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Abstract

The understanding of carrier multiplication effects in nanoscale graphene structures is
essential for various applications including solar energy harvesting. In this work, a new
approach is presented to study the correlated nonequilibrium dynamics in finite graphene
clusters, such as nanoribbons. The systems are described by an extended Hubbard model
that takes into account the overlap of adjacent orbitals and hopping between up to third
nearest neighbors. The model is solved by the nonequilibrium Green functions (NEGF)
approach which can be combined with different selfenergy approximations, e.g. the second
Born (SOA) and GW selfenergy, to take into account electronic correlations. Various
numerical improvements have been made to the existing implementation of the NEGF
approach to drastically reduce the computational effort of the calculations. As a result, the
description allows to predict the correlated nonequilibrium dynamics of excited graphene
nanostructures of arbitrary geometry containing up to 100 carbon atoms for up to 25 fs.
In the scope of this work, first, the NEGF approach is compared to exact solutions such
as the Bethe ansatz for spectral properties of one-dimensional Hubbard systems. In that
regard, especially the performance of the generalized Kadanoff–Baym ansatz (GKBA) is
discussed. It is shown that, even in the ground state, the GKBA is not suited to describe
spectral properties, e.g. the photoemission spectrum, correctly.
In the second part, the response of finite graphene clusters after an optical laser pulse
excitation is studied. The observed carrier multiplication rates strongly depend on the
ratio of the laser frequency to the bandgap of the considered system. Finally, it is shown
that a mean field approach is not sufficient to correctly describe carrier multiplication
processes in graphene nanostructures.
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Kurzfassung

Das Verständnis von Trägermultiplikationseffekten in Graphenstrukturen im Nanobereich
ist essentiell für verschiedene Anwendungen einschließlich der Solarenergiegewinnung. In
dieser Arbeit wird ein neuer Ansatz vorgestellt, um die korrelierte Nichtgleichgewichtsdy-
namik in endlichen Graphenclustern, wie zum Beispiel Nanobändern, zu untersuchen. Die
Systeme werden durch ein erweitertes Hubbard-Modell beschrieben, das die Überlappung
benachbarter Orbitale und das Springen zwischen benachbarten Gitterplätzen berück-
sichtigt. Dabei werden erste, zweite und dritte Nachbarn mit einbezogen. Das Modell
wird durch den Nichtgleichgewichts-Greenfunktionen-Ansatz (NEGF) gelöst, der mit ver-
schiedenen Selbstergienäherungen wie der zweiten Bornschen Näherung (SOA) und der
GW-Selbstenergie kombiniert werden kann, um Elektronenkorrelationen zu berücksichtigen.
Verschiedene numerische Verbesserungen wurden an der bestehenden Implementierung
des NEGF-Ansatzes vorgenommen, um den Rechenaufwand der Simulationen drastisch zu
reduzieren. Als Folge dessen erlaubt die Methode die Vorhersage der korrelierten Nichtgle-
ichgewichtsdynamik von angeregten Graphen-Nanostrukturen beliebiger Geometrie mit
bis zu 100 Kohlenstoffatomen für bis zu 25 fs. Im Rahmen dieser Arbeit wird zunächst
der NEGF-Ansatz bezüglich der spektralen Eigenschaften eindimensionaler Hubbard-
Systeme mit exakten Lösungen wie dem Bethe-Ansatz verglichen. In dieser Hinsicht
wird insbesondere die Leistung des generalisierten Kadanoff–Baym-Ansatzes (GKBA)
diskutiert. Es zeigt sich, dass der GKBA selbst im Grundzustand nicht geeignet ist, um
spektrale Eigenschaften wie das Photoemissionsspektrum korrekt zu beschreiben. Im
zweiten Teil wird die Verhalten von endlichen Graphenclustern nach einer optischen Laser-
pulsanregung untersucht. Die beobachteten Trägermultiplikationsraten hängen stark vom
Verhältnis der Laserfrequenz zur Bandlücke des betrachteten Systems ab. Schließlich wird
gezeigt, dass ein Mean-Field-Ansatz nicht ausreicht, um Trägermultiplikationsvorgänge in
Graphen-Nanostrukturen korrekt zu beschreiben.
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1

1 Introduction

Since its first discovery in 2004 [1] the interest in graphene has grown rapidly. As the first
truly two-dimensional material it exhibits a list of unique mechanical, optical and electronic
properties. Among them are the large carrier mobility and the low optical absorbance.
This makes graphene a promising material for future high-speed opto-electronic devices.
To this day, first graphene-based solar cells [2–5] and ultrafast photodetectors [6] have
been realized. Another interesting field of application is given by the topic of future
nanoelectronics. Today’s silicon-based computational devices could be improved using
graphene nanostructures to further miniaturize the basic electronic components [7].
However, due to its vanishing bandgap homogeneous monolayer graphene is not suited for
application in solar cells or nanoelectronics [8]. The attempts to create semiconducting
graphene materials that exhibit a finite bandgap range from stacking single graphene
layers [9] to substrate-induced [10, 11] or strain-induced bandgaps [12, 13]. The most
promising approach, however, is to obtain a bandgap through lateral confinement in finite
graphene nanostructures [14, 15].
Therefore, understanding these finite graphene nanostructures is of high interest in current
research. Due to the recently developed new synthesization methods of interesting finite
structures, such as graphene nanoribbons (GNRs) [16–20], the number of experiments
increased drastically over the last years [21–27]. Therefore, an accurate theoretical de-
scription of these systems in nonequilibrium and especially of their time-resolved spectral
properties is needed. However, until now no suitable approach exists because of the high
challenges that such finite systems present. A convenient theory has to describe finite
systems including up to 100 carbon atoms. It has to take into account the finite overlap
of the atomic orbitals and describe moderate electronic correlations. Additionally, the
two-dimensional geometry of the graphene honeycomb lattice has to be modeled. Finally,
the theory has to be able to describe the correlated nonequilibrium dynamics of the system
for up to several femtoseconds within a reasonable amount of computational time. Thus,
one has to find a model that allows for an accurate description of the system and at the
same time reduces the numerical complexity of the problem.
One possible approach is to describe the system using single-particle Kohn–Sham orbitals.
According to the Hohenberg–Kohn theorem [28], in equilibrium all observables can be
expressed as functionals of the single-particle density matrix. A generalization to nonequi-
librium results in the time-dependent density functional theory (TDDFT) [29]. This
approach was successfully applied to describe local currents in GNRs [30]. However, the
accuracy of the TDDFT crucially depends on the, in general, unknown exchange-correlation
potential vxc. To take into account moderate correlations, vxc has to be provided by other
methods. In the case of finite graphene clusters only basic approaches such as the local
density approximation (LDA), which is known to underestimate the bandgap [14], are
numerically feasible.
Another approach that additionally allows to take into account strong correlations is
to describe the finite graphene systems in the Hubbard model [31, 32]. As a simplistic
description of solid state systems the Hubbard model greatly reduces the numerical effort
for the simulation of large finite clusters. At the same time, it can be extended to include
the finite overlap between orbitals of adjacent atoms. The exact solution of the Hubbard
model can be obtained by the method of exact diagonalization [33]. However, the numerical
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effort scales exponentially with the number of atoms in the system. Therefore, other
methods have to be applied that provide a solution in an acceptable amount of time.
A different wavefunction-based approach is given by the density matrix renormalization
group (DMRG) [34] method and the generalized time-dependent DMRG (t-DMRG). In
order to access larger systems the size of the Hilbert space is reduced to the most rel-
evant effective space. However, this methods is mainly restricted to the description of
one-dimensional lattice systems. Therefore, it is not suited to describe the two-dimensional
honeycomb lattice of graphene nanoclusters.
The dynamical mean-field theory (DMFT)[35] is another way to describe the dynamics in
Hubbard lattices. The approach becomes exact in the limit of infinite dimensions (i.e. for
an infinite number of nearest neighbors), because the lattice is mapped to a local impurity
model. However, in the honeycomb lattice each atom has only three nearest neighbors.
Additionally, the DMFT provides good results for large interaction strengths but becomes
erroneous for moderate coupling. Thus, the DMFT is not applicable to finite graphene
systems.
A method that overcomes all above-mentioned problems is the nonequilibrium Green
functions (NEGF) approach [36, 37]. It is not restricted to any specific lattice geometry
and can describe nonequilibrium systems at weak and moderate interaction strength.
Additionally, it can treat arbitrary excitations and external fields. The information of
all n-particle observables are contained in the many-particle Green function G(n). The
time evolution of G(n) is given by the coupled Martin–Schwinger hierarchy equations. All
single-particle observables and important spectral properties such as the photoemission
spectrum can be accessed through the two-time single-particle Green function G. Its
equations of motion are given by the lowest hierarchy equations, the Kadanoff–Baym
equations (KBEs). Decoupling the KBEs from the higher hierarchy equations leads to
the selfenergy Σ which includes mean field and correlation effects. Depending on the
choice of the selfenergy approximation different physical effects such as screening (GW
approximation) or particle-particle collisions (T -matrix in the particle-particle channel)
can be included in the description.
In this thesis, first the validity of the NEGF approach is tested for one-dimensional
lattice systems in the standard Hubbard model where a special focus is laid on spectral
properties. The results of the NEGF approach in the ground state and for time-dependent
excitations are compared to exact solutions. Later, the NEGF method is used to solve
the extended Hubbard model in order to study carrier multiplication processes in finite
graphene nanostructures.

1.1 Outline

• 1: Introduction

• 2: Nonequilibrium many-body theory
First, the exact solution of the time-dependent Schrödinger equation is presented.
After that the concept of the second quantization is introduced, which is the foun-
dation of the NEGF formalism. Additionally, the Schwinger–Keldysh-contour is
discussed which allows for the description of time dependent expectation values.
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The single-particle Green function is introduced and its equations of motion, the
KBEs, are derived by decoupling the Martin–Schwinger hierarchy. For the selfenergy
the Hartree–Fock and various other higher order approximations are presented.
Furthermore, the real-time components of the contour quantities and the general-
ized Kadanoff–Baym ansatz (GKBA) are described. Finally, the Hubbard model is
introduced and solved for simple limiting cases.

• 3: Numerical implementation
After discussing the generation of the initial state of the propagation, the time
propagation scheme for the NEGF approach is presented. Additionally, some details
are given on the numerical improvements that were achieved by the implemented
propagation algorithms and integration methods. Finally, two methods are introduced
to exactly solve the Hubbard model for small systems.

• 4: Results I: Method benchmarks
The validity of the NEGF approach is tested for one-dimensional lattice systems
in the standard Hubbard model. First, ground state results for the photoemission
spectrum and the energy dispersion are compared to exact solutions. Additionally,
the performance of the GKBA concerning spectral properties is discussed. Finally,
the problem of unphysical damping due to artificial energy levels is analyzed for
different excitations.

• 5: Graphene
The properties, lattices structure and tight-binding band structure of graphene are
presented. Furthermore, a specific class of finite systems, the so-called graphene
nanoribbons, is discussed in detail. Additionally, the important effect of carrier
multiplication is explained. Finally, the Hubbard model is extended to describe finite
graphene systems by taking into account hopping and orbital overlap up to third
nearest neighbors.

• 6: Results II: Laser excitations of finite graphene clusters
The NEGF method is used to solve the extended Hubbard model in order to study
the dynamics in finite graphene nanostructures excited by a laser pulse. First, the
response of the systems on different polarizations of the laser pulse is investigated.
Additionally, carrier multiplication processes are studied for various finite systems.
Finally, the influence of damping and correlations on the carrier multiplication effects
is discussed.

• 7: Conclusions & Outlook
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2 Nonequilibrium many-body theory

In this section, two different frameworks to describe quantum many-body systems are
presented. First, the wavefunction-based approach is introduced that focuses on the solution
of the time-dependent Schrödinger equation. In the second part, the nonequilibrium Green
functions method that is based on the second quantization is derived. Finally, the standard
Hubbard model is presented.

2.1 Exact solution of the TDSE

The state of a quantum mechanical system can be represented by a state vector |ψ(t)〉
which is an element of a single-particle Hilbert space H. One widely used way to describe
the time evolution of such a system is the Schrödinger picture (S). In this formalism the
entire time information is attributed to the state vectors, i.e. d

dt
|ψ(t)〉 6= 0, whereas the

operators of observables are constant in time1: d
dt
ÂS ≡ 0. The dynamics of the states

|ψ(t)〉 can be described by an equation of motion, the time-dependent Schrödinger equation
(TDSE):

i~
∂

∂t
|ψ(t)〉 = ĤS |ψ(t)〉 , (2.1-E1)

where ĤS denotes the Hamiltonian of the system.
In order to find a formal solution for the TDSE it proves useful to introduce the unitary
time evolution operator [38]

Û(t, t0) :=

T
{

e
− i

~
∫ t
t0

dt̄ ĤS(t̄)
}

if t ≥ t0

T̄
{

e+ i
~
∫ t0
t dt̄ ĤS(t̄)

}
if t < t0 ,

(2.1-E2)

for the time-dependent Hamiltonian ĤS(t). Additionally, T is the causal time-ordering
operator that arranges following operators chronologically, i.e.

T
{
Â(tP (k))Â(tP (k−1)) . . . Â(tP (1))

}
= Â(tk)Â(tk−1) . . . Â(t1) . (2.1-E3)

with time arguments t1 ≤ t2 ≤ . . . ≤ tk and for arbitrary operators Â and permutations P
of N≤k. Accordingly, T̄ denotes the anticausal time-ordering operator which sorts operators
in anti-chronological order, i.e. it obeys Eq. (2.1-E3) for time arguments t1 ≥ t2 ≥ . . . ≥ tk.
At first glance, the exponential in Eq. (2.1-E2) contains only one operator, the Hamiltonian
ĤS(t). However, the purpose of T becomes apparent when looking at the Taylor expansion
of the exponential function:

T
{

e
− i

~
∫ t
t0

dt̄ ĤS(t̄)
}

:=
∞∑
n=0

(− i
~)n

n!

∫ t

t0

dt1

∫ t

t0

dt2 . . .

∫ t

t0

dtn T
{
ĤS(t1)ĤS(t2) . . . ĤS(tn)

}
.

1If they do not have an explicit time-dependence like a time-dependent potential.
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Here, the time-ordering operator T is necessary to sort the product of Hamiltonians ĤS(t)
for different times.

As mentioned above, the time evolution operator is unitary, i.e.
(
Û(t1, t2)

)†
= Û(t2, t1).

Looking at Eq. (2.1-E2) one finds additional useful relations

Û(t1, t2)Û(t2, t3) = Û(t1, t3) ,

Û(t1, t2)Û(t2, t1) = Û(t1, t1) = 1 .
(2.1-E4)

With this operator Û it is now possible to write down a formal solution for Eq. (2.1-E1):

|ψ(t)〉 = Û(t, t0) |ψ(t0)〉 = T
{

e
− i

~
∫ t
t0

dt̄ ĤS(t̄)
}
|ψ(t0)〉 , (2.1-E5)

where t0 is the initial time and t > t0.

A simple way to handle the time dependence of the Hamiltonian is to break up the total
time evolution operator into N small intervals of duration ∆t in which the Hamiltonian is
assumed to be nearly constant [39]:

Û(t, t0) = Û(t0 + n∆t, t0 + (n− 1)∆t) · . . . · Û(t0 + ∆t, t0) , (2.1-E6)

where ∆t = (t− t0)/N . As the intervals are chosen in such a way that the Hamiltonian is
not dependent on time on any interval the time evolution operator becomes

Û(t+ ∆t, t) = e−
i
~ ĤS(t)∆t . (2.1-E7)

By diagonalizing ĤS with D̂(t) = Q̂
†
(t)ĤS(t)Q̂(t), where Q̂ is a unitary operator and D̂ is

a diagonal matrix containing the eigenenergies of ĤS, Eq. (2.1-E7) becomes

Û(t+ ∆t, t) = Q̂(t)e−
i
~ D̂(t)∆tQ̂

†
(t) . (2.1-E8)

However, in practice the problem is often solved by using the Taylor expansion to approxi-
mate the exponential function in Eq. (2.1-E7):

e−
i
~ ĤS(t)∆t = 1̂− i

~
ĤS(t)∆t+ · · · . (2.1-E9)

This way, the time evolution of a state vector |ψ(t)〉 for a system with an arbitrary
time-dependent Hamiltonian ĤS(t) can be solved. A description of the numerical details
is given in Sec. 3.4.

2.1.1 The Lanczos propagation

Since the size of the Hilbert space H grows exponentially with system-size, it is numerically
impossible to apply the above mentioned method of directly propagating the state vector
to larger systems. To solve this problem, the idea of the Lanczos approach is to diagonalize
the Hamiltonian on a small subspace of the d-dimensional Hilbert space, the L-dimensional
Krylov space [40]

KL(|φ0〉) = span
(
|φ0〉 , ĤS |φ0〉 , Ĥ

2

S |φ0〉 , . . . , Ĥ
L−1

S |φ0〉
)
, (2.1-E10)
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where ĤS is the Hamiltonian of the system and |φ0〉 is a given initial state.
The orthonormal Lanczos basis {|φ0〉 , . . . , |φL−1〉} of KL(|φ0〉) can be constructed by the
following iterative scheme. Starting from a normalized initial vector |φ0〉 a second vector
|φ1〉 can be generated by orthogonalizing ĤS |φ0〉 to |φ0〉 and subsequent normalization:

b1 |φ1〉 = |φ̃1〉 = ĤS |φ0〉 − |φ0〉 〈φ0| ĤS |φ0〉 = ĤS |φ0〉 − a0 |φ0〉 , (2.1-E11)

with a0 = 〈φ0| ĤS |φ0〉 and the normalization b2
1 = 〈φ̃1|φ̃1〉. In the next step a third vector

|φ2〉 is created that is orthogonal to |φ0〉 and |φ1〉,

b2 |φ2〉 = |φ̃2〉 = ĤS |φ1〉 −
1∑
i=0

|φi〉 〈φi| ĤS |φi〉 = ĤS |φ1〉 − a1 |φ1〉 − b1 |φ0〉 , (2.1-E12)

where a1 = 〈φ1| ĤS |φ1〉 and b2
2 = 〈φ̃2|φ̃2〉. Starting from Eqs. (2.1-E11) and (2.1-E12) it is

possible to construct an iterative scheme to generate the remaining basis vectors,

bn+1 |φn+1〉 = |φ̃n+1〉 = ĤS |φn〉 − an |φn〉 − bn |φn−1〉 , (2.1-E13)

with an = 〈φn| ĤS |φn〉 and the normalization b2
n+1 = 〈φ̃n+1|φ̃n+1〉.

In the basis of the Krylov subspace the Hamiltonian is represented by a tridiagonal
matrix [41]

ĤKL(|φ0〉) =



a0 b1 0 0 0 0

b1 a1 b2 0 · · · 0 0

0 b2 a2 b3 0 0

0 0 b3 a3 0 0
...

. . .
... 0

0 0 0 0 aL−1 bL

0 0 0 0 · · · bL aL


. (2.1-E14)

This iterative Lanczos technique is often used to get the ground state and the corresponding
ground state energy of a system as the extremal eigenenergies converge very fast with
increasing L [42]. For this, the only requirement is that the arbitrary initial state |φ0〉 has
a final overlap with the ground state.
To propagate a state vector |ψ〉 with the Lanczos approach, the Hamiltonian in Eq. (2.1-E7)
can be expressed by the Hamiltonian in Krylov space ĤKL(|φ0〉),

e−
i
~ ĤS(t)∆t = e

− i
~ V̂ (t)ĤKL(|φ0〉)

(t)V̂
†
(t)∆t

, (2.1-E15)

where V̂ (t) = (φ0, . . . , φL−1) is a d×Lmatrix constructed from columns φk representing |φk〉.
Similar to Eq. (2.1-E8) one can diagonalize ĤKL(|φ0〉) with D̂

′
(t) = Q̂

′†
(t)ĤKL(|φ0〉)(t)Q̂

′
(t),

where Q̂
′

is a unitary operator and D̂
′

is a diagonal matrix containing the eigenenergies of

ĤKL(|φ0〉). By defining Û
′
(t) := V̂ (t)Q̂

′
(t) one gets [43]

Û(t+ ∆t, t) = Û
′
(t)e−

i
~ D̂
′
(t)∆tÛ

′†
(t) . (2.1-E16)
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In practice the advantage of this approach compared to Eq. (2.1-E8) is that the diago-
nalization process is less costly due to the low dimensional Krylov subspace. However,
in order to perform the propagation, a new Krylov subspace has to be constructed for
every time step starting with the current state vector |ψ(t)〉 as the new initial state. More
details on the numerical aspects of this method are given in Sec. 3.4.

2.2 Nonequilibrium Green functions approach

2.2.1 Second quantization

In the previous chapter the state of a quantum mechanical system is determined by a state
vector or wavefunction |ψ〉 in a Hilbert space H, observables A are given by corresponding
operators Â : H → H and the dynamics of the state is determined by the TDSE.
A different formalism to describe a many-body quantum system is the second quantization,
in which the full information of the many-particle state is given by the occupation numbers
of the single-particle orbitals. One advantage of this approach is that it inherently takes
into account the indistinguishability of particles in quantum mechanics which leads to a
symmetric wavefunction for bosons and an antisymmetric wavefunction for fermions [36].

To demonstrate the connection between both formalisms it is convenient to consider a
state of N identical particles |ψN〉 that is an element of the N -particle Hilbert space HN

which is defined as the direct product of single-particle Hilbert spaces

HN = H1 ⊗H1 ⊗ . . .⊗H1︸ ︷︷ ︸
N times

. (2.2-E1)

The original N -particle state |ψN〉 contains all information about every particle but
as particles in quantum mechanics are indistinguishable it is convenient to introduce
a symmetric and anti-symmetric N -particle state |ψN〉± for bosonic (upper sign) and
fermionic (lower sign) particles, respectively. With this, the N -particle state can be
expressed in terms of the occupation numbers ni

|ψN〉± := |n1, n2, . . .〉 with ni = 0, 1, 2 , . . . and i = 1, 2, . . . . (2.2-E2)

These states are elements of the symmetric and anti-symmetric Hilbert subspaces H±N .
Now, it is possible to define the symmetric and anti-symmetric Fock space F± for states of
all particle numbers as the direct sum of all symmetric and anti-symmetric Hilbert spaces
H±N , respectively:

F± =
∞⊕
n=0

H±n , (2.2-E3)

where H0 includes the vacuum state |0〉 = |0, 0, . . .〉 without any particles.
Each state in this Fock space F is determined by the complete set of occupation numbers.

Thus, every Fock operator Â
F

: F → F has to change the occupation of the state. This
leads to the introduction of the canonical creation (annihilation) operator ĉ†i (ĉi) as a
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convenient basis to express Fock operators. As their names suggest, the action of these
operators is to create or annihilate a single particle in the orbital i of a given Fock state:

ĉ†i |n1, n2, . . . , ni, . . .〉 = (±1)α
√
ni + 1 |n1, n2, . . . , ni + 1, . . .〉 ·

{
1 for bosons

δni,0 for fermions
,

ĉi |n1, n2, . . . , ni, . . .〉 = (±1)α
√
ni |n1, n2, . . . , ni − 1, . . .〉 ·

{
1− δni,0 for bosons

δni,1 for fermions
.

(2.2-E4)

Here, α =
∑i−1

j=1 nj accounts for the (anti-)symmetric states and the Kronecker delta δ

enforces the Pauli principle for Fermions2. This way, the N -particle subspace of F is
connected to the N + 1 particle subspace by ĉ†i and to the N − 1 particle subspace by ĉi.

From Eq. (2.2-E4) the commutator (anti-commutator) relations for bosons (fermions) can
be derived: [

ĉ†i , ĉ
†
j

]
∓

= 0 ,[
ĉi, ĉj

]
∓

= 0 , (2.2-E5)[
ĉi, ĉ

†
j

]
∓

= δi,j ,

where (−) denotes the commutator and (+) the anti-commutator.
Starting from the vacuum state |0〉 any state |n1, n2, . . .〉 in F can be created by applying
the creation operator:

|n1, n2, . . .〉 =

(∏
i

1√
ni!

)(
ĉ†1

)n1
(
ĉ†2

)n2

. . . |0〉
{
ni ∈ N0 for bosons

ni ∈ {0, 1} for fermions
.(2.2-E6)

Now it is possible to define arbitrary Fock operators in the basis of the canonical creator

and annihilator. The general single-particle operator Â
F
1 and two-particle operator Â

F
2 in

second quantization take the form,

Â
F
1 =

∑
i,j

〈
i
∣∣∣Â1

∣∣∣ j〉 ĉ†i ĉj =:
∑
i,j

Aij ĉ
†
i ĉj , (2.2-E7)

Â
F
2 =

∑
i,j,k,l

〈
ij
∣∣∣Â2

∣∣∣ kl〉 ĉ†i ĉ†j ĉkĉl =:
∑
i,j,k,l

Aijklĉ
†
i ĉ
†
j ĉkĉl , (2.2-E8)

where Aij and Aijkl are the corresponding matrix elements. These equations are valid for
bosonic and fermionic particles.
With this, the generic time-dependent many-body Hamiltonian of a quantum system in
second quantization is given by

Ĥ(t) =
∑
i,j

h
(0)
ij ĉ
†
i ĉj︸ ︷︷ ︸

Ĥ
0

+
1

2

∑
i,j,k,l

wijklĉ
†
i ĉ
†
j ĉkĉl︸ ︷︷ ︸

Ŵ

+
∑
i,j

fij(t)ĉ
†
i ĉj︸ ︷︷ ︸

F̂ (t)

, (2.2-E9)

2Additionally, the annihilation operator can not act on empty orbitals, i.e. occupation numbers can not
be negative.
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containing the single particle part Ĥ
0
, the interaction part W and the time-dependent

external single-particle excitation F̂ (t).

2.2.2 The Heisenberg picture

Until now, the time dependence of a quantum mechanical system was described in
the Schrödinger picture (S), i.e. the system’s state vector |ψ〉 evolves in time while
operators Â of observables are stationary. Another way to take the time dynamics into
account is the Heisenberg picture (H). In this picture the operators evolve in time, i.e.
d
dt
ÂH 6= 0, whereas the states are time-independent: d

dt
|ψH〉 ≡ 0. Both formalisms are

mathematically equivalent3, however, the Heisenberg picture is crucial for the derivation
of the nonequilibrium Green functions (NEGF) approach.
The transformation between the Schrödinger and Heisenberg picture is done by the time
evolution operator Û that was defined in Eq. (2.1-E2). The states and operators transform
as

|ψH〉 = Û(t0, t) |ψS(t)〉 , ÂH(t) = Û(t0, t)ÂSÛ(t, t0) . (2.2-E10)

While the time evolution of the time-dependent states in the Schrödinger picture is
described by the TDSE (Eq. (2.1-E1)), the equation of motion for the dynamic operators
in the Heisenberg picture is the Heisenberg equation [44],

dÂH(t)

dt
=

i

~

[
ĤH(t), ÂH(t)

]
−

+

(
∂ÂS

∂t

)
H

, (2.2-E11)

with the time-dependent Hamiltonian in the Heisenberg picture ĤH(t).

2.2.3 The Schwinger–Keldysh contour

To develop the nonequilibrium Green functions approach it is useful to define a statistical
ensemble in order to obtain statistically averaged expectation values of observables. The
grand canonical ensemble (GCE) is defined by the temperature T = (kBβ)−1, the volume
V and the chemical potential µ of the system, whereas the particle number N is allowed
to vary. Thus, the GCE is a suitable choice for the ensemble, as creator and annihilator
in second quantization require a changing particle number. The grand canonical density
matrix describes the quantum statistical ensemble [36]:

ρ̂GCE =
1

Z0

e−β(Ĥ−µN̂) , (2.2-E12)

Z0 = Tr
(

e−β(Ĥ−µN̂)
)
,

3In a third equivalent formalism, the Dirac or interaction picture (I), both operators and states are
allowed to be time-dependent.
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where Tr(·) denotes the trace over F and N̂ =
∑

i ĉ
†
i ĉi is the particle number operator.

In the following, it is assumed that the system is in equilibrium for times t ≤ t0, then the
average of an operator Â can be expressed as

〈Â〉(t ≤ t0) = Tr
(
ρ̂S(t ≤ t0)ÂS

)
, (2.2-E13)

where ρ̂S(t ≤ t0) is the equilibrium density operator in the Schrödinger picture.
For times t > t0, where the system is excited out of equilibrium, the time evolution
operator Û can be used to construct the nonequilibrium density operator

ρ̂S(t) = Û(t, t0)ρ̂S(t0)Û(t0, t) . (2.2-E14)

Inserting Eq. (2.2-E14) into Eq. (2.2-E13) and using the definition ρH ≡ ρS(t0) leads to
an expression for the average of an operator Â in nonequilibrium,

〈Â〉(t) = Tr
(
ρ̂HÛ(t0, t)ÂSÛ(t, t0)

)
(2.2-E15)

= Tr
(
ρ̂HÂH(t)

)
,

where the cyclic property of the trace has been used to change the position of Û and ÂS.
Using the definition of Û (Eq. (2.1-E2)) the average becomes

〈Â〉(t) = Tr
(
ρ̂HT̄

{
e−

i
~
∫ t0
t dt̄ Ĥ(t̄)

}
ÂST

{
e
− i

~
∫ t
t0

dt̄ Ĥ(t̄)
})

. (2.2-E16)

To get further insight into the underlying physics of this equation it is helpful to look at
the acting of the operators on a ket-vector under the trace (from right to left). First, the
state is propagated in chronological order on the real time axis from t0 to t by the time
evolution operator Û(t, t0). Second, the operator ÂS acts at the time t and third, the state
is propagated back on the real time axis from time t to t0 in anti-chronological order by
Û(t0, t).
This whole process motivates the introduction of a time contour C. The idea of such
a time contour is depicted in Fig. 2.2-F1 and was first presented by Keldysh [45] and
Schwinger [46]. To distinguish the real time arguments of the propagation, C is split into
a causal (C−) and an anticausal (C+) branch for the forward and backward propagation,
respectively. Additionally, times on the contour are denoted z ∈ C. With this, Eq. (2.2-E16)
can be written as

〈Â〉(t) = Tr
(
ρ̂HTC

{
e
− i

~
∫
C+

dz̄ Ĥ(z̄)
}
ÂSTC

{
e
− i

~
∫
C−

dz̄ Ĥ(z̄)
})

, (2.2-E17)

where TC is the time ordering superoperator on C that moves operators at earlier times
on the contour to the right and operators at later times to the left, much like its real
time counterpart defined in Eq. (2.1-E3). By introducing the notation ÂS

∣∣
z

to specify at

which time on the contour the operator ÂS acts, one can further simplify Eq. (2.2-E17)
and finds:

〈Â〉(z) = Tr
(
ρ̂HTC

{
e−

i
~
∫
C dz̄ Ĥ(z̄)ÂS

∣∣
z

})
. (2.2-E18)

This equation describes the general time dependent ensemble average of a given observable.
However, the generation of a correlated initial state at time t0 is still an important topic
to address. There are two common ways to create such an interacting initial state:
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t0 tz1

z2 C

Figure 2.2-F1 – Schematic illustration of the time contour C that consists of a causal
and an anticausal branch. Here, the time z2 is later than z1 on C. However, their
projections on the real time axis are arranged in opposite order. Both branches
lie on top of each other on the real time axis, the spacing between the branches is
only an illustrative help. The graphic is taken from Ref. [47].

i.) adding a third vertical branch of complex time arguments to the contour,

ii.) starting from a non-interacting state and switch on the interaction adiabatically.

The first approach is based on the observation that the canonical density operator can be
expressed as a time evolution operator in imaginary time:

e−βĤS(t0) = e+ i
~ ĤS(t0)[t0−(t0−i~β)] ≡ Û0(t0 − i~β, t0) . (2.2-E19)

Inserting this expression into Eq. (2.2-E18) extends C by a third branch ranging along the
imaginary axis from t0 to t0− i~β. Since this approach is not part of this work, the reader
is referred to Ref. [38] for further insight into this method.

The second way, the so-called adiabatic switching method, is used in the calculations of
this work and will be outlined in more detail. The Hamiltonian of a quantum system in
second quantization is shown in Eq. (2.2-E9). For the purpose of this method an adiabatic
switching function fAS : R → [0, 1] is added to the interaction part Ŵ to switch on the
interaction, leading to a generalized Hamiltonian

ĤAS(t) =
∑
i,j

h
(0)
ij ĉ
†
i ĉj︸ ︷︷ ︸

Ĥ
0

+
1

2
fAS(t)

∑
i,j,k,l

wijklĉ
†
i ĉ
†
j ĉlĉk︸ ︷︷ ︸

ŴAS

+
∑
i,j

fij(t)ĉ
†
i ĉj︸ ︷︷ ︸

F̂ (t)

, (2.2-E20)

where the monotonically increasing switching function fAS(t) has to satisfy the following
relations:

lim
t→−∞

fAS(t) = 0 and fAS(t) = 1 for all t ≥ t0 . (2.2-E21)

The main assumption of the adiabatic switching method is that the fully interacting
density operator ρ̂H can be expressed through the non-interacting density operator ρ̂0

corresponding to the single particle Hamiltonian Ĥ0. For this purpose, a new time evolution
operator ÛAS can be defined corresponding to the adiabatic switching Hamiltonian ĤAS.
This way the correlated density operator can be expressed as

ρ̂H = ÛAS(t0,−∞)ρ̂0ÛAS(−∞, t0) . (2.2-E22)
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ρ̂0

−∞ ∞

t0

CAS

Figure 2.2-F2 – Schematic illustration of the time contour CAS that consists of a causal
and an anticausal branch like the contour C depicted in Fig. 2.2-F1. Additionally,
both branches are extended to ±∞ on the real time axis. For t→ −∞ the system
is in the noninteracting ground state. Towards t0 the interaction is switched on
adiabatically. The graphic is taken from Ref. [47].

The theoretical foundation of the adiabatic switching method is the Gell-Mann-Low
theorem [48, 49] which brings some limitations and requirements for the validity of the
method. First, the non-interacting ground state Ĥ0 has to be nondegenerate. Second, the
interacting state of the system after the switch-on is an eigenstate of the fully interacting
Hamiltonian. However, it is not guaranteed to be the ground state [50]. Thus, in practice,
the switch-on has to be performed slowly enough to ensure that the final state is, indeed,
the ground state. Last, the interaction is supposed to be switched off again for t→∞.
However, since this does not influence the proceeding propagation, it can be neglected in
practice. The numerical realization of this approach is described in Sec. 3.1.2.
Using Eqs. (2.2-E22) and (2.2-E18) one gets

〈Â〉(z) = Tr
(
ρ̂0ÛAS(−∞, t0)TC

{
e−

i
~
∫
C dz̄ Ĥ(z̄)ÂS

∣∣
z

}
ÛAS(t0,−∞)

)
. (2.2-E23)

Again, the cyclic property of the trace was used to rearrange the time evolution operators.
Additional to the extension of the time contour to −∞ through the adiabatic switching
method, it is convenient to also extend C to +∞ which makes it universal for any choice
of t4. The final time contour CAS is depicted in Fig. 2.2-F2. Using CAS, Eq. (2.2-E23) can
be further simplified and leads to

〈Â〉(z) = Tr
(
ρ̂0TCAS

{
e
− i

~
∫
CAS

dz̄ ĤAS(z̄)
ÂS

∣∣
z

})
, (2.2-E24)

where the time ordering superoperator TCAS
arranges all operators chronologically on the

adiabatic switching contour CAS. With this, a universal description is found that allows for
the combination of time evolution and ensemble averaging of operators in a simple way.

4The group property of the time evolution operator allows for the extension of C to +∞. A prove can be
found in Ref. [38].
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2.2.4 Green functions and the Martin–Schwinger hierarchy

The time-dependent expectation value of an operator can be accessed in different ways.
First, in wavefunction-based approaches, described in Sec. 2.1, where the state vector
|ψ(t)〉 is propagated by the TDSE, the expectation value of an operator Â is given by

〈Â〉(t) = 〈ψ(t)| Â |ψ(t)〉 . (2.2-E25)

A second method was presented in the last section. Starting from an initial state described
by the density matrix ρ0, the time dependent ensemble average of an operator can be
calculated from Eq. (2.2-E24). The latter approach will, in the following, lead to the
introduction of the nonequilibrium Green function.
For this, the operator in Eq. (2.2-E24) has to be expressed in second quantization. The
general form of a single particle operator in second quantization was given in Eq. (2.2-E7).
In the Heisenberg picture it has the form

Â1,H(t) =
∑
i,j

Aij ĉ
†
i,H(t)ĉj,H(t) . (2.2-E26)

Taking the ensemble average leads to

〈Â1〉(t) = 〈Â1,H〉(t) =
∑
i,j

Aij〈ĉ†i,H(t)ĉj,H(t)〉 =
∑
i,j

Aijρij(t) , (2.2-E27)

where ρij = 〈ĉ†i ĉj〉 is the one-particle density matrix. This means that in order to calculate
all one-particle nonequilibrium observables it is sufficient to know ρij.

The idea of the NEGF is to generalize the single-time product of ĉ†(t) and ĉ(t) to two
contour times z and z′. The resulting operator is given by

Ĝ
(1)

ij (z, z′) := − i

~
TC
{
ĉi,H(z)ĉ†j,H(z′)

}
, (2.2-E28)

where the factor − i
~ and the time-ordering superoperator TC were added and the position

of the creation and annihilation operator was swapped for convenience. Now, averaging
this expression leads to the well known contour-ordered, single-particle nonequilibrium
Green function

G
(1)
ij (z, z′) := − i

~

〈
TC
{
ĉi,H(z)ĉ†j,H(z′)

}〉
. (2.2-E29)

For a better understanding of this expression, Eq. (2.2-E28) can be inserted into
Eq. (2.2-E24) to show the averaging explicitly

G
(1)
ij (z, z′) = Tr

(
ρ̂0TCAS

{
e
− i

~
∫
CAS

dz̄ ĤAS(z̄)
ĉi,S
∣∣
z
ĉ†j,S
∣∣
z′

})
. (2.2-E30)

Until now, only one-particle operators are considered but analogous to Eqs. (2.2-E28) and
(2.2-E29) it is possible to define the N -particle correlator

Ĝ
(N)

i1...iN j1...jN
(z1, . . . , zN , z

′
1, . . . , z

′
N) :=

1

(i~)N
TC
{
ĉi1(z1) . . . ĉiN (zN)ĉ†jN (z′N) . . . ĉ†j1(z′1)

}
(2.2-E31)
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and the corresponding N -particle Green function

G
(N)
i1...iN j1...jN

(z1, . . . , zN , z
′
1, . . . , z

′
N) =

1

(i~)N

〈
TC
{
ĉi1(z1) . . . ĉiN (zN)ĉ†jN (z′N) . . . ĉ†j1(z′1)

}〉
. (2.2-E32)

with 2N contour arguments. The knowledge about G(N) enables the calculation of any
N -particle observable. However, for this an equation of motion for G(N) has to be found.
As every operator in second quantization can be expressed in the basis of the canonical
creator and annihilator it is crucial to take a look at the time evolution of these two operators
in the Heisenberg picture. Starting from the Heisenberg equation (cf. Eq. (2.2-E11)) and
using the commutator relations of Eq. (2.2-E5) one arrives at [47]

i~
dĉi(z)

dz
=

∑
j

(
h

(0)
ij (z) + fij(z)

)
ĉj(z) +

∑
j,k,l

wijkl(z)ĉ†j(z)ĉk(z)ĉl(z) , (2.2-E33)

−i~
dĉ†i (z)

dz
=

∑
j

ĉ†j(z)
(
h

(0)
ji (z) + fji(z)

)
+
∑
j,k,l

ĉ†j(z)ĉ†k(z)ĉl(z)wjkli(z) , (2.2-E34)

for contour times z and a Hamiltonian defined in Eq. (2.2-E9). Using these relations the
equations5 of motion for the N -particle Green function can be derived which couple G(N)

to G(N−1) and G(N+1):∑
l

[
i~

d

dzk
δik,l − h

(0)
ikl

(zk)

]
G

(N)
i1...l...iN j1...jN

(z1, . . . , zN , z
′
1, . . . , z

′
N)

=± i~
∑
l,m,n

∫
C

dz̄ wiklmn(zk, z̄)G
(N+1)
i1...m...iNnj1...jN l

(z1, . . . , zN , z̄, z
′
1, . . . , z

′
N , z̄

+)

+
N∑
p=1

(±1)k+pδik,jpδC(zk, z
′
p)G

(N−1)

i1...�ik...iN j1...�jp...jN
(z1, . . . ,��zk, . . . , zN , z

′
1, . . . ,��z

′
p, . . . , z

′
N) ,

(2.2-E35)∑
l

G
(N)
i1...iN j1...l...jN

(z1, . . . , zN , z
′
1, . . . , z

′
N)

−i~
←
d

dz′k
δl,jk − h

(0)
ljk

(z′k)


=± i~

∑
l,m,n

∫
C

dz̄ G
(N+1)
i1...iNnj1...l...jNm

(z1, . . . , zN , z̄
−, z′1, . . . , z

′
N , z̄)wlmjkn(z̄, z′k)

+
N∑
p=1

(±1)k+pδip,jkδC(zp, z
′
k)G

(N−1)

i1...�ip...iN j1...��jk...jN
(z1, . . . ,��zp, . . . , zN , z

′
1, . . . ,��z

′
k, . . . , z

′
N) .

(2.2-E36)
Here, a generalized two-time interaction

wijkl(z, z̄) := wijkl(z)δC(z, z̄) (2.2-E37)

is introduced, together with the times z± = z ± ε, ε � 1, to enforce the correct time

ordering of the operators on the contour. The differential operator
←
d

dz′k
is acting to its left

5There are two sets of equations, one for each time dimension.
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what is denoted by the arrow.
A detailed derivation and introduction of Eqs. (2.2-E35) and (2.2-E36), which are well-
known as the Martin–Schwinger hierarchy [51], can be found in Refs. [36, 38, 52]. The
complete hierarchy is a coupled system of integro-differential equations and its solution
gives access to all observables of the studied system. Due to the coupling of the individual
equations, the hierarchy can, in principle, be solved exactly in an recursive manner starting
from the zero-particle Green function G(0) := 1. However, in practice the effort for the full
solution scales exponentially with the particle number which makes it impossible to solve
the problem with numerical methods.
Fortunately, as show in Eq. (2.2-E27), it is sufficient to know G(1) to calculate all single-
particle observables. Therefore, if one is predominantly interested in those quantities, it
is convenient to focus on an equation of motion for the single-particle Green function,
G

(1)
ij (z, z′) =: Gij(z, z

′), which from now on is simply referred to as Green function. The
dynamics of G are described by the first hierarchy equation which is coupled to the
two-particle Green function G(2):∑

l

[
i~

d

dz
δi,l − h

(0)
il (z)

]
Glj(z, z

′) = δi,jδC(z, z
′) (2.2-E38)

± i~
∑
l,m,n

∫
C

dz̄ wilmn(z, z̄)G
(2)
mnjl(z, z̄, z

′, z̄+) ,

∑
l

Gil(z, z
′)

−i~
←
d

dz′
δl,j − h

(0)
lj (z′)

 = δi,jδC(z, z
′) (2.2-E39)

± i~
∑
l,m,n

∫
C

dz̄ G
(2)
inlm(z, z̄−, z′, z̄)wlmjn(z̄, z′) .

These equations are the well-known Keldysh–Kadanoff–Baym equations [53]. It is apparent
that even the determination of G alone requires the solution of the full hierarchy due to
the coupling to G(2)6. In order to solve this problem, the hierarchy equations have to be
decoupled by expressing G(2) in terms of G. For this purpose, it is useful to introduce the
single-particle selfenergy Σ [36–38, 52] which is implicitly defined as

±i~
∑
l,m,n

∫
C

dz̄ wilmn(z, z̄)G
(2)
mnjl(z, z̄, z

′, z̄+) =:
∑
l

∫
C

dz̄Σil(z, z̄)Glj(z̄, z
′) , (2.2-E40)

±i~
∑
l,m,n

∫
C

dz̄ G
(2)
inlm(z, z̄−, z′, z̄)wlmjn(z̄, z′) =:

∑
l

∫
C

dz̄ Gil(z, z̄)Σlj(z̄, z
′) . (2.2-E41)

Using these relations, Eqs. (2.2-E38) and (2.2-E39) can be transformed into the formally
closed KBEs for the one-particle Green function G:∑

l

[
i~

d

dz
δi,l − h

(0)
il (z)

]
Glj(z, z

′) = δi,jδC(z, z
′) (2.2-E42)

+
∑
l

∫
C

dz̄Σil(z, z̄)Glj(z̄, z
′) ,

6G(2) couples to G(3) and so on.
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∑
l

Gil(z, z
′)

−i~
←
d

dz′
δl,j − h

(0)
lj (z′)

 = δi,jδC(z, z
′) (2.2-E43)

+
∑
l

∫
C

dz̄ Gil(z, z̄)Σlj(z̄, z
′) .

The integral term on the right hand side of the equation is often referred to as collision
integral. It is the reason for the (in general) non-Markovian structure of the KBE, since
the time evolution of G depends on its own history.

2.2.5 Selfenergy approximations

If the selfenergy Σ contains the full N -particle information of the system, Eqs. (2.2-E42)
and (2.2-E43) are exact. However, since that is the case only in special model systems,
many-body approximations (MBA) have to be developed to truncate the Martin–Schwinger
hierarchy. For this purpose Σ can be split into two parts:

Σij(z, z
′) = ΣHF

ij (z, z′) + Σcorr
ij (z, z′) , (2.2-E44)

where mean-field and exchange effects are described by the Hartree–Fock selfenergy ΣHF

and correlation effects are included in the correlation part of the selfenergy Σcorr. While
the derivation of ΣHF is straightforward, the correct description of correlations turns out
to be a challenging task. In the following, the Hartree–Fock selfenergy as well as some
correlation including higher order schemes will be introduced.

2.2.5.1 Hartree–Fock

The idea of the Hartree–Fock (HF) approximation is to express the two-particle Green
function G(2) as the product of two one-particle Green functions

G
(2),HF
i1i2j1j2

(z1, z2, z
′
1, z
′
2) = Gi1j1(z1, z

′
1)Gi2j2(z2, z

′
2)±Gi1j2(z1, z

′
2)Gi2j1(z2, z

′
1) , (2.2-E45)

where the first term describes the propagation of two independent particles that are
added at times z′1 and z′2 and removed at z1 and z2. The second term accounts for the
indistinguishability of particles in quantum mechanics. This way, the Hartree–Fock Green
function includes mean-field and exchange effects.
To get an expression for the selfenergy, Eq. (2.2-E45) has to be inserted into Eq. (2.2-E42)7.

7Inserting Eq. (2.2-E45) into Eq. (2.2-E43) gives the same result.
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This leads to the KBE in Hartree–Fock approximation∑
l

[
i~

d

dz
δi,l − h

(0)
il (z)

]
Glj(z, z

′)

= δi,jδC(z, z
′)

± i~
∑
l,m,n

∫
C

dz̄ wilmn(z, z̄)Gmj(z, z
′)Gnl(z̄, z̄

+)

+ i~
∑
l,m,n

∫
C

dz̄ wilmn(z, z̄)Gml(z, z̄
+)Gnj(z̄, z

′)

= δi,jδC(z, z
′)

± i~
∑
l,m,n

∫
C

dz̄d¯̄z δC(z, ¯̄z)wilmn(z, z̄)Gnl(z̄, z̄
+)Gmj( ¯̄z, z′)

+ i~
∑
l,m,n

∫
C

dz̄ wilmn(z, z̄)Gml(z, z̄
+)Gnj(z̄, z

′) .

(2.2-E46)
Comparing with Eq. (2.2-E40) results in the well-known definition of the Hartree–Fock
selfenergy

ΣHF
ij (z, z′) = ±i~δC(z, z′)

∑
k,l

∫
C

dz̄ wikjl(z, z̄)Glk(z̄, z̄
+)

+i~
∑
k,l

wiklj(z, z
′)Glk(z, z

′+) . (2.2-E47)

An illustration of this expression is shown in terms of Feynman diagrams in Fig. 2.2-F3. The
first diagram corresponds to the first term of Eq. (2.2-E47), the so-called Hartree selfenergy,
and describes the interaction of a particle with the mean-field. The exchange contribution
appears in the second diagram, the so-called Fock selfenergy, as a self-interaction.
Using the definition of the interaction w (cf. Eq. (2.2-E37)) reveals that, due to the
contour delta function, the Hartree–Fock selfenergy is time-local. Thus, it does not include
any correlation effects, as the contour integral in Eq. (2.2-E42) vanishes. Additionally, in
terms of a perturbative expansion, it includes only first order terms of the interaction w.
The Hartree–Fock approximation is frequently used in many-body physics as the above
mentioned properties result in equations that are numerically easy to handle. However,
it has been shown [54–56] that it provides poor results when correlation effects play an
important role in the system of interest. Therefore, it is necessary to develop higher order
approximations that take correlations into account.

2.2.5.2 Higher order approximations

When looking for self-consistent solutions of the KBEs beyond the Hartree–Fock approxi-
mation, it is important to verify that a given many-body approximation is conserving, i.e.
that the systems total energy, particle number and momentum are preserved. It has been
shown by Baym [58] that a selfenergy approximation is conserving if
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Figure 2.2-F3 – Diagrammatic representation of the Hartree–Fock (HF) approximation,
the second Born or second order approximation (SOA), the GW approximation
(GWA) and the T -matrix in the particle-particle- (TPP) and particle-hole-channel
(TPH). For the last four approximations only the correlation part is depicted and
the HF diagrams have to be added to get the full selfenergy, cf. Eq. (2.2-E44).
For GWA, TPP and TPH only the first few diagrams are shown. Straight lines
correspond to Green functions and curved lines to interactions. Filled dots stand
for integrals and sums. The prefactors and signs are neglected for convenience and
can be found in Ref. [57].
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i.) both Eqs. (2.2-E42) and (2.2-E43) lead to the same approximate solution for G, and

ii.) the approximation for G(2) satisfies the following symmetry relation,

G
(2)
i1i2j1j2

(z1, z2, z
′
1, z
′
2) = G

(2)
i2i1j2j1

(z2, z1, z
′
2, z
′
1) . (2.2-E48)

The first condition is met by most approximations used in many-particle physics [58]. The
second condition is easily verified if the dependence of G(2) on G in a given approximation
is known. Taking a look at Eq. (2.2-E45), it is obvious that G(2),HF satisfies ii.) and, thus,
the Hartree–Fock approximation is conserving.
Another important quality of a many-body approximation, which was just recently studied
in detail [59–62], is the positive semidefinite property (PSD). In practice, it is mandatory to
guarantee the stability of Eqs. (2.2-E42) and (2.2-E43) and a positive spectral function. The
Hartree–Hock selfenergy is PSD, but not all conserving approximations, like for instance the
fluctuation exchange (FLEX) approximation [63], have this property. However, higher order
approximations beyond Hartree–Fock that were found to be both, conserving and PSD,
are the second Born or second order approximation (SOA), the GW approximation (GWA)
and the T -matrix in the particle-particle- (TPP) and particle-hole-channel (TPH).

Here, a brief overview on those four higher order schemes will be given8. To write the
selfenergies in a compact way, it is convenient to define some new quantities

GH
ijkl(z, z

′) := Gik(z, z
′)Gjl(z, z

′) , (2.2-E49)

GF
ijkl(z, z

′) := Gil(z
′, z)Gjk(z, z

′) , (2.2-E50)

where GH
ijkl(z, z

′) is a Hartree-like and GF
ijkl(z, z

′) is a Fock-like two-particle Green function.
All selfenergies presented here have to be understood as correlation selfenergies, i.e. they
have to be inserted for Σcorr in Eq. (2.2-E44) to give the full selfenergy.

Second order approximation (SOA): The SOA is the most simple approach to add
correlations to the selfenergy. The idea is to describe the scattering event between two
particles by considering only the first term in the Born series [38]. This results in the
following expression for the SOA selfenergy

ΣSOA
ij (z, z′) = ± (i~)2

∑
m,n,p,q,r,s

(
GH
mpnq(z, z

′)wispm(z)wqnjr(z
′)Grs(z

′, z)

±wiqrm(z)Gm,n(z, z′)wnsjp(z
′)GF

prsq(z
′, z)
)
. (2.2-E51)

It includes all terms up to second order in the interaction w but no higher order terms.
Thus, it is a reasonable approach when the interaction strength is low. A diagrammatic
representation is shown in Fig. 2.2-F3. More details can be found in Refs. [38, 55, 56].

8In the following the definition of the interaction w in Eq. (2.2-E37) is used to get back to a one-time
interaction.
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GW approximation (GWA): The GWA is a more sophisticated approach that takes
the screened interaction between particles into account. The selfenergy is given by

ΣGWA
ij (z, z′) = i~

∑
k,l

Wikjl(z, z
′)Glk(z, z

′) , (2.2-E52)

where W is defined recursively as

Wijkl(z, z
′) = ±i~

∑
m,n,p,q

∫
C

dz̄ wipml(z)GF
mnpq(z, z̄)Wqjkn(z̄, z′) . (2.2-E53)

Since W depends on itself in Eq. (2.2-E53), the GWA is a resummation approach that
contains contributions up to infinite order in w. It has shown good results for systems
near half filling, where screening effects are important [64]. Furthermore, it is frequently
used for bandstructure and photoemission calculations [65, 66]. The first three diagrams
of the GWA are depicted in Fig. 2.2-F3. For more information and a derivation of above
equations the reader is referred to [57].

Particle-particle T -matrix (TPP): The TPP is another resummation approach that
can be seen as an extension to the SOA as it considers the full Born series instead of
just the first term. Therefore, it also contains terms of all orders in w. The selfenergy is
defined as

ΣTPP
ij (z, z′) = i~

∑
k,l

T pp
ikjl(z, z

′)Glk(z
′, z) , (2.2-E54)

where T pp is given by

T pp
ijkl(z, z

′) = ±i~
∑
m,n,p,q

wijmn(z)GH
mnpq(z, z

′)wpqkl(z
′) (2.2-E55)

+i~
∑
m,n,p,q

wijmn(z)GH
mnpq(z, z

′)wpqlk(z
′)

+i~
∑
m,n,p,q

∫
C

dz̄ wijmn(z)GH
mnpq(z, z̄)T pp

pqkl(z̄, z
′) .

It describes multiple scattering events between two particles (or two holes) and is justified
in the case of nearly empty or nearly filled bands where the correct treatment of scattering
effects is important. The first four diagrams are shown in Fig. 2.2-F3. An in depth
derivation of the particle-particle T -matrix can be found in [47].

Particle-hole T -matrix (TPH): The TPH approach is similar to the TPP with the only
difference being that it describes multiple scattering events between a particle and a hole
instead of particles of the same type. The resulting selfenergy is

ΣTPH
ij (z, z′) = i~

∑
k,l

Gkl(z, z
′)T ph

iljk(z, z
′) , (2.2-E56)
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with T ph being defined as

T ph
ijkl(z, z

′) = ±i~
∑
m,n,p,q

wipml(z)GF
mnpq(z, z

′)wpjkn(z′) (2.2-E57)

+i~
∑
m,n,p,q

wipml(z)GF
mnpq(z, z

′)wqjnk(z
′)

+i~
∑
m,n,p,q

∫
C

dz̄ wipml(z)GF
mnpq(z, z̄)T ph

qjkn(z̄, z′) .

Again, due to the resummation, the selfenergy contains an infinite number of terms. The
first four can be seen in Fig. 2.2-F3. For further details the reader is referred to [64].

2.2.6 Real-time components of contour quantities

In the form given in Eqs. (2.2-E42) and (2.2-E43) the KBEs can not be handled numerically.
Therefore, it is necessary to find a more suited representation of the Green function in order
to propagate it in practice. Looking back at the time contour defined in Sec. 2.2.3, there
are four different ways to order two time arguments on the two different branches. A vivid
illustration of the procedure is shown in Fig. 2.2-F4. This way, it is possible to express
the Green function as a 2× 2-matrix containing four different real-time components9:

Gij(z1, z2) =

Gc
ij(t1, t2) G<

ij(t1, t2)

G>
ij(t1, t2) Ga

ij(t1, t2)

 , (2.2-E58)

where the components are defined as

Gc
ij(t1, t2) =

1

i~

〈
T
{
ĉi(t1)ĉ†j(t2)

}〉
, (2.2-E59)

G<
ij(t1, t2) = ± 1

i~

〈
ĉ†j(t2)ĉi(t1)

〉
, (2.2-E60)

G>
ij(t1, t2) =

1

i~

〈
ĉi(t1)ĉ†j(t2)

〉
, (2.2-E61)

Ga
ij(t1, t2) =

1

i~

〈
T̄
{
ĉi(t1)ĉ†j(t2)

}〉
. (2.2-E62)

Here, G< and G> are referred to as the less and greater Green function while Gc and Ga

are the causal and anticausal component, respectively. They are defined as

Gc
ij(t1, t2) := Θ(t1, t2)G>

ij(t1, t2) + Θ(t2, t1)G<
ij(t1, t2), (2.2-E63)

Ga
ij(t1, t2) := Θ(t2, t1)G>

ij(t1, t2) + Θ(t1, t2)G<
ij(t1, t2), (2.2-E64)

where Θ is the Heaviside step function with Θ(t1, t2) = 1 if t1 > t2 and Θ(t1, t2) = 0
otherwise. Since Gc and Ga can be expressed by G< and G>, the matrix in Eq. (2.2-E58)

9This is an advantage of the adiabatic switching method introduced in Sec. 2.2.3. Using the second
presented method to generate a ground state, which results in a third contour branch in imaginary
time, leads to nine different ways to order two time arguments and, thus, in a 3× 3-matrix.
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∞C

c

a
z1 z2

<

>

Figure 2.2-F4 – Illustration of the time ordering on the contour: There are four different
ways to order two time arguments on the two contour branches. In the case of
the causal (anticausal) component both time arguments are placed on the causal
(anticausal) branch, indicated by “c” (“a”). If they lie on different branches, they
can form the greater component (red), if z1 is on the anticausal and z2 is on the
causal branch, and the less component (blue) otherwise. The graphic is taken from
Ref. [47].

is overcomplete, as it effectively only depends on two components. This finding can be
used to transform Gij by so-called Keldysh rotations [67] to get a representation that is
best suited for computational demands. In this work, the following Green function matrix
was used10

Gij(z1, z2) =

GR
ij(t1, t2) G<

ij(t1, t2)

0 GA
ij(t1, t2)

 , (2.2-E65)

where GR and GA are the retarded and advanced Green function, respectively. They are
defined as

GR
ij(t1, t2) := Gc

ij(t1, t2)−G<
ij(t1, t2) = G>

ij(t1, t2)−Ga
ij(t1, t2) ,

GA
ij(t1, t2) := Gc

ij(t1, t2)−G>
ij(t1, t2) = G<

ij(t1, t2)−Ga
ij(t1, t2) .

(2.2-E66)

Using the definitions of Gc and Ga in Eqs. (2.2-E63) and (2.2-E64) leads to a more compact
expression

G
R/A
ij (t1, t2) = Θ(t1/2, t2/1)

(
G≷
ij(t1, t2)−G≶

ij(t1, t2)
)
, (2.2-E67)

where Θ is the Heaviside step function introduced above.
All these thoughts do not only apply to the Green function but to all two-time contour
ordered functions in Keldysh space, like the selfenergy Σ [37]. Hence, it is possible to
transform the KBEs into a real-time form to propagate the components of G. To do so,
there are special rules on how to calculate the components of a product of two two-time

10This representation, suggested by Langreth and Wilkens [68], can be obtained by doing a linear

transformation of the form GLW := LMGL−1 with L =

1 0

1 1

 and M =

1 0

0 −1

.
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contour quantities B and C, the so-called Langreth–Wilkins rules [68]:

BC =

BR B<

0 BA

 ·
CR C<

0 CA

 =

BRCR BRC< +B<CA

0 BACA

 . (2.2-E68)

This schematic notation can be understood using the example of the less and greater
components of rank two tensors B and C{∑

k

∫
C

dz̄ Bik(z, z̄)Ckj(z̄, z
′)

}≷

=
∑
k

∫ ∞
ts

dt̄ BR
ik(t, t̄)C

≷
kj(t̄, t

′) (2.2-E69)

+
∑
k

∫ ∞
ts

dt̄ B≷
ik(t, t̄)C

A
kj(t̄, t

′) .

The time ts in the integral boundaries corresponds to the starting time zs on the contour
C, i.e. in the case of adiabatic switching t0 → −∞.
All two-time contour quantities B with two basis indices obey the spatial and time
transposition symmetry

B≷
ij(t1, t2) = −

[
B≷
ji(t2, t1)

]∗
. (2.2-E70)

Additionally, there are further useful relations for the real-time components of the Green
function

GR
ij(t1, t2) =

[
GA
ji(t2, t1)

]∗
, (2.2-E71)

G>
ij(t, t)−G<

ij(t, t) = ± i

~
δi,j . (2.2-E72)

Using the Langreth–Wilkins rules presented in Eqs. (2.2-E68) and (2.2-E69), it is now
possible to transform not only the KBEs (Eqs. (2.2-E42) and (2.2-E43)) but also the
expressions for the selfenergy approximations discussed in Sec. 2.2.5 into equations for the
respective real-time quantities. The transformation of the KBEs into equations of motion
for the real-time components of the Green function leads to the following expressions. For
the less and greater component the equations become∑

l

[
i~

d

dt
δi,l − h

(0)
il (t)

]
G≷
lj(t, t

′) = (2.2-E73)

∑
l

∫ ∞
ts

dt̄
{

ΣR
il(t, t̄)G

≷
lj(t̄, t

′) + Σ≷
il(t, t̄)G

A
lj(t̄, t

′)
}

and

∑
l

G≷
il(t, t

′)

−i~
←
d

dt′
δl,j − h

(0)
lj (t′)

 = (2.2-E74)

∑
l

∫ ∞
ts

dt̄
{
GR
il(t, t̄)Σ

≷
lj(t̄, t

′) +G≷
il(t, t̄)Σ

A
lj(t̄, t

′)
}
.

It is apparent that the time diagonal part δi,jδC(z, z′) on the right hand side of the equation
has vanished. This is because, for the less and greater component, the two contour times
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z and z′ are, by definition, located on different branches, i.e. z 6= z′. For the retarded and
advanced component one gets∑

l

[
i~

d

dt
δi,l − h

(0)
il (t)

]
G

R/A
lj (t, t′) = δi,jδ(t, t

′) (2.2-E75)

+
∑
l

∫ ∞
ts

dt̄Σ
R/A
il (t, t̄)G

R/A
lj (t̄, t′) and

∑
l

G
R/A
il (t, t′)

−i~
←
d

dt′
δl,j − h

(0)
lj (t′)

 = δi,jδ(t, t
′) (2.2-E76)

+
∑
l

∫ ∞
ts

dt̄ G
R/A
il (t, t̄)Σ

R/A
lj (t̄, t′) ,

where the time diagonal part does not vanish. These equations are a numerically accessible
representation of the KBEs and, in practice, allow to propagate the Green function in
time. In the next section, an approximation to these equations is introduced that lowers
the numerical effort required by reducing the propagation to the time diagonal part.

2.2.7 The generalized Kadanoff–Baym ansatz

The idea of the generalized Kadanoff–Baym ansatz (GKBA) is to reduce the numerical
complexity of the KBEs by restricting the propagation to the time diagonal and recon-
structing all non-time-diagonal values from the density matrix n of the system. For this
purpose, one can define two new quantities

R≷
ij(t1, t2) := Θ̃(t1, t2)G≷

ij(t1, t2) , (2.2-E77)

A≷
ij(t1, t2) := −Θ̃(t2, t1)G≷

ij(t1, t2) , (2.2-E78)

where Θ̃ is the modified Heaviside function that is defined in such a way that Θ̃(t1, t2) = 1
if t1 ≥ t2 and Θ̃(t1, t2) = 0 otherwise. With this, the less and greater Green function can
be expressed as

G≷
ij(t1, t2) = R≷

ij(t1, t2)−A≷
ij(t1, t2) . (2.2-E79)

It can be shown that R≷ and A≷ obey the following relations [47]

R≷
ij(t1, t2) = ±

∑
k

GR
ik(t1, t2)n≷kj(t2) (2.2-E80)

+
∑
k,l

∫ t1

t2

dt̄1

∫ t2

ts

dt̄2G
R
ik(t1, t̄1)ΣR

kl(t̄1, t̄2)G≷
lj(t̄2, t2)

+
∑
k,l

∫ t1

t2

dt̄1

∫ t2

ts

dt̄2G
R
ik(t1, t̄1)Σ≷

k,l(t̄1, t̄2)GA
lj(t̄2, t2) ,
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A≷
ij(t1, t2) = ±

∑
k

n≷ik(t1)GA
kj(t1, t2) (2.2-E81)

−
∑
k,l

∫ t1

ts

dt̄1

∫ t2

t1

dt̄2G
≷
ik(t1, t̄1)ΣA

kl(t̄1, t̄2)GA
lj(t̄2, t2)

−
∑
k,l

∫ t1

ts

dt̄1

∫ t2

t1

dt̄2G
R
ik(t1, t̄1)Σ≷

k,l(t̄1, t̄2)GA
lj(t̄2, t2) ,

where the notation
n<ij(t) = −i~G<

ij(t, t) = nij(t) and

n>ij(t) = −i~G>
ij(t, t) = nij(t)− δi,j

(2.2-E82)

was introduced for the density matrix. A detailed derivation of Eqs. (2.2-E80) and (2.2-E81)
exceeds the scope of this thesis and can be found in [47]. By using those relations for
R≷ and A≷ in Eq. (2.2-E79), one finds a new expression for the less and greater Green
function:

G≷
ij(t1, t2) = ±

∑
k

[
GR
ik(t1, t2)n≷kj(t2)− n≷ik(t1)GA

kj(t1, t2)
]

(2.2-E83)

+
∑
k,l

∫ t1

t2

dt̄1

∫ t2

ts

dt̄2G
R
ik(t1, t̄1)ΣR

kl(t̄1, t̄2)G≷
lj(t̄2, t2)

+
∑
k,l

∫ t1

t2

dt̄1

∫ t2

ts

dt̄2G
R
ik(t1, t̄1)Σ≷

k,l(t̄1, t̄2)GA
lj(t̄2, t2)

+
∑
k,l

∫ t1

ts

dt̄1

∫ t2

t1

dt̄2G
≷
ik(t1, t̄1)ΣA

kl(t̄1, t̄2)GA
lj(t̄2, t2)

+
∑
k,l

∫ t1

ts

dt̄1

∫ t2

t1

dt̄2G
R
ik(t1, t̄1)Σ≷

k,l(t̄1, t̄2)GA
lj(t̄2, t2) .

This equation is exact as long as the exact advanced and retarded Green functions are used.
However, since it is still an integral equation a numerical solution remains complicated. A
simple approximation is to neglect the integral terms, which is known as the GKBA [69]

G≷
ij(t1, t2) ≈ ±

∑
k

[
GR
ik(t1, t2)n≷kj(t2)− n≷ik(t1)GA

kj(t1, t2)
]
. (2.2-E84)

Here, the non-time-diagonal values of G≷ only depend on the density matrix n and the
propagator functions GR/A. However, these propagators obey Eqs. (2.2-E75) and (2.2-E76)
which are of similar complexity as the KBEs for G≷. Thus, in order to reduce the numerical
effort various approximate expression for the propagators were developed that differ in the
description of correlations [70]. In this thesis, the propagators are approximated on the
Hartree–Fock level which leads to

GHF,R
ij (t1, t2) = −iΘ(t1, t2)

[
exp

(
− i

~

∫ t1

t2

dt̄ heff(t̄)

)]
ij

,

GHF,A
ij (t1, t2) = +iΘ(t2, t1)

[
exp

(
− i

~

∫ t1

t2

dt̄ heff(t̄)

)]
ij

.

(2.2-E85)
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Here, heff is the effective Hartree–Fock Hamiltonian which only depends on the density
matrix n. Therefore, the non-time-diagonal part of G≷ can now be constructed entirely
from the time-diagonal density matrix.
An advantage of the GKBA in the form of Eq. (2.2-E84) is that it maintains the causal
time structure of the KBEs. This ensures the conservation of total energy, momentum and
density when combined with a conserving approximation for the selfenergy. Furthermore,
it is known that the GKBA cures certain damping induced artifacts that emerge in the
full two-time solution of the KBEs [54]. For the sake of completeness, it should be noted
that the original Kadanoff–Baym ansatz [37, 71] has a slightly different form,

G<
ij(t1, t2) ≈ ±

∑
k

fik

(
t1 + t2

2

)(
GR
kj(t1, t2)−GA

kj(t1, t2)
)
, (2.2-E86)

with the Wigner distribution function f that depends on the center-of-mass time. This
version violates the causal time structure and is only viable for systems near equilibrium.

2.2.8 Accessible observables

It was shown in Sec. 2.2.4 that it is sufficient to know the one-particle Green function
to obtain all single-particle observables of a system. In the following, some important
quantities and their connection to the Green function will be displayed.
One of the most important quantities, when looking at nonequilibrium processes, is the
time-dependent single-particle density matrix that is given directly by the less Green
function

nij(t) = −i~G<
ij(t, t) . (2.2-E87)

Additionally, if one has access to the full density matrix, a discrete Fourier transform leads
to the momentum distribution in k-space

nk(t) =
1

Ns

∑
ij

e−ik(i−j)nij(t) , (2.2-E88)

where Ns is the basis size.
The total energy of the system can be obtained by summing up the individual contributions
that correspond to the different parts of the Hamiltonian defined in Eq. (2.2-E9).

• The kinetic energy Ekin(t) that corresponds to the single-particle Hamiltonian Ĥ0 is
given by

Ekin(t) = <
[
Tr
(
h(0)n(t)

)]
. (2.2-E89)

• The potential energy Epot(t) that corresponds to the excitation part of the Hamilto-

nian F̂ (t) is given by

Epot(t) = < [Tr (f(t)n(t))] . (2.2-E90)
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• The interaction energy Eint(t) that corresponds to the interaction part of the Hamil-
tonian Ŵ can be split into a Hartree–Fock and a correlation contribution

Eint(t) = EHF(t) + Ecorr(t). (2.2-E91)

• The Hartree–Fock energy EHF(t) that corresponds to the Hartree–Fock selfenergy
ΣHF(t) (cf. Eq. (2.2-E47)) is given by

EHF(t) =
1

2
<
[
Tr
(
ΣHF(t)n(t)

)]
, (2.2-E92)

• The correlation energy Ecorr(t) that corresponds to the correlation selfenergy Σcorr(t)
in its approximate realization (cf. Eq. (2.2-E44) and Sec. 2.2.5.2) is given by

Ecorr(t) =
1

2
=
[
Tr
(
I(2),<(t, t)

)]
. (2.2-E93)

where I(2),<(t, t) is the time-diagonal collision integral that originates from the
right-hand side of Eq. (2.2-E73) and its trace is defined as

Tr
(
I(2),<(t, t)

)
=
∑
kl

∫ t

ts

dt̄
{
G>
lk(t, t̄)Σ

<
kl(t̄, t)−G<

lk(t, t̄)Σ
>
kl(t̄, t)

}
. (2.2-E94)

Finally, the total energy Etot(t) is given by

Etot(t) = Ekin(t) + Epot(t) + EHF(t) + Ecorr(t) . (2.2-E95)

Since the Green function was defined as a two-time quantity (cf. Eq. (2.2-E28)), it also
gives access to the spectral properties of a system. The local spectral function is given by
performing a Fourier transform with respect to the relative time,

Ai(ω) = i~
∫

dt dt′ e−iω(t−t′) [G>
ii(t, t

′)−G<
ii(t, t

′)] . (2.2-E96)

The sum over all local contributions of the spectral function results in the density of states
(DOS) of the system. Combining the spatial transform in Eq. (2.2-E88) with the temporal
one in Eq. (2.2-E96) results in an expression for the full energy dispersion relation

A(ω, k) =
i~
Ns

∑
ij

e−ik(i−j)
∫

dt dt′ e−iω(t−t′) [G>
ij(t, t

′)−G<
ij(t, t

′)
]
. (2.2-E97)

However, the most important quantity in this thesis is the time-resolved photoemission
spectrum [72, 73]

A<(ω, T ) = −i~
∑
i

∫
dt dt′ Sκ(t− T )Sκ(t′ − T )e−iω(t−t′)G<

ii(t, t
′) , (2.2-E98)

as it allows for direct comparison with photoemission experiments. Here, S is a Gaussian
function to simulate the probe pulse that is used in corresponding experiments

Sκ(t) =
1

κ
√

2π
exp

(
− t2

2κ2

)
. (2.2-E99)

More information on photoemission experiments can be found in Sec. 5.3.
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2.3 Hubbard model

The Hubbard model was introduced in 1963 by John Hubbard11 in a series of articles [31,
76, 77] to describe the Mott metal-insulator transition in narrow-energy bands of solid
state systems. Despite the simplistic nature of the Hubbard model it was applied to a
variety of systems since it qualitatively captures the properties and underlying physical
processes in solids [32].
The central idea of the Hubbard model is illustrated in Fig. 2.3-F1. It is best explained by
looking at the orbitals of the single atoms that form a solid state lattice. The outermost
orbitals overlap and form a band that allows electrons to move between the atoms, while
the inner orbitals are considered frozen as their overlap is negligible. This way, the solid
can be reduced to a lattice with sites at the positions of the atoms. Each of those sites
can be occupied by only two electrons due to Pauli blocking.
The tunneling between the outer shells can be understood as the hopping between two
different lattice sites. It is described by the hopping amplitude J that represents the
probability of an hopping process to take place and the hopping matrix t that contains
information about which sites are connected. In the standard Hubbard model, which is
presented here, only hopping between adjacent sites is taken into account.
Another assumption of the Hubbard model is that the long range Coulomb potential of
the outer electrons is shielded by the frozen inner shells. Thus, the potential is considered
to be fallen off at adjacent sides, so that only an on-site interaction U remains which
originates from two electrons on the same lattice site.
In order to map the Hubbard model to a physical system, the hopping and interaction
parameter have to be chosen appropriately. While the hopping amplitude J and matrix
elements tij can usually be determined accurately through density-functional theory [78],
the effective on-site interaction U is often more difficult to estimate, for example by
comparing theoretical predictions with experimental results. An exception to this are
ultracold atoms in optical lattices which allow to precisely adjust the on-site interaction.
More information on this type of systems can be found in Ref. [79].
Although the Hubbard model is a simplistic description of solid state systems, it is by no
means easy to solve analytically. In fact, there are only very few special limiting cases for
which analytical solutions can be found. Two of them, the so called tight-binding limit
for a vanishing interaction U = 0 and the Hubbard dimer that contains only two sites,
will be presented in this section. Another case that is not discussed here is the infinite
one-dimensional Hubbard chain that can be solved analytically within the so-called Bethe
ansatz.
It should be noted that the Hubbard model can be improved in various ways to allow for
hopping processes beyond nearest neighbors and a long-range (non-local) potential [73,
80–82]. In this thesis, an extended Hubbard model is presented in Sec. 5.4 to better meet
the requirements for a sophisticated description of graphene.

11It was independently developed by Gutzwiller [74] and Kanamori [75] around the same time.
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J

J
U

Figure 2.3-F1 – Illustration of the one-dimensional Hubbard model. The solid is reduced
to individual lattice sites which can be occupied by up to two electrons. In the
standard Hubbard model, electrons can only hop between adjacent sites with a
probability J . Only electrons on the same lattice site can interact with each other.
The interaction strength is determined by U .

2.3.1 The Hubbard Hamiltonian

Following the assumptions introduced above, the generic Hamiltonian defined in
Eq. (2.2-E9) can be transformed into the Hubbard Hamiltonian in second quantiza-
tion. For that, one has to distinguish between spatial and spin coordinates, {i} → {i, σ},
where i denotes the lattice site position and σ ∈ {↑↓} the electronic spin. With this, the
matrix elements in Eq. (2.2-E9) become

h
(0)
ij,αβ = −Jtijδα,β − µδi,jδα,β

= −Jδ〈i,j〉δα,β − µδi,jδα,β ,
wijkl,αβγδ = Uδi,jδi,kδi,lδα,γδβ,δ δ̄α,β , (2.3-E1)

fij,αβ(t) = fi,α(t)δi,jδα,β .

Here, µ is the chemical potential, δ̄α,β := 1 − δα,β accounts for the Pauli principle and,
since in the standard Hubbard model only hopping between neighboring sites is allowed,
tij

12 was replaced by δ〈i,j〉, where δ〈i,j〉 := 1 if the sites i, j are nearest neighbors and
δ〈i,j〉 := 0 otherwise. Furthermore, all time-dependent excitations considered in this work

are on-site (δi,j) and spin-conserving (δα,β). Using these expressions for the matrix elements

12In the common literature the amplitude J is included into the hopping matrix tij . In this work, the
separation is chosen to allow for a convenient notation also in the case of the extended Hubbard model
presented in Sec. 5.4.
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in Eq. (2.2-E9) leads to the full Hubbard Hamiltonian

Ĥ(t) = −J
∑
i,j

∑
α,β

δ〈i,j〉δα,β ĉ
†
i,αĉj,β +

U

2

∑
i,j,k,l

∑
α,β,γ,δ

δi,jδi,kδi,lδα,γδβ,δ ĉ
†
i,αĉ
†
j,β ĉl,δ ĉk,γ δ̄α,β

+
∑
i,j

∑
α,β

fi,α(t)δi,jδα,β ĉ
†
i,αĉj,β − µ

∑
i,j

∑
α,β

δi,jδα,β ĉ
†
i,αĉj,β

= −J
∑
〈i,j〉

∑
α

ĉ†i,αĉj,α +
U

2

∑
i

∑
α 6=β

ĉ†i,αĉ
†
i,β ĉi,β ĉi,α

+
∑
i

∑
α

fi,α(t)ĉ†i,αĉi,α − µ
∑
i

∑
α

ĉ†i,αĉi,α , (2.3-E2)

where
∑
〈i,j〉 denotes the summation over all neighboring sites i, j. This expression can be

further simplified by using∑
i

∑
α 6=β

ĉ†i,αĉ
†
i,β ĉi,β ĉi,α =

∑
i

{
ĉ†i,↑ĉ

†
i,↓ĉi,↓ĉi,↑ + ĉ†i,↓ĉ

†
i,↑ĉi,↑ĉi,↓

}
= 2

∑
i

ĉ†i,↑ĉi,↑ĉ
†
i,↓ĉi,↓ = 2

∑
i

n̂↑i n̂
↓
i , (2.3-E3)

where the last anticommutator relation for fermions in Eq. (2.2-E5) was used. By defining
n̂αi := ĉ†i,αĉi,α, Eq. (2.3-E2) becomes

Ĥ(t) = −J
∑
〈i,j〉

∑
α

ĉ†i,αĉj,α + U
∑
i

n̂↑i n̂
↓
i +

∑
i

∑
α

fi,α(t)n̂αi − µ
∑
i

∑
α

n̂αi , (2.3-E4)

which is known as the generalized time dependent Hubbard Hamiltonian. Additionally, as
in this work the adiabatic switching method is used to turn on interactions (cf. Secs. 2.2.3
and 3.1.2), the Hamiltonian has to be modified further. By introducing a time-dependent
interaction

U(t) := fAS(t)U , (2.3-E5)

that includes the adiabatic switching function introduced in Eq. (2.2-E21), the final
Hubbard Hamiltonian becomes

Ĥ(t) = −J
∑
〈i,j〉

∑
α

ĉ†i,αĉj,α + U(t)
∑
i

n̂↑i n̂
↓
i +

∑
i

fi(t)n̂i − µ
∑
i

n̂i . (2.3-E6)

Here, it was used that all excitations in this work are spin independent, i.e. fi,α(t)→ fi(t).

Furthermore, the notation n̂i = n̂↑i + n̂↓i was introduced.

2.3.2 The tight-binding limit

An interesting limiting case of the Hubbard model is the so called tight-binding (TB) limit.
As the name suggests, it describes electrons that are tightly bound to their corresponding
atom and do not interact with other electrons. This is realized by setting the interaction
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parameter to zero, i.e. U = 0. For simplicity, we further set µ = 0 and fi(t) = 0. Under
these conditions, Eq. (2.3-E6) becomes the tight-binding Hamiltonian

ĤTB = −J
∑
〈i,j〉

∑
α

ĉ†i,αĉj,α , (2.3-E7)

for which the energy dispersion can be found analytically. In the following, this will be
demonstrated for the geometry of the one-dimensional Hubbard chain. In this case, the
canonical operators in reciprocal space can be written as [83]

ĉ†i,σ =
1

N

∑
i

e−ikiĉ†k,σ , (2.3-E8)

ĉi,σ =
1

N

∑
i

eikiĉk,σ . (2.3-E9)

Here, N is the total number of lattice sites and k is the momentum that can take the
values k = 2πn

N
− π with n ∈ {0, 1, . . . , N − 1}, assuming periodic boundary conditions.

Inserting those definitions into Eq. (2.3-E7), the Hamiltonian becomes

ĤTB = −J
∑
〈i,j〉

∑
σ

ĉ†i,σ ĉj,σ

= − J
N

∑
k,k′

∑
〈i,j〉

∑
σ

e−ikieik′j ĉ†k,σ ĉk′,σ

= − J
N

∑
k,k′

∑
i

∑
σ

e−iki
(

eik′(i+1) + eik′(i−1)
)

︸ ︷︷ ︸
eik′i(eik′+e−ik)

ĉ†k,σ ĉk′,σ

= −J
∑
k,k′

∑
σ

(
eik′ + e−ik′

)
︸ ︷︷ ︸

2 cos(k′)

1

N

∑
i

e−ii(k−k′)

︸ ︷︷ ︸
δ
k,k′

ĉ†k,σ ĉk′,σ

= −2J
∑
k

∑
σ

cos (k)ĉ†k,σ ĉk,σ =
∑
k

∑
σ

εkn̂
σ
k , (2.3-E10)

where the energy dispersion relation εk was introduced as

εk := −2J cos (k) . (2.3-E11)

With this expression, the energy bandwidth of the one-dimensional chain in the tight-
binding limit can be defined. Since cos : [−π, π)→ [−1, 1], the range of possible energies is
between −2J and 2J , resulting in a total bandwidth of 4J13. In Fig. 2.3-F2 an illustration
of the one-dimensional Hubbard chain is presented together with the density-of-states
(DOS) that results from the energy dispersion given in Eq. (2.3-E11). Additionally, other
lattice geometries and their corresponding DOSs and bandwidths are shown.

13Note that this is true only for the infinite chain. In finite systems, the coarse sampling of k results in a
smaller bandwidth as the extreme values of the cosine function are not reached. This applies to all
systems shown in Fig. 2.3-F2.
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Figure 2.3-F2 – Different lattice geometries for the Hubbard model presented with
increasing bandwidth from top to bottom. In the right column, the corresponding
density-of-states (DOS) is depicted. The top three lattices show particle-hole
symmetry, i.e. N(ω) = N(−ω), while the triangular geometry is the only non-
bipartite lattice, i.e. N(ω) 6= N(−ω) [84]. The honeycomb lattice is the only
non-bravais lattice shown here. Instead, it can be understood as a triangular lattice
with a two-point basis. Thus, the DOS of the honeycomb lattice loosely resembles
two mirrored DOSs of the triangular lattice.
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2.3.3 The Hubbard dimer

A system that can be solved analytically due to its sheer simplicity is the Hubbard dimer,
a two-site Hubbard chain. It is an interesting system that provides insight into complex
effects like the opening of the Mott gap for increasing interaction strength U . Furthermore,
as an exactly solvable system it can be used to benchmark approximate approaches like
the NEGF.
As an example, the case of half filling (N = 2 with N↑ = 1 and N↓ = 1) is considered here.
Again, we set µ = 0, fi(t) = 0 and U(t) = U . In such a system, the possible states are

|↑, ↓〉 = ĉ†2,↓ĉ
†
1,↑ |0〉 ,

|↓, ↑〉 = ĉ†1,↓ĉ
†
2,↑ |0〉 ,

|↓↑, ·〉 = ĉ†1,↓ĉ
†
1,↑ |0〉 ,

|·, ↓↑〉 = ĉ†2,↓ĉ
†
2,↑ |0〉 .

(2.3-E12)

In this basis, the Hubbard Hamiltonian of Eq. (2.3-E6) has the form [84]

H =


0 0 −J −J
0 0 −J −J
−J −J U 0

−J −J 0 U

 . (2.3-E13)

The eigenvalues and corresponding eigenvectors of this 4 × 4 matrix can calculated by
diagonalization:

E± =
U

2
±
√
U2 + 16J2

2
, ψ± =

(
2 +

1

2

(
E±

J

)2
)− 1

2


∓1

∓1
E±

2J

E±

2J

 ,

E0 = 0 , ψ0 =
1√
2


−1

1

0

0

 ,

EU = U , ψU =
1√
2


0

0

−1

1

 .

(2.3-E14)

The four eigenenergies are depicted in Fig. 2.3-F3 for different values of U . In the tight-
binding limit (U = 0) the bandwidth of 4J corresponds exactly to the value derived in
Eq. (2.3-E11) for the one-dimensional chain. For increasing U , however, the bandwidth
grows as E− → 0 and E− → U . The two energies E0 and EU that are degenerate for
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Figure 2.3-F3 – Eigenenergies of the half-filled Hubbard dimer for varying interaction
strength U . In the limit U → ∞, E− → E0 = 0 and E− → EU = U . The two
possible dipole excitations from the ground state ψ− are shown for U = 1J .

U = 0 move away from each other linearly for increasing interaction. This corresponds to
the opening of the Hubbard gap which is crucial for the Mott metal-insulator transition.

As optical laser excitations are an important part of this thesis, the possible optical dipole
transitions of the Hubbard dimer will be determined in the following. For this, a dipole
moment operator is defined as

d̂ = −er̂ = −e


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 2

 , (2.3-E15)

where e is the elementary charge. Looking at the ground state ψ−, one finds that the only
possible excitation due to dipole interaction is into the state ψU〈

ψ0
∣∣ d̂ ∣∣ψ−〉 = 0 ,

〈
ψU
∣∣ d̂ ∣∣ψ−〉 = −e

(
1 + 4

(
J

E−

)2
)− 1

2

. (2.3-E16)〈
ψ+
∣∣ d̂ ∣∣ψ−〉 = 0 .

For the state ψU one finds that another excitation into the state ψ+ is possible

〈
ψ+
∣∣ d̂ ∣∣ψU〉 = −e

(
1 + 4

(
J

E+

)2
)− 1

2

. (2.3-E17)
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The two possible transitions are shown in Fig. 2.3-F3 at U = 1J . Starting at the ground
state, the only state that can not be occupied by a dipole excitation is the state ψ0.
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3 Numerical implementation

In the previous section, the Hubbard model and the NEGF approach have been introduced
in detail. This part will build on this foundation. First, it will be explained how to generate
a non-interacting ground state to start the propagation from and how to perform the
adiabatic switching introduced in Sec. 2.2.3. Second, the KBEs and the selfenergies will
be expressed in the Hubbard basis which is the form that is used for numerical calculations
in practice. Despite the great reduction of computational demands that comes with the
choice of the Hubbard model due to a diagonal interaction, it still remains a tremendous
numerical task to perform the propagation of the Green functions. Therefore, some
numerical improvements in the propagation and integration scheme will be presented, that
reduce the computational effort to a manageable amount. In a later section, the numerical
implementation of the exact propagation schemes described in Sec. 2.1 is displayed.

3.1 Generation of the initial state

In order to start the propagation of the Green function, first an initial state has to
be generated. In Sec. 2.2.3 it has been shown that a correlated initial state can be
created by starting from a non-interacting state and adding correlations by using the
adiabatic switching method. In the following, first, the generation of a density matrix ρ0

corresponding to a non-interacting ground state and, later, the numerical realization of
the adiabatic switching process will be discussed.

3.1.1 Generation of the non-interacting ground state

The NEGF approach has specific requirements on the underlying ensemble that describes
the physical system. On the one hand, the particle number is conserved by all selfenergy
approximations considered in Sec. 2.2.5, on the other hand, the canonical operators
connect the N -particle space to the (N ± 1)-particle space.
In Sec. 2.2.3 the grand canonical ensemble, which meets these requirements, has been
introduced. It is described by the density operator ρGCE (cf. Eq. (2.2-E12)). The ensemble
is determined by the inverse temperature β = (kBT )−1 and the chemical potential µ while
the particle number is allowed to vary. In order to still describe a system with a certain
constant particle number N , one can choose µ in such a way that the average particle
number 〈N〉0 in the ground state matches the desired N .
In order to find the density matrix ρ0 that corresponds to the non-interacting ground
state of the system, the single particle part h(0)(ts) of the Hamiltonian that occurs in
Eq. (2.2-E73) has to be diagonalized. Let B be a matrix that diagonalizes h(0)(ts), then

D = Bh0
ij(ts)B

−1 , (3.1-E1)
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where D is a diagonal matrix which diagonal contains the eigenvalues of h(0)(ts). Now one
can choose µ in such a way that

N (β, µ,D) =
∑
k

f(Dkk − µ) (3.1-E2)

equals the desired particle number. Here,

f (Dkk − µ) =
1

eβ(Dkk−µ) + 1
(3.1-E3)

is the Fermi-Dirac distribution. Now, with the matching µ the corresponding density
matrix in the Hubbard basis can be calculated by

nij(ts) =
[
B−1D(f(D11 − µ), f(D22 − µ), . . . , f(DNsNs − µ))B

]
ij
. (3.1-E4)

Finally, with this initial non-interacting density matrix the Green function can be initialized
by (cf. Eq. (2.2-E87))

G<
ij(ts, ts) =

i

~
nij(ts) ,

G>
ij(ts, ts) =

i

~

(
nij(ts)− δi,j

)
,

(3.1-E5)

which now describes the non-interacting ground state of the system. Starting from this,
a Green function that corresponds to an interacting state can be generated using the
adiabatic switching method. Numerical details on this are presented in the next section.

3.1.2 Adiabatic switching method

In Sec. 2.2.3 it has been shown that the adiabatic switching method can be used to generate
an interacting initial state. This can be done by introducing a time-dependent interaction
U(t) = UfAS(t), cf. Eq. (2.3-E5), where fAS(t) describes the adiabatic switching. In
practice, the switch-on procedure has to be carried out slowly enough to ensure that no
additional energy is transferred to the system. Additionally, for numerical reasons it is
beneficial if fAS(t) is smooth for limt→ts fAS(t) = 0 and limt→t0 fAS(t) = 1, i.e. at the start
and the end of the switching process. It was found in Ref. [85] that the best choice for
fAS(t) that fulfills all these requirements is given by

f τ,tHAS (t) = exp

(
− AτtH
t/ (2tH)

exp

(
Bτ
tH

t/ (2tH)− 1

))
,

Bτ
tH

:=
tH

τ ln(2)
− 1

2
,

AτtH :=
ln(2)

2
e2BτtH ,

(3.1-E6)

where tH := t0−ts
2

specifies the length of the switching process and τ controls the slope of
the function. In Fig. 3.1-F1 the switching function is displayed for different ratios τ

tH
. In

the calculations for this work τ
tH

= 19
25

with tH = 12.5 is used to generate the interacting
ground state.
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Figure 3.1-F1 – Illustration of the adiabatic switching function (cf. Eq. (3.1-E6)) for
τ
tH

= 1, 1
2
, 1

4
. For all parameters the function has the limits limt→ts f

τ,tH
AS (t) = 0 and

limt→t0 f
τ,tH
AS (t) = 1 and is asymmetric with respect to tH. The graphic is taken

from Ref. [47].

3.2 The time propagation

In this section, the KBEs given in Eqs. (2.2-E73) and (2.2-E74) will be applied to the
Hubbard model presented in Sec. 2.3 to result in the equations of motion that are solved
to calculate the results presented in Secs. 4 and 6. Additionally, the complete implemented
propagation scheme including the calculation of the SOA and GWA selfenergy will be
presented here.

3.2.1 Applying the NEGF approach to the Hubbard model

Using the interaction w given by Eq. (2.3-E2), the Hartree–Fock part of the selfenergy (cf.
Eq. (2.2-E47)) within the Hubbard model attains the form

ΣHF
ij,αβ(z, z′) = −i~δC(z, z′)

∑
k,l

∑
γ,δ

∫
C

dz̄ U(z)δC(z, z̄)δi,kδi,jδi,lδα,βδγ,δ δ̄α,γGlk,δγ(z̄, z̄
+)

+i~
∑
k,l

∑
γ,δ

U(z)δC(z, z
′)δi,kδi,lδi,jδα,δδγ,β δ̄α,γδδ,γGlk,δγ(z, z

′+)

= −i~δC(z, z′)δi,jδα,β
∑
γ

U(z)δ̄α,γGii,γγ(z, z
+)

+i~δC(z, z′)δi,j δ̄α,βδα,β︸ ︷︷ ︸
=0

U(z)Gii,αβ(z, z′+) . (3.2-E1)
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In the last step it is used that the Hubbard Hamiltonian in Eq. (2.3-E6) does not allow for
spin flips. This implies that the Green function has to be spin conserving, i.e. Gij,αβ(t, t′) =

Gij,αα(t, t′)δα,β. Since the same is true for the selfenergy, it is convenient to define

Gσ
ij(t, t

′) := Gij,σσ(t, t′) , (3.2-E2)

Σσ
ij(t, t

′) := Σij,σσ(t, t′) . (3.2-E3)

As the exchange Fock term in Eq. (3.2-E1) vanishes, one can take advantage of the contour
delta and the Kronecker function to incorporate the Hartree–Fock selfenergy into a new
effective single-particle Hamiltonian. To do so, one can write Eq. (3.2-E1) as

ΣHF
ij,αβ(z, z′) = δC(z, z

′)δi,jδα,βΣHF,α
i (z) , (3.2-E4)

by defining

Σ
HF,↑(↓)
i (z) := −i~U(z)G

↓(↑)
ii (z, z+) . (3.2-E5)

Using Eq. (2.2-E87) and nσi (t) := nσii(t), this can be expressed in real-time space as

Σ
HF,↑(↓)
i (t) = U(t)n

↓(↑)
i (t) . (3.2-E6)

Looking at Eq. (2.2-E42) and comparing with Eq. (3.2-E4), one finds that one can define
an effective single particle Hamiltonian that contains the Hartree(–Fock) contribution of
the selfenergy and the excitation fi(t) for an arbitrary hopping matrix t:

heff
ij,αβ(t) = −Jtijδα,β + δi,jδα,β

∑
γ

δα,γΣ
HF,γ
i (t)

+δi,jδα,βfi(t)ni(t)− δi,jδα,βµni(t) , (3.2-E7)

The equation for one specific spin species is given by

h
eff,↑(↓)
ij (t) = −Jtij + δi,jΣ

HF,↑(↓)
i (t) + δi,jfi(t)ni(t)− δi,jµni(t) . (3.2-E8)

With this effective single-particle Hamiltonian, the KBEs in Eqs. (2.2-E73) and (2.2-E74)
can be written as∑

l

[
i~

d

dt
δi,l − heff,σ

il (t)

]
Gσ,≷
lj (t, t′) = (3.2-E9)

∑
l

∫ ∞
ts

dt̄
{

Σσ,R
il (t, t̄)Gσ,≷

lj (t̄, t′) + Σσ,≷
il (t, t̄)Gσ,A

lj (t̄, t′)
}
,

∑
l

Gσ,≷
il (t, t′)

−i~
←
d

dt′
δl,j − heff,σ

lj (t′)

 = (3.2-E10)

∑
l

∫ ∞
ts

dt̄
{
Gσ,R
il (t, t̄)Σσ,≷

lj (t̄, t′) +Gσ,≷
il (t, t̄)Σσ,A

lj (t̄, t′)
}
,

where the selfenergy Σ is redefined as the correlation part Σ := Σcorr (cf. Eq. (2.2-E44))
since the Hartree–Fock contribution is already considered inside heff.
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Looking at the above form of the KBEs, it is apparent that both equations show no
preference with respect to the spin orientation σ. Likewise, the Hubbard Hamiltonian
in Eq. (2.3-E6) does not provide any special treatment for a specific type of spin either.
Thus, a spin-symmetric initial state will preserve this symmetry for all times and positions,
i.e.

G↑,≷ij (t, t′) = G↓,≷ij (t, t′) ∀i, j, t, t′ . (3.2-E11)

Since in this work only systems with spin symmetry are considered, this features can be
used to further simplify the equations of motion by neglecting the spin indices and define

G≷
ij(t, t

′) := G↑,≷ij (t, t′) = G↓,≷ij (t, t′) , (3.2-E12)

which also applies for all other quantities like the selfenergy.

3.2.2 The propagation scheme

In order to get access to the full single-particle information of the system, it is necessary to
obtain G>(t, t′) and G<(t, t′) in the complete (t, t′)-plane. However, due to Eq. (2.2-E70),

G≶
ij(t, t

′) = −
[
G≶
ji(t
′, t)
]∗

, it is sufficient to calculate them only in one half-plane, i.e. each
of the two KBEs (Eqs. (3.2-E9) and (3.2-E10)) has to be solved for only one real-time
component. In this work, the following equations are used:

∑
l

[
i~

d

dt
δi,l − heff

il (t)

]
G>
lj(t, t

′) = I
(1),>
ij (t, t′) , (3.2-E13)

∑
l

G<
il (t, t

′)

−i~
←
d

dt′
δl,j − heff

lj (t′)

 = I
(2),<
ij (t, t′) , (3.2-E14)

where on the right-hand side the collision integrals I(1),> and I(2),< are introduced. They
are defined as

I
(1),>
ij (t, t′) :=

∑
l

∫ ∞
ts

dt̄
{

ΣR
il(t, t̄)G

>
lj(t̄, t

′) + Σ>
il (t, t̄)G

A
lj(t̄, t

′)
}
,

I
(2),<
ij (t, t′) :=

∑
l

∫ ∞
ts

dt̄
{
GR
il(t, t̄)Σ

<
lj(t̄, t

′) +G<
il (t, t̄)Σ

A
lj(t̄, t

′)
}
.

(3.2-E15)

This way, G<(t, t′) is propagated above and G>(t, t′) below the time diagonal. For t = t′

either one of them can be calculated while the other one can be accessed by the symmetry
relation on the time diagonal, Eq. (2.2-E72). Likewise, the collision integral I(1),>(t, t′)
has to be calculated only for t > t′ (denoted by I(1),>(t > t′)) and I(2),<(t, t′) for t < t′

(denoted by I(2),<(t < t′)). On the time-diagonal, the same relation as for the Green
function applies. This results in three equations of motion for the full two-time propagation
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Figure 3.2-F1 – Illustration of the propagation scheme of the real-time components
of the Green function. G> is propagated on the lower half-plane according to
Eq. (3.2-E16) while the propagation on the upper half corresponds to G< and
Eq. (3.2-E17). The time-diagonal is described by Eq. (3.2-E18). The graphic is
taken from Ref. [86].

of the real-time components of the Green function:

i~
d

dt
G>
ij(t ≥ t′) =

∑
l

heff
il (t)G>

lj(t ≥ t′) + I
(1),>
ij (t ≥ t′) , (3.2-E16)

−i~
d

dt′
G<
ij(t ≤ t′) =

∑
l

G<
il (t ≤ t′)heff

lj (t′) + I
(2),<
ij (t ≤ t′) , (3.2-E17)

i~
d

dt
G<
ij(t, t) =

[
heff(t)G<(t, t)

]
ij

+ I
(1),>
ij (t, t)− I(2),<

ij (t, t) . (3.2-E18)

An illustration of this propagation scheme is shown in Fig. 3.2-F1. When using the GKBA
introduced in Sec. 2.2.7 the propagation along the diagonal stays the same. However, in
Eqs. (3.2-E16) and (3.2-E17) the collision integral vanishes due to the Hartree–Fock nature
of the propagators defined in Eq. (2.2-E85). Thus, the resulting equations of motion for
the off-diagonal propagation in the GKBA approximation have the form

i~
d

dt
G>
ij(t ≥ t′) =

∑
l

heff
il (t)G>

lj(t ≥ t′) , (3.2-E19)

−i~
d

dt′
G<
ij(t ≤ t′) =

∑
l

G<
il (t ≤ t′)heff

lj (t′) . (3.2-E20)
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In order to solve these equations of motion, the collision integrals that appear in
Eq. (3.2-E16) to Eq. (3.2-E20) have to be expressed in terms of G<(t < t′) and G>(t > t′).
Using the definition of the advanced and retarded Green function and selfenergy (cf.
Eq. (2.2-E66)) one arrives, after some calculations, at the following expressions for the
collision integrals at a given time step T :

I
(1),>
ij (T > t′) =

∫ t′

ts

dt̄
∑
k

{
Σ>
ik(T > t̄)G<

kj(t̄ < t′)−
(
Σ<
ki(t̄ < T )G>

jk(t
′ > t̄)

)∗ }
+

∫ T

t′
dt̄
∑
k

{
Σ>
ik(T > t̄)G>

kj(t̄ > t′) + (Σ<
ki(t̄ < T ))

∗
G>
kj(t̄ > t′)

}
,

I
(2),<
ij (t < T ) =

∫ t

ts

dt̄
∑
k

{
G>
ik(t > t̄)Σ<

kj(t̄ < T )−
(
G<
ki(t̄ < t)Σ>

jk(T > t̄)
)∗ }

+

∫ T

t

dt̄
∑
k

{
G<
ik(t < t̄)Σ<

kj(t̄ < T ) +G<
ik(t < t̄)

(
Σ>
jk(T > t̄)

)∗ }
,

(3.2-E21)
for the off-diagonal elements and

I
(1),>
ij (T, T ) =

∫ T

ts

dt̄
∑
k

{
Σ>
ik(T > t̄)G<

kj(t̄ < T )−
(
Σ<
ki(t̄ < T )G>

jk(T > t̄)
)∗ }

,

I
(2),<
ij (T, T ) =

∫ T

ts

dt̄
∑
k

{
G>
ik(T > t̄)Σ<

kj(t̄ < T )−
(
G<
ki(t̄ < T )Σ>

jk(T > t̄)
)∗ }

=−
(
I

(1),>
ji (T, T )

)∗
,

(3.2-E22)
for the time diagonal. These equation do only depend on G<(t < t′), G>(t > t′), Σ<(t < t′)
and Σ>(t > t′). Therefore, if it is possible to express the selfenergy in terms of the less
and greater component of the Green function, the propagation is closed.

In the following, expressions for the SOA and GWA selfenergy that have been introduced
for an arbitrary basis in Sec. 2.2.5.2 will be presented, since both are used frequently in the
scope of this work14. The most simple selfenergy approximation beyond the Hartree–Fock
level is the SOA. The less and greater components in the Hubbard basis are given by15

ΣSOA,>
ij (T > t′) = ~2U(T )U(t′)G>

ij(T > t′)G>
ij(T > t′)G<

ji(t
′ < T )

= ~2U(T )U(t′)G>
ij(T > t′)GF,<

ji (t′ < T ) ,

ΣSOA,<
ij (t < T ) = ~2U(t)U(T )G<

ij(t < T )G<
ij(t < T )G>

ji(T > t)

= ~2U(t)U(T )G<
ij(t < T )GF,<

ij (t < T ) .

(3.2-E23)

where the real-time components of the two-particle Fock-like Green function (cf.
Eq. (2.2-E50)) are introduced that are defined as

GF,≷
ij (t ≷ t′) = G≷

ij(t ≷ t′)G≶
ji(t
′ ≶ t) . (3.2-E24)

14Mind that, again, the selfenergies shown here only contain the correlation part of the total selfenergy.
The HF part is included in the effective Hamiltonian heff.

15ΣSOA can also be expressed in terms of the Hartree-like Green function GH. The following description
in terms of GF is chosen to compare with the GWA selfenergy.
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From a numerical point of view the SOA selfenergy is easy to calculate since no integration
over a time argument has to be performed.
A more sophisticated selfenergy approximation is the GWA. However, as explained in Sec.
2.2.5.2, it is an resummation approach that contains contributions up to infinite order of
the interaction. Therefore, it is a lot more challenging than the SOA from a numerical
perspective. The real-time components of the GWA selfenergy are given by

ΣGWA,>
ij (T > t′) = i~W<,↑↑

ji (t′ < T )G>
ij(T > t′) ,

ΣGWA,<
ij (t < T ) = i~W<,↑↑

ij (t < T )G<
ij(t < T ) .

(3.2-E25)

The less component of the same-spin screened interaction W<,↑↑ has to be calculated in an
iterative manner. For this, it is convenient to define the retarded and advanced component
of the two-particle Fock-like Green function

GF,R
ij (t > t′) = G>

ij(t > t′)G<
ji(t
′ < t)−

(
G<
ji(t
′ < t)

)∗ (
G>
ij(t > t′)

)∗
, (3.2-E26)

GF,A
ij (t < t′) = G<

ij(t < t′)G>
ji(t
′ > t)−

(
G>
ji(t
′ > t)

)∗ (
G<
ij(t < t′)

)∗
. (3.2-E27)

Now, the same-spin screened interaction is given by

W<,↑↑
ij (t < T ) =− i~U(t)GF,<

ij (t < T )U(T )

− i~U(t)
∑
k

∫ t

ts

dt̄ GF,R
ik (t > t̄)W<,↑↓

kj (t̄ < T )

− i~U(t)
∑
k

∫ t

ts

dt̄
(
GF,<
ki (t̄ < t)

)∗
WA,↑↓
kj (t̄ < T )

− i~U(t)
∑
k

∫ T

t

dt̄ GF,<
ik (t < t̄)WA,↑↓

kj (t̄ < T ) .

(3.2-E28)

It depends on the different-spin screened interaction

W<,↑↓
ij (t < T ) =− i~U(t)GF,<

ij (t < T )U(T )

− i~U(t)
∑
k

∫ t

ts

dt̄ GF,R
ik (t > t̄)W<,↑↑

kj (t̄ < T )

− i~U(t)
∑
k

∫ t

ts

dt̄
(
GF,<
ki (t̄ < t)

)∗
WA,↑↑
kj (t̄ < T )

− i~U(t)
∑
k

∫ T

t

dt̄ GF,<
ik (t < t̄)WA,↑↑

kj (t̄ < T ) ,

(3.2-E29)

that, again, contains the same-spin screened interaction W<,↑↑. Additionally, these two
coupled equations depend on the advanced components of the same- and different-spin
screened interaction that are given by

WA,↑↑
ij (t < T ) = −i~U(t)GF,A

ij (t < T )U(T )

+i~U(t)
∑
k

∫ T

t

dt̄ GF,A
ik (t < t̄)WA,↑↓

kj (t̄ < T ) , (3.2-E30)

WA,↑↓
ij (t < T ) = i~U(t)

∑
k

∫ T

t

dt̄ GF,A
ik (t < t̄)WA,↑↑

kj (t̄ < T ) . (3.2-E31)
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Start

Generate n(ts) for the non-interacting
ground state of the system

Create initial G<(ts, ts)
and G>(ts, ts) from n(ts)

Start propagation: T = ts

Calculate heff(T ) from G<(T, T )

Calculate Σ<(t ≤ T ) and Σ>(T ≥ t′) for all
t, t′ ≤ T from G<(t ≤ T ) and G>(T ≥ t′)

Calculate I(1),>(T ≥ t′) and I(2),<(t ≤ T )
for all t, t′ ≤ T from Σ<(t ≤ T ),

Σ>(T ≥ t′), G<(t ≤ T ) and G>(T ≥ t′)

Propagate G<(t ≤ T ), G>(T ≥ t′), G<(T, T )
and G>(T, T ) from T to T+∆ for all t, t′ ≤ T
using I(1),>(T ≥ t′), I(2),<(t ≤ T ) and heff(T )

Write G<(t ≤ T ) and G>(T ≥ t′)
to file for all t, t′ ≤ T

Set: T = T + ∆

T = Tend ?

End

Eq. (3.1-E4)

Eq. (3.1-E5)

Eq. (3.2-E8)

Eq. (3.2-E23)
Eq. (3.2-E25)

Eq. (3.2-E21)
Eq. (3.2-E22)

Eq. (3.2-E16)
Eq. (3.2-E17)
Eq. (3.2-E18)
Eq. (2.2-E72)

yes

no

Figure 3.2-F2 – Illustration of the propagation scheme used in this work to propagate
the real-time components of the Green function on the two-time plane depicted in
Fig. 3.2-F1.
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In order to solve this system of coupled equations numerically, first, the two advanced
components of the screened interaction can be calculated. On the time diagonal a solution
can be immediately found for both:

WA,↑↑
ij (T, T ) = −i~U(t)GF,A

ij (t < T )U(T ) , (3.2-E32)

WA,↑↓
ij (T, T ) = 0, (3.2-E33)

Next, Eqs. (3.2-E30) and (3.2-E31) can be solved simultaneously in an iterative way for
every time t starting from the diagonal. After that, Eqs. (3.2-E28) and (3.2-E29) can
be iterated until convergence for every time step t, this time starting at ts. This way,
the less and greater component of the GWA selfenergy can be computed according to
Eq. (3.2-E25). A detailed derivation of these equations and the corresponding expressions
for other selfenergies can be found in Ref. [57].

With the selfenergies given in Eqs. (3.2-E23) and (3.2-E25) the propagation scheme for the
real-time components of the Green function is closed. First, the density matrix n(ts) that
corresponds to the non-interacting ground state of the system at the time ts is generated
using Eq. (3.1-E4). With this density matrix the less and greater components of the Green
functions can be initialized as shown in Eq. (3.1-E5). At this point the propagation starts.
For a given time step T , first, the effective single-particle Hamiltonian heff (cf. Eq. (3.2-E8))
and the chosen selfenergy (cf. Eqs. (3.2-E23) and (3.2-E25)) can be calculated from the
Green functions. Now all quantities are known to determine the collision integrals I(1),>

and I(2),< via Eqs. (3.2-E21) and (3.2-E22). Next, the components of the Green function
can be propagated one time step further to T + ∆ using Eq. (3.2-E16) to Eq. (3.2-E18),
where ∆ is the time step size. Finally, the newly generated Green function can be written
to a file and the propagation of the next time step begins. A vivid illustration of this
propagation scheme is depicted in Fig. 3.2-F2.

3.3 Numerical improvements

Although the use of the Hubbard model greatly reduces the numerical demands of propa-
gating the KBEs, the solution of the propagation scheme presented in the previous section
still remains to be a challenging task. Thus, in order to handle large systems and long
propagation times that are needed for the systems investigated in this work, it is essential
to optimize the whole process of propagation in the best way possible. Taking a closer look
at the propagation scheme, it becomes apparent that there are three main aspects that
critically influence the performance of the propagation and, thus, have to be addressed.
First, the equations of motion (cf. Eq. (3.2-E16) to Eq. (3.2-E18)) have to be propagated
using an efficient algorithm. Second, the calculation of the time integrals appearing in
the collision integrals and the GWA selfenergy has to be done accurately. And third, the
matrix multiplications that are part of almost every equation in the propagation scheme
have to be optimized.
This section will feature all numerical improvements that were implemented in the scope
of this work and which made the calculations for the results of this thesis possible in the
first place.
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T T + ∆/2 T + ∆

G>(T, t′)

G>(T + ∆, t′)
k1

k2

k3

k4

Figure 3.3-F1 – Illustration of the forth-order Runge–Kutta method (RK4). The propa-
gation of G> is described by Eq. (3.3-E2). For each propagation step four additional
intermediate time steps have to be calculated to obtain the slopes k1, . . . , k4.

3.3.1 Propagation algorithms

There are a lot of different numerical procedures to solve ordinary differential equations [87].
The most simple first-order approach is the so-called Euler method which results in the
following expression for the propagation of G>16:

G>
ij(T + ∆ ≥ t′) = G>

ij(T ≥ t′) + ∆ · d

dt
G>
ij(t ≥ t′)

∣∣∣∣
t=T,G>ij(t≥t′)=G>ij(T≥t′)

,(3.3-E1)

where the second term on the right-hand side can be understood as the derivative of G>

at time t. The expression t = T denotes that the explicitly time dependent terms like an
external potential should be evaluated at the time T and G>

ij(t ≥ t′) = G>
ij(T ≥ t′) reveals

at which time G> has to be used in the right hand side of Eq. (3.2-E16). The advantage
of this separate notation will become evident shortly. As a first order procedure the Euler
method has a local error term of O(∆2). Therefore, it does not meet the high requirements
for a propagation method that is suitable for long propagation times.
A more sophisticated approach is the forth-order Runge–Kutta method (RK4) [88]. It
requires the evaluation of four additional intermediate time steps for each propagation
step. However, this is rewarded by a local error term of O(∆5). In this method the greater
Green function at the time T + ∆ is given by

G>
ij(T + ∆ ≥ t′) = G>

ij(T ≥ t′) +
∆

6
(kij,1 + 2kij,2 + 2kij,3 + kij,4) , (3.3-E2)

16The focus of this part lies on the equation of motion for G>, i.e. Eq. (3.2-E16). However, all results
also apply for the propagation of G<.
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where the slopes kij,1, . . . , kij,4 are given by

kij,1 =
d

dt
G>
ij(t ≥ t′)

∣∣∣∣
t=T,G>ij(t≥t′)=G>ij(T≥t′)

,

kij,2 =
d

dt
G>
ij(t ≥ t′)

∣∣∣∣
t=T+ ∆

2
, G>ij(t≥t′)=G>ij(T≥t′)+ ∆

2
kij,1

,

kij,3 =
d

dt
G>
ij(t ≥ t′)

∣∣∣∣
t=T+ ∆

2
, G>ij(t≥t′)=G>ij(T≥t′)+ ∆

2
kij,2

,

kij,4 =
d

dt
G>
ij(t ≥ t′)

∣∣∣∣
t=T+∆, G>ij(t≥t′)=G>ij(T≥t′)+∆kij,3

. (3.3-E3)

An illustration of the procedure is shown in Fig. 3.3-F1. The first step to calculate kij,1 is the
same as in the Euler method. After that the remaining slopes are calculated consecutively
as depicted in Fig. 3.3-F1. Here, the above introduced notation is advantageous. For the
calculation of kij,2 and kij,3, for instance, the derivative is taken at the same explicit time
but for different Green functions. After the slopes at all four intermediate time steps are
determined G> can be propagated by Eq. (3.3-E2).
In Figs. 3.3-F2 and 3.3-F3 the quality of both presented procedures, the Euler and the RK4
method, is directly compared. Fig. 3.3-F2 shows the oscillating density on a single site of
a Hubbard dimer after an instantaneous excitation at t = 0 within the HF approximation.
In such a system the amplitude of the oscillation should be constant like in the case of
RK4 [89]. The Euler method, however, shows a significant deviation for the same time
step size.
The same observation can be made in Fig. 3.3-F3. Here, the total energy of the same
system after the instantaneous excitation is shown. As the HF selfenergy approximation
is conserving, the total energy should be constant. Again, the RK4 method shows a far
better result than Euler.

It is important to note that the RK4 method becomes unstable when heff attains very
high values due to strong excitations [86]. In this case, one can define two propagators U
and V that include the effective single-particle Hamiltonian:

Uij(T ) :=

[
exp

(
− i

~
heff(T )∆

)]
ij

, (3.3-E4)

Vij(T ) :=

[(
heff(T )

)−1
(
1− exp

(
− i

~
heff(T )∆

))]
ij

. (3.3-E5)

With these, the three equations of motion in Eq. (3.2-E16) to Eq. (3.2-E18) can be
transformed to

G<
ij(t ≤ T + ∆) =

∑
l

{
G<
il (t ≤ T )U∗jl(T )− I(1),<

il (t ≤ T )V∗jl(T )
}
, (3.3-E6)

G>
ij(T + ∆ ≥ t′) =

∑
l

{
Uil(T )G>

lj(T ≥ t′)− Vil(T )I
(2),>
lj (T ≥ t′)

}
, (3.3-E7)

G<
ij(T + ∆, T + ∆) =

∑
lm

{
Uil(T )

[
G<
lm(T , T ) +Wlm(T )

]
U∗jm(T )

}
, (3.3-E8)
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Figure 3.3-F2 – Density on a single site of a Hubbard dimer after an instantaneous
excitation at t = 0. The amplitude of the oscillation should remain constant over
the complete propagation. The Euler method shows huge deviations from the
correct result while the RK4 method is in very good agreement. Both calculations
are performed within the HF approximation and for the same time step size of
∆ = 0.025J−1. The interaction is set to U = 1J .
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Figure 3.3-F3 – Total energy of a one-dimensional chain after an instantaneous excitation
at t = 0. The calculations are performed for the same system and parameters as in
Fig. 3.3-F2. Thus, the total energy should be constant. The RK4 method shows a
better conservation of energy than the Euler method for the same time step size.
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where

Wlm(T ) :=
∞∑
n=0

w
(n)
lm (T ) ,

w
(n)
lm (T ) :=

i∆

n+ 1

[[
heff(T ), w(n−1)(T )

]
−

]
lm

,

w
(0)
lm (T ) := i∆

(
I

(1),<
lm (T, T )− I(2),>

lm (T, T )
)
.

(3.3-E9)

In the case of the GKBA, again, the terms that contain the collision integral in Eqs. (3.3-
E6) and (3.3-E7) vanish. These new equations of motion have the advantage that they are
stable even for strong excitations. However, the downside is that it is not trivial to find
higher order propagation algorithms for this set of equations. An exception is a second
order method that uses one additional intermediate step. Starting at time T , the Green
function is propagated to T + ∆

2
with the above equations. At this time, the effective

Hamiltonian and the collision integrals are calculated. Finally, the main propagation step
is executed, starting again from T , but this time propagating to T + ∆ and using the
effective Hamiltonian and collision integrals obtained in the intermediate step. It can be
shown that this procedure has an local error term of O(∆3) and is therefore a second order
method [86]. Algorithms of higher order are more complex and need to extrapolate values
to achieve a better error term [56].
However, in this work the RK4 method is used since it is an excellent choice for the weak
excitations considered in the simulations for the results presented in Secs. 4 and 6.

3.3.2 Numerical integration techniques

The numerical propagation scheme described in Sec. 3.2.2 and depicted in Fig. 3.2-F2
contains a lot of time integrals, especially when using resummation selfenergies like the
GWA. Additionally, as the Green function is an oscillating quantity the integrands exhibit
strong oscillations as shown in Fig. 3.3-F4. Thus, it is crucial to use algorithms that can
solve them both fast and accurately.
In general, a variety of numerical methods exists to evaluate integral expressions. Assuming
a function f : [a, b] → C, x 7→ f(x) with a, b ∈ R then the one-dimensional integral
expression is given by [90]

I(f) =

∫ b

a

dx f(x) . (3.3-E10)

This integral can be approximated by a quadrature rule that only depends on the values
of N discrete sampling points,

I(f) ≈ (N − 1)h
N−1∑
i=0

fiw
d
i , (3.3-E11)

where fi := f(xi), h := xN−1−x0

N−1
, N ∈ N and i ∈ [0, N − 1]. The weight factors wdi of

order d depend on the chosen quadrature method. As the non-Markovian structure of the
propagation scheme requires an equidistant grid of data points, i.e. xi = a+ i b−a

N−1
, only

methods with equidistant stepping are applicable. Under these circumstances a convenient
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Figure 3.3-F4 – An example for a typical integrand that has to be integrated to calculate
the collision integrals (cf. Eqs. (3.2-E21) and (3.2-E22)) and the resummation
selfenergies (cf. Eq. (3.2-E25)) in the propagation scheme depicted in Fig. 3.2-F2.

choice for a high order integration scheme is given by the so-called Newton–Cotes (NC)
formulas for which the order of integration is given by the number of sampling points, i.e.
d = N − 1. The general idea of this approach is to interpolate the sampling points by a
polynomial of order d which can be integrated analytically. The universal weight factors
for the closed Newton–Cotes integration are given by [47]

wdi,NC :=

∫ 1

0

dx̂
d∏
j=0
j 6=i

x̂d− j
i− j . (3.3-E12)

An advantage of the NC integration is that the weights can be calculated before the
start of the propagation. Thus, there is no additional numerical overhead during the
propagation compared to a trivial linear integration. The error of the NC integration is
of the order O

(
hd+2

∣∣f (d+1)
∣∣), if d is odd and of the order O

(
hd+3

∣∣f (d+2)
∣∣), if d is even.

Since d = N − 1, it is, in principle, possible to vastly reduce the numerical error for
integrals over a large number of sampling points. However, in practice it turns out that for
d ≥ 8 some of the weight factors become negative which results in numerical cancellation
effects due to summation with alternating sign [91]. Additionally, a well known problem
of high order, equidistant integration schemes is the so-called Runge phenomenon which
will be addressed later in this section. Therefore, it is convenient to restrict the order of
integration formulas to d ≤ 7.
In order to nevertheless calculate integrals with a large number of sampling points, two
different approaches can be applied. In Fig. 3.3-F5 both are illustrated for an integral over
N = 11 sampling points. The idea of the first approach, shown in Fig. 3.3-F5(a), is to
divide the integration interval into subintervals in such a way that the minimal occurring
integration order is optimal. In the case of N = 11 the interval can be split into two
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Figure 3.3-F5 – Illustration of the two different ways to handle integrals over a large
number of sampling points. Left: The interval is divided into equal subintervals
to achieve a optimal total order, here d = 5. Right: The interval is divided into
subintervals of the highest order d = 7. The remaining part is also considered in
the highest order by reusing points of the adjacent interval for the interpolation.

subintervals containing six sampling points each17. This results in a total integration order
of d = 5. More details about this optimal order scheme can be found in [47].
For the second approach, depicted in Fig. 3.3-F5(b), the integration interval is split into
subintervals that correspond to the highest considered order, i.e. d = 7 for the NC
integration. The remaining part can also be integrated using the highest integration order
by reusing points of the adjacent subinterval. For this the calculation of the weight factors
has to be adjusted by changing the integration boundaries in Eq. (3.3-E12) to account for
the fact that the integration is not performed over all considered sampling points. This
way, the total integration order is d = 7.
Both approaches have advantages and disadvantages. The optimal order scheme achieves
only low integration orders for integrals of short to intermediate length but guaranties
positive weight factors. With the second approach, integrals of all lengths can be calculated
in the highest integration order but for the cost of partly negative weight factors.

Even with these sophisticated techniques to handle integrals with a large number of
sampling points there still remains a fundamental problem. To obtain the collision integral,
even at later time steps, one has to calculate short integrals over only a few sampling points.
This is shown in Fig. 3.3-F6 for the first term of Eq. (3.2-E21). Since the integration
order for the NC approach is given by d = N − 1 it is apparent that the resulting error
for such integrals is significantly higher than for the longer integrals. However, since the
integrands are highly oscillating (cf. Fig. 3.3-F4), integrals of all lengths are of the same
order of magnitude. Thus, even errors in short integrals have a huge negative impact on
the propagation.
Fortunately, there is a way to solve this problem at later time steps. Because the
Green function is calculated on the complete two-time plane, it is possible to extend
the occurring short integrals, much like in the second approach described above. This

17The central point is contained in both subintervals.
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Figure 3.3-F6 – Illustration of the less and greater component of the Green function
(red) and selfenergy (blue) that are used in the integration from ts to t and ts to
t′ in Eq. (3.2-E21) for t = t′ = t0 at the time T . Even at later time steps small
integrals have to be evaluated. To solve this problem the integrals can be extended
(green) because the Green function at a time T is known for all t, t′ < T (gray).
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Figure 3.3-F7 – Total energy of a Hubbard dimer after an instantaneous excitation at
t = 0. The calculations are performed within the conserving SOA selfenergy and for
a time step size of ∆ = 0.005J−1. Thus, the total energy should be constant. Using
extended integrals results in a better conservation of energy. Both calculations
diverge at t = 25J−1.
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is illustrated in Fig. 3.3-F6 by the green dashed lines. The result of this procedure is
demonstrated in Fig. 3.3-F7 where the same system as in Fig. 3.3-F3 is shown but for the
SOA selfenergy. Again, the total energy should be constant as the selfenergy approximation
is conserving. It is apparent that the use of the extended integrals significantly improves
the energy conservation. However, both calculations diverge at t = 25J−1 due to the
Runge phenomenon that will be discussed in the following.

The Runge phenomenon is a well known problem in numerical analysis [92, 93]. It describes
the oscillations that occur at the edges of an interval when using polynomial interpolation
as in the NC formulas. It is demonstrated in Fig. 3.3-F8 for the Runge function

fRunge(x) =
1

1 + x2
. (3.3-E13)

Using an interpolation polynomial of tenth order results in significant oscillating at the
edges of the interval. The common solution to his problem is to use a non-equidistant
distribution of the sampling points, the so-called Chebyshev nodes [94] . However, this
approach is not applicable here since the propagation scheme enforces an equidistant grid.
Another method is to introduce redundancy by allowing the order d of the quadrature
rule to be smaller than N − 1 as in the NC case [95]. This way, the polynomials used
for the integration are no longer generated by interpolation but by regression. Fitting a
polynomial of ninth order to the eleven sampling points in Fig. 3.3-F8 greatly reduces the
artificial oscillations compared to the tenth order interpolation. The weight factors of this
least squares (LS) approach are given by [95]

wdi,LS :=
d−1∑
j=0

qj(xi)

∫ 1

0

dx̂ qj(x̂) , (3.3-E14)

with the orthogonal polynomials

qn(x) =
1

||pn||u
pn(x) .

(3.3-E15)

Here, ||f ||u :=
√
u(f, f) is the norm with the discrete scalar product

u(f, g) =
N−1∑
j=0

f(xj)g(xj) . (3.3-E16)

The polynomials can be obtained by solving the recurrence relation

pn(x) = (x− αn)pn−1(x)− βnpn−2(x), n = 2, 3, . . . , N − 1 (3.3-E17)

with the coefficients

αn(x) =
u(xpn−1, pn−1)

u(pn−1, pn−1)
, βn(x) =

u(xpn−1, pn−2)

u(pn−2, pn−2)

and the initial values p−1(x) = 0 and p0(x) = 1. The advantage of this method is
displayed in Fig. 3.3-F9. While the calculation using the NC integration with seventh
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Figure 3.3-F8 – The Runge function (black) given in Eq. (3.3-E13) is sampled at eleven
equidistant points. An interpolation polynomial of tenth order (red) shows strong
oscillations at the edges of the interval. Fitting a polynomial of ninth order (orange)
to the same sampling points greatly reduces the oscillations.
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Figure 3.3-F9 – Same system and parameters as in Fig. 3.3-F7. For NC integration with
seventh order interpolation polynomials the calculation diverges at t = 25J−1. The
propagation time can be extended to t ≈ 80J−1 at the cost of a slightly worse
energy conservation by fitting tenth order polynomials to blocks of N = 24 sampling
points.
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order interpolation polynomials diverges at around t = 25J−1, the propagation can be
extended to t ≈ 80J−1 by fitting tenth order polynomials to blocks of N = 24 sampling
points. It should be noted that the increased stability of the propagation comes at the
cost of a slightly worse energy conservation. However, this is often negligible in practice
as seen in Fig. 3.3-F9.
Another useful regression-based quadrature rule that should be mentioned here is the
method of Fourier extension (FE) [96]. Since the integrands occurring in the calculations
are highly oscillating, as shown in Fig. 3.3-F4, it is beneficial to use oscillating basis
functions, namely sine and cosine, instead of polynomials for the regression. More details
on this approach can be found in Ref. [97].
In practice, most of the time the NC method is used since it shows the best energy
conservation of all three quadrature rules described above. However, the two regression
methods are useful to access longer propagation times when the NC integration fails.

3.3.3 Computational demands and parallelization

As explained in the previous chapter, it is important to solve the time integrals accurately.
However, as the weight factors can be determined before the start of the calculation
the main numerical effort of the solution of the time integrals is given by the sum in
Eq. (3.3-E11). From a performance perspective, another crucial part of the propagation
scheme is the huge number of matrix multiplications. In general, each of these matrix
multiplications of the form

Cij(t, t
′) =

∑
k

∫ t2

t1

dt̄ Aik(t, t̄)Bkj(t̄, t
′) (3.3-E18)

can be parallelized with respect to i, j, t and t′. In theory, this can be utilized to massively
speed-up the simulation on an appropriate architecture. Therefore, all calculations in this
work have been performed on graphics processing units (GPUs) on accelerator cards of
the types

• NVIDIA®Tesla®K20m

• NVIDIA®Tesla®P100

• NVIDIA®GeForce®GTX TITAN

• NVIDIA®GeForce®GTX TITAN Black.

The underlying architecture of GPUs differs severely from the one of normal CPUs. Thus,
in order to utilize the tremendous processing power of the accelerator cards listed above,
one has to take these differences into account when implementing numerical algorithms.
One important restriction of GPUs compared to CPUs is the limited bandwidth. In
the case of the above mentioned matrix multiplication, this can be addressed by tiling.
An illustration of this procedure is shown in Fig. 3.3-F10. In order to use the limited
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Figure 3.3-F10 – Illustration of the matrix multiplication AB = C implemented on a
GPU using tiling. In order to make the matrix multiplication more efficient, the
matrices are split into tiles and multiplied seperately as shown in the bottom.
This way, the limited bandwidth can be used more efficiently. The Graphic is
taken from Ref. [99].

bandwidth more efficiently, the matrices can be split into multiple tiles which are multiplied
seperately18.

After discussing the propagation algorithm, the integration techniques and the topic of
parallelization, one can now derive how the memory demands and the computational
performance of the propagation scheme presented in chapter Sec. 3.2.2 scales with the
basis size Ns and the number of propagation steps Nt. The memory demand of the
calculation depends mainly on the storage of the less and greater Green function on the
two-time plane. Although, in principle, one has to calculate both components only on one
half-plane, it turns out to be advantageous for the calculations on the GPU to save them
on the complete plane. Because the Green function is stored as a double-precision complex
number of 16 Bytes, the total required memory during the calculation is given by

M(Ns, Nt) = 16 Bytes · 2 ·N2
s ·N2

t . (3.3-E19)

The performance scaling of the calculation is determined by the number of coupled
integrations and matrix multiplications in the complete propagation scheme. It can be
shown that for all higher order selfenergies the total performance scaling is of the order

P (Ns, Nt) ∝ O
(
N3

s ·N3
t

)
. (3.3-E20)

18The speed-up of this approach is due to the efficient use of so-called shared memory. A detailed
description of the characteristics of the GPU architecture would exceed the scope of this thesis. The
reader is referred to Ref. [98].
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Figure 3.3-F11 – Comparison of the average computation time to propagate a system
of 30 sites for a time of 110J−1 using different selfenergy approximations. The
numerical improvements have greatly reduced the required computation time.

Nevertheless, it is important to note that both, the memory and the performance scaling,
can be drastically reduced when using the GKBA propagation scheme together with the
SOA selfenergy. In this case, the scaling becomes

MSOA
GKBA(Ns, Nt) ∝ O (N2

s ·Nt) , (3.3-E21)

P SOA
GKBA(Ns, Nt) ∝ O (N3

s ·N2
t ) . (3.3-E22)

Thus, the GKBA combined with the SOA selfenergy is an important tool to describe
systems that require a long propagation time. However, in this thesis mainly the full
two-time propagation scheme is used.

To summarize the topic of computational demands, a few examples of actual simulations
and the improvements over the last years are presented in the following. The most
demanding simulations performed in the scope of this thesis have been done for systems
of 30 Hubbard sites and a propagation time of 110J−1. For the GWA selfenergy such
simulations would typically take around seven days to complete and use up to 300GB
of RAM each. Using the SOA selfenergy reduces the time of the calculation to about
two days while the memory consumption stays the same. Fig. 3.3-F11 shows how long
simulations for this system would have taken before the numerical improvements presented
in this chapter were implemented. It is safe to say that this thesis would not have been
possible two years ago since the systems sizes and propagation times were not accessible
in a reasonable amount of computation time. Even one year ago it would have been far
more demanding with all calculations taking at least twice as much time as today.
While the main limitation in the past has always been the available computation time,
the recent numerical improvements have let to a new situation. At the current stage,
simulations are restricted by their large memory consumption. However, in the long run
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the computational performance will always be the limiting factor due to its cubic scaling
with respect to the basis size and the number of time steps (cf. Eq. (3.3-E20)) while the
amount of memory shows only a quadratic dependence (cf. Eq. (3.3-E19)).

3.4 Exact propagation methods

In order to test the accuracy of the NEGF approach, it is important to compare to exact
solutions for selected model systems. Therefore, in the following, the exact wave-function-
based methods presented in Sec. 2.1 will be discussed in the scope of the Hubbard model.
Using the wave function of the system it is possible to generate the exact single-particle
Green function which allows for the best possible comparison with the NEGF approach.
Starting from an initial state |ψ(t0)〉 of a given system, the time evolution of the exact
wave function |ψ(t)〉 can be expressed by the time evolution operator Û(t, t0):

|ψ(t)〉 = Û(t, t0) |ψ(t0)〉 . (3.4-E1)

In the calculations performed for this work the propagations starts from the interacting
ground state of the system as discussed in Sec. 2.2.3. However, for the exact methods
no adiabatic switching is needed. Instead, the initial wave function that describes the
interacting ground state can be generated using the iterative Lanczos technique presented
in Sec. 2.1.1.

Starting from the initial state, there are at least two ways to implement the propagation
numerically. The first approach is to directly propagate the Schrödinger equation given in
Eq. (2.1-E1) which leads to the following equation of motion for the state vector:

d

dt
|ψ(t)〉 = − i

~
Ĥ(t) |ψ(t)〉 . (3.4-E2)

Here, Ĥ is the Hubbard Hamiltonian (cf. Eq. (2.3-E4)) given in the N -particle Hilbert space
for N = N↑ +N↓ and N↑ = N↓19. This differential equation can be solved by appropriate
numerical algorithms. In this work, the Runge–Kutta Dormand–Prince 5 method is used
that provides an adaptive step size control to limit the numerical error. This approach is
applicable for both time-dependent and time-independent Hamiltonians. Further, it shows
only linear scaling with respect to the number of time steps. However, although in every
propagation step only one matrix-vector-multiplication has to be performed, the approach
is limited to system sizes of Ns ≤ 12. This is due to the exponential scaling of the Hilbert
space with respect to the number of Hubbard sites and particles. Only the fact that the
Hamiltonian is typically very sparse allows to even reach system sizes above Ns = 8.

The second approach is based on the Lanczos propagation presented in Sec. 2.1.1 where
the time evolution operator in Eq. (3.4-E1) is expressed in the low-dimensional Krylov
space (cf. Eq. (2.1-E16)). In contrast to the direct method described above the success of
this approach depends on the time dependence of the Hamiltonian. The propagation is
numerically exact if the Hamiltonian is time independent, i.e. it is exact for an arbitrary

19All systems considered in this work are symmetric with respect to the spin.
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time step size ∆ [43]. Therefore, the Lanczos propagation is the method of choice to
calculate ground state systems or instantaneous excitations where the numerical effort is
constant for all propagation times. However, for time dependent systems the time step
size has to be small enough to resolve the changes in the Hamiltonian. In this case, the
Lanczos method is far more costly than the direct approach since the Krylov space has to
be generated seperately for every single time step. In general, the Lanczos propagation
is applicable to systems of the same size as the direct approach due to the exponential
scaling of the Hilbert space with respect to the number of Hubbard sites and particles.

3.4.1 Exact Green functions

When propagating the wave function with one of the two approaches presented above, it is
possible to generate the exact single-particle Green function [43]. Starting from an initial
state |ψ(t0)〉, the less component of the Green function has the form

G<
ij(t, t

′) =
i

~
〈ψ(t0)| ĉ†j(t′)ĉi(t) |ψ(t0)〉 (3.4-E3)

=
i

~
〈ψ(t0)| Û(t0, t)ĉ

†
j(t
′)Û(t′, t0)︸ ︷︷ ︸

〈Ψj(t′)|

Û(t0, t)ĉiÛ(t, t0) |ψ(t0)〉︸ ︷︷ ︸
|Ψi(t)〉

. (3.4-E4)

In order to calculate the exact less component of the Green function for all basis indices
i, j and in the complete two-time plane t, t′ the following four-step procedure has to be
executed. First, the system’s initial state |ψ(t0)〉 has to be computed. In this work, the
initial state is the interacting ground state of the system and is generated by the iterative
Lanczos technique (cf. Sec. 2.1.1). Second, the wave function

|ψ(t)〉 = Û(t, t0) |ψ(t0)〉 (3.4-E5)

is propagated and stored on a equidistant grid up to a time Tend using one of the methods
described above. Third, for every time t on the grid and every site i a new state

|Ψ<
i (t)〉 = Û(t0, t)ĉi |ψ(t)〉 (3.4-E6)

is generated. This corresponds to a propagation backwards in time in the (N − 1)-particle
Hilbert space. Finally, using the states |Ψi(t)〉, the less Green function can be created for
all sites i, j and times t, t′:

G<
ij(t, t

′) =
i

~
〈Ψ<

j (t′)|Ψ<
i (t)〉 . (3.4-E7)

The greater component of the Green function can be generated in the same way with

G>
ij(t, t

′) = − i

~
〈Ψ>

i (t)|Ψ>
j (t′)〉 , (3.4-E8)

where

|Ψ>
i (t)〉 = Û(t0, t)ĉ

†
i |ψ(t)〉 (3.4-E9)
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is propagated in the (N + 1)-particle Hilbert space.
The most time consuming step is the back propagation in Eqs. (3.4-E6) and (3.4-E9) that
has to be done for every time step on the grid. However, in case of a time independent
Hamiltonian the exact Green function can be calculated for all sites and all times in a
linear amount of time using the Lanczos propagation scheme, since the back propagation
can be done in a single propagation step. For time dependent systems the calculation
of the exact Green function shows a quadratic scaling with the number of time steps as
Eqs. (3.4-E6) and (3.4-E9) have to be propagated within a linearly increasing number
of steps. However, it is possible to create a propagation scheme that, even for a time
dependent Hamiltonian, scales linearly with respect to the number of time steps.
Assuming a simple Euler propagation scheme for Eq. (3.4-E2) the propagation of the wave
function can be expressed as

|ψ(t+ ∆)〉 = P̂∆(t) |ψ(t)〉 , (3.4-E10)

where the propagator P̂ is given by

P̂∆(t) = 1̂− i

~
∆Ĥ(t). (3.4-E11)

To perform the back propagation in a constant amount of time the propagators P can be
multiplied during the forward propagation to create the backward propagator at a given
time T 20:

P̂ back(T ) = P̂−∆(t1)P̂−∆(t2) . . . P̂−∆(T ), t1 < t2 < . . . < T. (3.4-E12)

However, the downside of this approach is that P̂ back becomes non-sparse for long propaga-
tion times. Thus, the calculation of exact Green functions for time dependent Hamiltonians
is limited to system sizes of Ns = 8.

20Here, the notation P̂−∆ denotes the backwards propagation (∆→ −∆).
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4 Results I: Method benchmarks

In this section, the validity of the NEFG approach in general and the performance of the
individual selfenergy approximations in particular are studied by comparing results for
the one-dimensional Hubbard chain with exact methods. As the main focus of this work
lies on the correct description of finite graphene structures within the Hubbard model and
the NEGF, all studied systems are considered at half filling which corresponds to the case
of non-doped graphene. The first part of this section will focus on the ground state of the
Hubbard chain while in the second part different excitations are considered.

4.1 Ground state results

The correct description of the ground state is of utmost importance since it is the foundation
for the accurate simulation of nonequilibrium processes. Therefore, in this part the spectral
properties of the one dimensional Hubbard chain are calculated for different selfenergy
approximations within the NEGF approach and compared to both, results from the
exact methods presented in Sec. 3.4 for small clusters and results of the Bethe ansatz
solution [100, 101] for the infinite chain. Furthermore, the Mott metal-insulator transition,
i.e. the opening of the Hubbard gap for increasing interaction strength, is compared for
various selfenergies. This is especially important because the correct simulation of the
bandgap is crucial for an accurate description of the nonequilibrium processes in graphene
nanostructures [14, 102]. Additionally, the performance of the GKBA will be studied in
particular. It was shown in the past that the GKBA is a useful tool to describe strong
excitations as it does not suffer from artificial damping effects [47, 56, 103]. However, it
will be shown that the GKBA fails to correctly reproduce even the spectral properties of
systems at the ground state.

4.1.1 Testing against exact results

An important property for the analysis of graphene nanostructures is the photoemission
spectrum given in Eq. (2.2-E98). Thus, it is reasonable to look at this quantity when
benchmarking the NEGF against exact results. In Figs. 4.1-F1 and 4.1-F2 the photoemis-
sion spectrum of an eight-site Hubbard chain at half filling is calculated for the HF, SOA,
TPP, TPH and GWA selfenergy (cf. Sec. 2.2.5) and compared to the result of an exact
Lanczos calculation. As the system is in the ground state, only states below the Fermi
energy ωF = 0 are occupied.
In Fig. 4.1-F1 the on-site interaction is U = 1J . The main features of the exact spectrum
are four major peaks between ω ≈ −0.4J and ω ≈ −1.9J and some satellites at ω < −2J .
It is apparent that all selfenergy approximations roughly reproduce the correct positions
of the four main peaks. However, the spectral weight of the individual peaks, especially for
the second and third at ω ≈ −1J and ω ≈ −1.5J , is estimated differently. While the HF
approximation incorrectly predicts a homogeneous distribution of spectral weight, the TPH
and GWA selfenergies show the best agreement with the exact spectrum, especially for the
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Figure 4.1-F1 – Ground state photoemission spectrum (cf. Eq. (2.2-E98)) of a one-
dimensional Hubbard chain of Ns = 8 sites at half filling and an on-site interaction
of U = 1J . The width of the probe pulse is set to κ = 12.5J−1. The full two-time
NEGF results for the different selfenergy approximations are compared to the
solution of the exact Green function (cf. Sec. 3.4.1) in black.
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Figure 4.1-F2 – Ground state photoemission spectrum (cf. Eq. (2.2-E98)) of a one-
dimensional Hubbard chain of Ns = 8 sites at half filling and an on-site interaction
of U = 3J . The width of the probe pulse is set to κ = 12.5J−1. The full two-time
NEGF results for the different selfenergy approximations are compared to the
solution of the exact Green function (cf. Sec. 3.4.1) in black.
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second and third peak. It should be noted that apart from HF all selfenergy approximations
correctly predict the existence of satellites for ω < −2J . However, the exact positions and
weights of all occurring satellites are reproduce by none of the considered approximations.
The system in Fig. 4.1-F2 has an increased on-site interaction of U = 3J . The most
striking difference of the exact spectrum compared to the case of U = 1J is that the two
peaks at ω ≈ −1J and ω ≈ −1.5J have split into three peaks. Additionally, the first
peak has shifted from ω ≈ −0.4J to ω ≈ −0.7J and the satellites at ω < −2J are far
more dominant at this higher interaction. The results of the NEGF approach differ to
some extent from the exact results. Comparing the findings for U = 1J and U = 3J it is
apparent that the HF selfenergy predicts the same photoemission spectrum for both cases.
This is due to the fact that HF only considers mean field effects which solely result in a
shift of the spectrum but not in a redistribution of the spectral weight. The mean field
shift is not shown here since the Fermi energy is set to ωF = 0. Again, the TPH and GWA
selfenergies show the best agreement with the exact result. Especially the shift of the first
peak, which corresponds to the opening of the Hubbard gap, is captured well by these two
selfenergy approximations. However, the NEGF approach does neither correctly reproduce
the splitting of the second and third peak nor the positions and weights of the satellites.
To understand these findings, one has to look at the bandwidth of the considered system.
In Sec. 2.3.2 it was found that the bandwidth of the ideal one-dimensional Hubbard chain
is 4J . It is known that to NEGF approach is only valid for interaction strengths below the
bandwidth of the system at hand [103]. Therefore, the agreement with the exact spectrum
is far better for the case of U = 1J than for U = 3J which is already near the bandwidth
of the one-dimensional chain. However, even for the case of high interactions the important
feature of the shift of the first peak is predicted accurately by both the TPH and GWA
selfenergy. This is not surprising since in the considered case of half filling the effects
of particle hole collisions (TPH) and electron screening (GWA) are most important. In
summary, to correctly describe the photoemission spectrum of even such a simple system
as a eight site Hubbard chain at moderate interaction, it is essential to take into account
correlation effects. The pure mean field treatment does not capture any of the effects
appearing at higher interaction strengths. Thus, the HF selfenergy approximation will not
be considered in the remainder of this section.
Another important spectral property to look at is the energy dispersion. It can be calcu-
lated from the two-time components of the Green function using Eq. (2.2-E97). The energy
dispersion of a Ns = 40 site Hubbard chain at half filling and for an on-site interactions of
U = 1J and U = 3J is shown in Fig. 4.1-F3 within the first Brillouin zone (k ∈ [π, π)). The
colormap corresponds to the NEGF calculation using the SOA selfenergy while the black
lines mark the results of the exact Bethe ansatz solution for the infinite one dimensional
Hubbard chain. The dashed lines correspond to the elemental excitations of so-called
holons and antiholons and can be understood as the addition or removal of a spinless
particle carrying the charge ∓e. These elemental excitations have to be distinguished from
physical excitations that have to be consistent with given selection rules [32]. The full
lines mark the boundaries of the continuum of so-called spin-charge scattering states. This
two-particle excitation results in a change of the charge and the spin of the system by
±e and ±1

2
, respectively. Thus, this excitation is especially important for photoemission

experiments where an electron carrying the charge −e and the spin 1
2

is removed from the
system. More information on the Bethe ansatz and the calculation of these excitations
can be found in Ref. [32].
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Figure 4.1-F3 – Ground state energy dispersion relation (cf. Eq. (2.2-E97)) of a one-
dimensional Hubbard chain of Ns = 40 sites at half filling and an on-site interaction
of U = 1J (left) and U = 3J (right). The propagation time after the adiabatic
switching is Tend = 50J−1. The colormap corresponds to the full two-time NEGF
results using the SOA selfenergy. The solution of the exact Bethe ansatz [32] for
the infinite chain is displayed by the black lines. The dashes correspond to the
(anti)holon bands while the full lines mark the spin-charge scattering continuum.

For the infinite chain in the tight binding approximation (U = 0) we have found that
the energy dispersion is given by a cosine (cf. Eq. (2.3-E11)). Looking at Fig. 4.1-F3, it
is apparent that for an interaction of U = 1J the SOA calculation still shows a cosine
dependence as the main feature of the dispersion. This is in excellent agreement with
the exact solution. Additionally, the SOA selfenergy reproduces the weak (anti)holon
bands and the boundaries of the spin-charge scattering continuum. The area of this
continuum corresponds to the satellites found in Figs. 4.1-F1 and 4.1-F2 for ω < 0. Since
the HF approximation takes into account only mean field effects, it does not allow for the
two-particle excitations that create the scattering continuum and thus, as discussed before,
does not reproduce the satellites.
In the case of U = 3J , the scattering states become more pronounced compared to the
cosine contribution, which corresponds to the transfer of spectral weight from the main
peaks to the satellites in Fig. 4.1-F2. However, the most important feature is the opening
of the bandgap, the so-called Hubbard gap, at the Fermi energy ωF = 0. Although the SOA
calculation correctly predicts the existence of a gap for U = 3J , it seems to underestimate
the width of the bandgap compared to the exact results. Because the correct description
of the bandgap is essential for the accurate modeling of graphene nanostructures, the
following part will focus on the Hubbard gap in detail. However, to summarize, even for
this high interaction the SOA results for a finite Hubbard chain of Ns = 40 sites are in
good agreement with the Bethe ansatz solution for the infinite chain.

4.1.2 The Hubbard gap

The opening of the bandgap can be analyzed best by looking at the density of states A(ω)
that can be calculated by summing over all local contributions of the spectral function
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Figure 4.1-F4 – Density of states (cf. Eq. (2.2-E96)) of a one-dimensional Hubbard
chain of Ns = 40 sites at half filling and an on-site interaction of U = 1J (top
left), U = 2J (top right), U = 3J (bottom left) and U = 4J (bottom right). The
propagation time after the adiabatic switching is Tend = 50J−1. The colored lines
correspond to the full two-time propagation of the KBEs using different selfenergy
approximations. The black vertical lines display the width of the Hubbard gap for
the infinite chain given by the exact Bethe ansatz [32].

(cf. Eq. (2.2-E96)). Alternatively, it can be obtained from the dispersion relation through
a summation over all k. In Fig. 4.1-F4 the density of states (DOS) of a Ns = 40 sites
Hubbard chain is shown for various values of the on-site interaction U and different
selfenergy approximations. Additionally, the Hubbard gap for the infinite chain predicted
by the exact Bethe ansatz solution is depicted as two black vertical lines.
As shown in Fig. 2.3-F2, the infinite Hubbard chain in the tight-binding limit (U = 0)
does not have a bandgap. Looking at Fig. 4.1-F4 the DOS for U = 1J shows a similar
shape compared to the tight-binding case. All selfenergy approximations predict only
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a slight dip of the DOS at the Fermi energy but no complete opening of the bandgap.
Likewise, the Bethe ansatz does not show a noticeable Hubbard gap. For U = 2J first
differences between the particular selfenergies appear with TPP showing the smallest
bandgap and TPH the largest. However, it is hard to say which approximation shows
the best agreement with the exact solution as the deviations are still small. Looking at
U = 3J and U = 4J the width of the gap further increases and it emerges that the TPH
and GWA selfenergy best reproduce the exact bandgap while SOA and especially TPP
underestimate its width. Additionally, for ω < −2J and ω > 2J the scattering continuum
becomes more pronounced as already seen in Fig. 4.1-F3.

Until now, the results of the NEFG approach for finite Hubbard clusters have been
compared to the exact solution for the infinite chain. Furthermore, looking at Fig. 4.1-F4
it is difficult to determine the exact width of the bandgap for the Green function calculations
since the spectrum is broadened due to the finite propagation time and width of the probe
pulse (cf. Eq. (2.2-E99)). To make a direct quantitative comparison between the NEGF
approach and the exact solution possible, the results for the finite systems have to be
extrapolated towards the infinite limit. Thus, the DOS for systems between Ns = 2 and
Ns = 40 are calculated for all considered selfenergies. Afterwards, the edge of the upper
and lower Hubbard subbands are determined by fitting Gaussian functions to the spectrum.
The bandgap is then given by the difference between the center of the lowest peak in the
upper subband and the highest peak in the lower subband. It is found that the size of the
bandgap ENs

gap for a system of Ns sites obeys the relation

ENs
gap − E∞gap ∝

1

Ns

. (4.1-E1)

Extrapolating the results for the different system sizes to Ns → ∞ allows for a direct
comparison with the exact gap of the Bethe ansatz which can be evaluated analytically
by [104]

E∞gap/J =
16

U/J

∫ ∞
1

dx

√
(x2 − 1)

sinh(2πx/(U/J))
. (4.1-E2)

The results for the four selfenergy approximations that take into account correlations are
presented in Fig. 4.1-F5. The HF approximation does not show an opening of the bandgap
as already shown in Figs. 4.1-F1 and 4.1-F2 and is therefore not considered here. The SOA
is the most basic extension to the HF selfenergy that contains all terms up to the second
order of the interaction. However, it severely underestimates the width of the bandgap,
especially for strong interactions. The three more complex selfenergy approximations that
contain higher order diagrams show completely different results. While the GWA slightly
underestimates the exact solution and the TPH approximation predicts a bandgap that
is bit too large, the TPP selfenergy shows no gap opening at all in the considered range
up to U = 3J . This can be explained in terms of the diagrams the different selfenergy
approximations include.
In the Hubbard basis the perturbation expansion of the selfenergy contains exactly two
third order diagrams. One of them corresponds to particle-hole scattering and is included
in the TPH selfenergy, the other one describes particle-particle interaction and is part
of the TPP approximation. It can be shown that in the case of half filling, which is
considered here, the sum of those two diagrams vanishes in the ground state [105]. Thus,
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Figure 4.1-F5 – Width of the bandgap of an infinite one-dimensional Hubbard chain
as a function of the on-site interaction U . The NEGF results are obtained by
extrapolating the bandgaps of smaller systems as described in the text. The error
bars show the uncertainty of the interpolation. The black line displays the exact
Hubbard gap obtained by the Bethe ansatz (cf. Eq. (4.1-E2)).

the SOA, which only contains contributions up to second order, effectively describes the
system correctly up to the third order in the interaction. However, the TPH and TPP
approximations do not describe the third order contribution correctly since they each
include only one of the third order diagrams which not vanish separately. This is the reason
why the TPH overestimates the exact solution for the bandgap and the TPP predicts an
even smaller gap than the SOA. In contrast, like the SOA, the GWA contains all second
order and no third order contributions. Additionally, it includes fourth and higher order
diagrams. Thus, the GWA is a straight improvement over the SOA selfenergy.
Although the TPH selfenergy reproduces the width of the bandgap nicely, the calculations
for graphene in section Sec. 6 were mostly done using the SOA and GWA selfenergy
because of the wrong third order contribution that the TPH approximation contains.

4.1.3 Spectral deficiencies of the GKBA

It was found in the past that for strongly excited systems the full two-time propagation of
the KBEs results in an unphysical damping of the density evolution [56]. If one is only
interested in the density dynamics of the system, the GKBA is the method of choice in the
case of strong excitations since it does not suffer from the artificial damping. Combined
with advanced selfenergy approximations it reproduces the nonequilibrium dynamics of
strongly excited systems very accurately [103]. Another advantage of the GKBA is the
better numerical scaling with respect to the number of time steps when using the SOA
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Figure 4.1-F6 – Ground state photoemission spectrum (cf. Eq. (2.2-E98)) of a one-
dimensional Hubbard chain of Ns = 2 (left) and Ns = 4 (right) sites at half filling.
The width of the probe pulse is set to κ = 12.5J−1. The result of the GKBA
combined with the SOA selfenergy for U = 1 (red), U = 2J (blue) and U = 3J
(green) is compared to the HF solution which does not depend on the on-site
interaction U .

selfenergy (cf. Eqs. (3.3-E21) and (3.3-E22)). However, since in this thesis the focus is
primarily on spectral properties, it is important to analyze the performance of the GKBA
in that regard, which is the purpose of this part.
In Fig. 4.1-F6 the photoemission spectrum for two finite Hubbard chains of Ns = 2 and
Ns = 4 sites is shown for the HF approximation and the GKBA propagation combined
with the SOA selfenergy. As already discussed, the spectrum of HF does not depend on
the interaction U and because the systems are considered in the ground state only states
below the Fermi energy ωF = 0 are occupied. In contrast, the spectrum of the GKBA
shows excited states above the Fermi energy that gain spectral weight with increasing
interaction U . This would suggest that the system is not in the ground state but in an
excited state. However, it was shown in the past that the GKBA does describe other
ground state properties like the total energy or the density distribution correctly [54, 106].
In order to find the reason for the incorrect spectral properties in the ground state one
has to look at the quantities that enter the calculation of the photoemission spectrum (cf.
Eq. (2.2-E98)). The main contribution is a Fourier transform of G<

ii(t, t
′) perpendicular

to the time diagonal in the two-time plane. Thus, the spectral information are primarily
influenced by the off-diagonal propagation of the Green function. In both cases, the HF
approximation and the GKBA with SOA selfenergy, the off-diagonal dynamics of the less
Green function are given by (cf. Eq. (3.2-E20))

−i~
d

dt′
G<
ij(t ≤ t′) =

∑
l

heff
il (t′)G<

lj(t ≤ t′) . (4.1-E3)
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Figure 4.1-F7 – Real (left) and imaginary (right) part of the density matrix for a Ns = 4
site Hubbard chain in the ground state at half filling and U = 3J . The result of the
GKBA combined with the SOA selfenergy (top) is compared to the full two-time
propagation using the HF approximation (bottom).

The propagation always starts at the time diagonal, i.e. t = t′. In that case the less Green
function can be expressed in terms of the density matrix (cf Eq. (2.2-E87)). Thus, because
Eq. (4.1-E3) does not depend on the collision integral, the only difference between the full
HF and the GKBA propagation can be caused by the density matrix in the ground state.
In Fig. 4.1-F7 the real and imaginary part of the density matrix in the ground state are
shown for both propagations at an interaction of U = 3J and Ns = 4. Both approaches
agree for the diagonal elements of the density matrix, i.e. i = j. Hence, the effective
single-particle Hamiltonian heff in Eq. (4.1-E3) which only depends on the diagonal ni(t)
(cf. Eq. (3.2-E8)) is the same for both methods. However, the off-diagonal elements of the
density matrix differ for both, the real and the imaginary part. Thus, the off-diagonal
propagation starts at different initial values of G< on the time diagonal.
To summarize, the GKBA describes the propagation in off-diagonal direction on the HF
level. Thus, the spectral properties do also contain only HF information, since they are
determined by the off-diagonal Green function. However, the propagation is started from
a density matrix that does not correspond to the HF ground state. This results in an
effective mapping of the GKBA-SOA ground state onto the HF photoemission spectrum
which causes the artificial excitations to occur above the Fermi energy. Thus, the GKBA
is not suited, if one is interested in the spectral properties of a system.

4.2 Dynamical results

After the detailed discussion of the ground state in the last section the following part
will focus on systems in nonequilibrium. First, a Hubbard dimer is analyzed under the
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Figure 4.2-F1 – Shape of the laser pulse described by Eq. (4.2-E2) with the parameters
t0 = 0, ω0 = 2J , σ = 1.8J−1 and E0 = 0.5 in the time (left) and frequency (right)
space. A pulse of this form is used to excite the systems in Figs. 4.2-F2, 4.2-F3
and 4.2-F4.

influence of a laser excitation that is later used to excite finite graphene structures (cf.
Sec. 6). Additionally, the problem of unphysical damping occurring at strong excitations
is addressed in detail.

4.2.1 Laser excitations

Before the finite graphene structures in Sec. 6 are excited by a laser pulse, this type of
excitation is tested for a Hubbard dimer which allows to compare the NEGF approach
with exact methods.
In this work, the dipole approximation is used which is justified if the wavelength ω of the
laser is a lot larger than the size l of the system. The experiments with graphene presented
in Sec. 5.3 are performed with optical lasers, i.e. ω ≈ 400 nm− 700 nm [24]. The typical
size of the graphene systems considered in this work is l ≈ 1 nm− 10 nm. Thus, the dipole
approximation is justified. In this case, an external laser excitation is included into the
effective single-particle Hamiltonian in Eq. (3.2-E8) by setting

fi(t) = −ri ·ELaser , (4.2-E1)

where ri is the position of site i in units of the lattice constant of the system and the
magnitude of the electric field of the laser pulse ELaser is given by

ELaser(t) = E0 cos (ω0 (t− t0)) e−
(t−t0)2

2σ2 . (4.2-E2)

In the following calculations a laser frequency of ω0 = 2J is used and the standard deviation
of the Gaussian is set to σ = 1.8J−1. The amplitude of the laser excitation E0 is varied. It
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Figure 4.2-F2 – Density on the first site of a Hubbard dimer (Ns = 2) at half filling and
U = 1J . The system is excited at t0 = 10J−1 by a laser pulse given by Eq. (4.2-E2)
with an amplitude of E0 = 0.25 (top) and E0 = 0.5 (bottom). The NEGF results
using the full two-time propagation (red) and GKBA (blue) combined with the
SOA selfenergy are compared to the exact solution (black) described in Sec. 3.4.

is given in units of Je−1a−1 where e is the elementary charge and a is the lattice constant
of the system. The shape of the corresponding laser pulse in time and frequency space is
shown in Fig. 4.2-F1.

To test the performance of the NEGF approach in nonequilibrium, a small system has
to be chosen that can be solved within the exact methods presented in Sec. 3.4. Since
the laser excitation results in a time dependent Hamiltonian, the numerical demands to
calculate the exact Green function are much higher than for the ground state. Therefore,
in the following, the Hubbard dimer is considered since it can be solved analytically as
shown in Sec. 2.3.3 and the exact Green function is easy to calculate.
In Fig. 4.2-F2 the density on the first site of a Hubbard dimer at U = 1J is shown.
The system is excited by a laser pulse depicted in Fig. 4.2-F1 with the maximum being
at t0 = 10J−1. The calculations are performed with the full two-time propagation and
the GKBA, both using the SOA selfenergy. Additionally, the exact Green function is
determined with the Lanczos propagation method (cf. Secs. 2.1.1 and 3.4).
In the case of a small laser amplitude (E0 = 0.25), both NEGF results are in good
agreement with the exact solution. The GKBA solution even predicts the correct frequency
of the density oscillations induced by the laser pulse while the frequency of the full two-
time calculation is slightly too small. However, both NEGF simulations show the correct
oscillation amplitude over the complete time frame.
At a higher laser amplitude of E0 = 0.5 the full propagation shows a strong unphysical
damping of the oscillation starting at t ≈ 15J−1. This effect is a well known characteristic
of the NEGF for strong excitations and will be studied in more detail in Sec. 4.2.2.
As already discussed, the GKBA does not show such artificial damping of the density
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dynamics. Instead, it is in good agreement with the exact solution even for such a high
laser amplitude.
In general, it is astonishing that doubling the laser amplitude leads to such a dramatic
difference in the quality of the full two-time solution. However, as shown in Sec. 4.1.3, the
correct prediction of the density dynamics does not imply the accurate description of the
spectral properties. Vice versa, it might be possible that the full propagation is able to
show the correct spectrum of a system at strong excitations despite the artificial damping.
In order to test this, the photoemission spectrum of the same system is shown in Figs. 4.2-
F3 and 4.2-F4. The dimer has been solved analytically in Sec. 2.3.3 and its eigenenergies
are depicted in Fig. 2.3-F3. For the considered interaction of U = 1J the two possible
transitions ψ− → ψU and ψU → ψ+ require an excitation energy of 2.57 J and 1.55 J ,
respectively. Looking at Fig. 4.2-F1, one can see that the laser frequency is chosen in such
a way that both transitions are possible.
For the case of E0 = 0.25 the photoemission spectrum is depicted in Fig. 4.2-F3. Looking
at the exact spectrum, the most interesting part are the two peaks at ω ≈ 1J and ω ≈ 1.5J .
The second one corresponds to the transition from the state ψU to the ground state of
the N = 1 system21. The first peak indicates the transition from ψ+ to an excited state
of the N = 1 system. Because of this, it appears at a lower energy in the photoemission
spectrum. For a small laser amplitude E0 = 0.25 the system gets mainly excited into the
state ψU which is the reason why the second excitation peak is much higher than the first.
The full propagation of the Green function combined with the SOA selfenergy shows
excellent agreement with the exact result. The position and height of both, the main
peak at ω ≈ −1J and the two excitation peaks, are well reproduced. The GKBA solution
shows some deviations for the main peak and especially for the first excitation peak at
ω ≈ 1J . Comparing with Fig. 4.1-F6 reveals that this peak is the one that already has an
unphysical contribution in the ground state.
For E0 = 0.5, both excitation peaks have about the same spectral weight for the exact
solution because the system is partially excited to the highest state ψ+. Again, the GKBA
result overestimates the weight of the first excitation peak due to the already insufficient
description of the ground state. In stark contrast to the case of a small laser amplitude,
here, the full propagation shows a severe broadening of all peaks in the photoemission
spectrum. The two excitation peaks of the exact result are merged to one single broadened
peak in the solution of the full two-time propagation. This broadening of the peaks
corresponds to the unphysical damping of the density oscillations in Fig. 4.2-F2.
Thus, in order to get accurate information about the spectral properties of a system using
the NEGF approach, one has to make sure that the considered excitations are weak enough
to not result in an unphysical damping of the system. Although the GKBA does deal with
the damping problem, using it to get access to spectral information is not an option since
it even fails to predict the correct ground state spectrum. To get a better understanding
of the effect, the following part focuses on the reasons of the artificial damping.

21As this is the photoemission spectrum it shows transitions to the (N − 1)-particle system. In this case
the Hubbard dimer is considered at half filling, i.e. N = 2.



4.2 Dynamical results 75

−3 −2 −1 0 1 2

ω/J

0

2

4

6

8

10

12

A
<

(ω
)/

a.
u.

Exact
SOA
GKBA− SOA

Figure 4.2-F3 – Photoemission spectrum (cf. Eq. (2.2-E98)) of a Hubbard dimer (Ns = 2)
at half filling and U = 1J . The width of the probe pulse is set to κ = 12.5J−1.
The system is excited by a laser pulse given by Eq. (4.2-E2) with an amplitude of
E0 = 0.25. The NEGF results using the full two-time propagation (red) and GKBA
(blue) combined with the SOA selfenergy are compared to the exact solution (black)
described in Sec. 3.4.

−3 −2 −1 0 1 2

ω/J

0

2

4

6

8

10

A
<

(ω
)/

a.
u.

Exact
SOA
GKBA− SOA

Figure 4.2-F4 – Photoemission spectrum (cf. Eq. (2.2-E98)) of a Hubbard dimer (Ns = 2)
at half filling and U = 1J . The width of the probe pulse is set to κ = 12.5J−1.
The system is excited by a laser pulse given by Eq. (4.2-E2) with an amplitude of
E0 = 0.5. The NEGF results using the full two-time propagation (red) and GKBA
(blue) combined with the SOA selfenergy are compared to the exact solution (black)
described in Sec. 3.4.
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Figure 4.2-F5 – Density on the first site of a Hubbard dimer (Ns = 2) at half filling and
U = 2J . The system is excited at t0 = 0 by a sudden kick of the potential on the
first site given by Eq. (4.2-E3). The strength of the excitation is given by w0. The
calculations are performed using the full two-time propagation combined with the
SOA selfenergy.

4.2.2 Artificial damping problems

The topic of correlation induced artificial damping of the NEGF dynamics for finite
Hubbard systems is well known and was frequently discussed in recent years [89, 107]. It
was found that for all selfenergies which include correlation effects the KBEs develop a
steady-state solution when propagating a strongly excited system. The reason for this
lies in the selfconsistency of the propagation and the many-body approximations. Any
correlation including selfenergy leads to the summation of unphysical contributions. In
the exact solution all of these terms would cancel each other out. However, when using
approximations for the selfenergy, artificial contributions remain and act as an energy
reservoir that causes the damping of the dynamics for strong excitations [56].
The following part will focus on the influence of these artificial states on the photoemission
spectrum. In Figs. 4.2-F5 and 4.2-F6 a Hubbard dimer at an interaction of U = 2J is
excited instantaneously at t0 = 0 by a sudden kick of the potential on the first site:

fi(t) = δi,1δ̃(t, t0)ω0 , (4.2-E3)

with δ̃(t, t′) = 1 if t = t′ and δ̃(t, t′) = 0 otherwise. In Fig. 4.2-F5 the density on the first
site is shown up to a propagation time of t = 75J−1. The calculations were performed
using the full propagation and the SOA selfenergy. For weak excitations, i.e. ω0 = 10J
and ω0 = 15J , the amplitude of the density oscillation remains constant except for
temporary variations. However, for ω0 = 20J the oscillation is strongly damped and an
steady state is reached at t ≈ 55J−1.
The photoemission spectrum of the same setup is depicted in Fig. 4.2-F6 in logarithmic
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Figure 4.2-F6 – Photoemission spectrum of a Hubbard dimer (Ns = 2) at half filling
and U = 2J in logarithmic representation. The width of the probe pulse is set to
κ = 12.5J−1. The system is excited by a sudden kick of the potential on the first
site given by Eq. (4.2-E3). The strength of the excitation is given by w0. The NEGF
calculations are performed using the full two-time propagation combined with the
SOA selfenergy. Additionally, the ground state result is depicted for the NEGF
approach (gray) and the exact solution (black) using the Lanczos propagation (cf.
Secs. 2.1.1 and 3.4).

representation. Already for the ground state a striking observation can be made. While
the exact solution only shows a main peak at ω ≈ −1J and a secondary peak at ω ≈ −3J ,
the NEGF result displays a series of six equidistant and monotonically decreasing peaks
between ω ≈ −1J and ω ≈ −13J . These artificial contributions emerge due to the
selfconsistent nature of the approximate solution.
When the system is excited, peaks occur above the Fermi energy. Furthermore,
for weak excitations of ω0 = 10J and ω0 = 15J spectral weight is transferred to
adjacent unphysical states. In the case of ω0 = 20J this effect is even more pro-
nounced so that no single peaks can be identified anymore. This redistribution of
the spectral weight from physical to artificial states leads to the broadening of the
spectrum. It can be understood as the dissipation of energy into unphysical energy levels
that results in the damping of the dynamics and the development of a steady-state solution.





79

5 Graphene

For a long time the existence of graphene was not believed to be possible because the
Mermin–Wagner theorem [108] postulates the instability of any 2D crystal at finite
temperatures due to thermal fluctuations [109]. Nevertheless, in 2004 A.K. Geim and K.S.
Novoselov were able to produce isolated monolayers of graphene by the use of adhesive
tape on graphite [1]. For their groundbreaking experiments regarding the two-dimensional
material graphene both researchers received the Nobel Prize in Physics in 2010 [110].
The unique mechanical, optical and electronic properties of graphene have been studied
theoretically long before its first synthesis in 2004 [111–113]. However, especially in
the last decade the interest in graphene has grown tremendously. Today the field of
application ranges from electrodes in solar cells [2] over ultrafast photodetectors [6] to
graphene-based flexible and transparent displays [114, 115]. Additionally, the use of
graphene nanostructures in place of silicon in today’s computational devices is hoped to
increase the miniaturization in the fabrication of semiconductors [7].
This chapter will present the properties of graphene and finite graphene nanostructures,
the so-called nanoribbons. Furthermore, the interesting effect of carrier multiplication is
introduced that is essential for various applications of graphene, including solar energy
harvesting [3–5]. To describe these nonequilibrium effects in finite graphene nanostructures,
the Hubbard model introduced in Sec. 2.3 is extended to take into account the overlap of
adjacent orbitals and hopping between up to third nearest neighboring sites.

5.1 Properties of graphene

The elementary constituent of graphene is Carbon, the sixth element of the periodic table.
As such, it contains six electrons that are in the configuration 1s22s22p2 if the carbon is
in the ground state. That is, two electrons are close to the nucleus and occupy the inner
shell 1s while the other four fill the outer shells of the 2s and 2p orbitals. However, in
the presence of other Carbon atoms one electron from the 2s orbital is excited to the 2p
orbital in order to form covalent σ-bonds between the atoms. The quantum mechanical
superposition of the remaining 2s orbital with n of the 2p states is called spn hybridiza-
tion [116].
The structure of graphene is obtained by the planar sp2 hybridization. The three hy-
bridized orbitals are oriented in a plane and have mutual angles of 120◦. This leads the
carbon atoms to arrange in a hexagonal structure, the so-called honeycomb lattice. The
remaining unhybridized 2p orbital is oriented perpendicular to the plane. Due to the
non-negligible overlap between these orbitals of adjacent atoms, they form the so-called
π-bonds [117]. These half-filled bands are responsible for most of graphene’s interesting
electronic properties.
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5.1.1 Lattice structure

As mentioned above, the carbon atoms in graphene form a planar hexagonal lattice due to
their sp2 hybridization. In Fig. 2.3-F2 it was already discussed that the honeycomb lattice
is not a Bravais lattice, i.e. two adjacent sites are not equivalent. Instead, it can be seen
as a triangular Bravais lattice with a two-atom basis. This is illustrated in Fig. 5.1-F1(a)
where the blue and red sites correspond to the A and B triangular sublattice, respectively.
All nearest neighbors (NNs) of a site of the A sublattice are part of the B sublattice and
vice versa. The vectors that connect a site to its NNs are given by
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, (5.1-E1)

δ2 =
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2
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δ3 = −aey , (5.1-E3)

where the distance between neighboring carbon atoms is a = 0.142 nm [118]. The basis
vectors of the triangular lattice are
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with the lattice spacing ã =
√

3a = 0.24 nm between two sites of the same sublattice [119].
Using the triangular lattice one can define a reciprocal lattice for the honeycomb structure.
It is spanned by the basis vectors
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and is again a hexagonal lattice. The first Brillouin zone (BZ) for the honeycomb lattice
of graphene is depicted in Fig. 5.1-F1(b). The points of high symmetry are given by
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ey , (5.1-E8)
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and Γ at the origin. The so-called Dirac points are located at the six corners of the first
BZ and are denoted as K and K ′ alternatingly due to their different chiralities [120].
The electronic properties of graphene are significantly determined by the cone-like form
of the band structure around these points, the so-called Dirac cones. Due to the linear
dispersion in the vicinity of the Dirac points, low-energy electrons in graphene behave
like relativistic massless fermions [111, 113] and can be described by a Dirac equation.
For a better understanding of this, the following part focuses on the energy dispersion of
graphene within the tight-binding approximation.
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Figure 5.1-F1 – a) Lattice structure of graphene. The honeycomb lattice is not a Bravais
lattice. It consists of two triangular Bravais sublattices A (blue) and B (red). Thus,
it can be seen as a triangular lattice with a two-point basis. The vectors are given
by Eqs. (5.1-E1) to (5.1-E5).
b) First Brillouin zone of graphene. The reciprocal lattice of the honeycomb lattice
is again a hexagonal lattice. The basis vectors are given by Eqs. (5.1-E6) and
(5.1-E7), the points of high symmetry by Eqs. (5.1-E8) to (5.1-E10), Γ is at the
origin. The gray shaded area marks an alternative Brillouin zone.

5.1.2 Tight-binding description

In the graphene lattice three electrons per carbon atom form strong covalent σ-bonds
with neighboring atoms while one electron is part of the π-bond that determines the
electronic properties of graphene at low energies such as optical excitations [119]. Because
the π-orbitals are perpendicular to the graphene plane, they are localized at the atomic
positions. Thus, it is a reasonable choice to describe the π-bands in the tight-binding
model that was already introduced in Sec. 2.3.2. The σ energy bands are far away from
the Fermi energy and are therefore not considered in the following.
If one only allows hopping between adjacent sites, which corresponds to the standard
Hubbard model presented in Sec. 2.3, the dispersion relation of the π-electrons of graphene
within the tight-binding approximation is given by [117]

E(k) = ±J

√√√√3 + 2 cos
(√

3kya
)

+ 4 cos
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3

2
kya

)
cos
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3

2
kxa

)
, (5.1-E11)

where J is the hopping amplitude of the Hubbard model and a is the distance between
neighboring carbon atoms. The energy dispersion within the first BZ is depicted in
Fig. 5.1-F2(a) where the Dirac cones are clearly visible at the high symmetry points K
and K ′. In Fig. 5.1-F2(b) a cut through the dispersion relation is shown. Here, it is
apparent that the energy dispersion contains two separate bands, the valence and the
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Figure 5.1-F2 – a) Energy dispersion (cf. Eq. (5.1-E11)) of graphene within the tight-
binding approximation for only nearest neighbor hopping. The dispersion is shown
for k ≤ 8π

5
√

3
, i.e. slightly more than the first BZ, to make the Dirac cones at K

and K ′ better visible. The dashed line marks the path for the cut through the
dispersion shown in b).
b) Cut through the dispersion marked by the dashed line in a).

conduction band which correspond the minus and plus sign in Eq. (5.1-E11), respectively.
The two bands touch only in the symmetry points K and K ′ and form the Dirac cones.
The aforementioned linear dispersion in the vicinity of these points is also clearly visible in
Fig. 5.1-F2(b). The symmetry of the two bands corresponds to the particle-hole symmetry
that is given because only hopping between nearest neighbors is considered in the derivation
of Eq. (5.1-E11) [117]. As expected, the bandwidth of graphene within the tight-binding
approximation is 6J (cf. Fig. 2.3-F2 for a honeycomb lattice).

5.2 Graphene nanoribbons

Due to its exceptional electronic and transport properties, graphene is a promising can-
didate material for a lot of future technological applications. However, as graphene is a
semimetal, its zero bandgap prevents the realization of next-generation graphene-based
nanoelectronics [8]. Therefore, a lot of effort was put into creating semiconducting graphene
materials that still exhibit its remarkable transport properties. While some methods focus
on substrate-induced [10, 11] or strain-induced bandgaps [12, 13], the most promising
approach is obtaining a bandgap through the effect of quantum confinement in finite
graphene nanostructures [14, 15].
In this thesis, the focus lies on the so-called graphene nanoribbons (GNR) which are quasi-
one-dimensional slices of graphene. Because of their typical width of only a few nanometers
they exhibit various remarkable properties such as enhanced electron correlations due to
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Figure 5.2-F1 – Illustration of the structure of armchair graphene nanoribbons (AGNR)
and zigzag graphene nanoribbons (ZGNR). The width N of the graphene ribbons
is defined as the number of dimer lines and the number of zigzag lines for AGNR
and ZGNR, respectively. The dashed rectangles define the unit cells.

quantum size effects [102].
The electronic properties and especially the low energy spectrum of the π-electrons is
strongly influenced by the edge structure of the nanoribbons. Depending on the shape of
the edges one distinguishes between armchair graphene nanoribbons (AGNR) and zigzag
graphene nanoribbons (ZGNR). An illustration of both types is shown in Fig. 5.2-F1. The
width N of the ribbons is defined as the number of dimer lines for AGNR and the number
of zigzag lines for ZGNR. It was found that for the two individual types of nanoribbons the
bandgap shows a completely different dependence on the width N [121]. While ZGNRs
are always metallic, i.e. Egap = 0 , AGNRs exhibit a vanishing bandgap only in the case
of N = 3M − 1, where M is an integer [122]22. In all other cases AGNRs are found to be
semiconducting with a bandgap that can be tuned by their width. Therefore, especially
nanoribbons with an armchair edge are interesting for the development of next-generation
electronics [20].
Because of their tuneable bandgap, mainly AGNRs are studied in the scope of this work.
Thus, in the following the band structure of these type of GNRs is analyzed within
the tight-binding approximation. The dangling bonds at the edges are assumed to be

22It should be noted that this is true only if the ribbons have a considerable length. In this thesis, AGNRs
with a width of N = 5 are studied. Although they meet the above condition for a metallic behavior,
they were found to have a non-zero bandgap due to there finite length of only a few carbon atoms.
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Figure 5.2-F2 – a) Discrete sampling of the first BZ for an armchair GNR of width N = 5
(5-AGNR). The gray shaded area marks an alternative BZ (cf. Fig. 5.1-F1(b)).
Due to the finite width of the ribbon it is sampled at only five discrete values of kx
given by Eq. (5.2-E1) (dashed lines).
b) Band structure of a 5-AGNR and a 7-AGNR. The individual bands correspond
to the discrete values of kx (cf. Eq. (5.2-E1) and Fig. 5.1-F1(a)). The 5-AGNR is
metallic while the 7-AGNR has a non-zero bandwidth and shows semiconducting
behavior.

terminated by hydrogen atoms. This way they do not contribute to the energy levels near
the Fermi energy and can be neglected.
The energy dispersion of planar graphene within the TB method is given by Eq. (5.1-E11).
Due to the finite width of the nanoribbons, the momentum in the corresponding dimension
can only attain certain discrete values given by [123]

kx =
2π√

3

n

N + 1
n = 1, . . . , N , (5.2-E1)

where N is the width of the AGNR, i.e. the number of dimer lines. A vivid illustration for
the case of N = 5 is shown in Fig. 5.2-F2(a). It it apparent that in this case the K and K ′

points are sampled which is the reason why, for the considered width of N = 5, an AGNR
of considerable length is metallic. In Fig. 5.2-F2(b) the corresponding band structure
is depicted where one band corresponds to one sampling path at a given kx. Here, it is
obvious that the bandgap of the 5-AGNR vanishes because the Dirac points are included in
the sampling paths denoted by 2 and 4. In contrast, the 7-AGNR is semiconducting since
for N = 7 the discrete kx, given by Eq. (5.2-E1), do not cut through the Dirac points.

Another type of graphene nanostructures are the so-called carbon nanotubes (CNT)23. A
CNT can be seen as a rolled up GNR that forms a hollow cylinder. As such, it exhibits

23They are named carbon instead of graphene nanotubes for historic reasons. CNTs were studied long
before graphene was first produced experimentally in 2004 [124].
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Figure 5.2-F3 – Illustration of different approaches to produce GNRs experimentally.
a) Etching graphene with oxygen plasma using silicon nanowires as etch mask.
Taken from Ref. [16]. b) Unzipping of multiwalled CNTs by oxidation and
sonication. Taken from Ref. [17]. c) Bottom-up approach: starting from the
molecular precursor dibromoperylene C20H10Br2, well defined GNRs are created
in a two step procedure. Taken from Ref. [19]. d) Scanning tunneling microscopy
(STM) image of the 5-AGNRs produced by the procedure shown in c). The white
scale bar corresponds to 2 nm. Taken from Ref. [19].

similar properties as a nanoribbon. More information on the topic of CNTs can be found
in Ref. [125].

5.2.1 Synthesis of graphene nanoribbons

While the theoretical understanding of graphene nanoribbons advanced over the last
decades [14, 121, 123, 126], the production of well-defined GNRs was achieved only
recently [19, 20]. Today, there are countless different techniques for the synthesis of
nanoribbons with different width and edge structure [18]. Here, we will focus on the three
most common approaches that are depicted in Fig. 5.2-F3.
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Etching of graphene [16]: Starting from a graphene layer on a silicon substrate, silicon
nanowires are aligned onto the graphene to function as a physical etch mask. The
unprotected graphene is etched away using an oxygen plasma. After the etching procedure
the silicon nanowires can be removed by a brief sonication. The width of the resulting
GNRs on the silicon substrate depends on the size of the used nanowires as well as on
the duration of the etching and is typically less than 10 nm. An illustration is depicted in
Fig. 5.2-F3(a).

Unzipping of CNTs [17]: The first large-scale synthesis of CNTs was realized in
1992 [127] during an arch discharge. Since then a lot of progress was made so that
today CNTs are commercially available [128]. Therefore, this approach uses multiwalled
CNTs as a precursor to produce GNRs. First, the nanotubes are locally damaged by
oxidation in air at around 500 ◦C. Second, a mechanical sonication in an organic solvent
is used to unzip the nanotube along its axis. The width and the edge structure of the
resulting GNRs are determined by the type of the CNTs used. Due to the varying size
of the available nanotubes the resulting width ranges from 10 nm to 20 nm [18]. An
illustration of this procedure is shown in Fig. 5.2-F3(b).

Bottom-up approach [19]: The third approach was developed only in recent years [129,
130] but, at the same time, is the most promising. Starting from a molecular precursor,
GNRs of well defined width can be synthesized on a substrate in a two step procedure. In
the example depicted in Fig. 5.2-F3(c) and Fig. 5.2-F3(d) the substrate used was Au(111)
with the precursor dibromoperylene C20H10Br2. In the first step at 200 ◦C the bromine
is detached through dehologenation. Further heating to 320 ◦C leads to dehydrogenation
resulting in the formation of well defined 5-AGNR with a width well below 1 nm. Here,
the choice of the molecular precursor determines the structure of the resulting GNRs.

5.3 Carrier multiplication in graphene

The short-time nonequilibrium dynamics in graphene after an excitation by, for example, a
laser pulse are significantly affected by the electron-electron interactions such as Coulomb
induced carrier scattering. These scattering events can be distinguished into intraband,
interband and Auger processes [131, 132]. Scattering interactions where both carriers
remain in their initial band are denoted as intraband, whereas during an interband
event both carriers perform a band transition. During the Auger processes one of the
scattering electrons changes its band while the other remains in its initial band. Thus,
Auger scattering is qualitatively different from all other Coulomb mediated scattering
channels since it is the only process that changes the total number NCB of charge carriers
in the conduction band. Depending on how NCB is changed, one distinguishes Auger
recombination (AR) and impact excitation (IE). The latter describes a scattering process
with one electron initially in the valence and one in the conduction band. During the
scattering event the transferred energy excites the energetically lower electron from the
valence to the conduction band which leads to an increase of the number of charge carriers
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Figure 5.2-F4 – Illustration of the two Auger scattering processes, namely impact exci-
tation (IE) and Auger recombination (AR), in the vicinity of a Dirac cone. In the
case of IE (green) an electron-hole pair is generated which leads to an increase of
the number of charge carriers in the conduction band NCB. As a consequence the
mean energy of electrons in the conduction band ECB/NCB is reduced. The reverse
process is denoted as AR (yellow). Graphic taken from Ref. [24].

NCB. This can also be described as the creation of an electron-hole pair while the reverse
process, the annihilation of an electron-hole pair, is denoted as Auger recombination. Both
types of Auger scattering are illustrated in Fig. 5.2-F4.
Of particular interest for the development of photodetectors or photovoltaic devices is the
process of impact excitation since it allows for the generation of multiple charge carriers
by a single photon, which is often referred to as carrier multiplication (CM) [133]. In
conventional semiconductors Auger processes are either energetically forbidden or extremely
unlikely and inefficient. In graphene, however, they are permitted and efficient due to the
linear shape of the band structure around the Dirac points [131]. Additionally, due to
carrier confinement in finite structures such as quantum dots, nanotubes or nanoribbons,
the rate of Auger processes is further enhanced while the electron-phonon interaction is
reduced [134]. These effects make graphene a promising material for photovoltaic devices
since it might improve the efficiency of solar cells beyond the Shockley–Queisser limit [135,
136]. So far, the effect of CM has been predicted in graphene [137] and various graphene
nanostructures, namely quantum dots [138], nanotubes [139] and nanoribbons [140]. In
the case of monolayer graphene, quantum dots and nanotubes it has also been confirmed
experimentally [22, 141, 142].
In 2015 Gierz et al. [24] performed femtosecond time- and angle-resolved photoemission
spectroscopy (TR-ARPES) measurements on monolayer graphene to measure the density
and average kinetic energy of carriers in the conduction band directly. Their results are
shown in Fig. 5.3-F1. It was found that in a time window of approximately 26 fs after the
excitation by a laser pulse the dynamics of the system is dominated by the process of IE.
After that, the state decays through AR and electron-phonon scattering. For homogeneous
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Figure 5.3-F1 – Total number of carriers inside the conduction band (NCB, red) and
their average kinetic energy (ECB/NCB, blue) for graphene after the excitation by
a laser pulse. In a windows of 26 fs after the excitation NCB keeps increasing while
ECB/NCB already decreases which indicates IE. After that, the system thermalizes
through AR and electron-phonon scattering. Experimental results of TR-ARPES
measurements performed by Gierz et al. in Ref. [24].

graphene such behavior was already predicted theoretically by Winzer in 2013 [131] using
graphene Bloch equations within the tight-binding approximation. However, until now no
theoretical approach exists that can describe the correlated nonequilibrium dynamics of
finite graphene nanostructures. In order to create a numerical method that is capable of
accurately simulating those systems, in the following part the standard Hubbard model
presented in Sec. 2.3 is extended and combined with the NEGF approach.

5.4 Extended Hubbard model for finite graphene nanostructures

Finite graphene nanostructures, especially in nonequilibrium, are extremely complex,
inhomogeneous systems that put high requirements on any theory that attempts to
describe them accurately. Despite their finite width they can contain up to several
hundreds of carbon atoms. Therefore, one has to choose a basis that simultaneously takes
into account all important features of the bandstructure and is simple enough to simulate
the dynamics of such large systems numerically for several femtoseconds. A convenient
approach is given by the Hubbard model that was already presented in Sec. 2.3. Due to its
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Figure 5.3-F2 – Illustration of the position of neighboring sites in graphene. The three
nearest neighbors (1NN) of the white site are marked in red, the six second nearest
neighbors (2NN) in blue and the three third nearest neighbors (3NN) in green.

simplistic nature it greatly reduces the numerical effort needed for the description of finite
systems compared to more sophisticated basis sets like the Kohn–Sham functions [143].
Nevertheless, it was shown on many occasions that the Hubbard model is able to reproduce
both the ground state [144] and transport properties [145] of GNRs and CNTs correctly.
However, for this, one has to extent the standard Hubbard model presented in Sec. 2.3 to
take into account the orbital overlap and hopping between up to third nearest neighbors24.
To consider hopping beyond nearest neighbors one has to modify the hopping matrix t
that occurs in the single-particle Hamiltonian (cf. Eq. (3.2-E8)). For hopping between up
to third nearest neighboring (3NN) sites t is given by

tij =


t1 if (i, j) is 1NN

t2 if (i, j) is 2NN

t3 if (i, j) is 3NN

0 else

. (5.4-E1)

The parameters t1, t2 and t3 can be determined by fitting the tight-binding band structure
to density functional theory (DFT) calculations [146]. The parameter sets that are used
in this work are given in Tab. 5.4-T1.
Including the orbital overlap into the Hubbard model can be done in form of an overlap

24These improvements do not increase the numerical effort of the simulation.
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matrix S that is defined as

Sij = δi,j +


s1 if (i, j) is 1NN

s2 if (i, j) is 2NN

s3 if (i, j) is 3NN

0 else

. (5.4-E2)

As the name suggests, S describes the overlap between orbitals on different sites. In the
case of orthogonal basis states, the overlap vanishes and S = 1. However, in a correct
description of graphene the finite overlap of the π-orbitals has to be taken into account.
Again, the parameters s1, s2 and s3 that are obtained through a comparison with DFT
results are given in Tab. 5.4-T1.
A non-vanishing orbital overlap is well known for the case of molecular orbitals in quantum
chemistry [147]. In such a case the Hamiltonian H of the system is described by a
generalized eigenvalue problem in a non-orthogonal basis [145]:

H |ψ〉 = ES |ψ〉 . (5.4-E3)

If S−1 exists, this can be transformed into a standard eigenvalue problem

S−1H︸ ︷︷ ︸
H̃

|ψ〉 = E |ψ〉 . (5.4-E4)

However, H̃ is not generally Hermitian because the basis is still non-orthogonal. This can
be solved by applying the symmetric Löwdin orthogonalization [148]. In a first step a
transformation matrix U is defined as

U = S−
1
2 . (5.4-E5)

Because S is real and symmetric, one can show that

U †SU = 1 . (5.4-E6)

Now, the generalized eigenvalue problem in Eq. (5.4-E3) can be transformed as

H |ψ〉 = ES |ψ〉
HUU−1︸ ︷︷ ︸

1

|ψ〉 = ESUU−1︸ ︷︷ ︸
1

|ψ〉 (5.4-E7)

U †HU︸ ︷︷ ︸
H′

U−1 |ψ〉︸ ︷︷ ︸
|Ψ〉

= EU †SU︸ ︷︷ ︸
1

U−1 |ψ〉︸ ︷︷ ︸
|Ψ〉

.

The standard eigenvalue problem in a diagonal basis now reads

H ′ |Ψ〉 = E |Ψ〉 , (5.4-E8)

where the new Hermitian Hamiltonian H ′ is given by

H ′ = U †HU . (5.4-E9)

In a last step one can look at the connection between H ′ and the non-Hermitian Hamilto-
nian H̃ defined in Eq. (5.4-E4):
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Structure Set J/eV t1/J t2/J t3/J s1 s2 s3

2D
Graphene

1NN 2.7 1 - - - - -

3NN
(Reich2002) 2.97 1 0.025 0.111 0.073 0.018 0.026

Graphene
ribbons

3NN
(Tran2017) 2.756 1 0.026 0.138 0.093 0.079 0.070

Table 5.4-T1 – Various parameter sets for the hopping (cf. Eq. (5.4-E1)) and overlap (cf.
Eq. (5.4-E2)) matrix in the extended Hubbard model. For homogeneous graphene
the parameters are taken from Reich et al. [149] and for GNRs from Tran et al. [146].

H ′ =
(
S−

1
2

)†
HS−

1
2

= S−
1
2HS−

1
2

= S
1
2 S−1H︸ ︷︷ ︸

H̃

S−
1
2

= U−1H̃U (5.4-E10)

It is apparent that the Löwdin orthogonalization includes the overlap matrix S in the new
defined Hamiltonian. Additionally, a change of basis is performed using the transformation
matrix U . Thus, a general matrix quantity A can be transformed from the orthogonal to
the non-orthogonal basis by the transformation

A = UA′U−1 , (5.4-E11)

where A′ is given in the orthogonal basis.

To apply this procedure to the Hubbard model and the NEGF approach, one has to define
a new effective single particle Hamiltonian in an orthogonal basis

heff′ = U †heffU , (5.4-E12)

where U is given by Eq. (5.4-E5). Since the HF selfenergy is included in heff, this
approach takes into account non-local interactions within the mean field level. However,
all contributions beyond HF assume an on-site interaction to keep the numerical effort
reasonable. Beside the new defined effective Hamiltonian heff′ no additional changes have
to be made to the propagation scheme of the KBEs. However, the new orthogonal basis in
which the propagation of the KBEs is performed does not correspond to the sites of the
Hubbard lattice. Therefore, after the calculation one has to transform G< and G> into
the non-orthogonal basis of the Hubbard sites via Eq. (5.4-E11).

As already mentioned, the common approach to generate parameter sets for the hopping
and overlap matrix is to compare TB calculations of the ground state band structure to
more sophisticated DFT results. Because the energy dispersion strongly depends on the
lattice structure of graphene (cf. Figs. 5.1-F2 and 5.2-F2), various parameter sets exist
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Figure 5.4-F1 – Finite graphene structures that are used to test the implementation
of the extended Hubbard model and the parameter sets shown in Tab. 5.4-T1.
The result for system a), b) and c) is shown in Figs. 5.4-F2, 5.4-F4 and 5.4-F3,
respectively.

that were found to provide good results for either homogeneous or finite systems [146, 149,
150]. The parameter sets used in this work are presented in Tab. 5.4-T1. In addition to
the standard Hubbard model that takes into account only nearest neighbor hopping, the
set by Reich et al. [149] performs well for homogeneous graphene while Tran et al. [146]
generated a parameter set specifically for finite graphene nanostructures such as GNRs. It
should be noted that the parameters are not necessarily monotonic, i.e. for instance t1 > t2
but t2 < t3. This might be due to the similar distance of the second and third neighbor to
the initial site which is illustrated in Fig. 5.3-F2 by the dashed lines. Additionally, the
second neighboring site might be screened to some degree by the first neighbor.

It should be noted that the presented model does not include electron-phonon scattering.
However, in the calculations presented in Sec. 6.2 a time frame of about 15 fs after the
laser excitation is considered. In this regime relaxation due to electron-phonon processes
is negligible as seen in Fig. 5.3-F1. Thus, disregarding such effects is justified here.
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Figure 5.4-F2 – Energy dispersion (cf. Eq. (2.2-E97)) of the system depicted in
Fig. 5.4-F1(a). The propagation time after the adiabatic switching is Tend = 25J−1.
The colormap corresponds to NEGF calculations for U = 0 while the black dashed
lines represent analytical TB results for infinite homogeneous graphene [149]. The
parameter sets are given in Tab. 5.4-T1.

5.4.1 Reproducing ground state properties

In order to test the implementation of the extended Hubbard model and to analyze the
effects of the parameter sets including third nearest neighbor interaction on the band
structure, in this part the ground state energy dispersion of the systems shown in Fig. 5.4-F1
is calculated using the NEGF approach. The NEGF calculations are performed for U = 0
to allow for a comparison with analytical TB results for infinite homogeneous graphene
and GNRs with infinite length [149].
The parameter set by Reich et al. that performs well for homogeneous graphene is tested
on a quantum dot of Ns = 54 sites depicted in Fig. 5.4-F1(a). This system was successfully
used in the past to describe stopping power effects in homogeneous graphene [151]. The
result is shown in Fig. 5.4-F2. If only nearest neighbor hopping is considered, the band
structure exhibits a particle-hole symmetry as already shown in Fig. 5.1-F2(b). However,
including second nearest neighbor hopping breaks this symmetry. This is due to the fact
that graphene can be described as two triangular lattices and second nearest neighbor
sites are part of the same sublattice as the initial site25. Additionally, the parameter
set of Reich et al. changes the slope of the bands in the low energy regime around the
Dirac points. In general, the NEGF results are in good agreement with the analytical TB
dispersion for infinite homogeneous graphene marked as black dashed lines. The small
deviations like a non-vanishing bandgap in the NEGF results are due to the finite size of
the system.

25In the case of a vanishing overlap, including only first and third nearest neighbor hopping results in a
symmetric band structure because in that case only hopping between different sublattices is allowed.
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Figure 5.4-F3 – Energy dispersion (cf. Eq. (2.2-E97)) of the system depicted in
Fig. 5.4-F1(c). The propagation time after the adiabatic switching is Tend = 15J−1.
The colormap corresponds to NEGF calculations for U = 0 while the black dashed
lines represent analytical TB results for an 5-AGNR of infinite length [149]. The
parameter sets are given in Tab. 5.4-T1. The individual bands are due to the
discrete sampling of the BZ (cf. Fig. 5.2-F2).

In Fig. 5.4-F3 the different parameter sets are compared for an AGNR of Ns = 100 sites
as depicted in Fig. 5.4-F1(c). The different bands are due to the discrete sampling of the
BZ as shown in Fig. 5.2-F2. Again, the extended Hubbard model breaks the particle-hole
symmetry for the parameter sets that take into account hopping beyond nearest neighbors.
Here, it becomes apparent why it is important to chose the appropriate parameter set for a
given system. Although the sets of Reich and Tran roughly agree on most parameters (e.g.
t2, t3 and s1), they show huge differences in the band structure. By comparison with DFT
results it was found that the parameter set of Tran best describes GNRs [146]. Because
the systems considered in this work are finite graphene nanostructures such as quantum
dots and GNRs, the parameter set of Tran will be used for all following calculations. In
general, the NEGF results are in excellent agreement with the analytic TB calculation for
an infinite AGNR of the same width. There are only minor deviations due to finite size
effects because the system of Ns = 100 sites already is of considerable length.

Until now all calculations within the NEGF approach have been performed for U = 0
to compare the results to analytic TB band structures. However, it is well known that
the DFT approach that is used to obtain the parameter sets for the extended Hubbard
model systematically underestimates the bandgap of finite graphene systems [14]. Using
the NEGF approach one can increase the bandgap by including correlations through
appropriate selfenergy approximations like SOA or GWA. It has already been shown in
Fig. 4.1-F5 that the width of the Hubbard gap depends on the interaction U . Therefore,
by adjusting U it is possible to reproduce the correct bandgap for any GNR using the
NEGF approach.
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Figure 5.4-F4 – Left and middle panel: Energy dispersion (cf. Eq. (2.2-E97)) of the
system shown in Fig. 5.4-F1(b). The propagation time after the adiabatic switching
is Tend = 15J−1. The colormap corresponds to NEGF calculations using the HF
and GWA selfenergy with U = 0 and U = 3.5J , respectively. The dashed red
(black) lines in the left (middle) panel show the results of DFT (GW) calculations
by Wang et al. [152] for an infinite AGNR of the same width. The right panel
shows the DOS for the NEGF results.
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Figure 5.4-F5 – Ground state photoemission spectrum (cf. Eq. (2.2-E98)) of a 5-AGNR
containing Ns = 30 sites for U = 3.5J . The width of the probe pulse is set to
κ = 22.5J−1. As already seen in Sec. 4.1.3 the GKBA shows excitations above the
Fermi energy at ω = 0.
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In Fig. 5.4-F4 the band structure of a 7-AGNR with Ns = 112 (cf. Fig. 5.4-F1(b)) is
calculated using the NEGF approach and compared to DFT and GW results by Wang
et al. [152] for an infinite AGNR of the same width. The band structure for the HF
selfenergy and an interaction of U = 0 is in perfect agreement with the DFT result. This is
hardly surprising since the parameters of the extended Hubbard model were generated to
reproduce the DFT results for GNRs in the tight-binding limit. Using the GWA selfenergy
combined with an interaction of U = 3.5J significantly increases the bandgap which is best
visible in the DOS in the right panel of Fig. 5.4-F4. Especially the bands above the Fermi
energy are in good agreement with the GW result of Wang et al., while the lower bands
show some deviations. In theory, one could increase the interaction further to achieve
an even better agreement. However, on the one hand this would make the propagation
numerically more challenging and on the other hand the NEGF approach fails to describe
systems correctly for high interactions near the bandwidth of 6J . Thus, in the following
calculations an on-site interaction of U = 3.5J is chosen.

To complete the discussion of the ground state results, the performance of the GKBA
is tested within the extended Hubbard model. It was shown in Sec. 4.1.3 that for the
standard Hubbard model the GKBA is not suited to describe the spectral properties
of ground state systems. In Fig. 5.4-F5 the ground state photoemission spectrum for a
5-AGNR of Ns = 30 sites is depicted for an interaction of U = 3.5J . While the spectrum
of the full two-time propagation combined with the HF and SOA selfenergy shows only
peaks at energies below the Fermi energy ωF = 0, the GKBA again predicts excitations
above ωF. Therefore, the GKBA is not used in the following calculations.



97

6 Results II: Laser excitations of finite graphene clusters

After the validity and correct implementation of the extended Hubbard model was confirmed
for the ground state in the last chapter, the following part addresses the nonequilibrium
dynamics of finite graphene nanostructures. The systems are excited by a linearly polarized
laser pulse given by Eq. (4.2-E2). Compared to the one-dimensional systems in Sec. 4, here,
it is important to consider the orientation of the polarization. Therefore, in a first part the
influence of the laser polarization on the dynamics of the excited system is analyzed. The
second part focuses on the effect of carrier multiplication in finite graphene nanostructures.
Systems of different size and geometry are addressed and various selfenergy approximations
are compared.
In all calculations the parameter set of Tran et al. is chosen for the extended Hubbard
model and the on-site interaction is set to U = 3.5J . In this parameter set one unit of
time J−1 corresponds to 0.23 fs.

6.1 Influence of the polarization

To analyze the effect that the orientation of the linear polarized laser pulse has on
the excited system, we look at a 7-AGNR with Ns = 112 sites that is depicted in
Fig. 5.4-F1b)26. In order to propagate a system of this size for a time of 125J−1 the HF
selfenergy approximation is used. It is assumed that the general dependence on the laser
orientation is already included on the mean field level. The laser excitation is described by
Eqs. (4.2-E1) and (4.2-E2) with the parameters E0 = 0.1, ω0 = 0.5J , σ = 4.787J−1 and
t0 = 20J−1. This corresponds to a laser fluence of 0.51 mJ/cm2. In the following, three
different orientations of the polarization are considered. In the first case the electric field
vector is oriented perpendicular to the ribbon axis, in the second it is aligned parallel to
the axis and the third orientation is diagonal. In all three cases the electric field vector
lies in the plane of the lattice.
In Fig. 6.1-F1 the total energy and the density on an exemplary site are shown for the
complete simulation. The maximum of the laser potential is reached at t0 = 20J−1. In the
inset it is clearly visible that in the case when the laser is polarized along the ribbon axis,
the most energy is transferred into the system, while the least energy is absorbed for the
perpendicular polarization. As one would expect, the final energy in the diagonal case lies
between the results of the two extremal orientations.
The amplitude of the density oscillations depends on the transferred energy. Thus, the
parallel polarization results in the strongest oscillation while the perpendicular orientation
shows the weakest response of the density. Interestingly, the density oscillations of the
parallel and diagonal excitation exhibit a similar frequency whereas the density of the
perpendicular polarization shows a completely different behavior.
To find the reason for this strong influence of the polarization on the transferred energy
and the density response of the system, in Fig. 6.1-F2 the optical spectrum is shown for
the same setups as in Fig. 6.1-F1. It contains information about the energy levels that are

26Note that the illustration of the system is rotated by 90◦ to fit in the plot. In the following graphics
the ribbon is assumed to be aligned in vertical direction.
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Figure 6.1-F1 – Total energy (top) and density on an exemplary site (bottom) of a 7-
AGNR with Ns = 112 sites (cf. Fig. 5.4-F1b)) for an interaction of U = 3.5J . The
system is excited by laser pulses of three different polarizations at t = 20J−1. The
remaining laser parameters are given in the text. The calculations were performed
using the HF selfenergy.
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Figure 6.1-F2 – Optical spectrum (cf. Eq. (6.1-E1)) of a 7-AGNR with Ns = 112 sites
(cf. Fig. 5.4-F1b)) for an interaction of U = 3.5J after the excitation by laser pulses
of three different polarizations. The remaining laser parameters are given in the
text. The calculations were performed using the HF selfenergy.
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Figure 6.1-F3 – Photoemission spectrum (cf. Eq. (2.2-E98)) of a 7-AGNR with Ns = 112
sites (cf. Fig. 5.4-F1b)) for an interaction of U = 3.5J in the ground state and
after the excitation by laser pulses of three different polarizations. The remaining
laser parameters are given in the text. The calculations were performed using the
HF selfenergy. The width of the probe pulse is set to κ = 5J−1.

excited by the laser pulse and can be accessed by a Fourier transform of the density on all
sites:

Aopt(ω) =
Ns∑
i=1

∣∣∣∣∫ dt e−iωtni(t)

∣∣∣∣ . (6.1-E1)

Looking at Fig. 6.1-F1, it is apparent that the polarization of the laser pulse determines
which energy levels are occupied. The spectrum for the parallel polarization does not show
a peak at ω ≈ 0.6J and ω ≈ 1.1J . Whereas the excitations at ω ≈ 0.5J , ω ≈ 0.75J and
ω ≈ 0.9J are not part of the spectrum for a laser pulse polarized perpendicular to the
ribbon axis. It is important to note, however, that in the case of the diagonal orientation all
contributions are included in the spectrum. The most noteworthy difference between the
spectrum of the parallel and perpendicular polarization is the peak at ω ≈ 0.75J = 2.07 eV.
It was found by Denk et al. [23] that this peak corresponds to the optical transition
between the last valence and the first conduction bands27. This transition, apparently, is
not induced by light that is polarized perpendicular to the ribbon axis and seems to be
the main reason for the weak response of the system.
A similar observation can be made for the photoemission spectrum in Fig. 6.1-F3. Again,
while the perpendicular polarization leads to only weak excitations above the Fermi energy
ωF = 0, an orientation of the electric field vector along the ribbon axis results in the
transfer of far more spectral weight to the upper band. However, due to the low resolution
of the spectrum it is not possible to get information on single excited peaks. Therefore,

27However, they find it at 1.9 eV instead of 2.07 eV. This difference might be attributed to the HF
selfenergy.
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Figure 6.1-F4 – Momentum resolved photoemission spectrum (cf. Eq. (2.2-E97)) of a 7-
AGNR with Ns = 112 sites (cf. Fig. 5.4-F1b)) for an interaction of U = 3.5J in the
ground state and after the excitation by laser pulses of three different polarizations.
The remaining laser parameters are given in the text. The calculations were
performed using the HF selfenergy. The width of the probe pulse is set to κ = 2.5J−1.
The colormap has a logarithmic scale.

it is favorable to look at the momentum resolved photoemission spectrum in Fig. 6.1-F4.
For the perpendicular polarization the excitations are mainly restricted to an area around
the Dirac points at ky = 0 and ky = 2π

3
. In contrast, when the laser pulse is polarized

parallel to the axis of the nanoribbon also higher bands are occupied and spectral weight
is transferred away from the Dirac points.
All results presented above are in good agreement with other findings for GNRs [23] and
CNTs [153] that confirm the high anisotropy of such systems. Therefore, in the following
part about carrier multiplication all laser pulses are polarized along the ribbon axis.

6.2 Carrier multiplication in graphene nanostructures

The effect of carrier multiplication (CM) in graphene is explained in Sec. 5.3. After an
excitation, additional charge carriers can be excited into the conduction band via impact
excitation (IE). This effect is interesting for photovoltaic devices in particular, since the
efficiency of current solar sells is restricted by the Shockley–Queisser limit. That is because
in conventional semiconductors a single photon can excite only one electron due to the
inefficiency of CM processes in those materials.
For homogeneous graphene the time-resolved dynamics of IE processes after a laser
excitation was first simulated by Winzer [131] using graphene Bloch equations in the
tight-binding approximation. Later, Gierz et al. confirmed the theoretical observations
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Figure 6.2-F1 – Illustration of the three systems studied in Sec. 6.2. The setups contain
two 5-AGNR with Ns = 20 (left) and Ns = 30 (right) sites. Additionally, a quantum
dot containing Ns = 24 sites is considered (center). The laser pulse is linearly
polarized along the armchair edge of the setups.

experimentally [24]. Until now, the theoretical description of CM effects in finite graphene
nanostructures was restricted to the study of single relaxation processes [140] or rough
approximations through Langevin dynamics [139] and rate equations [154]. Thus, in this
part CM processes in finite graphene structures are studied for the first time by simulating
the correlated nonequilibrium dynamics of the systems after a laser excitation. This is
achieved by combining the extended Hubbard model and the NEGF approach.

In Fig. 6.2-F1 the three considered systems are displayed, two short 5-AGNR with Ns = 20
and Ns = 30 sites and a quantum dot containing Ns = 24 sites28. Although the systems
differ only by a few atoms, they exhibit distinct spectral properties due to their finite size
and different edge structure. The systems are excited using a laser pulse as presented
in Eqs. (4.2-E1) and (4.2-E2) with the parameters E0 = 0.1 and σ = 4.35J−1. This
corresponds to a laser fluence of 0.46mJ/cm2 which is comparable to experimental laser
conditions [22, 25]. The laser frequency is set to ω0 = 1.55J for the systems with Ns = 24
and Ns = 30 sites and to ω0 = 1.85J for the system containing Ns = 20 sites, which
corresponds to a wavelength of 290 nm and 243 nm, respectively. This was done to ensure
that all setups get excited. The large width of the laser pulse in time results in a sharp
peak in frequency space. Because of this and the discrete band structure, the system
containing Ns = 20 sites shows no response for a laser frequency of ω0 = 1.55J . In general,
a short wavelength has to be chosen for the laser because the systems considered here
exhibit fairly large bandgaps due to their finite size. As discussed in the previous part the
laser pulse is linearly polarized along the direction of the armchair edge. This is illustrated
in Fig. 6.2-F1. The simulations are performed at zero temperature, T = 0, using the

28To study CM effects propagation times of 110J−1, including the adiabatic switching, are needed.
Therefore, calculations using numerically expensive selfenergy approximations like SOA or GWA are
restricted to small system sizes up to 40 sites. More information on this topic can be found in Sec.
3.3.3.
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Figure 6.2-F2 – Photoemission spectrum (top) (cf. Eq. (2.2-E98)) of the 5-AGNR
containing Ns = 30 sites shown in Fig. 6.2-F1 that is excited by a laser pulse
(bottom). The width of the probe pulse is set to κ = 2.5J−1. The spectrum
is shown for the times t = −20J−1 (black), t = 20J−1 (gray) and t = 60J−1

(blue). The calculation is performed using the SOA selfenergy and an interaction
of U = 3.5J . The system is excited using a laser pulse as presented in Eqs. (4.2-E1)
and (4.2-E2) with the parameters E0 = 0.1, σ = 4.35J−1, t0 = 0 and ω0 = 1.55J .

parameter set of Tran et al. shown in Tab. 5.4-T1 and an on-site interaction of U = 3.5J .
The photoemission spectrum of the system containing Ns = 30 sites is shown in the

upper panel of Fig. 6.2-F2 for the SOA selfenergy. In the lower panel the amplitude of
the electric field of the laser pulse is plotted over the time. The maximum of the laser
amplitude is reached at t = 0. The black, gray and blue lines denote the times for which
the photoemission spectrum is depicted in the upper panel with the respective colors. At
t = −20J−1 (black), before the interaction with the laser pulse, the system is in the ground
state. Thus, only states below the Fermi energy at ωF = 0, which is marked by a black
vertical line in the inset, are occupied29. The main features of the spectrum are three
major peaks at ω ≈ −1.55J , ω ≈ −0.95J and ω ≈ −0.25J , and satellites at ω < −2J .
After the laser pulse interacts with the system, at t = 20J−1 (gray), a considerable amount
of spectral weight is transferred to the upper band. Notably, a peak at ω ≈ 0.75J is
strongly occupied, whereas the three major peaks in the lower band all lose spectral weight.
Since the laser frequency is set to ω0 = 1.55J , it can be assumed that the laser mostly
excites electrons around the peak at ω ≈ −0.95J to the upper band. At t = 60J−1 (black),
a long time after the laser interaction, the occupation of the peaks at ω ≈ −0.25J and
ω ≈ 0.75J decreases while a new peak emerges at ω ≈ 0.25J , the center of both energies.

29The small overlap to energies above ωF, visible in the inset, is due to the finite width of the peaks in
the spectrum. It is determined by the width of the Gaussian function in Eq. (2.2-E98) that acts as a
probe pulse.
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Figure 6.2-F3 – Photoemission spectrum (cf. Eq. (2.2-E98)) around the Fermi energy for
all three considered systems depicted in Fig. 6.2-F1 for times before (red), shortly
after (blue) and long after (green) the laser excitation at t0 = 0. The remaining
laser parameters are given in the text. The width of the probe pulse is set to
κ = 2.5J−1. In all calculations the SOA selfenergy with an interaction of U = 3.5J
is used. The section of the spectrum shown corresponds to the region of the inset
in Fig. 6.2-F2.

This indicates the existence of IE processes where an electron in the conduction band has
enough energy to excite a second electron from the valence over the bandgap. This leads
to an increase of charge carriers in the upper band.
Before analyzing this behavior in detail, the photoemission spectrum around the Fermi
energy is depicted in Fig. 6.2-F3 for all three considered systems. Again, the SOA selfenergy
is used in all calculations. The section of the spectrum shown corresponds to the region
of the inset in Fig. 6.2-F2. The three lines denote times before (red), shortly after (blue)
and long after (green) the laser excitation. The result for the system of Ns = 30 sites was
already discussed before.
A similar behavior can be observed for the other short 5-AGNR of Ns = 20 sites. Here, the
laser excitation leads to the occupation of states at ω ≈ 0.85J . After the interaction with
the laser pulse, electrons of this energy are able to excite other carriers from the valence
to the conduction band and a second peak above the Fermi energy arises at ω ≈ 0.3J .
In contrast, a similar effect can not be observed for the quantum dot of Ns = 24 sites.
Admittedly, the laser excites electrons above the bandgap which results in a peak at
ω ≈ 0.6J . However, after that no CM processes occur which would increase the number of
conduction band electrons.
To compare the results for the three different systems quantitatively one can calculate the
number of electrons in the conduction band NCB and their energy ECB which are given
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Figure 6.2-F4 – Number NCB (left), total energy ECB (center) and average energy ECB

NCB

(right) of the carriers in the conduction band (cf. Eqs. (6.2-E1) and (6.2-E2)) for all
three considered systems depicted in Fig. 6.2-F1 after a laser excitation at t0 = 0.
The remaining laser parameters are given in the text. In all calculations the SOA
selfenergy with an interaction of U = 3.5J is used. The dashed black vertical line
at t = 10J−1 denotes the time after which the laser amplitude becomes negligible.

by30

NCB =

∫ ∞
ωF

A<(ω) dω , (6.2-E1)

ECB =

∫ ∞
ωF

ωA<(ω) dω . (6.2-E2)

In Fig. 6.2-F4 both quantities together with the resulting average energy of the carriers
in the conduction band ECB

NCB
are shown for the results in Fig. 6.2-F3. The dashed black

vertical line at t = 10J−1 denotes the point in time after which the laser amplitude becomes
negligible. All effects before that time can be attributed to single-particle excitations
directly induced by the laser pulse. However, all changes to the particle number and the
average energy after that have to be the result of other processes like IE or AR.
As already observed in Fig. 6.2-F3, after the excitation of the system by the laser pulse
the particle number in the conduction band increases for the 5-AGNR of Ns = 20 and
Ns = 30 sites whereas for the quantum dot containing Ns = 24 sites it remains nearly
constant. In the time frame from t = 10J−1 to t = 55J−1, which equals about 10 fs, NCB

increases by 26% for the Ns = 30 system and by 32% for the Ns = 20 system. At the
same time, the total energy of the conduction band carriers ECB remains nearly constant

30In general, the photoemission spectrum does not contain any information about the exact particle
number. However, by normalizing the spectrum to the total number of particles, Eq. (6.2-E1) can be
interpreted as the number of carriers in the conduction band.
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Figure 6.2-F5 – Density of states (DOS) for all three considered systems depicted in
Fig. 6.2-F1. The propagation time after the adiabatic switching is Tend = 10J−1.
The width of the bandgap is estimated by measuring the distance between the
highest visible peak of the valence band (ω < 0) and the lowest peak of the
conduction band (ω > 0). In all calculations the SOA selfenergy with an interaction
of U = 3.5J is used.

after the interaction with the laser pulse31. Starting from t = 10J−1 the average energy
of the conduction band carriers ECB

NCB
decreases by 19% and 25% for the Ns = 30 and

Ns = 20 site nanoribbons, respectively. For the quantum dot it changes by only 7% over
the same period of time. Comparing these results with the expected behavior of the
particle number and average energy in the conduction band for the two Auger processes
sketched in Fig. 5.2-F4, it is obvious that IE effects play a crucial role in the dynamics
of the two nanoribbon systems after the laser excitation. For the quantum dot system,
however, these effects seem to be prohibited or very unlikely.
It is known that CM processes are only efficient if the energy of the exciting laser is at
least two times the bandgap, i.e. ω0/Egap > 2 [134, 142]. To see if this is the case here,
one can consider the DOS of the three systems in the ground state. This is shown in
Fig. 6.2-F5. The spectrum of the three systems differs most in the crucial area around the
Fermi energy. A rough estimation of the bandgap can be determined by measuring the
distance between the highest visible peak of the valence band and the lowest peak of the
conduction band. This results in the following bandgaps for the systems:

ENs=20
gap = 0.87J , (6.2-E3)

ENs=24
gap = 1.23J , (6.2-E4)

ENs=30
gap = 0.58J . (6.2-E5)

31The small decrease of ECB is a statistical effect. Imagine a conduction band electron at an energy of
ω = 5J and a valence band electron at ω = −1J . After an scattering event both carriers are excited at
an energy of ω = 2J above the Fermi energy. Thus, the total energy in the conduction band effectively
decreases by the amount of the initial energy of the valence band electron.
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Figure 6.2-F6 – Total energy (top) and density on an exemplary site (bottom) for all
three considered systems depicted in Fig. 6.2-F1 that are excited by a laser pulse
at t0 = 0. The remaining laser parameters are given in the text. In all calculations
the SOA selfenergy with an interaction of U = 3.5J is used.

Although the systems differ only by a few atoms, the different edge structures result in a
far larger bandgap for the quantum dot compared to the nanoribbons. Taking into account
the different laser frequencies used for the individual systems, one arrives at

ω0/E
Ns=20
gap = 1.85J/0.87J = 2.13 > 2 , (6.2-E6)

ω0/E
Ns=24
gap = 1.55J/1.23J = 1.26 < 2 , (6.2-E7)

ω0/E
Ns=30
gap = 1.55J/0.58J = 2.67 > 2 . (6.2-E8)

This explains why CM effects can only be observed for the two nanoribbon systems.
Additionally, this finding confirms ω0/Egap > 2 as a requirement for efficient IE processes.

6.2.1 Impact of artificial damping

It was shown in Sec. 4.2.2 that strong excitations result in artificial energy levels when
propagating the full two-time KBEs in combination with correlation including selfenergy
approximations like SOA or GWA. These artificial states result in an unphysical damping
of the density dynamics. Since in the calculations above the SOA selfenergy is used, one has
to make sure that the CM effects are not the result of artificial energy levels. In Fig. 6.2-F6
the total energy (top) and the density on an exemplary site (bottom) are depicted for the
three setups considered above. The total energy shows that the most energy is transferred
to the nanoribbon with Ns = 30 sites while the least energy is absorbed by the quantum
dot. This is consistent with the observation that the total energy in the conduction band
ECB in Fig. 6.2-F4 is highest for the Ns = 30 system and lowest for the Ns = 24 system.
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Figure 6.2-F7 – Total energy (top) and density on an exemplary site (bottom) for the
5-AGNR containing Ns = 20 sites depicted in Fig. 6.2-F1 that is excited by a laser
pulse at t0 = 0. The laser amplitude is set to E0 = 0.1 and E0 = 0.05 while the
remaining parameter are fixed to σ = 4.35J−1 and ω0 = 1.85J . In both calculations
the SOA selfenergy with an interaction of U = 3.5J is used.

Although a small laser amplitude of E0 = 0.1 is used, the oscillations of the density are
damped after the laser excitation around t = 0, especially for the two nanoribbon systems
that show CM effects.
To study the effect of the excitation strength on the CM, another calculation is performed
for the 5-AGNR of Ns = 20 sites with a laser amplitude of E0 = 0.05. The total energy
(top) and the density on an exemplary site (bottom) are shown in Fig. 6.2-F7 for both
laser amplitudes, E0 = 0.05 and E0 = 0.1. As expected, the smaller amplitude results in
less energy that is transferred to the system. Additionally, the density dynamics is far
less damped. Thus, if the CM effects observed in Figs. 6.2-F3 and 6.2-F4 were due to the
artificial energy levels as a result of the strong excitation, we would now expect no CM
processes to occur in the spectrum.
In Fig. 6.2-F8, again, NCB, ECB and ECB

NCB
are displayed, this time for the two setups of

Fig. 6.2-F7. The carrier number in the conduction band NCB is normalized to N0 =
NCB(t = 0) for better comparison. For the small laser amplitude of E0 = 0.05 the carrier
density in the conduction band is increased by 12% between t = 10J−1 and t = 55J−1,
whereas in the case of E0 = 0.1 an increase of 32% is observed. Over the same time
interval, the average energy of conduction band carriers ECB

NCB
is reduced by 13% and 25%

for a laser amplitude of E = 0.05 and E = 0.1, respectively. Again, ECB decreases slightly
in both cases.
In summary, although the CM effects are less significant for the smaller laser amplitude,
they still are considerably more pronounced than in the case of the quantum dot shown in
Fig. 6.2-F4. Thus, artificial energy levels due to strong excitations can at most increase
CM processes. However, such unphysical energy states do not induce CM effects as seen
in the case of the quantum dot, which shows damped density dynamics but no CM (cf.
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Figure 6.2-F8 – Number NCB (left), total energy ECB (center) and average energy ECB

NCB

(right) of the carriers in the conduction band (cf. Eqs. (6.2-E1) and (6.2-E2)) for
the 5-AGNR containing Ns = 20 sites depicted in Fig. 6.2-F1 that is excited by a
laser pulse at t0 = 0 (cf. Fig. 6.2-F7). The laser amplitude is set to E0 = 0.1 and
E0 = 0.05 while the remaining parameter are fixed to σ = 4.35J−1 and ω0 = 1.85J .
In both calculations the SOA selfenergy with an interaction of U = 3.5J is used.
The dashed black vertical line at t = 10J−1 denotes the time after which the laser
amplitude becomes negligible.

Figs. 6.2-F4 and 6.2-F6). Instead, carrier multiplication is observed in the case of a small
laser amplitude for the Ns = 20 nanoribbon, although the density dynamics show no
strong damping.

6.2.2 Significance of correlations

In the calculations above only the SOA selfenergy has been used, because from a numerical
point of view it is the least demanding selfenergy approximation that takes into account
correlations. In this part, additional calculations are performed for the Ns = 20 site
nanoribbon system using the HF and the GWA selfenergy to study the influence of
correlation effects on the CM processes. In Fig. 6.2-F9 the photoemission spectrum is
shown for a small section around the Fermi energy that corresponds to the region of
the inset in Fig. 6.2-F2. The data for the SOA selfenergy is taken from Fig. 6.2-F3 and
displayed to compare with the results of the two other selfenergy approximations. In
general, the spectrum for GWA shows a similar behavior as the data for SOA. First, the
laser excites states at ω ≈ 0.9J . Second, after the laser interaction, a new peak arises at
ω ≈ 0.4J while the first peak loses spectral weight. This, again, can be explained by IE
processes. In the case of the HF selfenergy, the laser excitation leads to a peak at ω ≈ 1J .
However, after that a completely different behavior is observed. Additional peaks emerge
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Figure 6.2-F9 – Photoemission spectrum (cf. Eq. (2.2-E98)) around the Fermi energy
for the 5-AGNR containing Ns = 20 sites depicted in Fig. 6.2-F1 for times before
(red), shortly after (blue) and long after (green) the laser excitation at t0 = 0. The
remaining laser parameters are given in the text. The width of the probe pulse
is set to κ = 2.5J−1. The calculations are performed using the HF (left), SOA
(center) and GWA (right) selfenergy with an interaction of U = 3.5J is used. The
section of the spectrum shown corresponds to the region of the inset in Fig. 6.2-F2.
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Figure 6.2-F10 – Number NCB (left), total energy ECB (center) and average energy ECB

NCB

(right) of the carriers in the conduction band (cf. Eqs. (6.2-E1) and (6.2-E2))
for the 5-AGNR containing Ns = 20 sites depicted in Fig. 6.2-F1 after a laser
excitation at t0 = 0. The remaining laser parameters are given in the text. The
calculations are performed using the HF (red), SOA (blue) and GWA (green)
selfenergy with an interaction of U = 3.5J is used. The dashed black vertical line
at t = 10J−1 denotes the time after which the laser amplitude becomes negligible.



110 6 Results II: Laser excitations of finite graphene clusters

at high energies ω ≈ 2.4J and ω ≈ 2.9J . This result corresponds to AR instead of IE
processes.
For a more detailed analysis of these results, NCB, ECB and ECB

NCB
are depicted in Fig. 6.2-F10.

It has already been discussed previously that for the SOA selfenergy NCB increases by 32%
and ECB

NCB
decreased by 25% in the time interval between t = 10J−1 and t = 55J−1. For

GWA this changes to an increase by 16% and a decrease by 22%, respectively. As shown
in Fig. 4.1-F4, GWA generally produces a larger bandgap than SOA. This could explain
the reduced CM rates, since the width of the bandgap has a significant influence on the
efficiency of IE effects as explained above. However, since the results of SOA and GWA
qualitatively agree, it is likely that all important processes are already well described by
the second order diagrams.
For all three considered quantities the HF selfenergy shows the opposite trend to the
results of SOA and GWA. This indicates the existence of AR instead of IE processes.
However, Auger processes are two-particle excitations which are not included in the mean
field picture of the HF selfenergy. Therefore, for the HF selfenergy one would expect the
carrier density in the conduction band to remain constant after the laser excitation. The
reason for the observed counterintuitive behavior remains unclear. Additional calculations,
that are not presented here, have revealed that in the case of the standard Hubbard
model the HF approximation shows a similar trend as depicted in Fig. 6.2-F10. Thus, the
observed AR effects are not caused by the extended Hubbard model. Furthermore, the
calculations were tested to be numerically converged, i.e. the observed behavior is not a
numerical artifact. Nonetheless, to correctly describe the CM processes in the studied
systems, one has to take into account correlations, since the mean field description of HF
does not capture the underlying processes correctly.
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7 Conclusions & Outlook

In this thesis, a new approach has been presented to describe the time resolved nonequi-
librium dynamics and spectral properties of finite graphene nanoclusters. While for
homogeneous graphene similar time resolved simulations were developed many years
ago [131, 132], finite graphene systems such as quantum dots, graphene nanoribbons
(GNRs) and carbon nanotubes (CNTs) were not accessible until now due to their finite
size and increased correlations. Existing approaches for these systems were either re-
stricted to the study of single processes [140] or roughly approximated the dynamics by
Langevin [139] or rate equations [154]. However, especially these finite systems are of
high interest for applications in next-generation electronics and solar cells due to their
non-vanishing bandgap [134].
The new description that has been presented in this thesis is based on an extension of the
standard Hubbard model that is solved by the nonequilibrium Green functions (NEGF)
approach to include correlations. Due to its simplistic nature the Hubbard model greatly
reduces the computational demands of the description of finite systems. Nevertheless, it
was often used to great success to describe the ground state [144] as well as the transport
properties [145] of graphene.
The NEGF approach is based on the description of quantum many-body systems in
second quantization. The resulting equations of motions are the so-called Kadanoff–Baym
equations (KBEs) [53] which contain the full many-body information in the selfenergy Σ.
Since, in general, the exact selfenergy is not accessible, various approximations exist that
take into account different physical processes [57].
The quality of the NEGF method has been tested against exact results for various one-
dimensional systems within the standard Hubbard model in Sec. 4. Especially the
performance of the different selfenergy approximations to reproduce the exact spectral
properties in the ground state has been studied. The GWA and TPH selfenergy approxi-
mations are found to predict the size of the Hubbard gap best, while HF and TPP show
no bandgap for any considered interaction U up to U = 3J .
Additionally, it has been found that the generalized Kadanoff–Baym ansatz (GKBA) [69]
which, in the past, was successfully applied to describe the nonequilibrium density dynamics
of strongly excited systems [103] does not correctly reproduce the spectral properties of the
considered systems. In the ground state at zero temperature the GKBA spectrum contains
excited states in the upper Hubbard subband although, in this case, only states below
the Fermi energy should be occupied. Due to its insufficient description of the spectral
properties, the GKBA can not be used for the simulation of graphene nanostructures if
one is interested in quantities such as the photoemission spectrum.
However, it is known that the full two-time propagation of the KBEs results in a damping
of the density dynamics for strongly excited systems, if correlations are considered, due to
artificial energy states [56]. Therefore, it has been studied in Sec. 4.2.2 how this unphysical
damping affects the photoemission spectrum of the system. It has been found that the
artificial energy levels become occupied for strongly excited systems which leads to an
effective broadening of the peaks and the spectrum in general. Thus, even if one is not
interested in the density dynamics of the system, the considered excitation has to be weak
enough to not result in an excessive damping of the spectrum.
For the correct description of finite graphene nanostructures the standard Hubbard model
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hast to be extended to take into account the overlap of the π-orbitals in the graphene
honeycomb lattice. In this work, hopping and overlap between up to third nearest neigh-
bors is considered. The parameter sets are taken from Reich et al. [149] for homogeneous
graphene and from Tran et al. [146] to describe finite graphene systems. Additionally, to
determine the on-site interaction U the band structures of a 7-AGNR has been compared
to results of Wang et al. [152] for the GWA selfenergy. It was found that the width of the
selfenergy is well reproduced for U = 3.5J .
Graphene is an interesting material for future solar cells due to its efficient impact excita-
tion (IE) processes that lead to high carrier multiplication (CM) rates [2]. In 2015 Gierz
et al. [24] performed femtosecond time- and angle-resolved photoemission spectroscopy
(TR-ARPES) measurements to observe such effects in monolayer graphene. They found
that the photoemission spectrum grants easy access to the density and average energy of
carriers in the conduction band which allows to measure carrier multiplication processes.
The same approach has been used in this thesis for finite graphene nanostructures because
the photoemission spectrum is easily accessible through the two-time Green functions.
First, the influence of different laser polarizations on a 7-AGNR has been studied in Sec.
6.1 using the HF selfenergy approximation. The system showed the strongest response
when the light was polarized along the direction of the armchair edge. The results are in
good agreement with the findings of Denk et al. [23] who experimentally observed a high
anisotropy for the optical response of similar systems.
For studying CM effects in finite graphene nanostructures three different systems have
been considered, two short 5-AGNR with Ns = 20 and Ns = 30 sites, and a quantum
dot containing Ns = 20 sites. It has been found that after an excitation by a laser pulse
the carrier number in the conduction band increased by 26% and 32% in the considered
time frame for the two 5-AGNR systems due to IE effects. However, in the case of the
quantum dot, after the laser excitation, the carrier density in the upper band remained
constant. This is explained by the distinct bandgap of the different systems due to their
individual geometry and edge structure. For IE processes to be effective, the frequency of
the laser pulse ω0 has to be at least twice the bandgap Egap [134, 142], i.e. ω0 > 2Egap,
which was found to be true only for the two 5-AGNR systems but not for the quantum
dot. Additionally, it has been shown that the observed CM effects are not a result of the
artificial energy levels that emerge for strong excitations.
Finally, the influence of correlation effects on the observed CM processes has been analyzed.
For that, the calculations described above were repeated using the HF and GWA selfenergy.
It has been found that the GWA selfenergy shows the same trends for the number and
average energy of conduction band carriers as the SOA selfenergy. This implied that the
important IE processes are already well described by the second order terms contained
in the SOA selfenergy. However, the CM rates observed in the GWA results are lower
than for SOA. This can be explained by the increased bandgap in the case of GWA, which
reduces the number of occurring IE processes.
On the other hand it was found that the HF selfenergy does not show CM effects. Instead,
Auger relaxation processes have been observed. This is especially interesting because such
effects should not be included in a mean field description. At the moment, the reason for
this behavior remains unclear.
A lot of work was put into the optimization of the numerical algorithms. For the propaga-
tion of the KBEs a fourth order Runge–Kutta method was implemented. Additionally,
a lot of different integration techniques have been used to improve the accuracy of the
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integral expressions. Finally, the matrix multiplication was optimized to take advantage of
the GPU architecture. All in all, the numerical improvements that were achieved over the
last two years, made a work of this scope possible in the first place. Today, propagating a
system of Ns = 30 sites for a time of 110J−1 using the GWA selfenergy takes about seven
days on a single GPU. Two years ago, the same calculation would have taken up to 300
days on the same hardware.

In summary, the combined approach of the extended Hubbard model and the NEGF
method is well-suited to describe the correlated nonequilibrium dynamics of excited finite
graphene nanoclusters. Here, it was used to successfully predict CM effects in finite GNRs
in a, for the first time, full nonequilibrium context.

Outlook

The presented approach is applicable to various systems. Additionally, it could be extended
to even describe strong excitations accurately. Below, possible topics of future research
are listed.

• As a mean field approach the HF selfenergy should not contain any Auger processes.
Nevertheless, in the simulations relaxation processes are observed that show the
behavior of AR. At the moment, the reason for this is unclear. For a better
understanding of the occurring processes in general, this should be further analyzed
in the future.

• The TPH selfenergy showed good results for the Hubbard gap of the one-dimensional
chain. It would be interesting to see how the higher order scattering contributions of
the T -matrix influence the description of the CM processes.

• The GKBA is not applicable if one is interested in spectral properties. In order to
describe the dynamics and spectral properties of a system even for strong excitations
one can implement a consistent second order scheme [57].

• In this work, only linearly polarized laser pulses were considered. In a next step one
could study the effect of light with a circular polarization on finite graphene systems.

• CNTs have a similar structure to GNRs. In the presented approach of the extended
Hubbard model and the NEGF method they can be described as GNRs with periodic
boundary conditions perpendicular to the ribbon axis. Thus, it is easy to extend the
investigations to CNTs.

• In addition to AGNRs and ZGNRs there are a variety of systems with different edge
structures that exhibit interesting properties [8]. The flexibility of the presented
approach allows to describe any possible lattice geometry.
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Loosdrecht, F. R. Fischer, and A. Grüneis, “Semiconductor-to-Metal Transition and
Quasiparticle Renormalization in Doped Graphene Nanoribbons”, Advanced Electronic
Materials 3, 1600490 (2017).

27I. Ivanov, Y. Hu, S. Osella, U. Beser, H. I. Wang, D. Beljonne, A. Narita, K. Müllen,
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71V. Špička, B. Velický, and A. Kalvová, “Long and short time quantum dynamics: I.
Between Green’s functions and transport equations”, Physica E 29, 154–174 (2005).

72M. Eckstein and M. Kollar, “Measuring correlated electron dynamics with time-resolved
photoemission spectroscopy”, Phys. Rev. B 78, 245113 (2008).

73R. C. Albers, N. E. Christensen, and A. Svane, “Hubbard-U band-structure methods”,
Journal of Physics: Condensed Matter 21, 343201 (2009).

74M. C. Gutzwiller, “Effect of correlation on the ferromagnetism of transition metals”,
Phys. Rev. Lett. 10, 159–162 (1963).

75J. Kanamori, “Electron correlation and ferromagnetism of transition metals”, Progress
of Theoretical Physics 30, 275–289 (1963).

76J. Hubbard, “Electron correlations in narrow energy bands. ii. the degenerate band
case”, Proceedings of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences 277, 237–259 (1964).

77J. Hubbard, “Electron correlations in narrow energy bands iii. an improved solution”,
Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences 281, 401–419 (1964).

78R. M. Dreizler and E. K. Gross, “Introduction”, in Density functional theory (Springer,
1990), pp. 1–3.

79N. Schlünzen and M. Bonitz, “Nonequilibrium Green Functions Approach to Strongly
Correlated Fermions in Lattice Systems”, Contributions to Plasma Physics 56, 5–91
(2016).

80A. Altland and B. D. Simons, Condensed matter field theory (Cambridge University
Press, 2010).

81D. Baeriswyl, D. K. Campbell, J. M. Carmelo, F. Guinea, and E. Louis, The Hubbard
model: its physics and mathematical physics, Vol. 343 (Springer Science & Business
Media, 2013).

82A. Montorsi, The Hubbard Model: A Reprint Volume (World Scientific, 1992).

http://dx.doi.org/10.1103/PhysRevLett.99.266402
http://dx.doi.org/10.1103/PhysRevB.76.165126
http://dx.doi.org/10.1103/PhysRevB.44.6104
http://dx.doi.org/10.1103/PhysRevB.44.6104
http://dx.doi.org/10.1103/PhysRevB.78.245113
http://stacks.iop.org/0953-8984/21/i=34/a=343201
http://dx.doi.org/10.1103/PhysRevLett.10.159
http://dx.doi.org/10.1143/PTP.30.275
http://dx.doi.org/10.1143/PTP.30.275
http://dx.doi.org/10.1098/rspa.1964.0019
http://dx.doi.org/10.1098/rspa.1964.0019
http://dx.doi.org/10.1098/rspa.1964.0190
http://dx.doi.org/10.1098/rspa.1964.0190
http://dx.doi.org/10.1002/ctpp.201610003
http://dx.doi.org/10.1002/ctpp.201610003


120 REFERENCES

83A. Tomas, C.-C. Chang, Z. Bai, R. Scalettar, J. Perez, C.-R. Lee, S. Chiesa,
I. Yamazaki, M. Jarrell, E. Khatami, C. Varney, W. Chen, E. D’Azevedo, T.
Maier, S. Savrasov, and K. Tomko, Elementary Introduction to the Hubbard Model,
quest.ucdavis.edu/tutorial/hubbard7.pdf.

84R. T. Scalettar, An Introduction to the Hubbard Hamiltonian, https://www.cond-
mat.de/events/correl16/manuscripts/scalettar.pdf.

85M. Watanabe and W. P. Reinhardt, “Direct dynamical calculation of entropy and free
energy by adiabatic switching”, Phys. Rev. Lett. 65, 3301 (1990).

86A. Stan, N. E. Dahlen, and R. van Leeuwen, “Time propagation of the Kadanoff–Baym
equations for inhomogeneous systems”, J. Chem. Phys 130, 224101 (2009).

87J. C. Butcher, Numerical methods for ordinary differential equations (John Wiley &
Sons, 2016).

88C. Runge, “Ueber die numerische Auflösung von Differentialgleichungen”, Mathematische
Annalen 46, 167–178 (1895).

89N. Schlünzen, J.-P. Joost, and M. Bonitz, “Comment on “On the unphysical solutions
of the Kadanoff-Baym equations in linear response: Correlation-induced homogeneous
density-distribution and attractors””, Physical Review B 96, 117101 (2017).

90J. P. Boyd, Chebyshev and fourier spectral methods (Courier Corporation, 2001).
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