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1. Introduction

New and powerful measurement techniques provide a deep insight into the fundamental properties
of our nature. In particular, the research on ionization processes has benefitted from this evolution.
The available laser sources, such as X-FEL, FLASH or LCLS, to name a few, have opened the
doors to unexplored intensity regimes and peak brilliancies, allowing for a precise and time-
resolved investigation of the arising effects on ultra-short time-scales. Their results constitute
a major challenge for the theoretical description. The main difficulties thereby emerge from
the inclusion of the particle interaction. Whereas several effects observable already in the single-
particle picture have been well explained by the one-particle Schrödinger equation, nowadays most
important issues elude the single-particle approach. For example, they cover the time-resolved
description of Auger processes, the double ionization of atoms or, more involved, the ionization
properties of molecules and solids. In this work, for the description of correlation effects, we
examine an approach based on quantum kinetic theory. Such one is offered by the formalism
of nonequilibrium Green function (NEGF). First invented in 1964 by Kadanoff and Baym and
independently in 1965 by Keldysh – basing on pioneering works of Schwinger, Matsubara and
others – it has turned out to be a powerful tool for the approximative description of correlated
quantum systems. Since that time, the Green function formalism has been applied to almost all
topics in quantum mechanical many-body theory, including atoms and molecules, dense plasmas
and artificial atoms. Also, many works concerning the ionization properties of real materials have
been published. However, these works remain on the equilibrium approach. The application of
nonequilibrium Green functions to the descriptions of time-dependent phenomena thus marks an
entirely new approach.

The present work is organized in three parts. Part one prepares the required theoretical basis on
which the further work is established. In chapter 2, we provide a short overview on the topic of
photoionization. After a theoretical introduction based on the single-particle Schrödinger equa-
tion, we collect the most important effects arising in the interaction of atoms and laser-fields. The
remaining part then will focus on the formalism of nonequilibrium Green functions. In chapter 3,
we derive the Keldysh/Kadanoff-Baym equations, the general equations of motion for the Green
function, starting from the formalism of second quantization. The following chapter 4 collects the
considered self-energy expressions. They include the Hartree-Fock approximation as well as the
second Born and GW approximation. Their invention is motivated by diagram technique.
The following part two is devoted to the numerical implementation of several methods from many-
body theory. It starts with the treatment of the single-particle Schrödinger equation in chapter
6, whose stationary solutions will provide us a starting basis for the following approaches. Also
its time-dependent counterpart is solved to give access to reference results for the noninteracting
system. The subsequent chapter 6 constitutes one of the main parts in this thesis. There we inves-
tigate the Hartree-Fock approximation for different thermodynamical ensembles and treatments
of the spin. Chapter 7 introduces the Configuration Interaction approach, which is also known
as Exact Diagonalization. With this tool, we are able to gain a lot of information on the quality
of the Green function. The same is considered in chapter 8 for the first time on a numerical
footing. In this chapter we face the self-consistent solution of the Dyson equation in imaginary
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1. Introduction

time space, whereby the particle interaction is approximated within Hartree-Fock, second Born
and GW approximation. The following chapter 9 concentrates on the propagation of the thus
obtained equilibrium solution in real time. It requires the solution of the Keldysh/Kadanoff-Baym
equations, for which an involved algorithm is presented. In every chapter of part two the pre-
sented algorithms were tested, yielding some unseen results.
Finally, the last part is devoted to the investigation of ionization processes in terms of the col-
lected schemes. Therefore, in chapter 10, a model is introduced and its equilibrium properties
are calculated. From the equilibrium solutions, some properties related to ionization determined.
Further an approach to Auger processes is examined. The last chapter concentrates on the prop-
agation of the equilibrium solutions in time under the action of an electromagnetic field. First,
we focus on the ideal case to appoint the capabilities of the model. Then, the arising effects are
studied, mostly in Hartree-Fock approximation. Also, the double ionization of a one-dimensional
Helium model is considered, and its incorporation in the present approach is discussed.

Before beginning with a theoretical introduction, we close with some notational remarks. All
parameters and calculational results in this work are given in atomic units. However, they will
be suppressed in the following. Further, to introduce a notational scheme, the many body Hamil-
tonian is written by the capital letter Ĥ, while the single-particle Hamiltonian is denoted by ĥ.
The quantities, which are in equilibrium, i.e. under no influence of an external field, are labeled
by the superscript 0, for instance Ĥ0. Matrices are always indicated by a bold typed letter H.
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2. Photoionization

It was in 1905, the “annus mirabilis”, when Einstein theoretically founded the description of
photoionization. Relying more on Planck’s calculations than Planck himself, he proposed a revo-
lutionary explanation of the photoeffect, whose experimental results disagreed with any classical
prediction. As it is well-known, Einstein created an as brilliant as simple model, in which light is
considered as a carrier of photons, each one able to strike out one electron.
A little more than two decades later the quantum-field theory was invented, which provided an
exact description of the interaction between particles and photons. Today, it has turned out to be
the most accurate theory in physics at all, though its basic assumptions resemble the ones from
Einstein.

In this introduction we will not concern on the quantum-field theory, but restrict ourselves to the
description of classical fields. Therefore it is sufficient to consider the Hamiltonian in “minimal
coupling”. In particular this approximation is valid if the field intensity is strong, i.e. if the
number of photons draws near to the thermodynamic limit. However, intrinsic quantum effects,
such as spontaneous emission, can then not be observed.

2.1. Atom-field interaction, dipole approximation

The evolution of wavefunctions is governed by the time-dependent Schrödinger equation (TDSE),
which in spatial representation surprisingly reads

i ~
∂

∂t
ψ(r, t) = ĥ(r, t) ψ(r, t) . (2.1)

In the presence of electromagnetic fields the Hamilton operator in minimal coupling is given
through

ĥ(r, t) = 1
2m

[
p̂ + eA(r, t)

]2 − eΦ(r, t) + v(r) , (2.2)

where v(r) is the external time-independent confinement and A(r, t) and Φ(r, t) are the vector
and scalar potential of the external fields. The fields themselves are related to their potentials by

E(r, t) = − ∇Φ(r, t) − ∂A(r, t)
∂t

, (2.3)

B(r, t) = − ∇ × A(r, t) . (2.4)

and are invariant under the gauge transformations

Φ′(r, t) = Φ(r, t) − ∂χ(r, t)
∂t

, (2.5)

A′(r, t) = A(r, t) + ∇χ(r, t) . (2.6)
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2. Photoionization

Within a certain gauge, the Hamiltonian (2.2) transforms to

ĥ(r, t) = 1
2m

[
p̂ + e (A + ∇χ)

]2 − eΦ + e
∂χ

∂t
+ v(r) . (2.7)

We now switch to the Coulomb or radiation gauge , for which Φ = 0 holds and A satisfies the
transversality condition ∇ ·A(r, t) = 0 as well as the wave equation

∇2A − 1
c2
∂2A
∂t2

= 0 . (2.8)

This choice of gauge is in contrast to the Lorentz gauge not relativistically invariant, but in this
work we only focus on non-relativistic regimes. The solution of the wave equation has the form

A(r, t) = A0 ei(r·k−ωt) + c.c. (2.9)

where k is the wave vector of radiation and |k| = 2π/λ. For |r| of typical atomic dimensions
(a few Ångströms) and λ of typical optical wavelengths (400 − 700nm) is k · r � 1, so that
within the considered region the vector potential is spatially uniform, A(r, t) ≈ A(t). This is
the so-called dipole approximation. We now choose a special gauge function, χ(r, t) = −A(t) · r
(“length gauge”) for that

∇χ(r, t) = −A(t) , (2.10)
∂χ

∂t
(r, t) = −r · ∂A

∂t
= −r ·E(t) . (2.11)

Thus, we obtain the Hamiltonian used throughout this work,

ĥ(r, t) = 1
2m

p̂2 + v(r) − e r ·E(t) , (2.12)

which in later chapters is joined by the two-particle interaction part. This result may also be
rewritten in terms of the dipole operator d = −e r.

2.1.1. Time-dependent perturbation theory, Fermi’s Golden rule

The previous derivation is valid for a quantum or classical electromagnetic field. Now we will
focus on the classical case, the only one considered in this work. We assume that the initial state
of the atom at time t0 is |i〉, where ĥ0 |i〉 = Ei |i〉. For times t > t0 we expand the state vector
|ψ(t)〉 in terms of the complete set of eigenfunctions of the uncoupled Hamiltonian {|k〉}:

|ψ(t)〉 =
∑
k

Ck(t) e−i Ek t/~ |k〉 . (2.13)

Substituting this in the TDSE and multiplying from the left by 〈l| ei ωl t leads to the (exact) set
of coupled first order differential equations

Ċl(t) = − i

~
∑
k

Ck(t) 〈l|ĥ(I)(t)|k〉 ei ωlk t , (2.14)

where h(I)(t) = −d · E(t) (the dipole approximation is implied) and ωlk = (El − Ek)/~ are the
transition frequencies between levels l and k. The expansion coefficients directly determine the
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2.1. Atom-field interaction, dipole approximation

Figure 2.1: Transition probability Pi→f as a
function of ∆ω as derived from first-order per-
turbation theory for a monochromatic electric
wave. In the long-time limit this function is well
approximated by a delta function.

transition probability from state |i〉 to state |f〉 at time t through Pi→f (t) = |Cf (t)|2.
These equations are analytically solvable only for very simple cases. Thus one has to use the time-
dependent perturbation scheme well known from elementary quantum mechanics, valid under the
preliminary that | 〈f |ĥ(I)(t)|i〉 | is weak, or equivalently |Cf (t)| � 1 for i 6= f . We expand the
probability amplitudes in the power series

Cl(t) = C
(0)
l (t) + ξ C

(1)
l (t) + ξ2C

(2)
l (t) + · · · . (2.15)

Inserting this in (2.14), we obtain the recursive set of equations

Ċ
(0)
l (t) = δli , (2.16)

Ċ
(n)
l (t) = − i

~
∑
k

C
(n−1)
k (t) ĥ(I)(t)lk ei ωlk t , (2.17)

whose first-order solution is given by

C
(1)
f (t) = − i

~

∫ t

t0
dt′ h(I)(t)fi(t

′) ei ωfi t′ . (2.18)

The transition amplitude C(1)
f accounts for direct transitions from |i〉 to |f〉, while the second-order

contribution C(2)
f accounts for double transitions |i〉 → {|l〉} → |f〉 and so on.

Now we consider the special case of a monochromatic wave, E(t) = E0 cos(ωt). Expanding the
cosine in terms of exponentials, (2.18) integrates to

C
(1)
f (t) = − 1

2~
h(I)(t)fi ·

{
ei (ω+ωfi) t − 1

ω + ωfi
− ei (ω−ωfi) t − 1

ω − ωfi

}
. (2.19)

If the frequency of the radiation ω is near resonance with the atomic transition frequency ωfi,
the second term clearly dominates the first. Therefore we can drop the “anti-resonant” first term,
making the so-called “rotating wave approximation” [1], with which the transition probability
becomes

P
(1)
i→f (t) =

|h(I)(t)fi|2

~2
sin2(∆ω t/2)

∆ω2 . (2.20)

∆ω is the detuning between the radiation field and the atomic transition. In Fig. 2.1 the first-
order transition probability is plotted against ∆ω. In the limit t→∞, this function converges to
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2. Photoionization

a delta function and we obtain the famous golden rule of Fermi

P
(1)
i→f (t) =

|h(I)
fi (t)|2

~2
π t

2
δ(∆ω) . (2.21)

Furthermore, we mention a straightforward generalization to non-monochromatic fields. The
transition rate then has to be integrated over the whole frequency spectrum

P
(1)
i→f = t

~2

∫
dω

sin2(∆ω t/2)
∆ω2 F (ω) , (2.22)

where

F (ω) ≡ | 〈f |d ·E0(ω)|i〉 |2 , (2.23)

is the frequency dependent transition element.

2.2. Phenomenological description

Though the solution of the Schrödinger equation in principle answers all questions on ionization
related to one particle, to do physics one needs a more pictorial description of the effects of strong
laser fields on atomic systems. As can be seen from (2.12), the atom-laserfield interaction in dipole
approximation depends on the electric field E(t), i.e. on frequency, amplitude and temporal shape
of the dipole-approximated wave, as well as on v(r), the atomic confinement. To relate the two
quantities, we focus on a free particle in an electromagnetic field [2]. Its classical equation of
motion is given by

m
dv

dt
= eE0 cos(ωt) , (2.24)

respectively

v(t) = eE0
mω

sin(ωt) . (2.25)

The averaged kinetic energy of this quiver motion is called the ponderomotive potential

Up =
〈1

2
mv(t)2

〉
= e2E2

0
4mω2 , (2.26)

that can also be rewritten in terms of the intensity of a dipole field

I = 1
8π
cE2 . (2.27)

The addressed relation to the atomic confinement was given by Keldysh in a fundamental work
from 1965

γ ≡
√

Ip
2Up

=
√
m

e

√
2Ip

ω

E0
. (2.28)

This ratio between the ionization potential Ip and the ponderomotive potential is called “Keldysh-
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2.2. Phenomenological description

Figure 2.2.: Different types of photoionization. (a) Multi-photon ionization and above threshold ioniza-
tion. The Keldysh parameter γ > 1 is larger than one. (b) Tunnel ionization for γ < 1. (c) Over barrier
ionization for γ � 1.

parameter”. It yields a classification of the strength of a laser-field: If γ < 1, the ionization
potential is small compared to the ponderomotive energy and the dominant energy contribution
is given by the electromagnetic field, while for γ > 1 it is vice versa. Depending on the value of
γ, several effects in the ionization process arise, that we will shortly collect in the following.

2.2.1. Multi-photon ionization

According to the treatment in section 2.1.1, in first order perturbation theory transitions occur if
the excitation is in resonance to the energy distance of two levels, and the transition probability
between those levels is proportional to the field intensity. The validity of the approach requires a
small field and thus a large Keldysh parameter γ � 1. If the field gets stronger now, the photon
density can be large enough for an electron to pick up more – say N – photons in a certain time
∆t. As we know from the Heisenberg uncertainty relation, the variance of the transferred energy
is related to the duration of the process by ∆E∆t > ~. By taking several steps of width ∆E,
the electron is able to gather the energy N~ω and can thus be ionized even if the photon energy
is smaller than the ionization potential. This process can be illustrated by transitions through
intermediate “virtual orbitals”, see Fig. 2.2 (a). For a moderate γ ≈ 3 to 6, it can be described
by higher terms in the perturbation expansion, what yields a non-linear transition probability
proportional to IN - the probability of N first order steps at the same time.
Of course this effect is not restricted to transitions between bound state and the continuum. The
corresponding process, where continuum states with the multiple photon energy get occupied, is
called “above threshold ionization”.
For stronger fields of γ ≈ 1 the atomic levels are modified by the field and the perturbation
theory breaks down. The respective ionization probability then normally is given by a smaller
power of the intensity, what is caused by the intermediate occupation of real atomic states before
the actual ionization. Moreover, a saturation of the ionization is reached when all electrons in
the laser focus are already removed.

2.2.2. Strong field effects

In the region γ ≈ 1 we smoothly enter another regime, in that the external field is stronger than
the interatomic fields. This leads to a heavy deformation of the atomic confinement by the linear
electric potential, as it is sketched in Fig. 2.2 (b), and the diminished barrier allows an electron to
tunnel out of the atom. This is the ostensive information in γ: It indicates whether the electron
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2. Photoionization

Figure 2.3.: Ionization regimes of an atom, from [3].

can pass the barrier before the field changes its sign. Correspondingly, for equal intensities, the
fields of smaller frequency are considered as stronger within this theory, as the electron has more
time to tunnel through the confinement walls.
If γ � 1, we reach the “over barrier ionization” (OBI), in which the atomic structure is so severely
modified, that the electron feels no confinement anymore. The process is visualized in Fig. 2.2 (c).
Both effects normally lead to a rapid saturation of the ionization probability in the cross-section.

2.2.3. Many-body effects

The previously described effects can all be observed within the single-particle picture, so that
for their theoretical investigation the solution of the single-particle Schrödinger is sufficient. The
influence of other atomic particles is thereby often approximated by an appropriate constant
pseudo-potential (“single-active electron”). The aim of our approach, however, is to include the
particle interaction as well as their dynamics in an ab-initio model. The possible applications of
such a model are manifold and cover most of the unsolved problems in the theoretical description
of ionization processes.
Among them is e.g. the question of re-scattering: An ionized particle can return to the atom if
the course and amplitude of the wave is chosen in the right way. There it can be recaptured by
the atom under emission of the received energy in radiation, whose energy is a multiple of the field
frequency. The emitted electromagnetic waves are called “higher harmonics”, and their spectrum
reaches till the characteristic cutoff, E < 3.17Up, which is derived in a classical calculation
[2]. This process can still be described in the single-particle picture. The second alternative is
that the re-scattered particle ionizes another confined electron. This process is known as “non-
sequential double ionization” and leads to a so-called knee-structure in the cross section. Clearly,
the simulation of this process requires the use of many-body schemes. For two particles it is
accessible exactly through the two-particle Schrödinger equation [4], while for a larger particle
number accurate schemes are still lacking.1
Another common many-body effect is the Auger process, which is also known as inner photo-
effect. The dynamics of the ionization occurs as illustrated in Fig. 2.4: First a core electron,
say from the K-shell, is ionized either through x-ray radiation (1000 − 2000 eV ) or an electron
beam (2 − 50 keV ). The generated hole then is filled up by an outer shell electron, for instance

1The problem has been investigated in the framework of density-functional theory [5]. However, there is no
striking agreement with the experiment. Likewise Hartree-Fock and extended Hartree-Fock calculations are unable
to reproduce the knee-structure in the right order of magnitude [6].
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2.2. Phenomenological description

Figure 2.4.: Schematic progress of the Auger ionization for a Neon atom. (i) Ionization of a core electron.
(ii) Transition into the generated hole by an outer shell electron, whereby the energy |EK − EL| is is
transferred to another outer shell electron, whose ionization energy is roughly EL. Alternatively a photon
can be emitted. (iii) The final state is double ionized. The auger electron can be detected with an energy of
roughly Ekin = |EK − EL − EL|.

from the L-shell. This transition can take place by emission of a photon. Alternatively, in the
Auger process another outer shell electron, for instance again from the L-shell, is ionized by an
inner-atomic transfer of the photon. For this reason, the Auger process is also called radiation
free transition. The decision between Auger and photon-emission strongly depends on the atomic
number Z. For light atoms, the Auger process clearly dominates, while for heavier atoms (Z ∼ 30)
the trend is inversed.
Due to the involved orbitals, the previously considered process is notated by (KLL), respectively
by (ABC) in general. The kinetic energy of the Auger electron is roughly given by

Ekin = EA − EB − EC . (2.29)

However, this expression does not account for the relaxation energy. After the Auger process the
atom remains in a doubly ionized.
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3. Nonequilibrium Green functions

As predicted in the last chapter, we now include the particle interaction in the description. There-
fore the Hamiltonian (2.12) must be extended according to

Ĥ(r1, · · · , rN , t) =
N∑
i=1

ĥ(ri, t) + λ

2

N∑
i 6=j=1

ŵ(ri, rj) (3.1)

where ŵ(ri, rj)/2 is the symmetrized interaction between particle i and j, which, like the one-
body part, is assumed to be spin-independent. The prefactor λ is the coupling parameter that
determines the interaction strength.1 Most of the time we will consider the repulsive Coulomb
interaction w(ri, rj) = |ri − rj |−1. Our fundamental Hamiltonian (3.1) only incorporates the
electronic degrees of freedom, so the Born-Oppenheimer approximation [7] is implicitly assumed
throughout this thesis.
While the solution of the Schrödinger equation with the single-particle Hamiltonian (2.12) re-
quires the treatment of a d-dimensional partial differential equation, where d is the dimension of
the physical system, the treatment of the many-body Hamiltonian (3.1) for N particles leads to
a system of Nd coupled differential equations, that is numerically feasible only for a small num-
ber of particles. Thus approximation schemes become essential, and without lingering on other
approaches2, we directly turn to the formalism of non-equilibrium Green functions (NEGF).
In the following we will give a short introduction into the theory of NEGFs, that is mainly based
on the Refs. [8–11].

3.1. Definition and overview

3.1.1. Why Nonequilibrium Green functions?

Before encountering the whole concept of NEGF with all its mathematical and numerical com-
plexity, we try to give a motivation by announcing the main features of this formalism [9]:

• The one-body Green function as a function of two space-time coordinates is compared to
the many-body wavefunction a significantly reduced quantity. Despite this reduction, the
information on expectation values of all one-body and some two-body operators is fully
covered. Among the accessible quantities are e.g. currents and densities, electron addition
and removal energies as well as the total energy of the system.

1The natural choice is λ = 1. However, by choosing a special unit system the number of free parameters reduces
to one and computational results are valid for a whole class of parameters. For instance, in oscillator units we have
λ = EC/~Ω, where EC is the Coulomb energy and Ω the trap frequency, so that a fixed lambda represents many
cases. In the unadjusted atomic unit system, we can think of λ as a chance to vary the Coulomb interaction strength
to clarify the influence of interaction effects.

2Among them are the density functional theory, multiconfigurational Hartree-Fock and configuration interaction
(CI) schemes for nonequilibrium and for equilibirium Monte-Carlo as well as all the other methods known from
quantum chemistry.
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3. Nonequilibrium Green functions

• The influence of electron-electron correlations can be derived systematically by a pertur-
bation expansion and be included in an effective one-body potential, the self-energy. The
necessary approximations to the many-body problem are condensed into this quantity, while
the formalism can be established independently of the chosen approximation.

• Approximations on the particle interaction can be derived in a way that macroscopic con-
servation laws are satisfied.

• The action of external fields on the correlated particles can be treated non-perturbatively,
and the reaction of the system can be investigated on arbitrarily short time-scales.

To be honest, we also have to provide some information about the restrictions of the NEGF
formalism, as it will be derived within this work, that are mainly related to the numerical appli-
cation. Due to the great computational demands, up to now only microscopic systems have been
treated with the present formalism, what means in plain text an order of magnitude of roughly
10 particles.3 On account of the same reason, only very few approximations on the self-energy
are feasible, and from the first it is not obvious which of them should be used, though there are
some hints.
Nevertheless, these numerical reasons can not tear down the attractivity of the elegant NEGF
formalism.

3.1.2. Second quantization

Let us shortly recapitulate the basic definitions of the second quantization formalism. For any
unanswered questions we refer to the available textbooks on many-body physics, such as [11],[12]
or [13].
The foundation of the second quantization is given by the creation and annihilation operators,
â†i and âi, that create or destroy a particle in the single-particle state |i〉, and the observation,
that any operator in quantum mechanics can be represented within this picture. For example, we
obtain for a one-body operator Ô

Ô =
∑
ij

Oij â
†
i âj , (3.2)

where Oij = 〈i|Ô|j〉, and the sum runs over all states of the one-particle Hilbert space. From
this fact the formalism received its name, as formerly continuous external fields also get resolved
into their quanta, while in the “first quantization” only the particle states are treated in a discrete
way.
With the corresponding expression for the two-body interaction operator ŵ, we represent the
Hamiltonian (3.1) in second quantization

Ĥ =
∑
ij

hij â
†
i âj +

∑
ijkl

wij,kl â
†
i â
†
j âkâl , (3.3)

3However, with somewhat different methods, the Green function formalism has also been applied to macroscopic
systems like plasmas.
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3.1. Definition and overview

where the matrix elements are given by

hij =
∫
dx ϕ∗i (x)

{
−1

2
∇2 + v(r)

}
ϕj(r) , (3.4)

wij,kl =
∫∫

dx dx′ ϕ∗i (x)ϕ∗j (x′) w(r, r′) ϕk(x′)ϕl(x) . (3.5)

The variable x stands for (r,ms), and dx denotes integration over space and summation over the
spin quantum numbers. The external potential and the interaction are thereby assumed to be
spin-independent.

Any many-body state can be created by applying creation operators on the vacuum state and the
resulting wavefunction has to fulfill the right symmetry properties, i.e. under particle exchange
it has to be symmetric for bosons and antisymmetric for fermions. One of the main features of
the second quantization formalism is that this condition is fully covered only by requiring the
following commutation relations:

[ â†i , â
†
j ]∓ = 0 , [ âi, âj ]∓ = 0 , [ âi, â†j ]∓ = δij . (3.6)

At the same time the different brackets, namely the commutator for bosons (−) and the anti-
commutator for fermions (+), are the only – but fare reaching – difference in the description of
both particle species.

The common formulation of the Green function is constructed in terms of the field operators,
which are the operators above expressed in the spatial basis. A general change of the single-
particle basis can be derived in the following way

â†α |0〉 = |α〉 =
∑
λ

〈λ|α〉 |λ〉 =
∑
λ

〈λ|α〉 â†λ |0〉 . (3.7)

This procedure can be repeated for â(†)
α acting on any state in Fock space and leads to the operator

identities

â†α =
∑
λ

〈λ|α〉 â†λ , âα =
∑
λ

〈α|λ〉 âλ . (3.8)

As it is familiar from elementary quantum mechanics, for a transformation to a continuous basis
the sum becomes an integral over all single particle states.

Now we switch to spatial representation and define the field operators, that create or destroy a
particle at the space point r with spin projection ms, or more abstract in the state |r,ms〉 = |x〉.
Instead of â(†)

r,ms the somewhat confusing notation Ψms(r) ≡ Ψ(x) is used for them:

Ψ†(x) =
∑
i

ϕ∗i (r)χ∗(ms) â†i , Ψ(x) =
∑
i

ϕi(r)χ(ms) âi . (3.9)

χ(ms) is thereby the spin function, i.e. a basis state of the spin Hilbert-space whose dimension is
2s+1. As we only consider spin-independent interactions – except for the intrinsic Pauli exclusion
principle – most of the time we will suppress the spin variable.
Together with the spatial matrix elements of the one- and two-body part of the Hamiltonian [13]

〈x1 | ĥ |x2 〉 = δ(x1 − x2)h(r1) , (3.10)
〈x1,x2 | ŵ |x3,x4 〉 = δ(x1 − x4) δ(x2 − x3) w(r1, r2) , (3.11)
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3. Nonequilibrium Green functions

where δ(x1 − x2) ≡ δms1 ,ms2 δ(r1 − r2), the Hamiltonian (3.3) transforms to

Ĥ =
∫
dx Ψ†(x)h(r, t) Ψ(x) + 1

2

∫∫
dx dx′ Ψ†(x) Ψ†(x′)w(r, r′) Ψ(x′) Ψ(x) , (3.12)

while the commutation relations become

[ Ψ̂†(x), Ψ̂†(x′) ]∓ = 0 , [ Ψ̂(x), Ψ̂(x′) ]∓ = 0 , [ Ψ̂†(x), Ψ̂(x′) ]∓ = δ(x− x′) . (3.13)

In this work we aim at describing systems, which are in equilibrium for times t < t0, such that
H(t < t0) = H0 equals the equilibrium Hamiltonian, and which are disturbed by an external
time-dependent field for t > t0. The expectation value of an arbitrary operator Ô at t > t0 in the
Heisenberg representation is then given by a trace over the initial density operator ρ̂0,

O(t) = 〈 ÔH(t) 〉 ≡ Tr
{
ρ̂0ÔH(t)

}
, (3.14)

where the operator in the Heisenberg picture has a time-dependence according to

ÔH(t) = Û(t0, t) Ô(t) Û(t, t0) . (3.15)

The evolution operator Û(t, t′) is the solution of the equations

i
d

dt
Û(t, t′) = Ĥ(t) Û(t, t′) , (3.16)

i
d

dt′
Û(t, t′) = Û(t, t′) Ĥ(t′) , (3.17)

with the boundary condition Û(t, t) = 1. By integration of (3.16) we get the equation

Û(t, t′) = 1− i
∫ t

t′
dt̄1 H(t̄1) Û(t̄1, t′) , (3.18)

that can be iterated to yield the Dyson series (that should not be confused with the Dyson
equation)

U(t, t′) = 1 +
∞∑
n=1

(−i)n
∫ t

t′
dt̄1

∫ t1

t′
dt̄2 · · ·

∫ tn−1

t′
dt̄n Ĥ(t̄1) · · ·H(t̄n) (3.19)

= 1 +
∞∑
n=1

(−i)n

n!

∫ t

t′
dt̄1

∫ t

t′
dt̄2 · · ·

∫ t

t′
dt̄n T

[
Ĥ(t̄1) · · ·H(t̄n)

]
. (3.20)

In the last step we could make all integrals run from t′ to t by introducing the time-ordered
product, where operators acting at later times are ordered to the left, formally written as

T
[
Ĥ(t̄1) · · ·H(t̄n)

]
=
∑
P

θ(t̄P (1) − t̄P (2)) · · · θ(t̄P (n−1) − t̄P (n)) Ĥ(t̄P (1)) · · · Ĥ(t̄P (n)) . (3.21)

P runs over all permutations of the numbers 1...n. The adjoint equation can be treated in the
same way, and both results can be formally summarized in the short-hand notation

Û(t, t′) =

 T e−i
∫ t
t′ dt̄H(t̄) for t > t′

T e i
∫ t
t′ dt̄H(t̄) for t < t′

. (3.22)
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3.1.3. The Green function

The following definition of the Green function is a general one, what means that it applies to any
type of Green function, whatever averaging procedure or intrinsic coordinates are used. We will
try to give a short overview on the common types of Green functions and finally motivate the
introduction of a special time contour needed for the nonequilibrium Green function. But at first
we give the definition:

G(1, 2) = 〈 T{âα1(t1) â†α2(t2)} 〉 . (3.23)

Here 1 = (α1, t1), and α1 stands for any complete observable.4 The Green function has a very
ostensive interpretation: for t2 < t1 it provides the probability for a particle at time t1 to be in
the state α1, if it was added to the many-body system at t2 in the state α2. Due to this property,
the Green function is often called a propagator, as it propagates an additional particle through
the system.
Similarly, if t2 > t1, a particle in the state α1 is removed from the system at t1, and the Green
function gives the probability that the original system is restored if a particle is added at t2 in
the state α2. One can also think of this process as the propagation of a hole through the system.

Let us first consider the equilibrium zero-temperature Green function, where the average in (3.23)
is formed over the groundstate |Ψ0〉 of the interacting system, H |Ψ0〉 = E |Ψ0〉.

G(1, 2) = −i〈Ψ0|T [Ψ(1)Ψ†(2)] |Ψ0〉
〈Ψ0|Ψ0〉

(3.24)

To mention it again, this expression directly yields the probability, that if a particle or hole is
added at (x2, t2) to the groundstate, the original system is restored after its removal at (x1, t1).
The problem in this expression is that the exact groundstate of the system is involved, though
this is just one of things we want to compute with the Green function. Thus we have to express
the groundstate in terms of quantities we know, such as the noninteracting groundstate |Φ0〉. The
connection is formed by the Gell-Man/Low theorem5

|Ψ0〉 = U(t0,−∞) |Φ0〉 , 〈Ψ0| = U(∞, t0) 〈Φ0| , (3.25)

with that (3.24) transforms into

G(1, 2) = −i〈Φ0|U(∞,−∞)T [Ψ(1)Ψ†(2)] |Φ0〉
〈Φ0|U(−∞,∞)|Φ0〉

. (3.26)

This result generates the systematic perturbation expansion scheme for the Green function. To
evaluate this expression, (3.20) is inserted for the time-evolution operator. The operator product
is then evaluated by means of Wick’s theorem [11], which states that a time-ordered product can
be expressed as a sum of all pairwise contractions.
The extension of the previous results to finite temperatures is achieved by averaging in a thermo-
dynamic ensemble. As the interaction then also appears in the density operator, the perturbation

4For notational clarity however we will consider only the spatial representation given in terms of the field
operators. In addition this is also convenient for the inhomogeneous systems we want to describe. For homogeneous
systems though, a representation in momentum space is more useful.

5In standard textbooks, such as [11] or [10], the following derivation is done in the interaction picture. Especially
for the application of Wick’s theorem this is much more convenient. We stay in the Heisenberg picture, not only
to keep it short, but also because we do not evaluate Wick’s theorem explicitly.
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3. Nonequilibrium Green functions

expansion becomes quite difficult. A way around this problem was given by Matsubara through
the introduction of a complex time branch, which allows for a rewriting of the thermodynamic
density operator as an evolution in complex time,

ρ̂ = e−βĤ0

Tr
{
e−βĤ0

} = Û(t0 − iβ, t0)
Tr
{
Û(t0 − iβ, t0)

} . (3.27)

Here the time-independence of the equilibrium state was used, and the chemical potential arising
in the grand-canonical average has been absorbed in the single-particle Hamiltonian, h0(r) →
h0(r)− µ. By means of this replacement, the thermodynamic average (3.14) of an operator Ô in
Heisenberg representation becomes

O(t) =
Tr
{
U(t0 − iβ, t0)U(t0, t) Ô(t)U(t, t0)

}
Tr
{
U(t0 − iβ, 0)

} . (3.28)

The extension to nonequilibrium requires a few more thoughts. In the above relations it was
implicitly assumed that U(∞, t) = U †(t,−∞) [14], so that the product U †(t0,−∞)U(t0,−∞)
could be casted in the form U(∞,−∞), what formally evolves the noninteracting groundstate
(respectively the noninteracting density matrix in the finite temperature case) to infinity.6 The
basis for this assumption is the adiabatic theorem, which states that under an adiabatic transfor-
mation the groundstate (or equilibrium state) can transform only into itself, possibly multiplied
by a phase factor, that is however canceled by the denominator in (3.24). In nonequilibrium,
this is not generally valid as there is no guarantee for the system to return to its initial state for
asymptotically large times. If we thus replace the time-evolution operator by its adjoint in the
above formulas, one observes that the propagation goes from −∞ to t, and then back again to
−∞. The time-ordering however is preserved, what gives rise to a special contour, that has been
invented by Keldysh in 1964 [15].

3.2. The Keldysh-Contour

The Keldysh-contour C can be regarded as a mathematical trick to extend the previously obtained
formulas and the diagram technique to nonequilibrium theory. It runs from an arbitrary starting
time t0 to the considered time t (both times can be placed at infinity), and anti-chronologically
back to t0. Further by means of the rewriting (3.27), at t0 the contour is continued in the complex
plane to t0 − iβ.7 The essential change to equilibrium occurs in the time-ordering – now “later
times“ means later on the contour – and the corresponding operator is denoted by a subscript TC .
The visualization of the contour is given in Fig. 3.1.

Having prepared these necessary preliminaries, we can define the one-particle Green function on

6Note that because of the group property of the evolution operator and the time-independence of the equilibrium
state also (3.28) can attain this form.

7This is only necessary if one starts with the determination of the equilibrium state; for a description solely
on the real track see the approach in [16]. In this context one often neglects the impact of initial correlations
on the long-time limit result by assuming “Bogolyubov’s weakening of initial correlations”. An application is e.g.
steady-state transport.
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3.2. The Keldysh-Contour

Figure 3.1: The Keldysh-Contour C, running
from t0 to the considered time t, back again to
t0 and finally to t0−iβ. It can be regarded as a
mathmatical trick to extend the Green function
formalism to non-equilibrium while preserving
the time-ordering. Respectively, on the contour
the time t1 is earlier than the time t2.

the contour by

G(1, 2) = −i 〈TC [ΨH(1) Ψ†H(2)] 〉 (3.29)

= −i
Tr
{
U(t0 − iβ, t0)TC [ΨH(1) Ψ†H(2)]

}
Tr
{
U(t0 − iβ, 0)

} . (3.30)

The corresponding generalization of this definition to the s-particle Green function is also achieved
[16] in a straightforward manner

G1..s(1..s, 1′..s′) = (−i)s 〈TC [ΨH(1) · · · ΨH(s) Ψ†H(s′) · · · Ψ†H(1′)] 〉 (3.31)

However, in our approach we will only meet the two-particle Green function. For all these many-
body Green functions, there exist equations of motion similar to those derived in the next section.

Any two-time function defined on the contour is said to belong to the Keldysh space [17]. In
general such functions can be written as

k(t, t′) = δ(t, t′) kδ(t) + θ(t, t′) k>(t, t′) + θ(t′, t) k<(t, t′) (3.32)

where the spatial coordinates are omitted for notational clarity. Examples of such quantities are of
course the Green function, whose singular part Gδ is zero, and the self-energy, where the singular
part is given by the Hartree-Fock self-energy. The greater and lesser term respectively denote the
correlation parts.
From this expression we can define several subordinated functions. These functions no longer
depend on contour time variables, but on two real values, so that after their introduction we
can forget about the contour right again. It is replaced by an algebraic structure, which can be
represented in a matrix form.

i. Correlation functions, k≷(t, t′)
Assuming that one time argument lies on the chronological real-time axis (+) and the other
on the anti-chronological (−), we define the correlation functions by

k>(t, t′) = k(t+, t′−) , (3.33)
k<(t, t′) = k(t−, t′+) . (3.34)

They mainly carry the dynamical information.

ii. Mixed functions, ked(t, t′)
The counterpart of the correlation functions, where now one time-argument is situated on the
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3. Nonequilibrium Green functions

vertical track (|) and the other may lie on both real branches (±), are the mixed functions

ke(t, τ) = ke(t,−iτ) ≡ k(t±, t|) , (3.35)

kd(τ, t) = kd(−iτ, t) ≡ k(t|, t±) . (3.36)

They account for the influence and evolution of initial correlations. Following Ref. [18], in
the further work we comprehend ke(t,−iτ) as fully equivalent to ke(t, τ).

iii. Matsubara functions, kM (t, t′)
If both times are situated on the imaginary branch, the corresponding quantity is

kM (τ, τ ′) = k(−iτ,−iτ ′) (3.37)

For completeness, we also introduce the causal and anti-causal components for both times lying
on the (anti-)chronological branch

kc/a(t, t′) = δ(t− t′) kδ(t) + θ(±[t− t′]) k>(t, t′) + θ(±[t− t′]) k<(t, t′) . (3.38)

The upper sign denotes the causal, the lower the anti-causal Keldysh function (and not the particle
species !). As only two nonequilibrium Keldysh functions are independent, these functions carry
the same information as the correlation functions. The introduced Keldysh functions can be
regarded as components of a matrix in Keldysh space. Every function belonging to Keldysh space
has therefore the structure of a 3 × 3 matrix

k(t, t′) =

k
++ k+− k|+

k+− k−− k|−

k|+ k|− k||

 =

k
c k< ke

k> ka ke

kd kd kM

 (3.39)

As already mentioned above, once this result is achieved and carefully considered in the calcula-
tions, one does not need to bother with the Keldysh contour anymore.
Furthermore, as a combination of the different types, the retarded and advanced functions are
defined by

kR/A(t, t′) ≡ δ(t, t′) kδ(t) ± θ(±[t− t′])
[
k>(t, t′)− k<(t, t′)

]
. (3.40)

The retarded function kR(t, t′) vanishes for t < t′, while the advanced function kA(t, t′) vanishes
for t > t′. We introduce them mostly for notational convenience, though they could also be used
to calculate the response at time t for an earlier perturbation of the system at t′ [10].

Of particular interest is the decomposition of the function

c(t, t′) =
∫
C
dt̄ a(t, t̄) b(t̄, t′) (3.41)

in its different parts. The evaluation proceeds straightforwardly, either by expansion of a(t, t̄) and
b(t̄, t′) according to (3.32) or by matrix multiplication using the structure shown above, and shall
not be carried out explicitly. Instead we refer to [17] or [18] and only present the results in Tab.
3.2, that are known as Langreth rules. To write them in a compact way, we further introduce the
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c(z, z′) =
∫
C dt̄ a(t, t̄) b(t̄, t′) c(z, z′) = a(t, t′) b(t′, t)

c>(t, t′) a> ◦ bA + aR ◦ b> + ae ? bd a> b<

c<(t, t′) a< ◦ bA + aR ◦ b< + ae ? bd a< b>

ce(τ, t) aR ◦ be + ae ? bM ae bd

cd(t, τ) ad ◦ bA + aM ? bd ad be

cM (τ, τ ′) aM ? bM aM bM

cR(t, t′) aR ◦ bR aR b≷ + a≷ bA

cA(t, t′) aA ◦ bA aA b≷ + a≷ bR

Table 3.1.: Langreth rules for the determination of the contour parts of integral and product of two Keldysh
functions. The latter one is needed for the determination of the polarization in the GW approximation.

following short-hand notation

[
a ◦ b

]
(t, t′) ≡

∫ ∞
t0

dt̄ a(t, t̄) b(t̄, t′) (3.42)

[
a ? b

]
(t, t′) ≡ −i

∫ t0−iβ

t0
dτ̄ a(t, τ̄) b(τ̄ , t′) (3.43)

The Langreth rules are crucial for the derivation of the equations of motion of the subordinated
functions in the next section.

3.3. The Keldysh/Kadanoff-Baym equations

The Keldysh/Kadanoff-Baym equations are the equations of motion for the nonequilibrium Green
function on the Keldysh-contour. The starting point for their derivation is the Heisenberg equation
for the field operators

i ∂t Ψ(1) =
[
Ψ(1), Ĥ(t)

]
= h(1) Ψ(1) +

∫
d2 Ψ†(2) w(1, 2) Ψ(2)Ψ(1) , (3.44)

i ∂t Ψ†(1) =
[
Ψ†(1), Ĥ(t)

]
(3.45)

= −h(1) Ψ†(1) −
∫
d2 Ψ†(2) w(1, 2) Ψ(2)Ψ†(1) . (3.46)

The second equalities are obtained after the insertion of (3.12) and the evaluation of the arising
commutators. Why don’t we solve these equations but go on to the Green functions, whose
definition is that more involved? Well, even though these equations appear to be very simple in
their mean-field structure, they are not feasible - one has to remember that they contain the whole
many-body problem. Thus we have to rely on averaged quantities, for which the three-operator
product on the right-hand side can be approximated. However, the expectation value of a field
operator is normally zero, as states corresponding to different particle numbers in Fock space
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are orthogonal.8 Following the strategy of averaging, the one-body Green function is the first
non-vanishing expectation value of a product of field operators.
To derive the equation of motion for the Green function, we multiply (3.44) by Ψ†(2) and (3.45)
by Ψ(2), apply the time-ordering operator to both equations and evaluate the ensemble average.
The interchange of the differential operator and the time-ordering operator thereby produces
an additional contour delta function [8]. This results in the Keldysh/Kadanoff-Baym equations
(KKBE), that were derived by Leo Kadanoff and Gordon Baym and independently by Leonid
Keldysh.9

{i ∂t1 − h(1)} G(1, 2) = δC(1− 2) ± i

∫
C
d3 W (1− 3) G12(13, 23+) , (3.47)

{−i ∂t2 − h(2)} G(1, 2) = δC(1− 2) ± i

∫
C
d3 W (2− 3) G12(13, 23+) . (3.48)

They appear as a coupled pair of adjoint first order integro-differential equations, that have to be
solved simultaneously to satisfy the symmetry condition (3.65). The two-particle Green function
under the (collision) integrals on the right hand sides indicates a general structure in many-body
physics, for instance also found in BBGKY theory for the solution of the Liouville equation,
namely that the equations are not closed, but only mark the first terms in the so-called Martin-
Schwinger hierarchy. The full solution at last would involve the N-body Green function and again
correspond to a solution of the full many-body problem. Thus the hierarchy has to be truncated
at a certain stage, where an approximate Green function must be inserted. However, in this work
we follow the common approach and decouple the hierarchy at the first level by introducing the
self-energy Σ:

± i
∫
C
d3 W (1− 3) G12(13, 23+) :=

∫
C
d3 Σ[G](1, 3) G(3, 2) . (3.49)

Through this definition, the N-particle problem has been mapped on an effective single-particle
potential, that is a functional of the one-body Green function. The fundamental problem of course
is thereby only displaced, and in the next chapter we will focus on the common approximations
to the self energy. The KKBE then transform to 10

{i ∂t1 − h(1)} G(1, 2) = δC(1− 2) +
∫
C
d3 Σ[G](1, 3) G(3, 2) , (3.50)

{−i ∂t2 − h(2)} G(1, 2) = δC(1− 2) +
∫
C
d3 G(1, 3) Σ[G](3, 2) . (3.51)

It is possible to write down a formal solution of these equations [16],

G≷(1, 2) =
∫
dx3 dx4 G

R(1, x3t1)G≷(x3, x4; t0)GR(x4t0, 2) +∫ ∞
t0

d3
∫ ∞
t0

d4 GR(1, 3) Σ≷(3, 4)GA(4, 2) , (3.52)

8Yet for special systems, e.g. Bose-Einstein condensates, there exist approximations, where the addition/removal
of one particle nearly leads to the same state.

9Kadanoff and Baym derived their equations for the correlation functions G≷, while Keldysh considered the
equivalent formulation in terms of the function GK = G> +G< [10].

10More precisely, in the second equation one should introduce the adjoint self-energy. However, it can be shown,
that Σ is hermitian. In [9] this is done for initial equilibrium correlations, and with somewhat harder analysis in
[19] for arbitrary initial correlations. In the latter work also the question of existence of a suitable self-energy term
is faced.
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where for the moment we disregarded the influence of initial correlations.11 Neglecting the second
integral term yields a scheme for the approximate solution of the KKBE, that is known as the
”generalized Kadanoff-Baym ansatz“. Thereby it is sufficient to evolve GR and GA only in a single
time component, what saves a lot of complexity. The numerical algorithm presented in chapter
9 however solves the full KKBE (what corresponds to a determination of the GR and GA as well
as Σ in (3.52)).

3.3.1. Basis representation

The equations (3.50) and (3.51) are very hard to treat numerically. For example, for a three-
dimensional spin-polarized system the Green function is an eight-dimensional quantity, that even
for small numbers of gridpoints exceeds the memory capacities of most computers. Besides, if
we consider the difficulties in the solution of the three-dimensional single-particle Schrödinger
equation, the attack seems hopeless. A way around this difficulty is to expand all quantities in
an arbitrary orthonormal single-particle basis {ϕk}, that should be as complete as possible.12

G(1, 2) =
∑
ij

Gij(t1, t2) ϕi(x1)ϕ∗j (x2) , (3.53)

Σ(1, 2) =
∑
ij

Σij(t1, t2) ϕi(x1)ϕ∗j (x2) . (3.54)

After insertion of this expansion into (3.50) and (3.51) and spatial integration, the KKBE trans-
form to the following matrix equations

{i ∂t1 − h(t1)} G(t1, t2) = δC(t1 − t2) +
∫
C
d3 Σ(t1, t3) G(t3, t2) , (3.55)

{−i ∂t2 − h(t2)} G(t1, t2) = δC(t1 − t2) +
∫
C
d3 G(t1, t3) Σ(t3, t2) . (3.56)

From here, the KKBE for the subordinated quantities are easily derived via the Langreth rules,
Fig. 3.2. Using the same short-hand notation we obtain the (horrible) set of equations we are

11The reference considers the Green function only on the real time axis. However, a respective term that
incorporates the complex part is probably easily derived.

12This will turn out to be not the universal approach as it seems. It is actually even harder to reach completeness
in basis representation than in coordinate space. Here a general physical principle holds: ”the complexity of the
full problem is conserved“. The basis representation thus only marks a suitable way to characterize the equilibrium
state, while the excited states are often not adequately described. However, it is still the only feasible method.
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3. Nonequilibrium Green functions

going to attack numerically in chapter 9.{
i ∂t1 − h(t1)

}
G≷(t1, t2) =

[
ΣR ◦G≷ + Σ≷ ◦GA + Σe ?Gd

]
(t1, t2) = I≷

1 (t1, t2) , (3.57)

G≷(t1, t2)
{
−i ∂t2 − h(t2)

}
=
[
GR ◦Σ≷ + G≷ ◦ΣA + Ge ?Σd

]
(t1, t2) = I≷

2 (t1, t2) , (3.58)

{
i ∂t1 − h(t1)

}
Ge(t1, t2) =

[
ΣR ◦Ge + Σe ?GM

]
(t1, t2) = Ie(t1, t2) , (3.59)

Gd(t1, t2)
{
−i ∂t2 − h(t2)

}
=
[
Gd ◦ΣA + GM ?Σd

]
(t1, t2) = Id(t1, t2) , (3.60)

{
−∂τ1 − h(t0)

}
GM (τ1, τ2) = iδ(τ1 − τ2) +

[
ΣM ?GM

]
(τ1, τ2) = IM (τ1, τ2) , (3.61)

GM (τ1, τ2)
{
∂τ2 − h(t0)

}
= iδ(τ1 − τ2) +

[
ΣM ?GM

]
(τ1, τ2) = IM (τ1, τ2) . (3.62)

As any (integro-)differential equation, the KKBE must be supplied with initial and/or boundary
conditions. In our case, we have a boundary condition on the imaginary branch, where the solution
is found self-consistently, and initial conditions for the nonequilibrium Green functions, that are
propagated in real time. The boundary condition, called Kubo-Martin-Schwinger condition, is
easily derived from (3.30) by means of the cyclic invariance of the trace.

G(x1 t0, 2) = ±G(x1 t0 − iβ, 2) , (3.63)
G(1, x2 t0) = ±G(1, x2 t0 − iβ) . (3.64)

Furthermore, directly from the definition we obtain the boundary condition on the time-diagonal
G>(x1t,x2t) = G<(x1t,x2t)− iδ(x1 − x2) as well as the important symmetry

G≷(1, 2) = −[G≷(2, 1)]† , (3.65)

which later will save us a lot of work. The initial conditions to the Eqs. (3.57-3.60) can in principle
be chosen arbitrarily. Within this work we chose to propagate the equilibrium solution from the
Dyson equation, though more general initial correlations can be supposed, see Ref. [19].

3.3.2. Equilibrium Dyson equation

The equations (3.61) and (3.62), which determine the finite temperature Matsubara Green func-
tion GM (1, 2), are usually referred to as the Dyson equations. However, it is inconvenient to
consider them in this particular form. Instead, we can take advantage of the fact that the imag-
inary branch Keldysh functions GM (1, 2) and ΣM (1, 2) only depend on the difference between
their time-arguments −iτ1 and −iτ2. We therefore define real functions according to

GMij (τ1 − τ2) := −iGMij (−iτ1,−iτ2) (3.66)
ΣM
ij (τ1 − τ2) := −iΣM

ij (−iτ1,−iτ2) (3.67)

where without loss of generality we have assumed t0 = 0. Further we define the relative time
τ := τ1 − τ2, and after addition of (3.61) and (3.62) and the use of the anti-periodicity condition
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3.3. The Keldysh/Kadanoff-Baym equations

(3.63), we obtain the usual Dyson equation in its differential form

{
−∂τ − h0

}
GM (τ) = δ(τ) +

∫ β

0
dτ̄ ΣM (τ − τ̄)GM (τ̄) . (3.68)

To encounter the respective integral form, we expose the origin of the Green function’s denotation
and the relationship to its relatives known from classical physics. Therefore let G0 be the solution
of the undisturbed Dyson equation{

−∂τ − h0
}

G0(τ) = δ(τ) (3.69)

Then by insertion one easily proves, that

GM (τ) = G0(τ) +
∫ β

0
dτ1

∫ β

0
dτ2 G0(τ − τ1)ΣM (τ1 − τ2)GM (τ2) (3.70)

is a solution to (3.68), and at the same time it is the convenient form for the numerical treatment in
chapter 8. However, there we don’t start from the undisturbed but from the Hartree-Fock Green
function, whose equation of motion is similar to (3.69) but also incorporates the Hartree-Fock
self-energy, h0 → h0 + Σ0.
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4. Conserving approximations for the self-energy

The decoupling of the Martin-Schwinger hierarchy (3.47,3.48) is a crucial step in the previous
chapter and in addition an exact one. It maps the whole many-body problem onto a single-
particle quantity, the self-energy, which includes all the interaction as well as the memory of
the system in a non-local external potential. The question that immediately arises is how to
find the right self-energy, and the a priori answer comes equally fast: The right – meaning the
exact – self-energy is unobtainable, as this would amount to an exact solution of the many-body
problem.1 However, the great advantage of the NEGF-formalism is that we know how it could
be reached in principle, namely through the perturbation expansion of the Green function. The
exact solution is obtained by taking all perturbation terms into account, while the way to derive
approximations is to neglect certain – almost all – of these expansion terms, that are visualized
by means of Feynman diagrams, and translate the remaining into a self-energy expression.
The thus achieved approximation of course has to be physically reasonable, which means that it
has to fulfill the fundamental conservation laws, such as particle- or energy conservation or the
continuity equation

∂n(r)
∂t

+ div j(r, t) = 0 . (4.1)

Baym showed in 1962 [20], that only so called Φ-derivable self-energies lead to conserving approx-
imations. Φ is a generating functional, that yields the self-energy by a functional derivative with
respect to the Green function

Σ[G] = δΦ[G]
δG

. (4.2)

In this mainly numerical work we skip the proof of the previous statement as well as the derivation
of a self-consistent scheme to derive these conserving approximations and refer to the original
literature and the fine review [21]. Instead, we focus on the three most common approximations
and motivate them through their diagrammatic representation. These are the Hartree-Fock, the
second Born and the GW approximation. Other more sophisticated approximations such as
the T-matrix or vertex corrections to GW anyway are numerically not yet feasible within our
approach.

1Even for few-particle systems, for that the Schrödinger equation is exactly solvable - see chapter 7 - one cannot
manage to determine the exact self-energy perturbatively.
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4. Conserving approximations for the self-energy

Figure 4.1.: (a) The Hartree (left) and exchange term in diagrammatic representation, from which the an-
alytical self-energy expression can be easily determined. (b) Full and consistent Hartree-Fock approximation
that treats the background as fully interacting. The thick lines stand for the exact Green function.

4.1. Hartree-Fock

The Hartree-Fock approximation is the first and easiest correction to the noninteracting Green
function. It incorporates the two first-order diagrams in the perturbation expansion that account
for the mean-field interaction, i.e. each particle is assumed to move in a one-body potential
generated by the average interaction with all the other particles. In Fig. 4.1, the corresponding
(single-particle) diagrams are shown, and the analytical expression can be readily identified:

ΣHF
ij (t, t′) =

∑
kl

(σ wij,kl ± wik,lj ) Gkl(t, t+) . (4.3)

As throughout in this work, the upper sign corresponds to bosons and the lower one to fermions,
and σ is the factor arising from the spin-summation explained below, σ = 1 for spin-polarized
and σ = 2 for spin-restricted calculations. Note that in the Hartree diagram the delta-function
is produced by the closed fermion loop, whose two vertices are identical and thus are situated
at the same time. However, by convention the vertex (l) to that the Green function is pointing
is situated at an infinitesimally later time, hence the GF agrees with the density matrix. This
also holds for the exchange diagram, whose two vertices due to the interaction line are also at
the same time. The interaction part of the Fock matrix, that we will encounter in chapter 6, has
exactly the same structure as the Hartree-Fock self-energy.

A very ostensive derivation can also be given by the equivalent perturbation expansion of the
two-particle Green function, which at first order is approximated as a product of two one-particle
GFs [8]

G12(12, 1′2′) = G(1, 1′)G(2, 2′) ± G(1, 2′)G(2, 1′) . (4.4)

This terminates the Martin-Schwinger hierarchy at the first stage and yields closed equations
(3.47) and (3.48) for the one-particle Green function.

We close with a remark we will return to in the next section: Actually the Hartree-Fock ap-
proximation is inconsistent – just like any other finite expansion – as it treats the background as
noninteracting [11]. Yet the full Hartree-Fock self-energy in a consistent way is given in Fig. 4.1
(b), where the reference Green functions are replaced by the fully interacting Green functions.
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4.2. Second Born approximation

Figure 4.2.: The diagrams taken into account by the second Born approximation. These are only two of
the six proper second order diagrams, since the other four are already incorporated in Fig. 4.1 (b). As they
only describe a change in the background, they are neglected.

Spin-summation

By means of the computation of the Hartree-Fock self-energy, we give an example how the future
spin-summation factors are obtained. The assumption here is that there occurs no interaction
with the particle spin, except for the intrinsic Pauli exclusion. The interaction matrix elements
(3.5) then become diagonal in the spin-product space

wαβ,γδij,kl = δαβ δγδ wij,kl , (4.5)

and for the self-energy (4.3) we achieve (time variables are suppressed for simplicity)

Σαβ
ij =

∑
kl

∑
γδ

[
δαβ δγδ wij,kl ± δαγ δβδ wik,lj

]
Gγδkl (4.6)

=
∑
kl

wij,kl
[∑

γ

Gγγkl

]
± wik,lj Gαβkl . (4.7)

A spin-restricted treatment now implies G↑↑ij = G↓↓ij , and for a spin-independent external potential
we have Gαβij = δαβ Gij (a particle can not change its spin-projection). Thus spin-restricted
systems can be described by a Green function of only one particle – and therefore in the same
way as in the spin-polarized case – if direct interaction terms and macroscopic observables are
furnished by a factor of two.

4.2. Second Born approximation

With similar arguments than in the Hartree-Fock case, one can also derive the second Born
approximation. At first we have the diagrammatic representation shown in Fig. 4.2, that consists
of two of the ten second order Feynman diagrams. Why only two and why these ? Well, from the
other eight second order diagrams the four improper2 cancel with respect to the linked cluster
theorem [11]. The remaining four diagrams are of the Hartree-Fock type, i.e. they are incorporated
in Fig. 4.1 (b), and thus may be neglected, as they only describe a change in the background
mean-field and not a direct interaction with the considered Green function. From the two selected

2An improper diagram decays in two separated diagrams if a Green function line is removed. A proper diagram
does not.
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4. Conserving approximations for the self-energy

second Born diagrams we can directly obtain the corresponding analytical expression

Σ2ndBorn
ij (t, t′) =

∑
klmnrs

wik,ms(σ wrn,lj ± wrl,nj) Gkl(t, t′) Gmn(t, t′) Grs(t′, t) . (4.8)

Note that because the interaction is local in time, in the exchange diagram the first and third
vertex and the second and fourth vertex are each at the same time. Hence, if the first and third
Green function are particle propagators, the intermediate is actually a hole propagator (and vice
versa), what gives rise to interchanged time-indices.
We stop here. A further derivation in terms of the two-particle Green function is given in [8] and
an analytical determination can be found in [9].

4.3. GW approximation

As seen before, the advantage of the NEGF formalism is that there exists a systematic pertur-
bation expansion of the Green function, visualized by means of Feynman diagrams. However, it
is already very hard to include third order diagrams in the explicit way above, and even if one
could manage this, there is no need for them to converge.3 So the best one can do is to sum up
diagrams of one or a few special types to infinite order, what can also have a great impact on
the convergence – an infinite set of diverging diagrams can be convergent [22]. One systematic
approach to this strategy was given by Lars Hedin in a seminal paper [23] from 1965, where
he invented an (in principle) exact self-consistent set of equations for the determination of the
self-energy, the “Hedin equations”

Σ(1, 2) = i

∫
C
G(1, 3) W (1+, 4) Γ(32, 4) d3 d4 (4.9)

W (1, 2) = w(1, 2) +
∫
C
W (1, 3) P (3, 4) v(4, 2) d3 d4 , (4.10)

P (1, 2) = −i
∫
C
G(2, 3) G(4, 2) Γ(34, 1) d3 d4 , (4.11)

Γ(12, 3) = δ(1, 2)δ(1, 3) +
∫
C

δΣ(1, 2)
δG(4, 5)

G(4, 6) G(7, 5) Γ(67, 3) d4 d5 d6 d7 . (4.12)

The idea behind this lines is to account for a screening of the interaction in the quasi-particle
picture. For instance, electrons tend to generate positively charged (polarized) regions, called
Coulomb holes, that weaken the interaction with the other electrons. In the equations, P is called
the polarization, Γ the vertex function and the screened interaction W obeys the Bethe-Salpeter
equation. As always, exact schemes can not be solved exactly, and approximations are derived in
terms of Γ. The GW approximation is obtained by neglecting the integral in the equation for Γ
and it reads explicitly

Σ(1, 2) = i G(1, 2) W (1, 2) , (4.13)

W (1, 2) = w(1, 2) +
∫
C
d3 d4 W (1, 3) P (3, 4) w(4, 2) , (4.14)

P (1, 2) = −i σ G(1, 2) G(2, 1) . (4.15)

3However, for the regularized Coulomb interaction we are going to apply for 1D-systems, the convergence is
guaranteed by the screening parameter.
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4.3. GW approximation

Figure 4.3.: Diagrammatic representation of the GW-approximation.

The polarization thereby is evaluated in the so called “Random Phase approximation” and models
the propagation of a particle and a hole together through the system, see Fig. 4.4. This quasi-
particle can have a much increased lifetime and on its way it can excite many other electron-hole
pairs, what corresponds to iterations of the integral equation for W . The corresponding Feynman
diagrams shown in Fig. 4.3 visualize this statement. For convenience, the eventual spin-factor σ
has been absorbed in the polarization instead of writing it in the integral equation.

To treat the self energy in the same way as in the second Born case, i.e. divided in a singular
Hartree-Fock part and a correlation part depending on two times, we define the non-singular part
W̃ of the screened interaction through

W̃ (1, 2) = W (1, 2)− w(1, 2) . (4.16)

Then we can write the correlation part of the self-energy as

ΣGW (1, 2) = i G(1, 2) W̃ (1, 2) , (4.17)

while the integral equation for W transforms to

W̃ (1, 2) =
∫
C
d3 d4 w(1, 3) P (3, 4) w(4, 2) +

∫
C
d3 d4 W̃ (1, 3) P (3, 4) w(4, 2) . (4.18)

We are going to derive the basis representation of these equations.

4.3.1. Basis representation of the GW equations

We replace the Polarization function by its definition (4.15), expand each Green function according
to (3.53) and use v(4, 2) = v(r4, r2)δ(t4 − t2) to get

W̃ (r1t1, r2t2) = (4.19)∫
dr3dr4 W̃ (r1, r3) (−i)

∑
ab

Gab(t3, t4) ψa(r3)ψ∗b (r4)
∑
cd

Gcd(t4, t3) ψc(r4)ψ∗d(r3) w(r4, r2) +∫
C
dt3

∫
dr3dr4W̃ (r1t1, r3t3)(−i)

∑
ab

Gab(t3, t4)ψa(r3)ψ∗b (r4)
∑
cd

Gcd(t4, t3)ψc(r4)ψ∗d(r3)w(r4, r2) .

Further we multiply by ψ∗i (r1)ψj(r1)ψ∗k(r2)ψl(r2) and integrate over r1 and r2. For the left hand
side similar to (3.5) we define

W̃ij,kl(t1, t2) :=
∫

dr1dr2 ψ
∗
i (r1)ψj(r1) W̃ (r1t1, r2t2) ψ∗k(r2)ψl(r2) , (4.20)
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Figure 4.4.: Sketch of the GW process [22]. (a) A particle polarizes the medium and forms a Coulomb-
hole, that in GW is approximated by a particle-hole pair. (b) The quasi-particle propagates comparatively
free through the system and probably excites some other particle-hole pairs. (c) After its lifetime the quasi-
particle is destroyed by a recombination.

while the second term on the right hand side becomes∫
dr1dr2 ψ

∗
i (r1)ψj(r1) ψ∗k(r2)ψl(r2)

∫
C
dt3

∫
dr3dr4 W̃ (r1t1, r3t3)

· (−i)
∑
ab

Gab(t3, t2) ψa(r3)ψ∗b (r4)
∑
cd

Gcd(t2, t3) ψc(r4)ψ∗d(r3) w(r4, r2)

=
∫
C
dt3

∫
dr1dr3 ψ

∗
i (r1)ψj(r1) W̃ (r1t1, r3t3) ψ∗d(r3)ψa(r3)

· (−i)
∑
ab

Gab(t3, t2)
∑
cd

Gcd(t2, t3)
∫
dr2dr4 ψ

∗
b (r4)ψc(r4) w(r4, r2) ψ∗k(r2)ψl(r2)

=
∑
abcd

∫
C
dt3 W̃ij,da(t1, t3) (−i) Gab(t3, t2)Gcd(t2, t3) wbc,kl

=
∑
abcd

∫
C
dt3 W̃ij,da(t1, t3) Pab,cd(t3, t2) wbc,kl . (4.21)

After treating the first term on the right hand side in the same way, we obtain the basis repre-
sentation of the integral equation for the non-singular part of the screened interaction

W̃ij,kl(t1, t2) −
∑
abcd

∫
C
dt3 W̃ij,da(t1, t3) Pab,cd(t3, t2) wbc,kl =

∑
abcd

wij,da Pab,cd(t1, t2) wbc,kl .

(4.22)

Similarly, from (4.13) the GW self-energy evaluates to

ΣGW
ij (t1, t2) = i

∑
kl

Gkl(t1, t2) W̃ik,lj(t1, t2) . (4.23)

4.3.2. Equilibrium GW equations

We derive the Matsubara part of the equations given above, what implies that both time ar-
guments are situated on the imaginary part [t0, t0 − iβ] of the Keldysh-Contour C and that the
integration over the whole contour is restricted to this branch. By defining τk := i tk and assuming
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4.3. GW approximation

t0 = 0 without loss of generality, we can rewrite equation (4.22):

W̃ij,kl(−iτ1,−iτ2) −
∑
abcd

∫ β

0
(−i) dτ3 W̃ij,da(−iτ1,−iτ3) Pab,cd(−iτ3,−iτ2) wbc,kl

=
∑
abcd

wij,da Pab,cd(−iτ1,−iτ2) wbc,kl . (4.24)

Further we introduce

W̃M
ij,kl(τ1 − τ2) := −iWij,kl(−iτ1,−iτ2) (4.25)
PMij,kl(τ1 − τ2) := −i Pij,kl(−iτ1,−iτ2) (4.26)

and the new variable τ := τ1 − τ2, τ ∈ [−β, 0], to obtain

W̃M
ij,kl(τ) =

∑
abcd

∫ β

0
dτ3 W̃

M
ij,da(τ1 − τ3) PMab,cd(τ3 − τ2) wbc,kl +

∑
abcd

wij,da P
M
ab,cd(τ) wbc,kl

=
∑
abcd

∫ β

0
dτ3 W̃

M
ij,da(τ1 − τ3) PMab,cd(τ − (τ1 − τ3)) wbc,kl +

∑
abcd

wij,da P
M
ab,cd(τ) wbc,kl .

Now we simply set τ1 = 0 (what is allowed since due to the (anti-)periodicity conditions any
interval of length β contains the same information), introduce τ̄ = −τ3 and interchange the
boundaries to achieve the formula we are going to attack numerically in chapter 8:

W̃M
ij,kl(τ) −

∑
abcd

∫ 0

−β
dτ̄ W̃M

ij,da(τ̄) PMab,cd(τ − τ̄) wbc,kl =
∑
abcd

wij,ad P
M
ab,cd(τ) wbc,kl . (4.27)

Finally, the polarization and the equilibrium self-energy evaluate to

PMij,kl(τ) = −σGMij (τ)GMkl (β − τ) , (4.28)

ΣGW,M (τ) = −
∑
kl

GMkl (τ)WM
ik,lj(τ) . (4.29)
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Part II.

Numerical Implementation
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5. Solution of the one-particle Schrödinger
equation

In order to work out the influence of electron-correlation effects on the photoionization and to
compare the NEGF-approach with the conventional procedure, we need to solve the one-particle
Schrödinger equation, an issue that has been too widely studied in the literature to give an
adequate and at the same time concise overview. In the following we will mainly apply the ideas
summarized in [24].

5.1. Stationary Schrödinger equation

The general way to attack the stationary Schrödinger equation (2.1) is to rewrite the operator
equation in a matrix equation by expanding it in a suitable basis, and afterward apply standard
eigenvalue solvers - a scheme we will meet repeatedly in the present work. In coordinate represen-
tation, on which we will focus in this chapter, the basis consists of spatial eigenfunctions, which
are Dirac delta functions on some chosen gridpoints.
For a given confinement the numerical solution of the stationary Schrödinger equation deter-
mines the eigenenergies and eigenfunctions on these chosen gridpoints, that serve as a natural
orthonormal basis of the single-particle Hilbert-space. In our approach this does not only yield
the starting point for the Hartree-Fock formalism, but also a reasonable initial condition for the
time-propagation.

5.1.1. One dimensional case

The stationary one-dimensional Schrödinger equation in spatial coordinates of course reads{
−1

2
∂2

∂x2 + V (x)
}

Ψ(x) = ε Ψ(x) , (5.1)

and is supplemented with the boundary condition Ψ(x) x→∞−−−→ 0.
Many procedures have been proposed for the numerical solution of this equation.1 Here we will
use a straightforward finite-difference method, that despite its simplicity yields very accurate
solutions. Furthermore it has the advantage to be very easily extendible to higher dimensions.

As in most finite-difference methods in coordinate space, one at first chooses an equidistant
spatial grid, xi, i = 1, .., Nx , with boundaries x1 = a and xNx = b and interpoint distance
hx = (b − a)/(Nx − 1). Any function of x, e.g. Ψ(x), then becomes a vector on this grid, and

1Among them are the imaginary time stepping method, the shooting and relaxation method,
the Numerov method, Fourier-transform methods, wavelet methods and many more. The method used here has
been found superior to the first two methods mentioned.
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5. Solution of the one-particle Schrödinger equation

we set Ψi = Ψ(xi). Further, the boundary conditions on Ψ(x) change to Ψ(a) = Ψ1 = 0 and
Ψ(b) = ΨNx = 0. To yield physical results, the position of the boundaries should be chosen
appropriately.2

Then the idea is to simply express also the Hamilton operator as a matrix on this grid and to
diagonalize this matrix. Since the confinement is diagonal in coordinate space, we only have to
discretize the operator of the second derivative, for what the well known formula

∂2Ψ(x)
∂x2

∣∣∣∣∣
x=xi

≈ Ψi+1 − 2Ψi + Ψi−1
h2
x

, i = 2, .., Nx − 1 , (5.2)

could be used. It is also valid for the endpoints, if we neglect boundary corrections and set all
quantities outside the grid equal to zero, Ψi = 0 if i < 1 or i > Nx .

But we can do better by taking into account not only one grid point next to the point where the
second derivative is applied, but r outer points. Then we obtain the similar formula

∂2Ψ(x)
∂x2

∣∣∣∣∣
x=xi

≈ 1
h2
x

r∑
k=−r

c
(r)
k Ψi+k . (5.3)

s To determine the coefficients c(r)j , we make a Taylor expansion of Ψ(x + khx) and Ψ(x − khx)
up to order 2r + 1 and add them to achieve the linear system (k = 1, .., r)

2(khx)2

2!
Ψ(2)(x) + 2(khx)4

4!
Ψ(4)(x) + ...+ 2(khx)2r

(2r)!
Ψ(2r)(x) = Ψ(x+ khx)− 2Ψ(x) + Ψ(x− khx) .

(5.4)

By solving this system for Ψ(2)(x),3 we obtain the coefficients for a chosen order r, that satisfy
c
(r)
k = c

(r)
−k due to the symmetry of the second derivative.4

r k=0 1 2 3 4
1 −2 1
2 −5

2
4
3 − 1

12
3 −49

18
3
2 − 3

20
1
90

4 −205
72

8
5 −1

5
8

315 − 1
560

Table 5.1.: The coefficients c(r)
k for r ≤ 4 arising from (5.4).

After this discretization of the operator of the second derivative, we can set up the Hamiltonian

2There also exist Green function methods to map the infinite system onto the finite grid, but since they are
only applicable in 1D, they have not been implemented.

3Due to the linearity we can solve the system for each inhomogeneity separately, i.e. for c(r)0 we set the
inhomogeneity (−2,−2, ..,−2), for c(r)1 (1, 0, 0, .., 0) and so on. This gives the prefactor of each term Ψi+k, k = 1, .., r,
in the sum (5.3).

4We can apply the same procedure to get the coefficients of the first derivative involving s grid points. In this
way, numerical derivatives are computed in the code, mostly by using s = 3 or 4.

40



5.1. Stationary Schrödinger equation

on the spatial grid

H = − 1
2h2

x



c
(r)
0 − 2h2

xV1 c
(r)
1 · · · c

(r)
r 0 · · · 0

c
(r)
1 c

(r)
0 − 2h2

xV2 c
(r)
1 · · · c

(r)
r 0 · · · 0

... . . . ...

... . . . ...
0 · · · 0 c

(r)
r c

(r)
r−1 · · · c

(r)
0 − 2h2

xVNx c
(r)
1

0 · · · 0 c
(r)
r c

(r)
r−1 · · · c

(r)
0 − 2h2

xVNx


.

(5.5)

Then this bandmatrix is diagonalized, for r > 1 by use of the Lapack routine dsbevx and for r = 1
by dstegr, to yield the desired number Nb ≤ Nx of basisfunctions and related energies.

To increase the accuracy of the thus obtained wavefunctions, a further integer parameter q is
introduced and the matrix is diagonalized on a grid with q · Nx nodes instead of Nx, what
artificially reduces the interpoint spacing. The wavefunction is then set up with each q-th point
of the eigenvector. This is instructive since in view on subsequent applications one is intended
to keep the gridpoint number low, while the diagonalization is fast to accomplish, at least for
tridiagonal matrices (i.e. r = 1).

5.1.2. Two-dimensional case

As mentioned above the extension to the two dimensional case (and to any higher dimension) is
straightforward. One now has two spatial grids xi, i = 1, .., Nx and yj , j = 1, .., Ny and any
function Ψ(x, y) becomes a quantity with two indices Ψi,j = Ψ(xi, yj) that is conveniently
stored in a vector of dimension NxNy. The second derivate is evaluated at rx/ry outer points in
x / y direction and the Hamiltonian becomes a Ny ×Ny bandmatrix of Nx ×Nx matrices

H =


A1 C(ry)

1 · · · C(ry)
ry

C(ry)
1 A2 C(ry)

1 · · · C(ry)
ry

... . . . ...
C(ry)
ry · · · C(ry)

1 ANy

 , (5.6)

where C(ry)
i = − c

(ry)
i
2h2
y

INx is proportional to the unit matrix and

Ai =



(
− c

(rx)
0
2h2
x
− c

(ry)
0
2h2
y

+ V1,i

)
− c

(rx)
1
2h2
x

· · · − c
(rx)
rx
2h2
x

− c
(rx)
1
2h2
x

(
− c

(rx)
0
2h2
x
− c

(ry)
0
2h2
y

+ V2,i

)
− c

(rx)
1
2h2
x

· · · − c
(rx)
rx
2h2
x

... . . . ...

 (5.7)

is a bandmatrix with the same structure as found in the previous section.
Since H is a sparse matrix, the direct diagonalization methods for dense matrices provided by
Lapack are applicable only for small values of Nx and Ny (. 102). Thus another library has to
be used that solves sparse eigenvalue problems iteratively, and after a comparison of the available
codes the Anasazi-solver from the Trilinos-package [25] has been found suitable for its good
structure and high performance.
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5. Solution of the one-particle Schrödinger equation

5.1.3. Radial Schrödinger equation

In three dimensional central potentials, the Hamiltonian commutes with the square of the angular
momentum operator, [H,L2] = 0, leading to the ansatz

ψnlm(r) = unl(r)
r

Ylm(θ, ϕ) , (5.8)

where Ylm is the spherical harmonic. The function unl satisfies the radial Schrödinger equation
[26] {

− 1
2µ

d2

dr2
+ l(l + 1)

2µr2
+ V (r)

}
unl(r) = εnl unl(r) (5.9)

and the normalization condition
∫
unl(r) dr = 1. µ is the reduced mass, that for atoms is normally

set to one.

This equation is solved with the same method as in the one dimensional case, the only difference
is that because of the singularity at the origin a small cutoff parameter is introduced to avoid
a division by zero. Therefore, if r = 0 it is replaced by r ≈ 10−20. Unfortunately, for some
potentials, e.g. the Coulomb potential, the magnitude of the first eigenvalue is then of the order
−1020 and has to be neglected. In the code this is done automatically. For a more economical
solution, one could also use a logarithmic grid, as it is for instance introduced in [13].
The obtained solutions are ordered by the quantum numbers (nr, l,m), where nr is the radial
quantum number. This is also the intrinsic order of a numeric solution of (5.9), as for a given
radial quantum number l the k-th eigenvector has k nodes (except the one at the origin), and
thus nr = k.

5.2. Time-dependent Schrödinger equation

Having obtained the stationary solutions, we can ask how they do evolve in time under an external
perturbation. The essential technique in solving the time-dependent Schrödinger equation is to
approximate the formal time-evolution operator

U(t, t0) = T e−i
∫ t
t0
H(t′)dt′

, (5.10)

by dividing the time-span [ t0, t ] in (Nt − 1) segments with duration ∆t and assuming H(t) to
be constant therein.

U(tk+1, tk) ≈ e−iH(t+∆t
2 )∆t , U(t, t0) =

Nt∏
k=2

U(tk, tk−1) . (5.11)

The main problem is then to evaluate this expression and apply it to an initial state.
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5.2. Time-dependent Schrödinger equation

5.2.1. Generalized Crank-Nicolson scheme

Given the finite difference Hamiltonian (5.5), to evaluate (5.11) we have to calculate the matrix
exponential, which is also a well-studied task.5 One approximative method is to expand the
exponential in a Taylor series up to first order around t + ∆t

2 and simply apply it on ψ(t) using
matrix multiplication. This yields an explicit scheme that is, however, not very stable [27]. By
demanding the Cayley formula{

1 + iH∆t/2
}
ψ(t+ ∆t) =

{
1− iH∆t/2

}
ψ(t) , (5.12)

we achieve an implicit and stable scheme named after Crank and Nicolson with accuracy O(∆t2).
Since the right-hand side is known, ψ(t+ ∆t) is found by solving a linear system of equations.

The generalization of this scheme up to arbitrary order can be obtained by reinterpreting the
Cayley evolution operator

U(t+ ∆t, t) = 1− iH∆t/2
1 + iH∆t/2

(5.13)

as the [1/1] Padé-approximation of the exponential function. The [M/N] Padé-approximation of
a function f(z) around z0 is an expansion in a rational function with polynomial order M in the
numerator and N in the denominator

R(z) = a0 + a1z + · · ·+ aMz
M

1 + b1z + · · ·+ bNzN
, (5.14)

satisfying

R(z0) = f(z0) and dR(z)
dz

∣∣∣∣∣
z=z0

= df(z)
dz

∣∣∣∣∣
z=z0

. (5.15)

These conditions give rise to a linear system of equations for the coefficients ai and bi [27]. The
idea is then to extend (5.13) to the [M/M] Padé-approximation of the exponential function and
factorize the polynomials

ez = a0 + a1z + · · ·+ aMz
M

1 + b1z + · · ·+ bMzM
=

M∏
s=1

1− z/z(M)
s

1 + z/z
(M)
s

, (5.16)

where the roots z(M)
s of numerator and denominator are found to be complex conjugate to each

other [24]. Instead of solving the linear system (5.15), the Padé approximation for the exponential
can be obtained by a formula involving the confluent hypergeometric function [28]

1F1(−M,−2M, z) != 0 (5.17)

We solve this equation with respect to z, which yields the roots z(M)
k .6 The values of some low

order coefficients are displayed in Tab. 5.2. If we then set z = −iH∆t and define

5Among the available methods are matrix decomposition, polynomial and ordinary differential equation meth-
ods.

6In the code this is done with the polynomial-solver from the library gsl.
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5. Solution of the one-particle Schrödinger equation

M s=0 1 2 3
1 −2.0000 + i 0.0000
2 −3.0000 + i 1.7321 −3.0000− i 1.7321
3 −4.6444 + i 0.0000 −3.6778− i 3.5088 −3.6778 + i 3.5088
4 −4.2076 + i 5.3148 −5.7924 + i 1.7345 −5.7924− i 1.7345 −4.2076− i 5.3148

Table 5.2.: The first coefficients z(M)
s from the factorization of the Padé-expansion of the exponential

function.

K(M)
s (t) =

1− iH(t)∆t
z
(M)
s

1 + iH(t)∆t
z
(M)
s

, (5.18)

we can write

e−iH(t+∆t
2 )∆t ≈

M∏
s=0

K(M)
s (t+ ∆t/2) , (5.19)

and thus

ψ(t+ ∆t) ≈
M∏
s=0

K(M)
s (t+ ∆t/2) ψ(t) . (5.20)

Since the operators K(M)
s commute (if they are all evaluated at the same time t+ ∆t/2), we can

divide ∆t into M substeps

ψ

(
t+ (m+ 1)

M
∆t
)
≈ K(M)

s (t+ ∆t/2) ψ
(
t+ m

M
∆t
)
, m = 0, · · · ,M − 1 , (5.21)

and solve each of these M equations with the same procedure as in the conventional Crank-
Nicolson scheme, i.e. by solving a linear system of equations. As the Hamiltonian (5.5) is used,
plus a diagonal term arising from an external disturbance, the coefficient matrix 1 + iH∆t/z(M)

s

of this system is a complex bandmatrix. In the code the solution is found with the Lapack-routine
zgbsv.

In conclusion, we have derived a propagation scheme that is accurate in the order O(∆tM ), so
that in principle a much larger stepsize ∆t can be chosen – at least for stationary or slowly
varying external perturbations. One has to be careful though for highly oscillating fields, because
there a larger stepsize may not represent the characteristic exactly. A possible way to amend this
shortcoming is to include gradient corrections, as it is done e.g. in the Magnus expansion [29],
but that has not been implemented in the code.

5.2.2. Split-Operator method

Another time-evolution scheme, the Split-Operator method, has been implemented, mostly to
confirm the solutions obtained from the Generalized Crank-Nicolson scheme just mentioned and
to compare their performance. The idea here is to apply the kinetic part T of the Hamiltonian in
Fourier space, where it is diagonal, and equally the potential part V in position space. Application
then means simply to perform a scalar multiplication in each component of the wavefunction-
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5.3. Application

vector. Thus it is an explicit scheme in contrast to the implicit CN-scheme, where a linear system
must be solved.

The splitting scheme accurate to second order reads explicitly

e−iH∆t = e−i(T+V )∆t ≈ e−iV∆t/2 e−iT∆t e−iV∆t/2 . (5.22)

Thereby, the commutators arising from the Baker-Campbell-Hausdorff formula are neglected.

The application of this approximated time-evolution operator is simple: Since the exponential of a
diagonal matrix is easily obtained by exponentiating the diagonal entries, we just have to multiply
each component of the wavevector ψi(t) with e−iVi∆t/2. The resulting vector is then transformed
into momentum space by a fast Fourier transform with respect to spatial coordinates, where the
kinetic part is applied in the same way as the potential part.7 Then after a transformation back
into coordinate space the potential part is applied once again to yield the propagated wavefunction
ψ(t+ ∆t).

Beside this, also also a fourth-order scheme has been implemented. The splitting of the time-
evolution operator there is given by [30]

e−i (T+V )∆t ≈ e−i Ṽ ∆t/8 e−i T ∆t/3 e−i V 3∆t/8 e−i T ∆t/3 e−i V 3∆t/8 e−i T ∆t/3 e−i Ṽ ∆t/8 , (5.23)

where Ṽ now incorporates some contributions from the commutators

Ṽ = V + ∆t2

48
[V, [T, V ]] . (5.24)

A straight forward calculation further gives

[V, [T, V ]] =
d∑
i=1
|∇i v(r)|2 . (5.25)

The sum goes up to the dimension d and in the one-dimensional case ∇ is replaced by ∂/∂x. The
application of this scheme requires 6 FFT’s and should be superior to the second order splitting in
most of the times. The practical extension to higher dimensions is even more simple than in the
Generalized-CN method – all we have to do is to use a higher dimensional FFT as it is available
in the fftw-library.

5.3. Application

Higher-order derivatives

We check the influence of the higher-order derivation formulas in the diagonalization of the matrix
(5.5). The considered system is a one-dimensional harmonic oscillator that is discretized by a grid-
spacing of ∆x = 0.04. In Fig. 5.1 (a), the total energies for different parameters r are tabulated
up to the fiftieth basisfunction. Obviously, there is a great improvement for higher-order schemes
and the best result is obtained with r = 14. However, the harmonic oscillator is known to be a

7In the code the Fourier transform is performed with help of the library fftw, that is able to treat arrays of
arbitrary length and dimension with an O(n log n)-algorithm.
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5. Solution of the one-particle Schrödinger equation

Figure 5.1.: Comparison of the different-order schemes in the spatial diagonalization and time-evolution.
(a) The total energies for the numbered basisfunctions in a 1D harmonic oscillator. (b) A displaced Gaus-
sian wave package that oscillated 50 times (T = 100π) in the harmonic confinement. The number of time
steps is chosen in such a way, that both evolutions require nearly the same computational effort. The higher
order scheme with M = 20 is clearly superior to the Crank-Nicolson scheme with M = 1.

very well-tempered system, so that for arbitrary confinements r should not be chosen that large,
but rather between one and five.

Properties of the Generalized Crank-Nicolson method

We also investigate the influence of the parameter M, that denotes the order of the polynomials in
the Padé approximation of the exponential. Here we only use r = 1, i.e. the discretization of the
second derivative by formula (5.2), as it is numerically much more convenient to solve tridiagonal
linear systems than banded ones. However, if we claim a higher accuracy for constant gridpoints
– e.g. to avoid memory overflow – r should be set in between one and five.
Figure 5.1 (b) shows the evolution of a displaced Gaussian wave package in the harmonic oscillator,
for which we know from the analytical solution that it oscillates by a frequency of 1/2π. The
initial state is centered at x = 3 and then evolved to time T = 100π, where it completes its fiftieth
oscillation. The discretization of the spatial grid is ∆x = 0.0024, and the respective number of
time steps is chosen to require the same effort, i.e. Nt = 20000 for M = 1 and Nt = 1000 for
M = 20. The result clearly reveals the advantage of the higher-order schemes that, especially in
2D calculations, can be used to significantly save time.
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6. Roothaan-Hartree-Fock formalism

6.1. Overview

The Hartree-Fock- or self-consistent field method was invented by D.R. Hartree in 1928 and
completed two years later by Fock and Slater, who independently pointed out that Hartree’s
approach was not correctly anti-symmetrized. They also showed how it could be derived from
a variational principle applied to the simplest many-body wavefunction, a Slater determinant.
However, the corresponding Hartree-Fock equations were not feasible until the beginning of the
fifties, when C.C.J. Roothaan and G.G. Hall – again independently – introduced their basis
representation.

C.C. Roothaan1

G.G. Hall2

Thereby the Hartree-Fock equations attain the form of a generalized eigen-
value problem, the Roothaan-Hall equations [7]

HHF C = ε O C , (6.1)

where HHF denotes the effective Hartree-Fock Hamiltonian or Fock matrix,
O the overlap matrix and the solution C is the matrix of the expansion
coefficients, that determine the Hartree-Fock orbitals {ψi} as a linear com-
bination of the chosen basis {ϕj}.

ψi =
∑
j

Cij ϕj . (6.2)

The first decision one has to take is the selection of an appropriate basis.
For quantum chemists this is right often the hardest part, as “probably there
are as many basis sets as there are quantum chemists“ [7]. However, most
of these basis sets are specific to atoms and molecules, so that within this
work only two basis sets from this large repertory are selected:

• Natural orbitals (NO)
NOs designate the eigenfunctions of the single-particle Hamiltonian. Within this work they
are calculated numerically by means of the procedures from Chapter 6. NOs are always
usable, especially if the particle interaction is weak.

• Slater-type orbitals (STO)
STOs are analytical basis functions specific to the Coulomb potential. They are similar
to hydrogen eigenfunctions, but their radial part only depends on the principal quantum

1http://www.quantum-chemistry-history.com/Root_Dat/RevModPhys/RevModPh69.htm
2http://www.quantum-chemistry-history.com/Hall1.htm
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6. Roothaan-Hartree-Fock formalism

number

χnlm(r, ζ) =
√

(2ζ)2n+1

(2n)!
rn−1 e−ζr Ylm(θ, ϕ) . (6.3)

Ylm are the spherical harmonics. In groundstate calculations, the parameter ζ is optimized
with respect to the energy minimum.

Other often used basis sets are Gaussian type orbitals, also specific to molecules, and plane waves.
Generally one can say that an analytical basis is superior to a numerical one. The reason for this
is that there often exist closed formulas for the computation of the electron repulsion integrals,
the bottleneck in SCF calculations. In addition, the possibility to introduce further parameters
makes the basis more flexible, as the spanned Hilbert-subspace can be freely varied. Later we will
show the drastic advantage of this flexibility.
Our use of the numerical NOs indeed is comfortable, but not optimal. Probably it would be
better to expand the wavefunctions in an appropriate analytical basis, for instance plane waves,
and solve the single particle Schrödinger equation by variation of the expansion coefficients, a
procedure that is called ”linear variation method“.3 This would eliminate the need for storage
of the wavefunctions on the spatial grid points, what not only saves a lot of memory, but also
gives the possibility to greatly enlarge the dimension of the grid – this is particularly interesting
for ionization processes. In addition one can enjoy all the mentioned advantages of an analytical
basis.

Before starting the SCF calculation, one also has to specify the treatment of the spin, for what
again numerous methods exist:

• Spin-polarized
In the first approach, we consider all electrons to have the same arbitrary spin, what leads
to singly occupied orbitals in the fermionic case. While not covering the situation of real
materials, the spin-polarized ansatz can be used as an easy model to investigate the under-
lying physical processes, especially because it has turned out to be numerically the most
stable choice, see also the discussion in the following section.

• Restricted Hartree-Fock (RHF)
The RHF ansatz models the simple picture one bears in mind, in which each spatial orbital is
occupied by two electrons with opposite spin. It is the most common choice for Hartree-Fock
calculations and often yields reasonable predictions for real materials.

• Restricted open-shell Hartree-Fock (ROHF)
ROHF is an extension of RHF in which also open shells, i.e. singly occupied orbitals whose
spins are assumed to be parallel, are added to the description. The corresponding equations
have also been found by Roothaan in 1960 [31].

• Unrestricted Hartree-Fock (UHF)
In contrast to RHF calculations, in UHF one assumes that each electron sits in its own spatial
orbital. In basis representation this leads to a coupled system of two eigenvalue equations
of the Roothaan-Hall form, that are called Pople-Nesbet equations [7]. The enlargement of
the variational space will in general provide better ground-state energies, while the resulting

3Unfortunately this common idea only arose late during this work, when (after a lot of trials with the analytical
basis sets provided here) the importance of an adapted basis became obvious. The implementation will be part of
the future work.
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6.2. Solution of the Roothaan-Hall equations

Figure 6.1.: The usual types of treating the spin in (fermionic) single-determinant Hartree-Fock calcula-
tions.

wavefunction, however, is not an eigenstate of S2. Thus an UHF calculation is often followed
by appropriate projection techniques to restore the expected symmetries 4 [32].

In Fig. 6.1, a sketch of the enumerated types is shown. In this work we consider all of them,
except for the ROHF method, but as an expansion basis for the Green function until now only
the spin-polarized and spin-restricted cases are used. To cover both in the following mathematical
formulation, in chapter 4 a parameter σ was introduced, which is set to one in the spin-polarized
case and to two in RHF calculations. For bosonic particles in the absence of a spin-dependent
disturbance or interaction, only the spin-polarized and the UHF approach are sensible, as bosons
don’t obey any restrictions in the possible occupation of one state.

6.2. Solution of the Roothaan-Hall equations

The Roothaan-Hartree-Fock method is a standard procedure described in many textbooks, e.g.
[7], but almost all of them consider the zero-temperature case. We will explain a different, more
physical approach to treat also finite temperatures by using thermodynamic ensembles [18].

As input to the Roothaan equations we need the electron integrals in the chosen basis, summarized
in the following:

Oij =
∫
dx ϕ∗i (x))ϕj(x) , (6.4)

h0
ij =

∫
dx ϕ∗i (x)

{
−1

2
∇2 + v(r)

}
ϕj(x) , (6.5)

wij,kl =
∫∫

dx dx′ ϕ∗i (x)ϕj(x) w(r, r′) ϕ∗k(x′)ϕl(x′) . (6.6)

O is the overlap-matrix, h0 the single-particle Hamiltonian and w denotes the two-electron (or
electron repulsion) integrals. To compute the respective energies, also the kinetic and potential
part of h0 should be determined. Further, an eventual spin dependence is suppressed in the
variable x and integration leads to a delta function, as the operators are spin-independent and
different spinfunctions are orthonormal.
As mentioned, the calculation of these integrals is a specific field on its own. In one dimension,
we compute them by a simple numerical Simpson integration. Since the one-particle matrices for

4This has been liberally explained to us by one of the authors of the reference, Fabio Cavaliere, in a private
talk at the FQMT 08 conference in Prague. He also pointed out the importance of symmetry-breaking processes
in the Hartree-Fock procedure, see the following discussion on the convergence properties.
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real orbitals are symmetric, only the upper triangular matrix has to be calculated. Furthermore,
the two-electron integral wij,kl is symmetric under exchange of (ij)→ (ji), (kl)→ (lk) as well as
under interchange of the two blocks (ij, kl)→ (kl, ij), which is why only one eighth of them have
to be computed. Additionally, in Chapter 10 an approximation scheme is introduced to further
reduce the computational effort of O(N4

b /8).

Having obtained the input matrices, the practical computation proceeds as follows:

(i.) Calculate the Hamiltonian HHF (also called Fock matrix) given by

HHF
ij = h0

ij +
∑
kl

(σ wij,kl ± wik,lj) ρkl , (6.7)

the first time with an initial guess for the density matrix ρ. The factor σ coming from the
spin-summation is in the spin-polarized case σ = 1, while for RHF calculations σ = 2.

(ii.) Solve the generalized eigenvalue problem

HHF C = ε O C , (6.8)

requiring the orthonormalization C† O C = 1. In the code this is done with the Lapack
routine dsygvd, that performs a Cholesky decomposition of the matrix O, transforms HHF

to the new basis and solves the resulting standard eigenvalue problem.

(iii.) Determine the new chemical potential µ by requiring the total number of particles N to be

N(β, {εk}, µ) = σ
∑
i

ni(β, εi, µ) , ni(β, εi, µ) = 1
eβ(εi−µ) ± 1

, (6.9)

where in the grand-canonical formalism the occupation number ni is obtained either from
the Bose/Einstein or the Fermi/Dirac distribution. In the RHF case, ni is multiplied by
two, as each orbital is doubly occupied. The root of the sum is found with the algorithms
of the library gsl. For Bosons one has to narrow the search to the energy region lower than
the first energy-eigenvalue to avoid numerical instabilities, since the chemical potential can
not be larger than this value.

(iv.) Calculate the new density matrix ρ and the new total energy Etot by

ρij =
∑
k

Cik nk C
∗
jk , (6.10)

Etot = σ Tr
{
ρ h0}+ σ

2
Tr
{
ρ (HHF − h0)

}
. (6.11)

The first term in the expression for Etot accounts for the single-particle contribution and
the second term for the mean-field part. As always, the factor 1

2 prevents a double-counting
of the interaction. Further, if the density matrix is asked for information on the occupation
numbers, the entries also have to be multiplied by σ.

(v.) Return to (i.) with the updated density matrix ρ as long as the total energy is changing,
i.e as long as |E(ν)

tot −E
(ν−1)
tot | > ∆Etot. ν labels the iteration cycle and ∆Etot is the claimed

accuracy, usually chosen smaller than 10−10. Alternatively one could question the averaged
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convergence of the density matrix by

∆ρ = 1
N2
b

∑
ij

∣∣∣ρ(ν)
ij − ρ

(ν−1)
ij

∣∣∣ , (6.12)

what turned out to be a more sensitive test, see the following discussion on convergence
properties.

The convergence of this iteration scheme is not assured. Even if the total energy converges, the
difference of two successive density matrices ∆ρ can remain large, what is caused by periodic
changes. The convergence can sometimes be improved by introducing a damping-parameter α,
with which the new density-matrix is obtained by an average with the one from the previous cycle

ρ(ν+1) := αρ(ν+1) + (1− α)ρ(ν) . (6.13)

However, even if both quantities converge, the result may not be the desired Hartree-Fock equi-
librium state. For example, a restricted Hartree-Fock calculation for a two-dimensional isotropic
harmonic oscillator does not necessarily lead to a radial-symmetric density distribution, see section
8.4. The only way around this problem is to restore the expected symmetry by applying certain
symmetrizing procedures [32], which also bring correlation into the system, as the symmetrized
densities are no longer described by a single Slater determinant.

6.2.1. Canonical ensemble

The extension of the above algorithm to the canonical ensemble is straightforward. All we have
to do is to replace the grand-canonical expectation value of the mean particle number by its
canonical counterpart

〈ni〉gc −→ 〈ni〉can (6.14)

As it is known from statistical physics, in the case of non-degenerate energy levels the canoni-
cal average can be achieved from the grand-canonical by discarding the chemical potential and
restricting the sum over the Fock-space to a fixed particle number N [33]

〈ni〉can = 1
Zcan

1∑
n1=0

1∑
n2=0

· · · ni e−β
∑∞

k=1 εknk δN,
∑∞

k=1 nk
. (6.15)

In the bosonic case the summations are performed up to infinity instead of one, because each state
can be occupied by an infinite number of bosons (yet regarding the Kronecker-delta, summation
up to N is sufficient). As there is no analytical formula available like in the grand-canonical
case, we have to attack the partition function and the mean particle number numerically. In the
following the applied procedures are explained detail.
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6. Roothaan-Hartree-Fock formalism

Recursion formulas

One recursion formula for the calculation of the partition function for noninteracting particles in
the canonical ensemble is given by [34]

ZN (β) = 1
N

N∑
k=1

(±1)k+1 Z1(kβ) ZN−k(β) , Z0(β) ≡ 1 , (6.16)

where Z1(kβ) =
∑
j e−jβej is the one-particle partition function at temperature kβ.

The mean occupation of an orbital with energy εi is then obtained by

ni(N, β) = 1
ZN (β)

N∑
k=1

(±1)k+1 e−kβε ZN−k(β) . (6.17)

As the partition function grows exponentially with N , for larger particle numbers one should use
multiple precision arithmetic 5 to avoid overflows.

Direct evaluation

Though the recursion formulas are clearly superior to the direct evaluation of (6.15), we will
derive the latter one as well, not only since it was our first and straightforward approach, but
also because it will be needed in the following chapter. Therefore we must specify all accessible
states to a given particle number and – leaving out all zeros from the Kronecker delta – perform
the sum (6.15) only over those states. In the following we will give the method to obtain all these
states for a given particle number N and number of basis functions Nb in occupation number
representation6.

(i) Bosonic case only: Integer partition of N
To find the integer partition of N means to determine the set of integers
that yield N when summed up. For example, the integer partition of 4 is{
{4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}

}
. For fermions only the simple partition {1, 1, 1, 1}

is used.

(ii) Cyclic permutation
Each partition is written in the first components of a vector of length Nb and the other
entries are padded with zeros. Then all cyclic permutations of each vector are found.

Let us consider an example: We want to find all states for N = 3 particles and Nb = 4 basis
functions. For fermions we switch immediately to (ii) and get

(1, 1, 1, 0) (1, 1, 0, 1) (1, 0, 1, 1) (0, 1, 1, 1)

5For example the gnu multi-precision library (GMP)
6Another algorithm is possible: Instead of relating particle numbers to states one can do the opposite and assign

a state to each particle. This has been independently implemented by Martin Heimsoth to yield exactly the same
results.
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6.2. Solution of the Roothaan-Hall equations

while for boson we first appoint the integer partition of 3,
{
{3}, {2, 1}, {1, 1, 1}

}
, and permute

each of these subsets

(3, 0, 0, 0) (0, 3, 0, 0) (0, 0, 3, 0) (0, 0, 0, 3)
(2, 1, 0, 0) (2, 0, 1, 0) (2, 0, 0, 1) (1, 2, 0, 0) · · ·

(1, 1, 1, 0) (1, 1, 0, 1) (1, 0, 1, 1) (0, 1, 1, 1)

Then the energy
∑∞
k=1 εknk of each state is known and expression (6.15) can be evaluated. For

comparison between the two ensembles see the figures in section 6.3.

6.2.2. Hartree-Fock orbital representation

Our primary aim in doing Hartree-Fock calculations is to obtain the orthonormal basis of Hartree-
Fock orbitals, that shall be used to expand the Green function and perform ”beyond mean-field“
or correlated calculations. Though when switching to this new basis, any of the already calculated
quantities needed in the following steps also have to be transformed. A general one-body operator
in the new basis is given in terms of the old and the expansion coefficients C obtained from (6.8)

OHF
ij = 〈ψi|Ô|ψj〉 =

∑
kl

C∗kiClj 〈ϕk|Ô|ϕl〉 =
∑
kl

C∗ki Okl Clj . (6.18)

For the single particle Hamiltonian, it is thereby convenient to subtract the chemical potential
from the diagonal entries (

h0
ij

)HF
=
∑
kl

C∗ki h
0
kl Clj − µ δij , (6.19)

for reasons that are explained in Chapter 10. Another special case is the density matrix ρ,
which by definition transforms into a diagonal matrix containing the respective HFO occupation
numbers. This property serves as a sensitive test for the correctness of the eigenvectors C.
Furthermore, from (6.6) we obtain for the two-electron integrals in the new basis the expression

wHF
ij,kl =

∑
abcd

[
AaiA

∗
bj

]∗
wab,cd [AckA∗dl] . (6.20)

In the numerical execution for large basis sets it is indispensable to query for the size of wab,cd
and perform the loop over (ĳkl) only if it exceeds a chosen cutoff parameter (∼ 10−15 a.u.).

6.2.3. Unrestricted Hartree-Fock

The previous Hartree-Fock algorithm can handle spin-polarized as well as spin-restricted systems,
and in the latter case the expected Ŝ2-symmetry is implicitly assumed. However, sometimes it is
more instructive to enforce a UHF-state, that is no eigenstate of Ŝ2, e.g. if a better groundstate
energy is needed or if the modeled molecule has an unequal number of particles with different
spin. In particular, it is sensible if the RHF result has suffered a symmetry-breaking process [32]
and symmetry-restoring operators are applied anyway.
The mathematical formulation as well as the numerical implementation are not more difficult
than in the spin-polarized case. All we have to do is to assume two spin-polarized subsystems
of different spin, that within each subsystem interact via the normal Hartree-Fock interaction
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6. Roothaan-Hartree-Fock formalism

and in between both systems only through Hartree interaction. In addition, one obtains two
density matrices and chemical potentials. The representation in a basis yields two coupled matrix
equations for the expansion coefficients of species ↑ and ↓, that are called Pople-Nesbet equations
[7]

HUHF,↑↓ C↑↓ = ε↑↓ O C↑↓ . (6.21)

Thereby the unrestricted Hartree-Fock Hamiltonian or the Fock matrix is given by

HUHF,↑↓
ij = h0

ij +
∑
kl

(wij,kl ± wik,lj) ρ↑↓kl +
∑
kl

wij,kl ρ
↓↑
kl . (6.22)

If N↑ = N↓, one should use different starting guesses for the two density matrices, unless the
restricted HF result is desired. Even then, the iteration process can converge in the RHF result.

6.3. Application

Comparison between NO and STO calculations

By means of the example Helium, we show how the improved flexibility of analytical functions
can lead to much better results. The NOs are given by (5.8), and the two-electron integrals are
calculated by the formula from Appendix A. The formulas for the one-center electron integrals
involving STOs, though straightforward to compute, are taken from [35], while the optimized
coefficients are gained after a numerical minimization of the energy. For the minimization we use
the ”downhill simplex method“ of Nelder and Meat [27] as implemented in the library gsl, that
has the advantage that no derivatives are needed.
At first we tried the natural orbital basis, for which we collect the total energies of two different
groundstate calculations (β = 100) in both ensembles. In the groundstate, the principle of Ritz
holds, so the quality of a given result can immediately be valued. A denotation of the form (9, 1)
means, that all orbitals with nr ≤ 9, l ≤ 1 and −l ≤ m ≤ l are included. The results are

Helium Basis Egctot Ecantot

NO (5,0) −2.8351 −2.8351
(9,1) −2.8354 −2.8354

Further we calculated the virial ratio, Ekin/Etot = −1.11, that should be exactly minus one for
atomic systems. One sees, that an augmentation of the basis does not necessarily lead to a better
result.

Next, we inserted a basis of Slater type orbitals (STO) and optimized the coefficients with respect
to the total energy. This time the corresponding notation (321) means that we used 3 s-functions,
2 p-functions, 1 d-function and so on. The variational space can be even more extended, if the
principal quantum numbers are allowed to become non-integer. The calculations in which in
addition to the to the exponents also the principal quantum numbers are optimized, are denoted
by NISTO. We obtained the following results:

Helium Basis Etot
STO (1) −2.84765625

NISTO (1) −2.854208497
STO (222) −2.861679996
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Interestingly, one optimized Slater type orbital yields a better result than 30 basisfunctions in
the (9,1,1) NO calculation. The result for the (222)-basis exactly agrees with the Hartree-Fock
limit [36], the value which corresponds to a fictitious calculation with Nb → ∞. Accordingly,
the respective virial ratio is Ekin/Etot = −0.9999996. The optimized parameters for the minimal
basis sets (1) are given by

ζ n

STO 1.6875 n ≡ 1
NISTO 1.61172 0.955057

By comparing the optimized exponents ζ to the exponent of the first s-orbital obtained from the
Schrödinger equation, which is proportional to e−2r, we can guess why the STO calculations are
that superior.
These results suggest an impressive saving in the number of basisfunctions on the HF level. For
correlated calculations,however, one often needs larger basis sets to reach the limit of the respective
approximation.

Minimization of analytical NO’s

Recognizing the results from the last example, one can guess that any analytical basis can be
improved by introducing additional parameters followed by a minimization of the (internal) energy
in the zero-temperature case, respectively of the free energy for finite temperatures. In any case
the basis gets more flexible and, as seen before, if a sensible choice is taken the HF-limit can
be reached much earlier. As an example we extend the NOs of the one-dimensional harmonic
oscillator by the parameter ζ in the following way:

(Ω
π

) 1
4

Hn(
√

Ω x) e−
Ωx2
2 →

(Ωζ
π

) 1
4

Hn(
√

Ωζ x) e−
Ωζx2

2 (6.23)

H are the Hermite polynomials and Ω is the trap frequency, that is formally able to vary for each
eigenfunction.7 To investigate this replacement, we need a (temporary) reference result from a
spin-polarized, grand-canonical calculation within the standard basis:

Nb = 20 , N = 3 β = 100 , λ = 1.0 → Etot = 6.61446 (6.24)

Again the temperature is sufficiently low to model the groundstate, thus the Ritzian principle
holds and lower energies imply a better approximation to the searched groundstate. The energies
after minimization are

Nb Ebefore Emin

4 6.65984 6.61479
12 6.61461 6.61436

The minimized result for Nb = 12 is slightly better than the reference result. Further, the result
for 4 basisfunctions is comparable to the reference and much better than the energy without

7Similarly to the STO calculations, also non-integer quantum numbers could be used, for instance through the
expansion of Hermite polynomials in hypergeometric functions.
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optimization. The optimized parameters for Nb = 4 read

ζ0 = 1.15858 , ζ1 = 1.11377 , ζ2 = 0.85686 , ζ3 = 1.03496 , (6.25)

and have to be compared to the pure NO basisfunctions with ζi ≡ 1.
For Nb = 12 basisfunctions, the deviation between the energies before and after minimization is
only small. This implies, that here the HF-limit is reached if a larger basis, for example Nb = 30
NOs, is used. Since in view on nonequilibrium calculations this is what we are going to do, in the
further work only the pure NOs are used.
However, the approach of these extended basisfunctions could be sensible for a large number of
particles N . Nb or also for strong interaction, as the wavefunction differs more and more from
the ideal case. Further it could be advantageous in the dynamic description of ionization: When
the groundstate is adequately described by a few extended NOs, more continuum wavefunctions
can be used.

Grandcanonical vs. canonical ensemble

While the results from canonical and grand-canonical groundstate calculations agree, for finite
temperatures both approaches yield different results. As already indicated in [18], there by com-
parison of the total energies arising from canonical path-integral Monte Carlo simulations and
grand-canonical Matsubara Green function results in second Born approximation, the canonical
energies are lower than the grand-canonical. Here we investigate the occurring ensemble differ-
ences more consistently within one method and explain the reason for this behavior.
Figure 6.3 shows the total energies for different coupling parameters, that are found to deviate
the most in the region between β ≈ 0.5 and β ≈ 4.0. For β larger than five, both ensembles
yield the same groundstate result, as the orbital occupation is identical - the first N orbitals are
fully occupied and all others are empty. We also reveal, that for a larger λ the beginning of the
deviation shifts to lower inverse temperatures.

The empirical explanation of this behavior is given in terms of the densities, see Fig. 6.2. For
large β, the system is in its groundstate and the densities correspond to the the distribution
which minimizes the energy. For larger coupling parameters, the peaks get more localized as the
system approaches the Wigner crystallization regime. When the system is warmed up from the
groundstate, the particles gain kinetic energy and turn to wash out the optimal distribution, until
for very high temperatures, when all other energy contributions are negligible, the distribution
in both ensembles becomes a Maxwellian. Now in the intermediate region, the ensembles show
their difference: The canonical ensemble densities are more localized than the ones in the grand-
canonical ensemble, that are correspondingly broader and more washed out. This implies, that the
kinetic energy and particle-interaction energy in the grand-canonical ensemble are increased. At
the same time those orbitals, that were fully occupied in the groundstate, for finite temperatures
have a smaller occupation in the grand-canonical ensemble, while for the formerly unoccupied
states it is vice versa. This behavior is shown in Fig. 6.4.
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Figure 6.2.: The Hartree-Fock densities for N = 2 particles in both ensembles for different inverse
temperatures and coupling parameters.

Figure 6.3: Dependence of the total energies on
the inverse temperature for N = 2 spin-polarized
particles in a 1D harmonic oscillator. Com-
pared are the results from canonical and grand-
canonical calculations. As can be seen, for higher
temperatures the canonical energy is found to be
lower than its grand-canonical counterpart.

Spin-restricted vs. spin-polarized

Finally, we show the Hartree-Fock results arising from the different treatments of the spin as
collected in section 7.1. We consider N = 4 particles in the 1D harmonic oscillator with Nb = 15,
β = 50 and λ = 1. In Fig. 6.5 (a), we compare the densities from spin-polarized and spin-
restricted calculations. In the spin-polarized case, we can resolve the four particles, while the
RHF result rather resembles the densities for N = 2, Fig. 6.2.
In Fig. 6.5 (b) the UHF results are compared to those from RHF, and as expected they appear
less symmetric. The green curve shows the spin-density, ρS(x) = ρ↑(x) − ρ↓(x), that yields the
spatially resolved expectation value of the spin.
The three total energy values are Esp = 12.076, ERHF = 11.932 and EUHF = 11.661.
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Figure 6.4.: Occupation numbers in the two ensembles for different inverse temperatures, λ = 1.

Figure 6.5.: The densities from the different spin-methods for N = 4 particles, λ = 1, β = 50. (a)
Comparison between spin-restricted and spin-polarized densities. (b) Restricted HF, unrestricted HF and
spin density.
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Before encountering the numerics of the Green function, let us consider an approach that is much
more straightforward. Configuration Interaction or Exact Diagonalization designates a formalism,
in which the many-body Schrödinger equation is solved exactly. Our aim behind implementing
this method is mainly to provide a reference, against that the results from the approximate NEGF
approach can be checked. To this end, only very basic implementations are used and almost the
whole literature available in physics and quantum chemistry – such as [37] or [7] to name a few –
has been neglected.

7.1. Full Configuration Interaction

As is well known from quantum mechanics, the N-particle wavefunction is an element of the
space of (anti-)symmetrized wavefunctions H±N , which is a subspace of the direct product of N
one-particle Hilbert spaces. An (anti-)symmetrized wavefunction is thus composed of orbitals
{ϕk} of a one-particle Hilbert space, and a basis of H±N is given by all of these wavefunctions,
that are conveniently described in the occupation representation by infinite vectors. In numerical
calculations, of course, we have to restrict ourselves to a finite basis. This is naturally obtained
if only a restricted number of orbitals is taken into account. It leads directly to the occupation
vectors derived in section 6.2.1.

The idea is to represent the full Hamiltonian in second quantization

Ĥ =
∑
ij

h0
ij â
†
i âj + 1

2
∑
ijkl

wil,kj â
†
i â
†
j âkâl . (7.1)

Note that the interaction matrix element is rearranged to the “normal” appearance in order to
use our definition (6.6).
Further we calculate the matrix elements of Ĥ in the basis of the occupation vectors, which is
very easily done since the action of the creators and annihilators on a basis state is well known.

Hn,n′ = 〈 n | Ĥ | n′ 〉 = 〈 n1 n2 · · · | Ĥ | · · ·n′2 n′1 〉 . (7.2)

Then, all one has to do is to diagonalize this matrix to obtain the many body groundstate as well
as the excited states:

H = A E A† . (7.3)

The diagonal matrix E contains the eigenvalues of H and the unitary matrix A the respective
eigenvectors.

However, this easy command is in practice only feasible for small numbers of particles and basis-
functions, because the size of the basis and thus the dimension of the Eigenvalue problem grows
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very rapidly when increasing them. More precisely, for Fermions the number of occupation vectors
is
(Nb
N

)
.

For a reduction of the problem, any symmetry of the Hamiltonian can be used. If Ĥ commutes
with an hermitian operator Ô, it becomes decomposed in blocks and has to be diagonalized only
in the respective subspaces. As the diagonalization effort (of dense n × n matrices) grows with
O(n3), this can yield a well reduction.

In the code, for diagonalization again the Lapack library is used. An extension to the Anasazi
sparse solver package as used in section 6.2. could be implemented straightforwardly and should
be advisable when higher dimensions than one are considered.

7.2. Density matrix and natural orbitals

Once the Hamiltonian is diagonalized, it is very easy to calculate expectation values of an
(arbitrary-particle) operator Ô, either by averaging over the wavefunction or within the canonical
ensemble. Since the first alternative is common, we will focus only on the ensemble case. The
expectation value there is achieved by taking the trace of the product with the canonical density
operator %̂

〈 Ô 〉can = Tr (Ô %̂) = 1
Z

Tr (Ô e−βĤ) = 1
Z

∑
n

〈 n | Ô e−βĤ | n 〉

= 1
Z

∑
n,n′

〈 n | Ô | n′ 〉 〈 n′ | e−βĤ | n 〉 . (7.4)

The latter factor is known from the diagonalization

〈 n′ | e−βĤ | n 〉 =
∑
i,j

〈 n′ | ψi 〉 〈 ψi | e−βĤ | ψj 〉 〈 ψj | n 〉

=
∑
i,j

〈 n′ | ψi 〉 e−βEi δij 〈 ψj | n 〉 (7.5)

=
∑
i

〈 n′ | ψi 〉 e−βEi 〈 ψi | n 〉

=
∑
i

An′,i e−βEi A∗n,i .

Of special importance is the expectation value of two field operators that yields the density matrix
(which is to say the lesser Green function at equal times)

ρij = 〈 â†i âj 〉 . (7.6)

With it, we can calculate the generalized density

ρ(x, x′) =
∑
ij

ρij ϕi(x)ϕ∗j (x′) , (7.7)
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and by diagonalizing the density matrix, ρ = B d B†, we get the natural orbitals {χi} and their
respective occupation:

χi(x) =
∑
j

Bij ϕj(x) . (7.8)

These could serve as a possible basis to expand the Green function in, but no real advantage
would be gained by applying an approximation scheme to an exact basis. Alternatively, we could
treat only some of the lowest states by CI and complete them by Hartree-Fock states. To get an
orthonormal basis, the overlap matrix of this new basis can be diagonalized and the orbitals can
be transformed to the orthonormal basis.

7.3. Time evolution

The time evolution of a many-body state is governed by the Schrödinger equation

i
∂

∂t
| ψ 〉 (t) = Ĥ(t) | ψ 〉 (t) . (7.9)

The time-dependent wavefunction is given as an expansion in the basis of occupation vectors with
time-dependent coefficients,

| ψ 〉 (t) =
∑
n′

cn′(t) | n′ 〉 . (7.10)

We insert this into Eq. (7.9), insert a unity operator in between the right-hand side and project
the whole on 〈 n | to get∑

n′

〈 n | ċn′(t) | n′ 〉 =
∑
n′,n′′

〈 n | Ĥ(t) | n′′ 〉 〈 n′′ | cn′(t) | n′ 〉 (7.11)

−→ ċn(t) =
∑
n′

Hn,n′(t) cn′(t) , (7.12)

or, in matrix form,

ċ(t) = H(t) c(t) . (7.13)

The solution of this equation is

c(t) = U(t, t0) c(t0) , (7.14)

with the time-evolution operator U(t, t0) as given in chapter 5. We again approximate it by a
product of piecewise constant operators

U(t+ ∆t, t) ≈ e−iH(t+∆t/2)∆t , (7.15)

which can be computed with any of the methods given in section 5.2. Also an exact determination
of U is possible (and would have been in 5.2.), if a repeated diagonalization is feasible. To this
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end, we perform the same calculation as in (7.5) to obtain

Uij(t+ ∆t, t) =
∑
k

Ai,k e−iEk(t+∆t/2)∆t A∗j,k . (7.16)

The time-dependence of expectation values can be either achieved by average over the wave-
function or in the canonical ensemble. In the canonical ensemble, the expectation values can be
computed by employing the cyclic invariance of the trace

〈 ÔH(t) 〉 = Tr ( ÔH(t) %̂(t0) )
= Tr ( Û(t0, t) Ô(t) Û(t, t0) %̂(t0) ) (7.17)
= Tr ( Ô(t) Û(t, t0) %̂(t0) Û(t0, t) ) ,

i.e. by a trace of the product of O(t) and the time-dependent density-operator matrix

%(t) = U(t, t0) %(t0) U†(t, t0) . (7.18)

7.4. Application

Comparison with PIMC

For a one-dimensional quantum-dot, we compare the total energies of canonical Hartree-Fock
and Configuration Interaction calculations with those arising from path integral Monte Carlo
simulations, which are also set in the canonical ensemble. The PIMC results are taken from [18],
where they were obtained with a program of Alexei Filinov. The HF and CI energies show a
clear trend. The poor agreement with PIMC could be caused by the screening parameter in the
Coulomb interaction. However, it is unclear why the approximately linear trend (that is also
predicted by perturbation theory) for small λ is overestimated by PIMC. Primarily at larger λ,
the CI and PIMC results become similar.

Figure 7.1.: Comparison of the total energies of a 1D harmonic oscillator arising from the different
canonical methods for Nb = 15 and β = 2. For the ideal systems, the energies in brackets were analytically
computed [18]. In the graphic, for clarity the CI curves were shifted by 0.03 and the HF curves by -0.03.
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8. Dyson equation

The Dyson equation, invented 1948 by Freeman Dyson, has become a standard tool for the
investigation of the correlated equilibrium state in terms of Green functions. In fact, the approach
was feasible already in the late sixties and since then has been applied to almost all models of
equilibrium many-body physics. The reason for this unusually easy access is the convolution

F. Dyson1

structure of the Dyson equation, which in frequency space transforms into
a simple multiplication. The Green function as well as the self-energies
are thus obtained as solutions of algebraic equations – and not of integral
equations. However, we will face the task of finding the Green function in
time space, as this yields a natural starting point for the time-evolution in
the next chapter. The numerical implementation explained below mainly
follows the work of Nils Erik Dahlen, Robert van Leeuwen and Adrian Stan,
who have presented self-consistent solutions of the Dyson equation in second
Born and GW approximation a few years ago, see Refs. [38] and [39]. For
GW, however, they did not publish their numerical method, wherefore the
corresponding algorithm in this work has been independently derived.

8.1. Self-consistent solution

Solution of the integral equation

In the following, a procedure for the self-consistent solution of the Dyson equation in integral
form is derived. Let us recall its basis representation from section 3.3.2,

GM (τ) = G0(τ) +
∫ β

0
dτ1

∫ β

0
dτ2 G0(τ − τ1)

[
ΣM (τ1 − τ2)− δ(τ1 − τ2) Σ0

]
GM (τ2) (8.1)

= G0(τ) +
∫ β

0
dτ1

∫ β

0
dτ2 G0(τ − τ1) Σcorr(τ1 − τ2) GM (τ2) . (8.2)

The self-consistent solution is found by an iteration procedure starting from the solution of the
uncorrelated Dyson equation. We choose to start from the Hartree-Fock solution, which is why the
undisturbed Green function in the interval [−β, 0] is set up by the Hartree-Fock orbital energies
and occupation numbers

G0
ij(τ) = δij ni e−(εi−µ)τ = δij

e(β+τ)(εi−µ) ± eτ(εi−µ) . (8.3)

The HF-Green function is diagonal since it does not contain any correlation contributions. One
could also start from a correlated Green function2, which requires a slight modification of the

1http://img167.imageshack.us/img167/6613/dysonpx4.jpg
2This is e.g. done in [40] in frequency space, where T-matrix calculations are performed starting from a Green

function in GW approximation.
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Figure 8.1: Uniform power mesh (UPM) on which
the Matsubara Green function and self-energy is represented.
First the interval [−β, 0] is divided in 2p divisions scaling
by powers of two, then each one is subdivided into u equally
spaced segments. Thus the total number of grid points is
Nτ = 2pu + 1, being dense around the end points. In the
graphic the UPM is visualized for p=4 and u=5.

following algorithm. The shift of the HF-energies by the chemical potential again is not necessary,
but introduced consistent to (6.19). It causes the undisturbed Green function G0

ii at τ = 0− to
be close to one if the averaged occupation of the orbital i is close to one and zero if it is close to
zero. Because of the anti-periodicity of the Green function, at τ = −β it is the other way round.
Hence, the slope of the time dependent matrix elements is large at τ = 0− for occupied orbitals
and at τ = −β for unoccupied ones.
To represent the Green function in an economical way we use a special grid, that is dense around
the endpoints of the interval and sparse in the middle. It is called “Uniform power mesh” (UPM)
and its properties can be seen in Fig. 8.1. The drawback of this saving is that the well known
and easy integral formulas for equidistant grids can not be applied. Further, care must be taken
when evaluating quantities at differences of grid points ∆τ = τ1− τ2, since it does not necessarily
correspond to an existing point on the grid. To this end, interpolations should be used when
computing quantities at ∆τ .3

The Dyson equation in basis representation is an integral equation of the second Fredholm type
[27] with the peculiarity, that it involves discrete matrices rather than single continuous functions.
However, the solution method we use, the Nystrom method [27], is not affected thereof. It
provides the conversion of an integral equation into a linear system of equations. As a first step
we approximate the integral by an appropriate quadrature rule on Nτ gridpoints

∫ b

a
f(s) ds =

N−1∑
q=0

ν(q)f(s(q)) . (8.4)

Reference [27] recommends Gaussian integration for that, and one could really think about rep-
resenting the quantities on the imaginary axis at the abscissas of the Laguerre integration, which
has the weight function e−x similar to the undisturbed Green function. This could further reduce
the number of needed gridpoints. However, for the present approach we skip that since we al-
ready invented an appropriate mesh, whereupon for most of the times we will use the generalized
trapezoidal rule. Here, the abscissas are the UPM grid-points and the (positive) weights are given

3In the code, the interpolation routines from the gsl-library are used, which provide linear,cubic and Akima
spline interpolation.
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8.1. Self-consistent solution

by

ν(q) = 1
2
·


τ (0) − τ (1) for q = 0
τ (Nτ−2) − τ (Nτ−1) for q = Nτ − 1
τ (q−1) − τ (q+1) otherwise

[
Trapezoidal

]
. (8.5)

Also, a generalized Simpson rule has been attempted, which in reference [41] is referred to as
“Brun’s rule”. Again the abscissas are the (odd number of) UPM points and the weights read

ν(q) = 1
6
·


3τ (0) − 4τ (1) + τ (2) for q = 0
−3τ (Nτ−3) + 4τ (Nτ−2) − τ (Nτ−1) for q = Nτ − 1
−τ (q−2) + 4τ (q−1) − 4τ (q+1) + τ (q+2) for q even
−4τ (q−1) + 4τ (q+1) for q odd

[
Simpson

]
. (8.6)

If we apply these discretization schemes to the Dyson equation (8.1) and use G0
ij(τ) =: δijG0

i (τ)
we obtain [18]

δijG
0
i (τ (p))

= GMij (τ (p)) +
∑
k

∫ β

0
dτ2

[∫ β

0
dτ1 G

0
i (τ (p) − (τ1 − β)) Σc

ik(τ1 − τ2)
]
GMkj (τ2)

= GMij (τ (p)) +
∑
k

∈0
−β dτ2

[∫ β

0
dτ1 G

0
i (τ (p) − (τ1 − β)) Σc

ik(τ1 − (τ2 + β))
]
GMkj (τ2 + β)

≈ GMij (τ (p))−
∑
k

Nτ−1∑
q=0

ν(q)
[∫ β

0
dτ1 G

0
i (τ (p) − (τ1 − β)) Σc

ik(τ1 − (τ (q) + β))
]
GMkj (τ (q))

=
∑
k

Nτ−1∑
q=0

[
δikδpq − ν(q)Fik(τp, τq)

]
GMkj (τ (q)) . (8.7)

In the last step the convolution integrals Fij(·, ·) have been defined, whose evaluation proceeds in
the same way as before:

Fij(τ (p), τ (q)) :=
∫ β

0
dτ1 G

0
i (τ (p)− (τ1 − β)) Σc

ij(τ1 − (τ2 + β))

=
∫ 0

−β
dτ G0

i (τ (p) − τ)
[
Σcorr
ij (τ − τ (q)) + δ(τ − τ (q))

(
ΣHF
ij − Σ0

ij

)]
= G0

i (τ (p) − τ (q))
(
ΣHF
ij − Σ0

ij

)
+
∫ 0

−β
dτ G0

i (τ (p) − τ) Σcorr
ij (τ − τ (q))

≈ G0
i (τ (p) − τ (q))

(
ΣHF
ij − Σ0

ij

)
+
Nτ−1∑
s=0

ν(s) G0
i (τ (p) − τ (s)) Σcorr

ij (τ (s) − τ (q)) .

(8.8)
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Equation (8.7) is already the linear system aimed to receive. By defining

A(ip),(kq) = δikδpq − ν(q)Fik(τ (p), τ (q)) , (8.9)

x
(j)
(kq) = GMkj (τ (q)) , (8.10)

b
(j)
(ip) = δijG

0
ij(τ (p)) , (8.11)

we can present it in the standard form

A · x(j) = b(j) ,
∑
kq

A(kq),(ip) x
(j)
(kq) = b

(j)
(ip) . (8.12)

In the code this linear system is solved with the Lapack routine dgesv.

Algorithm

The self-consistent solution of the Dyson equation proceeds in the following steps:

(i.) Set up the reference Green function G0 on the UPM.

(ii.) Calculate the self-energy in the chosen approximation as explained in the following section.

(iii.) Compute the convolution-integrals, set up the linear system (8.12) and solve it.

(iv.) Return to (ii.) unless the Green function has not converged, i.e. unless the averaged
deviation δ between two successive cycles counted by ν,

δ = 1
N2
bNτ

Nτ−1∑
p=0

∑
ij

∣∣∣GM,(ν)
ij (τ (p))−GM,(ν−1)

ij (τ (p))
∣∣∣ , (8.13)

is smaller than a chosen value. Typically, we choose δ in between 10−5 and 10−10.

At each cycle also the following quantities are calculated:

• Energies – from reference [18]

Esingle = σ Tr
{
h0GM (0−)

}
+ µN , (8.14)

EHF = σ

2
Tr
{
ΣHFGM (0−)

}
, (8.15)

Ecorr = −σ
2

∫ 0

−β
dτ Tr

{
Σcorr(τ)GM (−β − τ)

}
. (8.16)

The kinetic and potential energy as well are calculated by a trace over the density matrix
GM (0−), where the contribution from the chemical potential is counted in the potential
part.

• Symmetry – yields a test for the accuracy of the calculated Green function:

Sym = 2
Nb(Nb − 1)

1
Nτ

Nτ−1∑
p=0

∑
i<j

∣∣∣GMij (τ (p))−GMji (τ (p))
∣∣∣ . (8.17)
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In addition, the particle number is determined as the trace of the density matrixGMij (0−). Roughly
speaking, it should not deviate more than one percent from the chosen particle number N . How-
ever, in the grand-canonical ensemble especially for high temperatures and strong interactions –
where correlation becomes more important – the procedure can naturally become unstable with
regard to N . A way out would be to adjust the chemical potential, that during the whole algo-
rithm is fixed to the HF value. Unfortunately, there is no easy way to do so unless one works in
frequency space, where the relation∫

A(ω)dω = N, with A(ω) = G(ω)f(ω, µ) (8.18)

can be used.

8.2. Calculation of the self-energies

Now, as the general solution of Dyson’s equation has been recapitulated, we focus on the calcu-
lation of the most important ingredient, the self-energy.

Hartree-Fock approximation

The Hartree-Fock self-energy is local in time ΣHF
ij (τ) = δ(τ)ΣHF

ij and equals the mean-field part
of the Fock matrix (6.7)

ΣHF
ij =

∑
kl

(σ wij,kl ± wik,lj) GMkl (0−) (8.19)

The reference self-energy Σ0 is evaluated in the same way with GM (0−) replaced by the reference
Green function G0(0−), which equals the Hartree-Fock density matrix ρHF in our case.

Second Born approximation

The formula for the Second Born self-energy is easily obtained by a transformation of (4.1) to the
imaginary branch

Σ2ndBorn
ij (τ) =

∑
klmnrs

wik,ms(σ wlj,rn ± wnj,rl) GMkl (τ) GMmn(τ) GMrs (β − τ) (8.20)

As always, σ = 1 for the spin-polarized case and σ = 2 in the RHF case.

Though straightforward and very easy to implement, in second Born approximation the deter-
mination of the self-energy takes most of the time. It is therefore instructive to introduce a
cutoff-parameter and perform the sum only if the absolute value of the Green function is bigger
than this cutoff. By reordering the summation we could also query the two-electron integrals
for their magnitude. The cutoff-parameter is usually chosen between 10−4 to 10−10 to yield a
remarkable gain in speed while merely changing the final result.

Another idea that came up was to perform the six summations in (8.20) with Monte-Carlo in-
tegration. It would have the advantage that any higher order Feynman diagram, whose direct
calculation until now would be too demanding, could be included since Monte-Carlo scales only
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linearly with the dimension of the summation. Unfortunately, the first tests succeeded only for
the Hartree-Fock approximation, while the second Born self-energy was underestimated by many
orders of magnitude. The reason for this is the highly oscillating behavior of the integrand, which
causes the importance sampling to fail. However, it could be possible to find an adequate ordering
scheme to diminish these oscillations.

GW approximation

Let us recall the basis representation of the integral equation for the non-singular part of the
screened interaction W̃ (4.22)

W̃ij,kl(τ) −
∑
abcd

∫ 0

−β
dτ̄ W̃ij,da(τ̄) Pab,cd(τ − τ̄) wbc,kl =

∑
abcd

wij,ad Pab,cd(τ) wbc,kl (8.21)

For solving this equation we could proceed the same way as above in the Dyson equation and we
have done so, but the problem here is the increased numerical effort due to the four indices of
the two-particle quantities. We had to solve N2

b times a linear system of equations of dimension
N2
bNτ ×N2

bNτ , so that only a small number of basis functions were accessible.

The idea to improve this scheme is to represent the integral equation in an appropriate basis.
First, we mention that any two particle quantity is defined in a basis of generally non-orthogonal
product states

wij,kl =
∫∫

dx dx′ φ∗i (x) φj(x)︸ ︷︷ ︸ w(r, r′) φ∗k(x′) φl(x′)︸ ︷︷ ︸
=
∫∫

dx dx′ ψQ1(x) w(r, r′) ψQ2(x′) (8.22)

=: wQ1,Q2 ,

and can also be represented as a one-particle quantity in the product basis {ψQ} = {φiφj}.

We will transform the integral equation to the basis, in which the bare Coulomb interaction is
diagonal.4 Therefore, we diagonalize the matrix w, what is possible since it is symmetric, and
write it as the matrix product

w = U ŵ UT , (8.23)

where the diagonal matrix ŵ contains the eigenvalues and the orthogonal matrix U the respective
eigenvectors. We will denote each quantity represented in the new basis with a hat.

We rearrange the indices of the polarization Pab,cd −→ P̄da,bc and write (8.21) as

W̃Q1,Q2(τ) −
∑
Q3,Q4

∫ 0

−β
dτ̄ W̃Q1,Q3(τ̄) P̄Q3,Q4(τ − τ̄) wQ4,Q2 =

∑
Q3,Q4

wQ1,Q3 P̄Q3,Q4(τ) wQ4,Q2 ,

(8.24)

where Q1 = (ij), Q2 = (kl), Q3 = (da), Q4 = (bc). This equation is transformed to the new
basis by applying U from the right, UT from the left and inserting UUT = 1 in between each

4The motivation for a change of the basis came from Robert van Leeuwen and Adrian Stan during their stay
at Kiel in may 2008. Yet they use another basis in which the overlap matrix is diagonal, i.e. an orthonormal basis.
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matrices:

ˆ̃
WQ1,Q2(τ) −

∑
Q3

∫ 0

−β
dτ̄

ˆ̃
WQ1,Q3(τ̄) ˆ̄PQ3,Q2(τ − τ̄) ŵQ2,Q2 = ŵQ1,Q1

ˆ̄PQ1,Q2(τ) ŵQ2,Q2

(8.25)

Note that one summation on the left hand side and both summations on the right hand side vanish
due to the diagonality of ŵ. This saves time when computing the coefficients and inhomogenities
of the linear system we are going to set up.

We insert ˆ̃
WQ1,Q2 under the integral and approximate it by a suitable quadrature rule, e.g. (8.5),

∑
Q3

Nτ∑
q=1

[
δQ2,Q3 δp,q − ν(q) ˆ̄PQ3,Q2(τ (p) − τ (q)) ŵQ2

] ˆ̃
WQ1,Q3(τ (q)) = ŵQ1

ˆ̄PQ1,Q2(τ (p)) ŵQ2 ,

(8.26)

to get the form of a linear system of equations:

∑
Q3

Nτ∑
q=1

A
(Q2,p)
(Q3,q) x

(Q1)
(Q3,q) = b(Q1,Q2,p) (8.27)

with

A
(Q2,p)
(Q3,q) = δQ2,Q3 δp,q − ν(q) ˆ̄PQ3,Q2(τ (p) − τ (q)) ŵQ2 , (8.28)

b(Q1,Q2,p) = ŵQ1
ˆ̄PQ1,Q2(τ (p)) ŵQ2 , (8.29)

x
(Q1)
(Q3,q) = ˆ̃

WQ1,Q3(τ (q)) . (8.30)

After solving this linear system we transform ˆ̃W back to the original basis, set up the self-energy
according to (4.23) and solve the Dyson equation.
Another word has to be said about the evaluation of the polarizabilty at differences of grid points.
In the original basis we could simply use the symmetry properties of the Green function as already
applied in the solution of the Dyson equation. In the transformed basis this is no longer possible,
since in the product basis the index-rearranged polarizability can not be represented as a product
of Green functions. Thus we have to interpolate it directly, where the relation

ˆ̄PQ1,Q2(τ) = ˆ̄PQ2,Q1(β − τ) (8.31)

is used to relate the values on the positive imaginary branch to that interpolated on the negative.

Up to this point, computing time is saved in the calculation of the coefficients and the inhomo-
geneities, but even more time is lost by transforming the polarization P̄ to the new basis and the
screened interaction ˆ̃W back (w has to be diagonalized only once). Nevertheless, the dimension
of the linear system is still the same as in equation (8.21). So why do we proceed in this way?
The answer is that in the new basis an approximation can be very easily derived. Let us consider
again (8.25). If wQ1 is smaller than a chosen value, we can directly set WQ1,Q2 = 0. Further, if
wQ2 gets small, we can set the inhomogeneity equal to 0 and solve the homogeneous system only
once. This yields a remarkable reduction of the size of the linear system and additionally time is
saved in the transformation to the new basis. In Fig. 8.2 the approximation scheme is visualized
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8. Dyson equation

Figure 8.2.: Approximation scheme for the solution of the linear system of equations A · x = b for the
screened interaction. The dimension of the primary system is M = N2

bNτ and it has to be solved for N2
b

inhomogenities. After choosing a cutoff parameter, all non-diagonal elements of the submatrices (i) and
(ii) and the first M−m elements of the inhomogenities vanish and a system (iv) of dimension m = ncutNτ
remains, that has to be solved ncut times plus one time for the homogeneous system. The submatrix (iii)
is non-zero, but as the first equations fix the first M −m components of the solution to zero it has not to
be evaluated.

and further explained. In Tab. 8.1, the saving for the NO basis functions of the 1D harmonic
oscillator is shown and right aside, in Tab. 8.2 the remarkable dependence of the total energy on
the cutoff parameter is examined.

In summary, we have derived a scheme that avoids the calculation of many small matrix elements
in the screened interaction and thus considerably shortens the calculations. It is able to replace
semi-empirical approximation schemes, as e.g. the one used in [42] to study quantum transport.

Nb N2
b cutoff ncut

∧≈ Nb

15 225 10−15 112 11
15 225 10−5 29 5
25 625 10−15 317 18
25 625 10−5 49 7

Table 8.1.: Saving for the 1D harmonic
oscillator for different cutoff-parameters.
The last column gives the number of basis
functions, on which the full system given
by the first column is roughly mapped.

cutoff ncut Etot

0 (full GW) 64 3.0077
0.01 22 3.0077
0.1 18 3.0079
0.5 8 3.0176
1.5 3 3.0762

→∞ (HF) 0 3.1627

Table 8.2.: Total energy for different cutoff-parameters
for two particles in a two-dimensional harmonic oscillator
with Nb = 8 NOs at β = 50 and λ = 1.0 and UPM pa-
rameters p = 10 and u = 3. The energy deviates from the
exact result at larger cutoffs than 0.1. Even with very few
basis functions GW yields reasonable results.

8.3. Ionization energies from the Extended Koopmans theorem

In the introduction we promised that the Green function formalism also provides us ionization
energies and electron affinities. Yet earlier, on Hartree-Fock level, we already have access to these
quantities. The general approach is thereby the same: Given the equilibrium Green function or
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the Hartree-Fock energies of a N -particle system, try to gather information on the energies of a
N ± 1 particle state. The difference yields the removal energy or the electron affinity.

At first, let us have a look at the Koopmans theorem [7]. It states that the energy needed to
ionize a particle is simply the negative of its Hartree-Fock orbital energy that is assumed to be
negative. Similarly, the energy to add a further particle to an unoccupied level is also given by
the negative HF-energy of this orbital that now has a positive energy. The assumption made
here is that the HF-orbitals of the N ± 1-particle state are identical to those of the N -particle
state, which results in neglecting orbital relaxation effects (“frozen orbital approximation”). In
addition, it does not account for correlation effects. Fortunately, both effects often cancel, so that
the Koopmans theorem often yields good results for the ionization energy. However, the results
for electron affinities are usually poor. In the following, we will concentrate on ionization.
The Koopmans theorem in the presented form and also its extended version below are at first only
applicable to confinements, whose bound states have negative energy and whose scattering states
have positive energy – like the Coulomb potential or the adjusted box potential. For any other
confinement, such as the harmonical oscillator, one must choose an energy point, that shall mark
the crossing from bound to continuum states. Although this principle is only natural – model
atoms can always be ionized – it is not clear at which value this energy should be chosen. In the
best case one can adjust it to experiments or to predictions of more advanced models.

Let us turn to the extended Koopmans theorem as described in Refs. [43]. We define a N − 1
particle state |ξN−1

i 〉 =
∫
dx u∗i (x) Ψ̂(x) |ΦN

0 〉, where |ΦN
0 〉 is the groundstate wavefunction. Thus

the following result is restricted to the zero-temperature case. The function ui(x) is determined by
requiring that 〈ξN−1

i |Ĥ|ξN−1
i 〉 is stationary with respect to variations in ui(x), with the constraint

that |ξN−1
i 〉 is normalized. After a straightforward calculation we obtain

0 = δ

δu∗(x1)

[
〈ξN−1
i |Ĥ|ξN−1

i 〉 − λi 〈ξN−1
i |ξN−1

i 〉
]

=
∫
dx u(x)

[
−〈ΦN

0 |Ψ̂†(x)
[
Ψ̂(x1), Ĥ

]
|ΦN

0 〉 − (λi − EN0 + µN) ρ(x1,x)
]
. (8.32)

The function ρ(x,x′) is the generalized density obtained from the equilibrium Green function by
ρ(x,x′) = GM (x,x′, 0−).

We can now use the fact that the operator in the finite temperature formalism have the time-

dependence Ψ̂(x, τ) = eĤτ Ψ̂(x)e−Ĥτ and that −∂τΨ(x, τ)
∣∣∣∣
τ=0−

= [Ψ(x), Ĥ] to write

−∂τGM (x1,x, τ)
∣∣∣∣
τ=0−

= −∂τ 〈ΦN
0 |Ψ̂†(x) Ψ̂(x1, τ)|ΦN

0 〉
∣∣∣∣
τ=0−

= 〈ΦN
0 |Ψ̂†(x)

[
Ψ̂(x1, τ), Ĥ

]
|ΦN

0 〉 ≡ ∆(x1,x) . (8.33)

Using this definition we can rewrite (8.32) according to∫
dx ∆(x1,x)u(x) = −(λi − EN0 + µN)

∫
dx ρ(x1,x)u(x) (8.34)

= −λ̃i
∫
dx ρ(x1,x)u(x) . (8.35)

If we now interpret the states |ξN−1〉 as approximations to the N − 1 particle eigenstates |ΦN−1
i 〉,

and the λi as approximations to the eigenvalues EN−1
i − µ(N − 1), the eigenvalues λ̃i of the
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generalized eigenvalue problem (8.34) become

λ̃i = −(EN−1
i − EN0 )− µ . (8.36)

Thus the ionization potentials, that determine the energy needed to remove a particle from the
state i, are given by (EN−1

i − EN0 ) = λi − µ. When the Hartree-Fock Green function is inserted,
the scheme reduces to the normal Koopmans theorem and reproduces the HF-energy eigenvalues.

In basis representation Eq. (8.34) transforms into a matrix equation.

∆u = ρ u λ̃ , (8.37)

where

ρij = GMij (0−) , (8.38)

∆ij = −∂τ GM (τ)
∣∣∣∣
τ=0−

. (8.39)

In the code the derivative is found numerically using a spline interpolation as it is available in the
library gsl. This can be also used as a valid test for the sufficiency of the UPM discretization. If
the grid is too sparse, the eigenvalues from the extended Koopmans theorem applied to the HF
Green function deviate from the HF orbital energies. Alternatively, ∆ can be obtained from the
Dyson equation

∆ = −∂τ GM (τ)
∣∣∣∣
τ=0−

= hGM (0−) +
∫ β

0
dτ̄ Σ(τ − τ ′)G(τ ′)

∣∣∣∣
τ=0−

. (8.40)

8.4. Application

Convergence behavior

The self-consistent Matsubara Green function depends on several quantities. The most important
thereby is the number of basis functions – especially in view of later nonequilibrium calculations –
that should be of course appropriate to model the analytical form of the Green function. Another
general quantity in 1D calculations is the screening parameter α in the Coulomb interaction,

w(x, x′) = λ√
(x− x′)2 + α2 (8.41)

At first glance, one could say that results should be independent of α and that the screened
interaction should be near the “real” Coulomb interaction, i.e α = 0. However, in a 1D calcu-
lation this is not physically reasonable, as a small α does not allow the particles to pass each
other. More theoretically, the sense of this particular interaction should be clarified, since it is in
general not meaningful just to change the dimension of a certain interaction, as is done here by
conversion of the 3D Coulomb interaction (remember that the 3D Coulomb interaction originates
from the solution of the Poisson equation, which in 1D is given by |x|). However, our intention by
performing 1D calculations is to model real systems, and in this view the introduced interaction
term should be reasonable.
The third considered quantity is the cutoff-parameter explained in section 8.2, that is indispens-
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Figure 8.3.: Convergence properties of the Dyson equation, considered are the total energies of N = 2
particles in a one-dimensional harmonic confinement, the UPM parameters are p = 20 and u = 6. (a) Total
energy against the number of basisfunctions. (b) Convergence in dependence of the screening parameter α
in the Coulomb interaction. (c) Convergence in dependence of the cutoff-parameter.

able in doing second Born calculations. The convergence behavior of all these parameters on the
second Born level is examined in Fig. 8.3.

Equilibrium properties of quantum dots

The investigations of quantum dots and quantum well heterostructures has attained a great
interest in theoretical physics and nanotechnology. The difference to bulk semiconductors is the
confinement that traps the particles. This confinement can be approximated by a harmonic
oscillator potential [44]. The main concern of the actual theoretical description thereby lies on
the transport properties under action of external fields. Here we will focus on the equilibrium
properties of two- and three-dimensional quantum dots in the groundstate, whereby our intention
is not to provide large tabulars (they may already exist, except for GW), but rather to test the
introduced methods in higher dimensions and to show their interplay and relative differences.
In Tab. 8.3 we present the groundstate total energies for a two dimensional quantum dot with
N = 2 particles. Due to the Ritzian principle, all the methods yield a lower energy than Hartree-
Fock, except for λ = 1, where the unrestricted Hartree-Fock procedure converges to the restricted
solution. This may be avoided if further initial density matrices are tested. The benchmark
results are given by Configuration Interaction. Second Born approaches the exact solution and
for λ = 1 it is able to account for 88% of the correlation energy, being defined as the difference
between HF and CI. GW underestimates the exact solution, indicating a trend that has already
been found in [39].
The three-dimensional quantum dot, whose electron integrals were calculated by the formulas
in Appendix A, shows a similar trend, see Tab. 8.4. However, there the GW result behaves as
favored and stays beyond the one from CI. We may explain the reason for the different behavior
of GW in 2D and 3D. Obviously, in lower dimensions the screening gets stronger – mention the
one dimensional case, where it is set up on a line – what results in an underestimated interaction

λ RHF UHF 2ndBorn GW CI
1 3.162 3.162 3.030 2.964 3.012
2 4.185 4.034 3.792 3.630 3.732

Table 8.3.: Total energies of N = 2 spin-restricted electrons trapped in a two-dimensional quantum dot
at β = 50. As basisfunctions we use again Nb = 25 NOs and the self-energy cutoff parameter is 10−5. The
electron integrals were calculated by Karsten Balzer.
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λ RHF UHF 2ndBorn GW CI
1 3.769 3.769 3.743 3.735 3.731
2 4.495 4.495 4.424 4.406 4.360

Table 8.4.: Total energies of N = 2 spin-restricted electrons in a three-dimensional quantum dot at
β = 50. As basis functions we use again Nb = 16 NOs, where the highest radial quantum number is nr = 3
and the angular momentum number l ≤ 1. The self-energy cutoff parameter is again is 10−5.

energy. By taking the real Coulomb interaction, that is yielded as the solution of Poisson’s
equation in the respective dimension, this effect is likely to disappear.

Symmetry breaking of Hartree-Fock

The Hartree-Fock method is known to break the symmetry, see Ref. [32] and references therein.
As mentioned before, this may result in a non radial-symmetric density, even if the Hamiltonian
is invariant under rotations. At the example of the two-dimensional isotropic quantum dot, we
show this unpleasant behavior. We consider N = 4 spin-restricted particles and the small number
of Nb = 10 basisfunctions – CI is hard. For this case, we compare the Hartree-Fock density to
the one arising from a CI calculation in Fig. 8.4. As predicted, the Hartree-Fock density has
suffered a symmetry breaking, while CI yield an almost symmetric result. The slight deviations
are probably caused by the small basis.
We also tried to obtain the densities in second Born and GW approximation. It is an open
question, if the Random Phase approximation may cure the loss of symmetry (while we don’t
think it can). Unfortunately, none of the two methods converged, what may also be caused by
the unphysical input from Hartree-Fock.

Figure 8.4.: Example for a symmetry breaking in the Hartree-Fock method. Plotted are the densities for
N = 4 spin-restricted particles in a two-dimensional quantum dot with Nb = 10 basisfunctions. The slight
deviations from the symmetry in the Configuration Interaction method is likely to be caused by the small
basis.
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9. Keldysh/Kadanoff-Baym equations

While the approach of Dyson’s equation has a long history in physics and quantum chemistry, the
time propagation of the so obtained initial state is a relatively unexplored topic. In fact, there are

Leo Kadanoff 1

Gordon Baym1

only a few existing codes, that solve the Kadanoff-Baym equations on the
two-time plane, i.e. without further approximation schemes such as the
Kadanoff-Baym ansatz [10]. For an overview see Ref. [16]. Among them
is the first code from Danielewicz and a code from Bonitz and Semkat,
which considers homogeneous systems [45] in a basis of plane waves, that
are propagated only on the real part of the Keldysh contour, while the initial
state is assumed to be either uncorrelated or furnished with certain initial
correlations. Another one, of which our code is a descendant, has been
recently implemented by Dahlen, van Leeuwen and Stan, see Refs. [46] and
[47]. It is designed to treat inhomogeneous systems in coordinate space, that
are initially in thermal equilibrium. The hopeless complexity of the Green
function – as a four- to eight-dimensional quantity dependent on two spatial
and two time variables – there is faced by an expansion in a basis, which in
our case consists of Hartree-Fock orbitals.
In the following we recapitulate the numerical implementation in a similar way than in [18] and
augment it by some slight extensions.

9.1. Time-propagation of the NEGFs

The solution of the Keldysh/Kadanoff-Baym equations in basis representation, Eqs. (3.57-3.60),
implies a determination of each nonequilibrium Green function on its respective two-time plane.
By using the symmetry properties found in chapter 3, G≶(t, t′) = −[G≶(t′, t)]† , and the boundary
condition on the time-diagonal, G>(t, t) = −i+G<(t, t) , we are able to restrict G<(t, t′) to the
triangular t ≤ t′ and G>(t, t′) to the region t > t′. As for the equilibrium Green function in the
Dyson equation, we choose the lesser function to be represented on the time-diagonal, because it
agrees with the density matrix. With these symmetry properties we can rewrite the equations of
motions in the form

i ∂tG>(t, t′) = h(t)G>(t, t′) + I>1 (t, t′) , (9.1)
−i ∂tG<(t′, t) = G<(t′, t)h(t) + I<2 (t′, t) , (9.2)

i ∂tGe(t,−iτ) = h(t)Ge(t,−iτ) + Ie(t,−iτ) , (9.3)

−i ∂tGd(−iτ, t) = h(t)Gd(−iτ, t) + Id(−iτ, t) , (9.4)

where h(t) = h0(t) + ΣHF(t) is the time-dependent Hartree-Fock Hamiltonian, a sum of the
external potential and the mean-field contribution. As for any integro-differential equation, we

1The pictures show them at the time of the invention of their equations in 1961, and are taken from “Progress
in non-equilibrium Green’s functions” edited by M. Bonitz and D. Semkat.
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9. Keldysh/Kadanoff-Baym equations

Figure 9.1: Visualization of the time step-
ping T → T + ∆. Due to symmetry rela-
tions G< must only be propagated on the up-
per (red) triangle, G> on the lower (blue) tri-
angle and Ge as well as Gd (hidden in the
picture) has to be stored on the whole (green)
rectangle.

have to specify the system’s initial state at the time t0. For notational clarity, we temporarily
assume t0 = 0 without loss of generality, what leads to the following initial conditions:

G>(0, 0) = iGM (0−) , G>(0, 0) = iGM (0+) = −iGM (−β) , (9.5)

Ge(0,−iτ) = iGM (−τ) , Gd(−iτ, 0) = iGM (τ) = −iGM (τ − β) . (9.6)

Furthermore, the collision terms on the right-hand sides, that account for the memory or –
sounding more important – for the non-Markovian behavior, are given like in (3.57-3.60):

I>1 (t, t′) =
∫ t

t0
dt̄
[
Σ>(t, t̄)−Σ<(t, t̄)

]
G>(t̄, t′) +

∫ t′

t0
dt̄ Σ>(t, t̄)

[
G<(t̄, t′)−G>(t̄, t′)

]
− i

∫ β

0
dτ̄ Σe(t,−iτ̄)Gd(−iτ̄ , t′) , (9.7)

I<2 (t′, t) =
∫ t′

t0
dt̄
[
G>(t′, t̄)−G<(t′, t̄)

]
Σ<(t̄, t) +

∫ t

t0
dt̄ G<(t′, t̄)

[
Σ<(t̄, t)−Σ>(t̄, t)

]
− i

∫ β

0
dτ̄ Ge(t′,−iτ̄)Σd(−iτ̄ , t) , (9.8)

Ie(t,−iτ) =
∫ t

t0
dt̄
[
Σ>(t, t̄)−Σ<(t, t̄)

]
Ge(t̄,−iτ) +

∫ β

0
dτ̄ Σe(t,−iτ̄)GM (τ̄ − τ) , (9.9)

Id(−iτ, t) =
∫ t

t0
dt̄ Gd(−iτ, t̄)

[
Σ<(t̄, t)−Σ>(t̄, t)

]
+
∫ β

0
dτ̄ GM (τ − τ̄)Σd(−iτ̄ , t) . (9.10)

They obey the following symmetry properties

I≷(t, t′) = −
[
I≷(t′, t)

]†
, Id(−iτ, t) =

[
Ie
(
t,−i(β − τ)

)]†
. (9.11)

To solve the KKBEs (9.1-9.4) numerically, we introduce an equally spaced two-dimensional time
grid with temporal width ∆. As derived by N.E. Dahlen and Robert van Leeuwen and explained
in detail in the appendix of [18], the NEGFs – assumed to be fully known on the square t, t′ ≤ T
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9.1. Time-propagation of the NEGFs

– are propagated according to the following set of discrete matrix equations

G>(T + ∆, t′) = U(∆)G>(T, t′) − V(∆) I>1 (t′) , (9.12)
G<(t′, T + ∆) = G<(t′, T )U(∆) − V(∆) I<2 (t′) , (9.13)

G<(T + ∆, T + ∆) = U(∆)
[
G<(T, T ) +

∞∑
n=0

C(n)
]

U†(∆) . (9.14)

For the mixed functions we extract

Ge(T + ∆,−iτ ′) = U(∆)Ge(T,−iτ ′) − V(∆) Ie(T,−iτ ′) , (9.15)

Gd(−iτ, T + ∆) = U(∆)Gd(−iτ, T ) − V(∆) Id(−iτ, T ) . (9.16)

The introduced time-evolution operators are thereby defined in terms of the Hamiltonian h at
time T through

U(∆) = e−ih ∆ , V(∆) = 1
h

(
1− e−ih ∆

)
, (9.17)

and are calculated as in (7.5) by diagonalization of h. The matrices C(n) recursively are given by
the commutator

C(n) = i∆
n+ 1

[
h , C(n−1)

]
, C(0) = −i I<12 ∆ , (9.18)

where the recursion scheme of course has to be truncated at a finite value nmax, chosen in a way
that the result converges. The matrix I<12 in the time-interval T ≤ t, t′ ≤ T + ∆ is approximated
by

I<12 ≈ I>1 (t, t′)− I<2 (t, t′) . (9.19)

Furthermore, in Eqs. (9.12-9.16) for T ≤ t, t′ ≤ T +∆ we have approximated the right hand sides
through

I>1 (t, t′) ≈ I>1 (t′) , I<2 (t′, t) ≈ I<2 (t′) , (9.20)

Ie(t,−iτ) ≈ Ie(−iτ) , Id(−iτ, t) ≈ Id2(−iτ) , (9.21)

which in addition has the numerical advantage, that the collision integrals as well as the self-
energies can be implemented as one-dimensional arrays in time.

9.1.1. Scheme of the numerical solution

Let us summarize the steps to propagate the Green functions by a single time-step from T to
T + ∆:

(i.) Calculate the single-particle Hamiltonian h0, the Hartree-Fock self-energy ΣHF and the
effective Hamiltonian h = h0 + ΣHF at time T.

(ii.) Calculate all two-time self-energies
{
Σ>,Σ<,Σe,Σd

}
and the collision integrals

{
I>1 , I<2 , Ie

}
for t0 ≤ t ≤ T , respectively for −β ≤ τ ≤ 0. The integral Id is obtained by the symmetry
property (9.11). All quantities are implemented as one-dimensional arrays in time.
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9. Keldysh/Kadanoff-Baym equations

(iii.) Set up the time-evolution matrices U and V as well as the commutators C12 and propagate
the Green functions as instructed by Eqs. (9.12-9.16).

This scheme corresponds to theEuler method for the solution of an ordinary differential equation
and its error is of the order O(∆2). To achieve higher-order propagation schemes, we can borrow
any of the methods known from the numerics of differential equations. We will restrict us to two
explicit schemes, one of second order known as the Heun method and the classical fourth-order
Runge-Kutta scheme.
In the Heun method, that is also known as the second-order Runge-Kutta scheme, at first the
Green function is propagated one time-step by the Euler method, where again the density-matrix
and all collision integrals are calculated. Then all matrices at both timepoints are averaged, and
the Green function is propagated once again with the corrected quantities. By using generalized
integration routines as explained in the next method, also another second-order scheme, known
as the “midpoint”-rule is possible. There the first trial Green function is only propagated by ∆/2
instead of a whole time step ∆.
The fourth-order Runge-Kutta (RK4) scheme works similar, except that the Green functions
are propagated four times. At first all Green functions are propagated by ∆/2, where the density
matrix and the collision integrals are calculated. With them the Green functions are propagated
again from T to T + ∆/2. After a renewed computation of both quantities the Green function
is propagated the whole time step from T to T + ∆, where the density matrix and the collision
integrals are calculated the fourth time. Having obtained these four density matrices and sets of
collision integrals, we average them with the following weigths

ρ(T ) := 1
6
ρ1(T ) + 1

3
ρ2(T + ∆/2) + 1

3
ρ3(T + ∆/2) + 1

6
ρ4(T + ∆) (9.22)

to obtain the final density matrix and collision integrals. These are used to propagate the Green
function at time T towards T +∆. To calculate the collision integrals at intermediate time points,
one needs generalized sum rules such as (8.5) or spline-integration, as it is available in the gsl-
library.
The way of transferring ODE solution methods to our matrix equations has become clear now. All
we have to do is to replace the right-hand sides by the density matrix and the collision integrals.
With this recipe, the methods above, implemented only for equidistant time-steps, also could

Figure 9.2.: Explicit solution methods for ordinary differential equations as explained in the text. Filled
dots represent final Green function values, while open dots indicate the intermediate trial Green functions.
Blue arrows represent the final derivative and red ones the trials, where the derivatives here are replaced
by the density matrix and the collision integrals.
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9.1. Time-propagation of the NEGFs

be easily extended to an adaptive stepsize control [27]. Furthermore, other more sophisticated
ODE integrators, such as predictor-corrector or Burlisch-Stoer methods could be superior to our
approach and should be tried.

9.1.2. Time-dependent energies

The different energies already collected in (8.14-8.16) for the thermal equilibrium state, in nonequi-
librium take an explicit time-dependence. Thereby, all single-particle energies (potential and ki-
netic energy) and the Hartree-Fock energy follow from the time-dependent complex density matrix
ρ(t) given by the lesser correlation function at equal time-arguments

ρij(t) = ±iG<ij(t, t) . (9.23)

As discussed below, the computation of the correlation energy is somewhat more difficult. If the
system is not disturbed by some additional time-dependent potential, the total energy and all
contributing energies are conserved, the verification of which is an essential test for the numerics
and furthermore controls the time-step length ∆. In summary:

(i) Single-particle energy with the time-dependent Hamiltonian h(t) = t(t) + v(t):

ESingle(t) = Re σTr
{
h(t)ρ(t)

}
+ µN . (9.24)

Remember that σ = 1 for spin-polarized particles and σ = 2 for spin-restricted ones.

(ii) Hartree-Fock energy, given by a similar expression than in chapter 6:

EHF (t) = Re
σ

2
Tr
{
ΣHF (t)ρ(t)

}
. (9.25)

(iii) Correlation energy as given in reference [46]:

Ecorr(t) = Im
σ

2

∫
C
dt̄ Tr

{
Σ(t, t̄)G(t̄, t+)

}
= Im

σ

2
Tr
{
I>1 (t, t)

}
. (9.26)

(iv) Field energy: For an arbitrary external potential vext(t), there is in general no way to
monitor the energy that is transferred to the system. Nevertheless, as we only consider dipole
fields, vext(t) = −E(t)x, the energy expression is well known from classical electrodynamics
– this would also be the case for higher multipole terms:

Efield(t) =
∫ t

t0
dt̄ 〈x(t)〉 ∂t̄E(t) . (9.27)

The spin-factor is contained in the averaging.

9.1.3. Self-energy contributions

In the following we collect the self-energy expressions needed in the solution of the Kadanoff-Baym
equations. The time-dependent GW approximation due to lack of time has not been implemented
yet, though the general strategy of attack has already been established in Ref. [10], there without
the mixed functions that account for initial correlations.
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9. Keldysh/Kadanoff-Baym equations

Hartree-Fock approximation

In the Hartree-Fock approximation the self-energy is approximated by the singular part of (3.32)
on the Keldysh-Contour, while the other components are set to zero. Thus all collision integrals
are zero as well and the set of equations (9.12-9.16) can be solved without great efforts. The
self-energy evaluates to

ΣHF
ij (t) =

∑
kl

(σ wij,kl ± wik,lj) G<kl(t, t) . (9.28)

In addition, the spectral properties of the system are known analytically, so that the Green
function can be propagated on the time-diagonal only, what effectively yields a scheme for the
density matrix. In contrast to correlated calculations, this saves a lot of time, while in most
systems it yields a well approximation for the exact results.

Second Born approximation

The second Born self-energies are easily calculated from (4.1) together with Langreth rules for
products of Keldysh contour functions, Fig. 3.2. Without any further derivation, we only present
the formulas:

Σ≷
ij(t, t

′) =
∑

klmnrs

wik,ms(σ wlj,rn ± wnj,rl) G≷
kl(t, t

′) G≷
mn(t, t′) G≶

rs(t′, t) , (9.29)

Σeij(t,−iτ) =
∑

klmnrs

wik,ms(σ wlj,rn ± wnj,rl) G
e
kl(t,−iτ) G

e
mn(t,−iτ) Gdrs(−iτ, t) , (9.30)

Σdij(−iτ, t) =
∑

klmnrs

wik,ms(σ wlj,rn ± wnj,rl) G
d
kl(−iτ, t) G

d
mn(−iτ, t) Gers(t,−iτ) . (9.31)

The implementation is done in the same way as in the equilibrium case, see the discussion after
Eq. (8.20).

9.2. Application

Energy conservation, current densities and the continuity equation

To estimate the quality of the presented algorithm, we propagate the NEGF for the 1D harmonic
oscillator system and monitor the energy conservation. As mentioned above, for an unexcited
system, all equilibrium energy contributions have to remain constant, while for a system under
external perturbation at least the total energy – field plus particle – should not change.

Given the NEGF, we have access to the time-dependence of every one-body quantity, such as
the one-particle density and current density. Since the density matrix is obtained as the equal-
time limit of the lesser Green function, the time-dependent generalized density is obtained by
transferring the density matrix back to spatial representation

ρ(x, x′, t) =
∑
ij

ρij(t) ψ∗i (x)ψj(x′) . (9.32)
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9.2. Application

Figure 9.3: Time-dependent expecta-
tion values of position and momentum
for N = 2 particles in a 1D quantum dot.
The system is excited by an electromag-
netic wave with amplitude E0 = 0.8, fre-
quency ω = 1.4 and a Gaussian envelope
with tmid = 5 and ∆t = 1.0 and is prop-
agated Nt = 400 time-steps in Hartree-
Fock approximation. After the pulse, the
density profile oscillates rigidly with the
trap frequency.

Similarly, the generalized current density is given by

ρ(p, p′, t) =
∑
ij

ρij(t) ψ∗i (p)ψj(p′) , (9.33)

where ψi(p) denote the Fourier transformed HF basisfunction, that are again obtained by the aid
of the library fftw. The corresponding densities then agree with the diagonal entries

n(x, t) = ρ(x, x, t), n(p, t) = ρ(p, p, t) (9.34)

In Fig. 9.4, we plotted the densities for an excited 1D harmonic oscillator, and in Fig. 9.3 the
corresponding expectation values are shown. The spatial density profile thereby does not change
its relative form, but oscillates as a whole. After the action of the pulse, the particles oscillate with
the trap frequency. This is a special case of a general theorem given in [48], which states that a
system under action of an external dipole field whose self-energies are obtained within conserving
approximation fulfills the Kohn-theorem, i.e. the center of mass oscillates like a single-particle.
Moreover this result is independent of the considered interaction type.
Furthermore in Fig. 9.5 (a), we show the differences in the occupation numbers (and therefore in
all other observables) that arise from the different methods. As one can see the Hartree-Fock and
second Born results agree almost perfectly, while the deviation from CI is likely to be caused by
the different orders in the propagation schemes. Finally, in Fig. 9.5 (b) the energy conservation
in second Born approximation is proved.
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9. Keldysh/Kadanoff-Baym equations

Figure 9.4.: Time-dependent Hartree-Fock approximation for N = 2 particles in a 1D quantum dot
excited by the wave shown in Fig. 9.3. (a) Time-dependent density. (b) Current density. (c) Validity of
the continuity equation. Note that the z-axis in comparison to the densities is scaled by a factor 100.

Figure 9.5.: Excitation of N = 2 particles in the harmonic oscillator, β = 50, λ = 1. The system is
propagated Nt = 250 time steps with the Heun method for HF and second Born and with the presented first-
order scheme for CI. (a) Comparison of the occupation numbers from HF, second Born and CI calculations.
The deviation between second Born and CI probably is caused by the different order schemes in the solution
methods. (b) Time-dependent energies in second Born approximation. Due to the Kohn-theorem the density
is unchanged, so HF and correlation energy should stay constant.
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10. Equilibrium properties

Until here, the NEGF formalism has been provided on a very general level and exercised on a basic
confinement model, the harmonic oscillator. We are now able to apply it to nearly any system with
spin-independent interaction, that allows for an expansion in a basis. In particular the problems
related to the dimensionality of the system - as they would appear in spatial representation - are
reduced to the task of calculating the electron integrals.
In this last part of the thesis, we will focus on the main subject of this work, ionization processes.
After introduction of the general model, we determine the correlated equilibrium state for different
model atoms, what will yield us a lot of information about ionization properties. Due to the
moderate basis size needed in equilibrium, we consider also the three-dimensional case.

10.1. The model

The general model we consider consists of a model atom and the surrounding continuum, see Fig.
10.1 (a). Though the model atom in principle can be represented by an arbitrary confinement
– the Born-Oppenheimer approximation is implied – most of the times we consider the easiest
choice, the finite box potential and some times also a regularized Coulomb potential. The particles
thereby will be treaten in both fashions, spin-polarized and spin-restricted, where at least for real
systems the latter one is the more natural choice.
More interesting is the question of modelling the continuum adequately. The first approach is a
simple infinite box, whose eigenfunctions resemble the real and imaginary part of plane waves,
except for the influence of the atom. It meets the basic requirements to a continuum up to the
boundaries, namely that a propagating wavepacket is not scattered. The width of the continuum
box directly determines the density of states and therefore the resolution of the continuum, and
given a number of basisfunctions, it also fixes the highest energy level. These competing attributes
must be chosen appropriately and in dependence on the aim of the simulation, a question that
will be faced later. In Fig. 10.1 (b)-(e) some other possible types of model continua plus their
restrictions and advantages are shown.
Though the model will be a good approximation to all one-dimensional systems and maybe also
to radial-symmetric two- and three-dimensional states, the investigation of characteristic higher
dimensional properties - such as angular momentum, polarized waves or the influence of the
magnetic field - of course is denied.

10.2. Correlated equilibrium state

The equilibrium state is found in Hartree-Fock, second Born and GW approximation. As earlier,
we also present the unrestricted HF results and CI benchmark calculations. Due to avoid a
thermal ionization, in all calculations the groundstate is considered, i.e. the inverse temperature
is set sufficiently large, β = 50.
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Figure 10.1.: Some selected continuum models and their characteristics. (a) The basic model. In one
dimension the energy distance grows quadratically and thus the density of states decreases as E−1/2. (b) To
modify the DOS, f.i. to decrease the resolution for low energies and improve it for high, the boundaries can
be adjusted. (c) Constant potential plus harmonic oscillator. Yields equidistant spacing for upper energy
levels. (d) Harmonic oscillator continuum. Yields an equidistant energy spacing also for lower continuum
levels, but back-scattering of ionized particles. (e) Basic model plus complex (optical) linear potential.
Absorbs the ionized particle to avoid reflections at the boundaries. However, there is also a re-scattering at
the crossing.

Figure 10.2: (a) The one-dimensional
finite-box model and its first ten eigenfunc-
tions. The box has a width of a = 1 and
a depth of V0 = −20, the continuum bound-
aries are at b = 20. The red curves show
the ideal basis functions and the green curve
the Hartree-Fock basis. Mention, that in the
HF basis the highest state is actually the third
bound state, that is shifted in the contin-
uum. (b) Total and correlation energies of
the groundstate, plotted against the coupling
parameter. For the box model, we can neglect
the correlation contributions to the energy.

One-dimensional box model atom

The most basic choice for the model atom is given by a finite box, see Fig. 10.2 (a). The full
confinement then is determined by three parameters: The box width a, its depth V0 as well as
the width b of the continuum box. The reason for this easy choice is the assumption, that the
physical properties found for the box potential are also valid for many other types of potentials.

In the following, we do not want to provide tabulars for some given sets of parameters, as they
are too special and probably will lead to no physical insight. We only mention the property
shown in Fig. 10.2 (b): For all systems of this type we have studied until now, we obtained a
negligible correlation energy. Thus, the Hartree-Fock approximation almost always describes the
ground- and equilibrium states of the system sufficiently. This statement can also be extended to
any systems of the form shown in Fig. 10.2 (a), that are described by a few bound states. The
corresponding correlation energies are roughly two orders smaller as in the harmonic oscillator.
We will return to the finite box model in the non-equilibrium calculations in the next chapter,
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there starting from the Hartree-Fock groundstate. For now, we turn to a potential which yields
higher correlation contributions and which is defined by only one parameter.

One-dimensional Coulomb model atom

The one-dimensional Coulomb potential 1 is defined by

v(x) = − N√
x2 + 1

, (10.1)

where N is the nuclear charge. Consequently, also the screening parameter α in the Coulomb
interaction is set to one. The value is chosen in order to allow the particles to pass each other.
This model has e.g. been used in [6].
In particular, we investigate the one-dimensional Helium model with N = 2 particles. Due to the
small particle number and the single dimension, the many-body Schrödinger equation becomes a
two-dimensional scheme. This allows for a solution on a spatial grid by the methods collected in
5.2. For ionization processes this is likely the most convenient form. However, higher dimensions
than two are hard to treat in this way.
The Hamiltonian of the Helium system is given by

Ĥ(x1, x2, t) = ĥ0(x1) + ĥ0(x2) + E(t) (x1 + x2) + 1√
(x1 − x2)2 + 1

, (10.2)

and is interpreted as a one-particle operator for a two-dimensional state. To determine the
groundstate of the 1D Helium model, this operator is discretized on a spatial grid and diago-
nalized. For the grid we used a discretization of ∆x = 0.05, while the boundaries were given
by −40 ≤ x1, x2 ≤ 40. The corresponding potential and groundstate density are shown in Fig.
10.3. The density n(x1, x2) yields the probability, that particle one is localized at x1 and particle
two at x2. We also applied the NEGF schemes as well as Configuration Interaction, that is just

Figure 10.3.: Interpretation of the one-dimensional Helium model as a two-dimensional one-particle
problem. (a) Two-dimensional potential. The Coulomb potential is situated at the axes, while the wall on
the diagonal accounts for the interaction. (b) The groundstate density due to the interaction is elliptically
shaped.

1For a discussion on “one-dimensional Coulomb” see section 8.4.
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Figure 10.4.: Equilibrium quantities of the one-dimensional Helium model. (a) Diagonal elements of
the Matsubara Green functions in Hartree-Fock, second Born and GW approximation. (b) Groundstate
densities. The GW density apparently yields the best approximation to the exact CI density.

the above approach in a basis. In summary, we obtained the following results for the total energies:

HF 2ndBorn GW CI 2D SE
−2.224 −2.231 −2.236 −2.235 −2.238

The Green function and CI calculations were performed with Nb = 10 basisfunctions. The two-
dimensional Hamiltonian was discretized by Nx = 4000 gridpoints and a grid spacing of ∆x = 0.01
in each direction. The result from the diagonalization was checked to converge.
The second Born and GW results are very close to the exact result. In comparison to CI, the GW
result overestimates the correlation energy. This behavior has already been observed in chapter
8.

Three-dimensional box model atom

Three-dimensional systems of course yield an incomparably richer description of the real world
than one-dimensional models. One advantage of the basis approach is, that we have an easy
access to higher dimensions. All we need to do, is to start from another set of electron integrals.
In Appendix A, we examine the calculation of the three-dimensional electron integrals in central
potentials. A restriction is only given by the degeneracy of three-dimensional basis states – a
calculation of comparable accuracy is likely to need the cubic power of basis functions than in one
dimension. However, regarding further information, for instance angular momentum conservation,
one can still reduce the size.
In Tab. 10.1, we present some exemplary results obtained from the Matsubara Green function in
second Born approximation.

10.3. Ionization potentials and the spectral function

As mentioned in the theory part, the correlated equilibrium Green function covers the information
on the one-particle ionization energies and electron affinities. In fact, we have several alternatives
for their calculation. One is given by the extended Koopmans theorem, that has already been
introduced in section 8.3. The ionization energies there are obtained by a variational principle,
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λ Etot Esingle EHF Ecorr Part. Number Symmetry
1 −17.311 −18.537 1.233 −0.007 1.9999 6.68 · 10−10

2 −14.870 −18.513 3.702 −0.060 1.9999 4.40 · 10−9

3 −12.452 −18.475 6.178 −0.154 1.9998 1.92 · 10−7

4 −10.050 −18.406 8.635 −0.279 1.9997 4.47 · 10−5

Table 10.1.: The energy contributions to the groundstate of a three-dimensional box, in which two spin-
restricted particles are trapped. The results were obtained from the Matsubara Green function in second
Born approximation, whereby the UPM parameters were p = 15, u = 4 and β = 50. The calculation of the
symmetry is defined in Eq. (8.17).

that was casted in the form of a generalized eigenvalue problem.
Another possibility is offered by the (equilibrium) spectral function , which is defined in [13]:

A(x, ω) = − 1
π
GM (x, x;ω) . (10.3)

GM (x, x;ω) is the Fourier transformation of the Matsubara Green function. As it can be rec-
ognized from the Lehmann representation of the Green function, the spectral function has poles
at the excitation energies respectively the electron affinities. A third alternative is given by the
analytic continuation of the previous expression to nonequilibrium

A(1, 2) = G>(1, 2) − G<(1, 2) , (10.4)

followed by a conversion to relative and center of mass coordinates and a Fourier transformation
with respect to the relative time.

In the following we apply the equilibrium approaches to the Matsubara Green function. Therefore
we consider again the one-dimensional Helium model for an inverse temperature of β = 50 and
a coupling parameter of λ = 1. First, we find the self-consistent solution of the Dyson equation.
Again we use the Hartree-Fock-, second Born- and GW approximation. By a solution of the
generalized eigenvalue problem (8.37), we then obtain the approximated ionization energies:

HF 2ndBorn GW
EKT 0.749 0.749 0.735

While Hartree-Fock and second Born yield the same result, the excitation energy from GW is
a little lower. The GW result could have been expected, because the ionization energies from
Hartree-Fock do not account for a relaxation of the ionized system and thus the ionization poten-
tial should be smaller than the one obtained from Hartree-Fock. We can only guess, why second
Born yields the same result as Hartree-Fock: Probably the relaxation energy and the correlation
energy contributions cancel each other. In addition, we calculated the spectral function. The
required Fourier transform was performed after a zero-padding of the Matsubara Green function
to enhance the resolution. If we mention the structure of the diagonal entries, Fig. 10.4 (a), this
can be done without any further effort. The result can be seen in Fig. 10.5. There, we have
plotted the diagonal elements of the spectral function matrix. As can be seen, its peaks agree
very well with the results from the extended Koopmans theorem.
A further information offered by the spectral function is the spectral density given by the width
of the curves. In Hartree-Fock approximation, one would expect sharp peaks, while correlation
effects should broaden the curves. This is caused by the particle collision, that smear out the
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10. Equilibrium properties

Figure 10.5.: The spectral function for the one-dimensional Helium model. The position of the peak
specifies the ionization energy (peaks below 0) respectively the electron affinity (above zero). The ionization
energies agree perfectly with the ones obtained by the extended Koopmans theorem.

delta-function like mean-field energies. With some goodwill, this can also be observed from Fig.
10.5. However, for a determination of the spectral properties beside the excitation energies, the
nonequilibrium approach, Eq. 10.4 has been found more convenient – although its numerically
effort is much larger.

Approximation scheme on the two-electron integrals

The calculation of the two-electron integrals, Eq. (6.6), constitutes the bottleneck of the Hartree-
Fock formalism. Likewise, in the solution of the correlated Dyson equation and the Kadanoff-
Baym equations, the main effort is spend in computing the self-energy expressions. For this
reason we introduce an approximation scheme on the two-electron integrals, that was mainly
suggested by the continuum model. There we can assume the continuum as non-interacting and
non-reacting on the bound states, what yields a good approximation, at least for small occupation
numbers of the continuum states. The problem of particle interaction is then reduced to the small
subsystem given by the atom.2 Practically this is achieved by setting all two-electron integrals
to zero, that have at least larger index than the number of highest bound state. Thereby all
self-energy calculations may be truncated at this value.
This scheme is easily extendible. We can choose a number n between 0 and 4 and calculate the
two-electron integrals only, if n indices exceed the highest bound-state (or any other appropriately
chosen state). n = 4 denotes the full scheme, where all integrals are calculated, and any smaller n
reduces the calculation of the two-electron integrals to O(Nn

b ). In Tab. 10.2,ionization e we show
the results of different choices of n, that were obtained in a spin-polarized Helium potential. The
number of basis functions was Nb = 12, and the cutoff index was set to 4.

2This is a practical implementation of the embedding scheme used in [49], however, not that elegant.
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10.3. Ionization potentials and the spectral function

approx order HF 2ndBorn CI
0 const -1.806 -1.806 -1.8111
1 O(Nb) -1.810 -1.8070 -1.8162
2 O(N2

b ) -1.8108 -1.8128 -1.8139
3 O(N3

b ) -1.8108 -1.8128 -1.8139
4 (full) O(N4

b ) -1.8108 -1.8128 -1.8139

Table 10.2.: Results from the presented approximation scheme obtained from Hartree-Fock and Configu-
ration Interaction calculations for a spin-restricted one-dimensional Helium model.

Auger processes

From the equilibrium state we can also obtain information about the kinetic energy of an Auger-
ionized electron. In the following we examine the standard procedures for a one-dimensional
spin-polarized Beryllium model, v(x) = −4/

√
x2 + 1. One approach for the determination of the

Auger electron energy is given by formula (2.29), Ekin = EA − EB − EC . We can directly apply
it to the Hartree-Fock energies. However, the formula neglects relaxation processes, as it assumes
the (double) ionized system to have the same orbitals.
Within CI a very natural description can be given. The initial groundstate can be described
by the occupation vector (1,1,1,1,0,0,..), indicating that the four lowest Hartree-Fock orbitals
are occupied.3 The system with ionized core hole is then given by the vector (0,1,1,1,0,0,..),
respectively (1,0,1,1,0,0,..), while the doubly ionized final states are (1,1,0,0,...),(1,0,1,0,...) or
(1,0,0,1,0,...).
The difference between the energy of an N = 3 particle-state and a final N = 2 particle state

will yield the Auger-electron energy. It is exact except for the approximation through Hartree-
Fock orbitals and the assumption, that the Auger electron is emitted from the totally relaxed
state. The results in Tab. 10.3 reveal a great impact of relaxation effects on the actual system.
As expected, the exact results are lower than the approximate ones, since relaxation processes
diminish the energy of the system.

Though this approach may yield accurate predictions for the energy, apparently it is unable to
answer questions related to the dynamics. However, just the time-resolved Auger process is of
great current interest. For instance, it is important to know on which time-scales Auger emission
and relaxation occur and how both effects affect each other. The simulation of this processes by
means of the collected time-evolution schemes constitutes a future goal. However, this probably

transition HF CI
(012) 0.722 0.5654
(013) 1.059 0.871
(023) 1.623 1.448
(123) 0.438 0.2728

Table 10.3.: The kinetic energy of the Auger electron in a one-dimensional spin-polarized Beryllium
model. The nomenclature is the same as in Chapter 2. For example (012) means that the hole in orbital
0 was filled up with the electron from orbital 1, while at the same time the Auger electron is emitted from
orbital 2.

3This holds exactly only for single-particle basis of natural orbitals, the eigenvectors of the density matrix,
whose calculation is explained in chapter 7. For the present we restrict us to the basis Hartree-Fock orbitals, for
which this assumption is already an approximation – whether a good one for λ = 1.

91



10. Equilibrium properties

requires the inclusion of photons into the model – as it is e.g. done in the Jaynes-Cummings
model – and thus new theoretical investigations.
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11. Nonequilibrium calculations

The previous chapter has examined the thermodynamic equilibrium state of fermionic ensem-
bles trapped in various potentials. The present chapter is now devoted to the analysis of time-
dependent processes in nonequilibrium. Within the nonequilibrium Green function formalism,
the reaction of the system to external fields of arbitrary strength in principle can be treated non-
perturbatively. A possible restriction only emerges from the finite basis size. Here, we consider
the interaction of the particle system with electromagnetic fields. As examined in chapter 2, in
dipole approximation the field enters the many-body Hamiltonian as

vext(r, t) = E(t) r . (11.1)

Further we restrict ourselves to wavepackets with Gaussian envelopes,

E(t) = E0 cos(ω(t− t0) ) e−
(t−t20)
2∆t2 . (11.2)

If monochromatic pulses are needed, the variance ∆t is set to a large value.
In the following work, we focus exclusively on one-dimensional potentials, more precisely, on the
basic finite-box model as well as on the Helium model. Besides, we only consider the groundstate
to avoid a thermal occupation of continuum states. Correspondingly, the inverse temperature β
is placed at a sufficiently large value. As it was checked in the previous chapters, β = 50 is an
adequate choice.
In contrast to the previous equilibrium calculations, which only required a moderate basis size,
in nonequilibrium the introduced model meets its limits. In the presented calculations we do
not exceed a basis size of Nb = 100 functions, while the full and unconditioned description of
ionization processes is likely to need the hundredfold.1

11.1. Ideal calculations

We can learn a lot about the properties of our basic model, if we consider the ideal case, i.e.
one particle. To avoid self-interaction of the particle, or more precisely the interaction between
fractional occupied orbitals, also the coupling parameter λ must be set to zero.

Comparison between KB and the TDSE

A first affirmation of the Kadanoff-Baym simulations, explained in Chapter 9, is obtained by a
comparison with solutions of the single-particle Schrödinger equation in coordinate space. For
the ideal case, λ = 0, the solution of the KKBE corresponds to the solution of the Schrödinger
equation in basis representation. By assuming the spatial results to be exact, these calculations

1This statement is based on talks at the conference “Interaction of free-electron-laser radiation with matter:
recent experimental achievements, challenges for theory” at DESY in Hamburg.
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Figure 11.1: Ionization spectrum of one par-
ticle in a finite box of depth V0 = −2 and width
a = 1, that is excited by a monochromatic
wave. The green curve shows the result from a
finite difference calculation with the generalized
Crank-Nicolson method. The blue dots are ob-
tained from a projection of the spatial solution
on the basis functions, while the red curve is
the result from an (ideal) Kadanoff-Baym cal-
culation.

yield the first – and probably best – test for the quality of a given continuum.
The comparison is done in terms of the energy spectra of the ionized particle, which present
crucial quantities for ionization processes. The spectrum is calculated with two methods: In
basis representation, the occupation number of a state is naturally obtained as the respective
diagonal element of the Green function. A simple plot of the occupation numbers against the
energy of the state yields the energy spectrum. In spatial representation, by projection of the
final wavefunction on the Hartree-Fock basis, we can proceed in a similar way. In addition, we
applied the procedure used in [50]: at a certain point outside the atom, the detector, the incoming
wavefunction is stored and Fourier-transformed with respect to time. The result then is outlined
against k2/2. This procedure is only valid for the free particle, and thus no external field may
affect the wavefunction at the position of the detector. Obviously, a monochromatic dipole field
does not satisfy this condition. Yet we regard the result as an approximation.
In Fig. 11.1 the two methods are examined. The results from the basis representation methods
are in good agreement, and deviate only at the upper boundary, where the incompleteness of
the basis set becomes sensible. A comparison with the Fourier method in spatial representation
reveals a poor agreement of the relative height. At least, the position of the peaks at multiples
of the photon energy is well reproduced.

The resolution of one spectral line

An important question in the search for the “right“ continuum is the question of the resolution
of one basis state. Or reformulated, how much deviation from a resonant state is allowed to
be furthermore resonant? For an answer, we performed calculations for N = 2 spin-polarized
particles and Nb = 2 basis functions in a finite box of depth V0 = −10 and width a = 0.5, that
has only one basis state at E0 ≈ −0.3. The second state is chosen as the second basis function
in order to obtain a non-zero dipole matrix – we could not use the third state as it has the same
parity than the groundstate and therefore would lead to no transitions. The energy of the second
state is now varied by the continuum box width, that is chosen in the range b = 5 to b = 50, and
each time the system is propagated under the action of an electromagnetic wave with frequency
ω = 0.5 and different amplitudes. By plotting the basis state occupation numbers against their
energies, we obtain the transition induced by the wave.
The results are shown in Fig. 11.2. For an amplitude of E = 0.01, they look very similar to
the theoretical curve obtained from first order perturbation theory, Eq. (2.1). The zeros of the
transition curves are located at a distance of roughly 2π/T and thus also behave as predicted.
Looking at the transitions induced by a strong field of E = 0.1, we see that the relative heights
of the peaks is strikingly modified, while the respective width has only barely changed. The
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Figure 11.2.: The resolution of one spectral line. The calculations were carried out for two non-interacting
spin-restricted particles in a finite box. We used only two finite-box basis functions, one of which is a bound
state and the other is a continuum state, whose energy is varied by the continuum box width. Plotted is
the occupation of the continuum basis function after a monochromatic pulse with frequency ω = 0.5 and
different amplitudes E and evolution time T . In the E = 0.01, T = 50 picture the first order perturbation
theory result is underlayed in grey.

first-order perturbation result fails to describe the height of the peaks, what could have been also
guessed from the Keldysh-Parameter, that is given by γ = 3.5.
The transition therefore depends strongly on the field strength, what makes it difficult for strong
fields to apply the approximation scheme mentioned before.

The different concepts of ionization

In our basis approach, we can choose out of different concepts of ionization. The first and obvious
one, that we will apply most of the time, is the probability for a particle not to be in a bound
state. It is obtained by a trace over the density matrix, that involves only the continuum basis
states. The other – for spatial calculations only – concept is given by the probability for a particle
to be outside a reasonable chosen radius. The integration of the (one-particle) density over the
outer region then yields the ionization probability, and if higher particle densities are available,
we can also resolve different contributions to it – see the exact solution of the 1D-Coulomb model
downwards.2
In Fig. 11.3 we checked the equivalence of the two ionization concepts.

Exclusion of basis functions

As it was mentioned above, in actual calculations we are very restricted in the number of basis
functions. For the program as it is now implemented – without the use of parallel or vector
architecture – the absolute limit for ideal and Hartree-Fock calculations is Nb ≈ 200 basis func-
tions, while for correlated Kadanoff-Baym calculations Nb ≈ 30. If a good continuum resolution
respectively a wide energy region is needed, this is not sufficient. A way around these restrictions

2The correlated one-body Green function offers only the one-particle density, while the two-body Green function
must be approximated - e.g. as in (4.4) through Hartree-Fock.
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Figure 11.3: The different concepts of ioniza-
tion. The red curve and the green dots show
the probability not to be in a bound state - both
calculations, Schrödinger and Kadanoff-Baym,
again yield the same result. The blue curve
shows the probability to be outside of the radius
R = 2 obtained from the one-particle Green
function. The model atom consists of a box with
E0 = −0.3 and a = 1. The wave is monochro-
matic.

Figure 11.4.: Approximation scheme for the density of states (DOS). N = 2 spin-restricted particles in a
finite box were propagated to T = 100 under action of a monochromatic wave with E = 0.01 and ω = 0.5.
Left: Solution of the full problem with Nb = 100. Right: Only the energy region between 0.1 and 0.4 is
taken into account. The number of basis functions is Nb = 29.

can be made by means of some a priori information. For example, if we expect the ionized spec-
trum in accordance with Fermi’s golden rule, we could drop the non-resonant states. Though this
can yield a great numerical ease, it is also risky and should not be used without comparisons to
benchmark calculations – if available. By a neglect of basisfunctions, also the particle density will
be affected.
Figure 11.4 shows the densities of states (DOS) for a one-dimensional continuum box plus an
approximated density, as well as an exemplary calculation with both DOS. We propagated N = 2
spin-restricted particles in Hartree-Fock approximation to time T = 100 under the action of a
monochromatic field with E = 0.01 and ω = 0.5. The results show an acceptable agreement in
the considered energy region.
In the code there is the possibility to exclude both, some specified basis states or energy regions.
This can be used, to drop the deep-lying, non-resonant continuum states with all too narrow
energy distance.

Restrictions of the model

As it was mentioned in the introduction of this chapter, the main problem of the present Kadanoff-
Baym approach is the small limit in the possible number of basisfunctions . Within this work,
we did not consider more than Nb = 100 basisfunctions. For this choice, an ideal or Hartree-Fock
calculation with Nt = 1000 timesteps takes a little less than one day – given a precomputed
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set of electron integrals. In the following, we estimate a relation between the basis size and the
accessible field strength. We performed calculations on an ideal system with N = 1 and Nb � 80,
that are shown in Fig. 11.5. There, the system has been evolved with Nb = 80 basisfunctions to
yield a reference result. For this calculation, the occupation numbers of the states after the pulse
are plotted in the upper pictures. The red curve in the lower pictures shows the sum of these
occupation numbers up to the basisfunction, that is given by the x-coordinate.
Next, we propagated the system for all numbers of basisfunctions smaller than Nb = 80 and
plotted the calculated ionization probability. One could guess, that these two curves show a
similar behavior, and this is true for a moderate field amplitude of E = 0.01. However, if the
amplitude increases, strange things happen: Obviously, the increase of the basisfunction can
lead to a significantly change of the result, although it is actually believed to yield an improved
description of the system. For the amplitude of E = 0.1, we see that the region of instability
is located around the first peak. For Nb ≥ 60, the result converges towards the reference result.
Further we reveal, that the case E = 1.0 is not accessible for the present number of basis functions,
if at the same time an adequate continuum resolution is desired. Unfortunately, we can not
present a proper explanation of this behavior. We only mention, that one has to be careful in the
interpretation of the calculational results.

Figure 11.5.: The influence of the electric field on the continuum. One particle in the groundstate with
energy E = −0.3 is evolved in time under the action of a monochromatic field with ω = 0.5 and varying
amplitude. The continuum width is 2b = 200. The upper pictures show the occupation of the system with
Nb = 80 basisfunctions at T = 100, that serves as a reference. In the lower pictures different ionization
probabilities are plotted against the number of basisfunctions. The red curves show the reference occupation
summed up to the basisfunction given on the abscissa. The green curves illustrates the ionization probability
obtained from a calculation with Nb = x, i.e. with the basisfunction given on the abscissa.
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11.2. Mean-field and correlated calculations

Having estimated the properties of the continuum model, we now include the particle interaction
in the description. For the following calculations, we use a finite-box model with a depth of
V0 = −10 and a width 2a = 0.5. The continuum box width is chosen as 2b = 200, while Nb = 100
basis functions are incorporated. Further we use the continuum approximation as introduced in
the previous chapter, so all continuum states are considered as non-interacting. The bound state
at E = −0.3 is occupied by two spin-restricted interacting electrons.

Ionization probability

The ionization probability marks a central quantity in the description of ionization processes. A
large part of the following work is devoted to its determination and interpretation. In Fig. 11.6,
we outlined the ionization probability for different sets of parameters. The electromagnetic waves,
that are applied to the basic system, are assumed to be monochromatic, i.e. the variance of the
Gaussian ∆t envelope is set to a large value.
In Fig. 11.6 (a), the ionization probability is plotted against the intensity for different frequencies.
We can see, that for larger frequencies the curve shows a linear characteristic. As ω decreases,
the curves continuously deviate from this linear trend and seem to converge against a fixed value.
The explanation can be given in terms of the Keldysh parameter γ, as illustrated in the graphic.
For a larger ω, the field oscillates too fast for an electron to tunnel out of the confinement. In this
regime perturbation theory holds, that predicts a linear growth with the intensity. For a smaller
frequency, the Keldysh parameter also decreases, and the strong-field effects collected in Chapter
2 obviously become important. For a γ smaller than three, perturbation theory definitely fails.
Right beside, in Fig. 11.6 (b), the ionization probability is outlined against the frequency of the
wave. At the frequencies ω = 0.1 and ω = 0.2, all curves show a significant decay. In this region,
the energy of one photon is not sufficient to ionize the electron, so that for an ionization more
photon absorptions are required. Later, we will focus on this multi-photon ionization separately.
For frequencies larger than ω = 0.3, the curves increase up to a certain value, from which on they
remain constant. Again the description can be given within the Keldysh-picture. By considering
the first-order perturbation expression, Eq. (2.20), we recognize that it is independent of the

Figure 11.6.: Ionization probabilities for different parameters. (a) Variation of the intensity. (b) Varia-
tion of the frequency.

98



11.2. Mean-field and correlated calculations

Figure 11.7.: Time-dependent occupation of the first orbital. (a) Variation of the field amplitude for
ω = 0.5. As predicted by perturbation theory, the orbital occupation decreases nearly linear in time, while
the slope of this line is proportional to the intensity. (b) The same for a fixed amplitude E = 0.03 and
varying frequencies. According to perturbation theory, the frequency plays a minor role in the ionization
probability.

Figure 11.8: A closer look at the time-
dependent occupation shown in Fig. 11.7.
The ionization rate is largest in the region be-
tween two extrema, when the velocity of the
particles is large. At the time of the extrema,
it has almost stopped.

absolute frequency. Thus, the constancy of the ionization probability curves corresponds to the
validity of perturbation theory. Consequently, for larger amplitudes the constant regions begin at
larger frequencies.
We proceed by looking at the time-dependent occupation numbers shown in Fig. 11.7. In the
left picture, they are plotted for different field amplitudes. We reveal a linear decrease, that is
also predicted by the perturbative description. Accordingly, the slope of the curves decreases as
E2

0 . In Fig. 11.7 (b), we compared the time-dependent occupation for different frequencies. The
curves show a small dependence on the frequency. As it was previously explained, this corresponds
to the validity of the perturbation theory. Furthermore, we have measured the duration of the
oscillations in the occupation number by an average over twenty cycles. The corresponding
frequency, ω = 2π/T turns out to be the double of the field frequency. This behavior is now
explained.
A closer look at the oscillations of the occupation number and the field in Fig. 11.8 reveals, at
which times the ionization rate is largest. This happens between two extrema of the external
field, when the electrons have gathered an amount of energy from the field. At this time, the
kinetic energy of the electrons is largest. This agrees with an intuitive picture: To get out of some
confinement, a particle has to be fast enough.
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Figure 11.9: Logarithmic plot of the
time-dependent density of a spin-restricted
N = 2 particle system in Hartree-Fock ap-
proximation. The structures in the den-
sity are caused by interference between the
emitted and reflected fraction.

Time-dependent density

The time-dependent density can be obtained from the Green function as explained in Chapter 9.
Figure 11.9 shows the density from a calculation, in which the field amplitude was E = 0.1 and
the frequency ω = 0.5. We chose a finite-box model with a continuum width of 2b = 50. After
the system has evolved a certain time, we observe the formation of a structure in the density. It
is caused by an interference between the emitted density fraction and the density fraction that
has been reflected at the boundaries. Thus, the densities have no physical relevance. We could
diminish the interference effects by use of appropriate optical potentials, i.e. complex potentials
with a negative imaginary part. As one can reveal from a glance at the continuity equation, such
a potential leads to a decay in the particle number. Its implementation is in basis representation
not that straightforward as in coordinate space and will be part of the future work.

Multi-photon processes

The basic model also allows for a natural description of multi-photon processes. The continuum
energy range then has to be chosen large enough to resolve the multiple photon peaks. With the
possibility to exclude certain basis functions, we can also distinguish between real multi-photon
processes, where the electron has crossed a virtual state, and sequential ionization, in which the
particle occupies a real state between two photon absorptions. In the following this question bears
no relevance, since we investigate the transition from the previously introduced model atom. It
has only a single bound state at E = −0.3, which is occupied by two spin-restricted electrons.
The frequency of the applied electromagnetic waves now is smaller than the energy gap, ω = 0.1
and ω = 0.2. It yields a continuation of Fig. 11.6 (a), in which only frequencies ω ≥ 0.3 were
considered.
In Fig. 11.10, the energy spectrum of an ionized electron is shown, that has absorbed at least
four photons. The first peak at E = 4~ω is obtained with a fine resolution. However, the other
peaks show an unexpected behavior. First, they are not located at multiples of the photon energy.
Additionally, the respective height is larger than the one of the first peak. However, as known
from perturbation theory, it should decrease with In, where n is the peak order.
In Fig. 11.11, we examined the validity of the perturbation theory. For a frequency of ω = 0.2, the
particle must receive two photons to become ionized. The ionization probability should therefore
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Figure 11.10: Occupation of the continuum
caused by multi-photon transitions. An electro-
magnetic wave of frequency ω = 0.1 is applied
to a finite box system with N = 2 spin-restricted
particles in the groundstate E0 = −0.3. Thus,
for the ionization four photons are needed. The
first peak at E = 4~ω is clearly observable, while
the resolution to the other expected peaks is poor.

be proportional to I2, and its outline against the intensity clearly affirms this prediction. Likewise
for a frequency of ω = 0.1, we expect a cubic behavior. However, the fitted cubic function does not
match the curve. The reason for this can be explained by the Keldysh parameter. It becomes too
large for an application of perturbation theory. The fit against a curve with a variable exponent
yields n = 1.83. This behavior can also be observed in the experiment: If the Keldysh parameter
approaches one, the ionization probability is better described by a smaller power than expected
from perturbation theory. For the experimental results and further explanation see Ref. [2].

Double ionization of Helium

We also tried to investigate the sequential double ionization of Helium, or more precisely the
corresponding effect in the 1D Helium model, v(x) = −2/

√
x2 + 1. The respective equilibrium

results of the model have already been presented in the previous chapter.

Figure 11.11.: Ionization probability plotted against intensity and Keldysh parameter in the multi-photon
regime. The system is evolved to T = 150 under action of a monochromatic wave. (a) For a frequency of
ω = 0.2, two photons are needed to ionize the particle. Perturbation theory predicts a ionization probability
proportional to I2, which is well confirmed by the fit curve. (b) For ω = 0.1, three photons are required for
an ionization. As the Keldysh parameters approaches one, perturbation theory breaks down. The ionization
probability then is better characterized by a smaller exponent, here by n ≈ 1.83.
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Figure 11.12.: Ionization and double ionization probability of the one-dimensional Helium model plotted
against the intensity. P1 and P2 denote the probability, that after the pulse one respectively two particles
are outside of a radius R = 10. P0 gives the probability that no particle is ionized. (a) Result from the
solution of the 2D Schrödinger equation. In the double ionization curve, one clearly observes the knee
structure caused by the interaction of the re-scattered particle. (b) Corresponding Hartree-Fock result from
a calculation with Nb = 40 basis functions. The knee structure disappears. Due to the small basis, the grey
underlayed results are not reliable.

As explained in Chapter 2, for special parameters of the electromagnetic wave3, the ionized
electron is driven back to the atom, where it may collide with the other electron. This interaction
has a great impact on the ionization process of the confined electron, which results in a double-
ionization curve, that shows the characteristic ”Knee“ structure.
To the groundstate we apply electromagnetic waves with the frequency ω = 0.18 and varying
intensities. The average and variance of the Gaussian envelope are t0 = 40 and ∆t = 10, and
the system is evolved to time T = 80. After the pulse, we calculate the particular contributions
to the ionization probability. An electron thereby is recognized as ionized, if it is located outside
the radius R = 10. By an integration of the two-particle density over the inner or outer region,
we obtain the contributions to the ionization probability, see Ref. [6]. This separation in the
respective contributions is only possible, if we have access to the two-particle density.4
The results in Fig. 11.12 (a) were obtained by a propagation of the spatial solution of the
stationary two-dimensional Schrödinger equation, as it is shown in Fig. 10.3. In the double
ionization curve, the knee is clearly observable.
Our aim now was the description of this many body effect within the NEGF formalism. We
expanded the Green function in Nb = 40 HF-orbitals, where the two particles had to be considered
as spin-restricted. This Green function then was propagated in real time under action of the same
wave. To arrange the result in the same way as in the exact calculation, the two-particle density
is needed. In Hartree-Fock, it is simply given as the product of the one-particle densities. In
Fig. 11.12 (b) the different contributions to the ionization from a Hartree-Fock calculation are
presented. We reveal the well-known result, that the Hartree-Fock mean-field approach is not
able to describe the knee structure.
Consequently, we tried to apply the second Born approximation. However, there are some major
problems to be solved. First, as explained above, the two-particle density is essential. But the
correlated one-particle Green function only covers the one-particle density, and the two-particle

3For a specification of the parameters see Ref. [2]. Roughly, double ionization occurs at small frequencies and
larger amplitudes, i.e. at γ < 1.

4Likewise, to yield the N-particle ionization probability, we need the N-particle density.
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quantity is hard to obtain, see Ref. [51]. Although higher particle densities can be reached in
principle, they are much too complex for a numerical treatment.
In addition, even if we had solved these problems, the numerical solution of the Kadanoff-Baym
equations is a very hard task. A second Born calculation with just the same parameters as in the
Hartree-Fock case (Nb = 40,Nt = 200) has been started. For HF, the simulation lasts roughly 5
minutes. In contrast, the second Born calculation was stopped after a month, when it had reached
40 from 200 time-steps.
In summary, we have to state that the NEGF approach to double (not to say triple,...) ionization
is very questionable. This statement also holds for other problems, in which information on
higher-particle density matrices is required.
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Conclusion

The goal of the present work was to investigate ionization processes in the framework of nonequi-
librium Green functions. Therefore, we adopted a standard model for the description of an atom
and the surrounding continuum, which in principle allows for an accurate treatment of the arising
effects. The model continuum consists of an infinitely deep box, whose boundaries are chosen
sufficiently separated to ensure an adequate energy-level spacing, whereas the model atom can be
of arbitrary form. Here, we have considered three cases: the finite box, the harmonic oscillator
and the Coulomb potential. In equilibrium they were studied in one, two and three dimensions,
while for nonequilibrium calculations we have restricted ourselves to one dimension.

A main part of the thesis concentrates on the derivation of several numerical schemes. Likewise,
we attached a great importance to their efficient implementation, for what a couple of state-
of-the-art libraries are used. Certainly, the nonequilibrium Green functions lie at the heart of
the investigations. For the numerical treatment, we followed the approach of Nils Erik Dahlen,
Robert van Leeuwen and Adrian Stan, which is able to deal with inhomogeneous systems. It
provides the expansion of the Green function in a suitable basis, with which the Dyson equation
and the Kadanoff-Baym equations gain matrix structure. In contrast to earlier approaches, for the
obtainment of the equilibrium state, the Dyson equation is solved self-consistently in imaginary-
time space rather than in frequency space. This yields a natural starting point for the time
evolution. The Kadanoff-Baym equations are solved on the whole two-time plane under full
consideration of initial correlations.
Within this work, the self-energy is obtained within three common schemes, namely in Hartree-
Fock, second Born and GW approximation, where the latter one is until now only available in
equilibrium calculations. While the implementation of Hartree-Fock and second Born caused no
further difficulties, the treatment of GW has been unknown. To this end an efficient algorithm
has been developed and tested on a couple of examples.

From the main topic, several other schemes arose. The stationary one-particle Schrödinger equa-
tion is solved to achieve an initial basis, and likewise its time-dependent counterpart to determine
single-particle reference results. For both, high-order schemes were introduced. Further, the so-
lutions of the Roothaan-Hall equations are found to provide the Hartree-Fock basis expansion,
and also the unrestricted Hartree-Fock algorithm is considered. As an original contribution we
introduced the canonical treatment of the Hartree-Fock equations and demonstrated the ensemble
differences in the presence of interactions. Finally, basing on the latter point, the stationary and
time-dependent Configuration Interaction approach has been implemented to yield exact reference
results.

In all the mentioned many-body methods the description of spin was included, what meets the final
outlook in the preceeding work on nonequilibrium Green functions [18]. Further, we examined
the influence of different basis sets and pointed out the advantages of analytical basis functions.
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In each numerical section, the presented methods were applied to the harmonic oscillator, the
standard example of a well-tempered system. Our intention thereby was not to repeat the results
of Ref. [18], but to amend them. In this light, some interesting and new results were obtained.
They include the canonical and grand-canonical comparisons on the Hartree-Fock level as well
as the GW approximation results, whereas the latter were probably achieved for the first time.
Further, we compared the results of all different calculations and pointed out the quality of the
respective schemes.

For the investigation of the actual topic, ionization processes, the introduced model was studied
by means of the methods above. In particular it was tried to work out its advantages and
restrictions. The solutions of the Kadanoff-Baym equations for the noninteracting, one-particle
system were compared to the results of the one-particle Schrödinger equation and yielded a good
agreement. The necessary preliminaries and tests for an adequate continuum were collected, and
an approximation scheme to modify the density of states has been invented.
Further, the equilibrium state has been determined for different model atoms and dimensions. The
spectral function has been provided as well as results from the Extended Koopmans theorem, and
both were shown to yield the same ionization energies. Moreover, the equilibrium approach to
the kinetic energy of an Auger electron has been presented.
In nonequilibrium, the model system was propagated under action of an electromagnetic wave
with Gaussian envelope. The ionization probabilities have been calculated for different sets of
parameters and also the multi-photon transition was considered. The results were compared to
the ones from perturbation theory, and the relation to the Keldysh parameter has been stated.
Also, we investigated the double-ionization of a one-dimensional Helium model.

In summary, we have to state, that the NEGF approach to ionization processes is questionable.
This is due to two general reasons: (i) The numerical effort of correlated calculations based on
the presented method is too heavy for the required system size, and (ii) the Green function does
not offer all necessary quantities in an easy way.

Outlook

Due to the detailed concern on the numerical basics, we gathered a wide overview on general
quantum many-body theory and, in particular, on the nonequilibrium Green function formalism.
Therefore, a large list of interesting problems arose. Most of them are not exclusively related to
ionization processes, but rather mark principal questions in the application. In the following we
shortly collect the most interesting directions.

• Canonical ensemble: Like for the Hartree-Fock scheme, the treatment of the Green func-
tion could be extended to the canonical formalism, see Ref. [52] for the theoretical footing.
This could be advantageous when considering strongly coupled systems, in which the chem-
ical potential naturally deviates from the one found in Hartree-Fock calculations.

• Time-dependent GW: The GW approximation, which has been established only on the
imaginary time axis of the Keldysh-contour, should be extended to real-time evolution.

• Embedding self-energy approach: For larger systems, one can reduce the problem and
restrict the view to the region of interest, while the interaction with the environment can be
included in an embedding self-energy. For instance, the region of interest can be the atom
in an atom-continuum model or a center molecule in between two leads [49].
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• Periodic potentials: A first step towards the solid could be taken by considering periodic
potentials, such as the Kronig-Penney model. With this we would obtain the band structure.
The basis would be given by Bloch-states.

• Quantized external fields: The time-resolved treatment of Auger processes and sponta-
neous emission probably requires the quantization of the external field. The NEGF formal-
ism thus has to be applied to the models known from quantum optics.

• Real molecules, pseudo potentials: Within our basis approach, it requires no further
effort to treat molecules besides the calculation of the multi-center electron integrals. For
large atoms and molecules pseudopotentials, as they are used in DFT, could be invented.
This would also remove the need to describe deep-lying core states in the ionization.

• Symmetrization of UHF: We have shown how the Hartree-Fock method can produce a
symmetry breaking. A way around this is to use unrestricted Hartree-Fock calculations,
where the asymmetry is presumed, and afterwards apply certain symmetrizing procedures
to the solution [32].

We conclude by announcing the most important goal. After comparing the efficiency of time-
dependent Configuration Interaction and the propagation of the correlated Kadanoff-Baym equa-
tions, we observed that for the presented calculations CI is 10 - 100 times faster than KB (using
N ≤ 4 particles and Nb ≈ 15 basisfunctions). Remember that the effort of (full) CI grows facto-
rially with

(Nb
N

)
, while KB grows only by a certain power (e.g. O(N8

b ) for second Born). Thus the
Kadanoff-Baym approach as it is given in this work only makes sense, if we can go beyond those
regions, where the two effort-curves intersect.
The work of the future therefore will concentrate on a new implementation of the algorithms on
parallel and/or vector-architectures.
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A. Calculation of the two-electron integrals in
3D central potentials

The solutions of the Schrödinger equation in central potentials are given by (5.8):

ψnlm(r) = unl(r)
r

Ylm(θ, ϕ) (A.1)

For the calculation of the two-electron integrals,

w(n1l1m1),(n2l2m2),(n3l3m3),(n4l4m4) =∫
d3r d3r’ ψ∗(n1l1m1)(r) ψ

∗
(n3l3m3)(r’)

1
|r− r’|

ψ(n2l2m2)(r) ψ(n4l4m4)(r’) , (A.2)

we can use the multipole-expansion,

1
|r− r’|

=
∞∑
l=0

4π
2l + 1

rl<
rl+1
>

l∑
m=−l

(−1)m Yl,m(ϕ, θ) Yl,−m(ϕ′, θ′) . (A.3)

(ϕ, θ), (ϕ′, θ′) are the angles of r respectively r’, and r> = max(r, r′), r< = min(r, r′). After
insertion of (A.3) in (A.2) we obtain

w(n1l1m1),(n2l2m2),(n3l3m3),(n4l4m4) =
∞∑
l=0

4π
2l + 1

∫
dr dr′ u∗n1,l1(r)un2,l2(r)u∗n3,l3(r

′)un4,l4(r
′) rl<
rl+1
>

·
l∑

m=−l
(−1)m

∫
dϕ dθ sin(θ) Y ∗l1,m1(ϕ, θ) Yl,m(ϕ, θ) Yl2,m2(ϕ, θ)

·
∫
dϕ′ dθ′ sin(θ′) Y ∗l3,m3(ϕ

′, θ′) Yl,−m(ϕ′, θ′) Yl4,m4(ϕ
′, θ′) . (A.4)

The integrals over three spherical harmonics are analytically solvable, see Ref. [53], p. 803 :

∫ 2π

0

∫ π

0
dϕ dθ sin(θ) Y ∗l1,m1(ϕ, θ) Yl,m(ϕ, θ) Yl2,m2(ϕ, θ)

=
√

(2l + 1)(2l2 + 1)
4π(2l1 + 1)

C(l l2 l1|0 0 0) C(l l2 l1|m m2 m1) . (A.5)

C( . . . | . . . ) thereby denote the Clebsch-Gordan coefficients.

The integral vanishes, unless

(i) |l1 − l2| ≤ l ≤ l1 + l2
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(ii) m1 −m2 = m

(iii) l1 + l2 + l even

We insert (A.5) in (A.4) and restrict the sum to those indices, for which the integral is non-zero:

w(n1l1m1),(n2l2m2),(n3l3m3),(n4l4m4) =
min(l1+l2,l3+l4)∑

l=max(|l1−l2|,|l3−l4|)
An1l1,n2l2,n3l3,n4l4
l

∫
dr dr′ u∗n1,l1(r)un2,l2(r)u∗n3,l3(r

′)un4,l4(r
′) rl<
rl+1
>

(A.6)

Thereby we defined

Al1m1,l2m2,l3m3,l4m4
l =

√
(2l2 + 1)(2l4 + 1)
(2l1 + 1)(2l3 + 1)

C(l l2 l1|0 0 0) C(l l4 l3|0 0 0)

·
l∑

m=−l
(−1)m C(l l2 l1|m m2 m1) C(l l4 l3| −m m4 m3) . (A.7)

Together with restriction (ii), the sum over m evaluates to

Al1m1,l2m2,l3m3,l4m4
l =

√
(2l2 + 1)(2l4 + 1)
(2l1 + 1)(2l3 + 1)

C(l l2 l1|0 0 0) C(l l4 l3|0 0 0)

· δm1−m2,m4−m3 (−1)m1−m2 C(l l2 l1|m1 −m2 m2 m1) C(l l4 l3|m3 −m4 m4 m3) . (A.8)

If we further define

Rn1l1,n2l2,n3l3,n4l4
l =

∫
dr dr′ u∗n1,l1(r)un2,l2(r)u∗n3,l3(r

′)un4,l4(r
′) rl<
rl+1
>

,

we obtain the final expression for the two-electron integrals:

w(n1l1m1),(n2l2m2),(n3l3m3),(n4l4m4) =

δm1−m2,m4−m3

min(l1+l2,l3+l4)∑
l=max(|l1−l2|,|l3−l4|)

An1l1,n2l2,n3l3,n4l4
l ·Rn1l1,n2l2,n3l3,n4l4

l . (A.9)

The sum runs in steps of two and has to be performed only, if (l1+ l2) mod 2 6= (l3+ l4) mod 2,
i.e. if (l1 + l2) and (l3 + l4) have different parity. For each summand now, the radial integral has
to be computed once.
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