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Abstract

In this work, we have investigated many-particle processes in beryllium using
the Multiconfigurational time-dependent Hartree-Fock method (MCTDHF). This
method allows us to gradually include correlations, i.e., contributions to the inter-
particle interaction beyond a mean-field description. One process, in which are
particularly interested, is the correlation-induced shake-up ionization. The eventual
goal of this work is the time-resolved observation of these effects. To reach this
goal, we introduce the many-particle quantum theory in the form of the first and
second quantization. With these theories as a foundation, we will outline several
numerical methods which can be used to numerically solve the time-dependent
Schrödinger equation. On the basis of Configuration interaction and Hartree-Fock,
we will motivate the Multiconfigurational time-dependent Hartree-Fock method
(MCTDHF) and deduce it from first principles. To successfully solve the MCTDHF
equations for a complex process such as photo-ionization of beryllium, we need
to considerably speed up our implementation. First, we propose the Energy
subspace projection (ESP) scheme to solve the issue of stiffness which prevents a
proper time propagation of the MCTDHF equations. Afterwards, we introduce
a parallelization scheme to enable the use of cluster computers as a means to
accelerate the execution of the algorithm. After we have ensured that we can
effectively perform the desired simulations, we explain the computer experiment
and establish the necessary concepts. In the last part of this work, we will actually
perform the outlined simulations and discuss our findings.
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Zusammenfassung

In dieser Arbeit wurden Vielteilchenprozesse in Beryllium mittels der Multiconfi-
gurational - time-dependent - Hartree-Fock - Methode untersucht. Diese Methode
erlaubt es sukzessiv Korrelationen, das heißt Beiträge der Wechselwirkung zwischen
zwei Teilchen jenseits einer Mean-field - Beschreibung, hinzuzufügen. Ein Prozess,
für den wir uns insbesondere interessieren, ist der durch Korrelationen bedingte
shake-up - Prozess. Das letztendliche Ziel dieser Arbeit ist die zeitaufgelöste Beob-
achtung dieser Effekte. Um dieses Ziel zu erreichen, werden wir eine Einführung in
die Vielteilchenquantentheorie in Form der ersten und zweiten Quantisierung geben.
Mit diesen Theorie als Grundlage, werden wir diverse numerische Methoden umrei-
ßen, welche dazu verwendet werden können dir zeitabhängige Schrödingergleichung
zu lösen. Aufbauend auf Configuration interaction and Hartree-Fock werden wir
die Multiconfigurational - time-dependent - Hartree-Fock - Methode (MCTDHF)
motivieren und sie aus einem physikalischem Grundprinzip herleiten. Um die
MCTDHF-Gleichungen erfolgreich für einen solch komplexen Prozess wie die Pho-
toionization zu lösen, müssen wir unsere Implementierung deutliche beschleunigen.
Als erstes schlagen wir das Energy-subspace-projection (ESP)-Schema vor, um das
Problem der steifen Differentialgleichungen zu lösen, welches eine vernünftige Zeit-
entwicklung der MCTDHF-Gleichungen verhindert. Danach führen wir ein Paralle-
lisierungsschema ein, um die Nutzung von Cluster-Computern als eine Möglichkeit
zur Beschleunigung des Algorithmus zu ermöglichen. Nachdem wir sichergestellt ha-
ben, dass wir die gewünschten Berechnungen auch tatsächlich durchführen können,
erklären wir das Computerexperiment und führen die benötigten Konzepte ein.
Im letzten Teil dieser Arbeit werden wir die skizzierten Simulationen tatsächlich
durchführen und unsere Befunde diskutieren.
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1 Introduction

In the recent years, new light source, like LCLS at SLAC and Flash at DESY [1],
with shorter and more powerful pulses have enabled the time-resolved observation of
processes in atoms and molecules. Numerous techniques like streaking cameras [2]
and the pump-probe scheme [3, 4] have been developed to capture the time-
dependency of intra-atomic processes and have been successfully applied to atomic
systems [5, 6]. Especially, complex many-particle processes like Auger decay have
shown interesting behavior [7]. As a visionary goal, one hopes to manipulate the
electronic structure of atoms in molecules in the future to allow for sophisticated
technical applications by using the gained insights. Via the European XFEL,
which is currently built in Hamburg and has recently reached a milestone of its
construction, it is expected that new hurdles in this direction are overcome.

This sets a high standard for a theoretical description as the simulation of
many-particle system is a non-trivial task. Traditional methods like Configuration
interaction are not able to simulate more than two electrons at the same time [8,9],
which is in general insufficient to reach the same level of sophistication as the
experiments do. Therefore, more elaborate methods have to be developed. In
this work, we will use the Multiconfigurational time-dependent Hartree-Fock
(MCTDHF) method, which allows to gradually include correlations in addition
to the mean-field description of vanilla Hartree-Fock, to simulate many-particle
processes in beryllium. Such many-particle processes are a good benchmark for any
numerical method, as the correct description of these processes is a complex task.
Recent calculation for the photo-ionization in Helium and Beryllium [10,11] show
promising results for MCTDHF. As the eventual goal, we will try to observe a
many-particle process, like shake-up ionization and Auger decay, in a time-resolved
manner by using the pump-probe scheme.
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1 Introduction

1.1 Overview

The present work is organized as follows:

• Chapter 2 will lay the theoretical foundation for the numerical methods
which are used in this work. In particular, we will introduce the first and
second quantization.

• Chapter 3 describes several methods to solve the time-dependent Schrödinger
equation numerically. Most notably, we will motivate and deduce the Mul-
ticonfigurational time-dependent Hartree-Fock method which is the crucial
point of this work.

• Chapter 4 engages the issue of stiffness which inhibit the time propagation
during the numerical solution of the MCTDHF equations. In this chapter,
we will propose a domain-specific ansatz to circumvent this problem.

• Chapter 5 introduces a parallelization scheme for the MCTDHF equations
and presents its benefits and shortcomings.

• Chapter 6 describes the computer experiment and introduces the necessary
methods of measurement.

• Chapter 7 discusses the numerical results which were obtained from the
MCTDHF equations and presents our findings.

• Chapter 8 summarizes this work and our conclusions. In addition, we give
a brief outlook on possible future goals.

1.2 Remarks

In this work, we will use lower case bold letters v for vectors and upper case bold
letters A for matrices and tensors. As usual in quantum theory, quantities Â with
a hat on the top denote linear operators.

Throughout this work, we will give all quantities in atomic units which is a
unit system that is especially convenient for atomic physics. It is defined by the
requirement

~ = e = me = α · c = 1. (1.1)

This especially means that all distance are given in units of the Bohr radius, and all
electric charges and masses in units of the electron charge and mass, respectively.
The unit of energy in this unit system is named Hartree (Ha) which is defined as
the potential energy of the hydrogen groundstate.
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2 Theory of many-particle quantum
mechanics

In this chapter we will lay the theoretical foundation for the numerical methods
which are used in this work.

2.1 Mathematical structure of quantum theory

Before we will consider the details of many-particle quantum mechanics, we give
a short review of the fundamental structure of quantum mechanics. Due to the
focus of this work on atomic systems, we confine ourselves to a description in
terms of so called pure states, which describes systems at temperature T = 0 K,
instead of a more general description using an ensemble of states, that is necessary
for systems at finite temperatures. This simplification is justified by the fact,
that even in experimental setups each atom is separated from its environment as
much as possible to avoid statistical noise. We will only give a brief and informal
overview of the mathematical principles of quantum mechanics. A more rigorous
introduction can be found, e.g., in [12] and [13].

The central structure of quantum mechanics is the state space, on which all
operations are defined. From a mathematical point of view the quantum-mechanical
state space is a Hilbert space H, that is, a complete vector space equipped with a
scalar product

〈·|·〉 : H×H → C. (2.1)

The elements of the state space are called state vectors, or states for short, and
are usually denoted as |x〉, where x is an arbitrary label.

To formalize the relation between the scalar product (2.1) and the state vectors
|x〉, it is useful to introduce the concept of the dual space. Any Hilbert space H has
an associated dual space H†, which is the space of all bounded linear functionals

〈x| : H → C. (2.2)

The theory of dual spaces justifies the historical Bra-Ket notation, which was
introduced by Paul Dirac in 1939 [14] and is ubiquitous in modern quantum theory.
In this notation, one refers to the elements of H as ket states and to the elements

3



2 Theory of many-particle quantum mechanics

of H† as bra states. Using this formulation, we can adopt the definition

〈x|y〉 := 〈x| |y〉 = 〈x| (|y〉) (2.3)

of the scalar product (2.1). The advantage of this reformulation is that the
right-hand side of (2.3) consists of mathematical objects on which we can apply
mathematical rewriting rules, whereas the left-hand side is, individually, only
a notation without inherent mathematical semantic. As stated by the Riesz
representation theorem [15], the dual space H† is anti-isomorphic to the Hilbert
space H. This means in particularly that the mapping between bra states and ket
states is unique, which we indicate by using the same label for associated states. If
not stated otherwise below, we will only discuss the properties of the Hilbert space
since almost all properties hold similarly for the dual space.

An important property, which every Hilbert space—as a complete vector space—
possesses is that every state |ψ〉 can be represented as a superposition

|ψ〉 =
∑
i

〈φi|ψ〉 |φi〉 (2.4)

of arbitrary basis states {|φi〉}. The expansion coefficients

ci = 〈φi|ψ〉 (2.5)

uniquely determine the state for a chosen basis set. In the following we will only
discuss the theory for discrete basis sets, as the structure for continuous basis
sets is primarily the same. Another frequently used property, which is tightly
coupled to the expansion in basis states, is the expression of the identity operator
1̂ : H → H as

1̂ =
∑
i

|φi〉〈φi| , (2.6)

where |φi〉〈φi| denotes the outer product between the ket state |φi〉 and its corre-
sponding bra state 〈φi|.

Another fundamental concept in quantum theory are linear operators Â : H → H,
which describe transformations on ket states. By analogy with the scalar product
(2.3), one introduces the notation

〈Ψ| Â |Φ〉 := 〈Ψ|
(
Â (|Φ〉)

)
. (2.7)

For any linear operator Â one can define —due to the correspondence of Hilbert
space and dual space—its adjoint operator Â† : H† → H†, which satisfies the
identity

〈Ψ| Â |Φ〉 =
(
Â† 〈Ψ|

)
|Φ〉 . (2.8)

4



2.1 Mathematical structure of quantum theory

Again, we can use a basis {|φi〉} to represent the abstract operator Â using

Â =
∑
ij

〈φi| Â |φj〉 |φi〉〈φj | , (2.9)

As a corollary from equation (2.9), the structure of the operator only depends on
the matrix elements

Aij = 〈φi| Â |φj〉 (2.10)

for a given basis, which means that an operator is uniquely determined by its
action on all basis states. This fact is usually exploited by substituting the abstract
operator Â with the matrix A = (Aij) after we have chosen a certain basis set.
Together with the expansion, given by equation (2.4), this allows us to express all
essential quantities in terms of a single basis set.

Physical quantities are represented by self-adjoint operators, which satisfy

〈φi| Â |φJ〉 = 〈φi| Â |φJ〉† (2.11)

for every i and j. The arguably most important self-adjoint operator in quantum
mechanics is the Hamilton operator, or Hamiltonian, which completely determines
the properties of a physical system, much like the Hamilton function in classical
mechanics. The quantum mechanical measurement of an observable is given by the
expectation value of the associated self-adjoint operator. We will restrict ourself to
projective measurements, which are usually used in standard quantum mechanics,
as opposed to the more general positive-operator valued measure (POVM) [16].
In the case of projective measurements and pure states the expectation value of a
self-adjoint operator Â regarding a state |ψ〉 is defined by

〈Â〉|ψ〉 = 〈ψ| Â |ψ〉 . (2.12)

Usually the considered state is fixed by convention and the subscript in equation
(2.12) is omitted for brevity. If we use the identity (2.9) to substitute the operator
in equation (2.12), we obtain

〈Â〉|ψ〉 =
∑
ij

Aij 〈ψ|φi〉 〈φj |ψ〉 . (2.13)

The scalar products in equation (2.13) can be interpreted as expansion coefficients

ci = 〈φi|ψ〉 (2.14)

of the state |ψ〉 in the basis {|φi〉} and we finally arrive at a representation of the
expectation value

〈Â〉 =
∑
ij

Aijc
∗
i cj (2.15)

5



2 Theory of many-particle quantum mechanics

solely in terms of the chosen basis. Equation (2.15) can be simplified by choosing
the eigenstates of operator Â, i.e., the states {|ai〉}, which satisfy Â |ai〉 = ai |ai〉,
as the basis. In this case the matrix A is diagonal with the values {ai} on the
diagonal 1 and equation (2.15) rearranges into

〈Â〉 =
∑
i

aic
∗
i ci =

∑
i

ai |ci|2 . (2.16)

The expression
|ci|2 = 〈ψ| |φi〉〈φi| |ψ〉 (2.17)

is the expectation value of the projector |φi〉〈φi| and can be interpreted as the
probability that the state |φi〉 is occupied. If we consider that the value ai is the
expectation value of the eigenstate |ai〉 and that |ci|2 is the probability with which
the state is occupied, one can interpret equation (2.16) as the weighted average of
all possible measurement results.

For two operators, one defines the commutator[
Â, B̂

]
= ÂB̂ − B̂Â (2.18)

and the anti-commutator {
Â, B̂

}
= ÂB̂ + B̂Â. (2.19)

The commutator of two operators is a fundamental quantity, since it defines several
important mathematical and physical properties of these operators, for example
how Heisenberg’s uncertainty principle applies to the quantities. Notably, if the

commutator
[
Ĥ, Â

]
of the Hamiltonian and an arbitrary operator Â is equal to

zero, the quantity associated with the operator is conserved.

2.2 First quantization

In this section, we will introduce the so called first quantization, which describes
the interaction of a quantum mechanical system with a classical environment, as a
means to represent a many-particle system.

2.2.1 State space of many-particle quantum theory

After we have briefly reviewed the general mathematical formulation of quantum
theory, we enlarge upon many-particle quantum theory. Based on a postulate
of quantum theory [17], the state space of a composite system can be written

1This can be easily verified by applying the eigenstate property to the definition of the matrix
elements.
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2.2 First quantization

as the tensor product of the state spaces associated with each component. If
we only consider one kind of particles, for example electrons, and use the same
single-particle Hilbert space H1 to describe each particle, the N -particle Hilbert
space reads

HN =
N⊗
i=1

H1 = H⊗N1 . (2.20)

It should be noted, however, that there is no need to use the same single-particle
Hilbert space for each particle, nor to use this decomposition at all. It is just the
most commonly used one. As we will see later, it might not be the best idea to
choose this representation in every situation.

While the state space HN is sufficient to describe all N -particle systems, we
need a more elaborate space in general, since we might add or remove particles
from a state. The state space, which describes systems with an unspecified number
of particles, is the Fock space

F =
∞⊕
N=0

HN . (2.21)

While we need the Fock space for the formal description of many-particle theory,
we will only describe systems with a fixed number of particles here. Therefore we
will use HN as the designated state space in most of this work. This is justified

by the fact that the commutator
[
Ĥ, N̂

]
between the Hamiltonian Ĥ, which is

used throughout this work, and the particle number operator N̂ vanishes, i.e., the
number of particles is a conserved quantity. Hence, we stay within the Hilbert
space HN , if we start in a state |Ψ〉 ∈ HN .

As a direct consequence of equation (2.20), the basis states of the N -particle
Hilbert space can be represented as so called Hartree products

|φ1 . . . φN ) := |φ1〉 ⊗ |φ2〉 ⊗ · · · ⊗ |φN 〉 , (2.22)

where the {φi} denote the basis states of the single-particle Hilbert space H1.
Using this representation, one can write an arbitrary N -particle state |Ψ〉 as

|Ψ〉 =
∑
I

CI |φ1 . . . φN ) (2.23)

using the already introduced basis expansion (compare Eq. (2.4)) with a multi-
index I = (i1, i2, . . . , iN ). The tensor product symbols within the Hartree product
(2.22) are often omitted for brevity which results in the notation

|φ1〉 |φ2〉 . . . |φN 〉 := |φ1〉 ⊗ |φ2〉 ⊗ · · · ⊗ |φN 〉 . (2.24)

7



2 Theory of many-particle quantum mechanics

2.2.2 Fermionic and bosonic Hilbert spaces

Due to an underlying principle of quantum theory, all particles of the same species—
i.e., with identical intrinsic physical properties 2—are indistinguishable, with
quintessential consequences for the behavior and theory of quantum systems. This
is contrasted by classical particles, which are always distinguishable. Through
experiments, one has identified two families of particles with different behavior
which are named fermions and bosons, respectively. The family of fermions
encompasses all particle with half-integer spin—for example quarks, electrons and
other leptons—while bosons are particles with integral spin—for example the Higgs
boson, photons and certain composite systems. These findings are stated by the
spin-statistics theorem [18,19].

Let us now consider many-particle states, which consist of a single particle species,
for example electrons with the same spin projection. The indistinguishably of these
particles implies that such states must be essentially invariant under permutation
of the single-particle states. Only the total phase of the state might change, since
this does not affect its physical interpretation. As long as the Hamiltonian does
not permit the decay of a fermion into one or more bosons and vice versa,[

Ĥ, P̂
]

= 0 (2.25)

holds for every permutation operator P̂ ∈ SN on N -particles states. SN is the
symmetric group of N symbols. This is true for the Hamiltonians used in this work,
since we only regard fermions in our models. Due to the vanishing commutator, the
Hamiltonian and the permutation operators have common eigenstates, which form
a basis of the N -particle Hilbert space HN in this case. To obtain the eigenstates
of all P̂ , one needs to solve the eigenvalue problem

P̂ |ν〉 = ν |ν〉 (2.26)

for each permutation operator. One finds that ν can only assume the value 1
or −1. The eigenspace which corresponds to the eigenvalue 1 is the subspace of
totally symmetric functions H+

N ⊂ HN of bosonic states. In turn, the eigenspace,
which is associated to the eigenvalue −1, is the subspace of totally antisymmetric

functions H−N ⊂ HN and contains all fermionic states. Since
[
Ĥ, P̂

]
= 0 holds, any

fermionic (bosonic) state will stay within H−N (H+
N ), and it is sufficient to use the

respective subspace as the state space. This significantly reduces the complexity of
the theoretical description due to the reduced dimensionality with regard to the
full N -particle Hilbert space HN .

2This includes mass, electric charge, spin, etc.
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2.2 First quantization

To exploit this fact for fermionic systems and construct a basis of the subspace
H−N , it is convenient to define the projection operator P̂− : HN → H−N ,

P̂− =
1

N !

∑
P̂∈SN

sign(P̂ ) P̂ , (2.27)

which can be applied to an arbitrary, non-symmetric state to obtain its anti-
symmetric part. Here, the expression sign(P̂ ) denotes the parity of the permuation
P̂ . Since P̂− will generate non-normalized states, in general, one commonly defines
the antisymmetrizer

Â :=
√
N !P̂− (2.28)

to adjust the normalization. If one applies the antisymmetrizer to an arbitrary
state

|Ψ〉 =
∑
I

CI |φ1 . . . φN ) , (2.29)

one can take advantage of the linearity of the antisymmetrizer and move it in front
of the Hartree product. This results in the anti-symmetrized state∣∣Ψ−〉 =

∑
I

CIÂ |φ1 . . . φN ) . (2.30)

This right-hand side of equation has already the structure of a basis expansion, if
one chooses the states

|φi1φi2 . . . φiN 〉 := Â |φ1 . . . φN ) (2.31)

as the basis states of H−N . The {|φi1φi2 . . . φiN 〉} are called (Slater) determinants,
since one can write them equally as

|φi1φi2 . . . φiN 〉 =
1√
N !

∣∣∣∣∣∣∣∣∣
|φ1〉 |φ1〉 . . . |φ1〉
|φ2〉 |φ2〉 . . . |φ2〉

...
...

. . .
...

|φN 〉 |φN 〉 . . . |φN 〉

∣∣∣∣∣∣∣∣∣ . (2.32)

Analogously, one can define a projector P̂+ : HN → H+
N ,

P̂+ =
1

N !

∑
P̂∈SN

P̂ , (2.33)

onto the subspace of fully symmetric functions and a symmetrizer

Ŝ :=

√
N !

n1!n2! . . . nNb !
P̂+, (2.34)

9



2 Theory of many-particle quantum mechanics

where ni indicates, how many particles occupy the i-th single-particle basis state.
Nb labels the total number single-particle basis states. If we apply the symmetrizer
to a Hartree product, one obtains what is called a permanent.

Another typically used representation of determinants and permanents is the so
called occupation number representation

|n1n2 . . . nNb〉 , (2.35)

The single-particle states are normally denoted as orbitals or modes in this case.
Usually our system will not solely consist of a single particle species. For example,

atomic systems generally contain electrons with spin-up and spin-down. As these
two species are distinguishable, we cannot use Slater determinants to represent
the states. Instead, the Hilbert space HN can be decomposed into a Hilbert space
H↑Nα for the spin-up electrons and another Hilbert space H↓Nβ for the spin-down

electrons, such that
HN = H↑Nα ⊗H

↓
Nβ

(2.36)

holds. Since H↑Nα as well as H↓Nβ are entirely associated to a single particle species,

one can use Slater determinants as a basis for each Hilbert space once more. Due
to the product structure of the N -particle Hilbert space HN , its basis states can
be written as tensor products∣∣∣n1n2 . . . nNb

〉
=
∣∣∣n1n2 . . . nNα

b

〉
⊗
∣∣∣n1n2 . . . nNβ

b

〉
(2.37)

of the spin-up
∣∣∣n1n2 . . . nNα

b

〉
and spin-down Slater determinants

∣∣∣n1n2 . . . nNβ
b

〉
.

Nα
b and Nβ

b are the number of spin-up and spin-down orbitals, respectively, for

which Nb = Nα
b + Nβ

b is valid. One can construct arbitrarily complex Hilbert
spaces in this manner by recursively decomposing the Hilbert space until each of
the component spaces is associated with a single particle species.

2.2.3 The many-particle Hamiltonian

Before we will continue to establish the many-particle quantum theory, we will
introduce the many-particle Hamiltonian,

Ĥ :=
∑
i

ĥi +
1

2

∑
i 6=j

ĝij , (2.38)

that is used throughout this work.
ĥi denotes the single-particle Hamiltonian, which acts on the i-th orbital, and

can be written as

ĥi :=
p̂2
i

2
+ V (r̂i) + VEM(r̂i, t) (2.39)

10



2.3 Second quantization

in our case. The first term of the Hamiltonian (2.39) corresponds to the kinetic
energy of the particle, while the second term provides the time-independent part
of the potential energy. In the case of atomic systems

V (r̂i) :=
−Z
r̂i

(2.40)

is the Coulomb potential of the atomic core. The last term, VEM(r̂i, t), represents
the classical electron-magnetic field, which is used to excite the system. In this
work, we use the dipole approximation,

VEM(r̂i, t) := E(t)r̂i, (2.41)

in length gauge with an electric field E(t). This approximation neglects the spatial
dependency of the field, and is therefore only valid if the wavelength of the field is
large in comparison to the extent of the system.

The second term of the many-particle Hamiltonian (2.38) expresses the inter-
particle interaction. For electrons, the interaction operator,

ĝij :=
1

|r̂i − r̂j |
(2.42)

depicts the Coulomb interaction between two particles. While we will keep this
choice during this work, other interactions, for example contact interaction, are
imaginable.

2.3 Second quantization

After we have familiarized ourself with the theoretical description of many-particles
in the so called first quantization, we will now introduce the second quantization,
which is based on the occupation number representation and simplifies the descrip-
tion of arbitrary many-particle systems by formalizing the creation and structure
of many-particle states. This is done by defining the so called annihilation and
creation operators. We will restrict ourself to the case of fermions, since we will
just use this case in this work. A nice property of the second quantization is that
the structure for bosons is almost equal to the fermionic case, so one can transfer
the obtained insights easily.

2.3.1 Annihilation and creation operators

As mentioned above, the main building block of the second quantization theory
are the annihilation and creation operators, which formalize the destruction and

11



2 Theory of many-particle quantum mechanics

creation of a particle in a specific orbital. For an arbitrary state |n1n2 . . . nNb〉 the
action of the creation operator is defined by

â†i |n1n2 . . . nNb〉 = δni,0Γn
i |n1n2 . . . ni = 1 . . . nNb〉 , (2.43)

where the factor Γn
i specified as

Γn
i :=

i−1∏
j=1

(−1)nj . (2.44)

Likewise, one defines the action of the annihilation operator as

âi |n1n2 . . . nNb〉 = δni,1Γn
i |n1n2 . . . ni = 0 . . . nNb〉 . (2.45)

The factor δni,0 in equation (2.43) is necessary to satisfy the Pauli exclusion
principle, thus, the quantum mechanical principle that no two fermions may
occupy the same quantum state simultaneously. If this happens, the entire state
is destroyed and we obtain the unphysical state 0. Similarly, one can not destroy
a non-existing particle and the factor δni,1 ensures, that the state is invalidated

in this case. The creation operators â†i and the annihilation operators âj are
connected by the identity

â†i = (âi)
† . (2.46)

In summary, these operators give us the ability to move through different subspaces
of the Fock space, on which these operators are defined.

With the ability to create and destroy particles in certain orbitals at will, one
can now systematically construct any desired many-particle state. If |vac〉 names
the vacuum state, i.e., the unique state of a system with zero particles, one can
write an arbitrary determinant |n〉 = |n1n2 . . . nNb〉 as

|n〉 =

Nb∏′

i=1

(
â†i

)ni
|vac〉 . (2.47)

It should be noted that the product in equation (2.47) should be interpreted as an
ordered product, which can be surprising, if one is used to the behavior of products
for real numbers. This is necessary, since the multiplication of creation operators is
not commutative in general. Two different multiplication orders will always result
in determinants, which have the same occupation, but might differ by a factor
(−1). It is therefore important to choose a specific order and to restore the order
while keeping track of the sign changes, if one adds another creator upfront. This
is the reason for the factor Γn

i in the equations (2.43) and (2.45). The relation

12



2.3 Second quantization

between the creation and annihilation operators can be mathematically expressed
by the anti-commutator relations {

â†i , âj

}
= δij (2.48)

and {
â†i , â

†
j

}
=
{
âi, âj

}
= 0. (2.49)

This simple and strictly formalized framework is the major strength of the
second quantization and has lead to the broad adoption of this technique within
the many-particle quantum theory community. Virtually the same formalism can
be applied to bosonic systems or systems with a mixture of particle species, up to
arbitrarily complex systems, without designing a new theory for every system from
scratch. In fact, systems where the number of particles of a certain species—or
even the total number of particles—is not fixed are treatable using this approach.
For example one only has to substitute the anti-commutators with commutators
and discard the Pauli principle to use the same methods for bosons.

2.3.2 Reduced density matrices and observables

To conclude the section about the second quantization, we will examine how one
can represent operators, matrix elements and expectation values within the second
quantization framework.

One can show that a many-particle operator Â with one-particle characteristic
can be expressed [13] as

Â =
∑
ij

aij â
†
i âj (2.50)

using the matrix elements

aij := 〈i| â |j〉 (2.51)

and the creation â†i and annihilation operators âj . 〈i| and |j〉 are abbreviations for

the basis states 〈φi| or |φj〉. Similarly, one can express a many-particle operator Ĝ
with two-particle characteristic as

Ĝ =
∑
ijkl

gijklâ
†
i â
†
kâlâj (2.52)

with tensor elements

gijkl := 〈i| 〈k| ĝ |l〉 |j〉 . (2.53)

After comparing equations (2.50) and (2.52), one would expect that all operators
have the same structure within the second quantization. This is indeed true and
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2 Theory of many-particle quantum mechanics

makes it straight forward to generalize the representation to arbitrary n-particle
operators.

By inserting the second quantization representation of one- and two-particle
operators (2.50) and (2.52) into the definition of the expectation value (2.12), we
obtain the expressions

〈Â〉 =
∑
ij

aijDij (2.54)

and
〈Ĝ〉 =

∑
ijkl

gijkldijkl (2.55)

for the one- and two-particle expectation values.

Dij := 〈Ψ| â†i âj |Ψ〉 (2.56)

and
dijkl := 〈Ψ| â†i â

†
kâlâj |Ψ〉 (2.57)

denote the one- and two-particle reduced density matrix, respectively. They can be
easily calculated with the aid of the anti-commutator relations (2.48) and (2.49).
Similarly, we can calculate matrix elements of these operators, which leads, for
example, to the expression

〈I| Â |J〉 :=
∑
ij

aij 〈I| â†i âj |J〉 (2.58)

for an operator with one-particle characteristic.
Furthermore, also the structure of the operators itself gives us a significant

advantage. Neither the values of the matrix elements nor the formal representation
of the operator depend on the structure of the many-particle system, since these
characteristics are exclusively covered by the annihilation and creation operators.
As a result, one can reuse the already calculated matrix elements for many-particle
systems with another structure instead of calculating them anew every time. The
Hamiltonian, which is used throughout this work, reads

Ĥ =
∑
pq

hpq(t) â
†
pâq +

1

2

∑
pqrs

gpqrs â
†
pâ
†
râsâq (2.59)

in the second quantization representation. Here, the

{hpq(t)} := 〈φp| ĥ |φq〉 (2.60)

and the
{gpqrs} := 〈φp| 〈φr| ĝ |φs〉 |φq〉 (2.61)

denote the matrix elements of the single-particle Hamiltonian and the two-electron
interaction, respectively.
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3 Numerical methods

In this chapter, we introduce the Multiconfigurational time-dependent Hartree-Fock
method (MCTDHF), which is used to carry out all numerical simulations in this
work. As a first step, we briefly introduce two other methods—the Configuration
interaction and the Hartree-Fock method—, which precede the MCTDHF method,
and discuss their advantages and shortcomings. Afterwards, we develop the idea
of MCTDHF, starting from the previously discussed methods and derive the
corresponding equation of motion from first principles. As a conclusion of this
chapter, we discuss several aspects of our implementation, e.g., the choice of the
single-particle basis.

3.1 Configuration interaction

The main goal of this chapter is to enable us to numerically solve the time-dependent
Schrödinger equation (TDSE),

i
∂

∂t
|Ψ〉 = Ĥ |Ψ〉 , (3.1)

for a many-particle system which is described by an arbitrary many-particle
Hamiltonian Ĥ. One way which is theoretically straight forward is to discretize the
TDSE using the principles introduced in chapter 2. We make the basis expansion
ansatz

|Ψ〉 =
∑
J

CJ(t) |J〉 (3.2)

for the many-particle state. Up to now, the {|J〉} are unspecified time-independent
many-particle basis states, which are called configurations in this treatment. Since
the state is time-dependent, we also have to use time-dependent expansion co-
efficients. For the sake of convenience, we will assume that the basis states are
orthonormal, i.e.,

〈I|J〉 = δI,J (3.3)

holds for each I and J . In principle, one could derive the equations for non-
orthonormal basis states, but from a practical point of view the added complexity
is almost never worth the effort We will presume orthonormal many-particle states
below if not stated otherwise. This implies that the orbitals are also orthonormal.
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3 Numerical methods

After inserting the expansion into the TDSE and multiplying it with a bra state
〈I| from the left, one obtains the equation∑

J

i
∂

∂t
CJ(t) 〈I|J〉 =

∑
J

〈I| Ĥ |J〉CJ . (3.4)

During the transformation of equation (3.4), we have utilized the interchangeability
of the time derivative and the bra state, since it is time-independent, the linearity
of all operators. To express the TDSE in a discretized fashion, which is numerically
tractable, we define the Hamilton matrix

HIJ := 〈I| Ĥ |J〉 (3.5)

and exploit the previously required orthonormality to simplify the left-hand side.
In doing so, we arrive at the discretized TDSE in coefficient notation,

i
∂

∂t
CJ(t) =

∑
J

HIJCJ , (3.6)

or in vector notation,

i
∂

∂t
C(t) = HC. (3.7)

The last step is to calculate the elements of the Hamilton matrix H . Before we
do this, we inspect how we can include the spin into our considerations. In this
work, we will restrict ourselves to the spin-restricted treatment, that is the choice

|φαi 〉 := |φi〉 |↑〉 , (3.8)∣∣∣φβi 〉 := |φi〉 |↓〉 (3.9)

for the spin orbitals. In contrast to the spin-unrestricted ansatz, which uses different
spatial orbitals for each spin projection, the spin-restricted ansatz uses the same

spatial orbital |φi〉 to construct the corresponding spin orbitals
∣∣∣φα/βi

〉
for each

spin projection. This ansatz works well, as long as the behavior of the particles
in the same orbital does not depend on their spin projection. This is fulfilled for
example in the case of our standard Hamiltonian (2.59) and Beryllium. A detailed
discussion of all possible treatments for the spin can be found in [20].

Since the spin-up and spin-down particles are distinguishable, we use the ansatz

|K = (I, J)〉 = |I〉 |J〉 (3.10)

for the many-particle basis states, according to the discussion at the end of section
2.2.2. Here, |I〉 and |J〉 denote the Slater determinants, which are constructed
from the spin-up orbitals and the spin-down orbitals, respectively.
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3.1 Configuration interaction

The only difference in the many-particle Hamiltonian (2.59), if we incorporate the
spin using the spin-restricted ansatz, are additional spin indices for the annihilation
and creation operators. The matrix elements do not receive additional indices,
since they are independent of the spin projection. Mathematically speaking, they
are diagonal with respect to the spin indices. Thus, we arrive at the Hamiltonian

Ĥ =
∑
pqσ

hpq(t) â
†
pσâqσ +

1

2

∑
pqrsστ

gpqrs â
†
pσâ
†
rτ âsτ âqσ. (3.11)

Since the matrix elements do not depend on the spin indices, it is useful to define
the single and double excitation operators

Êpq :=
∑
σ

â†pσâqσ (3.12)

êpqrs :=
∑
στ

â†pσâ
†
rτ âsτ âqσ (3.13)

with which we can reduce equation (3.11) to the form

Ĥ =
∑
pq

hpq(t) Êpq +
1

2

∑
pqrs

gpqrs êpqrs. (3.14)

The formal calculation of the Hamiltonian matrix elements is now straight
forward, we only need to exploit the linearity of the operators to arrive at

HKL := 〈K| Ĥ |L〉 =

=
∑
pq

hpq(t) 〈K| Êpq |L〉+
1

2

∑
pqrs

gpqrs 〈K| êpqrs |L〉 .
(3.15)

The matrix elements of the excitation operators can systematically be calculated as
detailed in section 2.3.2, by exploiting that the creation and annihilation operators
only operate on either the spin-up determinant in ansatz (3.10) or the spin-down
determinant.

As of now, we could integrate the CI equations with the major advantage that
we would obtain an exact solution of the TDSE, safe for numerical errors from
the truncation of the single-particle basis. The major downside of this treatment
is that we have to use a set of

(
Nb
Nα

)(
Nb
Nβ

)
Slater determinants for our calculations,

which are far too many basis functions for realistic calculations, if we use more
than two particles.
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3 Numerical methods

3.2 Hartree-Fock

To circumvent the drawbacks of the CI ansatz, we can exploit that it is often not
necessary to calculate the exact solution to obtain a proper description of the
physical system. Therefore, we can often use a scheme which gives a sufficiently
good approximation of the exact solution. In this case we do not need to describe
the entire Hilbert space to obtain the state, but can hope to find a well selected
subspace in which the state resides approximately at every time point. Since the
proper subspace might vary over time we can not use fixed orbitals to represent our
state. Instead, the Hartree-Fock ansatz uses time-dependent orbitals—the Hartree-
Fock orbitals—to build a single Slater determinant. Due to the restriction to a
single determinant, one only needs M = Nα = Nβ orbitals for the spin-restricted
ansatz. The time-dependent orbitals themselves are represented using the ansatz

|φn(t)〉 =

Nb∑
j=1

bnj(t) |ψj〉 (3.16)

using a time-independent basis set {|ψj〉} with dimensionality Nb and time-
dependent expansion coefficients {bnj(t)}. The Hartree-Fock equations determine a
set of, in some sense, optimal expansion coefficients to span the required subspace
at every time-point. We will not deduce the equations at this point, as they are
later later included in the MCTDHF equations as a special case.

The major advantage of this ansatz is that it is very cheap, since we only need
to determine M coefficients, where M is usually small for our systems, because
we only want to describe systems with a comparably small number of particles.
The major disadvantage of the method is that it only covers the mean-field
interaction between the particles i.e., only the interaction of a particle with the
additional background potential—created by all other particles—is included, while
the feedback of its movements onto other particles—and therefore their fields—is
not. These contributions beyond the mean-field are called correlations. Since we are
explicitly interested in many-particle processes, which are caused by correlations,
Hartree-Fock is not sufficient to cover our needs.

3.3 Multiconfigurational time-dependent Hartree-Fock

In this section, we will introduce the Multiconfigurational time-dependent Hartree-
Fock (MCTDHF) method as a hybrid scheme which combines CI and Hartree-Fock.
After we have presented the general idea, we will deduce the equations of motion
and will close with a discussion of our implementation.

18



3.3 Multiconfigurational time-dependent Hartree-Fock

3.3.1 Idea

While the Hartree-Fock ansatz is not sufficient to describe our systems, its benefits
are too promising to be simply dismissed. One might get the idea that it may be
favorable to combine the ideas of CI and Hartee-Fock to eliminate their disadvan-
tages, while hopefully retaining most of their advantages. This was first proposed
by Cederbaum et. al [21] in 2007 in the form of the MCTDH method which
describes systems without exchange interaction. While this restriction does not
hold for our systems, the generalization of this idea is direct and straightforward.

It leads to the MCTDHF ansatz

|Ψ〉 =
∑
n

Cn(t) |n; t〉 , (3.17)

which uses several time-dependent configurations to represent the many-particle
state, instead of only one. Just like in Hartree-Fock, the time-dependent configura-
tions are build from M time-dependent orbitals

|φn(t)〉 =

Nb∑
j=1

bnj(t) |ψj〉 , (3.18)

which are itself represented by means of a time-independent single-particle basis,
using the spin-restricted ansatz. Below, we will refer to the basis set {|ψj〉} as
the reference basis. The main difference to Hartree-Fock is that M is a parameter
of the method, which can be used to control the number of orbitals, and with it
the number of configurations and the level of the approximation. M may vary
from N

2 = Nα = Nβ, which is essentially Hartree-Fock, to Nb, which gives the
highest possible number of configurations for a given reference basis and is exact.
Before we continue, we would like to note that we cannot simply reuse the matrix
elements of the reference basis, but we need to transform the elements in each time
step to the time-dependent basis. In almost every situations, this is the most time
consuming part of the time propagation, as we need the correct matrix elements to
calculate the Hamiltonian (3.14). Due to the higher number of configurations, we
are now able to include at least some correlations into our calculations, while we
can hopefully use a very small subspace to obtain a good approximation by moving
it along with the state vector. This desired behavior is depicted in figure 3.1.

To point out what we have gained with this ansatz, we consider a system with
four particles and 50000 reference basis functions—a size that is frequently required
to describe processes in atoms. If one calculates the approximated size of one
state for CI, one obtains a value in the magnitude of several ten petabyte. For
comparison, today’s TOP10 supercomputers have a hard drive space 1 in the same

1The amount of main memory is no more than in the order of one petabyte.
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3 Numerical methods

order of magnitude. That is why we can easily exceed the storage capacity of a
state-of-the-art supercomputer by storing only a few states. In comparison, the
MCTDHF wavefunction only needs a few hundred megabyte even for larger M .
Hence, we can simulated systems which are not even possible with CI with a fraction
of the resources. This is especially valid, if we need a large time-independent basis
to describe the system, which is almost always the case for atoms.

3.3.2 Equations of motion

After we have described the idea of MCTDHF in the previous section, we will now de-
duce the equations of motion from the Lagrange formulation of the time-dependent
variational principle. This requires a minimization of the action functional

S [{Cn(t)} , {φp(t)}] =∫
dt

{
〈Ψ| Ĥ − i

∂

∂t
|Ψ〉 −

∑
kl

µkl(t) (〈φk|φl〉 − δkl)

}
(3.19)

with respect to the variational parameters2. The following derivation is mainly
inspired by [10]. The Lagrange multipliers are introduced to ensure the orthonor-
mality of the orbitals during the time evolution. The many-particle Hamiltonian
Ĥ used here is essentially the same as the Hamiltonian (3.14). It should be noted,
however, that we need to use the matrix elements for the time-dependent basis to
account for the additional degrees of freedom.

The minimization of the action function leads to three sets of equations

0 =
δ

δCm
S [{Cn(t)} , {φp(t)}] , (3.20)

0 =
δ

δ 〈φp|
S [{Cn(t)} , {φp(t)}] (3.21)

and

0 =
δ

δµij
S [{Cn(t)} , {φp(t)}] , (3.22)

which must be satisfied. Equation (3.22) can be trivially transformed and one
gains

〈φi|φj〉 = δij . (3.23)

This is simply the condition for the required orthonormality.

2This includes the Lagrange multipliers.
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|n1〉

|n2〉

|n3〉

|Φ1(t)〉|Φ2(t)〉|Ψ(t)〉

|n1〉

|n2〉

|n3〉

|Φ1(t)〉|Φ2(t)〉

|Ψ(t+ ∆t)〉

|n1〉

|n2〉

|n3〉

|Φ1(t+ ∆t)〉

|Φ2(t+ ∆t)〉

|Ψ(t+ ∆t)〉

Figure 3.1: Illustration of the time evolution of the exact many-particle state
and the MCTDHF subspace. The CI space is spanned by the three
configurations |n1〉,|n2〉 and |n3〉, while the initial MCTDHF subspace
is spanned by the configurations |Φ1(t)〉 and |Φ2(t)〉. The initial state
|Ψ(t)〉 lies approximately in this subspace. During the time evolution
the state leaves the initial subspace, which means it is not well described
anymore. To circumvent this, the MCTDHF configurations evolve
into new states |Φ1(t+ ∆t)〉 and |Φ2(t+ ∆t)〉 too and span a proper
subspace again.
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For the derivation of the orbital equations from equation (3.21), we express the
expectation value of Ĥ − i ∂∂t in terms of the density matrices, as per section 2.3.2,
and perform the functional derivative. This leads to the set of equations

0 =

{∑
q

Dpq

[
ĥ− i

∂

∂t

]
|φq〉+

∑
qrs

dpqrs 〈φr| ĝ |φs〉 |φq〉

}
−
∑
q

µpq(t) |φq〉 .
(3.24)

After multiplying equation (3.24) with the projector |φm〉〈φm| and summing over
m, we solve for the term which contains the Lagrange multipliers and obtain∑

m

µpm(t) |φm〉 =
∑
m

|φm〉〈φm|

×


∑
q

Dpq

[
ĥ− i

∂

∂t

]
|φq〉+

∑
qrs

dpqrs 〈φr| ĝ |φs〉︸ ︷︷ ︸
:=ĝrs

|φq〉

 .

(3.25)

Since the left-hand side of equation (3.25) also occurs in equation (3.24), we can
insert the former equation into the later, which yields

0 = P̂

{∑
q

Dpq

[
ĥ− i

∂

∂t

]
|φq〉+

∑
qrs

dpqrsĝrs |φq〉

}
. (3.26)

P̂ := 1̂−
M∑
m=1

|φm〉〈φm| (3.27)

is the projector onto the orthogonal complement of the subspace spanned by
the orbitals {|φm〉}. Since we would like to solve equation (3.26) for the term
involving the time derivative, we need to get rid of the summation over q and the
single-particle density matrix elements. We can do this by first multiplying by(
D−1

)
np

and then contracting over the index p. Since this is nothing else than
the multiplication of a matrix with its inverse, the density matrix elements and
the summation vanishes and we attain

iP̂ ˙|φn〉 = P̂

{
ĥ |φn〉+

∑
pqrs

(
D−1

)
np
dpqrsĝrs |φq〉

}
(3.28)

after solving for the term with the derivative. To eliminate the projector P̂ on the
left-hand side of equation (3.28), we apply a unitary transformation to the orbitals
after which

〈φm|
∂

∂t
|φn〉 = 0 (3.29)
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3.3 Multiconfigurational time-dependent Hartree-Fock

holds. This transformation has two remarkable effects. First, the projector vanishes
as anticipated and we reach the orbital equations

i ˙|φn〉 = P̂

{
ĥ |φn〉+

∑
pqrs

(
D−1

)
np
dpqrsĝrs |φq〉

}
. (3.30)

The second effect is that equation (3.23) is satisfied, if and only if the initial orbitals
are orthonormal, since the scalar products of the orbitals are invariants in this
case. This can be easily verified by checking

d

dt
〈φm|φn〉 = 0. (3.31)

Using the product rule one obtains

d

dt
〈φm|φn〉 =

∂

∂t
(〈φm|) |φn〉+ 〈φm|

∂

∂t
|φn〉 (3.32)

and the right-hand side vanishes, because each term is zero due to equation (3.29).
As a last step, we insert expansion (3.18) into equation (3.30) and project the

result onto 〈ψk| to discretize the equation, after which we arrive at a set equation

iḃnk(t) = h
(1)
nk (t)− h(3)

nk (t) +
∑
pqrs

(
D−1

)
np
dpqrs

(
g

(3)
kqrs − g

(5)
kqrs

)
, (3.33)

that determines the time-dependence of the expansion coefficients bnk(t). The
quantities

h
(1)
nk (t) =

Nb∑
j=1

bnjhjk(t), (3.34)

hmn(t) =

Nb∑
k=1

b∗mkh
(1)
nk (t), (3.35)

h
(3)
nk (t) =

M∑
m=1

bmkhmn(t) (3.36)

and

g
(3)
kqrs =

Nb∑
j,k,l=1

bqjb
∗
rkbslgijkl, (3.37)

gpqrs =

Nb∑
i=1

b∗pig
(3)
iqrs, (3.38)
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g
(5)
iqrs =

M∑
p=1

bpigpqrs (3.39)

in equation (3.30) are variants of the one- and two-particle integrals, which are
(partially) transformed to the time-dependent single-particle basis. hij and gijkl
denote the elements of the one- and two-particle integrals in the reference basis.
As already stated above, we need to use the one- and two-particle integrals in the
time-dependent single-particle basis to calculate the many-particle Hamiltonian.
These quantities are defined by the equations (3.35) and (3.38).

To obtain the equation for the expansion coefficient in the expansion of the
many-particle state (3.17), we calculate the derivative in equation (3.20) and obtain

0 = −i
∂Cn

∂t
+
∑
m

Cm 〈n| Ĥ − i
∂

∂t
|m〉 . (3.40)

The time derivative of the Slater determinants in equation (3.40) vanishes due to
condition (3.29), and we finally arrive at the wavefunction equation,

i
∂

∂t
C(t) = HC, (3.41)

in vector notation, which takes the same for as the CI equation (3.7). To sum up,
we have obtained the wavefunction equation,

i
∂

∂t
C(t) = HC, (3.42)

and the orbital equation,

iḃnk(t) = h
(1)
nk (t)− h(3)

nk (t) +
∑
pqrs

(
D−1

)
np
dpqrs

(
g

(3)
kqrs − g

(5)
kqrs

)
, (3.43)

as the fully discretized equations of motion for the MCTDHF scheme.

3.3.3 Limiting cases

As already mentioned, the Hartree-Fock method is a special case of the MCTDHF
method. We achieve this case, if the number of spin-up particles Nα and the
number of particles with spin-down Nβ is equal to the number of time-dependent
orbitals M , i.e., Nα = Nβ = M . In this case, the expansion (3.17) only consists of
a single Slater determinant and the orbital equations transform into the equations
of motion for the Hartree-Fock orbitals. The propagation of the wavefunction
equation is strictly not necessary, since the only coefficient in the expansion (3.17)
assumes the role of a total phase, which does not affect the physical meaning of
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the state. A commonly used choice is to the set the coefficient to 1 without loss of
generality.

What might be more surprising is the fact that the CI equation is also contained
in the MCTDHF equations as a special case. We can understand this, if we chose
M = Nb and consider the projector (3.27),

P̂ := 1̂−
M∑
m=1

|φm〉〈φm| . (3.44)

In this case, the basis {|φm〉} of time-dependent orbitals spans the same Hilbert
space as the reference basis {|ψk〉}, which especially means that

∑M
m=1 |φm〉〈φm| is

a representation of the identity operator 1̂ with regard to this space. As a result,
the projector P̂ vanishes and therewith the right-hand side of the orbital equation.
This means that the orbitals are invariant during the time evolution and we only
need to solve the wavefunction equation, which is same as the CI equation.

As a conclusion, MCTDHF handles—at least in theory—the entire range of
approximations from the mean-field description of Hartree-Fock to the exact
description of CI. The level of approximation can easily be adjusted by varying
the number of time-dependent orbitals M .

3.3.4 The FEDVR/spherical harmonic single-particle basis

To be able to perform numerical calculations, we need to choose a suitable single-
particle basis. In contrast to the analytic case, where the choice of a basis depends
solely on convenience, the proper choice of a basis is an important matter if we
truncate the basis expansion, since the structure of the depicted subspace depends
on this choice. If the wrong subspace is chosen in this way, the truncation error
might be too large to allow physically meaningful simulations. Furthermore, the
choice of basis influences the structure of the matrix elements, and thereby the
numerical complexity of the algorithms.

To avoid a high numerical complexity, one usually wants to use a preferably
small number of basis functions to represent a state. It is therefore a good idea to
use basis functions whose structure resembles that of the state. For this reason,
one might think that the bound eigenfunctions of the ideal atomic system are a
good choice for a basis set. Unfortunately, the answer is not that easy. While the
eigenfunctions describe the bound states quite well, we also need a good description
of the continuum, since we want to simulate ionization processes. And these states
are almost not covered by the bound eigenfunctions. One might argue that one
could add the unbound eigenfunctions of the ideal atomic system to the basis to
account for the continuum, but this choice would result in a significant numerical
complexity.
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While we have to discard the idea to use eigenfunction of the ideal atomic system,
we can reuse their general structure. Usually one represents the eigenfunctions of
an ideal atomic system as a tensor product,

|n〉 ⊗ |lm〉 , (3.45)

of a radial dimension |n〉 and an angular dimension |lm〉. This representation is
justified by certain rotational symmetries of the states. As we would not expect
that these symmetries are completely vanishing for the interacting atomic system,
it would be a good idea to reuse the angular part, while substituting the impeding
radial part with something more appropriate for a good representation of the
continuum states. The angular states, |lm〉, are the common eigenstates of the
angular momentum operators L̂2 and L̂z, i.e., they satisfy

L̂2 |lm〉 = l(l + 1) |lm〉 (3.46)

and
L̂z |lm〉 = m |lm〉 . (3.47)

For the radial dimension, we choose the so called finite element discrete variable
representation (FEDVR) basis. As the mathematical definition of the FEDVR
basis is rather complex and would go beyond the scope of this work, we will only
give a short qualitative description of the functional principle and the advantages
of this basis. A detailed discussion can be found in [20].

To construct the FEDVR basis, the spatial extent of the radial dimension is
divided into several disjunct elements. In each element several points are chosen
to form a grid which can be adapted to a certain application. In our case, we have
chosen the so called Gauss-Lobatto grid points. For this grid a set of orthogonal
polynomials is calculated in such a way that each grid point corresponds to a
sampling point during a Gaussian quadrature [22] with this polynomials. Therefore,
the FEDVR scheme acts as a bridge between basis expansions and traditional grid
methods. After each of these polynomials are normalized, they are used as a basis
within the respective element. To ensure the differentiability of the represented
state, the elements are connected by bridge functions. The relation of the grid
points and the basis functions is depicted in figure 3.2. The main advantage of the
FEDVR basis is that it is spatially localized, which has two major consequences.
First, the position operator, and therefore all functions of the position operator,
are diagonal, which makes calculations involving these quantities very cheap. For
example, the right-hand side of the MCTDHF equations scales linearly with the
number of FEDVR basis function Nrad due to this fact. The second consequence
is that we get a decent representation of the single-particle continuum.

Due to these advantages, the FEDVR/spherical harmonic basis was used during
this work in all calculations.
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Figure 3.2: Illustration of the FEDVR basis functions for a range of 100 a.u., that
is divided into three elements. The elements contain six, four and three
basis functions, respectively. The red dots mark the position of the
Gauss-Lobatto grid points.

3.3.5 Computational implementation

After we have discussed the theoretical background of the MCTDHF scheme in
the previous sections, we will now have a brief insight into the implementation and
the improvements, which were made during this work.

The implementation of MCTDHF, which was used throughout this work, is
named Kiel MCTDHF, or KMCTDHF for short, and is based on a previous version,
developed by Dr. David Hochstuhl. The entire application is written in C++
(according to the C++11 ISO standard). To solve the MCTDHF equation, the
application uses an implementation of the DOPR853 integrator, which is based
on the implementation in the Numerical recipes [22]. This implementation allows
us to use an adaptive step width, based on an error estimation algorithm, and
dense output, which can accelerate the propagation and eases the handling, since a
suitable step width is automatically chosen. The linear algebra operations, during
the calculation of the right-hand side of the MCTDHF equations, are performed
with the aid of routines from the linear algebra packages LAPACK, BLAS and
Eigen. The current code allows to evolve fermionic systems in time using different
basis sets. Before the time propagation is started, the ground state of the system
is calculated using the Imaginary Time Propagation (ITP) method. After the
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propagation is finished several observables, e.g. momentum, ionization yields and
different densities, can be calculated and written to an output file.

A considerable amount of the time during this work was spent on improvements
of the application, which were only enabling us to perform many of the calculations,
which are discussed in chapter 7. The following is a list of the most important
improvements in no particular order:

• A scheme for the prevention of stiffness during the propagation was developed
and implemented. This avoidance of stiffness is utterly necessary, since
the time propagation would otherwise freeze-up for large basis sets. The
application of this scheme gives us usually one or two orders of magnitude of
speedup. The scheme is discussed in detail in chapter 4.

• The calculation of the right-hand side of the MCTDHF equations was suc-
cessfully parallelized, which is discussed in detail in chapter 5. This has
allowed us the use the resources of the HLRN to speed up our calculations
about another order of magnitude.

• A simple checkpoint system was developed and integrated into the application.
The checkpoint system is able to store the current state of the application
persistently and to resume the execution from this point on at a later time.
This was used during this work to perform calculations, which exceed the
12 hours walltime limit of the HLRN. Unfortunately, the current checkpoint
system fails for large basis sets, since two much needs to be stored. This is
due to an inherent defect in the structure of the application and should be
addressed in future versions.

• The complex arithmetic, which is used throughout the program, was vector-
ized manually, which gives us a speedup of about 3 on modern processors.

• The hand-crafted binary output format, which was previously a persistent
source of difficulty, was substituted with a more stable one, which is based
on the established HDF5 format [23]. In addition, this results in an easier
and more versatile access to the stored data, and allows to access the data
through other languages, most notably Python.

• A proper build system, based on CMake, was created, which allows us to
build the application on different computers without the need to manually
reconfigure everything. Most notably, this allows us finally to properly build
the application on the HLRN.

• The instable time propagation module was rewritten from scratch. This issue
was also blocking the integration of the checkpoint system.
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• The dependency on the GNU Scientific Library was eliminated3. This was
done preemptively to avoid future problems, since the library does not seem
to be maintained anymore.

• A new user interface was introduced, which gives a much more fine-grained
access to several quantities.

In addition, many minor fixes and improvements were applied to the program during
this work. Together, all performance improvements produce a significant speedup
within the range 30 to 10000 and enable the subsequent complex simulations in
the first place.

While the application has been greatly improved during this work, there is much
to do for future versions. For example, the algorithms are not optimized for modern
processors and the execution of the algorithms is stalled due to heavy access of
the slow main memory. An optimization of the memory access pattern would
allow for another speedup of an order of magnitude. Another idea would be to use
accelerators, like CUDA-enabled GPUs, to speed up the execution.

3Thanks to the help of David Hochstuhl.
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In this chapter, we will devote ourself to the issue of stiffness which prevents to
apply the MCTDHF equations to complex systems. In the first part of the chapter,
we will discuss the root cause of the problem and then present several methods
which are commonly applied to this problem. In the second part, we will propose
a domain-specific solution for this problem and outline a possible implementation.

4.1 Introduction

During the course of this work, we observed that the step size, which was used
for the numerical integration of the MCTDHF equations, decreases, if we increase
the size of the used basis set. This phenomena is pictured in figure 4.1 for atomic
helium. Due to its simplicity, we will use helium as the test case throughout this
chapter, using the FEDVR/spherical harmonic basis for the numerical description.
The radial basis extends over a range of 100 a.u. divided into 25 finite elements.
The magnetic quantum number m is 0 for all basis functions throughout this
chapter. The entire system is always propagated over a time range of 150 a.u.
without any excitations. Since we did not change the physical system, this cannot
be a property of the solution and must be a result of the numerical description.
Such behavior, where the step size is determined by other factors rather than
the solution, are commonly known as stiffness [22] in computational science. To
illustrate the origin of the stiffness, we consider the time-dependent Schrödinger
equation

i
∂

∂t
|Ψ(t)〉 = Ĥ |Ψ(t)〉 (4.1)

with a time-independent Hamiltonian Ĥ. As commonly known, the solution of
(4.1) can always be written as an expansion

|Ψ(t)〉 =
∑
k

cke
i
~Ekt |Ek〉 (4.2)

of the state |Ψ(t)〉 into energy eigenstates |Ek〉 with some initial expansion coef-
ficients ck. In numerical calculations, all eigenstates are always at least weakly
occupied due to rounding errors, hence all eigenstates contribute to the solution.
Despite the low occupancy of eigenstates with large energy eigenvalues in physical
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Figure 4.1: Dependency of the step size on the number of DVR basis function per
finite element without stiffness reduction. The angular basis contains
spherical harmonics with azimuthal quantum numbers l up to 2.

systems due to the lack of strong enough excitations, the used integration algorithm
tries to resolve the highly-oscillating terms, which correspond to these eigenstates,
in the expansion (4.2). According to the Nyquist–Shannon sampling theorem the
maximal step size which can be used to resolve the oscillations is hmax ∝ 1

Emax
,

where Emax is the largest absolute value of any of the Ek. If this condition is not
satisfied, an explicit integration scheme would become numerical unstable. The
used integrator with adaptive step size, adjusts the step size accordingly to prevent
this instability. In the case that we increase the size of the basis set and keep all
physical parameters of the system constant, Emax starts to rise and the step size
has to be consequently decreased, resulting in the observed effect. In the following
we will examine several possible methods to prevent the effect of the stiffness.

4.2 Prior art

The natural approach to counter the numerical instability of explicit integrators
is the application of stable algorithms. Some implicit integration schemes, such
as implicit Runge-Kutta methods or BDF-integrators, are know to exhibit this
property by damping the occurring errors, instead of accumulating them [22]. The
common downside of these methods compared to explicit methods is that one

32



4.2 Prior art

needs to solve a system of equations in every integration step, which in the worst
case might be non-linear. In either case, commonly used implementations need to
calculate the Jacobian matrix

J :=

(
∂fi(x1, . . . , xn)

∂xj

)
(4.3)

of the system function f repeatedly during the integration process. For the
MCTDHF method, we expect that the evaluation of the Jacobian would the most
time consuming part of an implicit integration scheme. Therefore, we will focus on
the problem of its evaluation in the following.

One way to evaluate a Jacobian is the analytical calculation of the involved
derivatives and the subsequent implementation of the analytical expressions as
a part of the algorithm. While this method provides the exact Jacobian—up to
rounding errors during the evaluation—, it is also error-prone for complex systems
due to human involvement in the evaluation process. Even if the Jacobian is
implemented correctly during the first implementation, each subsequent change to
the system function needs to be carefully adapted and replicated in the Jacobian,
off-loading continuous, non-trivial maintenance burden onto the developer. Even
during the first implementation, the additional workload can be significant for
complex system functions, since in most cases the Jacobian is—implementation-
wise—at least as complex as the system function itself, which would at the minimum
double the effort. The textbook method to circumvent these problems is the
use of finite differences [22, 24], which approximate the derivatives numerically.
Since the evaluation of the finite differences requires the repeated evaluation of
the system function for different arguments only, most of the already available
implementation can be reused, making the implementation sufficiently cheap.
On the other hand, finite differences suffer from some well-known numerical
problems [24], precisely truncation errors and subtractive cancellation, which
might introduce a hardly controllable error source into the algorithm. In addition
highly accurate approximations often require the application of higher-order finite
differences, for which the system function needs to be evaluated more often, raising
the amount of needed computational resources. A scheme, which is frequently
used to calculate the Jacobian, while evading the aforementioned problems, is the
automatic differentiation [25,26], which combines the good numerical properties and
cheap evaluation of the analytical differentiation with the possibility to automatize
most of the implementation process. The downside of this method is that most
automatic differentiation software requires the annotation of the source code of the
system function or some other changes in the program. While the effort is much
smaller than the time spent during the implementation of the analytic approach,
this should be considered, if one chooses a method.

Even if we are able to theoretically calculate the Jacobian, we would need to
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populate all of its elements, scaling with the square of the number of variables.
For our purposes the number of elements is M · Nb, which ranges from a few
variables to several hundred thousands in typical simulations. The calculation of
each element would require to evaluate the system function at least once. Under
the consideration that the system function is by far the most expensive part of an
MCTHDF calculation, the runtime of the program would be greatly increased by
the application of an implicit method for more complicated systems. The increased
runtime usually limits the number of variables to the region of a few hundred to a
few thousand, depending on which integrator is applied. Since this restricts the
entire algorithm to simple systems, while greatly increasing the time spent on the
implementation, we consider this approach impractical for our purposes.

4.3 Energy subspace projection method

In this section, we will propose the Energy subspace projection (ESP) method as a
means to solve the stiffness issue at its root. The application of a domain-specific
scheme allows a much handier approach than more generic methods.

4.3.1 Introduction

To avoid the aforementioned problems of the generic methods described in the
previous section, we propose a domain-specific solution, the energy subspace
projection (ESP) method1, as a possible solution. The major advantage of such
an approach over a fully generic method is that one can tailor the scheme to the
specific structure of this domain, which often makes the solution more suitable.
As already shown in section 4.1, the root cause of the stiffness are the high energy
eigenvalues in the Hamiltonian. Since the corresponding expansion coefficients
are—due to their non-physical origin—small in the majority of cases, it is a valid
approximation to truncate the expansion (4.2) by discarding these coefficients.
This directly eliminates the highly-oscillating terms in Eq. (4.2). From a linear
algebra perspective, truncation is a projection onto the subspace spanned by the
energy eigenvectors with desired eigenvalues, hence the name of the method. To
our best knowledge, this is the first time that such a method was applied to a
quantum mechanical problem.

As a simplification, we will first develop the method by applying our idea to the
time-dependent Schrödinger equation

i
∂

∂t
c = Hc, (4.4)

1This method was developed in collaboration with Dr. David Hochstuhl.
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which was discretized using an arbitrary basis of sizeNb, before we try to incorporate
the scheme into the much more complex MCTDHF algorithm.

To proceed, we need to identify the spurious eigenvalues and their associated
coefficients. In the general case this would require a quite sophisticated scheme,
since one has to consider the occupation of the eigenstates, as we only can discard
the lowly occupied states safely. Since in practice all energy levels above a certain
threshold are lowly occupied, we decided to rely on the user to pick a suitable
energy threshold Ecutoff, hence known as cutoff energy, using his knowledge of the
physical system. While this method might ignore some of the spurious eigenvalues,
the implementation is greatly simplified by this choice and performs quite well for
all practical purposes. In what follows, it is assumed that the energy eigenvalues
are sorted in increasing order. In practice this is not an issue, since almost all
linear algebra tools already calculate the eigenvalues in this order. Due to the
order the cutoff energy directly corresponds to an index Nc for which the property

i ∈ [0, Nc] ⇐⇒ Ei < Ecutoff (4.5)

holds. It should be noted that we ignore the problem of negative eigenvalues with
a large absolute value at this point, as we will see in section 4.3.3 that this case is
difficult to handle and has barely any practical relevance. Using this cutoff index
Nc, one can now define the truncation matrix L̃, which reads

L̃ :=

(
1Nc×Nc 0

0 0

)
(4.6)

in block matrix representation. If applied to the coefficient vector c̃, the truncation
matrix precisely sets the spurious coefficients to zero, while preserving the desired
coefficients. Since the expression 1−L̃ will be used frequently below, it is convenient
to define it as the remainder matrix

R̃ := 1− L̃. (4.7)

Since we apply these matrices to quantities which are represented in our arbitrarily
chosen basis, we need to transform them back from the basis of energy eigenfunctions
into the chosen basis via their corresponding basis transformation V , which leads
to the expressions

L := V †L̃V (4.8)

and

R := V †R̃V . (4.9)

Using the identity

1 = L+R (4.10)
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the right-hand side of equation (4.4) can be rewritten as

H (L+R) c = HLc+ ρ(c) (4.11)

with a remainder term

ρ(c) = HRc. (4.12)

If we discard the remainder term in equation (4.11), we have already achieved our
goal to eliminate the spurious eigenvalues. The success of our approach can easily
be verified on the helium test system, as shown in the figures 4.2 and 4.3. As we
see, the average step size remains constant, even if we increase the size of the basis
set. The effect on the runtime is depicted in figures 4.4 and 4.5, which show that
we gain a significant speedup of over an order of magnitude for large basis sets
due to the reduced stiffness of the system. Figure 4.6 illustrates that the average
step size is actually proportional to the inverse maximal energy—which should
be roughly the cutoff energy—as already mentioned in section 4.1. The plateau
for small energies exists due to other effects like the real variation of the solution
which demands a certain step size. This value will be even larger if we increase
the size of the basis set further to treat more complex systems than helium. The
implementation of the algorithm which we used to produce this results is described
in section 4.3.3.

4.3.2 Error analysis

Since the ESP scheme is an approximate procedure, it is important that we have an
understanding of the circumstances under which we can apply this scheme without
compromising the accuracy of our calculations. The only additional error source
in the ESP method is the truncation, which is described by the remainder term
(4.12). Using any vector norm ‖.‖ and a corresponding compatible matrix norm,
we can deduce the following estimate for the truncation error,

ε(c) = ‖ρ(c)‖
= ‖HRc‖
≤ ‖H‖‖Rc‖
= ‖H‖‖V †R̃V c‖
= ‖H‖‖R̃c̃‖,

(4.13)

from the remainder term. The expression ‖R̃c̃‖ exposes that the error is solely
determined by the eliminated expansion coefficients. Therefore, the approximation
remains valid as long as all truncated eigenstates are only lowly occupied, as we
have already expected.
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Figure 4.2: Dependency of the step size on the number of DVR basis functions per
finite element with and without stiffness reduction. The angular basis
contains spherical harmonics with azimuthal quantum numbers l up to
2.
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Figure 4.3: Dependency of the step size on the maximal azimuthal quantum number
lmax with and without stiffness reduction. Each finite element contains
10 DVR basis functions.
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Figure 4.4: Dependency of the runtime on the number of DVR basis functions per
finite element with and without stiffness reduction. The angular basis
contains spherical harmonics with azimuthal quantum numbers l up to
2.
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Figure 4.5: Dependency of the runtime on the maximal azimuthal quantum number
lmax with and without stiffness reduction. Each finite element contains
10 DVR basis functions.
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Figure 4.6: Dependency of the step size on the inverse cutoff energy. The angular
basis contains spherical harmonics with azimuthal quantum numbers l
up to 4.

Error estimators like (4.13) are good to get an intuition for the error source and
are often necessary to develop more sophisticated schemes. Though, it is often not
viable to use them as a method to obtain the error in practice, since in most cases
not all quantities are known or are at least not feasible to calculate. Therefore,
it is necessary to perform empirical tests to explore the real error properties. We
have performed these tests for the helium test system using different metrics for
the induced error. The first metric used is the difference between the ground state
energy for some value of Ecutoff and the ground state energy in the exact limit
Ecutoff →∞. The dependency of this metric on the cutoff energy is shown in figure
4.7. We can see that the error remains small until the cutoff energy reaches the
energy 40 a.u., which roughly corresponds to the point after which higher occupied
energy eigenstates are purged. After this point, the error starts to rise rapidly as we
purge more and more occupied energy eigenstates. Since the maximal eigenvalue
of the Hamiltonian is usually significantly larger than 40 a.u., it is evident that
we can considerably reduce the stiffness without having to trade off accuracy for
performance. The L2 error

‖ |ψEcutoff
〉 − |ψ∞〉 ‖2 (4.14)

of the state at the end of the propagation, which we use as a second error metric,
shows a quite similar behavior, as we can deduce from figure 4.8. Another feature
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Figure 4.7: Error in the ground state energy in dependency of the cutoff energy
Ecutoff. Each finite element contains 15 DVR basis functions. The
angular basis is constructed from spherical harmonics with azimuthal
quantum numbers l up to 4.

shown in figure 4.8 is the comparison of the total error compared to the pure error
in the phase. It is evident that the error in the normalization can be neglected in
comparison to the error in the phase. The phase error was calculated by explicitly
normalizing the densities before the L2 error is calculated. While it is true that
we can ignore the normalization error in most cases, it should be noted that this
might not be true, if the propagation time is very long, since the normalization
decreases during every time step due to the truncation. In these cases, one should
account for the error by either explicitly normalizing the state or by taking into
account the error during the calculation of all observables.

4.3.3 Implementation

In this section, we will cover the more technical aspects of the ESP method, and
its application to the MCTDHF equations. While we will restrict the discussion to
the MCTDHF equations, some aspects of the implementation might be valuable
even for more general cases. Since the stiffness—at least in the MCTDHF scheme—
results from large eigenvalues in the single-particle Hamiltonian, we need to apply
the ESP scheme to the orbital equation. Although this equation does not exactly
have the form of (4.1), it is similar enough for a successful application. From a

40



4.3 Energy subspace projection method

0 20 40 60 80 100 120
cutoff energy Ecutoff

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

|| |
ψ
E

cu
to

ff

〉 − |
ψ
∞
〉||

2

normalization + phase error

phase error

Figure 4.8: L2 error of state at the end of the propagation with respect to the cutoff
energy Ecutoff. Each finite element contains 15 DVR basis functions.
The angular basis constructed from spherical harmonics with azimuthal
quantum numbers l up to 4.

practical point of view, it is convenient to apply the truncation matrix L either
to the Hamiltonian or to the orbital expansion coefficients. Since this would
simply result in a new Hamiltonian or new expansion coefficients, we can reuse the
existing code for the calculation of the right-hand side of the MCTDHF equations
in this case. We chose to apply the truncation matrix to the expansion coefficients
for two reasons. First, the Hamiltonian is time-dependent in many common
cases of use of the MCTDHF scheme. Therefore, we would need to reapply the
truncation matrix to the Hamiltonian in every time step, which encloses at least the
costly evaluation of one matrix-matrix product. Hence, we only recommend this
approach if the Hamiltonian is time-independent and we can reuse the evaluated
product. The second reason is the fact that the orbital equation does also contain
other terms apart from the one-particle contributions [20]. If we would apply the
truncation matrix solely to the single-particle Hamiltonian, we would introduce
an inconsistent approximation to the equation. In theory, one could apply the
scheme to all operators within the orbital equation consistently, but this is much
more demanding than the application to the expansion coefficients, since we
would need to evaluate complex tensor contractions. On the other hand, the
application of the truncation matrix on the expansion coefficients only involves
a cheap matrix-vector product and the approximation is consistently included in
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4 Stiffness reduction

every term automatically. Let bj be the expansion coefficient vector of the j-th
orbital, then the new coefficients read

b′j = Lbj . (4.15)

To speedup the computation of (4.15), we can exploit the structure of the
truncation matrix L. If we only discard a few eigenvalues, the truncation matrix in
the energy representation (4.6) has merely a few non-zero entries. After inserting
the definition (4.8) of L into equation (4.15), which results in the expression

b′j = V †L̃V bj , (4.16)

we can insert another L̃, obtaining

b′j = V †L̃L̃V bj . (4.17)

This is possible, because

L̃
2

= L̃ (4.18)

holds for the truncation matrix L̃. Applying the truncation matrix on one trans-
formation matrix each, we can rewrite (4.17) as

b′j =
(
V ′† (V ′bj

))
(4.19)

with
V ′ = L̃V . (4.20)

V ′ is an Nc×Nb matrix effectively, since most of the elements of V are set to zero
by L̃. If we apply this matrix to the coefficient vector according to the associativity
implied by (4.19) we can reduce the computational cost from N2

b to 2NcNb.
In the case of only a few discarded eigenvalues, we can apply a similar scheme

by substituting L using
L = 1−R (4.21)

and subsequently applying the same decomposition toR. This leads to the equation

b′j =
(

1− V ′′†V ′′
)
bj = bj −

(
V ′′† (V ′′bj

))
(4.22)

with
V ′′ = R̃V , (4.23)

which can be easily evaluated in a similar manner.
As already mentioned above, the handling of negative energies with large absolute

values was discarded to simplify the implementation, since such values never
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occurred during this work. The explanation for this phenomena is that the ground
state energy of the single-particle Hamiltonian provides—by definition—a lower
bound for all energy eigenvalues. A fast estimation for atomic systems shows that
the ground state energy lies within the energy range specified by typical cutoff
energies Ecutoff except for heavier atoms and ions. Using the absolute value of the
ground state energy of a hydrogen-like system

|E0| =
Z2

2
(4.24)

one arrives at the condition

|E0| =
Z2

2
≤ Ecutoff (4.25)

for allowed atomic numbers Z. The maximal value of Z, which satisfies (4.25) is

Zmax = b
√

2Ecutoffc. (4.26)

During most of this work a cutoff Ecutoff = 60 ≈ 1640 eV was chosen, which
corresponds to a maximal atomic number Zmax = 10. Since such large systems
are out of the scope of this work, we ignore this problem for now. Another point
which should be considered is that the negative energy levels are highly occupied,
if one starts from the ground state. Therefore, the ESP scheme—at least in its
current form—would not be applicable in this common case anyway.

4.4 Summary and extensions

In the preceding sections, we were able to pinpoint the origin of the stiffness and
developed a scheme, which is able to eliminate the stiffness, while avoiding the
high costs of implicit integration methods. In addition, we were able to show that
the truncation error introduced by this scheme can be neglected for most practical
purposes if the threshold for the truncation is chosen accordingly. To conclude
this chapter, we give some possible extensions, which might enhance the scope or
increase the practicality of the method in different situations:

• While we decided to use a quite simple scheme to select the eliminated
eigenvalues, one could imagine more sophisticated methods. For example, one
could use the error estimator, which was presented in 4.3.2, to incrementally
purge energy eigenfunctions, from the lowest occupied to the highest occupied,
as long as a user-specified error bound is undershot. This would allow the
application of the method to systems with strongly changing occupations
over a large region of energies or systems where the spurious eigenvalues are
positioned between desired ones.
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4 Stiffness reduction

• Another improvement would be the restriction of the projector to a specific
subspace. This can be important for large Hilbert spaces, if the spurious
eigenvalues are only originating from a very small subspace. Therefore, it
would be a waste of computational resource, to apply the scheme to the entire
Hilbert space. A classic example is the description of atomic systems with
localized basis sets, where the basis function lie very dense in the small core
region. On the other hand, the basis functions in the larger outer part of the
space lie relatively sparse and do not contribute to the stiffness, while spanning
the largest part of the Hilbert space. An experimental implementation of
this feature shows very promising results for such systems.
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In this chapter, we will outline a possible parallelization scheme for the MCTDHF
equations and introduce the necessary tools to explore its characteristics. In
the last part of this chapter, we will perform such a survey and will discuss the
consequences.

5.1 Motivation

While the ESP method described in chapter 4 tries to accelerate the MCTDHF
scheme by improving the algorithm, a much more direct approach to accelerate
the application would be the use of more computational resources in the form
of parallelization. Due to the fact that virtually every modern computer has
several processing units, parallelization is getting more and more important—even
outside of the traditional high-performance computing (HPC) field—, since a
serial program would waste valuable resources. As most cluster computers are
distributed-memory systems—including our main cluster, the HLRN—we will focus
on this kind of parallelization. While we can only give a short introduction into
the field of parallelization due to spatial and temporal constrains, we deem the
results too important to be ignored.

5.2 The algorithm

During this work, we have implemented a parallelization scheme1 for distributed-
memory clusters using the well-known Message Passing Interface (MPI). The basic
idea of the scheme is the parallel calculation of all two-particle quantities during a
time step. This is possible since all two-particle are 4-tensors of the form Apqrs
and computations regarding different values of the multi-index (rs) are completely
independent of each other. Hence, we can trivially distribute the work over all
processes, by splitting the computation of all tensors over the multi-index (rs). The
only common dependency of all computations is the current state, which can be
easily distributed to all processes at the beginning of a time step. To perform the
computations, the set of processes is divided into a master process which controls
the execution of all code and several worker processes which only perform parallel

1This scheme was developed in collaboration with Dr. David Hochstuhl.
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computations. During the execution of a parallelized region of code, the master
node behaves in the same way as a worker node. The application of this scheme
leads to the following steps, which are performed during each time step:

1. Broadcast the current state from the master process to all worker processes.

2. Calculate all single-particle quantities within the master process.

3. Transform the electron integrals partially within every process in parallel.

4. Calculate the two-particle contributions of the orbital and wavefunction
equation partially within every process in parallel.

5. Reduce all partially calculated two-particle contributions within the master
process. This yields the full two-particle contributions.

6. Combine the one-particle and two-particle contributions.

After the last step, the MCTDHF equations are integrated within the master
process and the algorithm starts again at the first step.

5.3 Performance metrics

Since we cannot observe the behavior of a parallelized application in real time, we
need metrics which allow us to perform a post-mortem analysis of the algorithm. In
the following sections, we will present some metrics, which are commonly applied
during the empirical analysis of parallel algorithms. An ubiquitous quantity in
these calculations is the speedup

S(n, p) :=
T (n, p)

T (n, 1)
, (5.1)

which is defined as the ratio of the runtime T (n, p) of the algorithm for a given
problem size n on p processors and the runtime T (n, 1) of the algorithm for the
same size on one processor.

5.3.1 Strong scaling and Amdahl’s law

One of the first proposed use cases for parallel algorithms was the reduction
of the runtime, which was needed to solve a given problem by applying more
computational resources. The property of an algorithm which is coupled with this
use case is the so called strong scaling behavior. Strong scaling behavior is defined
as the behavior of S(n, p) regarding p for n = const. That a good strong scaling
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behavior is not a goal which can be easily achieved gets evident if one examines
Amdahl’s law [27]

S(n, p) ≤ 1

f(n) + 1−f(n)
p

, (5.2)

a model for the strong scaling behavior of parallel algorithms proposed by Amdahl
in 1967. Here f(n) denotes the inherently serial fraction of the sequential program.
For a large number of processors—which is the interesting use case for parallel
algorithms— the right-hand side of equation (5.2) behaves almost like 1

f as a

function of the serial fraction. Due to the sharp slope of 1
f around f = 0, even a

slight increase in the serial fraction will restrict the speedup to a very small value.
Hence it is a very demanding task to apply this approach to most problems, except
for the most simple ones.

5.3.2 Weak scaling and Gustafson’s law

To counter the problems, which are implied by Amdahl’s law, Gustafson proposed
a different point of view on parallel algorithms in 1988 [28]. His argument is that
in most use cases the problem size is not restricted by external means, therefore we
could increase the problem size, while we apply more resources to keep the time,
which is needed to solve the problem, constant. This leads to the notion of the
weak scaling behavior which is defined as the behavior of S(n, p) regarding p for

some problem size n(p) satisfying n(p)
p = const. The weak scaling behavior of a

parallel algorithm can be modeled by Gustafson’s law,

S(n, p) ≤ p+ s(n, p)(1− p), (5.3)

where s(n, p) denotes the serial fraction of the parallel algorithm. Due to the
linear slope of the right-hand side of equation (5.3), Gustafson’s law is much more
forgiving in comparison to Amdahl’s law if we introduce serial parts into a parallel
algorithm. Due to this fact, this approach to parallelism seems very promising to
us. Since we can always increase the size of our basis sets to get a more accurate
description or to simulate more complex system we should always be able to use
this approach.

5.3.3 Karp-Flatt metric

Since both Amdahl’s law and Gustafson’s law do not include effects due to parallel
overhead, Karp and Flatt proposed the Karp-Flatt metric [29]

e(n, p) =

1
S(n,p) −

1
p

1− 1
p

(5.4)

an empirical metric for the serial fraction which can be used to expose such effects.
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Figure 5.1: Comparison of the speedups for the test system with the ideal speedup
with and without the application of the ESP scheme. The algorithm
was executed in a weak scaling fashion.

5.4 Performance measurements

To test the behavior of our implementation on a real system, we used atomic
helium as a test system. The ground state was propagated over 100 a.u. without
any excitation. The FEDVR/spherical harmonics basis was used for the numerical
description of the system. The radial basis extends over a range of 400 a.u. and is
divided into 80 finite elements. Each finite element contains 15 DVR basis functions.
The maximal azimuthal quantum number of the angular basis is lmax = 2, while
all angular basis functions have a magnetic quantum number of m = 0. The
calculations were carried out on the ice2-queue of the Norddeutscher Verbund für
Hoch- und Höchstleistungsrechnen (HLRN). To examine the weak scaling behavior,
we chose the number of processors as P = n2 = M2.

Image 5.1 shows the weak scaling behavior of the algorithm, with and without
the ESP scheme, in comparison to the ideal behavior. We can observe that the
scaling behavior of our parallelization scheme is by no means ideal, even if we
see a reasonable amount of speedup. It is evident that application of the ESP
scheme during the propagation, changes the scaling behavior of the MCTDHF
scheme. To understand this, we look at the serial fraction of the algorithm, which
was calculated with the Karp-Flatt metric (5.4). The serial fraction is shown in
figure 5.2 as a function of the number of processors. We observe that the serial

48



5.4 Performance measurements

0 50 100 150 200 250
number of processors P

0.0

0.2

0.4

0.6

0.8

1.0

(p
a
ra

ll
el

) 
se

ri
a
l 
fr

a
ct

io
n

with ESP

without ESP

ESP (parallel algorithm)

without ESP (parallel algorithm)

Figure 5.2: (Parallel) serial fraction of the (parallel) algorithm in dependency of the
number of processors for the test system. All quantities were computed
from the speedups shown in figure 5.1.

fraction is almost zero, if we do not apply the ESP scheme, but starts at a larger
value otherwise. This explains the inferior results, when using the ESP scheme
in addition to the parallelization, as we spend more time in a non-parallelized
portion of the algorithm. The decay of the serial fraction can be explained if
we compare the asymptotical runtime of the ESP scheme with the asymptotical
runtime of the parallelized portion. The calculation of the two-particle quantities
lies in O(M2), whereas the EPS scheme lies in O(M). Hence, the ration between
the time spent in the serial EPS algorithm and the time spent on the parallel
calculation of two particle quantities drops with the number of orbitals M , and
thereby with the number of processors P . This also explains the huge jump in
the speedup for a large number of processors which we see in figure 5.1. Another
feature of the algorithm is depicted in figure 5.2. We note that the serial fraction
of the parallel algorithm—which was obtained using Eq. (5.3) and denoted as the
parallel serial fraction—is roughly constant, even if the ESP scheme is not applied.
The difference between the parallel serial fraction and the serial fraction is that
the parallel serial fraction is calculated from an actual parallel run of the program,
while the serial fraction is calculated with regard to a serial run. This shows us
that the poor scaling in this case is caused by the remaining serial portions of the
algorithm, which are identical to the calculation of the single-particle contributions.
If we would parallelize these parts, we should observe a significant enhancement of
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the scaling behavior.

5.5 Summary

In the previous section, we have observed that we have successfully parallelized the
MCTDHF program. While the obtained speedups are by no means optimal, due
to the mentioned reasons, it is a success from a practical point of view. Due to the
reduced runtime, we were able to treat much more complex system with increased
accuracy. We hope to circumvent the causes of the mentioned shortcomings in the
future by using a more elaborate parallelization scheme.
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In this chapter, we will characterize the computer experiment which we will perform
later by using the MCTDHF method. First, we will discuss the choice of beryllium
as a test system and then give a description of several possible photo-ionization
processes at the example of this atom. In the last part of the chapter, we will
introduce the pump-probe scheme and detail the measurement procedures.

6.1 The system and processes

We have chosen beryllium as our test system, as it is the first atom with more than
two electrons, in which all energy level are fully occupied making the theoretical
description much easier. Since it has four electrons, much more complex and
interesting processes can occur as compared to for example helium. As we have to
simulate four electrons, the numerical effort is increased by orders of magnitude
with regard to smaller systems. In addition, we need a large radial extension and
a very accurate grid to describe the photo-ionization processes, which we want
to simulate in the following, correctly. To our best knowledge, we are one of the
first groups, which have simulated beryllium with all four electrons, while previous
calculations have either frozen the core or the valence electrons [8, 9]. The only
other work in this direction, which we have found during this work, was done
by Saha and Caldwell [11]. Before we will discuss several possible processes, we
should note that we cannot describe these processes using single-particle orbitals,
as these are meaningless in the correlated case due to the use of more than one
Slater determinant to represent the state. Nevertheless, we will use this primitive
single-particle picture as a simple model to describe these processes qualitatively,
as the description in the many-particle picture is very tedious and not intuitive.
It is also a common convention to label many-particles states with the leading
configuration.

The simplest photo-ionization process is the so called direct ionization, during
which an electron is brought into the continuum by absorbing a single photon
without the involvement of other electrons in the process. Since only one electron
is active during the process, it is even included in the Hartree-Fock approximation.
The first process, which we will discuss and which requires correlations, is the
shake-up ionization. During a shake-up two electron absorb a single photon, which
is only possible due to the correlations between the two particles, and one of them
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is ionized. The other electron is excited to another bound state. Since the two
electrons share the energy of the photon, the kinetic energy of the ionized photon
must be lower with regard to the direct ionization process with the same photon
energy due to energy conservation, which can be measured during an experiment.
The energy difference between an ionized electron which originates from the direct
ionization process and the electron which was ionized during the shake-up process is
equal to the excitation energy of the other electron. A process which is conceptional
similar to the shake-up process is the one-photon double ionization. Again, two
electrons absorb a single photon on account of the correlations. The only difference
to the shake-up process is that the energy of the photon is large enough to ionize
both electrons. Hence, one could view this process as a special case of the shake-up
process, in which the excited state is a continuum state. The last process, which
we will discuss now, is the Auger decay. Before the Auger decay occurs, a core
electron is ionized, for example by direct ionization, which leaves a hole at its
former position. Due to correlations between the remaining electrons, a state with
a higher energy can decay after a certain time and the electron, which has occupied
this state, fills the core hole. Since the new core electron has now a lower energy,
the excess energy has to be redistributed to other parts of the system. One possible
outcome of this redistribution is that another electron is ionized by using the excess
energy. Figure 6.1 also depicts these processes graphically in the single particle
picture. From all these processes we have chosen the investigation the shake-up
process in detail, since it is the easiest process, which involves correlations. The
big obstacle, which discourages us from investigation of the one-photon double
ionization or the Auger decay, which would be also appealing, is the fact that
these processes emit two electrons into the continuum. As we will see later, the
representation of a decent two-particle continuum is a quite tough task. Hence,
the shake-up process is more appealing as a first test case.

Since we want to generate time-resolved results, we need a method to create
these. One possibility is the pump-probe scheme. During the application of this
scheme the system is excited by using a laser pulse, the so called pump pulse. If
the system was previously in the ground state, this essentially starts a non-trivial
time evolution and defines a reference time. Afterwards the excited system is
exposed to a second pulse, the probe pulse, after a certain time delay τ . The only
purpose of the probe pulse is to project the occupation of all energy levels within
the atom into the continuum where we can measure it. The theoretical justification
for this scheme is Fermi’s golden rule, which qualitatively states in this case that
the occupation of the final continuum state is proportional to the occupation of the
initial state, if a weak electro-magnetic dipole field is used for the excitation. Fermi’s
golden rule also states that the energy difference is proportional to the frequency of
the pump pulse. Hence, we can calculate the energy of the atomic energy level by
measuring the energy of the continuum electron. By performing this experiment
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repeatedly for different time delays τ , we can probe the occupation within the
atom at different time points, which should differ due to the previous excitation.
If we append all these measurements in chronological order, we effectively get a
movie about the time evolution of the occupation within the atom.

The figures 6.1 and 6.2 illustrate the pump-probe scheme in the single-particle
picture for the example of beryllium. A photon with the energy ω is absorbed by
the 2s electrons, which are either brought into the continuum by direct ionization
or shake-up ionization. To describe the shake-up in this model, we need to assume
that two independent electron can absorb a single photon. This is normally only
possible if both electrons are correlated. During the shake-up process, the other 2s
electron is excited to the 3p level in this example, which lies above the 2s level
by an energy ∆E. The energy of the ionized electron is reduced by this energy,
which results in the energy difference ∆E with regard to the direct ionization
process. After one of the 2s electrons is either ionized by direct ionization or by
shake-up ionization, the probe pulse hits the system after a certain time. During
the shake-up process the other 2s electron was excited to the 3p level. The probe
pulse can now ionize the new 3p electron by direct ionization. Since the 3p level
lies above the 2s level by an energy of ∆E, one observes the ionized electron with
an about ∆E higher kinetic energy. This results in an energy spectrum with three
peaks, which are displaced by the energy difference ∆E. During this work, we
have used pulses of the form

E(t) := E0 sin(ωt)

{
sin
(
π t−t0σ

)2
t ∈ [0, σ]

0 otherwise
. (6.1)

The peak intensity I0 from which the amplitude E0 is calculated is fixed to 1013 W
cm2 .

6.2 Quantities and measurement procedures

After we have introduces the pump-probe scheme, we will now detail the examined
quantities and the necessary measurement procedures.

One quantity, in which we are interested, is the single-ionization yield. Effectively,
the single-ionization yield is the probability that we observe at least one electron
outside of the atom. The outer zone of the atom is defined by a previously specified
ionization radius R. This leads to the formal definition of the single-ionization
yield operator

Î1 :=

∫ ∞
R

dr |r〉〈r| , (6.2)

which is essentially the projector onto the exterior of the atomic system. The {|r〉}
are the eigenstates of the radial part of the position operator. In a similar manner,
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(a)
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ω

Figure 6.1: Illustrations of several ionization processes, which are possible for
beryllium, in the single-particle picture. The processes depicted here
are the direct ionization (a), the one-photon double ionization (b), the
shake-up ionization (c) and the auger decay (d).
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Figure 6.2: A beryllium atom during the pump pulse in the single-particle picture.
The direct ionization and the shake-up ionization (green) are depicted
as possible processes.
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Figure 6.3: A beryllium atom during the probe pulse in the single-particle picture,
after a 2s electron is either ionized by direct ionization or by shake-
up ionization (green). The graph in the top right corner depicts the
resulting energy spectrum.
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one can define the operator for the double-ionization yield

Î2 :=

∫ ∞
R

dr

∫ ∞
R

dr′ |r〉
∣∣r′〉 〈r′∣∣ 〈r| , (6.3)

which measures the probability to observe at least two electrons in the exterior
of the atom. Care must be taken if one uses this definition, since the product
structure of these projectors implies that the electrons must be neither correlated
with the ion, nor with any other ionized electron. If this is a valid assumption
is the topic of ongoing discussions within the community [30–32]. After we have
defined these operators, we can calculated their expectation values using the second
quantization formalism, introduced in section 2.3.2.

The other quantity, which we will use below, is the kinetic energy density,
which is defined as the probability (density) with which a certain kinetic energy
is occupied by an electron. Since we are only interested in electrons within the
exterior of the atom, we apply the projector (6.2) to the many-particle state and
calculate the expectation value of the projectors onto the momentum eigenstates
|p〉〈p|. This leads to the momentum density

ρ(p) := 〈Ψ| Î1 |p〉〈p| Î1 |Ψ〉 (6.4)

for a state |Ψ〉. Afterwards we can use the energy dispersion relation of a free
particle,

Ekin =
p2

2
, (6.5)

under the assumption that the particle is indeed free to perform a variable trans-
formation and obtain the kinetic energy spectrum. The validity of the assumption
is guaranteed by the projector Î1, if we have chosen a proper ionization radius R.
During this work, we have used an ionization radius of R = 40 a.u., which seems
to give consistent results. Again, this quantity is only meaningful if there are no
correlations between the ionized electron and the ion.
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In this chapter, we will discuss the numerical results which were obtained by using
the MCTDHF scheme. In the first part, we will investigate the ground state of
beryllium and the convergence behavior of the MCTDHF calculations with regard
to the angular basis. Afterwards, we will the properties of the photo-ionization
processes based in the pump-probe spectrum and the ionization yield which were
obtained from time-dependent calculations. In the last part, we will examine the
spatial structure of the emitted density.

7.1 The beryllium ground state

As a first test, we will calculate the ground state energy of beryllium for different
numbers of orbitals M . Since the bound density is contained in a small region
by the Coulomb potential, we can afford to use a small radial grid of 30 atomic
units for these calculations. The radial dimension is divided into 10 elements, each
containing 20 FEDVR basis functions. The number of angular basis functions is
adjusted to assure the convergence of the results. These are summarized in table
7.1. In addition the amount of correlation, which is covered by the MCTDHF
approximation, with regard to the exact ground state energy of Eexact

0 = −14.667
Ha [33] was calculated. We observe that the amount of correlations rises rapidly
in the range M ∈ [2, 7]. After M = 7, the convergence slows down, and after
M = 10 the amount of correlation reaches a value of roughly 90 % and is almost
constant. This behavior can be easily deduced from figure 7.1. The rapid increase
of the covered correlations is an indicator that the MCTDHF method is able to
accurately describe the ground state including correlation effects using only a small
number of orbitals, and therefore Slater determinants. If we would have used
CI instead, we would have needed to perform calculations with several thousand
orbitals and a corresponding number of Slater determinants, which would have
made the simulations much more challenging.

Another important observation is that we need to gradually increase the angular
basis set to ensure the convergence of the results. This indicates that the angular
structure of the ground state gets much more complex through the correlations
in comparison to the Hartree-Fock ground state. This also means that we will
need much more computational resources for a larger number of orbitals. Due
to the need for such a large single-particle basis, the performance improvements
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lmax mmax M E0[eV] correlations (%)

2 1 2 −14.573 0
3 −14.587 15
4 −14.605 34
5 −14.612 41
6 −14.619 49
7 −14.634 65

3 2 8 −14.646 78
9 −14.653 85
10 −14.655 87
11 −14.656 88
12 −14.657 89
13 −14.657 89

4 3 14 −14.658 90
15 −14.658 90
16 −14.659 91

Table 7.1: Ground state energy of beryllium and the amount of covered correlations
for different numbers of orbitals M . The maximal azimuthal quantum
number and the maximal magnetic quantum number are adjusted to
assure the convergence of the energy if necessary.
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Figure 7.1: Percentage of the correlations which is covered by the MCTDHF approx-
imation with regard to the exact ground state energy. The dashed lines
mark the numbers of orbitals at which the angular basis is enlarged.

during this work become essential, since we could not perform these calculations
otherwise. Especially, the stiffness reduction is important as the integration would
be seriously impaired without it for these basis sets.

7.2 Convergence regarding the angular basis

To estimate the impact of the need for an increased basis if one uses a larger
number of orbitals onto the photo-ionization, we investigate the relative error of
the single-ionization yield with respect to the most accurate result in dependence of
the size of the angular basis. As a test system we use beryllium with a radial extent
of 200 a.u.. The radial dimension is divided into 64 elements with 20 basis functions
in the first three elements and 10 basis functions otherwise. From our experience,
these are enough basis functions to obtain accurate results. The parameters for the
electric field are most likely not relevant in this case, since we are only interested
in the qualitative behavior.

In the case of Hartree-Fock, which is depicted in figure 7.2, one obtains the
expected results. If we only use a single angular basis function with quantum
numbers l = 0 and m = 0, we get a relative error of one, as the result would already
be wrong in the case of an ideal atom due to the occurrence of a p - electron in
the continuum. For all other cases the error essentially vanishes, which means that
the state in Hartree-Fock approximation is almost radial symmetric and a single
additional angular basis function with l = 1 is sufficient to describe the system
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Figure 7.2: Dependency of the relative error of the single-ionization yield on the
size of the angular basis for Hartee-Fock. The reference value is the
most accurate value, i.e., the value for the largest angular basis.

accurately.

If we proceed to a simulation of the same system with seven orbitals and compare
the error bars in figure 7.3 with those for Hartree-Fock, the results do not look
as promising anymore. In contrast to the Hartree-Fock results, the error does
not vanish for a set of only two angular basis functions, but we need to increase
the maximal azimuthal quantum number and the maximal magnetic quantum
number at the same time, which is consistent with our results from the ground
state calculations and therefore not that bad. Unfortunately, the error increases
for example at the position mmax = 3 and lmax = 4 and decreases again for a larger
basis, which means that the convergence with regard to the angular basis is not
monotone. This has far-reaching consequences, since a monotonic behavior would
allow us to safely truncate the basis expansion once the error is sufficiently small.
But in the case of a non-monotonic behavior we cannot do this without the danger
that the error has another peak for an even larger basis.

One possibility to solve this problem would be to use another angular basis, for
example an angular DVR basis, which might converge monotonically. Another
origin of this error might be the length gauge, as the gauge can influence the
convergence behavior of the basis. If this would be true, one could try to use
another gauge, e.g., the velocity gauge, to circumvent the problem.
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Figure 7.3: Dependency of the relative error of the single-ionization yield on the
size of the angular basis for M = 7. The reference value is the most
accurate value, i.e., the value for the largest angular basis.

7.3 Pump-Probe spectrum

After we have investigated the convergence of the solution in the last section, we
will get to the time-resolved investigation of the shake-up process in beryllium.
For that, we have used a radial FEDVR grid with an extent of 500 a.u., which is
divided into 160 elements. Again, 20 basis functions are used for the first three
elements. All other elements are constructed from 13 basis functions. The maximal
azimuthal quantum number was 3 and the maximal magnetic quantum number
was 1. A pulse with a frequency of 200 eV and a duration of 2.4 fs is used to excite
the beryllium atom.

From the graphically depicted spectrum in figure 7.4, we can deduce that
Hartree-Fock is able to successfully describe the direct ionization processes almost
exactly, as can be seen from the comparison with the exact lines from the NIST
database [34]. Only the energy of the 1s2s2 state is a little bit off, which can be
explained by missing contributions to the correlation energy. If we increase the
number of time-dependent orbitals to 6, the spectrum gains an additional feature
in the form of another peak at the left slope of the 1s22s direct ionization peak.
By comparing the energy value with the exact spectrum from the NIST database,
we can identify this peak as a result from the shake-up of the ion to the 1s22p
state. As expected, this process cannot be described by Hartree-Fock as it requires
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Figure 7.4: Kinetic energy spectrum of the continuum electron after the pump
pulse for different MCTDHF approximations. The dashed lines mark
the exact values of some spectral lines, which are taken from the NIST
database [34].

correlations. Even as a stand-alone result, this is quite impressing, as we were able
to simulate a correlated process with only a few time-dependent orbitals, which
again shows the benefits of MCTDHF.

After the system was excited during the pump pulse, we expose the system to
a probe pulse after a delay of 1.2 fs. The pulse was untuned, using an energy of
250 eV, to avoid an interference with the pump pulse. To counteract the increased
propagation time of 3.6 fs, we enlarge the grid to 700 a.u. with 220 elements. This
essentially duplicates the pump spectrum, except for a displacement of 50 eV due
to the untuned second pulse, as can be seen from figure 7.5 for M = 6. What
we would not have expected is that the structure is exactly reproduced, since an
additional peak should occur at the other side of the 2s direct ionization peak due
to the previous excitation of one 2s electron, as explained in section 6.1. From
further investigations, which we have done during this work, we have deduced that
this seems to be caused by a poor description of the two-particle continuum, as
the representation of correlations seems to be very good. This is indicated by the
successful simulation of the shake-up process during the pump pulse. This effect
might be caused by the low occupation of the continuum states in comparison to
the bound states of the atom. It is reasonable that the MCTDHF algorithm might
discard these small contributions in favor of a good description of the bound states.
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Figure 7.5: Kinetic energy spectrum of the continuum electrons after the probe
pulse for M = 6. Before, the system was excited by a pump pulse with
a delay of 1.2 fs between both pulses.

It is also plausible, why the single-particle continuum is not effected that much, as
the structure of the two-electron continuum is much more complex. In theory, we
might not observe the additional peak, because the delay was too short for the
process to occur, but this is highly unlikely as the time range of 1.2 fs is much
larger than the usual process time of similar processes.

7.4 Ionization yields

To verify the assumption that the two-electron continuum is not represented well,
we will compare the single-ionization yield with the double-ionization yield, since
previous calculations for helium [10] have shown that a similar problem occurs for
the double-ionization yield. To perform the calculations, we have used a radial
grid with an extension of 400 a.u., that is divided into 128 elements. Again, the
number of basis functions within the first three elements is 20. A number of 10
basis functions is used to construct all other elements. The maximal azimuthal
quantum number was 4 and the maximal magnetic quantum number was 3. The
system was excited by a pulse with varying frequencies and a fixed duration of 2.4
fs.

The single-ionization yield, shown in figure 7.6, exhibits the expected qualitative
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behavior. For low photon energies in the range from 50 eV to 100 eV, only the 2s
electrons are ionized, since the photon energy is too low to allow an ionization of
the core electrons, and the single-ionization yield decreases monotonically. The
decrease is easily explained by the consideration that the binding energy of the
2s electrons becomes neglectable for large photon energies. This means, that the
photon is essentially a free particle and a free particle cannot absorb a photon,
since this would either violate the conservation of energy or the conservation of
momentum. Therefore, it is less likely that an electron is ionized. At approximately
117 eV, a resonance occurs, i.e., two different processes interfere constructively.
After a comparison with the atomic spectrum in the NIST database [34] we have
identified this resonance, as an interference effect between the direct ionization of
an 2s electron and the excitation of the atom to the 1s2s22p state. This effect is
even slightly reproduced by the Hartree-Fock approximation, since both interfering
processes do not require correlations, even so the effect is underestimated by the
mean-field approximation. At 123.35 eV we reach the ionization threshold for the
1s electrons and shortly after that the single-ionization yield rapidly increases.
That the increase does not occur directly after we passed the threshold is caused
by the portion of the correlation energy which is not included into this MCTDHF
approximation. As one can observe, the simulation withM = 6 shifts the occurrence
of this increase into the correct direction, and one would expect that this trend
is continued for larger numbers of orbitals until the position of the threshold is
reached.

While the behavior of the single-ionization yield is sensible, the behavior of the
double-ionization yield, depicted in figure 7.7, is not, as it shows essentially the
same behavior. This seems to be wrong, as one would expect an increase of the
double-ionization yield with higher photon energies due to a larger number of
possibilities to ionize two electrons. We would expect that the behavior of both
ionization yields is essentially identical for Hartree-Fock, since the double-ionization
yield is proportional to the single-ionization yield squared. This is caused by the
ansatz of the Hartree-Fock state as an anti-symmetrized tensor product. As the
M = 6 MCTDHF approximation behaves in a similar manner, we deduce that this
is also caused by the product ansatz of the configurations. It seems that the few
determiants which are used to represent the many-particle state are not sufficient
to overcome this structure within the continuum. This is most likely the root cause
of the insufficient two-electron continuum. Since we used an even larger angular
basis, this does not seem to be an issue.

The identification of this important problem is one of the major results of this
work, since it inhibits the simulation of any two-particle ionization processes, if it
is not solved. This includes important methods for time-resolved measurements,
like pump-probe or streaking, and many interesting, and commonly investigated,
processes, like Auger decay and one-photon double ionization. To overcome this
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Figure 7.6: Single-ionization yield of beryllium for different MCTDHF approxi-
mations. The dashed black lines mark the positions of the resonance
and the 2s ionization threshold, which were extracted from the NIST
database [34].

problem seems to be a rather complicated task, since we have tried several promising
schemes during this work to solve or at least circumvent this problem without
any success. For example, one ansatz was to deduce the time-dependency of the
occupations directly from the ion [35], which fails as the decomposition of the
time-dependent state into two non-correlated systems is not unique, even if the
correlations between the two systems have vanished during the ionization process.
Similar theoretical or practical problems inhibit the use of other schemes. While
there are other methods which we want to investigate in the future, these are very
complicated and would go beyond the scope of this work. We will give a brief
description of these methods in chapter 8.

7.5 Spatial structure of the emitted density

As we have already observed that the angular structure gets more complicated for
an increasing number of orbitals, it would be interesting to investigate this changed
structure. This can be done by examining the density of the emitted electrons. We
have done this for a radial grid with an extent of 200 a.u. that is divided into 64
elements with the already used configuration of 20 basis functions within the first
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Figure 7.7: Double ionization of beryllium for different MCTDHF approximations.

three elements and 10 in all others. The maximal azimuthal quantum number was
3 and the maximal magnetic quantum number was 2. The system was excited by
a pulse with a frequency of 50 eV and a duration of 2.4 fs. Therefore, we can only
ionize the 2s electrons.

The isosurfaces of the single-particle density for a value of 10−10 for Hartree-Fock
and M = 6 are shown in figure 7.8. On can observe that the Hartree-Fock density
has a rotational symmetry with regard to the z-axis, if one would rotate the
plot. This is already known for the ideal system. At the same time, the density
for M = 6 has no rotational symmetry, as we have expected from our previous
observations, but is contorted within the direction of the x-axis into a bean-like
shape. No density is emitted within the x-y plane since we use a pulse, which is
linearly polarized in z-direction, and therefore does not act in this direction.

A possible explanation for this effect is that particles that are not emitted
directly into the z-direction receive an attractive force from the core, which can be
modeled as an additional core charge. In this case their classical trajectories might
be modified in such a way that the particles enter the previously forbidden region.
We have done simulations which use this model and depicted them graphically
in figure 7.9. As we can see, the Hartree-Fock results of the modified system
match the contour lines of the M = 6 results almost exactly for the direction
which deviate heavily from the z-axis, while the results within this direction are
described very well by the original Hartree-Fock calculations, which indicates an
angular dependency of this effect. The additional charge could be generated by
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7.5 Spatial structure of the emitted density

Figure 7.8: Isosurfaces of the single-particle density for a value of 10−10 for an
excited beryllium system. for Hartree-Fock (red) and M = 6 (yellow).

a polarization of the atomic density due to correlations, which is sensible as the
correlation energy of the 2s electrons is comparable to the energy difference of the
2s level to its excited states [36]. This assumption is also consistent with the results
for the ionization of the 1s electrons by using a pulse of frequency 150 eV in figure
7.10. In this case, Hartree-Fock is almost exact, as there are no excited states
within the order of magnitude of the correlation energy with respect to the 1s
level. In neither case, Hartree-Fock can describe this effect, as the emitted electron
always sees a neutral system due to the screening of the core by the mean-field in
this case. While we have given a preliminary explanation of this effect, we should
further investigate and verify this interesting effect in the future.
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Figure 7.9: A cut through the single-particle density within the x-z plane after the
2s level was ionized by a laser pulse for M = 6 (color values and black
contour lines). The dashed red contour lines denote the results for
Hartree-Fock. The dashed blue lines denote the results for Hartree-Fock
and an additional core charge of 0.7.
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Figure 7.10: A cut through the single-particle density within the x-z plane after
the 1s level was ionized by a laser pulse for M = 6 (color values
and black contour lines). The dashed red contour lines denote the
results for Hartree-Fock. The dashed blue lines denote the results for
Hartree-Fock and an additional core charge of 0.7.
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8 Conclusions and outlook

To conclude this work, we summarize the experiences and results which we gained
during this time. In the last part of this chapter, we will give a brief discussion
of the consequences of this work and possible future directions in which we may
continue.

In the first part of the work, we discussed the quantum theory of many-particle
systems to create a theoretical foundation for the numerical methods, which are
used in this work. We have started with the general mathematical structure of
quantum mechanics, before we introduced the first representation of many-particle
theory in the form of the first quantization and introduced important concepts of
many-particle quantum mechanics. Since the first quantization is very tedious to
use for the description of complex many-particle systems, we have introduced the
second quantization as an alternative approach to many-particle systems. This
gives us the building block to establish numerical methods for the numerical
solution of the time-dependent many-particle Schrödinger equation. First we have
discussed the historical methods of Configuration interaction and Hartree-Fock and
discussed their advantages and shortcomings. With this knowledge as a starting
point, we have motivated and introduced the idea of Multiconfigurational time-
dependent Hartree-Fock. Afterwards we have deduced the equations of motion
from a first principle, before we have closed this matter with a discussion of the
chosen single-particle basis set and the implementation. Most notably, we were
able to significantly improve the capabilities of our implementation during this
work.

One of these improvements was the development of a solution for the problem of
the so called stiffness, which is an intrinsic property of the MCTDHF equations and
prevents the use of very accurate basis sets. To overcome this problem, we have
proposed a domain-specific scheme, which we call the Energy subspace projection
(ESP) method. In addition, we outlined a possible implementation of this scheme,
which was integrated into our MCTDHF implementation during this work. We
were able to show that our scheme reduces the problem while staying cheap enough
to be applicable, and therefore allows us to use significantly enlarged basis set
to describe our problems. Another improvement was the implementation of a
parallelization scheme for the right-hand side of the MCTDHF equations. After the
scheme was implemented, we have systematically investigated its performance and
recognized some minor flaws. Nevertheless, the performance is adequate for a first
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implementation and we were able to speed up the algorithm considerably, which has
allowed us to simulate much more complex systems. The current implementation
and the gained experiences give us a solid foundation for future improvements.
Together, all performance improvements produce a significant speedup within the
range 30 to 10000 and have enabled the simulations in the first place.

After we have introduced our computer experiment, particularly the pump-probe
scheme, we have discussed the results of our simulations. In the course of investing
the dependency of the ground state energy on the level of approximations, we
have found that MCTDHF is able to produce very accurate results with only a
few time-dependent orbitals. In addition, we have noticed that we need to enlarge
the angular basis for more sophisticated approximations to represent the more
complex structure of the state. Due to this, we have investigated the error, which is
introduced by the truncation of the angular basis, and have noticed that the angular
basis might not be well-chosen, as it does not converge monotonically. Afterwards,
we have applied the pump-probe scheme to beryllium to obtain a time-resolved
observation of shake-up processes. As a very promising result, we observed a
shake-up process during the application of the pump pulse, which means that we
are able to use MCTDHF to describe such results, which would not be practically
possible with Hartree-Fock or Configuration interaction. Unfortunately, we were
not able to successfully perform a full pump-probe calculation, as MCTDHF does
not seem to be able to simulate a second electron within the continuum. To find the
root cause of this problem, we have compared the single- and the double-ionization
yield. This has resulted in the insight that MCTDHF is not able to overcome the
product structure of the ansatz, and is therefore not able to accurately describe a
two-particle continuum. Also the last calculations, in which we have considered the
spatial structure of the emitted density, have demonstrated a distinct correlation
effect, that we need to investigate further.

To solve the problem with the structure of the many-particle state, one could
apply one of several extensions of the MCTDHF scheme. One of these extensions
is the multilayer MCTDH scheme [37], which can be used to construct the many-
particle state not only from single-particle states but also from two-particle orbitals.
This might improve the description of two-particle quantities. Another possibility,
that we have outlined together with Dr. David Hochstuhl during this work, would
be to apply constrains to the orbitals and force them into the proper subspace.
A distinct future direction might be the application of the MCTDHF scheme
to larger atoms. Two extensions which are interesting in this regard are the
TD-RASSCF [38] and the TD-CASSCF [39], as they can significantly reduce the
computational complexity for systems with a large number of particles. In addition,
we plan to improve the parallelization of our implementation and to port it to
GPUs.
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über Quantentheorie hat Teilhaben lassen. Ein besonderer Dank geht an Sebastian
Hermanns für das Korrekturlesen dieser Arbeit und die vielen interessanten und
lehrreichen Diskussionen über Quantentheorie. Zu guter Letzt möchte ich noch
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