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Abstract

The present thesis is concerned with the theoretical investigation of essential ground
state and excitation properties of Yukawa balls – spherical crystalline clusters composed
of microparticles embedded into a plasma environment.

The ground state of a Yukawa ball is characterized by a particle distribution consisting
of nested spherical shells. This distribution strongly depends on the screening effect
of the surrounding plasma. The theoretical analysis of this dependence is a major
concern of this work. To this end, a statistical theory is introduced, which allows
for the analytical determination of ground state density profiles within two essential
approximations – the mean-field and the local density approximation. By means of
these approximations, analytical results for the density profiles are derived, which
quantitatively explain the remarkable influence of the plasma screening on the average
particle distribution. An alternative approach towards this ground state particle
distribution is given by shell models, in which a shell-like structure is included a priori.
While previous shell models, however, are only appropriate for the description of the
Yukawa balls within a small range of the physical parameters, within the thesis at
hand a Yukawa shell model is derived, which is not subject to these restrictions.

The theoretical investigation of excitation properties of Yukawa balls is feasible by
normal mode analyses, which allow for a spectral analysis of excited motions. One of
the most important normal modes is the breathing mode. The detailed investigation
of its existence conditions is the second central topic of this thesis. Previously assumed
to exist for Yukawa balls and other spherical clusters, this breathing mode is shown
to be present only in a small class of systems, to which Yukawa balls and many other
clusters do not generally belong to. These findings implicate that the response of such
a system to radial excitations characteristically depends on intrinsic system properties
and may serve as a sensitive experimental diagnostics.
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Zusammenfassung

Die vorliegende Doktorarbeit widmet sich der theoretischen Untersuchung fundamen-
taler Grundzustands- und Anregungseigenschaften von Yukawa-Balls – kugelförmige,
kristalline Cluster bestehend aus in ein Plasma eingebetteten Mikroteilchen.

Der Grundzustand eines Yukawa-Balls zeichnet sich durch eine Teilchenverteilung
aus, die durch ineinander geschachtelte, sphärische Schalen beschrieben werden kann.
Diese Verteilung hängt maßgeblich von der Abschirmungswirkung des umgebenden
Plasmas ab. Die theoretische Untersuchung dieser Abhängigkeit ist ein zentrales An-
liegen dieser Arbeit. Zu diesem Zweck wird eine statistische Theorie eingesetzt, die
die analytische Berechnung des Dichteprofils im Grundzustand in zwei wesentlichen
Näherungen ermöglicht – in der Mean-Field-Näherung und in der Lokale-Dichte-
Näherung. Unter Verwendung dieser Approximationen werden analytische Resultate
für die Dichteprofile hergeleitet, die den auffallenden Effekt der Plasmaabschirmung
auf die mittlere Teilchenverteilung quantitativ erklären. Einen alternativen Zugang
zur Teilchenverteilung im Grundzustand ermöglichen sogenannte Schalenmodelle,
in denen eine schalenartige Struktur a priori angenommen wird. Während bisheri-
ge Schalenmodelle die Teilchenverteilung nur innerhalb eines kleinen Bereiches der
physikalischen Parameter beschreiben können, wird in der vorliegenden Arbeit ein
Yukawa-Schalenmodell abgeleitet, das diesen Einschränkungen nicht unterliegt.

Die theoretische Untersuchung von Anregungseigenschaften der Yukawa-Balls ist
im Rahmen von Normalmodenanalysen realisierbar, die eine spektrale Zerlegung
von angeregten Bewegungen ermöglichen. Eine der grundlegenden Normalmoden ist
die Breathing-Mode. Die ausführliche Analyse ihrer Existenzbedingungen ist das
zweite zentrale Thema dieser Arbeit. Als unmittelbares Resultat wird gezeigt, dass
diese Breathing-Mode, deren Existenz bisher für Yukawa-Balls und andere sphärische
Cluster angenommen wurde, nur in einer kleinen Gruppe von Systemen vorkommen
kann, zu der die Yukawa-Balls und viele andere Cluster im Allgemeinen nicht gehören.
Eine Folge dieser Ergebnisse ist, dass die Antwort eines solchen Systems auf radiale
Anregungen in charakteristischer Weise von den wesentlichen Systemeigenschaften
abhängt und somit für deren experimentelle Untersuchung herangezogen werden kann.
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CHAPTER 1

Introduction

The theoretical and experimental investigation of collective many-particle effects in
systems of various scales and dimensionality ranks among the most promising challenges
of contemporary physics. These effects are often called strong correlation effects and
include the emergence of long range order, of liquid-like or crystalline structures, and
of dynamic features, which are characterized by pronounced interactions between the
particles and, therefore, by deviations from the ideal gas behavior.

The strength of many-particle correlations can be measured by the coupling parameter
Γ (also referred to as correlation parameter1[Dub88]), which is the ratio of the mean
(nearest neighbor) interaction energy to the average kinetic energy of a system. Using
the parameter Γ , the universal trends in correlated systems can very generally be
quantified as ranging from ideal gas-like behavior for Γ � 1 and liquid-like short-range
order for Γ & 1 to crystalline long-range order for Γ & 100. While the precise values
depend on the form of the potential energy and quantum effects have to be considered
as well, various imposing correlation phenomena can be observed in all many-particle
systems, independently of their specific nature. This generality makes the analysis of
correlation effects in one system very attractive also for other fields of physics.

1 Strongly correlated systems are also often referred to as strongly coupled systems.
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1 Introduction

1.1 Strongly Correlated Systems

Historically, the first encounter of strong non-ideality effects is probably the gas-liquid
phase transition. There, condensation effects clearly show a deviation from ideal
gas behavior and the breakdown of the ideal equation of state, p = nkBT . The
phenomenological solution of this problem has been the introduction of a modified
equation of state, such as the van der Waals equation, which incorporates interactions
between the molecules (for a recent overview, see [Leb82] and the introductory essay
in [Row88]). More systematic insights into non-ideal fluids are provided by modern
statistical mechanics, which have put the theoretical analysis of correlations on a
firm ground. Their statistical treatment is based on two groups of integral equations
combined with approximating closure relations – the BBGKY hierarchy and the
Ornstein-Zernike equation, see [Han91].

Correlations also play a central role in the description of the electronic properties of
solids. While the physical properties of many materials like simple metals, semicon-
ductors, and insulators are successfully explained by modern solid-state physics, there
are, however, materials like transition metals and their oxides, in which electrons
experience strong Coulomb interactions [Ima98]. The influence of these strongly inter-
acting electrons among each other is pronounced to such an extend that an effective
one-body description fails [Ess05]. Therefore, correlations must not be neglected, but
are very important.

Materials consisting of strongly correlated electrons are often highly sensitive to small
changes in external parameters. The corresponding effects include dramatic changes in
the resistivity at the metal-insulator transition [Anz68, Spa68, Anz86], high transition
temperatures of cuprate superconductors, and volume-collapse transitions of rare
earth metals [McM98]. Furthermore, there are strongly correlated materials featuring
a huge thermoelectric power [Wol65], and others showing colossal magnetoresistance,
i.e., a very high sensitivity to changes in an applied magnetic field [Ram97]. The
description of such strongly correlated electrons is often based on model Hamiltonians
such as the (single band) Hubbard model [Ess05]. Compared to the full many-body
problem this model takes into account only a few relevant degrees of freedom, but
is effective (and complex) enough to retain the essential physical phenomena (see
[Kot04] for a clear overview).

2



1.1 Strongly Correlated Systems

Deceptive in its simplicity, the Hubbard model is acknowledged as a paradigm of
strongly correlated electron systems in condensed matter physics. Given the impor-
tance attached to this idealized description, it is remarkable that an almost perfect
realization of this model is accessible by ultracold repulsive fermionic atoms exposed
to the periodic potential of an optical lattice [Kö05]. The control over all relevant
parameters in these systems provide a novel approach for the study of correlation
effects on a quantitative level. The same holds for corresponding bosonic gases in
optical lattices. They provide a realization of the Bose-Hubbard model including
its quantum phase transition from a superfluid to a Mott-insulating phase [Gre02],
even in the standard regime where the average interparticle spacing is much larger
than the scattering length. Thus, by using optical lattices actually extremely dilute
gases enter the regime of strong coupling, cf. figure 1.1. In addition, the exploration
of strong correlations with ultracold gases is possible by using Feshbach resonances
[Kö06]. Their ability to tune the pairwise interaction strength allows, e.g., for the
exploration of the crossover, which takes place in two-component fermionic systems,
from a molecular Bose-Einstein condensate of tightly bound pairs to a BCS super-
fluid of weakly bound Cooper pairs [Oha02]. This crossover promises insights into
recent questions of quantum fluids and high-transition-temperature superconductors
[Che05].

One of the biggest advantages of using ultracold atoms for the investigation of cor-
relation phenomena is evidently the possibility of dynamically changing relevant
parameters like the coupling parameter Γ , and thus studying the real-time dynamics
of strongly correlated systems. However, this requires precise experiments in difficult
conditions. In particular, additionally to the demanding creation of ultralow tempera-
tures and preparation of adequate traps [Phi98], the detection methods essentially
need to be correlation-sensitive. For a recent overview on the subject of ultracold
gases covering this issue and, in general, many body correlations, see [Blo08a].

Figure 1.1: Absorption image of a
matter-wave interference pattern after
the 87Rb atoms were released from an
optical lattice potential. It reflects the
the strong coupling of the atoms within
the optical lattice as well as the high
degree of phase coherence. From refer-
ence [Gre02].
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1 Introduction

Further systems, also allowing for the investigation of strong coupling phenomena, are
the ionic crystals [Win87, Dre98]. These systems consist of laser-cooled ions confined
in electromagnetical traps. Due to the very low temperatures in the order of mK, the
electrostatic energy of the mutual Coulomb interactions between the ions becomes
much larger than the thermal energy (Γ > 100). As a result, the correlated ions show
long-range order and form crystalline (shell-like) structures [Mor06], cf. figure 1.2.

Beside the appearance of correlation effects at low temperatures, strongly correlated
systems can also be found at high temperatures. One of these systems, the quark-
gluon-plasma, is subject to the probable most extreme conditions and is, at the same
time, a recent research topic. This state of matter consisting of deconfined quarks
and gluons has a major role in the description of the early universe and of neutron
stars. Using highly relativistic particle collisions, it is experimentally studied1 at the
Relativistic Heavy Ion Collider (RHIC) at BNL [STA05, PHE05, PHO05, BRA05]
and its investigation is one of the projected aims of the ALICE collaboration at the
Large Hadron Collider (LHC) at CERN as well [ALI08]. Primarily expected to be a
weakly interacting gas of quarks and gluons [Col75, Shu78], the experiments up to
now give strong evidence that the quark-gluon plasma actually behaves like a strongly

Figure 1.2: Recent observation of 1700, 770, and 290 40Ca+ ions confined in a radio-
frequency Paul trap. The ordered structure of the three-dimensional spherical crystal is
evident. From reference [Mor06].

1 First experimental evidence was found at the Super Proton Synchrotron (SPS) at CERN [Abb00,
NA500].
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1.1 Strongly Correlated Systems

coupled fluid with extremely low viscosity [Hei09, Mü06]. After initial debate, this
view is supported by first principle QCD lattice calculations as well [Shu04].

In spite of the differences from the quark-gluon plasma, classical systems may show
similar properties regarding correlation effects [Tho05, Tho09]. Among the most
promising classical strongly coupled systems are complex (dusty) plasmas (see, for
example, [Mer04]). These are low-temperature plasmas containing, additionally to
the electrons and ions, nano- or micrometer-sized particles of very high charges
(q ≈ 103-105 elementary charges). Directly linked to the high charges is one of the
most fascinating aspects of complex plasmas. That is the formation of plasma crystals
[Chu94, Hay94, Tho94], including three-dimensional spherical clusters (Yukawa balls)
[Arp04], showing in an impressive manner correlated many-particle behavior, cf.
figures 1.3 and 1.4.

A classification of these complex plasmas among other charged particle systems
featuring strong coupling is given in the density-temperature diagram 1.5. There,
additionally to the coupling parameter Γ , also the Brueckner parameter rs is plotted,
which is defined by the ratio of the mean interparticle distance and the effective Bohr
radius. This quantum coupling parameter takes into account non-classical effects,
which in the case of high densities prevent the formation of correlated structures. The
transition from the classical to the quantum regime is quantified by the degeneracy

Figure 1.3: Experimental image of an extended plasma crystal consisting of two layers.
The bright spots correspond to the dust particles. From reference [Mel97].
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1 Introduction

Figure 1.4: Photograph of a laser light illuminated Yukawa ball consisting of several
hundred dust particles. The spherical crystal with a diameter of about 7 mm shows a
shell-like structure. Kindly provided by Dr. D. Block.

parameter χ, which indicates the ratio of the quantum-mechanical particle extension
and the mean distance of neighboring particles [Bon08]. In spite of the huge ranges
of density and temperature, it is remarkable that, in consideration of the correlation
effects, these systems (and many more) feature common properties, which can be
characterized by only two parameters, Γ and rs.

However, in most systems the observation and experimental analysis of strong cor-
relations is difficult, requiring, in many cases, extreme conditions such as very low
temperatures or specific densities. An exception are complex plasmas. As a con-
sequence of the dust particles’ high charge, they exhibit very strong correlations
even at room temperature (Γ values exceeding 500 and above [Blo09]), and, due to
the particles’ high mass, they allow for high-precision experiments [Fen07, Iva07].
Many quantities such as crystal structure, pair distribution, normal modes, and even
single particle trajectories can be directly observed in the experiment (even with
the naked eye), making this field an ideal test case for the theoretical concepts of
strongly correlated many-body systems. On grounds of this significant role, a basic
understanding of the complex plasmas is indispensable. Therefore, particularly the
recently discovered three-dimensional plasma crystals have already excited intensive
experimental and theoretical activities (for a recent overview, see [Blo07b]).
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1.2 Yukawa Balls
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Figure 1.5: Density-temperature diagram of charged particle systems. The line χ = 1
separates classical and quantum systems. Singly charged, strongly coupled systems can be
found in the green shaded area enclosed by the lines Γ = 1 and rs = 1. Higher charges q
of the particles, as in complex plasmas, extend the area, where strong correlation effects
are present. The red shaded area indicates the deconfined state of hadronic matter, i.e.,
the quark-gluon plasma. Several example systems are included, density and temperature
values of which are gathered from [Dre98, Arp04, Tho04, Hay99].

1.2 Yukawa Balls

Experimental complex plasmas are generally produced in radio-frequency discharges
by immersing, typically, micrometer-sized monodisperse (dust) particles. Similar
to floating probes within a plasma, these dust particles acquire very high negative
charges, leading to a strong electrostatic repulsion of the particles. However, without
additional arrangements, these dust particles sediment towards the lower electrode
until they are levitated by its electric field. Due to the monodisperse character of the
particles, they can be considered identical, and hence, their height above the electrode
will be almost equal. Therefore, they arrange themselves in nearly two-dimensional
monolayered crystals, cf. figure 1.3.

7



1 Introduction

The formation of three-dimensional crystals requires the switch-off or the compensation
of gravitation in the laboratory frame, as possible by microgravity experiments [Mor99]
or by using a thermophoretic force [Rot02]. However, in such experiments the formation
of three-dimensional crystals is limited by an emerging void, i.e., dust-free region in
the center of the discharge.

The possibility to create three-dimensional spherical dust crystals not subject to
the formation of voids has been shown by Arp et al. [Arp04], and established a
recent field of research. The generation of these three-dimensional crystals, which
are called Yukawa balls, is enabled by surrounding the dust particles by dielectric
(glass) walls, which reduce the plasma production in its inside and effectively prevents
the void formation [Arp06]. The corresponding experimental setup is shown in figure
1.6. There, the basic forces acting on the dust particles are displayed as well. The
confinement of the Yukawa balls, which results from these forces, was shown to
be almost isotropically harmonic [Arp05] without significant contributions from a
self-confinement mechanisms, as proposed in [Tot05].

Although the dust particles do not significantly influence their confinement, they have
strong mutual impact due to their interaction, which is based on their high charge.
However, as a consequence of the surrounding plasma, the interaction in complex

Figure 1.6: Left: Side view of the experimental setup used to create Yukawa balls. The
arrangement consists of a heated lower electrode (T < 90°C), a grounded vacuum vessel
at room temperature, and a glass box, the upper and lower side of which is left open. Dust
particles, injected from the top of the setup via a dust dispenser, can form a Yukawa ball
inside this glass box. The inset shows an image of a such a Yukawa ball with 1cm in
diameter. Right: The confinement of a Yukawa ball within the glass box is established by
the superposition of gravity FG, electric force FE, thermophoretic force Fth, and ion-drag
force Fion. From references [Blo07b, Arp06].
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1.2 Yukawa Balls

plasmas is not pure Coulomb, but is dynamically screened. The specific form of this
screening and, in particular, the effect of streaming ions is of great interest, and may
result in unusual phenomena like attractive forces (see, for example, [Pie02]). For
the Yukawa balls, this effect is negligible because the dust particles are situated in a
subsonic ion flow regime [Arp06]. In this case the screening is static and well described
by an isotropic Debye-Hueckel or Yukawa potential, q2 exp(−κr)/r, which justifies
the naming of the three-dimensional spherical crystals. Hence, the influence of the
surrounding plasma on the interaction is specified only by the screening parameter κ,
which is dependent on the densities ne,i and temperatures Te,i of the electrons and
ions,

κ =
√

4πe20
(

ne
kBTe

+ ni
kBTi

)
. (1.1)

Therefore, an effective theoretical model for the Yukawa balls is given by a 3-
dimensional, classical system of N identical particles harmonically confined by the
potential

φ(r) = mω2
0

2 r2 , (1.2a)

and interacting with an isotropic Yukawa-type pair potential

v(r) = q2
exp(−κr)

r
. (1.2b)

The Hamiltonian of this system is then given by1

H(r,p) =
N∑
i=1

p2
i

2m︸ ︷︷ ︸
K(p)

+
N∑
i=1

φ(ri) + 1
2

N∑
i 6=j

v(|ri − rj |)︸ ︷︷ ︸
U(r)

. (1.3)

By using this model an adequate description of the Yukawa balls is given [Bon06a],
allowing for their theoretical investigation, which, regarding essential ground state
and excitation properties, is the aim of this thesis.

1 In the following 3N -dimensional vectors are written upright, r =
(
r1, r2, . . . , rN

)
.
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1 Introduction

1.3 Thesis Outline

After closing this introductory chapter, the thesis at hand is organized in two main
parts:

Chapter 2: Ground state theory of Yukawa balls This chapter provides a statistical
theory suitable to describe the ground state density profiles of Yukawa balls.
Within the frame of this theory, two approximations are used, which yield
analytical results for the average particle distribution. These results are compared
with exact densities, which are obtained from numerical simulations. In doing so,
particular attention is paid to the surprisingly strong influence of the screening
parameter κ on the results. At the end of this chapter the so-called shell models,
which provide an alternative approach towards the ground state structure of
Yukawa balls, are investigated, and in conclusion a new shell model is derived.

Chapter 3: Normal Modes of Finite Clusters Within this chapter a detailed analy-
sis of excitation properties based on normal modes is presented. Special attention
is paid to one of the most important modes, the breathing mode, which is known
from harmonically confined Coulomb systems. After deriving its existence
conditions for isotropic clusters in general, the surprising result of a vanishing
breathing mode is illustrated for Lennard-Jones clusters and for Yukawa balls,
as well. Further, the direct consequences of these results are investigated – also
in regard to the influence of dissipation.

In the final chapter the results of this thesis are summarized and complemented by
suggestions for future work.

10



CHAPTER 2

Ground state theory of Yukawa balls

Probably the most striking forms of appearance of strong correlation effects are
the liquid states and the crystal formation which were predicted and observed in
various geometries. In particular, Yukawa balls show a three-dimensional crystal
formation with a pronounced structure of interlaced spherical shells [Arp04], which
is also known from spherically trapped ultracold ions [Mor06]. Contrary to the
ultracold ions, properties of the Yukawa balls, like their shell population and their
shell radii, can be easily measured [Arp04], and hence allow for a comparison with
results from simulations and theories [Blo07a, Bon06a]. One of the main results
expresses that the particle number on the shells is dependent on the screening of
the interaction: with increasing κ of the Yukawa interaction (1.2b) more and more
particles are located on inner shells, i.e., the average particle distribution is changed
[Blo08b, Blo07a, Bon06a, Gol06]. Within the frame of the thesis at hand, this change
of the average particle distribution could be understood from a theoretical point of
view [Hen07, Hen06].

One approach for the description of the average particle distribution is provided by
so-called Coulomb shell models [Has91, Tsu93, Kra06, Cio08] and Yukawa shell models
[Tot05, Bau07], in which a shell-like structure is included a priori. The objective of
these models, which are presented in section 2.5, is to achieve an accurate prediction
of the shell populations and of the shell radii. However, the shell models are somewhat
artificial due to their immanent shell structure and a completely analytical theory
should replace them.

11



2 Ground state theory of Yukawa balls

Therefore, another approach is used: thermal equilibrium statistical mechanics. It
provides the theoretical foundation for the determination of the average particle
distribution, i.e., the density profile, and allows for this determination by using a
simple variational principle. The idea behind is very basic – the equilibrium density
profile minimizes the corresponding Helmholtz free energy [Eva79]. For the case of
zero temperature, as it is studied within this chapter, the free energy equals the energy,
thus the ground state density profile can be obtained by minimizing the latter one
[Hen07, Tot06a, Hen06, Tot01].

In order to accomplish the minimization, within the next section an expression for
the energy depending on the density is derived. In principle, its variation provides an
equation for the determination of the ground state density profile. However, due to
the incomplete knowledge of particle correlations this is not possible in full generality.
For this reason, within the subsequent sections 2.2 and 2.4, two of the most essential
approximations, the mean-field and the local density approximation, are introduced,
which yield analytical solutions for the ground state density. By means of these
solutions, the effect of screening on the density profile is revealed. Finally, the quality
of the approximations is investigated by comparison with simulation results, which
are presented in section 2.3.

2.1 Variational Problem of the Energy Functional

In order to consider a statistical theory of Yukawa balls, of course, not only one such
system but an ensemble of these has to be used. Due to the fixed particle number,
the appropriate statistical ensemble is the canonical one, which also depends on the
temperature T or rather its inverse β = (kBT )−1. The proper N -particle distribution
of the equilibrium is then given by

f(r,p) = 1
h3NN !

e−βH(r,p)

Z
. (2.1)

The quantity f(r,p) dr dp represents the probability that the phase point describing
the state of the system is included in the infinitesimal phase-space volume dr dp at
(r,p). The factor 1/N ! makes allowance for the indistinguishability of the particles,
while the power of Planck’s constant, h3N , ensures the correct correspondence to

12



2.1 Variational Problem of the Energy Functional

quantum statistics [Han91]. The partition function,

Z = 1
h3NN ! Tr e−βH(r,p), (2.2)

then normalizes this probability density such that its ’classical’ trace, i.e.,

Tr ≡
∫

VN

dr
∫

dp , (2.3)

yields unity. Within this trace, there is the constraint that only those states are
considered, in which all particles are situated within the spatial region V. While for
unconfined, homogeneous systems only its volume is of importance, here indeed the
actual region is decisive. Thus, all statistical quantities like the partition function or
statistical averages are depending on T,N,V.

The ensemble average of a physical quantity O(r,p) can be calculated using the
N -particle distribution,

〈O〉 = Tr [f(r,p)O(r,p)] . (2.4)

For only space-dependent quantities O(r) or only momentum-dependent quantities
O(p), the latter equation can be simplified due to the factorization into spatial and
momentum distributions,

f(r,p) = f s(r)fm(p), (2.5)

with

f s(r) = e−βU(r)∫
VNdr e−βU(r) and fm(p) = e−βK(p)∫

dp e−βK(p) . (2.6)

Hence, in those cases the ensemble averages can be written as

〈O〉 =
∫

VN

dr f s(r)O(r) and 〈O〉 =
∫

dp fm(p)O(p) , (2.7)

respectively. This is applicable in the derivation of the ensemble average of the energy
E = 〈H〉, which itself can be separated into momentum-dependent kinetic energy,
K(p), and into spatially dependent potential energy, U(r). Thus, the average energy
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2 Ground state theory of Yukawa balls

is given by

E = 〈H(r,p)〉 = 〈K(p)〉+ 〈U(r)〉

=
∫

dpK(p) e−βK(p)∫
dp e−βK(p) +

∫
VN

dr f s(r)U(r) . (2.8)

The first expression can be easily calculated by rewriting it as a derivate of a logarithm
and then using the known integral of a Maxwellian distribution, which finally yields
the well-known result 3NkBT/2. To calculate the second expression, it is useful to
introduce the reduced spatial distribution functions

f s
k(r1, . . . , rk

)
=

∫
VN−k

drk+1 . . . drN f
s(r) , (2.9)

so that f s
k(r1, . . . , rk

)
dr1 . . . drk represents the joint probability of finding one particle

within a volume dr1 at r1, and another particle within a volume dr2 at r2, and so
on, irrespective of the position of all the other N − k particles. The most important
reduced spatial distribution functions are f s

1 and f s
2. While the former is related to

the ensemble averaged density,

n(r) =
〈

N∑
i=1

δ(r − ri)
〉
, (2.10)

by

n(r) = Nf s
1(r) , (2.11)

f s
2 in turn is related to f s

1 by

f s
2(r1, r2) = f s

1(r1)f s
1(r2) [1 + h(r1, r2)] . (2.12)

At heart, the latter is given by the pair correlation function h, which measures
deviations of this probability density from the case of a statistically independent
(mean-field) distribution of r1 and r2.

For binary interactions, all of the thermodynamic functions can be evaluated from
knowledge of n(r) and h(r1, r2) [Dub99]. Accordingly, by using (2.8)-(2.12) and the
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2.1 Variational Problem of the Energy Functional

Hamiltonian (1.3), the ensemble averaged energy can be written as

E = 3
2NkBT +

N∑
i=1

∫
VN

dr f s(r)φ(ri) + 1
2

N∑
i 6=j

∫
VN

dr f s(r)v(|ri − rj |)

= 3
2NkBT +

∫
V

dr n(r)φ(r)

+ N − 1
2N

∫
V2

dr dr′ n(r)n(r′)v(|r − r′|)
[
1 + h(r, r′)

]
, (2.13)

wherein the integral of interaction contains both, the mean-field and the correlation
contribution. For the ground state energy (T = 0), which subsequently plays a central
role, this expression reduces to

E =
∫
V

dr
(
utrap(r) + umf(r) + ucorr(r)

)
, (2.14)

with the energy densities of confinement, of mean-field interaction, and of the correla-
tions

utrap(r) = n(r)φ(r), (2.15a)

umf(r) = N − 1
2N n(r)

∫
V

dr′ n(r′)v(|r − r′|), (2.15b)

ucorr(r) = N − 1
2N n(r)

∫
V

dr′ n(r′)v(|r − r′|)h(r, r′) , (2.15c)

respectively. This expression for the ground state energy shows the dependence on
n and h, which on their part are fixed by the equilibrium N -particle distribution f .
Because this distribution yields the lowest value for the energy, n and h in turn have to
minimize it. This fact provides the possibility to actually calculate the density profile.
For this purpose, the generally unknown pair correlation function is approximated
and the minimum of the energy with respect to the density has to be determined,
what can be done by a variational principle1. However, within this minimization, two

1 This minimization of the approximated density-dependent ground state energy is similar to the
procedure of the quantum mechanical density functional theory. The energy at hand is a statistical
quantity and purely classical though.
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2 Ground state theory of Yukawa balls

restrictions have to be taken into consideration: the density is non-negative everywhere
and it reproduces the total particle number, i.e.,∫

V

dr n(r) = N . (2.16)

While the former constraint requires restriction of the allowed variations, the latter
constraint can be included by introducing a pertinent Lagrange multiplier µ.

Thus, in the following not the ground state energy (2.14), but a corresponding energy
functional is considered, which depends not only on N , but also on a density function.
In contrast, the dependence on V is lapsed and the boundless space

V = R3 (2.17)

is used instead. This is because within this chapter not a volume restrictive density
profile of confined dust crystals is considered, but a density profile which is restricted
by its confinement only. Thus, the energy functional reads as

E[n] =
∫

dr
(
utrap(r) + umf(r) + ucorr(r)

)
+ µ

(
N −

∫
dr n(r)

)
. (2.18)

2.2 Ground State Density Profile in Mean-Field Approximation

One of the most important approximations for the ensemble averaged energy of
interaction is the mean-field approximation. It utilizes the full non-local mean-field
energy density, completely neglects the correlation contributions, i.e., ucorr ≡ 0, and is
associated with a structure-spanning averaging. The energy functional is then given
by

Emf [n] = Nµmf +
∫

dr n(r)
(
φ(r)− µmf

)
+ N − 1

2N q2
∫

dr dr′ n(r)n(r′)exp(−κ|r − r′|)
|r − r′|

, (2.19)

where the explicit form of the Yukawa interaction (1.2b) is being used. This expression
is formally equivalent to the electrostatics’ expression of a charge distribution with
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2.2 Ground State Density Profile in Mean-Field Approximation

fixed total charge in an external confinement [Jac99]. The factor (N − 1)/N leads
to an effective charge per particle of qeff = q

√
(N − 1)/N . However, in contrast to

electrostatics with its Coulomb interaction, 1/r, the interaction in (2.19) is screened
via e−κr. Nevertheless, the density profile in mean-field approximation can be seen as
the electrostatic charge distribution in case of a Yukawa interaction. Especially in the
limiting case of vanishing screening, this view allows for the solution of the density
profile.

2.2.1 The Coulomb Limit and Electrostatics

To obtain the density profile of the harmonically confined system in the Coulomb limit,
one can use the well-known textbook result of the electrostatic field of a homogeneously
charged ball, which is shown in figure 2.1. If the ball is of radius RC the density is
given by

n(r) =

nC |r| ≤ RC

0 |r| > RC ,
(2.20)

and the charge density is qeff · n(r). The electric potential caused by this charge
density can be obtained by using Gauss’s law or by directly solving Poisson’s equation.

nC

RC r

n(r)

(a) Density
RC r

Eel(r)

(b) Electric field
RC r

φel(r)

(c) Electric potential

Figure 2.1: A homogeneously charged ball with radius RC is related to a parabolic electric
potential within the ball.
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2 Ground state theory of Yukawa balls

It yields

φel(r) = 4π
3 R3

C qeffnC


1
RC

(
3
2 −

r2

2R2
C

)
|r| ≤ RC

1
|r| |r| > RC .

(2.21)

Hence, the electric potential φel is parabolic within the ball and consequently can
compensate the external parabolic potential φ. This is the case if the density takes
a specific value which can be calculated from the equilibrium condition. Namely,
equilibrium is attained if the overall potential inside the ball is constant, i.e.,

qeffφel(r) + φ(r) = const. ∀r : |r| ≤ RC . (2.22)

By using (1.2a) and (2.21) the equilibrium density results in

nC = 3mω2
0

4πq2eff
. (2.23)

Additionally, normalization allows the determination of the ball’s radius and yields

RC = 3

√
q2(N − 1)
mω2

0
. (2.24)

In summary, from the electrostatic analogy it follows that the mean-field density profile
of the harmonically confined system is homogeneous in the Coulomb limit. However,
in general the Yukawa balls are not described by Coulomb interacting particles, but
by Yukawa interacting ones. Thus, what is the effect of screening on the density
profile?

2.2.2 General Solution

As outlined previously, the problem of ascertaining the density profile nmf in the
general case of screening is given by determining the minimum of the energy functional
(2.19). The vanishing of its linear approximation at the minimum gives then rise to
the variational problem

0 = δ Emf [n]
δn(r)

∣∣∣∣
n=nmf

. (2.25)
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2.2 Ground State Density Profile in Mean-Field Approximation

The explicit variation of the energy functional Emf gives an inhomogeneous integral
equation for the density,

0 = φ(r)− µmf + q2eff

∫
dr′ nmf(r′)

exp(−κ|r − r′|)
|r − r′|

∀r ∈ Vmf , (2.26)

which is valid for all space points within the supporting region

Vmf =
{
r ∈ R3|nmf(r) > 0

}
. (2.27)

This is due to the restriction to non-negative densities. The region Vmf is unrelated
to the thermodynamic region V which is already set by (2.17). The density outside of
Vmf vanishes, i.e.,

nmf(r) = 0 ∀r /∈ Vmf , (2.28)

so that there is an explicit space separation of the density. This is outlined in figure
2.2a. In case of isotropic systems, as is given by the Hamiltonian (1.3), the density
profile is isotropic as well. Thus, Vmf has to be spherically symmetric, as shown by
figure 2.2b. In this case the integral equation (2.26) can be solved for the density by
successive integration, cf. [Hen06] for details.

However, an explicit solution for the density can be obtained more smartly as well,
because the kernel of the integral equation (2.26), i.e., the Yukawa potential, is the

nmf(r)=0

Vmfnmf (r)>0

(a) General case

nmf(r)=0

Vmfnmf (r)>0

(b) Isotropic case

Figure 2.2: Spatial confinement of the ground state density.
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2 Ground state theory of Yukawa balls

Green’s function of the Helmholtz operator. This means

(∆− κ2)exp(−κ|r − r′|)
|r − r′|

= −4πδ(r − r′) . (2.29)

Hence, application of the Helmholtz operator on equation (2.26) yields the explicit
solution

nmf(r) = 1
4πq2eff

(
∆φ(r)− κ2φ(r) + κ2µmf

)
∀r ∈ Vmf (2.30)

for the ground state density profile in mean-field approximation in case of an arbitrary
confinement potential. However, within this expression the Lagrange multiplier µmf

as well as the supporting region Vmf are not yet determined.

The calculation of µmf can be performed by using the constraint of normalization
(2.16). Taking into account the results (2.17), (2.28), and (2.30) this yields1

κ2µmf =
4πq2effN −

∫
Vmf

dr
(
∆− κ2)φ(r)

|Vmf |
, (2.31)

whereas |Vmf | denotes the volume of the spatial region Vmf . Therefore, only the
determination of this region Vmf has to be accomplished. This can be done by
inserting the solution (2.30) into its integral equation (2.26), because the latter one
contains additional boundary conditions, which are disregarded in (2.30) due to the
application of the differential operator. However, the extraction of the supporting
region out of the resulting equation

4π (µmf − φ(r)) = (2.32)∫
Vmf

dr′
(
∆φ(r′)− κ2φ(r′) + κ2µmf

)exp(−κ|r − r′|)
|r − r′|

∀r ∈ ∂Vmf ,

is not at all simple.

For isotropically confined dust crystals, i.e. φ(r) = φ(r), the supporting region has to

1 It should be noted that in the Coulomb case equation (2.31) results in
∫

Vmf
dr ∆φ(r) = 4πq2(N−1).
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2.2 Ground State Density Profile in Mean-Field Approximation

be spherically symmetric, cf. figure 2.2b, and is specified by a ball

Vmf = B(Rmf) , (2.33)

which is centered at r = 0, i.e., at the minimum of the trap, and which has a
still unknown radius Rmf . This circumstance significantly simplifies the issue of
determining Vmf from (2.32), because only one parameter, the mean-field radius Rmf ,
has to be found. Indeed, using (2.33) within (2.32) yields, after some algebra,

µmf = φ(Rmf) + Rmf φ
′(Rmf)

1 + κRmf
, (2.34)

which is an implicit equation for the radius for given µmf .

2.2.3 Density Profile for Harmonic Confinement

For the special case of harmonic confinement (1.2a), which is of particular interest for
the investigation of Yukawa balls, the density profile (2.30) is spherically symmetric
and reduces to

nmf(r) = nC

(
R3

C
R3

mf
+ κ2R2

mf
10 − κ2r2

6

)
Θ(Rmf − r) , (2.35)

where the definitions (2.23) and (2.24) of nC and RC have been used. The mean-field
radius Rmf can be obtained from (2.34) together with the result of µmf , which yields
the implicit equation

κ3R6
mf + 6κ2R5

mf = 15
(
R3

mf + κR4
mf

)( R3
C

R3
mf
− 1

)
(2.36)

for the radius. It has a unique positive solution for Rmf/RC, which can be specified
as a function of κRC. The result is shown graphically in figure 2.3. While in the
unscreened case (κ = 0) the mean-field radius equals the Coulomb radius RC, for
finite screening the mean-field radius is decreased. Thus, in comparison with Coulomb
systems the considered Yukawa systems are compressed. This is comprehensible,
because the exponential weakening of the interaction results in a reduced total force
acting on the outer particles, which therefore move somewhat towards the center.
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2 Ground state theory of Yukawa balls

0 1 2 3 4 5 6 7
κRC

0.7

0.8

0.9

1

R
m

f/
R

C

Figure 2.3: The mean-field radius Rmf in units of RC as a function of the normalized
screening parameter κRC.

Often the screening parameter κ is given in units of d−1
C , where dC is the stable

distance between two charged particles in the absence of screening [Bon06a]. One
obtains

κRC = κdC
3

√
N − 1

2 , (2.37)

and therefore figure 2.3 shows that not only an increase of κ but also an increase of
the particle number at small κ accounts for a stronger compression with respect to
the Coulomb case.

With the determined radius the density profile can be calculated from (2.35). Corre-
sponding results for various screening parameters are shown in figure 2.4. On the one
hand, in the Coulomb limit (κRC = 0) the constant density profile obtained in section
2.2.1 is recovered. On the other hand, for finite screening inhomogeneous profiles
emerge which are accompanied by the aforementioned compression. With increasing
κRC, the density values increase continuously, but most significantly in the center.
As a result, the density profiles (2.35) are described by an inverted parabola which
terminates in a discontinuity at r = Rmf with a finite density value.

In summary, the mean-field density profile changes radically from a flat profile, in case
of a long-range Coulomb interaction, to a profile rapidly decaying away from the trap
center in the case of a screened Yukawa potential. This result joins the experimental
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2.2 Ground State Density Profile in Mean-Field Approximation

0 0.2 0.4 0.6 0.8 1
r/RC

0

10

20

30
n
/n

C

κRC=30
κRC=15
κRC=5
κRC=0

Figure 2.4: Density profile of harmonically confined dust crystals in mean-field ap-
proximation for four screening values (lines), from bottom to top: κRC = 0, κRC = 5,
κRC = 15, κRC = 30.

and numerical findings [Blo08b, Blo07a, Bon06a, Gol06] and put these across from a
theoretical point of view.

2.2.4 Force Equilibrium Within Yukawa Electrostatics

As mentioned previously, the density profile in mean-field approximation can be
regarded as the electrostatic charge distribution in case of a Yukawa interaction.
How can the parabolically decaying density profile be understood from that point of
view?

The determination of the electrostatic charge distribution can not only be seen as a
minimizing problem of the electrostatic energy, but equivalently as the question of a
local force equilibrium for all points where the density is non-zero. The forces in case of
a screened Coulomb interaction can be obtained from (2.26), which represents the total
potential at the point r ∈ V>. Thus, taking the gradient results in the corresponding
force equation. For the harmonic confinement this equation is dependent on the radius
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2 Ground state theory of Yukawa balls

only and yields

mω2
0r = F<(r) + F>(r) , (2.38)

which means that for any spherical layer at a distance r from the center the external
force of the confinement Fφ(r) = −mω2

0r, which acts towards the center, is balanced
by the internal force due to the Yukawa repulsion between the particles. The internal
force contains two parts, which are outlined in figure 2.5. The force

F<(r) = 4πq2eff
e−κr

r

(
1 + 1

κr

) r∫
0

dr′ r′n(r′) sinh(κr′) (2.39a)

arises from the action of all particles inside the given layer, r′ ≤ r, and acts outwards,
whereas

F>(r) = 4πq2eff
1
r

(
− cosh(κr) + sinh(κr)

κr

) Rmf∫
r

dr′ r′n(r′)e−κr′ (2.39b)

results from the action of all particles located outside, r′ ≥ r, and acts inwards. The
density within these equations has to guarantee the balance of the forces so that (2.38)
is fulfilled.

r F<(r)

F>(r)

Fφ(r)

Figure 2.5: Forces within a Yukawa ball for a spherical layer at distance r: External
confining force Fφ(r), Yukawa repulsion F<(r) of all inner particles, and Yukawa repulsion
F>(r) of all outer particles.
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2.2 Ground State Density Profile in Mean-Field Approximation

In the Coulomb case the forces (2.39) simplify to

F<,C(r) = q2eff N<(r)
r2

, (2.40a)

F>,C(r) = 0, (2.40b)

with N<(r) = 4π
∫ r
0 dr′ r′2n(r′) being the particle number within the sphere of radius

r. These two equations just represent two well known results of Coulomb electrostatics:
a spherically symmetric charge distribution produces the same field in the outer region
as a point charge at the center of the sphere and the inside of a hollow charged sphere
is free of forces. From these equations and the force equilibrium (2.38) it follows that
the equilibrated Coulomb density is the constant density n(r) = nc.

In the general case of finite screening, the Coulomb results are not valid anymore,
but the principle of equilibrium changes drastically. Now, a hollow charged sphere
produces a force towards the center [Pie08], and in case of a constant density this is not
balanced by the outward going force F<. In order to balance the force an additional
central charge, i.e., a higher central density, is required. Thus, the equilibrium density

0 0.2 0.4 0.6 0.8 1
r/RC

−1

−0.5

0

0.5

1

F
/(
m
ω

2 0R
C
)

Fφ

F<

F>

κRC = 6
κRC = 2
κRC = 0

Figure 2.6: Local force equilibrium within a Yukawa ball. For each r ≤ Rmf the external
force Fφ(r), the Yukawa repulsion F<(r) of all inner particles, and the Yukawa repulsion
F>(r) of all outer particles result in a zero net force. In the Coulomb case (κRC = 0) the
force F>(r) vanishes identically.
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2 Ground state theory of Yukawa balls

is not constant, but has to increase towards the center. The resulting equilibrated
forces are displayed in figure 2.6 for some screening parameters showing the general
differences between the Coulomb and the Yukawa principles of forces.

2.3 Simulation Results of Yukawa Balls

The density profiles obtained in the previous section utilize the mean-field approxi-
mation. In order to check the quality of this approximation, the density profiles can
be compared with results of numerical simulations. One of the best methods for the
simulation of the canonical ensemble is the Monte Carlo method with the Metropolis
algorithm, which can accurately calculate ensemble averages of physical quantities for
finite temperatures [Bon06b]. As an example of such a Monte Carlo simulation, figure
2.7 shows the ensemble averaged density of a Coulomb cluster with N = 100 particles
for various small temperatures. One clearly sees the shell structure, which becomes
more pronounced when the temperature is reduced. For very low temperatures, even
a subshell structure emerges.

0

3

6

9

12

15

n
(r

)/
n

C

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
r/RC

kB T = 2.8×10−5 φ(RC)
kB T = 2.3×10−4 φ(RC)
kB T = 4.7×10−4 φ(RC)

Figure 2.7: Density profile of a Coulomb cluster with N = 100 particles for three low
temperatures obtained from Monte-Carlo simulations.

26



2.3 Simulation Results of Yukawa Balls

2.3.1 Ground State Simulations

In case of vanishing temperature the Metropolis algorithm requires more and more
computing time to calculate the correct ensemble averages or rather to accurately
determine the spatial distribution function f s. Thus, this method is not appropriate
for ground state density profiles.

On closer inspection it becomes apparent that the spatial distribution function at
zero temperature may easily be achieved. In fact, it is pinpointed by the global
minima, i.e., the ground states, of the Hamiltonian (1.3). This issue is depicted by
figure 2.8. There, the configuration-dependent energy of some system is sketched and
corresponding distribution functions for three different temperatures T are drawn. For
high temperatures all low-energy configurations are nearly equally probable, while for
low temperatures only the configurations with lowest energy have a finite probability.
Therefore, only the global minima of the Hamiltonian have to be determined to obtain
the spatial distribution function and the ensemble averaged density profile for T = 0,
respectively.

configuration

energy

high T distribution
medium T distribution
low T distribution

metastable configuration

ground state
configuration

Figure 2.8: Sketch of the configuration-dependent energy of some system and the corre-
sponding probability distribution functions for various temperatures. The low temperature
distribution function is peaked at the global minimum, i.e., the ground state configuration.
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2 Ground state theory of Yukawa balls

The Exact Ensemble Averaged Ground State Density

The global minima of the Hamiltonian can be found by global optimization techniques
like Basin-Hopping [Wal97] or simulated annealing [Lud05]. In doing so the isotropy
of the system entails that each global minimum represents a two-dimensional manifold
of global minima, which merge by spatial rotation1. Let rmin denote one of these
minima. The spatial distribution function is then given by

f s(r) = 1
4π

π∫
0

dθ sin θ
2π∫
0

dφ δ3(r1−Rθ,φ rmin,1) · . . . · δ3(rN −Rθ,φ rmin,N ) , (2.41)

where all global minima are obtained from rmin by rotation with respect to the
spherical coordinates θ and φ via the rotational matrix Rθ,φ . The ground state
density

n(r) =
N∑
i=1

∫
dr1 . . . drN f

s(r1, . . . , rN )δ(r − ri) , (2.42)

which follows directly from the spatial distribution function, cf. (2.10), simplifies
considerably by using (2.41), because the Dirac delta functions allow for carrying out
all the spatial integrations. The resulting equation

n(r) =
N∑
i=1

1
4π

π∫
0

dθ sin θ
2π∫
0

dφ δ3(r −Rθ,φ rmin,i) (2.43)

can be further reduced by splitting up the Dirac delta function into its spherical
components and carrying out the angle integrations as well.

Finally, the ground state density, which is expectedly spherically symmetric, can be
written as

n(r) =
N∑
i=1

δ(r − |rmin,i|)
4πr2 . (2.44)

1 The rotational merging defines an equivalence relation on the set of the global minima. Within the
following only one corresponding equivalence class is assumed, i.e., barring the rotational symmetry
there is only one global minimum. An extension to the general case of multiple equivalence classes
is straightforward.
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2.3 Simulation Results of Yukawa Balls

This equation represents the exact, i.e., non-approximated, ensemble averaged ground
state density. It shows a delta-peaked shell structure, which is displayed for the
Coulomb system of N = 100 particles in figure 2.9a.

However, naturally not the structure of all the delta-peaks is called the shell structure
of the cluster, but the widespread structure of grouped delta-peaks. A clearer graphical
representation of this widespread structure is possible by substituting for the point
particles of the ground states spherical objects of small size with blurred1 consistency.
By this mollifying not only the shell structure but also the densities of the shells are
revealed.

The Mollified Ensemble Averaged Ground State Density

The delta-peaked structure of the exact ground state density is based on the point-like
structure of the particles and on the spatial distribution function (2.41), which contains
basically a product of Dirac delta functions. In order to get a smoothed structure
remaining the essential properties of the original structure, the exact density can be
convolved with a mollifier, i.e., a special smooth function. It results in a substitution
of the Dirac delta functions δ3 within (2.43) by a mollifier j2. This corresponds either
to smooth the Dirac delta functions of the spatial distribution function, and therefore
extend the ground state ensemble into a vicinity of the ground states, or, equivalently,
to smooth the point-like particles as is shown in figure 2.10.

In general, the mollifier j has to be a smooth, compactly supported, normalized
function, and within the following the radially symmetric function

js(r) = js(r) = cs e(r2/s2−1)−1
Θ(s− r) (2.45)

with normalization constant

cs =
(

4πs3
1∫

0

dτ τ2 e1/(τ2−1)
)−1
≈ 2.267

s3
(2.46)

1 Actually, a substitution by spherical objects with solid consistency is also possible and gives similar
results, though the resulting density is not smooth.

2 Contrary to this, mollifying expression (2.44) yields a density diverging at r = 0.
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(a) Delta-peaked structure of the exact ensemble averaged ground state density.
Each thin line represents a delta peak.
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(b) Smooth structure of the mollified ensemble averaged ground state density. For
the point particles expanded spherical objects with radius s were substituted. The
three different lines correspond to three different radii of these objects.

Figure 2.9: Ground state density profile of a Coulomb cluster with N = 100 particles
obtained from the global minima of the Hamiltonian.

will be used. The parameter s describes the support of the function and can be
identified with the radius of the finite-sized particles.

The expression of the mollified ground state density, which is derived by using this
mollifier within (2.43),

n(r) =
N∑
i=1

1
4π

π∫
0

dθ sin θ
2π∫
0

dφ js(r −Rθ,φ rmin,i) , (2.47)

can be simplified. Therefore, without loss of generality within each summand of (2.43)
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2.3 Simulation Results of Yukawa Balls

Figure 2.10: A smooth ground state density can by obtained by substituting blurred
spherical objects for the point particles.

rmin is chosen out of the ground states so that its ith particle component rmin,i is
collinear with r. Then, by putting the z-axis of the coordinate system in the same
direction, the norm of r −Rθ,φ rmin,i is given by

√
r2 + r2min,i − 2r rmin,i cos θ. As a

result the mollified density, which is likewise spherically symmetric, yields1

n(r) =
N∑
i=1

Is(r, rmin,i) (2.48)

with the function

Is(r, r̃) ≡
1
2

1∫
−1

dz js
(√

r2 + r̃2 − 2rr̃z
)
, (2.49)

which can be considered as the density at distance r of a mollified particle, which itself
is located at distance r̃. While these equations give the solution for any symmetric
mollifier, in case of (2.45) the integration within the function Is can be carried out

1 For numerical purposes it is convenient to consider bins of Ni particles located at distance ri from
the center. Then (2.48) can be written as n(r) =

∑#bins
i=1 Ni Is(r, ri).
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2 Ground state theory of Yukawa balls

and gives, after some algebra,

Is(r, r̃) =



cs e(r̃2/s2−1)−1
Θ(s− r̃) if r = 0,

cs e(r2/s2−1)−1
Θ(s− r) if r̃ = 0

0 if (r̃ − r)2 ≥ s2

css2

4rr̃

(
Ei( 1

χ)− χ eχ−1
) if (r̃ − r)2 < s2, r > 0,

r̃ > 0, and r + r̃ ≥ s
css2

4rr̃

(
Ei( 1

χ)− χ eχ−1 −Ei(1
ξ ) + ξ eξ−1

)
else,

(2.50a)

with the abbreviations

χ = (r − r̃)2
s2

− 1 and ξ = (r + r̃)2
s2

− 1 . (2.50b)

In contrast to the first three cases of this expression, the conditions for the last two
are maybe not evident. Therefore, within figure 2.11 these two cases are visualized
providing a better understanding of (2.50a).

The explicit form of Is allows for a very fast numerical calculation of the mollified

O

r̃

r

s

(a) Case 4: (r̃ − r)2 < s2, r > 0,
r̃ > 0, and r + r̃ ≥ s

O r̃

r

s

(b) Case 5: (r̃ − r)2 < s2, r > 0,
r̃ > 0, and r + r̃ < s

Figure 2.11: The last two cases of expression (2.50a) are visualized. The density Is at
distance r of the mollified particle (blue), which is located at distance r̃, is determined by
the intersection (red) of the particle with a sphere of radius r.
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2.3 Simulation Results of Yukawa Balls

ground state density. For the aforementioned Coulomb system three smoothed results
corresponding to three different radii s are shown in figure 2.9b. By means of the
mollifier method, there the shell structure, including finite density values within the
shells, is evident. This shell structure bears a resemblance to the Monte-Carlo results
of finite temperature, cf. figure 2.7. Nevertheless, finite temperature simulations
with the Metropolis algorithm use distribution functions which have finite values in
the vicinity of ground state and metastable configurations, as sketched in 2.8. The
mollified ensemble instead only uses configurations in the vicinity of the ground state,
and hence gives an accurate description of the ground state.

By using the mollifier method, the radius s of the particles is a free parameter in the
calculation of the smooth density. Thus, different radii give different density profiles.
However, the essential properties of the original structure, i.e., the positions and the
average densities of the shells, are nearly independent on the choice of s. This is
shown within figure 2.12 in more detail. There, the average densities of the shells
are displayed in addition to the smoothed density profiles for various radii of the
particles ranging from s = 0.03RC to s = 0.05RC . This is the approximate range of

0

10

20

n
(r

)/
n

C

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
r/RC

κdc = 1
N = 1000 sphere radius s = 0.03RC

sphere radius s = 0.04RC
sphere radius s = 0.05RC
Averaged shell densities

Figure 2.12: Smoothed density of the simulation results of a harmonically confined
Yukawa crystal with N = 1000 and κdC = 1 with application of various sphere sizes for
substitution of the particles: 0.03RC (top curve), 0.04RC and 0.05RC. The symbols show
the averaged densities of the shells placed on the centers of mass of the shells.
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2 Ground state theory of Yukawa balls

reasonable radii: for smaller values of s the shells break up into subshells, whereas for
larger values the amplitude of the oscillations decreases further without effect on the
positions and on the average densities of the shells. It is in evidence that only the
density of the outer shell is slightly sensitive to the sphere radius due to the increase
of the shell’s width with increasing s. For the following comparisons, sphere radii
corresponding to the average of the possible density values of the outer shell will be
used, which, in figure 2.12, is close to s = 0.04RC.

2.3.2 Comparison of Simulation and Mean-Field Results

The mollified ground state density profiles give a possibility of comparison with ana-
lytical results like the ones from the mean-field approximation. The direct comparison
of figures 2.4 and 2.9b then shows that the mean-field result does not possess any
shell structure, what is caused by the neglect of correlations. However, the mean-
field results should reflect the average behavior of the density profile, which itself is
expressible by the average densities of the shells.
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n
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)/
n

C

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
r/RC

κdC = 3
κdC = 2
κdC = 1
κdC = 0

, Averaged shell density

Figure 2.13: Mean-field density profile of a harmonically confined dust crystal for four
screening values (lines), from bottom to top: κdC = 0, κdC = 1, κdC = 2, κdC = 3. The
symbols denote the average shell densities, which are obtained from numerical simulations
of a corresponding system with N = 1000 particles.
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2.4 Inclusion of Correlations by Using the Local Density Approximation (LDA)

As an example, the mean-field density of a harmonically confined system withN = 1000
particles, which is large enough to exhibit several shells, is shown in figure 2.13. The
symbols denote the average particle densities of the shells and are obtained from
the mollified results of ground state simulations. The figure shows that the mean-
field results not only reflect the average behavior of the density, but quantitatively
reproduces the radially decreasing average density very well. However, there are
also discrepancies in case of strong screening, cf. κdC & 2. These are caused by
disregarding the correlation contributions in the mean-field energy functional (2.19),
which become important with increasing density. Hence, to remove these deviations
the energy functional has to be extended by correlations.

2.4 Inclusion of Correlations by Using the Local Density
Approximation (LDA)

One way to include correlations in a simple but very successful way is to use the local
density approximation [Tot01, Hen07], which is well-known within the context of the
density functional theory (see, for example, [Par03] or [Bon06b, chapter 3]). This
approximation is based upon the idea of replacing complicated non-local terms within
the energy density by simple local expressions using the known energy density of the
corresponding homogeneous system. Therefore, this method works fine for nearly
homogeneous systems, but it is suitable even in case of rapidly varying densities.

2.4.1 LDA Without Correlations

In order to familiarize with LDA and its characteristics it is advisable first to apply this
method only to the energy density without correlations, which is given by utrap + umf ,
cf. (2.15). To substitute this sum by the local density approximated energy density,
one has to know the corresponding expression of the homogeneous system. This can
be easily obtained by substituting the spatially dependent density n(r) within the
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2 Ground state theory of Yukawa balls

proper energy density by a homogeneous density n0. This yields

u0,trap =n0φ(r) (2.51)

u0,mf =q
2
eff
2 n0

∫
dr′ n0

exp(−κ|r − r′|)
|r − r′|

q2eff
2 n2

0

∫
dr′ 4π r′2 exp(−κr′)

r′
= q2eff n

2
0

2π
κ2 , (2.52)

wherein the infinite homogeneous system is considered. Once the energy density
of the homogeneous system is available, the energy density of LDA follows by the
substitution n0 → n(r)

uLDA,trap(r) = n(r)φ(r) (2.53)

uLDA,mf(r) = q2eff n(r)2 2π
κ2 . (2.54)

While the expression for uLDA,trap is identical to the non-approximated expression
(2.15a), this is not the case for the density of the mean-field energy. The LDA of
the latter one is much simpler than its proper expression (2.15b) and additionally
diverges in the long-range Coulomb limit. The reason for this divergence is the neglect
of finite-size effects, which are discussed separately at the end of this section.

General Solution

By using the local approximated energy density, the LDA energy functional without
correlations is given by

ELDA[n] = NµLDA +
∫

dr n(r)
(
φ(r)− µLDA

)
+ 2πq2eff

κ2

∫
dr n(r)2 . (2.55)

Its minimum, the LDA ground state density nLDA(r), is obtained in the same manner
as the proper mean-field solution, cf. 2.2.2, and thus given by

nLDA(r) = 1
4πq2eff

(
κ2µLDA − κ2φ(r)

)
∀r ∈ VLDA (2.56)

for all space points within the supporting region

VLDA =
{
r ∈ R3|nLDA(r) > 0

}
. (2.57)
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2.4 Inclusion of Correlations by Using the Local Density Approximation (LDA)

The Langrange multiplier µLDA within is obtain from normalization and given by

κ2µLDA =
4πq2effN + κ2 ∫

VLDA
dr φ(r)

|VLDA|
. (2.58)

Both, the density equation and the equation for the Langrange multiplier, are very
similar to the equations of the non-local mean-field solution (2.30) and (2.31), but
show one important difference. The Laplacian of the potential ∆φ(r) is missing.
That is a reflection of the fact that this Laplacian contains derivatives and thus
information about contiguous values of the potential, which are generally suppressed
within LDA.

However, the determination the supporting region VLDA cannot be accomplished as in
2.2.2. This is because the LDA energy density is local, so that minimization does only
give a local condition for the density in contrast to the non-local integral equation
(2.26). The determination can be realized instead by inserting the solution (2.56)
directly into the LDA energy functional (2.55) and minimizing the resulting expression
with respect to VLDA, which yields, after some algebra,

µLDA = φ(r) ∀r ∈ ∂VLDA . (2.59)

Similar to (2.33), due to the symmetry of the isotropically confined Yukawa balls, the
LDA supporting region is given by a ball

VLDA = B(RLDA) . (2.60)

The boundary of this ball is described solely by one parameter, the LDA radius RLDA,
so that (2.59) results in

µLDA = φ(RLDA) , (2.61)

which is an implicit equation for this radius.

37



2 Ground state theory of Yukawa balls

Harmonic Confinement

For the harmonic form of the confinement this implicit radius equation can be explicitly
solved and yields

RLDA = 5

√
15R

3
C
κ2 , (2.62)

and the density profile is only radially dependent and reduces to

nLDA(r) = nC
κ2

6
(
R2

LDA − r2
)
Θ(RLDA − r) . (2.63)

Corresponding results are shown in figure 2.14 for three screening parameters. The
density profiles clearly posses a parabolic decrease away from the trap center until
they vanish in a continuous manner. An increase of the screening parameter κRC

leads to a compression with respect to the Coulomb case. At the same time the
density values increase continuously, most significantly in the center. Thus, in the
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κRC=1

LDA without correlations
mean-field

Figure 2.14: Density profile of harmonically confined dust crystals in local density
approximation without correlations for three screening parameters (lines), from bottom
to top: κRC = 1, κRC = 15, κRC = 30. For comparison, the corresponding non-local
mean-field results are shown by the dashed lines.
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2.4 Inclusion of Correlations by Using the Local Density Approximation (LDA)

case of the harmonic potential, the LDA density profile without correlations bears
qualitative resemblance to the non-local mean-field density profile.

However, quantitatively in two points both approximations differ from one another as
can also be seen in figure 2.14. Firstly, the density in the local density approximation
does not show a discontinuity at r = RLDA, in contrast to the mean-field result. This
is due to the neglect of finite-size effects in the LDA derivation. Secondly, LDA yields
too small values for the density – most evidently in the diverging Coulomb limit.
However, this underrating of the density is reduced with increasing values of the
parameter κRC. The reason for this improved behavior with increasing κRC is due
to the fact that an increase of κ contracts the effective area of integration within
(2.52). This contraction is in favor of the accuracy of the LDA, because the decreased
integration volume contains a more homogeneous density. Additionally, an increase of
the particle number N and consequently of RC flattens the density profile, and will
similarly improve LDA.

In summary, the local density approximation without correlations has shown that
results of this kind of approximation will of course not be as accurate as their non-
local counterparts, but give a good approximation, especially in the case of strong
screening.

Improvement of LDA by Inclusion of Finite-Size Effects

Despite the strong results of the LDA density profile without correlations, the local
density approximation breaks down in the Coulomb case as can be seen in figure 2.14
or directly from the density (2.63). Hence, the density cannot be normalized anymore,
which is the same as in the two-dimensional case [Tot01]. However, the application
of the local density approximation cannot be the reason for this breakdown, because
this method is based upon the usage of results from the homogeneous system, and
the Coulomb system in mean-field approximation is homogeneous with density nC.

In fact, the cause of the breakdown is the use of the infinite homogeneous system as a
reference system, which entails the neglect of any finite-size effects. This failure can
be avoided by replacing the energy density of interaction (2.52) by the corresponding
expression of the finite homogeneous system. In case of isotropically confined particles,
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2 Ground state theory of Yukawa balls

this system is a ball with radius Rfs and the energy density is given by

u0,mf = q2eff
2 n0

∫
B(Rfs)

dr′ n0
exp(−κ|r − r′|)
|r − r′|

= q2eff
2 n2

0
2π
κr

Rfs∫
0

dr′ r′
{
− exp(−κ(r + r′)) + exp(−κ|r − r′|)

}

= q2eff n
2
0

2π
κr

(
e−κr

r∫
0

dr′ r′ sinh(κr′) + sinh(κr)
Rfs∫
r

dr′ r′ e−κr′
)

= q2eff n
2
0

2π
κ2

(
1− e−κRfs(1 + κRfs)

sinh(κr)
κr

)
, (2.64)

including a finite-size contribution, which prevents the problem of divergence at κ→ 0.
As a result, the finite-size effects lead to a corrected density profile

n(r) = 1
4πq2eff

κ2µ− κ2φ(r)
1− e−κRfs(1 + κRfs)sinh(κr)/κrΘ(Rfs − r) , (2.65)

instead of equation (2.63), which indeed yields the constant solution n(r) = nC in the
harmonically confined Coulomb case.

As an example, the density profiles with (fs corrected) and without these finite-size
contributions are shown in figure 2.15 for N = 1000, κdC = 0.3. One clearly sees that
in the case of finite-size correction, the density profile shows a discontinuity at the
boundary and, correspondingly, it yields increased values of the density. However,
the density profile including those edge effects is not monotonically decreasing away
from the trap center but has a density increasing part in the outer range due to the
space dependence of the denominator in (2.65), cf. the dashed-dotted line. This is in
contrast to the proper mean-field results.

A more accurate, monotonically decreasing density profile can also be obtained by
taking the finite-size effects only partly into account (partly fs corrected) by using
not the finite homogeneous sphere centered at the origin but centered at the point r
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Figure 2.15: LDA density profiles of harmonically confined dust crystals with N = 1000
and κdc = 0.3 with and without finite-size effects included. For comparison the exact
non-local mean-field result is also shown. The difference between the finite-size correction
(fs corrected) and the partial finite-size correction (partly fs corrected) is described in the
text.

where the energy density is calculated. This yields

u0,mf = q2eff
2 n0

∫
B(r,Rfs)

dr′ n0
exp(−κ|r − r′|)
|r − r′|

= q2eff n
2
0 2π

Rfs∫
0

dr′ r′ e−κr′

= q2eff n
2
0

2π
κ2

(
1− e−κRfs(1 + κRfs)

)
. (2.66)

This expression also has no divergent limit for κ→ 0, and, at the same time, yields
monotonically decreasing density profiles

n(r) = 1
4πq2eff

κ2µ− κ2φ(r)
1− e−κRfs(1 + κRfs)

Θ(Rfs − r), (2.67)

as can be seen by the dashed line in figure 2.15.

The two methods to include finite-size effects as well as LDA with the infinite ho-
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×r

(a) Mean-field

×r

(b) LDA (infinite reference system)

×r

(c) LDA (fs corrected)

×r

(d) LDA (partly fs corrected)

Figure 2.16: Comparison of the mean-field approximation and the various local density
approximations for calculating the energy density of interaction u0,mf in the case of finite
screening. Within the graphics the system is represented by the dashed line. The hatched
region shows the integration area used within the method, whereas the solid gray region
shows the effective integration area due to finite screening. The color gradient within (a)
represents the non-constant density of the system which is taken into account within the
proper mean-field approximation (dark colors correspond to high densities). In contrast,
LDA uses the density at point r for the whole integration area.

mogeneous reference system differ only in the (effective) integration area within the
energy density of interaction. In order to comprehend these differences, the integration
areas are compared, together with the corresponding mean-field area, in figure 2.16.
First, consider the Coulomb case, i.e., where the solid regions fill out the hatched
ones and where the density is constant within the proper mean-field approximation,
too. There, the integration of 2.16a is equal to 2.16c, thus the density obtained by
LDA (fs corrected) is equal to the mean-field one. In contrast to that, the effective
integration area within 2.16b is infinite leading to the breakdown mentioned above.
In the case of finite screening, where the integration area is effectively reduced, 2.16a
and 2.16c still have the same region of integration. But the constant approximation
within 2.16c, contrary to 2.16a, leads to an underestimation of the energy density in
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2.4 Inclusion of Correlations by Using the Local Density Approximation (LDA)

the outer region of the system – the high values of density towards the center will
be ignored. Eventually this leads to the non-monotonic density profile of LDA (fs
corrected). By contrast, 2.16d features an additional effective integration area, which
partly prevents the underestimation leading to the more accurate density profile of
LDA (partly fs corrected).

Consequently, for isotropically confined Yukawa systems an improvement of LDA is
possible by including finite-size effects. However, for small values of the screening
parameter even the improved local density approximation does not approach the
degree of accuracy obtained by the non-local mean-field approximation, cf. figure
2.15. On the other hand, for increased screening the finite-size effects do not alter the
density profile significantly, what is shown in figure 2.17. Therefore, equation (2.52)
of the infinite homogeneous system will be used in the following.

2.4.2 LDA with Correlations

The LDA energy functional ELDA[n] considered up to now contains only the energy
densities of the confinement and of the mean-field interaction. The inclusion of particle
correlations via LDA can be accomplished by using the energy density of correlations
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Figure 2.17: Comparison of LDA density profiles with the inclusion finite-size effects
(solid lines) and without the inclusion (dashed lines) for four screening parameters.
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of the homogeneous system. An accurate approximation of this energy density is
given for n

1
3
0 ≥ 3κ/(20π) by

u0,corr = −γ1 q
2n

4
3
0 exp

(
−γ2 κn

− 1
3

0 + γ3
(
κn
− 1

3
0

)4)
(2.68)

with

γ1 = 1.444 , γ2 = 0.375 , γ3 = 7.4 · 10−5 , (2.69)

and was calculated by Totsuji et al. [Tot06b] from the (numerically obtained) Madelung
energy of the corresponding Yukawa lattice. The local approximated energy density
uLDA,corr(r) then follows by substituting the density of the homogeneous system n0

by the local density n(r) of the inhomogeneous system. Consequently, the complete
ground-state energy functional in local density approximation reads as

ELDA[n] = N µLDA +
∫

dr u(r) (2.70)

with the energy density

u(r) = n(r)
(
φ(r)− µLDA

)
+ q2eff n(r)2 2π

κ2

− γ1q
2n(r)

4
3 exp

(
−γ2κn(r)−

1
3 + γ3

(
κn(r)−

1
3
)4)

. (2.71)

In order to assess the importance of the correlations within (2.71), the ratio of energy
densities of correlations and of the mean-field interaction is plotted in figure 2.18.
This ratio only depends on one parameter, z(r) = 3

√
n(r)/κ, and shows three different

regions.

1. For z & 1 the absolute of the ratio is very small and hence correlations are
negligible.

2. For z . 1 the absolute of the ratio has higher values implying the importance
of the correlations. This fact allows for a rough estimation of the screening
values at which correlations become important. By approximating n(r) by nLDA

from (2.63) one obtains κRC & 0.5 (3N/4π)5/9. For the example of figure 2.19
with N = 2000 this yields screening values κRC & 15, which indeed is a good
estimation.
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Figure 2.18: The ratio of the energy densities of correlations and of the mean-field
interaction as a function of its local parameter z(r) = 3

√
n(r)/κ is shown. Three regions

are highlighted which display the different kinds of importance of the correlations.

3. For z . 0.12 the absolute of the ratio exceeds the value of one. Hence, the
correlation energy dominates the mean-field energy.

As before, variation of the energy functional yields the LDA ground state density
nLDA(r), but now with correlations included. Due to the correlations, the energy
density is strongly non-linear and thus does not allow for an explicit solution. However,
an implicit solution is possible and is conveniently given as a function of z(r) by

0 = z(r)3 + φ(r)− µLDA
4πκq2eff

− N

3π(N − 1)
(
γ1z(r) + γ1γ2

4 − γ1γ3z(r)−3
)

(2.72)

× exp
(
−γ2z(r)−1 + γ3z(r)−4

)
∀r ∈ VLDA .

The solution of this density equation, the Lagrange parameter µLDA as well as the
supporting region VLDA (respectively the LDA radius RLDA) have to be determined
numerically. For the case of a harmonic confinement, results are given in figure 2.19.
There, the LDA ground state density profiles with correlations are shown for three
different screening parameters. For comparison, the LDA results without correlations
are shown, too. In case of low screening both density profiles are identical so that
there is no effect of the particle correlations, in agreement with figure 2.18. But with
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Figure 2.19: Density profiles of harmonically confined dust crystals with N = 2000
particles in local density approximation with correlations for three screening parameters
(lines), from bottom to top: κRC = 5, κRC = 15, κRC = 30. For comparison, the
corresponding LDA results without correlations are shown by the dashed lines.

increasing screening the correlation contributions within LDA alter the curvature of the
profile, which rises more steeply towards the center. Hence, the particle correlations
tend to increase the central density of the Yukawa balls.

On grounds of the limitation of (2.68), the resulting equation for the density, (2.72),
is not valid for densities smaller than the limiting density n∗ = 9nC(κdC)3/(4000π2).
However, this limitation is irrelevant as this limiting density is in all cases much
smaller than the average density. For example, the values of n∗, corresponding to the
density profiles within figure 2.19, are 2.8 · 10−5nC, 7.7 · 10−4nC, and 6.2 · 10−3nC.

2.4.3 Comparison of Simulation and LDA Results

The comparison of simulation and mean-field results in section 2.3.2 revealed a very
good agreement for weak screening, but some discrepancies for strong screening, which
were attributed to the missing correlations within the mean-field approximation. The
local density approximation, however, allows for the inclusion of such correlations in a
simple manner and works accurately just in case of strong screening, as was shown in
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Figure 2.20: LDA density profiles with correlations of harmonically confined dust crystals
with N = 1000 particles for four screening values (lines), from bottom to top: κdC = 0
(black), κdC = 1 (blue), κdC = 2 (green), and κdC = 3 (magenta). The symbols denote
the average shell densities, which are obtained from corresponding numerical simulations.
For comparison, the mean-field results are shown by dashed lines.

section 2.4.1. Consequently, in this case LDA results should be in good accordance
with simulation results. As a matter of fact, this is the case as shown in figure 2.20.

Therein, LDA ground state density profiles with correlations are displayed for four
different screening parameters together with the average particle densities of the shells,
which are obtained from mollified results of ground state simulations. For comparison
the mean-field density profiles are shown, too. The figure reveals that LDA allows for
removing the discrepancies of the mean-field approximation, which arise in case of
strong screening, but it does not feature the accuracy of the latter in case of weak
screening. Therefore, both approximations complement one another in the description
of the average density of the Yukawa balls, and the issue of the screening effect on
the average particle distribution is satisfyingly settled for arbitrary screening.

In order to describe not only the average behavior of the density but also its shell
structure, the local density approximation is not appropriate, because it is only
useful within the study of long-range correlations [Han91]. The shell-causing short-
range correlations, however, are not included. For a systematic treatment of these
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2 Ground state theory of Yukawa balls

correlations as well, the pair correlation function has to be involved in the energy
expression, cf. (2.14). Therefore analytical solutions have to be abandoned, and
schemes like the BBGKY hierarchy within equilibrium [Han91], or the Ornstein-
Zernike relation including closure approximations [Han91, Ich94] are needed. However,
for ground states the accurate applicability of available closure relations is not a
foregone conclusion and subject of ongoing research.

2.5 Shell Models of Yukawa Balls

In order to describe the shell structure of the Yukawa balls the so-called shell models,
in spite of their simplicity, proved to be very successful. These models possess an
immanent shell structure by making the ansatz

nsm(r) =
L∑
ν=1

Nν
δ(|r| −Rν)

4πR2
ν

(2.73)

for the ensemble averaged density. Thus, there are L infinitely thin origin centered
shells with radii Rν and “occupation numbers” Nν . The occupation numbers count
the number of particles on each shell and hence fulfill ∑L

ν=1Nν = N . A sketch of the
structure is shown in figure 2.21 for L = 3. In spite of the similarities to the exact
density (2.44), shell models attempt to reproduce only the global shell structure of
the cluster. For this purpose, the parameters L, {Rν}, {Nν} have to be determined,
what is carried out by (numerically) minimizing a corresponding energy function

Figure 2.21: Sectorial view of a shell model structure with L = 3 shells.
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Esm
(
L, {Rν}, {Nν}

)
with respect to these parameters. This energy function then

specifies the individual shell model.

The simplest shell model is the mean-field shell model, which neglects the contributions
of the correlations. By analogy to electrostatics, it can be seen as a series of interlaced
homogeneously charged capacitors. This model (or rather its energy function) can be
easily obtained by evaluating the mean-field energy functional (2.19) at the density of
the ansatz (2.73), i.e., Emf [nsm]. It yields, after some algebra [Hen06],

Esm,mf
(
L, {Rν}, {Nν}

)
=

L∑
ν=1

Nν

{
φ(Rν) + q2eff

e−κRν
Rν

(2.74)

×
(sinh(κRν)

κRν

Nν

2 +
L∑
µ<ν

sinh(κRµ)
κRµ

Nµ

)}

and consists of three parts, which are common to all shell models. Beside the energy
of confinement, there are the intra-shell energy and the inter-shell energy, which take
into account the interaction energy of the particles on the same shell and on different
shells, respectively. The mean-field model can slightly be improved by allowing for
the possibility of a single central particle without self-interaction [Tsu93] and by a
counting correction Nν → Nν − 1 in the intra-shell energy [Hen06]. In the Coulomb
limit (κ→ 0) it reduces to

Esm,HA
(
L, {Rν}, {Nν}

)
=

L∑
ν=1

Nν

{
φ(Rν) + q2

Rν

(
Nν

2 +
L∑
µ<ν

Nµ

)}
, (2.75)

i.e., the shell model of Hasse and Avilov [Has91], which was designed to describe
spherical ion crystals. Both mean-field models tend to the structure L → ∞ with
Nν → 0 for all ν, what reflects the results of section 2.2 showing that nmf yields the
lowest mean-field energy. Therefore, in order to get improved results, correlations
have to be included.

In the Coulomb case various extended models were proposed, which differ in the
expression of the intra-shell energy Eintra. They are summarized in table 2.1. The
first extension of the mean-field model was given by Tsuruta and Ichimaru [Tsu93].
They took into account intra-shell correlations by allocating a fixed domain to a given
particle on a shell ν and distributing the Nν − 1 other particles uniformly on the
shell except for that domain. The surrounding area of each particle not occupied by
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2 Ground state theory of Yukawa balls

Coulomb Shell Model Eintra/q
2 of shell ν

Hasse, Avilov [Has91] NνNν/(2Rν)

Tsuruta, Ichimaru [Tsu93] Nν(Nν −
√
Nν)/(2Rν)

Kraeft, Bonitz [Kra06] Nν(Nν − ε
√
Nν)/(2Rν)

Cioslowski, Grzebielucha [Cio08]
ETh(Nν)/Rν

≈ Nν(Nν − ε
√
Nν + ε′/

√
Nν)/(2Rν)

Table 2.1: Coulomb shell models of various authors and their expression for the intra-
shell energy of shell ν.

others was assumed to be equal to the total area of the shell divided by Nν . This
simple partitioning allows to reproduce the ground state energy within a relative error
less than 5%, but produces systematic errors for the radii and occupation numbers
[Kra06].

An improved shell model was given by Kraeft and Bonitz [Kra06], who generalized
the simple partitioning: Because there is no obvious reason why the domain of a
particle is given by the total area of its shell ν divided by Nν , they introduced a
parameter ε, which accounts for a different size of the domain. The parameter ε
was obtained by fitting either the energy Esm or the occupation numbers to results
from numerical simulations. Both methods allow a reproduction of energies, radii
and occupation numbers within very good accuracy. Interestingly, for large N the
parameter converges to ε ≈ 1.104. The reason for this convergence was identified by
Cioslowski and Grzebielucha [Cio08]. They showed that the exact intra-shell energy
is strongly related to the energy solution ETh(Nν) of the Thomson problem with Nν

particles [Why52], and they used a conjectured asymptote of the Thomson problem
to reason the convergence. This asymptote of the Thomson problem and hence the
large Nν limit ε ≈ 1.104 was first noted by Erber and Hockney [Erb91].

In case of Yukawa interaction the situation is more complex. In order to extend
the mean-field shell model (2.74) by correlations, one ansatz was made by Totsuji
et al. [Tot05]. They approximated the correlation energy by numerical results from
calculations of a plane, two-dimensional Yukawa lattice and obtained for the intra-shell
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2.5 Shell Models of Yukawa Balls

energy of shell ν

ETot
intra,ν = q2N2

ν

2Rν
e−κRν sinh(κRν)

κRν
− q2Nν

√
Nν

2Rν
fTot
corr

(2κRν√
Nν

)
(2.76a)

with

fTot
corr(x) = 1.9605− 0.8930x+ 0.1959x2 − 0.01715x3 . (2.76b)

While the results of this model are quite good for finite screening, the Coulomb
limit, which is given by the Coulomb shell models, is missed. Additionally, for small
particle numbers on a shell, the absolute value of the correlation energy may exceed
the mean-field energy, what is not physical.

Another ansatz was made by Baumgartner et al. [Bau07]. In analogy to the Coulomb
shell model of Kraeft and Bonitz, they substituted Nν → Nν − ε

√
Nν within the

intra-shell energy Eintra of the Yukawa mean-field shell model. In further work, a
function ε(Nν), which is dependent on the particle number of the shell, was substituted
for the single parameter ε [Kä08]. As a result, the shell model is able to reproduce
energies, radii and occupation numbers with good accuracy for small screening values.
However, in case of larger screening values deviations arise.

2.5.1 An Improved Yukawa Shell Model

A generally suitable Yukawa shell model can be obtained by applying the basic ideas
of Tsuruta, Ichimaru [Tsu93] and Kraeft, Bonitz [Kra06] to the Yukawa case. That is,
in order to account for the strong short-range repulsion and hence for the correlations
of the particles, the Yukawa mean-field shell model can be improved by allocating
a fixed circular domain to a given particle on a shell ν, which is, without loss of
generality, placed on the z-axis at Rν ẑ. The Nν − 1 other particles are uniformly
distributed on the remaining area

Aθ̃ =
{
r = (r, θ, φ) ∈ R3∣∣r = Rν , θ̃ ≤ θ ≤ π, 0 ≤ φ ≤ 2π

}
(2.77)

on that shell, where θ̃ is the azimuthal angle describing the circular domain, which
is visualized in figure 2.22. The uniform distribution of all the other particles on Aθ̃
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2 Ground state theory of Yukawa balls

Figure 2.22: The circular domain (red) of a given particle placed on the z-axis at Rν ẑ
is shown in addition to the area Aθ̃ (blue), where Nν − 1 other particles are distributed
uniformly.

results in the density

nθ̃(r) = δ(r −Rν)Θ(θ − θ̃) Nν − 1
2πR2

ν(1 + cos θ̃)
, (2.78)

at this area, which is normalized to∫
Aθ̃

dr nθ̃(r) = Nν − 1 . (2.79)

The intra-shell energy of the shell is then given by

Eintra,ν = q2
Nν

2

∫
Aθ̃

dr nθ̃(r)e
−κ|r−Rẑ|

|r −Rẑ|

= q2
Nν(Nν − 1)

2Rν
e−κRν

√
2−2 cos θ̃ − e−2κRν

κRν
(
1 + cos θ̃

) . (2.80)
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Adopting the idea of Kraeft and Bonitz, the area occupied by one particle, which is
given by 4πR2

ν − |Aθ̃| = 2πR2
ν

(
1− cos θ̃

)
, need not to be the area obtained by simple

partitioning but can be a multiple of it. Therefore, it is convenient to set

2πR2
ν

(
1− cos θ̃

)
= γ

4πR2
ν

Nν
, (2.81)

where the factor γ is formally allowed to be in the range 0 ≤ γ ≤ Nν . Using this
result the intra-shell energy of shell ν is written as

Eintra,ν = q2Nν(Nν − 1)
2Rν(1− γ/Nν)

e−2κRν
√
γ/Nν − e−2κRν

2κRν
. (2.82)

The factor γ within this expression is not determined yet. The simplest expression
is obtained by choosing γ = 0. Then (2.82) reduces to the intra-shell energy of the
Yukawa mean-field model including the counting correction Nν → Nν − 1, cf. (2.74).
Geometrically this choice means θ̃ = 0, i.e., there is no domain occupied by just
one particle, and thus correlations are not included. On the contrary, the simple
partitioning, which is obtained by setting γ = 1, includes correlations. In that case
the intra-shell energy is given by

Eγ=1
intra,ν = q2N2

ν

2Rν
e−2κRν/

√
Nν − e−2κRν

2κRν
, (2.83)

which in the Coulomb limit (κ → 0) reduces to the corresponding expression of
Tsuruta and Ichimaru [Tsu93]. In the general case of finite screening this expression
is worth mentioning as well, because separation of the mean-field and the correlation
energy yields

Eγ=1
intra,ν = q2N2

ν

2Rν
e−κRν sinh(κRν)

κRν
− Nν

√
Nν

2Rν
fcorr

(2κRν√
Nν

)
(2.84a)

fcorr(x) = 1− e−x
x

≈ 1− 0.5x+ 0.167x2 − 0.042x3 , (2.84b)

which reveals the structure of the intra-shell energy of Totsuji’s Yukawa shell model
(2.76). By means of (2.84), now this structure can be understood from an analytical
point of view and, at the same time, the expression for the correlation energy is
improved by taking into account the non-flat geometry of the shell.
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2 Ground state theory of Yukawa balls

However, generally γ depends on Nν and κRν1, and its analytical determination via a
(generalized) Thomson problem, namely that of a weighted Riesz potential [Bor08], is
currently not possible due to mathematical difficulties2. Nevertheless, the calculation
of γ(κRν , Nν) can be achieved by comparing the analytical expression (2.82) with
results from a numerical minimization of the shell’s energy. Figure 2.23 shows the
corresponding findings for various particle numbers on the shell.

In the Coulomb case (κRν = 0) γ corresponds to ε2 of the Coulomb shell models.
Hence, γ(0, Nν) should converge for large Nν to ε2 ≈ 1.219, which indeed is observable.
With increasing κRν , however, there is an almost linear slope of γ(κRν , Nν), which
have to attenuate for large κRν due to γ ≤ Nν , and which seems to attenuate for
large Nν . Qualitatively, such a slope is comprehensible due to the assumption of a
uniform distribution of the Nν − 1 particles on Aθ̃: with increasing κRν , the uniform
distribution yields an overestimated energy of interaction and, therefore, needs a

ε2

0 1 2 3 4 5
κRν

1.4

1.6

1.8

2

γ
(κ
R
ν
,N

ν
) Nν = 2

Nν = 4
Nν = 8
Nν = 15
Nν = 25
Nν = 50
Nν = 400

Figure 2.23: The function γ(κRν , Nν), which is obtained by comparison of (2.82)
with numerical minimization results, is shown as a function of κRν for various particle
numbers. The dashed line, ε2 ≈ 1.219, marks the limit in the Coulomb case.

1 The dependence on the product κRν follows from a simple dimensional analysis.
2 In fact, it can be shown that

√
γ(0, Nν) corresponds to ε of the Coulomb shell models and even

an analytical expression of this ε is so far only conjectured [Kui98]!
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correction. Within the actual shell model (2.82), this correction is accomplished by
reduction of Aθ̃ and, hence, by increasing γ. The estimation of the energy, however, is
more correct for large Nν , what explains the attenuation of the slope. A quantitative
estimate of these slopes remains to be done, though.

In summary, by consistently adopting the basic ideas, which have been applied to the
Coulomb shell models, a Yukawa shell model could be derived. It yields the correct
Coulomb limit and, moreover, is applicable to the general case of finite screening, too.
The accuracy of this Yukawa shell model, regarding the total energies, the shell radii,
and the occupation numbers, still has to be analyzed in more detail by comparison
with numerical simulations, what is topic of ongoing research.

Eventually, in table 2.2 all the previous Yukawa shell models are summarized showing
their similarities and differences, also with regard to the Coulomb shell models of
table 2.1.

Yukawa Shell Model Eintra/q
2 of shell ν

Mean-field model NνNν
2Rν

exp(−κRν) sinh(κRν)
κRν

Totsuji et al. [Tot05] NνNν
2Rν

exp(−κRν) sinh(κRν)
κRν

− Nν
√
Nν

2Rν fTot
corr(2κRν√

Nν
)

Baumgartner et al. [Bau07] Nν(Nν−ε
√
Nν)

2Rν
exp(−κRν) sinh(κRν)

κRν

Henning, equation (2.82) Nν(Nν−1)
2Rν(1−γ/Nν)

exp(−2κRν
√
γ/Nν)−exp(−2κRν)
2κRν

Table 2.2: Yukawa shell models of various authors and their expression for the intra-shell
energy of shell ν.
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2.6 Summary

Within this chapter a statistical theory suitable to describe the ground state of
Yukawa balls was presented. By means of a variational principle the ground state
density could be derived from the ensemble averaged energy. In order to obtain
analytical results, two different approximations were used, the mean-field and the local
density approximation. While the mean-field approximation takes into account the
full non-local density of the mean-field energy but completely neglects the correlation
contributions, the local density approximation simplifies the mean-field energy but
allows for the inclusion of correlations. A comparison of the ground state densities
resulting from both approximations with the numerically obtained exact density was
possible by smoothing the exact density via the mollifier method. This comparison
showed a very good agreement with the average density and also pointed out that
both approximations complement one another in the description of the ground state
density. The effect of screening on the density profile could therefore be understood
from a theoretical point of view, offering a quantitative description.

The used approximations, however, are not capable for the description of the observed
shell structure, which needs the inclusion of short-range correlations, cf. 2.4.3. There-
fore, the pair correlation function has to be taken into account, what is subject of
current research. A further subject is the extension to finite temperatures, which are
accessible, e.g., by usage of the Helmholtz free energy instead of the energy (2.14).
First results along this way have recently been obtained by Wrighton et al. [Wri09].

An alternative approach towards the ground state particle distribution of the Yukawa
balls are artificial Yukawa shell models, which are an extension of the established
Coulomb shell models. However, previous Yukawa shell models show wrong limits
or yield unphysical results for small or large screening values. By using the basic
concepts of successful Coulomb shell models, eventually a Yukawa shell model could
be derived, which is able to overcome these limitations. A detailed investigation of
this model regarding its descriptive power is topic of ongoing work.
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CHAPTER 3

Normal Modes of Finite Clusters

Dynamical excitations, in addition to ground state properties, provide insight into
correlation effects [Dub96a, Dub96b] and are particularly used to study melting
behavior [Apo07, Sch95]. A successful approach to external excitations of a system
is the normal mode analysis, i.e., the linearized theory of collective motions, which
resolve every small movement into its spectral constituents. The normal mode
analysis was already applied within the investigation of confined Coulomb systems
[Cal07, Dub96a, Dub96b, Sch95], Yukawa systems [Bau07, She05a, Ami01, Mel01],
and other types of finite clusters as well [Dyk08, vV01, Pos96, Wal91].

Within the previous investigations three unique spectral collective motions (modes)
turned out to be of peculiar generality and seem to exist in all these systems: the
rotational motions of the whole system, the center of mass oscillations (sloshing modes),
and the uniform radial pulsation – the breathing mode. However, in frame of the thesis
at hand it could be shown that the generality is not given for the breathing mode
[Hen08], the existence of which requires the fulfillment of various strict conditions.

In order to clearly state the physical facts and their consequences, this chapter is
organized as follows. After a brief recapitulation of normal modes in general, the
normal modes of harmonically confined Coulomb systems and Yukawa systems are
introduced. Upon detecting first irregularities of the breathing mode in Yukawa
systems, the main part of this chapter covers the breathing mode, its general existence
conditions, and resulting deviations, which are depicted by several examples. One of
the important consequences, the possible existence of multiple monopole oscillations,
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3 Normal Modes of Finite Clusters

is treated subsequently. Finally, the effect of dissipation on the normal modes, which
is crucial for dusty plasmas, is investigated.

3.1 Recapitulation of Normal Modes

In the following, properties of normal modes will be elaborated, which apply to
harmonically confined dust crystals, but which are not restricted to these. Therefore,
the Hamiltonian (1.3) is considered to describe d-dimensional systems, which are
not restricted to the potentials (1.2), but allow for an arbitrary distance-dependent
interaction v(|ri−rj |) and for any isotropic confinement potential φ(|ri|). Then, small
excitations from a ground state1 r∗ =

(
r∗1, r

∗
2 . . . r

∗
N

)
∈ RdN are analyzed. Such a

ground state is a minimum of the potential energy U and thus fulfills the equations2

 = ∇iU(r)|r=r∗ = φ′(|r∗i |)
|r∗i |

r∗i +
N∑′

l=1

v′(|r∗il|)
|r∗il|

r∗il ∀i ≤ N . (3.1)

The small excitation is a time-dependent function r(t) in the configuration space
with |r(t)− r∗| � 1. Due to the small amplitude the potential can be approximated
harmonically by

U(r) ≈ U(r∗) + 1
2(r− r∗)THr∗(r− r∗) , (3.2)

where (3.1) and the definition of the Hessian matrix Hr∗ = ∇∇TU(r)|r=r∗ are used.
Because Hr∗ is a real symmetric dN × dN -matrix and positive semidefinite as well,
its eigenvalue problem

λmr̂ = Hr∗ r̂ (3.3)

defines dN eigenvalues λj ≥ 0 and dN linearly independent eigenvectors r̂j , which
form a basis in the configuration space and are conveniently chosen to be orthonormal.

1 The following analysis works all the same for metastable states as well. For reasons of readability
though only the ground states are mentioned.

2
∑′ indicates no summation over equal indices and a vector with two indices is an abbreviation
for the difference of the corresponding single-indexed vectors, i.e., ril = ri − rl.
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Within this basis the excitation can be expanded,

r(t) = r∗ +
dN∑
j=1

cj(t)r̂j , (3.4)

so that the time-dependence is fully determined by the coefficients cj(t) – the normal
coordinates. These normal coordinates obey equations of motion, which follow from
the Hamiltonian (1.3),

0 (1.3)= mr̈ +∇U(r)
(3.2)= mr̈ + Hr∗(r− r∗)

(3.4)= m
dN∑
j=1

c̈j(t)r̂j +
dN∑
j=1

cj(t)Hr∗ r̂j

(3.3)= m
dN∑
j=1

[c̈j(t) + λjcj(t)] r̂j . (3.5)

Because the eigenvectors r̂j are linearly independent each normal coordinate cj(t)
fulfills 0 = c̈j(t) + λjcj(t) with the solution

cj(t) = Aj cos(
√
λjt+Bj) ∀j ≤ dN , (3.6)

in which the constants Aj and Bj have to be determined from the initial conditions
r(0), ṙ(0) of the excitation. Thus, the excitation relative to the ground state, r(t)−
r∗, generally is a superposition of oscillating motions Aj cos(

√
λjt + Bj)r̂j , called

normal modes. Each such normal mode describes a collective motion of all particles
oscillating with the same frequency ωj =

√
λj – the normal frequency. The respective

displacements of the particles are given by the eigenvector r̂j . Consequently, in
order to investigate the excitations of finite clusters their normal modes have to be
considered and with them the eigenvalue problem (3.3) of the Hessian Hr∗ .

3.2 Normal Modes of Confined Coulomb Systems

For the investigation of the normal modes of harmonically confined Coulomb systems
(κ = 0) detailed theoretical studies have been performed for d = 1, 2, 3 dimensions, see

59



3 Normal Modes of Finite Clusters

[Cal07, Dub96b, Sch95] and references therein. It was shown that there exist three
(partially degenerate) normal modes, which are universal, i.e., independent of the
particle number N and independent of the configuration r∗:

The rotational modes (λ = 0) correspond to a rotation of the whole system and which
reflect the axial symmetries of the confinement potential.

The sloshing modes (λ = ω2
0) express that the motion of the center of mass is inde-

pendent of the interparticle forces.

The breathing mode (λ = 3ω2
0) describes a uniform radial expansion and contraction

of all particles.

The existence of these three universal modes is illustrated for the two-dimensional
systems with N = 3, 4, 5 particles in figure 3.1, where all modes of these systems
corresponding to the ground state configuration are shown.

While the ground states, i.e., the global minima of the Hamiltonians can be found
by global optimization techniques like Basin-Hopping [Wal97] or simulated annealing
[Lud05], the normal mode analysis, i.e., the computation of normal frequencies and
normal vectors, can be done by numerical diagonalization of the corresponding Hessian.
For large systems, however, special techniques, e.g., usage of reduced basis sets or
iterative diagonalizations, have to be used to circumvent computational limitations
[Bro95].

N = 3

N = 4

N = 5

rotational
modes

sloshing
modes

breathing
modes

Figure 3.1: All normal modes of two-dimensional harmonically confined Coulomb
systems with N = 3, 4, 5 particles. The dots picture the particles within the ground
state configuration, and the arrows show the direction and amplitude of the oscillatory
motion. The N -independent modes, i.e., the rotational modes, the sloshing modes, and
the breathing modes are highlighted.
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3.3 Normal Modes of Confined Yukawa Systems

For harmonically confined Yukawa systems the interaction potential and thus the
Hessian Hr∗ depend on a screening parameter κ. Hence, in general, the normal
modes will depend on this parameter as well. Within figure 3.2 this situation is
displayed. There, the frequencies of all normal modes are shown for the ground state
of harmonically confined Yukawa systems with N = 16 particles and a screening
parameter ranging from κdC = 0 to κdC = 20.

The figure reveals that there are two mode frequencies independent of screening –
corresponding to the rotational modes and the sloshing modes. These universal modes
are existing in a Yukawa system as in Coulomb systems (and have κ-independent
frequencies). They appear due to the symmetries of the system [Apo07, Par97]. In
general, however, this is not the case for the breathing mode. Its extension to finite
screening shows an increasing frequency, which, to some extend, can be understood
from the functional behavior of the Yukawa interaction [Can98]. Based on this fact, an

0 5 10 15 20
κdC

0

1

2

3

ω
/ω

0

Figure 3.2: The κ-dependence of the normal mode frequencies of a harmonically confined
two-dimensional Yukawa system with N = 16 particles on the screening parameter is
shown. The rotational modes, the sloshing modes and the breathing mode are highlighted
dash-dotted (red line) at ω = 0, dashed (green) at ω = ω0, and with a (blue) dot at
ω =
√

3ω0 and κ = 0, respectively.
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intriguing question arises: is the κ-dependence of the frequency the only irregularity
of the breathing mode in Yukawa systems?
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3.4 Breathing Mode

The breathing mode, i.e., the mode of uniform radial expansion and contraction1,
is known from harmonically confined Coulomb systems. It is of special relevance
since it can be easily excited selectively by variation of the confinement [Mel01] or by
applying external fields [Dyk08]. In particular, the corresponding breathing frequency
can often be precisely measured and may serve as a sensitive indicator of intrinsic
system properties including the screening parameter and the particle charge in complex
plasmas [Mel01].

The continuum analogon to the breathing mode is the monopole oscillation [Dub96b],
which represents the lowest compressional mode within a hydrodynamic approach
[Str96]. Due to the continuum character, this monopole oscillation is applicable to
gas or fluid phases of classical [Gue99, Dub96b, She06b] or quantum systems [Kin04,
Bau09, Mor03] where correlations are weak or moderate. In the strongly coupled
crystalline state, however, where the particles become individually separated, the
concept of the monopole oscillation is questionable. In order to use this concept also in
case of strong correlations, the monopole oscillation is associated [Sch95, Par97, Mel01]
with the oscillation of the mean square radius

R2(t) := N−1r(t)2 . (3.7)

It was then shown [Sch95, Dub96b] that this oscillation is universal in three-
dimensional harmonically confined Coulomb systems, with its frequency, ωMO =

√
3ω0,

equal to the breathing frequency, cf. 3.2. The same, i.e., a universal correspondence
between the frequencies of the monopole oscillation and the breathing mode, also
holds in harmonically confined two-dimensional systems if the interaction is a repul-
sive power law, ∝ 1/rn (n = 1, 2, . . .), or logarithmic [Par97]. Due to this intimate
connection of the breathing mode with the monopole oscillation a confusion of both
concepts emerged [Par97].

However, while a monopole oscillation can appear in all types of finite clusters, a
breathing mode can not be taken for granted. Nevertheless, the existence of this mode

1 A normal mode r̂ is radial if all particle components are proportional to the equilibrium position
r̂i ∝ r∗i , and uniform if the proportionality constants are equal for all particles.
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3 Normal Modes of Finite Clusters

was also assumed for non-Coulomb systems, like Lennard-Jones clusters [Cal07] or
systems with Yukawa interaction [Kon03, She05b, For05]. In the context of this work
it could be shown that these systems actually do not feature a breathing mode in
general, which indeed is a special property of only Coulomb-like interactions [Hen08].

3.4.1 General Conditions for the Existence of the Breathing Mode

In order to find the conditions, at which a breathing mode can occur, the eigenvalue
problem (3.3) of the Hessian has to be analyzed. The standard procedure to evaluate
this equation is to find the roots of its characteristic polynomial yielding all eigenvalues
and hence all eigenvectors. Subsequently an examination of these eigenvectors is
possible regarding the existence an eigenvector r̂BM corresponding to a breathing
mode. Such a vector has to describe a uniform and radial motion of all particles and
therefore is of the form r̂BM ∝ r∗.

However, the degree of the characteristic equation is d ·N which prohibits an analytical
calculation of the eigenvalues and -vectors in the general case and, consequently,
prohibits general statements about the existence of the breathing mode. Therefore,
one has to apply a different approach – the direct mode approach – which focuses
on one mode only: the eigenvector of the breathing mode is directly used within the
eigenvalue equation thus leading to the existence conditions of this mode.

To derive these conditions of the breathing mode’s existence effectively, the eigenvalue
equation has to be expressed within its particle components i ≤ N , because the
potentials φ and v are given for these. Then equation (3.3) reads

λmr̂i =
N∑
l=1

Hr∗
il r̂l =

N∑
l=1
∇i∇Tl U(r)|r=r∗ r̂l . (3.8)

By using the isotropy of φ and the distance dependence of v, some algebra yields for
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each particle-particle component of the Hessian

∇i∇Tl U(r)|r=r∗

=
[
φ′(|r∗l |)
|r∗l |

Id + r∗l r
∗
l
T

|r∗l |3
(
|r∗l |φ′′(|r∗l |)− φ′(|r∗l |)

)]
δil

+
N∑′

k=1

[
v′(|r∗lk|)
|r∗lk|

Id + r∗lkr
∗
lk
T

|r∗lk|3
(
|r∗lk|v′′(|r∗lk|)− v′(|r∗lk|)

)](
δil − δik

)
, (3.9)

where Id denotes the d-dimensional identity matrix. Thus (3.8) reduces to

λmr̂i = φ′(|r∗i |)
|r∗i |

r̂i +
(r∗i · r̂i)r∗i
|r∗i |3

(
|r∗i |φ′′(|r∗i |)− φ′(|r∗i |)

)
+

N∑′

l=1

[
v′(|r∗il|)
|r∗il|

r̂il +
(r∗il · r̂il)r∗il
|r∗il|3

(
|r∗il|v′′(|r∗il|)− v′(|r∗il|)

)]
. (3.10)

Now the aforementioned direct mode approach can be applied. Therefore the eigenvec-
tor r̂ is substituted by the eigenvector of the breathing mode r̂BM = |r∗|−1r∗, which
consequently leads to the existence conditions of this mode

λBMmr∗i = φ′′(|r∗i |)r∗i +
N∑′

l=1
v′′(|r∗il|)r∗il ∀i ≤ N . (3.11)

These N existence equations of the breathing mode have the meaning that the
linearized force on each particle from the confinement and from the pair interactions
(right side) has to be purely radial and uniform, i.e., proportional to r∗i . To find their
solutions, a separation into the two conditions is appropriate.

First, the condition of radiality is equivalent to the tangential components1 of (3.11)

 = r∗i ∧
N∑′

l=1
v′′(|r∗il|)r∗il ∀i ≤ N , (3.12a)

1 While the normal components of these equations denote the projections onto r∗i respectively, the
tangential components correspond to projections perpendicular to r∗i , which in three dimensions
find expression by the cross products r∗i × . . . and in general dimensions by the exterior products
r∗i ∧ . . ..
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3 Normal Modes of Finite Clusters

which can also be rewritten as

N∑′

l=1
v′′(|r∗il|)r∗il = sir

∗
i ∀i ≤ N (3.12b)

with some coefficients si. These radiality equations have two classes of solutions:

R1) The ground state configuration is of special kind featuring, e.g., a rotational
symmetry with respect to all r∗i . In this case, independently of the interaction,
the sum in (3.12b) is proportional to r∗i . Hence, there are numbers si which
fulfill the radiality equations. An example showing such a rotational symmetry
is given in figure 3.4b.

R2) The pair interaction v has a specific form, which can be obtained by adding a
multiple of the tangential components of equations (3.1) to equations (3.12a).
Thus v fulfills the differential equation

v′′(r) = −(γ + 1)v
′(r)
r

, (3.13)

where γ is an arbitrary real number, and whose solutions are1

v(r) ∝

1/rγ γ 6= 0

log(r) γ = 0 .
(3.14)

If the pair interaction has such a form, the condition of radiality follows directly
for every ground state configuration from the property of minimizing the potential
energy, (3.1). In this case the coefficients si are given by

si = (γ + 1)φ
′(|r∗i |)
|r∗i |

. (3.15)

In order to fulfill the existence equations (3.11), the radiality solutions R1) and R2)
also have to meet the condition of uniformity which is equivalent to the normal
components of (3.11)

λBMm = φ′′(|r∗i |) + si . (3.16)

1 In fact, the general solution has a second additive constant, which, however, is irrelevant.
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3.4 Breathing Mode

These uniformity equations also have two kinds of solutions:

U1) The ground state configuration features some special symmetry, e.g., a single
shell configuration, where the coefficients si are independent of i.

U2) In case of the radiality solution R2), the confinement potential φ fulfills the
configuration-independent equation

λBMm = φ′′(r) + (γ + 1)φ
′(r)
r

, (3.17)

which is obtained by using the coefficients (3.15) within (3.16). The solutions of
this differential equation are

φ(r) =


λBMm
2(2+γ)r

2 + c v(r) γ 6= −2
λBMm

2 r2 log(r) + c r2 γ = −2 ,
(3.18)

where γ describes the pair interaction, cf. (3.14), and c is an arbitrary constant.

Consequently, there are two basically different possibilities for the existence of a
breathing mode – a universal breathing mode and a non-universal breathing mode.

Universal Breathing Mode

The previous analysis shows that a universal, i.e., a configuration- and N -independent,
breathing mode exists on the one hand in case of harmonically confined systems,
φ(r) = mω2

0r
2/2, with particles interacting via potentials v(r) proportional to 1/rγ or

to log(r). In these cases the breathing frequency is generally given by

ωBM =
√

2 + γ ω0 . (3.19)

On the other hand, a universal breathing mode also exists for interaction potentials
proportional to r2 if the confinement has the form r2 log(r). In this case also the
prefactor of the confinement determines the breathing frequency. In both cases the
confinement can be modified by an additional term c v(r) without changing the results,
what corresponds to the addition of particles located in the trap origin.

These results of the universal breathing mode are valid for any real γ and any dimension
and coincide, as mentioned previously, in special cases with the results of the monopole
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3 Normal Modes of Finite Clusters

oscillation [Par97]. Furthermore, the conclusion follows that no universal breathing
mode exists for exponential interaction potentials (such as Yukawa, Morse etc.) or
non-monotonic ones (e.g., Lennard-Jones).

Non-Universal Breathing Mode

Beside the universal breathing modes there is a second class of solutions of the existing
conditions (3.11). These are the configuration-dependent solutions, which exist in
case of special highly symmetric configurations. For instance, two-dimensional equally
spaced single shell systems fulfill the conditions (3.11) independently from v and φ.
The same holds for three-dimensional single shell systems, which form Platonic solids
(with or without particle in the center), cf. figure 3.3. In these cases the system looks
the same from every particle’s view. Thus, all existence conditions (3.11) are identical.
Then, since no direction is preferred, the sum has to be proportional to r∗i , and a
unique value λBM ≥ 0 exists fulfilling the existence equations. However, it should be
emphasized that the resulting breathing mode is non-universal and its frequency ωBM

depends on the configuration and on N .

In order to derive an expression for the frequency of non-universal breathing modes,
the existence conditions (3.11) can be multiplied by r∗i and subsequently added up
resulting in

ω2
BM = 1

m|r∗|2

 N∑
i=1

φ′′(|r∗i |)|r∗i |2 + 1
2

N∑′

i,l=1
v′′(|r∗il|)|r∗il|2

 . (3.20)

For harmonically confined systems, by using the equilibrium conditions (3.1), this
expression can finally be written

ω2
BM
ω2

0
= 1−

∑′
i,l
v′′(|r∗il|)|r∗il|2∑′

i,l
v′(|r∗il|)|r∗il|

, (3.21)

which, in the special case of Yukawa interaction, was published by Sheridan [She06a,
She06b].

68



3.4 Breathing Mode

(a) Tetrahedron. (b) Hexahedron (Cube).

(c) Octahedron. (d) Dodecahedron. (e) Icosahedron.

Figure 3.3: The five Platonic solids. Systems with a configuration, in which the particles
are located at the corners of a Platonic solid (with or without particle in the center),
feature a breathing mode.

Quasi-Breathing Mode

In order to exemplify the given results, a numerical normal mode analysis is performed
for systems without a breathing mode and compared to harmonically confined Coulomb
systems. To this end, starting from the ground state configurations of i) Lennard-Jones
clusters [Wal97] and ii) harmonically confined Yukawa systems the normal modes are
calculated for various N and κ, respectively. For each of the systems the deviation of
every mode from a breathing mode, i.e., the deviation from the proportionality r̂ ∝ r∗,
is analyzed. The deviation is quantified by the absolute value of the projection onto
the normalized ground state configuration

P(r̂) =
∣∣∣∣r̂ · r∗

|r∗|

∣∣∣∣ , (3.22)
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3 Normal Modes of Finite Clusters

which has a value of one in case of the breathing mode and a value lower than one in
all other cases. If, for a given system, there is no breathing mode, the mode with the
smallest deviation is referred to as the quasi-breathing mode.

It should be noted that the measure (3.22) gives no direct insights separately into the
uniformity or into the radiality of a mode. On grounds of the proportionality of r̂BM

and r∗, non-uniformity of a mode r̂ arises if r̂i = cir
∗
i , with different ci for different

particles. Non-radiality exists if there is no proportionality for all particles, i.e., there
exist finite tangential velocity components. Finally, there is also the possibility of
anti-phase oscillating particles, i.e., particles, which move inward while the majority
moves outward and vice versa. These deviations from the breathing mode can be
measured by corresponding distribution widths normalized to the mean,

σr = |maxi σr,i −mini σr,i|
|σ̄r,i|

with σr,i = r̂i · r∗i
|r̂i||r∗i |

(3.23a)

σu = maxi σu,i −mini σu,i
σ̄u,i

with σu,i = |r̂i|
|r∗i |

, (3.23b)

in addition to the number Nap of anti-phase oscillating particles. Figure 3.4 shows
three examples of quasi-breathing modes together with their values of these measures.

3.4.2 Breathing Modes in Lennard-Jones Systems

As a first example, the breathing-type modes of unconfined systems with Lennard-Jones
interaction

φ(r) ≡ 0 (3.24a)

v(r) = 4ε
[(σ
r

)12
−
(σ
r

)6]
, (3.24b)

are examined. This type of interaction is (frequently) used for the theoretical descrip-
tion of molecules and atomic clusters [Bal05, Pro06]. While the eigenvalues of the
corresponding normal modes are dependent on the chosen energy and length scale, ε
and σ respectively, the eigenvectors are not. Thus, regarding the displacement pattern
of the normal modes, unconfined Lennard-Jones systems only depend on the particle
number. Therefore a systematic calculation of the (quasi)-breathing modes depending
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3.4 Breathing Mode

(a) Perfect breathing mode
for N = 40 and κdC = 0.

(b) Purely radial but
non-uniform quasi-
breathing mode for
N = 16 and κdC = 20.0,
(σr = 0, σu = 1.1, Nap = 0).

(c) Non-radial and non-
uniform quasi-breathing
mode for N = 40 and
κdC = 1.99, (σr = 2.77, σu =
2.11, Nap = 4).

(d) Quasi-breathing mode of
a Yukawa ball for N = 16 and
κdC = 4.43, (σr = 0.41, σu =
0.93, Nap = 0).

Figure 3.4: Visualization of a perfect breathing mode in contrast to quasi-breathing
modes in harmonically confined Yukawa systems. The dashed lines and the sphere mark
the shells respectively and the light arrows visualize a hypothetical breathing mode.
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on N can be performed. The corresponding results are shown in figure 3.5, where σr,
σu and Nap of the (quasi)-breathing mode are plotted for particle numbers N in the
range from 3 to 150.

It is apparent that most of the systems does not possess a breathing mode, and that
in these cases the quasi-breathing mode show substantial deviations from radiality
and uniformity. Very small even though non-vanishing deviations are observed
for N = 55, 135, 147, which are highly symmetric multiple shell systems with full
icosahedral symmetry [Wal97] (see dashed-dotted lines). The deviations are quantified
by σr = 0, Nap = 0 and σu = 0.2, 0.24, 0.23 respectively pointing out that the
corresponding quasi-breathing modes showing perfect radiality but not uniformity.
Additionally, figure 3.5 shows the occurrence of non-universal breathing modes for
N = 3, 4, 6, 13 (see dashed lines in Fig. 3.5). These particle numbers correspond,
in accordance with the previous analysis, to single-shell configurations, which are
either planar and equally spaced (N = 3), or which form Platonic solids: tetrahedron
(N = 4), octahedron (N = 6) and icosahedron with a central particle (N = 13), cf.
figure 3.3.

3.4.3 Breathing Modes of Yukawa Balls

As a second example of broad practical interest, e.g., for Yukawa balls, two-dimensional
confined dusty plasmas and for colloidal systems, the (quasi)-breathing modes in
parabolically confined one-component Yukawa systems, (1.2), are considered. In case
of vanishing screening, κ→ 0, these systems are Coulomb systems and, in agreement
with the previous analysis, breathing modes as in figure 3.4a are always observed.
In contrast, for finite screening, κ > 0, the normal mode analyses confirm that no
universal breathing mode exists. In fact, there are single shell configurations, which
show non-universal breathing modes [Mel01]. But most of all systems only possess
quasi-breathing modes with deviations from a radial and uniform motion1. Two
typical examples of these quasi-breathing modes in case of two-dimensional Yukawa
systems are presented in figure 3.4. While in figure 3.4b still a purely radial motion
is observed, in figure 3.4c, the mode closest to the breathing mode shows striking

1 Deviations from uniformity of a breathing mode have previously been reported by Sheridan
[She06a].
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Figure 3.5: Quasi-breathing modes of (externally) unconfined Lennard-Jones systems
against the particle number. a) Deviations σr from radiality. b) Deviations σu from
uniformity. c) Number Nap of anti-phase oscillating particles. Cases of non-universal
breathing modes are marked by dashed lines and the quasi-breathing modes of the icosahedral
symmetric systems by dashed-dotted lines.

deviations, including several particles moving in nearly tangential direction. For
three-dimensional Yukawa balls the same types of deviations are observed as is shown
in figure 3.4d.

In contrast to the previously considered Lennard-Jones systems, whose eigenvectors
only depend on N , Yukawa systems feature a dependence on the screening parameter κ,
and so their eigenvectors do. The investigation of the quasi-breathing mode regarding
this dependence displays a very interesting structure, which is shown in figure 3.6
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for the two-dimensional Yukawa systems with N = 40 particles within the range
0 ≤ κdC ≤ 2.

Surprisingly, a small variation of κ leads to an irregular behavior of σr and/or σu with
very sharp peaks. At first sight, such a structure contradicts the smooth κ-dependence
of the Yukawa potential (1.2b), due to which all eigenvectors have to show a smooth
κ-dependence too. However, a closer inspection reveals a κ-dependent direction of
the eigenvectors within RdN . The change of this direction with changing κ involves
that not one fixed mode has smallest deviations from the breathing mode, but with
increasing κ this property may swap from one mode to another. This swap of the
quasi-breathing mode, which is observable in the inset of figure 3.6 and additionally
sketched in figure 3.7, is the reason for the peaked structure.

The κ-dependent deviations from the breathing mode are most evident in the non-
uniform or non-radial moving directions of the particles. In addition, these deviations
may also become noticeable in the behavior of the quasi-breathing mode’s frequency
ωQBM. This frequency is displayed as a function of the screening parameter κ (by the
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σ
r,
σ

u

0 0.5 1 1.5 2
κdC

2
3
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σ
r
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κdC

2
3
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σ
u

σr
σu

mode 46
mode 47
quasi-breathing mode

Figure 3.6: The properties σr and σu of the quasi-breathing mode depending on screening
for harmonically confined two-dimensional Yukawa systems with N = 40 particles. The
inset shows σr and σu of modes 46 (red line, numbers correspond to the mode frequencies
in descending order) and 47 (blue line), which have the smallest deviations. The actual
quasi-breathing mode is presented by dots.
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Figure 3.7: The direction of the eigenvectors, e.g., r̂46 and r̂47, within RdN may change
with increasing screening. Therefore the property of having the largest projection onto r∗,
which defines the (by dots indicated) quasi-breathing mode, may swap abruptly from one
mode to another mode.

black line) in figure 3.8 and clearly shows a raising frequency for increasing screening
values, cf. 3.2. The deviations from the breathing mode are far less explicit but still
observable in the peaked structure within this function, which is also caused by the
swap of the quasi-breathing mode and which therefore emerge at the same screening
values, cf. 3.6. As a result of the small amplitude of the peaks, the frequency of
the quasi-breathing mode can be very well approximated by the frequency (3.21)
of the (non-existing!) breathing mode. The relative error of this approximation is
displayed (by the blue line) in figure 3.8, as well. The use of this approximation
was first proposed by Sheridan [She06a], who also suggested a continuum model to
analytically derive the behavior of this approximated frequency function [She06b]. It
is worth mentioning that his model was based on the assumption of constant density
profiles of Yukawa balls. By taking into account the non-constant density profiles,
which were derived in chapter 2 of the thesis at hand, this model can be improved.
However, both models disregard the pair correlation function, which is crucial for the
determination of the breathing frequency (3.21). The future determination of density
profiles, which take into account approximations of this pair correlation function, may
improve these frequency models.

In summary, it can be stated that the confined Yukawa systems in consequence of their
κ-dependence allow for the investigation of the breathing mode to quasi-breathing
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Figure 3.8: The frequency ωQBM of the quasi-breathing mode (black line, left axis) as a
function of the screening parameter for harmonically confined two-dimensional Yukawa
systems with N = 40 particles. Additionally, the relative error of its breathing mode
approximation ωBM, (3.21), is shown (blue line, right axis).

mode transition in many details. This transition, geometrically speaking, corresponds
to the κ-dependent motion r̂j(κ) of the eigenvectors, which in their entirety rotate
within RdN . The κ-dependent motion, however, not only entails a change of the
breathing mode but also a change of the associated monopole oscillation.

3.4.4 Monopole Oscillations

In the beginning of this section it was noted that the monopole oscillation, which in
the strongly coupled regime is defined by (3.7), is closely connected with the breathing
mode. Indeed, like the breathing mode it can be easily excited by variation of the trap
frequency ω0, e.g., by a rapid change of the frequency ω0 of the equilibrated system
corresponding to the excitation given by r(0) = (1 + ξ)r∗ and ṙ(0) = 0, which in turn
corresponds to the normal coordinates

cj(t) = ξr∗ · r̂j

1 t < 0

cos(ωjt) t ≥ 0 .
(3.25)
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However, while this variation of the frequency excites always a monopole oscillation,
the breathing mode is thereby only excited if there is a breathing mode. In this case,
the monopole oscillation and the breathing mode describe the same motion and thus
have the same frequency. Contrary, if the breathing mode does not exist, as in most
Yukawa systems, then it follows, that there are several monopole oscillations with
different frequencies. This property is directly apparent by using the normal mode
expansion (3.4) in the definition (3.7) of the monopole oscillation. It yields

R2(t) = N−1r∗2 + 2N−1
dN∑
j=1

cj(t)r̂j · r∗ (3.26)

for small excitations, i.e., for small amplitudes of the normal coordinates (3.25). If a
breathing mode exists, one of the eigenvectors r̂j is given by r̂BM, which is parallel
to r∗, whereas all other eigenvectors are orthogonal to r∗. Thus, due to (3.25), all
normal coordinates but the one of the breathing mode are vanishing. Hence, in this
case the monopole oscillation, for t ≥ 0, is given by

R2(t) = N−1r∗2
(
1 + 2ξ cos(ωBMt)

)
(3.27)

and therefore oscillates with only the breathing frequency. In contrast, if no breathing
mode exists, there are many eigenvectors r̂j with non-vanishing projection on r∗,
cf. figure 3.7. Then, the monopole oscillation contains several different frequencies
ωMO = ωj or, alternatively, there are different monopole oscillations [Hen09]. The
mostly pronounced one corresponds to the quasi-breathing mode, which has the largest
projection onto r∗.

The multiplicity of the monopole oscillation in systems with a non-existing breathing
mode is also apparent in its spectrum ΦR2(ω) or rather in the spectrum Φ

Ṙ2(ω)1,
which is derived by the absolute square of the Fourier transform

F
Ṙ2(ω) = 1√

2π

∞∫
−∞

dt Ṙ2(t) e− iωt . (3.28)

By using the derivative of (3.26) an explicit calculation of the spectrum is possible

1 While the general structure of both spectra is identical, the constant within (3.26) yields a more
intricate expression for ΦR2(ω) than for Φ

Ṙ2(ω).
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and yields, after some algebra,

Φ
Ṙ2(ω) = 2ξ2

πN2

dN∑
j,k=1

(
r̂j · r∗

)2
ω2
j

(
r̂k · r∗

)2
ω2
k(

ω2 − ω2
j

)(
ω2 − ω2

k

) . (3.29)

In figure 3.9 this spectrum, obtained from numerical normal mode analysis, is shown
for a Yukawa ball with N = 16 particles and a screening strength of κdC = 4.42. The
two eye-catching peaks are caused by the poles of (3.29) and thus correspond to two
different monopole oscillations. The corresponding frequencies are ω(1)

MO = 2.349ω0

and ω(2)
MO = 2.360ω0.

The emergence of multiple monopole oscillations is a direct consequence of the system’s
interaction and confinement potentials and of the system’s configuration, if they are
not fulfilling the strict conditions of the breathing mode. Therefore, the monopole
oscillations should allow for the investigation of these important system properties.
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Figure 3.9: The spectrum ΦṘ2(ω) of a Yukawa ball with N = 16 particles and a
screening strength of κdC = 4.42 contains two monopole modes, the frequencies of which
are indicated by dashed lines.
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3.5 Normal Modes in the Presence of Dissipation

While the problem of the breathing mode, its existence, and the relation to the
monopole oscillation is figured out theoretically, its experimental investigation is still
outstanding, e.g., in the case of Yukawa balls [Hen09]. Beside the required accuracy
of the particle positions and motions, also dissipation effects make this a demanding
task. Dissipation effects damp down the motion of all normal modes as can be seen
by extending Newton’s equation (3.5) of the excitation r by a friction force −mνṙ
with ν > 0, which results in

0 = mr̈ +mνṙ +∇U(r) = m
dN∑
j=1

[c̈j(t) + νċj(t) + λjcj(t)] r̂j . (3.30)

Then, each normal coordinate fulfills an equation of motion

0 = c̈j(t) + νċj(t) + λjcj(t) (3.31)

analogous to the single damped harmonic oscillator, and thus depends on the damping
strength ν. The solution of this differential equation reads [Kä08]

cj(t) = Aj


e−νt/2 cos

(√
ω2
j − ν2/4 t+Bj

)
ν < 2ωj

e−νt/2 (1 +Bjt) ν = 2ωj
e−νt/2

(
e
√
ν2/4−ω2

j t +Bj e−
√
ν2/4−ω2

j t
)

ν > 2ωj ,

(3.32)

where the constants Aj and Bj have to be determined from the initial conditions
r(0), ṙ(0) of the excitation. The three cases correspond to normal modes, which are
underdamped, critically damped, and overdamped, respectively. The corresponding
dynamics of a mode are illustrated in figure 3.10a using the condition ċj(0) = 0.

While thus the normal frequencies change due to dissipation, the displacement patterns
of the normal modes, i.e., the eigenvectors, are not affected by it. Therefore, the
issue of the breathing mode is still present in dissipative systems. However, the
experimental investigation of the normal modes, and particularly (quasi)-breathing
modes, is constrained by a short oscillation time of the particles – especially by
consideration of experimental damping parameters, which are estimated to be ν ≈ 2ω0

[Hen09].
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Figure 3.10: The dynamics and the spectrum of a normal mode as a function of friction
corresponding to (3.32) and (3.33), respectively.

Similar constrains become noticeable within an experimental analysis of the monopole
oscillation by means of the corresponding spectrum (3.29). There, dissipation causes
a red-shift of the frequency peaks as well as a flattening and a relative broadening, as
can be seen in the spectrum of a normal mode. For the aforementioned variation of
the trap frequency, cf. (3.25), such a spectrum is given by

Φċj (ω) =
ξ2
(
r∗ · rj

)2
ω4
j

2π
(
ν2ω2 + (ω2 − ω2

j )2
) . (3.33)

In the undamped case (ν = 0) this spectrum contains a single distinct peak centered
at the normal mode frequency1. Contrary, for ν > 0 dissipation causes an attenuation
of higher frequencies, what eventually entails a red-shift. Additionally, the peak is
flattened and therefore relatively broadened. All these effects are shown in figure
3.10b.

The same effects are present within complete power spectra, which are often used in
experimental investigations of normal modes [Iva09, Mel03, Mel01]. For a Yukawa ball

1 Also in the undamped case the peak is not a delta peak. This is caused by the variation of the
trap frequency at t = 0, so that there is no harmonic oscillation for t ≤ 0.
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Figure 3.11: Theoretical normal mode spectra (3.33) for a Yukawa ball with N = 10
and κdc = 1 for four damping values. For comparison, the undamped spectrum is shown
in all figures by black dots.

with N = 10 particles and the screening parameter κdC = 1 such power spectra are
shown in figure 3.11 for various damping parameters. It is evident, that at sufficiently
large damping more and more normal modes vanish, i.e., an increasing fraction of the
power density is concentrated around ω = 0. Eventually, due to dissipation effects
the resolution of monopole oscillation spectra is constrained making an observation of
multiple proximate peaks difficult.

It should be mentioned that dissipation effects, otherwise, allow for a sensitive
diagnostics of relevant experimental parameters, including particle charge and trap
frequency as suggested in [Hen09].
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3 Normal Modes of Finite Clusters

3.6 Summary

Within this chapter an analysis of the normal modes of finite clusters were presented.
Starting from the known universal modes of harmonically confined Coulomb systems,
which are the rotational modes, the sloshing modes, and the breathing mode, the
universal modes of other finite clusters were investigated. As a result, it could be shown
that the existence of the breathing mode, which may serve as a sensitive indicator of
intrinsic system properties, is restricted to a small class of systems. On the one hand,
there is this mode for harmonically and to some extend harmonic-logarithmically
trapped systems in any dimension with a power law or logarithmic interaction potential.
On the other hand, this mode exists also for other systems in case of particular, highly
symmetric configurations. Therefore, systems with exponential or non-monotonic
potentials (including Yukawa, Morse or Lennard-Jones systems), not being in such a
special configuration, do not feature a breathing mode. In these systems all normal
modes exhibit non-uniform and/or non-radial motion, which has been illustrated for
several representative examples.

As a consequence, in this case an external perturbation of the system, which excites
radial particle motions (e.g., by rapid change of the trap frequency), will excite not one
but several monopole oscillations at once. The resulting complex spectrum represents
the internal properties of the system, in particular the form of the pair interaction
and the confinement, and is expected to be a sensitive experimental diagnostics of
strongly correlated systems [Hen08]. In this context, dissipation effects must not be
neglected, the influence of which on normal modes was discussed in the final part of
this chapter. Thereby, it was shown that the issue of the breathing mode is still present
in dissipative systems, although its experimental investigation is made challenging.

Additionally to the presented results, also their extension to strong excitations is of
topical interest for experiments and theory. For this purpose, the normal mode analysis
has to be based on a non-harmonic approximation, cf. (3.2), and, as a consequence,
non-linearity effects (like mode coupling) are expected to occur. At the same time,
also the extension of the breathing mode properties to quantum mechanical systems
is subject of current interest. In this context, first results have already revealed
fascinating non-classical phenomena [Bau09].
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CHAPTER 4

Conclusions

The thesis at hand was concerned with the theoretical investigation of essential ground
state and excitation properties of Yukawa balls.

The ground state of Yukawa balls is characterized by a pronounced structure of nested
spherical shells, each of which has a specific population of dust particles. Based on the
findings of experimental and numerical analyses, one of the basic goals of this thesis
was to understand, from a theoretical point of view, the dependence of the particle
distribution on the screening of the interaction. Therefore, a statistical theory was
used, which is suitable to determine the ground state density profiles of Yukawa balls
by minimizing their ground state energy. In order to accomplish this minimization,
two essential approximations were applied – the mean-field and the local density
approximation. By means of these approximations, analytical results for the density
profiles could be derived. These results demonstrated the dramatic influence of the
screening on the average particle distribution from a theoretical point of view.

The quality of the approximations was investigated by comparison with simulation
results. This comparison revealed an excellent quantitative accordance with the
average particle distribution showing the efficiency of the chosen approach. However,
the used approximations are not capable for the description of the distinct shells of the
Yukawa balls. For that purpose, more sophisticated approximations are needed, which
take into account the particle correlations more properly. An additional question of
topical interest is the extension of the density profiles to finite temperatures, which
is of relevance for experiments and which, moreover, provides a powerful approach
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to a thermodynamic theory of the Yukawa balls. Both the description of the shell
structure and the finite temperature extension are subject of ongoing work.

An alternative approach to the shell structure of the Yukawa balls is given by Yukawa
shell models. These artificial models possess an immanent shell structure and try
to explain the properties of the shells. However, previous Yukawa shell models
had strong limitations regarding the potential screening values and yield wrong or
unphysical results beyond these limitations. By using the essential concepts of the
similar Coulomb shell models, within this thesis a decisively improved Yukawa shell
model could be derived, which is not subject of such screening value based limitations.
Moreover, it includes the previous shell models as limiting cases. Further investigations
of this model will reveal its descriptive capabilities and is topic of current research.

The other aspect of the thesis at hand was the investigation of the normal modes of
Yukawa balls and other finite clusters. These normal modes provide an important
approach to the external excitations of a system by resolving small oscillatory motions
into their spectral constituents. In previous investigations three normal modes turned
out to be of peculiar generality and were assumed to exist in Yukawa balls and other
systems, as well. One of these modes is the breathing mode. It describes a uniform
radial pulsation and is of special relevance for the experimental investigation of, e.g.,
the particle charge in complex plasmas. However, in the frame of this thesis the general
existence conditions of the breathing mode could be derived. Their analysis revealed
that this mode is existing only in a small class of systems, to which Yukawa balls and
many other clusters do not generally belong to. For clarification of these findings,
several representative examples have been showed, illustrating in an impressive manner
various deviations from the breathing mode.

The direct consequences of the results, which particularly arise for Yukawa balls,
were investigated in detail. Among them is a characteristic change in the response
of the system to radial perturbations, which previously were expected to excite one
characteristic (monopole) oscillation. However, for most systems actually not one but
several of such oscillations are excited at once. Interestingly enough, the resulting
spectrum represents internal properties of the system, in particular the form of the pair
interaction and the confinement, and may serve as a sensitive experimental diagnostics
of strongly correlated finite clusters. The quantification of this fact deserves a closer
attention and should be of significance for future work. Thereby, the influence of
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dissipation effects on the normal modes has to be taken into consideration, which is
of relevance for most experiments and which was discussed in the final part of this
thesis. Beyond that, also non-linear effects, like mode coupling, may emerge in this
context as a consequence of strong (anharmonic) excitations. Finally, it should be
mentioned that the extension of the presented classical breathing mode properties to
quantum mechanical systems is of current interest as well, and first corresponding
results have already revealed exciting phenomena.
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