direction
and every 𝑁𝑦 sites in 𝑦 direction and define a plane wave state |k𝜎⟩ according to

| k, 𝜎 ⟩ = 1
√𝑁𝑥𝑁𝑦

𝑁𝑥
∑
𝑙=1

𝑁𝑦
∑
𝑗=1

exp [i(𝑙𝑎𝑘𝑥 + 𝑗𝑎𝑘𝑦 )] | 𝑙, 𝑗, 𝜎 ⟩. (B.2)

𝑖𝑎 and 𝑗𝑎 can be understood as 𝑥 and 𝑦 coordinate in the cell. The periodicity allows only k
vectors of the form 𝑘𝑥/𝑦 = 𝑛𝑥/𝑦 2𝜋

𝑎𝑁𝑥/𝑦
, and where we choose 𝑛𝑥/𝑦 ∈ ℤ and |𝑛𝑥/𝑦 | ≤ 𝑁𝑥/𝑦/2, the
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symmetric range of k vectors. Since

�̂� (0) | k, 𝜎 ⟩ = −2𝑡 (cos 𝑘𝑥𝑎 + cos 𝑘𝑦𝑎) | k, 𝜎 ⟩, (B.3)

we see that it is the eigenbasis of the noninteracting Hamiltonian. In conclusion: This model
has a square first Brillouin zonewith edge length 2𝜋/𝑎 and only one cosine band. The derivation
of the cosine tight binding bands in 1D and 3D is analogous.

Matrix elements, G1–G2 equations

Now in order to describe the electron-electron dynamics, we need to find interaction matrix
elements. Since the interaction 𝑊 𝜎1𝜎2𝜎3𝜎4𝑖𝑗𝑘𝑙 = 𝑈 𝛿𝑖𝑗 𝛿𝑗𝑘 𝛿𝑘𝑙 𝛿𝜎1𝜎3 𝛿𝜎2𝜎4 (1 − 𝛿𝜎1𝜎2) is highly localized,
we easily find (the 𝛿′𝑠 from 𝑊 are already applied in the following expression)

⟨ k1𝜎1, k2𝜎2|�̂� |k3𝜎3, k4𝜎4⟩

= 𝛿𝜎1𝜎3𝛿𝜎2𝜎4(1 − 𝛿𝜎1𝜎2)
𝑈

(𝑁𝑥𝑁𝑦 )2
𝑁𝑥
∑
𝑖=1

𝑁𝑦
∑
𝑗=1

exp [ia ⋅ (k3 + k4 − k1 − k2)]

= 𝛿𝜎1𝜎3 𝛿𝜎2𝜎4(1 − 𝛿𝜎1𝜎2)
𝑈

𝑁𝑥𝑁𝑦
𝛿perk1+k2,k3+k4 , (B.4)

with a = (𝑎, 𝑎)𝑇 . 𝛿perk1+k2,k3+k4 is a modified Kronecker delta that is 1 if k1 + k2 = k3 + k4 +
𝐺 for a reciprocal lattice vector 𝐺 and 0 else. This is a key difference to jellium, as in these
lattice systems some collisions that do not conserve momentum, are allowed1. 1D and 3D are
analogous, only the factor 1

𝑁𝑥𝑁𝑦
must be changed accordingly.

Now if we assume uniformity, i.e. shift symmetry with respect to every shift on the lattice,
𝐺 has the same diagonal form as in the jellium case. The modified momentum 𝛿 does in fact
not change much in the form of the equations: for a given pair of momenta, k and p and some
transfer momentum q, there is exactly one reciprocal lattice vector 𝐺k such that k − q + 𝐺k is
in the first Brillouin zone and one reciprocal lattice vector 𝐺p such that p+ q+𝐺p is in the first
Brillouin zone. This means that sums/differences between momentum vectors just have to be
interpreted as that vector, that shifted by reciprocal lattice vector 𝐺, lies in the first Brillouin
zone. This interpretation is assumed in the following.

G gets even more sparse than the jellium G: Since interaction only happens between a spin
up and a spin down electron, we have G↑↑

kpq = G↓↓
kpq = 0. In the following, a barred spin index,

e.g. ̄𝛼 is the opposite spin of 𝛼 . The G1–G2 equations are thus a simplification of the jellium

1Translation symmetry is discretized, hence the usual momentum symmetry is not valid anymore.
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G1–G2 equations:

iℏ d
d𝑡 𝐺

≷
k𝛼 (𝑡, 𝑡) = ±iℏ 𝑈

(𝑁𝑥𝑁𝑦 )2
∑
pq

G𝛼 ̄𝛼
kpq(𝑡) + h.c. (B.5)

iℏ d
d𝑡G

𝛼 ̄𝛼
kpq(𝑡) − G𝛼 ̄𝛼

kpq(𝑡) [𝐸kink−q + 𝐸kinp+q − 𝐸kink − 𝐸kinp ]
= (iℏ)2𝑈 [𝐺>

k−q,𝛼 (𝑡) 𝐺>p+q, ̄𝛼 (𝑡) 𝐺<
k,𝛼 (𝑡) 𝐺<p, ̄𝛼 (𝑡) − 𝐺<

k−q,𝛼 (𝑡) 𝐺<p+q, ̄𝛼 (𝑡) 𝐺>
k,𝛼 (𝑡) 𝐺>p, ̄𝛼 (𝑡)] .

(B.6)

The modifications for higher order selfenergies are found analogously. Note, that in the Hub-
bard model the exchange energy is a constant. In a uniform system, the Hartree energy is
a constant, too, which is the reason why only the kinetic energy appears in the two-particle
commutator above.

B.2. The honeycomb lattice
Defining the lattice and diagonalizing the Hamiltonian

Graphene and TMDCs are 2D materials whose atoms are not arranged in a square lattice, but
in a honeycomb lattice. The honeycomb lattice is a hexagonal Bravais lattice with two sites
per elementary cell. Let 𝑎 be the distance between one site and its nearest neighbours. The
honeycomb lattice, depicted in Fig. B.1, is defined by the following vectors:

a1 = 𝑎
2(3, √3) , a2 = 𝑎

2(3, −√3) , (B.7)

𝛿1 = 𝑎
2(1, √3) , 𝛿2 = 𝑎

2(1, −√3) , 𝛿3 = −𝑎 (1, 0) . (B.8)

The lattice is divided into two hexagonal sublattices that we call 𝐴 and 𝐵. Let 𝑎(†)𝑖 , 𝑏(†)𝑖 be the
ladder operators for an 𝐴 or 𝐵 site. The noninteracting Hubbard Hamiltonian is given by (the
spin index is added in the end)

̂𝑇 = −𝑡∑
⟨𝑖𝑗⟩

(�̂�†𝑖 �̂�𝑗 + �̂�†𝑗 �̂�𝑖) = −𝑡∑
𝑖∈𝐴

∑
𝛿
(�̂�†𝑖 �̂�𝑖+𝛿 + �̂�†𝑖+𝛿 �̂�𝑖), (B.9)

where 𝑖+𝛿 denotes the neighbour of𝐴 site number 𝑖 in 𝛿 direction. In order to find an eigenbasis
of the Hamiltonian, we again choose a cell that consists of 𝑁1 × 𝑁2 elementary cells, 𝑁1 in a1
direction and 𝑁2 in a2 direction, which now holds in total 2𝑁2 × 𝑁2 sites. Let a(†)k , b(†)k be the
ladder operators for plane waves on the respective sublattices. Then we can write the site
operators as a Fourier transform,

�̂�†𝑖 = 1
√𝑁1𝑁2

∑
k
𝑒ik⋅r𝑖,𝐴𝑎†k , �̂�𝑖 = 1

√𝑁1𝑁2
∑
k
𝑒−ik⋅r𝑖,𝐴𝑎k , (B.10)

�̂�†𝑖 = 1
√𝑁1𝑁2

∑
k
𝑒ik⋅r𝑖,𝐵𝑏†k , �̂�𝑖 = 1

√𝑁1𝑁2
∑
k
𝑒−ik⋅r𝑖,𝐵𝑏k . (B.11)
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1

23

a1

a2

Sublattice A
Sublattice B

Figure B.1.: The honeycomb lattice and some common definitions: Each elementary cell (grey area)
contains two sites, one of sublattice 𝐴 and one of sublattice 𝐵. The lattice vectors are a1
and a2. From a 𝐵 site, the three neighbouring 𝐴 sites are found by adding the vectors 𝛿1, 𝛿2
and 𝛿3 to the 𝐵 site coordinates. The length of these vectors is |𝛿𝑖| = 𝑎.

These are used to rewrite the Hamiltonian in momentum representation:

̂𝑇 = −𝑡∑
𝛿,k

(𝑒−𝑖k⋅𝛿 �̂�†k �̂�k + 𝑒𝑖k⋅𝛿 �̂�†k �̂�k) = −𝑡∑
k
(�̂�†k �̂�†k ) (

0 Δk
Δ∗k 0 ) (�̂�k�̂�k) , (B.12)

where Δk ≡ ∑
𝛿
𝑒𝑖k⋅𝛿 . This matrix is easily diagonalized, which yields the energy eigenvalues

𝐸±k = ±𝑡√Δk Δ∗k (B.13)

and the eigenstates

|k𝜎±⟩ = Δk
√2|Δk|

| k𝜎 , 𝐴 ⟩ ∓ 1
√2

| k𝜎, 𝐵 ⟩ , (B.14)

where the states on the r.h.s. are the sublattice plane waves. Another popular set of labels are
𝑐, 𝑣 (conduction, valence band) instead of ± for the two bands, but the sign ± appears again in
the computation of the interaction matrix. Thus the sign notation is used.
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b1

b2

K

K ′

M
kx

ky

Figure B.2.: First Brillouin zone of the honeycomb lattice. The shaded area is the parallelogram spanned
by the reciprocal lattice vectors. The hexagon is the rearranged Brillouin zone. Note that
there are only two irreducible corners, 𝐾 and𝐾 ′, all others can be reached using a reciprocal
lattice vector.

From the lattice vectors a1, a2 one finds the reciprocal lattice vectors

b1 = 2𝜋
3𝑎 (1, √3) b2 = 2𝜋

3𝑎 (1, −√3) (B.15)

that span a parallelogram. This parallelogram shaped first Brillouin zone can be reshaped into
a hexagon that has the point symmetry of the honeycomb lattice, as can be seen in Fig. B.2.

The kinetic energy can also be expressed as

𝐸±k = ±𝑡
√
1 + 4 cos (32𝑘𝑥𝑎) cos (

√3
2 𝑘𝑦𝑎) + 4 cos2 (√32 𝑘𝑦𝑎) , (B.16)

which is plotted in Fig. B.3.

Interaction matrix elements

The interaction matrix elements in honeycomb lattice momentum representation are derived
in a similar manner to the square lattice if one makes use of the relation

a𝑖 ⋅ b𝑗 = 2𝜋𝛿𝑖𝑗 . (B.17)
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Figure B.3.: Dispersion in a tight binding honeycomb lattice. The two bands touch in the points 𝐾 and
𝐾 ′, which are also referred to as Dirac cones.

We consider a cell spanned by 𝑛𝑖a𝑖 for 𝑛𝑖 ∈ {0, ..., 𝑁𝑖−1}.The first Brillouin zone then is discretized
by the reciprocal vectors 𝑛𝑖b𝑖/𝑁𝑖 for 𝑛𝑖 ∈ {0, ..., 𝑁𝑖 − 1}. Now we can write

⟨𝑖𝑗𝜎𝐴|k𝑖𝑘 𝑗𝑘𝜎𝐴⟩ =
1

√𝑁1𝑁2
exp (i [𝑖a1 + 𝑗a2] ⋅ [𝑖𝑘b1 + 𝑗𝑘b2])

= 1
√𝑁1𝑁2

exp (i2𝜋 [ 𝑖𝑖𝑘𝑁1
+ 𝑗𝑗𝑘
𝑁2

]) . (B.18)

The expression for the 𝐵 sites only contains an additional phase factor exp (−ik ⋅ 𝛿1) that cancels
with its adjoint in the computation of the interaction matrix element. Let k𝑙 = 𝑖𝑘,𝑙b1 + 𝑗𝑘,𝑙b2 be
the expansion of k𝑙 in the basis b1, b2. We find

⟨ k1𝜎1±1, k2𝜎2 ±2 | �̂� | k3𝜎3±3, k4𝜎4±4 ⟩

=𝛿𝜎1𝜎3𝛿𝜎2𝜎4(1 − 𝛿𝜎1𝜎2)
𝑈

(2𝑁1𝑁2)2
(
Δ∗k1Δ∗k2Δk3Δk4
|Δ∗k1Δ∗k2Δk3Δk4 |

±1 ±2 ±3 ±41) ×

×
𝑁1
∑
𝑖=1

𝑁2
∑
𝑗=1

exp {i2𝜋 ([𝑖𝑘,3 + 𝑖𝑘,4 − 𝑖𝑘,1 − 𝑖𝑘,2] 𝑖
𝑁1

+ [𝑗𝑘,3 + 𝑗𝑘,4 − 𝑗𝑘,1 − 𝑗𝑘,2]
𝑗
𝑁2

)}

=𝛿𝜎1𝜎3𝛿𝜎2𝜎4(1 − 𝛿𝜎1𝜎2)
𝑈

4𝑁1𝑁2
(
Δ∗k1Δ∗k2Δk3Δk4
|Δ∗k1Δ∗k2Δk3Δk4 |

±1 ±2 ±3 ±41) 𝛿per𝑖𝑘,1+𝑖𝑘,2,𝑖𝑘,1+𝑖𝑘,2𝛿
per
𝑗𝑘,1+𝑗𝑘,2,𝑗𝑘,1+𝑗𝑘,2

=𝛿𝜎1𝜎3𝛿𝜎2𝜎4(1 − 𝛿𝜎1𝜎2)
𝑈

4𝑁1𝑁2
(
Δ∗k1Δ∗k2Δk3Δk4
|Δ∗k1Δ∗k2Δk3Δk4 |

±1 ±2 ±3 ±41) 𝛿perk1+k2,k3+k4 (B.19)
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and ±1 ±2 ±3±4 is the product of the energy signs of the four states. The matrix elements
are ’momentum preserving’ in the same way as in the case of the square lattice. In contrast
to jellium or the square lattice this matrix element is dependent on all three (four minus one,
because of the 𝛿) momenta, and distinguishes between an even number of band changes and
an uneven number (i.e. one band change, an Auger process).

To be somewhat consistent with formulas for similar systems, the following definition is
used:

𝑣 𝑠kpq =
𝑈
4 (

Δ∗k−qΔ∗p+qΔkΔp
|Δ∗k−qΔ∗p+qΔkΔp|

+ 𝑠) , (B.20)

where again sums and difference are understood as modulo reciprocal lattice vector. Here and
in the following, 𝑠 is the product of the four energy signs.

G1–G2 equations

The G1–G2 equations in a uniform honeycomb lattice are similar to those of the square lattice,
but with some key differences: 𝐺 has two additional band indeces, and 𝐺 is not diagonal in
them. i.e. we have 𝐺≷

k𝛼,𝑠𝑠′ .
The single-particle SOA G1–G2 equation is

iℏ d
d𝑡 𝐺

≷
k𝛼,𝑠𝑠′(𝑡) − [𝐸𝑠k(𝑡) − 𝐸𝑠′k (𝑡)] 𝐺≷

k𝛼,𝑠𝑠′ = [𝐼 + 𝐼†]k𝛼,𝑠𝑠′ , (B.21)

where

𝐼k𝛼,𝑠𝑠′ = ±iℏ 1
(𝑁𝑥𝑁𝑦 )2

∑
p,q∈1st BZ
̄𝑠, ̄̄𝑠, ̄̄̄𝑠∈{−1,+1}

[𝑣 ̄𝑠⋅ ̄̄𝑠⋅𝑠⋅ ̄̄̄𝑠
kpq ]

∗
G ̄𝑠 ̄̄𝑠𝑠′ ̄̄̄𝑠
kpq,𝛼 ̄𝛼 (𝑡) . (B.22)

Again, no Hartree or Fock contributions exist due to spatial homogeneity and the short inter-
action range. For the components 𝐺≷

k𝛼,𝑠𝑠 the commutator vanishes, as in the jellium case.
The G equation of motion is given by

iℏ d
d𝑡G

𝑠1𝑠2𝑠3𝑠4
kpq,𝛼 ̄𝛼 (𝑡) − [𝐸𝑠1k−q + 𝐸𝑠2p+q − 𝐸𝑠3k + 𝐸𝑠4p ]G𝑠1𝑠2𝑠3𝑠4

kpq,𝛼 ̄𝛼 (𝑡) (B.23)

= (iℏ)2 ∑
̄𝑠1, ̄𝑠2, ̄𝑠3, ̄𝑠4
∈{−1,1}

𝐺>
k−q,𝛼,𝑠1 ̄𝑠1(𝑡) 𝐺

>p+q, ̄𝛼 ,𝑠2 ̄𝑠2(𝑡)𝑣
̄𝑠1⋅ ̄𝑠2⋅ ̄𝑠3⋅ ̄𝑠4kpq 𝐺<

k𝛼, ̄𝑠3𝑠3(𝑡) 𝐺
<p ̄𝛼, ̄𝑠4𝑠4(𝑡) + (>↔<) .

Equations for higher order selfenergies are derived similarly: They are jellium-like in the
momentum index, only opposite spin interactions and G contribute, and the equations have the
structure known from arbitrary basis in regard to the band index. They are also generalized
with minor changes to the PPP model or the extended Hubbard model. PPP yields modified
interaction matrix elements that do not contain the (1 − 𝛿𝛼1𝛼2) term, which leads to the appear-
ance of a Fock exchange term, and G𝑠1𝑠2𝑠3𝑠4

kpq,𝛼1𝛼2 contributes for arbitrary combinations of 𝛼1, 𝛼2.
The extended Hubbard model only changes the single particle dispersion, but does not change
the structure of the equations.
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Figure B.4.: Energy conservation of an SOA calculation of a Hubbard honeycomb lattice

Test simulation

Figure B.4 shows the energy conservation of an SOA calculation of a Hubbard honeycomb
lattice. The initial situation is a purely for test purposes: No initial correlations, the upper band
is empty, and all states in the lower band is half filled. The energy conservation shown in the
figure is on the scale of the machine precision, i.e. the best numerically possible conservation.
In total 243 k points have been used to sample the first Brillouin zone on a hexagonal grid. The
time step length is 0.02 𝑡−1, 𝑈 is set to 𝑈 = 1𝑡, and an RK4 stepper is used.

The excellent stability is a property of the ’closed grid’, also sketched in Fig. B.5. What this
means becomes clear when considering an ’unclosed grid’, cf. Chap. 4: The uniform gas in
the thermodynamic limit has an infinite first Brillouin zone. This is approximated by a finite
and discretized grid. Collisions can push a particle to receive a momentum that is beyond the
largest momenta of the grid. This particle then vanishes from the simulation. Such effects
cannot happen in closed grids: After every collision of particles with momenta given on the
grid, where a momentum, that is also given on the grid, is transferred, the two particles end up
on two new grid positions. No extrapolation or interpolation is needed (as in the jellium case),
which increases the stability.
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Figure B.5.: Sketch of the first Brillouin zone and its hexagonal sampling: each minor hexagon repre-
sents a sample, denoted by the momentum in its center. Particles of grid momenta k and p
exchange a grid momentum q, yielding the grid momenta k + q and p − q. If one particle
’leaves’ the first Brillouin zone that way, here e.g. k+q, it is mapped back into it and exactly
onto a grid momentum via a lattice momentum L.
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C. Semianalytical Euler stepper
The 𝐺𝑊 equation of motion for G is given by

iℏ d
d𝑡G

𝛼𝛽
kpq(𝑡) − G𝛼𝛽

kpq(𝑡)Δ
HF,(2)
kpq,𝛼𝛽(𝑡) = Ψkpq,𝛼𝛽(𝑡) + Π𝛼𝛽

kpq(𝑡) − [Π𝛽𝛼
p+q,k−q,q(𝑡)]

∗
, (C.1)

where the terms are defined in section 2.3.7. The single particle energy difference ΔHF,(2)
kpq,𝛼𝛽 and

the source term Ψkpq,𝛼𝛽 are only dependent on 𝐺≷(𝑡), the polarization term contains 𝐺≷, but is
also dependend on a k or p sum of G𝛼𝛽

kpq.
Let us at first neglect the Π terms. Under the assumption that 𝐺≷ evolves slower than G, we

find the equation

iℏ d
d𝑡G

𝛼𝛽
kpq(𝑡) − G𝛼𝛽

kpq(𝑡)Δ
HF,(2)
kpq,𝛼𝛽 = Ψkpq,𝛼𝛽 (C.2)

with the solution

𝐺𝛼𝛽
kpq(𝑡) = 𝐺𝛼𝛽

kpq,stat + (G𝛼𝛽
kpq(𝑡0) − 𝐺𝛼𝛽

kpq,stat) exp((𝑡 − 𝑡0)
ΔHF,(2)
kpq,𝛼𝛽
iℏ ) , (C.3)

where the stationary solution is given by

G𝛼𝛽
kpq,stat = −

Ψ𝛼𝛽
kpq

ΔHF,(2)
kpq,𝛼𝛽

. (C.4)

The usual problem with Runge-Kutta steppers and oscillations is that the time step length must
be chosen in such a way that multiple time steps fit into one oscillation period. Since ΔHF,(2) can
reach high oscillation frequencies, the step length must usually be chosen very short in order
to avoid that quick oscillations grow due to numerical errors. Eq. (C.3) is robust in this regard:
The exponential function describes harmonic oscillations without changing its amplitude and
thereby avoiding the instabilities occuring in the Runge-Kutta methods.

The 𝐺𝑊 -defining termΠ contains both — slowly evolving 𝐺≷ functions and a fast evolving G
function. However, G enters Π only in shape of a sum. Sums of G, such as the collision integral
in a sense, are expected to be slowly evolving functions. The proposed generalization is thus
using

G𝛼𝛽
kpq,stat = −

Ψ𝛼𝛽
kpq + Π𝛼𝛽

kpq(𝑡) − [Π𝛽𝛼
p+q,k−q,q(𝑡)]

∗

ΔHF,(2)
kpq,𝛼𝛽

, (C.5)

in the stepping formula, (C.3).
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D. Numerical energy conservation
Figure D.1 shows the energy per particle as a function of time after the adiabatic switching
process, i.e. 𝑡 = 0 is set to be the end time of the switching. During the switching, the total
energy changes strongly, and is therefore not included in the graphic.

Best convergence would be reached if basis parameter NKR is large time step length DT is
small and the number of time steps PROPT is large. This is however not possible due to expen-
sive scalings. A compromise thus has to be found. The proton calculations with NKR = 100
were done first. Since the electron stopping power is less stationary, NKR has been reduced
to achieve longer simulations. After 50 as the energy conservation is violated by about 0.02%
in 𝐺𝑊 calculations. The cheaper and simpler SOA calculations with static screening conserve
energy much better.

The energy conservation in the three 𝐺𝑊 calculations is fulfilled to a similar degree. It
might be possible to decrease NKR even further and to increase the number of time steps, PROPT,
instead. This could either be used to make the time step smaller, thereby increasing accuracy
of the integrations, or to achieve longer simulation times.
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Figure D.1.: Energy conservation for a few different basis sizes. Time step length is 0.005 𝑎.𝑢. ≈ 0.0121 as
for all calculations. The time is shifted so that 𝑡 = 0 denotes the point of time where the
adiabatic switching is finished.
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E. Time-dependent plasmon-occupation
Figure E.1 shows the time-dependent plasmon occupation numbers. Due to short switching
times these occupations are strongly oscillating, with small-q plasmon occupation oscillating
at roughly 2𝜔𝑝𝑙 = 2√3/𝑟3𝑠 (in atomic units). Towards later times the oscillation is damped. It
is strongly suspected that the oscillations in stopping power are due to these varying plasmon
occupations, as their frequencies are similar. More adequate results are thus expected if the
projectiles are added to the system at much later times. This is only possible in combination
with a smaller basis parameter NKR to counteract the increased costs of longer calculations.
Figure E.2 shows analogous results with shorter switching times. In comparison, the plasmon
oscillations are stronger than for longer switching times.
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Figure E.1.: Time-dependent plasmon occupation in the presented simulations. 𝑡 = 0 corresponds to
the finishing time of the adiabatic switching of 3 𝑎.𝑢..
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Figure E.2.: Same as in Fig. E.1, but with a switching time of 2 𝑎.𝑢..
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F. Complete time-dependent stopping
data in SOA

For completeness, this appendix contains heatmaps about stopping data in the second order
approximation analogous to the 𝐺𝑊 heatmaps in Sect. 5.4. Plasma parameters are the same,
i.e. 𝑟𝑠 = 1 andΘ = 1. In Figs. F.1, F.2 and F.3 it is visible that the oscillations, that were observed
in 𝐺𝑊 , do not appear in SOA. Simulation parameters were (SOA is a lot less expensive than
𝐺𝑊 )

NKR = 120,
CUTOFFMOMENTUM = 12 ℏ𝑎−1𝐵 and
𝐷𝑇 = 0.004 𝑎.𝑢. ≈ 0.09 as.

The energy loss per distance quickly becomes constant which explains the small errorbars in
Fig. 5.10.

Figure F.1.: Time-resolved stopping power for a proton projectile in SOA
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Figure F.2.: Time-resolved stopping power for an electron projectile in SOA

Figure F.3.: Time-resolved stopping power for a ’distinguishable electron’ projectile in SOA
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Important used tools
• Main simulations written in C++ using the following numerical libraries

– Eigen

– GSL

– boost

– FFTW

– Intel MPI

and the Intel C++ compiler

• Calculations were done on the NEC HPC-System (”nesh”) of the Rechenzentrum CAU
Kiel

• data postprocessing was done in Python

• Plottools: Matplotlib, mayavi, gnuplot

• Overleaf LATEXeditor with graphical packages

– FeynMF for Feynman diagrams

– tikz for flowcharts
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