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Abstract

Based on first principles, the configuration path integral Monte Carlo (CPIMC)
approach allows for the exact computation of thermodynamic properties
of strongly degenerate fermionic many-body systems with arbitrary pair-
interaction. Due to the fermion sign problem, this regime is not accessible
with (standard) direct path integral Monte Carlo methods. In this work, a
Worm algorithm within the CPIMC formalism is presented which, in addition
to standard thermodynamic observables, is capable of providing exact results
for imaginary time correlation functions, i.e., in particular for the Matsubara
Green function. The method is tested for a two-dimensional system of spin
polarized, Coulomb interacting fermions in a harmonic trap. The obtained re-
sults are compared to an exact diagonalization method and to the Hartree-Fock
approximation.

Zusammenfassung

Die sogenannte configuration path integral Monte Carlo Methode (CPIMC)
ermoglicht die exakte Berechnung thermodynamischer Eigenschaften von stark
entarteten fermionischen Vielteilchensystemen mit beliebiger Paarwechsel-
wirkung. Auf Grund des fermionischen Vorzeichenproblems ist dieser Bereich
mit herkdmmlichen Pfadintegral-Methoden nicht zugénglich. In dieser Arbeit
wird der Worm algorithmus innerhalb des CPIMC Formalismus vorgestellt.
Zusatzlich zu den thermodynamischen Observablen kénnen damit exakte Er-
wartungswerte fiir imaginarzeitabhéngige Korrelationsfunktionen gewonnen
werden, d.h. insbesondere fiir die Matsubara-Green-Funktion. Als Testsystem
fiir die entwickelte Methode dienen spin-polarisierte, Coulomb-wechselwirkende
Fermionen in einer zweidimensionalen harmonischen Falle. Die erhaltenen
Ergebnisse werden mit einer exakten Diagonalisierungsmethode und der Hartree-
Fock Néherung verglichen.
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1. Introduction

The ab initio simulation of interacting fermionic many-body systems without
approximations represents a challenging and highly interesting research field of
theoretical physics and chemistry. Even for systems in equilibrium, a general
approach allowing for simulations at arbitrary temperatures and densities still
remains to be found. In particular for strongly degenerate systems, exact
calculations can be carried out only for small particle numbers. The regime
of high degeneracy, where quantum effects play an important role, is found at
high densities, i.e., weakly to moderately coupled systems at low temperatures.
Physical examples of such systems are fermions in optical lattices, electrons in
quantum dots, dense and quark-gluon plasmas, conduction electrons in metals
as well as warm dense matter inside large astrophysical objects.

Finite temperature quantum Monte Carlo (QMC) methods belong to the
most promising approaches concerning the exact! computation of equilibrium
properties of interacting many-body systems. With (standard) direct path
integral Monte Carlo (DPIMC) [1, 2], which is based on Feynman’s path integral
formulation of quantum mechanics [3] (in imaginary time), accurate calculations
for large bosonic systems can be performed, even at high degeneracy. But,
for fermions, this method suffers from the so called fermion sign problem
[4, 5], which causes an exponential increase of the statistical error with the
system size and inverse temperature. In addition, for DPIMC, the fermion sign
problem becomes worse the higher the degeneracy of the simulated system.
Several optimizations of the standard DPIMC still allow for the simulation of
moderately degenerate systems (depending on the coupling, at sufficiently high
temperatures) [6, 7]. Another exact approach that reduces the sign problem is
the multi-level blocking algorithm [8]. However, the regime of strong degeneracy
is practically inaccessible with DPIMC methods. Of course, there exist many
approximations. Regarding QMC methods, the most successful is the so called
restricted path integral Monte Carlo (RPIMC) [4], which avoids the fermion
sign problem by introducing an (uncontrollable) systematic error.

The recently developed configuration path integral Monte Carlo (CPIMC)

Tn fact, the obtained results are exact up to a small statistical error, which reduces with
the computation time converging to the exact value. Further, in practice, QMC methods
usually introduce a systematic error due to a finite number of basis functions (CPIMC)
or time slices (DPIMC). By ensuring the convergence of the observables with respect to
these quantities, the remaining systematic error is much smaller than the statistical error.
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method [9] allows for the first principle simulation of such strongly degenerate
systems without approximations. This method has a sign problem complemen-
tary to that of DPIMC concerning the degeneracy of the system, i.e., there
is no sign problem for the ideal quantum limit, whereas strongly interacting
systems are not accessible [10, 11]. The main idea of CPIMC consists in employ-
ing the reformulation of quantum mechanics in terms of second quantization,
which results in paths in imaginary time in the space of Slater-determinants
in occupation number representation, unlike in DPIMC, where the paths are
in coordinate space. Further, CPIMC is based on the continuous time QMC
[12], which has been applied to lattice models. Within the CPIMC formalism,
fermionic systems with (arbitrary) pair-interaction, i.e., in particular long range
interaction, can be simulated requiring much more elaborate Monte Carlo
updates than for lattice models (with short range pair-interaction). In fact,
QMC in occupation number representation goes back to the less sophisticated
Stochastic Series Expansion (SSE) [13] that has been applied to lattice models,
too.

In addition to standard thermodynamic observables, we are also interested in
the computation of imaginary time correlation functions. In particular, the one-
and two-particle Matsubara Green functions (MGF) give access to dynamical
properties, namely the single-particle spectral function and the dynamical
structure factor[14]. However, to extract this information from the correlation
function, a Laplace-like transformation has to be inverted. Several methods
exist to perform the inversion but these require very accurate data for the
MGF since the inversion is an ill-posed problem [15, 16]. Therefore, exact data
for the MGF taking into account all correlation effects is necessary to obtain
correct spectral properties.

For non- to moderately degenerate systems, the so called Worm algorithm
(WA) within the DPIMC formalism yields exact results for the one-particle
MGF [17]. For the continuous time QMC of lattice models, there also exists a
WA [18].

In this work, a WA for the CPIMC method is presented, which, based on the
ideas in [18], has been developed mainly within the PhD thesis of T. Schoof and
to some extent within this master thesis. The main part of this work constitutes
the development of the concrete sampling procedure of the one-particle MGF.
In addition, due to the formulation of CPIMC in second quantization, the
underlying one-particle basis in which the simulation is performed is in general
arbitrary. Already in standard CPIMC [9], it turned out that the canonical
finite temperature Hartree-Focck (FTHF) basis reduces the sign problem of
the method. However, this is not always the case, and moreover, the exact
mechanism that reduces the sign problem remained to be understood. For that
reason, the ground state and finite temperature HF approach are investigated
in more detail to determine the best basis for CPIMC calculations.



1.1. Outline

Finally, the method is applied to a two-dimensional test system of spin
polarized, Coulomb interacting fermions in a harmonic trap. The MGF is
directly linked to the one-particle density matrix, which can be used to compute
the particle density. These densities (from the MGF) are compared to the
results obtained from Configuration Interaction (CI) [19, 20] and FTHF [21]
calculations. Since CI represents an exact diagonalization method, this verifies
the correctness of the presented algorithm. Eventually, the imaginary time MGF
is compared to the MGF in HF approximation to demonstrate the necessity of
taking into account the interaction beyond the mean-field approximation.

1.1. Outline

This work is organized as follows:

In chapter 2, a brief but self-consistent review on Metropolis Monte Carlo
and second quantization of quantum mechanics is given, which represent the
basis of the CPIMC approach.

In chapter 3, first, the expansion of the of the partition function that is
used for the standard CPIMC approach is derived. Then, the expansion is
modified suitable for a WA and a similar expansion of the MGF is found.
Together, these define the total configuration space of the WA. In the next
part of this chapter, the developed Monte Carlo steps of the CPIMC WA are
explained and discussed in detail.

In chapter 4, the estimators of the thermodynamic observables of interest
are derived. It follows the presentation of different developed estimators for the
MGF. Finally, a sufficiently fast converging estimator for the MGF is found.

Chapter 5 gives a brief introduction into the HF approximation. In particular
the utilized ground state and finite temperature HF algorithm is explained.

In chapter 6, the test system is specified. Then, the ground state and fi-
nite temperature HF method is applied to the test system and investigated
concerning the convergence behavior and the obtained solutions. Next, the
fermion sign problem for CPIMC calculations in different HF basis sets is ex-
plored to find the optimal HF basis. Afterwards, the particle density obtained
from the developed estimator of the MGF' is compared to the density of CI and
HF calculations. It follows a comparison of the (imaginary) time-dependent
MGF from CPIMC calculations with the MGF in HF approximation. Finally,
the fermion sign problem of canonical and grand canonical CPIMC calculations
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is discussed for the test system.

Chapter 7 summarizes the main results and gives an outlook on possible
future work.

1.2. Frequently used abbreviations

ONYV:Occupation number vector (see Sec. 2.2.2)

MGF': Matsubara Green function. In this work, MGF refers to the
one-particle MGF if not explicitly pointed out else.

CPIMC: Configuration path integral Monte Carlo

standard CPIMC: Refers to the former CPIMC method without the
Worm algorithm. It has been developed by T. Schoof within his diploma
thesis and is explained in [9, 10, 11].

WA: Worm algorithm

CPIMC WA: Refers to the Worm algorithm within the CPIMC approach
which is presented in this work.

(standard) DPIMC: Refers to the Direct path integral Monte Carlo
approach without WA [1, 22].

DPIMC WA: Refers to the WA within the DPIMC approach [17].
HF': Hartree-Fock
FTHF: Finite temperature Hartree-Fock

CI: Configuration interaction



2. Theory

In this chapter, based on [10], an introduction to the basic theory required
for the CPIMC formalism is given. First, the Metropolis-algorithm [23] is
explained, which is capable of sampling random variables according to an
arbitrary distribution without knowing its normalization. Second, a short
but self-consistent review on second quantization of quantum mechanics is
presented. Especially the derivation of the Slater-Condon-rules, which are
utterly important for the CPIMC formalism, is briefly outlined. Readers
that are familiar with the second quantization might just skip through the
corresponding part to get to know the utilized notation.

2.1. Metropolis Monte Carlo

In statistical physics, the expectation value of an observable O can be written
in the general form

(0) = i O(C)Wéc) with 7= i W(C) . (2.1)
C C

Here, C' denotes a high dimensional multi-variable that consists of continuous
and/or discrete one dimensional variables. For that reason, the symbol

is used. In terms of Metropolis Monte Carlo, C' is commonly interpreted as
a (system) configuration'. Each configuration contributes to the partition
function Z with its weight W(C). If the weight function W(C) is strictly
positive, then P(C) = @ is the probability for the configuration C' to be
realized. The value of the observable in the system configuration C' is given
by O(C). It is called the estimator of the observable. Hence, the expectation
value is nothing but the summation over all these contributions weighted with
the corresponding probability.

Sure, if we could directly compute the partition function Z, then we could
apply standard relations of statistical physics to calculate any observable since a
system in thermodynamic equilibrium is completely described by this function.
Due to the high dimensionality of the summation, this is not possible in most

IThis should not be confused with a true physical micro-state. Rather, the multi-variable
C represents an abstract or mathematical system configuration.
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cases. However, Monte Carlo methods are a very powerful tool when it comes
to the computation of such high dimensional integrals. Suppose we have a set
of system configurations {C;}, i = 1... Nyc that are distributed with P(C).
Then, a good estimate of the expectation value (2.1) is given by

(0 ~ NLC Zf()@) | (2.2)

Of course, such a set of configurations can not be computed directly since this
would require the knowledge of the normalization Z. Fortunately, utilizing
the Metropolis algorithm [23], we can compute a sequence of states Cy, C1, . ..
that are eventually distributed with P(C') without knowing the underlying
normalization. For that purpose, we define a transition probability T (C; — C~’i+1)
that defines the probability for the system to transition into the configuration

Ciy1 from the configuration C;. This transition probability has to fulfil the so
called detailed balance equation®

Choosing the possible solution for the transition probability

T(C; = Ci41) = min [1, Pp(%)l)} = min [1, Ww(i;)l)] , (2.3)

we directly see that the normalization cancels.

Supposing the system is in the configuration C;, the Metropolis algorithm
works as follows: First, propose a transition to a different configuration C~’Z-+1
and evaluate Eq. (2.3). Then draw a random number® from [0, 1) and accept
the transition if it is smaller than the transition probability, i.e., Cj11 = CN’iH. If
it is larger than the transition probability, the system stays in the configuration
C; and it is C; 11 = C;. Starting from a random initial configuration C7, the
sequence of configurations will eventually be distributed with P(C) if the
proposed transitions address a sufficient degree of freedom of the multi-variable
C. More strictly speaking, the different proposals, also called Monte Carlo
steps, have to be ergodic which means that all possible system configurations
C must be accessible within a finite number of Monte Carlo steps. Therefore,
given some expectation value in the form of Eq. (2.1), we will usually need a
couple of different Monte Carlo steps addressing different degrees of freedom of
C.

The explained algorithm is only valid if we propose each transition with
equal probability. In most cases, it is more efficient to choose some system

2There exist weaker conditions but in practice, the detailed balance equation is used.
3The quality of the used random number generator is crucial for the reliability of the results.
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changes more frequently than others. This can formally be incorporated in
the detailed balance by splitting the transition probability into a sampling
probability S(C; — C~’i+1) and an acceptance probability A(C; — C~’Z~+1) which
have to fulfil the generalized detailed balance equation

(2.4)

with the possible solution for the acceptance probability

S5(Cir1 = C)W(Ciya)

A(CZ — 6i+1) = min |1, =

(2.5)

The generalized algorithm is also called the Metropolis Hastings algorithm [22].
Further, the number of Monte Carlo steps that have to be performed until
the correlations to the initial configuration € have vanished is referred to
as the equilibration time. Moreover, since the acceptance probability for the
transition to the next configuration only depends on the current configuration,
the computed sequence of configurations C, Cy, ..., Cn,,. represents a Markov
chain of length Nyc.

However, finding a good set of different Monte Carlo steps that ensure er-
godicity* can be very hard. Besides the ergodicity, the average acceptance
probability of each step should be sufficiently large while changing the con-
figuration C' as much as possible. The concrete form of the multi-variable C
depends on the chosen representation of the partition function. For a quantum
system, the partition function is given by the trace over the N-particle density
operator® p

Z="Trp,

where the actual form of the density operator is determined by the chosen
ensemble. Obviously, there exists an infinite number of possibilities to evaluate
this expression for there exists an infinite number of N-particle basis sets in which
the trace can be performed. Further, we could switch to the Heisenberg or the
Interaction picture, or add an arbitrary number of unit operators and/or apply
a reasonable approximation for the density operator. All those representations
(or expansions in the form of Eq. (2.1)) of the partition function describe the
same physical system, but most of them define a different multi-variable C' and
hence require different Monte Carlo steps. Of course, only a few representations
are suitable for the application of the Metropolis algorithm. Besides, note

4In the majority of cases it is not possible to actually proof the ergodicity of the steps.
5Commonly, in terms of Monte Carlo, the density operator is usually not normalized, e.g.,
in the canonical ensemble it is p = e #H.
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that we can not directly compute the partition function with the Metropolis
algorithm but only expectation values according to Eq. (2.2).

So far we have assumed that the weight function W (C') is strictly positive.
Unfortunately, the partition function describing a fermionic system in general
has negative and positive weights. If we still want to apply the Metropolis
algorithm, then we have to rewrite (2.1) as follows:

L OCW(C) % LO0C)SE)W(C) _ (0s)
X o W(C) Z X SOWE)] sy

where we have introduced the primed partition function

Z’;:ngW(OM.

(0) = (2.6)

S(C) = sgn [W(C)] denotes the sign of the weight of the configuration C'. We
directly see that the expectation value (O) in the physical system, described by
the true partition function Z, can be expressed by the expectation value of two
different observables OS and S in the primed system described by Z’ (denoted
by ()). Since P'(C) = ‘Wz(i,c)‘ is a true probability distribution, we can apply
the Metropolis algorithm to that system by simply inserting the modulus of
the weights |W(C)| in Eq. (2.5). Having computed a Markov chain for the
primed system, we can utilize Eq. (2.2) to estimate the desired expectation
value of the observable in the true physical system:
Ny "a'!
(0) ~ 2=t OLC)S(G) _ 05 _ 5 (2.7)
> S(Cy) S

In practice, not the whole configurations of the Markov chain are stored but
only the value of the observables of each configuration, i.e. O; = O(C;) and
S; = (C;), i =1,..., Nyc. The estimated expectation value (2.7) fluctuates
around the true expectation value (O} To properly estimate the statistical
error, it is not sufficient to calculate the standard deviation of O. First, we
have to take into account that the configurations of the Markov chain are not
independent but auto-correlated for we compute every configuration from its
previous. Second, the estimated value O is calculated from the fraction of
two quantities OS and S that are both estimated and thus have a statistical
error. Moreover, the generated “measurements” (samples) {0;S;} and {S;} are
not only auto-correlated but also cross-correlated, i.e. O;S; is cross-correlated
with S;. A good estimator of the relative error, which takes into account these
aspects, is given by [24]

Aoauto,cmss_MA()s’f <A5’>2_ 2 035 -05'S'

——7 —7 7 —7 27—in, S
0 05 S Nye  08'S LOSS

(2.8)
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with the statistical errors of OS and S’

—— 052’ — 05"
AOS = ( ) N ( ) 27—int,OS )
e (2.9)
., |5 -5"
AT =\ T2 s
o Nuc Tint, S
which are both enhanced by their integrated auto-correlation time
1 N (08)(08):x — 05
Tint,08 = 5 + — 2.10
N2 kz::l (08)2 — 05 (2.10)
with
1 Nyrc—k
(08)i(08)isr = 77— 2 (08)i(0)is
MC — i=1
and
1 Nye m_§2 . 1 Nyo—k
in s S S— .th SlSl = = SZSz .
Tint,S 2—|-I€2::1 Sf—Sz wi Tk Noo _k ; i

(2.11)

The statistical errors (2.9) can be reduced by the square root of the number
of samples Nyi¢. The enhancement by the integrated auto-correlation time
7 can be interpreted in such a way that we have effectively computed N%jc
uncorrelated samples. The third term under the square root in Eq. (2.8)
accounts for the cross-correlation of OS and S, which is measured by the
integrated cross-correlation time

1 Nwe,88.. —05' S’

Tin = -+ yAR—— 2.12
LOSS T ) ,;1 055 —05'3 (2:12)
with
, 1 Nyo—k
+k NMC — k ; +k

Note that the evaluation of the Egs. (2.10),(2.11) and (2.12) requires the storage
of all samples and does not allow for on the fly averaging. Moreover, binning
analysis, which is used to reduce the required amount of stored samples, is not
trivially possible due to the cross-correlation time (2.12). Finally, if the average
acceptance probability of the steps is small, then the auto-correlation time is
long, and we would waste storage by saving all samples. Instead, it is more
sophisticated to propose N.,.. steps before saving the next sample, whereby
the auto-correlation of the (stored) samples is reduced. We refer to N, as
the cycle length.
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2.1.1. Fermion sign problem

From Eq. (2.6) it seems that Metropolis Monte Carlo of fermionic systems is
no problem at all. But, if the average sign (S )' becomes much smaller than one,
then we obviously have to determine (OS)’ very precisely to obtain a reliable
result for O. Indeed, the average sign is by definition (cf. (2.6)) smaller or
equal one, i.e.

In the canonical ensemble, where we have Z = e M/ with 5 the inverse
temperature of the system and f the free energy per particle, we can further
write

(S) = e~ PNU=1) (2.13)

Hence, the average sign goes to zero with increasing product of the inverse
temperature and particle number. Upon a closer examination of the relative
statistical error (2.8), we find that

Aaamto,sign 1
— X = .
O S vV Ny

and, assuming that (S) ~ 5, it follows

Abaito,sign o L aN-r)
0] Nure

The relative statistical error is inversely proportional to the average sign®,
which decreases exponentially with the system size and the inverse temperature.
Unfortunately, the error can only be reduced by the square root of the number
of samples. Given a certain error after a certain computation time, we have to
compute a hundred times longer to reduce the error by one order of magnitude.
This is the well known fermion sign problem. It occurs whenever we do
Metropolis Monte Carlo with a partition functions that has sign changing
weights”. Moreover, the chosen representation of the partition function strongly
influences the sign problem. Even though there exist a few fermionic systems
that do not suffer from the sign problem [25, 26], a general solution is unlikely
since it has been shown to be NP-complete [5] for a chosen representation. For
bosons and boltzmannons, Metropolis Monte Carlo can be done without sign
problem, and, in contrast to fermions, very large systems can be simulated.

6In fact, this is only true for small average signs.
"Many other methods also suffer from a similar sign problem for fermions like e.g., diffusion
Monte Carlo for ground state simulations.

10



2.2. Second quantization

2.2. Second quantization

In first quantization of quantum mechanics, the observables are represented
by Hermitian operators acting on state vectors in Hilbert space. In a chosen
basis representation, the state vectors become wave functions. This formulation
of quantum mechanics is not very handy when it comes to the description of
many-body systems of identical particles since the wave function has to be
(anti-)symmetrized, especially, if the particle number is not fixed. With second
quantization, there exist another, in many cases advantageous, formalism to
describe such systems. In the context of that formalism, the so called creation
and annihilation operators are introduced. Both, operators of observables and
wave functions can be expressed in terms of these operators. In this section,
only a very brief review of second quantization shall be given to introduce the
required relations and notations for the CPIMC formalism. For more details
see e.g. [27] and [28].

2.2.1. Slater determinants

We start with the ideal system of N identical particles with mass m. In first
quantization, the Hamiltonian® takes the form
~2

N
Hy=Y ho with ho=2% 44, (2.14)
a=1 2m
where h, denotes the one-particle Hamiltonian of the particle o consisting of
the kinetic energy operator % and an external potential 9,. The eigenstates of
the one-particle Hamiltonian {|)_} with corresponding eigenvalues ¢; form an
orthonormal basis in the one-particle Hilbert space H;. The quantum number
7 is a multi-index including the spin projection of the particle «, i.e., the spin
orbitals are given by (7, o|i) = ®(7,0). Due to the separation of the ideal
N-particle Hamiltonian (2.14) into a sum of one-particle Hamiltonians, we can
construct the solution of the N-particle eigenvalue problem Hy |¥) = E|¥)

from product-states of one particle states |i)

N
|21Z22N> = H ‘26>/B = |i1>1|i2>2--~’7;N>N . (215)
Bs=1

It is straightforward to show that these product-states are eigenstates of the
ideal Hamiltonian H,

N N N N R N N
Z ha H |i6>5 - Z |iﬁ>5 he |ia>a = Z €iq H |iﬂ>ﬂ :
a=1 B=1 a=1\ pg=1 a=1 =1

BFa

81n this thesis, natural units are used, i.e., it is A = kg = 1.

11



2. Theory

These product-states form a basis of the N-particle Hilbert space H = @*_, H,
However, the indistinguishability of the particles has not been taken into
account since in the product state (2.15) we know that particle « is in the state
lia). In order to do this, we define the two-particle exchange operator pa”g

Pogl.ia..ig..) =1 ..dg...00...) Yo,B.

This operator can only have the eigenvalues +1 as

Pa,g ([ 18 > = )\| . .ia 18 >
= | 1o Zlg >:P”3P75’ (% >:>\2| Lo 18 >
& N =1.

Since the Hamiltonian is invariant under particle exchange, i.e., [7-[0, ,5} 0,

both operators Hy and P, 5 must have the same eigenstates. It turns out that
only those N-particle states are realized that either always have the eigenvalue
—1, under arbitrary two-particle exchange, or +1. Moreover, states with A = +1
are referred to as being (totally) symmetric, and particles that are described by
symmetric states are called bosons. The (totally) anti-symmetric states (with
A = —1) describe fermions. In this work, we are interested in the latter. A
totally anti-symmetric, normalized N-particle state that is still an eigenstate of
Hy can be written as a superposition of all N! permuted product states (2.15)
as follows

7TESN

where 7 is an element in the N-body permutation group Sy, and P is the number
of two-particle exchanges in which the permutation 7 can be decomposed. In
spin-coordinate representation (with the abbreviation z = {7,c}) and with the
definition of determinants, we obtain

<Z’1.CE2 .. .I'N‘iliz .. -iN>_ = \I’_(.Tl, c. ,.CEN)

Gi (v1)  Pin(x1) -0 Piy(w1)
1 ¢i1 (ZBQ) ¢i2 <x2) e ¢iN(x2)

= 7 (2.17)

¢¢1('33N) ¢z'2('33'N) ¢iN<$N)

These so called Slater determinants are obviously anti-symmetric under two-
particle exchanges since this corresponds to the interchange of two rows which
changes the sign of the determinant. Further, the determinant vanishes if
two or more columns are linear dependent, for instance, if two or more of the

12
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quantum numbers ¢, are equal. In other words, no two fermions can occupy
the same spin orbital. This is the well known Pauli Principle.

The anti-symmetric product-states (2.16) form a basis in the anti-symmetric
Hilbert space HY C HY. Hence, we can expand any fermionic N-particle state
into a linear combination of anti-symmetric product-states (2.16) constructed
from an arbitrary one particle basis {]i)}.

2.2.2. Occupation number representation

The anti-symmetric N-particle states (2.16), or equivalent the Slater determi-
nants (2.17), are uniquely defined by the N quantum numbers iy, s ...4ix of
the N occupied one-particle orbitals. Therefore, we can write

i1 .. in) 4 = |nonane . ..) = |{n}) ,

where n; € {0, 1} denotes the occupation number of the i-th one-particle orbital,
i.e., those with n; = 1 form the corresponding Slater determinant. Actually,
we could choose any arbitrary mapping of occupation numbers to one-particle
orbitals, but once defined, the mapping has to remain unchanged. Then, an
occupation number vector (ONV) [{n}) uniquely defines a Slater determinant,
and it is common to refer to the ONV itself as a Slater determinant. As we
consider a quantum system of N fermions, it is N = > 72 n,. It follows that
the ONVs form a basis in the anti-symmetric Hilbert space HY, i.e., it is

2; {n}) ({0} 05 oo = 1w, (2.18)
{n

where the short form
11
{E } = E E “ e

for the summation over all occupation numbers is used. Further, the OVNs
fulfil the orthogonality relation

{n}‘{n} H 5711,1% = 5{n},{ﬁ} . (2.19)

In this occupation number representation of Slater determinants, we only have
to drop the restriction N = Y 72 to obtain states of varying particle number,
whereas in terms of Slater determinants, we have to deal with determinants of
different dimension. The ONVs of varying particle number form a basis in the
anti-symmetric Fock space F_ that is defined as being the direct sum of the
anti-symmetric Hilbert spaces with 0,1, 2, ... particles, i.e., it is

F.o=H'oH'aH>....

13



2. Theory

In H°, there is exactly one state with zero particles |n) = |000...) containing
only zeros. This state is also referred to as the vacuum state. The orthogonality
relation (2.19) is valid for the ONVs in Fock space, too, and the completeness
relation (2.18) changes slightly to

> Hnp) ({n}l=1.
{n}

Hence, we can expand the state vector |¥) of a fermionic system with varying
particle number, e.g., in the grand canonical ensemble, into a linear combination

of OVNs

W) => cmyl{n})

{n}
where the OVNs are defined with respect to an arbitrary one-particle basis
)}
2.2.3. Creation and annihilation operators

The creation and annihilation operators represent the most important tool of
second quantization. For fermions, the creation operator &I is defined by

al |[{n}) = (1 — ny) (1)

om0 (2.20)

Hence, it maps an ONV of particle number N onto an ONV of particle number
N + 1 by adding a particle in the orbital i. The prefactor (1 — n;) results in
the vanishing of the ONV if there is already a particle in the orbital ¢ (Pauli
principle). The phase factor (—1)*=}hi with

i—1
Qn},i 1= an (2.21)
1=0

is in agreement with the representation of the ONVs as anti-symmetric product-
states (2.16) since it corresponds to the number of two-particle exchanges to
correctly sort the new orbital |i) into the product. This, of course, corresponds
to the number or column interchanges in (2.17) required to place ¢; in the
correct column. In accordance with (2.20), the fermionic annihilation operator
is defined by

a; |[{n}) = ni(=1)%i | my—1,...) . (2.22)

It vanishes if there is no particle in the orbital ¢ to be annihilated. The
Hermitian adjoint of the creation operator is the annihilation operator and vice

14



2.2. Second quantization

versa, which is indicated by the notation. Further, they fulfil the important
relations

Aot Aoy
{a’l7a’j} {ai7aj}_0=
{aw ]} = 5’&] (223)

with the anti-commutator of two operators {A, B} .— AB + BA. Utilizing the
creation operator, any Fock state can be constructed from the vacuum state:

) = (L@ ) 1oy

1=0

Due to the relations (2.23), the ordering of the creation operators on the
r.h.s. must be the same as the ordering of the orbitals in the ONV on the
Lh.s..With the orthogonality relation (2.19) and the definitions (2.20), (2.22),
we immediately write down the matrix elements of the creation and annihilation
operators

<{n}|ak|{n}> ( )a{n} k6{n} {n}dnk,lénk ngp+1
{n}lag{n}) = (— )"‘{"}*k5{n},{ﬁ}5nk,05nk,ﬁk—1 ,

z;ék
Similarly, matrix elements of products of two or more creation and annihilation

operators can be computed. In particular, there is the hermitian occupation
number operator 7, := ala,, which is diagonal in occupation number repre-

Z’L7

sentation with the eigenvalues being the occupation number n; of the i—th
one-particle orbital, i.e., it is

i [{n}) =ni[{n}) .

The total number of particles N = >°7°;n; of an ONV is an eigenvalue of the
total particle number operator N defined as

[ee]
=7

=0

Finally, the creation and annihilation operators can be transformed into another
one-particle basis according to

a, = i (i) a; . (2.25)

15



2. Theory

In the continuous basis of spin-coordinate states {|z)}, = (r, o) , the creation
and annihilation operators are called field operators. Using Eq. (2.25), these
can be expressed in terms of creation and annihilation operators of an arbitrary
discrete one-particle basis {]i) }:

1=0 =0
V() =, = (wli)ai = Y dilw)as (2.26)
1=0 1=0

where Ui(z) creates and ¥(z) annihilates a particle at space point r with spin
projection o.

2.2.4. One-particle operators in second quantization

The operator of the kinetic energy or an external potential of a N-particle
system is of the form

A N A
=> by, (2.27)
a=1

where b, is a one-particle operator acting on particle a. Though misleadingly,
B is referred to as a one-particle operator while actually, B is a N-particle
operator acting on N-particle states |W) € Hy. The representation of the
one-particle operators b in an arbitrary one-particle basis {|#)} is given by

with one-particle integrals®

(bl = [ dugi(@)ble)y(a) (2.28)

Inserting this into (2.27), we obtain the matrix representation of the N-particle
operator

% (2.29)

||
“H Mg

Provided that the N-particle state |¥) is an anti-symmetrized product state
(2.16) constructed from the same one-particle basis {|7)}, it is straightforward

9Integration over z = (r, o) includes summation over the spin projections.
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2.2. Second quantization

to show that the action of the operator (2.29) on the anti-symmetric product
state corresponds to the following action of creation and annihilation operators

on the ONV |{n}) that is uniquely defined by |¥):

S budla o) = - by S 1 Gl 19) (2.30)

,7=0 3,j=0 a=1

Thus, the Lh.s. of (2.30) is the second quantized form of the N-particle operator
(2.27), i.e

B=Y byala; . (2.31)

Note that this operator, unlike the first quantized form (2.29), does not depend
on the particle number, and its action on Fock states [{n}) of different particle
number is well defined. To compute the matrix elements of (2.31) in Fock
space, we have to compute the matrix elements of a product of an arbitrary
creation and annihilation operator. Using the matrix elements of the creation

and annihilation operator (2.24) and the completeness relation in Fock space
(2.19), we find for k # [

({n}laja,/{n}) = {Z} ({n}laf|[{n'}) ({n'Ha{n})

=D (=) M TGy Oy 2y Ot 00 10,1000
{n'}
= ( 1)a{n} ATogRy k(S{ }{n}5nl715ﬁk716ﬁl705nk,0

and for k =1
({n}afa,{n}) = ({n}Akl{R}) = nedmy gy -

Splitting B into these two cases, it follows

({n}|Bul{n}) = Zbkk ({n}latay | {n}) + Z bu {{n}lafa, | {n})

k,1=0
k£l

= O(ny.(n} D kT
k=0

+ 20 D bik(— 1) ARG B 10,107, 00m,0 -
k=0 1=0
I#k

(2.32)
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2. Theory

Obviously, these matrix elements do not vanish in only two cases: The ONVs
[{n}) and |{n}) either have to be equal or differ in exactly two orbitals. The
phase factor can be further simplified. Assuming that k < [ we have (cf. Def.
(2.21))

k—1

(—1)™mptompr = (_1)2123 it o, = (_1)25;)1 nid Y i
k-1 B
— (_1)2(Zi:0 ”) (_1)2:; ni
-1

= (=1) 2k ™ (2.33)

where in the second line we have used the fact that [{n}) and [{n}) only differ
in the orbitals k and [. The last line is correct since n; has to be zero for a
non-vanishing matrix element in (2.32). Likewise, we can simplify the phase
factor for k£ > [. Both cases can be written in the compact form

maz(k,l)—1

(_1)a{n},l+a{'ﬁ},1€ — (_1)Zmin(k,l)+l . (234)

If we define [{n};) to be the ONV that results from |{n}) by removing a particle
from orbital |p) and adding one to orbital |q), i.e., assuming g < p, it is

\{n}§>:|...,nq—1,...,np+1,...), (2.35)

then we can finally combine (2.32) and (2.34) to obtain a very compact form
of the matrix elements:

kijo bkknk, {n} = {ﬁ}
max(p,q)—1
B — S _ 2.36)
HBHAN =4, ™ (o = )2 (
0, else

Summarizing the above, we get a contribution of by to the diagonal matrix
elements for all occupied orbitals in the ONV. Only in case the two ONVs differ
in exactly two orbitals |p) and |g), the off-diagonal elements do not vanish and
its phase factor is determined by the number of occupied orbitals between |q)
and |p) (or |p) and |¢)). It should be mentioned that the one-particle integrals
b,q can be negative, i.e., in addition to the phase factor, giving rise to another
sign change of the matrix element.

2.2.5. Two-particle operators in second quantization

The interaction operator of an N-particle system is typically of the form
.1 X
W= > g, (2.37)

2 a#p=1
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2.2. Second quantization

where w, g is the two-particle interaction operator acting on the particles «
and 3, e.g., for Coulomb interaction it is

62

(2.38)

wa,ﬁ = 1A ~ 1

[P0 — 5]
In second quantization, this operator can also be written in terms of creation
and annihilation operators'?:

1974 I & Tt
5 2
Zy]akyl_o

with the two-particle integrals'!

win = (ijllkl) = [ dz [ dye;(@)0; e, por(@)oly) . (239)

Note the interchange of k£ and [ in the ordering of the indices in the two-
particle integral and the product of annihilators. For fermions, this order
directly follows from the anti-commutation relations (2.23) and is essential.
The invariance of the interaction operator with respect to particle interchange,
ie., w(z,y) = w(y,z), and the fact that the interaction w(x,y) is real, i.e.,
w*(z,y) = w(x,y), result in the following two symmetry properties of the
two-particle integrals (2.39)

Wijkl = Wyilk
* —

For the description of interacting fermions in second quantization, we have
to compute the matrix elements ({n}|W|{n}). For that purpose, we can use
the above symmetries of the two-particle integrals to recast the interaction
operator into a more advantageous form

N o0 [e o] [ee] o0
W=3 3 > 3 wyalalaa,,

1=0 j=i+1 k=0 l=k+1

with the anti-symmetrized two-particle integrals Wik = Wijki — Wijlk- Since
1 < 7 and k < [, there are six possibilities for different products of creation and

10The second quantized form of W is also derived from the action of (2.37) on an anti-
symmetric product-state (2.16).

1 Assuming that the two-particle operator ), like (2.38), is diagonal in spin-coordinate
representation.
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2. Theory

annihilation operators in which we can split W

~ o o (o]
W= Z Z Wijig & | 10,0 + Z Z Z Wyjig d;r‘d;r&z’dl

=0 j=i+1 i:Oj:ﬂ+1kjf1
I#]
i S f
P33 S uy dilag + 30 50 3w i,
=0 j=i+1 k=0 1=0 j=i4+1 k=0
75
: oo 00 00 00 ot
FY > wpdlalaa 4> Y S D wpy il
=0 j=i+11l=j5+1 =0 j=i+1 k=0 [=k+1
k#i,5 1,5

It takes some time, but it is straightforward to compute the matrix elements
({n}\&}&j a,q,/{n}) for these six cases. After rearranging the terms, we eventu-
ally end up with

UIWHEY) = i So S wipgmin,

i=0 j=i+1
oo o
Pq
+ DD 0 1y Onp105,,00m,,00m,,1
p=04¢=0
o
anz+anz+an +ayn
N Wi (D)t st ma © (4, p, g)n;
=0

+ Z Z Z Z 51{7%8{,1} 0ny,107,.00n,,105,,00n,,004,,10n, 007, 1

p=0 g=p+1 =0 s=r+1
N o +a +oar oo
) wpqrs(_l) {n}pTH{n}.q {n}, {A},s 7

where we have defined the function

-1 if p<i<gq, org<i<p
@(iap:Q) = 0 if i=pori=gq ,
1 else
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2.2. Second quantization

that ensures the correct phase factor. Similar to (2.33), we can further simplify
the phase factors yielding

Wiy = ({nHWHAY) = Wiy iy + Wiiyim + Winh -

W{n} {n} — 6{'“} {n} Z Z wzjzjnlnj )

1=0 j=i41

max(p,q)—1
W{TL} {TL} Z 5{71} {n}énp 16np 0571(1 Oénq 1 Z wlp?,q ]_)Zl =min(p,q)+1 lnz ,

p,q=1
Z#p q

{I;LI} {n} Z Z Z Z 551{)27;5{”} Tp, 15ﬁp,0(5nq,15ﬁq,OénT,05ﬁr,15ns,05ﬁs,1

p=1qg=p+1r=1s=r+1

W, —1) qflnH—Zl r

The Kronecker deltas in the three summands define the three cases for the left
and right ONV that result in a non-vanishing matrix element ({n}|W|{n}):
First, both ONVs are equal, i.e., [{n}) = [{n}). Second, the ONVs differ in
exactly two orbitals |p) and |g) with [{n}) = [{n}}) (cf. Def. (2.35)). The
third summand does not vanish if the two ONVs differ in exactly four orbitals
Ip),|g) . |r) and |s) with p < g and r < s. Defining [{n}’=?) as the ONV that
is obtained from |{n}) by adding a particle to the orbitals |p) and |¢) and
removing one from |r) and |s) allows for the compact writing of the matrix
elements of the interaction operator [9]:

o0 o0
DD winng, {n} ={n}
1=0 j=i+1
max(p,q)—1
ny

o0 >
. Wi (—1)=mme0t oy {n} = {n}y
iy = 4 2 Y b=tk o4

i#p,q ) )

q— s—

2t —1P<q
w;qm(_l)l:p = ) {n} - {n r<s
0, else

These are the well-known Slater-Condon-rules [27], which are of prime impor-
tance for the CPIMC method.
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3. Configuration path integral
Monte Carlo

In this chapter, first, the expansion of the partition function (see Sec. 2.1) that
is used for the standard CPIMC approach is derived following [10]. Afterwards,
the expansion is modified such that it is suitable for a Worm algorithm (WA).
Then, a similar expansion for the Matsubara Green function (MGF) is found,
which, together with the partition function, defines the total configuration
space of the developed WA. Finally, the developed Monte Carlo steps of the
WA are presented and discussed in detail.

3.1. Paths in the ONV picture

We consider a general system described by the Hamiltonian H in the canonical
ensemble, i.e., with fixed particle number N in a volume V' at temperature 7.
The partition function is given by the trace over the (not normalized) density

operator p = e=BH , where 8 = % is the inverse temperature
Z(N,B, V) =Tre PH | (3.1)

The trace can be performed in an arbitrary N-particle basis {|¥;)}. In such an
arbitrary basis, we can formally split the Hamiltonian into a diagonal part D
and a off-diagonal part Y, i.e., it is H = D + Y with!

(U,|D|W,)=D; if i=j

. . A (3.2)
(V)Y [¥;) =Y;; if  i#y

(U |H|W) = {

Now we can switch to the interaction picture? in imaginary time with respect
to the diagonal operator D

Y(r)= ePVe ™ with 7€ 0,3] . (3.3)

Here, 1 and j are multi-variables of all quantum numbers defining the N-particle states.
2In this work, the notation of the operators in the interaction picture does only differ to
that of Schrédinger operators by the presence of a time argument.
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3. Configuration path integral Monte Carlo

In this picture, we define the time ordering operator 1. by
~ A(Tl)B(TQ) , if T1 > T2

T [A(m)B(m)] = {A(Tz)g(ﬁ) if  m>7

and expand the density operator as follows

A A /6 N
o BH _ ~BD - Jo Y (m)dr
. 0 B B DK . . N N
=e Py / dr .. / dTK( ) T.Y(1)Y(r2) ... Y(1x)] .
=0 /0 0 K!

Due to the time-ordering operator, for each K, there are K! equal terms of
time ordered off-diagonal products. Therefore, we can modify the integral
boundaries such that the operators are already time ordered, thereby obtaining

A IN o B B B A A A
eiﬁH = 67’BD Z / dTl/ d7—2 .. / dTK(_l)KY<TK)Y(TK71> feet Y<7—1) .
K—0 0 T1 TK—1
(3.4)

This expansion is inserted into Eq. (3.1). Performing the trace in the N-particle
basis of ONVs? {|{n})} with fixed particle number* N = 3% n;, yields®

Z zgo{zg/oﬂdﬁ/deg.../TildTK
(=) e Py ({n}|Y (7)Y (7c1) - V() {n}) -

Next, we insert K — 1 unity operators 1 = 2@y {n@}) ({n®}] of the anti-
symmetrized N-particle Hilbert space HY

00 8 3 5
Z = Z Z Z Z /0 dTl/n dTg...LK_l dTK(—l)Ke_ﬁD{n}

K=0{n} {n(M}  {n(K-D)}
{3 Y (7)) [{n" 1) ({0 Y (i) n72Y) -
o (Y ()] [{n)) -

The matrix elements of the off-diagonal operators in the interaction picture are
readily computed:

{n DY () {nD}) = ({n@} | PY e %P {n0)})

— eTKD TKD{n(j)} )

{n(i)}Y{n(i)},{n(j)}e_

3Since we consider fermions, it is n; € {0,1}.

4Here, summation over all occupation numbers implies conservation of the total particle
number N.

5Note that by definition it is D |{n}) = Dyny {n}) (cf. Eq. (3.2) with |¥;) = [{n})).
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3.1. Paths in the ONV picture

Thus, it follows

Z:iz Z /dTl/dTQ /dTK

K=0 {n} {n(l)} {n(K 1)} 0
(—1)% exp { Z Dy (Tis1 — 7 } ) 11 Yinoy gm0y -
i=0

Further, we take into account that, by definition, the diagonal elements of
the off-diagonal operators are zero, i.e., Y{n@')}, iy = 0. After excluding these
terms in the summation over the ONVs and rearranging the factors, we finally
end up with

Z(N,V, ) = Z X Y. X /dﬁ/dTg /dTK

K;ﬂ —{n(o)} {n(K)} 75{71(0)} A{n(EK— 2)}7&{”(1()}

=0

K-1
(—1)Kexp{ > Doy (Tig1 — } H Yty iy = ZW(C) :
C
(3.5)

where we have {n} = {n®} = {nM}, 7, = 0 and 7, = 3. Each contribution
W to the partition function is uniquely defined by the K ONVs [{n(¥}),
1=0,...,K—1and times 7;, 2 = 1, ..., K. Therefore, in this expansion of the
partition function, the multi-variable C, defining a system configuration (cf.
Eq. (2.1)), is given by"

= ((K), {n(o)}, {n(l)}, . {n(K_l)}, T1, Toy . - . ,TK)

with the weight function

W(c = (K, 71,7, 7, (0@, {nV),. .,{n<K—1>})) - (3.6)
K K-1
(—1)% exp {_ > Dniny (Tig1 — Tz)} I1 Yoy ny-
=0 =0

In analogy to the path integral picture in coordinate space, these system
configurations can be visualized as f—periodic paths in Fock space, i.e., in
the space of ONVs, where the ONV [{n'}) is realized on the interval (7;, 7;11)
giving a contribution of Dy, (741 — 7;) to the exponential term of the weight
function W(C'). Further, at each time point 7;, there is a change of the ONV

60f course, K is already defined by the number of ONVs. Therefore, it is written in brackets.
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3. Configuration path integral Monte Carlo

{n}):

{n @)
{n® ), {n®})

{nW}): — _ . -
0 T1 T2 T3 T4 5
imaginary time 7

{n}) (1)

Figure 3.1.: Possible path in imaginary time. Horizontal lines correspond to diago-
nal matrix elements D (n®}> whereas vertical lines correspond to off-diagonal
elements Y{n@H)}, (@3- The ordering of the ON'Vs is arbitrary.

[{n}) (7) corresponding to an off-diagonal factor Y1y ,my in W(C). Fig.
3.1 shows a possible path for K = 5. In this picture, times at which the ONV
[{n}) (7) changes appear as kinks in the paths. Therefore, we refer to K as the
number of kinks.

It shall be mentioned that the derivation of Eq. (3.5) can be done without
switching to the interaction picture. Instead the Trotter Formula [29] can be
used, which leads to discrete paths. Unlike to the DPIMC method, where paths
are discrete with respect to the imaginary time, the limit of continuous paths
can eventually be carried out analytically yielding Eq. (3.5). (For details, see
[9], where the notation “configuration path integral Monte Carlo” has been
introduced.)

So far, the expansion of the partition function (3.5) is in principle valid for
any fermionic systems’ in the canonical or grand canonical® ensemble since
we can split any Hamiltonian H into a diagonal and off-diagonal part. In this
thesis, we are interested in the general case of interacting fermions in some
external potential, i.e., the N-particle Hamiltonian is of the form

H=Hy+W
with Ay the Hamiltonian of the ideal system (as defined in Eq. (2.14)) and

W the interaction operator (cf. Eq. (2.37)). In second quantization, H is
represented by (cf. Sec. 2.2.4 and 2.2.5)

H=> hyala;+ > wyyalalaa, . (3.7)
i,

1<j,k<l

"For bosons, we only have to change the summation over the occupation numbers from
n; € {0,1} ton; € N.

8For the grand canonical ensemble, we only have to modify the interaction picture in Eq.
(3.3) by replacing D with D — uN , where p is the chemical potential.
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3.2. Paths in the kink picture

With the matrix elements of general one-particle operators (Eq. (2.36)) and the
Slater-Condon rules for the interaction operator (Eq. (2.41)), we can compute
the matrix elements of the diagonal and off-diagonal operator in the partition
function (3.5) according to

Dy = i himgk) + i i wi;ijnz(k)n§’k) ) (3.8)
i=1 i=0 j=i+1
and
N max(p,q)~1 0
(hpq + 2 w;ﬂqngk)) (—1)m=minatt {n(k)} — {n(l)}z
Yimynoy = z#pq;l n$)+§ W
Wgpa (=177 {n®} = {(n"y2
0, else.
(3.9)

Consequently, paths can only have kinks )/{n(i+l)}’{n(i)} where the consecutive
ONVs [{n®}) and |[{n*D}) differ in exactly two or four orbitals, i.e., they are
equal except for either a one- or two-particle excitation. In all other cases, the
weight function is zero due to a vanishing off-diagonal element, and hence, such
paths do not exist. Note that by performing the trace in occupation number
representation and evaluating the matrix elements of the field operators in the
Hamiltonian (3.7) according to the fermionic anti-commutation relations (2.23),
we automatically included the correct spin statistics.

Furthermore, there are three sources of sign changes in the weight function
(3.6): First, we have the number of kinks (—1)%. Second, the one-particle
integrals h,, (cf. Eq. (2.28)) and the anti-symmetrized two-particle integrals
w,.. (cf. Eq. (2.39)), which are calculated in an arbitrary one-particle basis
{|#)}, in general have both positive and negative values. Third, each kink
includes a fermionic phase factor (—1)® determined by the occupied orbitals in
between the differing orbitals. Depending on the simulated system, these are
the potential sources for a serious sign problem.

Finally, we note that Eq. (3.5) represents a perturbation expansion concerning
the off-diagonal matrix elements. Therefore, if we use the ideal basis, which
diagonalizes the ideal Hamiltonian ]:IO, we have a perturbation expansion of
the partition function in terms of the interaction.

3.2. Paths in the kink picture

The partition function (3.5) is well-suited for Monte Carlo simulations via
the Metropolis algorithm (standard CPIMC). Some important estimators and
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3. Configuration path integral Monte Carlo

an ergodic set of Monte Carlo steps are described in detail in [10]. Apart
from the sign problem, the presented standard CPIMC algorithm has three
major drawbacks. First, depending on the system size, the average acceptance
probabilities of the steps are of the order O(10~*). Even though small accep-
tance probabilities of Monte Carlo steps do not necessarily imply an inefficient
algorithm, e.g., if the steps result in large changes of the system configurations,
average acceptance probabilities smaller than 1073 are unlikely to be efficient.
Second, while the expectation values of standard thermodynamic observables
like the total energy or heat capacity can be calculated up to a relative sta-
tistical error of about 107%, it turned out that the statistical error of the one-
and two-particle density matrix is very large. Third, and most importantly,
the standard CPIMC method does not allow for the sampling of the one- and
two-particle MGF, which give access to the single-particle spectral function
and the dynamical structure factor, respectively (see [15, 16, 14] and references
therein).

The Worm algorithm (WA) of the DPMC method [17, 30] has been shown
to be much more efficient in sampling the exchange of particles than the
standard DPIMC methods|[1], and at the same time, the WA gives direct access
to the MGF. However, due to the fermion sign problem within the DPIMC
approach, strongly degenerate fermionic systems cannot be simulated, whereas
this is possible with the CIPIMC method. Therefore, a WA for CPIMC had
to be developed to provide exact data for the MGF of strongly degenerate
systems. In addition, we hoped that the mentioned problems of small acceptance
probabilities and poor results for the one-particle density matrix could be solved
or improved due to a reformulation of the standard CPIMC approach in terms
of a WA. The basic idea of the WA for Metropolis Monte Carlo in determinant
space has been developed by Prokof’ev et al.[18], where only bosonic lattice
models are considered. In fact, for lattice models, things are much simpler since
the corresponding Hamiltonians in second quantization do not contain a true
two-particle interaction operator consisting of two creation and annihilation
operators with different indices.

For the WA, we rewrite the partition function (3.5) by taking into account
that consecutive ONVs in the path can only differ by two or four orbitals, i.e.,
many summands in (3.5) are redundant?. Actually, a path, as shown in Fig. 3.1,
is specified by the first ONV |n(?)) and the consecutive one- and two-particle
excitations with corresponding times. Hence, instead of summing over K
different ON'Vs, we only have to sum over a single ONV and all consecutive one-
and two-particle excitations. The formal derivation of this apparently simple
conclusion is fairly elaborate for continuous models and, as far as I know, has

9For the standard CPIMC method described in [10], summing over configurations with
vanishing weights is not relevant since in the Monte Carlo algorithm proposing not allowed
excitations is simply rejected.
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3.2. Paths in the kink picture

not been performed or published anywhere else. We start from the actual form
of the off-diagonal operator. According to the second quantized form of the
Hamiltonian (3.7) and the definition of the off-diagonal operator (3.2), it is

o0 o0
. Ata — Afafa A
Y =) hgala, +) W, Qg 500y,
i,k=0 i,j.k,1=0
i#k 1<j,k<l,

ik if j=1, j;él if i=k

Z hszL ay, + Z ZwUkJAzA]A]&k (310)

1,k=0 i,k=0 j=0

ik ik j>i
j>k
AAAAA T A
+ Z wazla CLlCL + wakla alak :
J,1=01=0 1,5,k,1=0
JAL <3 i<j,k<l,
i< itk i ik j#

Using the anti-commutator relations (2.23) and the symmetries of the anti-
symmetric two-electron integrals (2.40), we can further rewrite the third term

Z Zw;zl& a dla’ Z Zw]zle]A a &l 4_ Z szjk] ;f TA a’k’

Jil= Oz<0 7,=01=0 l—>klk 0j=0
j;él <] gA i<J i#£k j<i
i<l i<l j<k

Thereby, we can combine the second and the third term in Eq. (3.10), which
yields

o0
o At A Atata A
YV => | hgala, + Z W50 Ay, +wakzza 50,0y,
i,k=0 i,5,k,1=0
z;ék j;éz k 1<j,k<l,
i#k,i#lLjF#k,j#
- = i - fat
i,k=0 j=0 i,5,k,1=0
i#k J#i.k 1<j,k<l,
i#k,i#lLjF#k,j#

where we could interchange the field operators to factor out @la, since all

indices in the summation are pairwise distinct, i.e., for each interchange of two
field operators, we only have a sign change. In this form, the matrix elements
of the off-diagonal operator (3.9) are obvious. Next, we define the so called
kink operator ¢(s) by

hir + Z W7 ala, if s=(,k)eA
q(s) == = . (3.12)

wialataay, if s=(i,j.kl)€B
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3. Configuration path integral Monte Carlo

where A and B are the sets of all possible one- and two-particle excitations,
respectively

(i,k) € N* | i # j},
(i, 5,k ) EN* |i<j, k<l i#k i#l, j#k j#I1}. (3.13)

{
{
The action of the generalized kink operator on an arbitrary ONV is given by

q(s) {n}) = agay.em (s) {ny ({1}, 5)) - (3.14)

The the resulting ONV |{n}) is defined by the occupation numbers {n} and
the one- or two-particle excitation s. Hence, the matrix elements gz} (n)(s) are
completely determined by s and {n}. The off-diagonal operator (3.11) and its
matrix elements can now be expressed in terms of these kink operators

V=% ds),  Yapm= Y Qanm(s). (3.15)

s€AUB s€AUB

Of course, except for that s” which is determined by {n} an {n}, all ¢} (1 (5)
vanish, and for s it is g(n} (n}(5") = Y{a} {n}, Which is calculated according to
Eq. (3.9). Using this expansion of the off-diagonal operator into kink operators,
we can rewrite the product of the off-diagonal elements in the partition function
(3.5) as follows'?

H Yineen) fnioy = H CRUTRIES S SH 33 | (ROTREEE
s1 52 SK i=1

whereby we obtain

Z(N.V.j) = Z D D P SHD ) I

{n} {n(D)3, n(E=1)y, S1 82
(= ()} =)} 200} 2a(K=2)y 1K)y

K

/ dKT(—l)K exp {— Z D{n(i)}(Ti+1 - Tz)} H Q{n(i)}{n(i—l)}(si) .
1=0 i=1

(3.16)

Additionally, we have used a compact notation for the integrals over the kink
positions in imaginary time

, 8 8 8
/dKT Z:/dTl/dTg... / Aty . (3.17)
0 T1

TK—1

0Summation over s implies summation over all s € AU B defined in the Eqgs. (3.13).
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3.2. Paths in the kink picture

{n}) ()

imaginary time 7

Figure 3.2.: Possible path {ng(7),n1(7),...,n5(7)} in imaginary time of three
particles in six orbitals in the kink picture. Each kink s represents either a one-
or a two-particle excitation.

As already mentioned, the matrix elements of the kink operators are completely
defined by one of the ONVs [{n~11}) or [{n®}) and the excitation s € AU B
(cf. Eq. (3.14)). Hence, in Eq. (3.16), the summations over the occupation
numbers are redundant except for one, e.g., the one over {n}. Further, due to
the restriction that the paths must be S-periodic, i.e., {n(®} = {nX)}, we can
also drop the summation over sg. It follows the final expansion of the partition
function

Lo =Y XYY Y [a

K=0, S S2 S
P {n} s1 K—1

(-1 Fexp { Z D{n (Tis1 — T } H A{n®{nli- 1>} Z: Wep(Cep)

Ccp

(3.18)

A contribution to the partition function in this representation is uniquely
defined by the first ONV |[{n}) and the K —1 excitations (kinks) of type s; that
are consecutively applied to the ONV at times 7;, where, due to the restriction
of the integrals (cf. Eq. (3.17)), it is 79 < 71 < ... < 7. Thus, a system
configuration, in terms of the WA referred to as a closed path, is given by

Cop = ((K), {n}, 51,52, .., SKk-1,T1, T2, .+ -, TK) (3.19)
with its corresponding weight function

K K
W(Cep) = (=1)% exp {— > D (i1 — Tz’)} T gy -y (5) -
i=0 i1

These configurations can be visualized as paths in imaginary time, too. As
an example, a possible path for three particles in six orbitals is shown in Fig.
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3. Configuration path integral Monte Carlo

3.2. In contrast to the paths [{n}) (7) in the ONV picture (cf. Fig. 3.1), where
a path is represented by arbitrary ordered ONVs [{n'}), i = 0...K — 1, in
this representation of the partition function, a path is given by the occupation
number of each orbital n;(7) which can change at the kink times 7;. Each kink
s; either defines a one- or a two-particle excitation (i.e., s; € A or s; € B, see
Def. (3.13)). If s; € A (s; € B), then we refer to the kink s; as being of type 2
(4). In addition, these paths automatically include particle exchange, since in
case of a type 4 kink, we cannot tell which particle is excited to which orbital.

We could now perform Metropolis Monte Carlo with this representation
of the partition function if we transform the Monte Carlo steps of the ONV
picture (standard CPIMC [10]) into this kink picture, but our goal is to develop
a suitable WA in this picture.

3.3. Open paths in the kink picture
In this section, it is shown that the summation over all MGFs has a similar
expansion to that of the partition function (3.18). The MGF is defined in

the grand canonical ensemble, i.e., for a given temperature T, volume V and
chemical potential p of the system

Gij (T T) = (T [ 1 (7)) 1(720) )

;Tr{ BH~ “N)TT [ zH(Tirm;,H(Tma)” ’

with the time arguments 7, 7,.. € [0, 5] and 7, # 7,... Further, Z denotes the
grand canonical partition functlon

Z(u,V, B) = Tre PN
The field operators are represented in the modified Heisenberg picture
An(r) = e (H=pN) 4 o—7(H-puN)
In the modified interaction picture

A(r) = eTﬁfle_Tﬁ

with respect to the dlagonal part D D+ ,uN of the grand canonical Hamil-
tonian H = D +Y + N, the MGF takes the form [31]

G (i ) = 5 T {e DT, [ BV O (730 )|}
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3.3. Open paths in the kink picture

For historical reasons, in terms of the WA, we call the annihilator Ira and the
creator Masha [18]. We recall some important properties of the MGF: First, it
is homogeneous in (imaginary) time, i.e,

Gij (Ties Tua) = Gig (T = Toe = T, 0) = (T[4, g (1)a] 4 (O)]) . (3.:20)

where 7 € [—, 5]\{0}, i.e., the MGF has a discontinuity at 7 = 0. Second, for
fermions, the MGF is anti-periodic under shifts of

Gij(T = B) = =Gi(r) 7€(0,0],
Gij(t+B) =—Gij(r) T7€[=5,0), (3.21)
and third, it is related to the one-particle density matrix n;; according to
Gij(07) :=1lim Gy (0 — €) = — (afa;) = —ny ,
Giy(57) :=lim Gy (8 — ) = + (aja;) = +ny . (3.22)
The grand canonical partition function

N ﬁ N
v ) = e )

obviously posses an expansion similar to that of the canonical partition function

(cf. Eq. (3.18)). We only have to replace D by D and drop the implied restriction
of fixed particle number in the summation over {n}. Now, we investigate
the quantity G which is given by summation and integration over all MGFs
multiplied by Z, i.e. ,it is

-3 / dr, / AraZ - Gig(Tis T
= Z/o dTir/O dr,., Tr {e_BDTT [e_foﬂ y(T)dT&i(Ti,)&}(Tma)}}
=Y 5 [Can [ an., [ ats

K=0{n} %
(=D ({n}]ePT, Y(7k) - V()i (n)al ()] {n})

where in the last line, we have performed the trace in the basis of Fock states
|{n}) and expanded the exponential according to Eq. (3.4). Inserting the
expansion of the off-diagonal operators in terms of kink operators (cf. Eq.
(3.15)) yields

=Sy Y Y [Tin [an, [ats

K=0{n} i s1

(=D ({n}e 2T, [d(sx,70) - - 41,7 (r )l (1) Hn}) -
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3. Configuration path integral Monte Carlo

Due to the restrictions of the integrals over the kink times, the kink operators
are already time ordered. However, we cannot drop the time-ordering operator
since 7y, Tma € [0, 5]. Further, we have to be careful concerning the action of
the time-ordering operator on a product of fermionic creation- and annihilation
operators (with different time arguments). By definition it is

. G, (7., )ak if 7, >
7, [a,(n)a) ()] :{az“")%(%a) e T

! —&;r- (Twa) 0 (7)1 T < T

Since the MGF is not defined for 7,, = 7,., we have to make sure that this case
is excluded in the integration over the times of Ira and Masha. We do that by
adding a prime to the integral over 7,,. Taking into account these aspects, we
can produce a correctly time-ordered product as follows

G = ZZ/ dﬂr/ dTma/dK Y Y Y 6({ne))
K=0 {n} TESk42 S7(1) 5 (2) Sr(K+2)
(= 1)+ (e PP 48 (1), Ta(r) * - -+ UEn(acr2)s Tatres) {0}
(3.23)
where it is T 11 = T, TK412 = Tmas Sk+1 = ¢ and Sxio = 7. We sum over all
permutations 7 of the permutation group Sk of K + 2 elements. Further, we
have introduced the generalized theta function

O }) = O(Trt) = Tw@)O(Tn(2) — Ta(@)) * + - - - O(Tw(k4+1) — Tu(K+2)) »

which ensures that only the correct time-ordered product of generalized kink
operators q does not vanish. In accordance with the definition of the kink
operators (3.12), these generalized kink operators are defined by

a; if S.4=85ky1=1€N
j if 5.4 =85k42=j€N
é(gﬂ(i)) = < i+ Zw”k]nj>aTak if 5.4 =(,k) €A n()e{l,...,K}
J#Zk
wialala,a, if 5. = (6,4, k1) € B, w(i) € {1,..., K},

and thus s € AU BUN, but it is PIEIN # Y scaupun because we have exactly
one Ira and one Masha. We can ensure this by defining

Z&i(ﬂr) if 7'(( ) K+ 1
Z q s 7,)7 Tﬂ' 7,) Z&}(Tma) 1f 7T( ) K —|— 2
J
Sr(i)
Y. Qe Te) i w(@) €{L,... K}
Sn(:) EAUB
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3.3. Open paths in the kink picture

Hence, we can simply interpret Ira and Masha as a type 1 kink since these are
given by only one creation or annihilation operator. Next, we insert K + 1 unit
operators of the form 1 = Y, winy [{n™}) ({nD}| between the generalized
kink operators in Eq. (3.23), and with the matrix elements of the generalized
kink operators

‘?{nﬂ”},{nwufw}(gw(i), Ta(i)) = €7OPED Gy oy (Sa(py ) O P
(3.24)

we eventually find

g:iz/fdﬂrfo'ﬁdm/'d% Y Y Y LY 6(ne)

K=0 {n} TESk 42 Sx(1) Sx(2) Sp(K+1)
. K42
K42
K+O(Tma—Tir) , = D n (w (@ (Trrz' 1)~ Tr(i ) —~ —
(—1)K+O(ma—To) D im0 Dy @) (Tr(irn) = Tr(i) TT gty uiei- 0y (5x0)
i=1
. i Won(Cop) | (3.25)

Cop

where we could drop the summation over the ONVs from the insertion of the
K +1 unit operators since, in analogy to the kink operator, the matrix elements
of the generalized kink operators (3.24) are completely defined by one state
[{n™(=D}) or [{n"@}) and the type of the kink 5,(;. Due to the S—periodicity,
we could also drop the summation over 5;(x2).

This expansion of G is very similar to that of the partition function (3.18).
The only difference lies in the presence of two extra kinks, namely Ira and Masha.
A contribution to G is uniquely defined by the occupation numbers {n} at
7 = 0, the kink times 7, ..., 7k, the time of Ira 7,, and Masha 7,,, determining
the non-vanishing permutation 7, the K kink types'! s1,...,sx € AU B (of
type 2 or 4) and the orbital of Ira ¢ and Masha j. Thus, a system configuration
Cop of G is given by

COP = ((K)7{n}77—ir77—ma77-17'"7TK7i7j7 817’8K>

defines

with the corresponding weight function

K42 A
. — X D . . — .
W (Cop) = (—1)K+0Tma=7) Yico Dy (Tr(ir) =Tx()

K+2
- @eoy o0y (5xa) -
i=1

! Actually, one of the kink types is also redundant due to the S-periodicity.
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3. Configuration path integral Monte Carlo

[{n}) (1)

0 7—1 Tir 7—2 T3 Tma T4 7—5 7—6 /B
imaginary time 7

Figure 3.3.: Possible open path {no(7),n1(7),...,ns(7)} in imaginary time. In
addition to the closed path (see Fig. 3.2), a particle is annihilated at time 7,
and created at time 7,,,.

In analogy to the visualization of the closed path configurations (3.19) (see Fig.
3.2), these configurations can also be visualized as paths in imaginary time.
An example is shown in Fig. 3.3. It is the same as the representation of closed
paths, except that a particle is annihilated on the orbital ¢ at time 7, and
created on j at time 7,,,. Due to its appearance, we refer to these configurations
as open paths, and interpret G as the partition function of all open paths Zgp.
Moreover, it is common to refer to Ira and Masha as the so called Worm that
winds around the [-periodic paths. Actually, in the space of Fock states, there
is no such thing as “the” worm, since in Fig. 3.3, there are many different ways
to get from the tail (Masha) to the head (Ira) of the worm. For this reason,
there also exists the notion world line discontinuities for Ira and Masha.

3.4. Total configuration space of the Worm
algorithm

The general idea of the Worm algorithm is to sample not only closed but also
open paths, i.e., we generate a Markov chain consisting of closed and open
paths with suitable Monte Carlo steps (discussed in detail in Sec. 3.5). Not sur-
prisingly, each closed path gives a contribution to the estimators of the standard
thermodynamic observables that can be derived from the (grand) canonical
partition function, whereas each open path contributes to the estimator(s) of
the MGF. The estimators are derived in Chap. 4.

The total configuration space is defined by the sum of the grand canonical
closed path partition function Zep (cf. Eq. (3.18) with D — D = D 4 uN) and
the open path partition function Zop (cf. (3.25)). Due to the major importance
for this thesis, the main equations of Sec. 3.2 and 3.3, which are required to
define the total configuration space and which are necessary for the computation
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3.4. Total configuration space of the Worm algorithm

of the weights, are summarized

Loy 1 = ZCP(M; 67 ) + wZOP z ch cp + i wWOP OP )

CCP COP

K
o= > YV Y [a

K=0, {p} s1 s2 SK—1

K#1 .
X D i+1—Ti _

(—1)K6 Zi:o D{n(l)}(77,+1 ) H Q{n(i)}{n(i—l)}<57;) ’
i=1
Cop = (K),{n}, 71,72y -, TK, S1, 52, -+ -y SK—1) 5

Zor =3 / dr, / A7a Zer - Gig (Ts T
:=ZZ/%%dmf¥TZ§SZmQZ@%M>

K=0 {n} 0 TESk42 Sr(1) Sx(2) Sr(K+1)
K+ K+2
(—1)fFOmmame 2im0 Dy (o) =70) I e ynee1y5a)
=1
C (( ) {n} Tiry Tmay T1, "7TK77;7j7817"'7SK)7 (326)
defines 7

with the definitions

, 5 8 8
/ dfr = /dTl/dTQ... / drg , TK41 = Ta s, TK+2 ‘= Tuma »
0 TK—1
@({Tw(i)}) = @(Tw(l) - 7—7r(2))@(7_7r(2) - 7_71'(3)) e @(Tﬂ'(K+1) - 7_7r(K+2)) )
CALi if Sn(i) = SKk+1 =1 € N
q(3x(5)) == ( ik wakjnj)aTak if 50 = (k) € A 7(d) € {1,...,K}
0
J]sézk

(3.27)
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3. Configuration path integral Monte Carlo

Z&i(ﬂr) if 7'('( ) K+1
Z (i(gﬂ(i),ﬂr(i)) = Z&}(Tma) if 7r( ) K+2
5 J
Sm (i) X
Z Q(sx(i), Try) it w(i) € {1,..., K},
Sx(:) EAUB
A={(i, k) €N’ [ i #j},

B:={(i,j,k, ) eN*|i<j k<l itk i#l j#k j#I}.

As described in Sec. 2.1, since the weights of the total configuration space are
both positive and negative, we have to apply the Metropolis algorithm to the
partition sum that is given by the sum over the modulus weights

Zq,?ot - Z/cp(l%ﬁ;‘/) —f-ﬁ)Z’ M B,V I |WCP CP | + i w|Wop op

CCP COP

(3.28)

|WCP/(CCP)|
_ Tot
Cop with probability M, where w € R is some artificially introduced

Thus, we sample closed paths Ccp with probability and open paths

constant that will be used to determine the relative weight of open to closed
paths, thereby optimizing the efficiency of the WA.

Graphically, the total configuration space consists of all possible g-periodic
path |ng(7),n1(7),...) (see Fig. 3.2 and 3.3) that can be constructed with

i
arbitrary number of type 2 kinks s = (i, k) € A: J ,
k

arbitrary number of type 4 kinks s = (4,7, k,[) € B: ,

with or without Worm: Ira — and Masha e—

and the connections of arbitrary length

Obviously, this configuration space has an infinite size even if we restrict the
number of one-particle orbitals to some finite number Np since the summation
over the number of Kinks K goes up to infinity (cf. Egs. (3.26)). However, only
a small fraction of all these configurations gives a significant contribution to
the total partition function, which makes the computation of observables via
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3.5. Monte Carlo steps

I . I
G G : = e : G g L= et
I I I I I I I I
Tmm Tmax 7-mm Tmax O /6 0 /8
I I I I I I I
I [ | Ir oma I [ | Ir ma
i = e i = e
I I I I I I I I
Tmm Tmax 7-rnin Tmax 0 5 0 6

Figure 3.4.: Step 1 and 2: Left: Both possibilities to add and remove a worm with
adjacent kinks on the orbital ¢ at times 7,;, and 7,... Right: Both possibilities
to add a worm without kinks on the orbital i. When removing the worm in
these two cases, the occupation of the orbital ¢ is chosen randomly. Thereby,
we either add or remove a whole particle from the path.

the Metropolis algorithm possible. To ensure ergodicity, we have to design a
set of Monte Carlo steps that allow for the construction of all these possible
configurations starting from any random paths with finite weight. Due to the
[—periodicity, this task is much harder than one might expect. Moreover, if
the two-particle integral w, is zero, then the corresponding kink operator and,
consequently, the weight of all paths containing this kink vanish (cf. Egs. (3.27)).
Depending on the actual form of the Hamiltonian in the chosen one-particle
basis, some of the one- and two-particle integrals can indeed be zero. This
unfortunate circumstance makes the design of ergodic Monte Carlo steps even
more complicated.

3.5. Monte Carlo steps

Since we can only work with a finite number of basis functions (or equivalently
one-particle orbitals) Ng, the paths to be sampled are given by

[no(7), 1 (7)), ..oy nNgp—1(T)) -

In practice, we have to ensure that the calculated expectation values are
converged for the used basis size Np.

Further, in the following description of the Monte Carlo steps, all time intervals
(T4, 7p) With 7., 7, € [0, 5] are in fact S—periodic intervals, i.e., both 7, < 7, or
T, < T, is possible, and hence, an ordering of times is not that trivial. We can
only order times with respect to some reference time 7" € [0, §]. So for two
times 7, and 7, it is either 7, or 7, the next time point if we go around the
beta cylinder clockwise starting from 7. It is useful to define the length Lg of
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3. Configuration path integral Monte Carlo

such a [-periodic interval (7,,7,) as

Ty — Tq if 7, <m
Ty —Te+ [ if 17a>7.

Lg(Ta,m) := {

In the following description of the Monte Carlo steps, Lg . denotes the length
of the S—periodic interval from which 7 is chosen.

We will start with the two most important steps of the WA, which is to
add and remove a worm in a given path, thereby switching between a closed
or open path configuration. Fig. 3.4 shows the four possibilities to add and
remove a worm.

Step 1: Add worm

I. Select a random orbital 7 € [0, Ng — 1].
II. Select a random time 7, € (0, 3).

III. Determine the times of adjacent kinks on 4, i.e., left or right of 7,
= (Tmin, Tmax)- 1f there are no kinks on 4, set (Tiin, Tmax) = (0, 3) .

IV. Determine a time for Masha:
a) If (Twmin, Tmax) = (0, 8), randomly select 7, € (0, 3).
b) If 4 is unoccupied on (Tmin, Tmax), randomly select s € (Timin, Tir)-

c) If i is occupied on (Tiin, Tmax ), randomly select 7o € (Tir, Tmax)-
Step 2: Remove worm
I. If Ira and Masha are not on the same orbital i, reject step.
II. If there is a kink between Ira and Masha on i, reject step.
III. Determine the times of adjacent kinks of Ira and Masha on i = (Tiin, Tmax)-

IV. Determine the new occupation of the orbital i on the interval (Tiin, Tmax):

a) If (Timin, Tmax) = (0, 3), chose the occupation randomly. (Thereby a
particle is added or removed.)

b) If the ordering of times from left to right is (Tmim, Twas Ties Tmax ), ¢ Will
be unoccupied.

c) If the ordering of times from left to right iS (Tom, Ties Timay Tmax), ¢ Will
be occupied.
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3.5. Monte Carlo steps

In the two right diagrams in Fig. 3.4, showing the case without kinks on
the chosen orbital ¢, both configurations with worms are equivalent due to
the [-periodicity. Therefore, we have to choose the occupation of the orbital
randomly when removing the worm. To determine the acceptance probability
A,w for adding a worm, we have to set up the generalized detailed balance
equation (cf. Eq. (2.4)) for the case that we first add a worm and in the next
step remove it. If we denote the probability to chose the step x by Py, it is

11 1

HwifiAAW P /p [l P P
NB /6 Lﬂﬂma (CC — O(l )’ C (CC )’
— ‘PRWOARV”(C/OP ? CCP)w| IOP(C/OP)| Y

(3.29)

where the prefactors of the L.h.s. represent the sampling probability to add
one specific worm, whereas the prefactors on the r.h.s. determine the sampling
probability to remove the worm in the next step in such a way that the
configuration is exactly the original one without worm, i.e., Ccp. In Eq. (3.29),
Lg .. is the length of the interval from which the time of Masha is chosen.
The factor O takes into account the random choice of the occupation in case
the worm is removed from an orbital without kinks

O = {; if (TminaTmax) = (075) y

1 else.
According to Eq. (2.5), a possible solution of the detailed balance equation
(3.29) is given by

. P | Wor(CLy)
aw(Cer = Cgp) mm{ " Py 8L 7, OW Wer(Cop)

} . (3.30)

Setting up the detailed balance for the inverse case of first removing and then
adding a worm in the next step, we readily obtain

P 1 Wer(CL,)
’ PRW NBﬁLﬂ,‘rmaOU_} WOP(COP)

Arw(Cop — Cf,) = min {1

} , (3.31)

where we have to determine the correct length Lg - . of the interval from which
we would choose the time of Masha when proposing to add the same worm
in the next step. In addition, it turns out that it is most efficient to adjust
the constant w until the average acceptance probabilities to add and remove
a worm are approximately equal, which results in an equal amount of open
and closed paths in the Markov chain. The fraction of the modulus weights in
(3.30) and (3.31) are calculated according to the Eqs. (3.26). To do this in an
efficient way, i.e., only computing the factors that are actually changed by the
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3. Configuration path integral Monte Carlo

Tmin Tmax Tmin

Figure 3.5.: Step 3: Moving Ira in time, where the new time 7/, can be between
the adjacent kinks on that orbital with times 7,,,, and 7,,... If there is no kink
on that orbital, then 7/ € (0, §).

step, is quite involved and cannot be explained in detail for every step. Instead,
the general aspects of the calculation of these weight fractions are discussed in
detail in Sec. 3.5.1 after all steps have been introduced.

Once we have added a worm, i.e., we are in an open path configuration, we can
move Ira either horizontally, by changing its time 7, or vertically, by changing
its orbital ¢, thereby a kink can be added, removed or changed. We proceed
with the simplest step of shifting Ira in time as shown in Fig. 3.5.

Step 3: Move Ira in time

I. Determine the kink times next to Ira = (Tiin, Tmax)-
If there is none, then it is (Twyin, Tmax) = (0, 5).

II. Randomly select a new time 7., € (Tinin, Tmax)-

Since the inverse step is to shift Ira back from 7/ to the former time 7, the
sampling probability cancels in the detailed balance equation

PMITiAMIT(COP — C(/)p)|WOP(COP)‘

1
= PMIT?AMIT(C(SP — OOP)‘WOP(C(/)p”

with the solution

WOP (C(/)P)

AMITCP C,p = mi 17 17 o
(Cop — CL,) mm{ Wor(Cor)

} . (3.32)

The next steps consists of changing the orbital of Ira, whereby a type 2 kink is
added or removed (see Fig. 3.6)

Step 4: Add type 2 kink with Ira
I. Select a random orbital j # i for Ira (currently on 7).

II. Determine the times of the next left and right kink of Ira on the orbitals
iand j = (Tmin, Tmax)-
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3.5. Monte Carlo steps

Figure 3.6.: Step 4 and 5: Add a type 2 kink with Ira. If the new orbital of Ira is
unoccupied (occupied), than the new kink is added left (right) of Ira.

III. a) If j is unoccupied, then add a type 2 kink s = (j,4) left of Ira, i.e.
randomly select a new kink time 7T,y € (Timin, Tir)-

b) If j is occupied, then add a type 2 kink s = (j,¢) right of Ira, i.e.
randomly select a new kink time 7,e € (Tir, Timax)-

Step 5: Remove type 2 kink with Ira

I. Suppose Ira is on orbital j as in Fig. 3.6. Randomly choose the next left
or right kink s of Ira.

IT. Reject the step if
a) s is not of type 2, i.e., s # (7,1).
b) there is another kink s’ on the orbital i or j in the interval (7g, 7,) or

(Tw, Ts), Tespectively.

ITII. Remove s = (j,7) by moving Ira to the orbital 7. If s is left (right) of Ira,
then j is unoccupied (occupied) afterwards.

We readily write down the detailed balance equation for adding a kink with Ira

and in the next step remove exactly the same kink

11

B Arara(Cor = Cop)[Wor(Cop)|

1 , y
== -PIRT2§AIRT2(COP — COP)|WOP(COP)| )

which yields the acceptance probabilities for these steps

' P 1| Wep(CLL)
A o C _ 1 1mT2 oA ) - ToP\~or/
IA ( oP OP) mln{ ) P1AT2( B ) B, new o WOP(OOP) ’
_ P, 1 Wor (Ci)
A o c _ 1 a2 9 or\Lop ‘
wr2(Cop = Cor) mln{ > Pirra (Np — 1)L5,Tnew Wor(Cor)

We can also place Ira on another orbital and change a nearby kink as described
in the following.

Step 6: Change kink with Ira
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3. Configuration path integral Monte Carlo

Figure 3.7.: Step 6: Two examples of changing a kink by placing Ira on another
orbital. In total, there are 22 possible diagrams for a change kink with Ira.
These are shown in Fig. A.1 and A.2.

[. Randomly select the next left or right kink s of 7.
II. If s is left of Ira, randomly choose a new free orbital for Iral?.
III. If s is right of Ira, randomly choose a new occupied orbital for Irals.

IV. Reject the step if s is of type 1 (Masha) or if s would be removed by the
replacing of Iral?,

V. Place Ira on the new orbital, whereby s is changed according to the 22
possibilities shown in Fig. A.1 and A.2.

Since the inverse step of changing a kink with Ira constitutes is to change
the same kink such that it is again the original one, the sampling probability
cancels in the detailed balance, and hence, the acceptance probability for this

step is simply

where each of the 22 diagrams corresponds to a different change in the weight.

The next steps can be proposed in both an open or closed path configuration.
We begin with the addition or removal of a type 2 or 4 kink via a one- or
two-particle excitation, and, at the same time, changing another kink. An
example is shown in Fig. 3.8.

WOP (C,OP)

A ' ) =min<{ 1, |[———2F2
ek (Cop = CLL) mln{ A Wor(Cor)

Step 7: Add T2 or T4 kink via one- or two-particle excitation

1211 case s is of type 4 and the current orbital of Ira is not one of the two creators of s, then
we can only place Ira on one of the two annihilator orbitals of s (see diagram in the third
row and second column in Fig A.1).

13In case s is of type 4 and the current orbital of Ira is not one of the two annihilators of s,
then we can only place Ira on one of the two creator orbitals of s (see diagram in the
third row and second column in Fig A.2).

14Not including the remove kink step in the changing of a kink results in a higher acceptance
probability for adding a kink with Ira.
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3.5. Monte Carlo steps

Figure 3.8.: Step 7: Left: A new type 2 kink s = (I, k) is added via a one particle

IL.

I1I.

IV.

VL

excitation from orbital & to [ left of the kink s’ = (i, k). Thereby, s’ = (i, k)
is changed to s” = (i,1). The time of s is randomly chosen from the interval
(Tuexts To), Where T, is the time of the next kink left of s’ that affects the orbital
k and/or I. Right: In a similar way, we can add a type 4 kink s = (j,n,l, k)
via a two-particle excitation from k,[ to j,n left of anther kink s’ that will be
changed. In the shown example, s’ is of type 2 and is changed to a type 4 kink.
All 48 possibilities to add a type 2 or 4 kink via a one- or two-particle excitation
are shown in the Figs. A.3 - A.6.

. Randomly select one of the K kinks to be changed = s’. Reject the step

if there are no kinks or if s’ is of type 1 (Masha).

Randomly choose a direction, left or right, for the new kink s to be added
with respect to s'.

Randomly choose if a type 2 or type 4 kink shall be added via one- or
two-particle excitation, respectively.

Depending on the direction and the type to be added, randomly choose
one occupied or two occupied orbital(s) left or right of s'.

In case of a one-particle excitation, randomly choose a free orbital from
those that would result in an excitation which is compatible with a proper
changing of s’. In case of a two-particle excitation, randomly choose two
free orbitals that are compatible with s’. The number of these possible
orbitals compatible with a change'® of s’ depends on the chosen direction,
the orbitals of s’ and the already determined occupied orbital(s)'¢. All 48
different cases are shown in the Figs. A.3, A4, A.5 and A.6.

Determine the time 7,.,, of the next kink left or right of s’ affecting one
of the orbitals that are involved in the excitation.

15The limited number of possible excitations simply lies in the fact that there are no type 6
kinks.

160f course, we could simply select the orbitals randomly, and if the resulting excitation is
not compatible with a changing of s’, then just reject the step. This would result in a
significantly smaller acceptance probability. In addition, for the calculation of the weight
change, we have to distinguish between the 48 cases any way.
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3. Configuration path integral Monte Carlo

VII. Randomly choose a time 7, for the new kink s from (7,.,7.) if the
direction is left, or from (7}, T,..) if the direction is right.

Step 8: Remove T2 or T4 kink via one- or two-particle excitation

I. Randomly choose a kink s to be removed. Reject the step if there are no
kinks or if s is of type 1 (Masha).

IT. Randomly choose a direction left or right.
III. Determine the excitation that removes s.

IV. Determine the time 7,.,, of the next kink left or right of s (depending on
the chosen direction) affecting one or more orbitals of s.

V. Determine the number of kinks N.x that can be changed. These are
given by all kinks in the interval (7,.., 7s) (if the direction is right) or in
(Tsy Tuexs) (if the direction is left).

VI. Randomly choose a kink s" of the Ngk possible kinks to be changed.

VII. Check if s can actually be removed by changing s’ according to one of the
48 possible diagrams shown in the Figs. A.3 - A.6, otherwise reject the
step.

The detailed balance for first adding and then, in the next step, removing a
kink with these two steps is given by

111 1 1
Pax 930, 1, Ane(Cortor = Clmvon) Wertor (Coror)
Ex yTnew
1 11
= PRK (K T 1) iNiARK( ép\op — CCP\OP)WCP\OP(CéP\OP) )
CK

where Og, takes into account the number of possible excitations. It follows the
acceptance probability of both steps

. Prx 2K Oy, Lg WCP\OP(CéP\OP> }
Ak (C — ! =min{ 1, T hew ,
AK( CP\OP CP\OP) { Pax (K T 1)NCK ch\op(ccp\op)

. Pak K Nex WCP\OP(C(/:P\OP)
Ak (C — C! = 1 .
ric ( cP\oP cp\op) min { ' Prx 2(K — 1)OExLB,Tnew WCP\OP<CCP\OP)

These steps are the most elaborate of the algorithm. Only the implementation
of the correct choice of the step parameters takes roughly a thousand lines
of C++ code for these two steps. Distinguishing between all 48 cases for the
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3.5. Monte Carlo steps

Figure 3.9.: Step 9 and 10: Left: A pair of type 2 kinks is added via a one-particle
excitation. Right: A pair of type 4 kinks is added via a two-particle excitations.

computation of the weight fractions and, in case the step is accepted, realising
the corresponding change in the path takes a couple of thousand lines.

The next two steps add or remove a pair of type 2 or 4 kinks via a one- or
two-particle excitation as shown in Fig. 3.9.

Step 9: Add pair of type 2 kinks
I. Randomly choose a time 7 € (0, 3) for the first kink to be added.
II. Randomly choose one occupied (i) and one free orbital (k) at 7.

III. Find the time 7 of the second kink to be added:
a) If there are no kinks on i and k, randomly choose 15 € (0, ).

b) If there are kinks on i and k, randomly choose a direction, left or
right, and determine the time 7, of the next kink from 7 in the
chosen direction affecting the orbitals ¢ and k. Then, depending on
the direction, randomly choose a time 75 from (Toe., 71) OF (71, Thexe)-

IV. Excite the orbital i to k on the interval (7o, 71) (if the direction is left) or
(11, 72) (if the direction is right) as shown in Fig. 3.9, whereby the kinks
(2, k) and (k,i) are added.

Step 10: Add pair of type 4 kinks
I. Randomly choose a time 7 € (0, 3) for the first kink to be added.
II. Randomly choose two occupied (7, j) and two free orbitals (k,[) at 7.

III. Find the time 75 of the second kink to be added:
a) If there are no kinks on i, j and k, [, randomly choose 5 € (0, 3).

b) If there are kinks on ¢,j and k,[, randomly choose a direction, left
or right, and determine the time 7, of the next kink from 71 in the
chosen direction affecting the orbitals &,/ and 7, j. Then, depending on
the direction, randomly choose a time 75 from (Toex, T1) O (T4, Thext)-
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3. Configuration path integral Monte Carlo

IV. Excite the orbitals ¢ and j to k and [ on the interval (72, 71) (if the direction
is left) or (71, 72) (if the direction is right) as shown in Fig. 3.9, whereby
the kinks (i, j, k,1) and (k,[, 1, j) are added.

Step 11: Remove pair of type 2 or 4 kinks

I. Randomly choose one of the K kinks (s1). If there are no kinks or if s is
of type 1, reject the step.
II. If s; is of type 2, i.e., s = (i, k), then

a) Randomly choose a direction left or right of s; and determine the next
kink s in that direction on one of the two orbitals ¢ or j.

b) Reject the step if sy is not of type 2 with s = (k, ).
¢) Depending on the direction, excite the orbital i to k or k to ¢ in such
a way that s; and sy vanish (as shown in Fig. 3.9).
I[II. If sy is of type 4, i.e., s = (i, j, k,[), then

a) Randomly choose a direction left or right of s; and determine the next
kink s in that direction on one of the four orbitals ¢, j, k and [.

b) Reject the step if sy is not of type 4 with s = (k, 1,1, j).
¢) Depending on the direction, excite the orbitals 7, j to k, [ or k,l to i, j

in such a way that s; and sy vanish (as shown in Fig. 3.9).

Setting up the detailed balance for these three steps as illustrated for the prior
steps, we readily obtain the appropriate acceptance probabilities

PRZK /BOExLﬁ,TQ WCP\OP(CéP\OP>}

A C — C! =min< 1,
A2T2(4)( CP\OP CP\OP) { PA2T2(4) (K I 2) WCP\OP(CCP\OP>

Proroy K Wervor (Clpmor) }

Aok (C — ! =min< 1,
RK( cror CP\OP) { PRQK /BOEXLB77'2 WCP\OP(CCP\OP)

In case of removing two type 2 (4) kinks, we have to use Paors (Pagrs) for

the computation of Agp,x. The factor Oy, denotes the number of all possible

excitations!”.

"Let N, be the number of occupied orbitals at 7,. Then, for the adding of two type 2
kinks, we randomly choose one occupied and one free orbital, and hence, it is Og, =
Noce (N — Nooo). But, in case of type 4 kinks, we have to be careful as Og, = Noce(Noce —
1)(NB — Noee) (N — Nooe — 1) /4. We have to divide by 4 since there are 4 different orders
in which we can select the two occupied orbitals and two free orbitals resulting in the
same excitation.
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3.5. Monte Carlo steps

Figure 3.10.: Step 12: Left: If there are no kinks on the chosen orbital, then propose
to excite the whole particle. Right: The orbital g is excited to the orbital i in
between the two type 4 kinks.

The following step either proposes an excitation of a whole orbital from 0 to
[ to anther orbital or an excitation of an orbital between two kinks, whereby
these are changed (see Fig. 3.10).

Step 12:

One-particle excitation

[. Randomly choose between exciting a whole orbital or changing two kinks
via a one-particle excitation. Excitation of a whole orbital is chosen with
probability % and changing two kinks with %, where K is the number
of kinks in the path. If there are no kinks, then always propose to excite
a whole orbital'®.

IT. If exciting a whole orbital is chosen, then

a)

b)

Randomly choose one of the occupied orbitals ¢ and one of the free
orbitals j without kinks from 0 to f3.

Propose to excite i to j (see Fig. 3.10).

ITI. If changing two kinks is chosen, then

e)

Randomly choose one of the K kinks (s1). If s; is of type 1, reject
the step.

Randomly choose one occupied orbital ¢ right of s;.

Randomly choose one free orbital j from those that allow for a correct
changing of s;. These orbitals are the same as in step 7 when adding
a type 2 kink right of s; (cf. Fig. A.4).

Determine the time 7,.,, of the next kink right of s; affecting ¢ or j.

Determine the number of kinks N, in the interval (7, , Toex] and
randomly choose one of them = s,.

18Choosing the whole orbital excitation and the changing of two kinks with these probabilities
is reasonable because accepting the excitation of a whole orbital is less likely the more
kinks there are in the configuration.
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Figure 3.11.: Step 13: Two type 4 kinks are changed to two type 2 kinks via a
two-particle excitation from p, g to i, 1.

f) Check if the excitation from ¢ to j on the interval (7s,, 7s,) allows for
a proper changing of so, else reject the step.

Obviously, the inverse step of a one-particle excitation from orbital ¢ to j is
to propose an excitation from j to ¢ on the same interval. Yet, the sampling
probability does not cancel completely because the number of kinks Ny, from
which we choose the second kink s; changes after we have accepted an excitation
and then again select step 12 proposing the inverse excitation. Therefore, we
obtain the following acceptance probability for a one-particle excitation

. N, |Wervor(Cp ) . . .
min { 1, 22 [P ZCPoP if changing 2 kinks
’ N{, | Wep\opr(Ccpy\op)
AlPEx(CCP\OP — Ccp\op) - %% (Cl )
min 4 1. |=Z2\OF “cpyop? else
7 | Wepyop(Cep\op) )

Similar to step 12, the last step to be discussed is a two-particle excitation,
whereby two kinks are changed. We do not propose to excite two whole orbitals
since this can always be achieved by exciting each orbital separately. An
example for step 13 is shown in Fig. 3.11.

Step 13: Two-particle excitation
[. Randomly choose one of the K kinks s;. If 57 is of type 1, reject the step.
II. Randomly choose two occupied orbitals ¢ and j right of s;.

ITT. Randomly choose two free orbitals £ and [ from those that allow for a

correct changing of s;. These orbitals are the same as in step 7 when
adding a type 4 kink right of s; (cf. Fig. A.6).

IV. Determine the time 7,.,, of the next kink right of s; affecting i, 7, k or [.

V. Determine the number of kinks NV, in the interval (7y,, 7,] and randomly
choose one of them = s5.
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Figure 3.12.: Some part of a closed path that is changed by a one-particle excitation
from the orbital & to [ on the interval (7, 7,), whereby a type two kink s, ; = (I, k)
is added at 7 and the kink s, = (i, k) at 7, is changed to s;,; = (4,1). The
left diagram belongs to the configuration C¢p, in which the change is proposed,
whereas the right diagram shows the configuration C[ if the proposed change
is accepted. The next kink left (right) of 7 that is somewhere in the path
(concerning its orbitals) has the time 7, (7,41), i.e, we propose to add a kink in
between the kinks at times 7, and 7,41. Therefore, the indices of the kinks in
the configuration C[, right of 7 are shifted by one compared to Ccp. (It has to
ber < <...<7Tgand 7] <1y <...<Tp where K' =K +1.)

VI. Check if the excitation from i, j to k,[ on the interval (7y,, 75,) allows for
a proper changing of s,, else reject the step.

For a two-particle excitation, the number of kinks Ny, from which we choose
the second kink does not change in the inverse step, and thus, the acceptance
Wervor (Cipor)

probability is simply given by
WCP\OP(OCP\OP) } .

Sure, in the steps 12 and 13, it would be more efficient to choose only from
such excitations that are compatible with both kinks s; and s,. This would
require to draw the diagrams for each possible combination of kinks, which has
not been done yet.

A2PEX(CCP\OP — Cép\op> = min {1,

3.5.1. Calculation of weight differences

For the calculation of the acceptance probability of any step, we have to
compute the fraction of the modulus weights W((%/)) ‘, where the proposed step
changes the configuration C' to C’. We could simply compute the total modulus
weights of both configurations by evaluating the corresponding weight functions
in the Eqs. (3.26). This is far too inefficient since we have to compute only

those factors that do not cancel. The general procedure shall be explained for
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3. Configuration path integral Monte Carlo

the example of step 7 in case we propose to add a type two kink via a one
particle excitation in a closed path as shown in Fig. 3.12. According to the Eqs.
(3.26), it is

WCP (CéP>

— S CRL =g FAEDIA 3.33
Wer (Cor) |AQ) (3.33)

with the difference of the diagonal energy of both configurations AEp and the
fraction of all kink matrix elements AQ

AEp = ED(Cép) — Ep(Cep)
=K+1 / /)

_ Z D{nu)’ ( B ZD{R(Z>}(TZ+1/8 )

QCL) T Qv gy (1)
Q(CCP) ' Hi:1 CI{n(%D},{n 1)}(31) .

AQ = (3.34)

First, we simplify the difference of the diagonal energy. In Fig. 3.12; the
occupation numbers of the path change only within the interval (7, 7,), where
we excite the orbital k£ to [ and add the kink at 7 in between 7, and 7,,1. Thus,
we can express the diagonal energy of the configuration C” in terms of the kink
times and ONVs of C' as follows:’

: - (ri—7)
Ep(Cep) = Z Doy 5 :
= (Tit1 —7) (1 —7) (Tr41—7)
-2 D{nm}T + D{nm}T + Doy, g
= (Terl (7_1+1 )
+ Z D{n(z)} 5 + Z D{n(’)} I& )
i=r+42

Obviously, we can split Ep(Cgp) in summands for the same time intervals and
immediately see that all summands cancel except for those in which the ONV
has changed due to the excitation from k to [. Hence, we have

Tr+1 — (Ti I_Ti)
AEp = (Dyyny, = Do) = 5— +Z;Q< g, = Do) =5

(3.35)

19As before, {“}2 denotes the ONV that results from {n} by exciting a particle from the
orbital k to [. Analogously, {n}, denotes the ONV that is obtained by removing a particle
from the orbital k in {n}.
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3.5. Monte Carlo steps

According to Eq. (3.8), the diagonal matrix element Dy, ), is given by

D{n(”}_Z(hll_" Z Wi ) i)

Jj=i+1
T - ()
—Z(th D wiing ) n; +(hkk+zwkjkj”j )

i#k j=i+1 j#k

i#k

=:d
_ ko (n(7)}
_D{n(r>}k

where, in the second line, the contribution of the k—th orbital dj, 1,y to the
matrix element Dy, has been separated. Similarly, we find that

Dy = Doyt + digniny = dignoy, (3.36)
with

dlv{n’"}k = hll + ;k wl;ljng-r) .
JFLS

Inserting Eq. (3.36) into (3.35), we see that the matrix elements of the excited
ONVs D{ o cancel

Ty Ti+l — Tg
AED - (dl,{n<T)}k - dk,{n(r)}> +1 + Z (dh{n(i)}k — dk’{n(i)})( +16 ) .
1=r—+2

(3.37)

Thereby, we have reduced the complexity of the computation of the diagonal
energy difference from* O(K - N?) in (3.35) to O(K - N) in (3.37). Since we
have to calculate such diagonal energy differences for every Monte Carlo step,
this matters a lot.

Next, we have to consider the contribution of the kinks in |[AQ| (cf. Eq.
(3.34)). According to the Egs. (3.26), the modulus of the kink matrix elements
is given by

hae+ 3 wpn) i {n®} = {n0DY, | s, = (i, k)
ik
Wi if {n®} = {nt- 1)}21]17 si=(i,7,k,1) .
(3.38)

’Cj{nml)},{n(i)}(si) =

Obviously, in |AQ)|, all matrix elements cancel, except for those type 2 kinks
with times in the interval (7,7,), because all ONVs {n(?} in this interval change

200f course, in practice, we only sum over the occupied orbitals in the computation of the
diagonal energy of the orbitals (cf. Eq. 3.5.1). Besides, in standard CPIMC algorithm,
the computation of the diagonal energy difference is of the order O(N3) (due to the ONV
picture).
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3. Configuration path integral Monte Carlo

according to {n"} — {n(")}ﬁc. Further, the changed kink in C¢p and CY,, and
the added kink in CY, do not cancel. For a given type 2 kink s = (i, k), we
address the creator orbital with s1) = ¢ and the annihilator orbital with sj2] = k.
Having introduced this notation, the fraction of kink matrix elements simplifies
to

K
H |Q{n(i71)/},{n(i)/}(3;)|

AQ| = 52
H |G gni-1y,gn3 (50)]
1;11

H ’CY{n@—l)},{n(i)}(Si) — Wy, Mksi[2k T ws:[l]lsi[2]l|

i=r+1
_ SiEA
= o
H |Q{n(i*1>},{n<i)}<8i) |
1=r+1
s, €EA

’Cj{n@q)}i’{n(q)} ((27 l)) | ’fj{n<r>},{n<w}§c (<l7 k)) ’
|Tpnta-1y, fn@y (15 5))|

(3.39)

Inserting the Egs. (3.37) and (3.39) into (3.33) yields the modulus of the weight
fraction that has to be computed when proposing to add a kink as shown in
Fig. 3.12. In practice, we have implemented a set of functions that handles the
change of the diagonal energy for arbitrary one- and two-particle excitations
on arbitrary intervals. Another set of functions computes the change of the
weights of the type 2 kinks due to an excitation, where, instead of each time
calculating the weights g,,i-1y ,01(8i) of the type 2 kinks according to (3.38),
we store them for the whole configuration. Finally, we need functions that
handle the change of an existing kink due to an excitation left or right of it.
For the proper implementation of these functions it is necessary to perform
similar considerations for the diagrams of all steps. There are 81 in total.

3.5.2. Development of the steps

The development of the presented Monte Carlo algorithm has been quite a
challenging task. Despite the implementation and debugging of the steps,
it took some time for T. Schoof and me to find those steps required to be
ergodic. As such, it is worth to chronologically illustrate the development
process, which will explain the necessity of each presented step that result in
a program consisting of twenty thousand lines of C++ code. Remember that
we refer to the former or standard CPIMC' algorithm as the CPIMC method
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3.5. Monte Carlo steps

in the ONV picture (cf. Sec. 3.1), which is in detail described in [10, 11] and
which is without a WA.

Rewriting of the WA for bosonic lattice models into a WA for
continuous fermionic systems - the ergodicity problem

As already mentioned, the WA in the occupation number representation has
originally been applied to bosonic lattice models [12]. For such systems, the
bosonic version of the simpler steps 1-4 is sufficient to be ergodic and obtain
correct results?!. At first, to get familiar with the algorithm, T. Schoof imple-
mented the WA for the fermionic Hubbard model. In case of lattice models,
there are no true two-particle operators in the Hamiltonian. Thus, w;;, is
always zero, and there are no type 4 kinks in the paths at all. Consequently,
for the fermionic Hubbard model, correct results could be obtained with the
steps 1-4. After that, T. Schoof started with the implementation of the WA for
the general Hamiltonian (3.7) and added step 5, i.e., the changing of a kink
with Ira. With this step, a type 2 kink can be changed into a type 4 kink
and vice versa (see Fig. A.1), and so, it might have been sufficient to only
add this step. Unfortunately, this was not the case as the comparison of the
obtained results with an exact diagonalization method revealed a very small
but significant error on the fourth decimal place in the energy. In addition,
the average number of kinks in the sampled configurations turned out to be
slightly smaller than that of configurations sampled with the standard CPIMC
algorithm (explained in [10]). From the theory, the average number of kinks
in both algorithms should be equal. Since for systems only containing type 2
kinks the average number of kinks was equal in both algorithms, most likely
some type 4 kinks were missing. Indeed, suppose a certain type 4 kink can
be constructed from a certain number of type 2 kinks by changing them with
step 5. If all these type 2 kinks have a vanishing matrix element, then we will
never sample a path containing this type 4 kink. Therefore, a step that directly
proposes to add a type 4 kink, is necessary.

First attempt: Introduction of a second worm

A type two kink can be added by changing the orbital of Ira (step 4). Adding
a type 4 kink with a similar step requires a second worm. Then, we can
consider adding a type 4 kink as adding two type 2 kinks at the same time
by moving both Iras as shown in Fig. 3.13. Formally, we have to extend the
total configuration space with open paths containing two worms by performing

2lIn fact, for bosons, the only difference in the configurations is that in the paths the
occupation numbers can be greater than 1, i.e., n;(7) € N. Consequently, it is always
possible to add the worm everywhere in the path and then move the worm in any direction,
e.g., n times around the S—cylinder on the orbital i, whereby n particles are added.
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3. Configuration path integral Monte Carlo
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Figure 3.13.: Adding a type 4 kink by changing the orbital of both Iras can be
considered as adding two type 2 kinks at the same time. The time of the new
kink can be left, right or in between the times of both Iras.

a similar expansion for the two-particle MGF as shown for the one-particle
MGF in Sec. 3.3. By that time, I joined in the development of the algorithm.
Having properly implemented the addition and removal of a second worm and
the addition and removal of type 4 kinks in those two worm configurations, we
would still obtain a slightly too small average number of kinks. So the set of
steps still was not ergodic.

Second attempt: Introduction of virtual kinks

Next, we utilized the concept of so called virtual weights or virtual kinks, which
has already been useful in the development of the standard CPIMC algorithm
by T. Schoof (see [11]). The basic idea is fairly simple. Since kinks that have
a vanishing matrix element do not occur in any path, we refer to those as
forbidden kinks. In the simulation, we can artificially assign the same, very
small but finite matrix element to every forbidden kink, e.g., 107!°. Then,
in some configurations of the Markov chain, generated with our Monte Carlo
steps, the former forbidden kinks are realized, and we refer to them as virtual
kinks with a virtual matrix element. Configurations containing one or more
virtual kinks are called virtual configurations. When ignoring all these virtual
configurations of the Markov chain in the sampling of observables, the obtained
results are still correct since sequences of virtual configurations in the Markov
chain can be considered as macro updates for the non-virtual configurations.
The implementation of virtual kinks made the WA ergodic, and the obtained
results were correct. Surprisingly, the average number of kinks of the WA with
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3.5. Monte Carlo steps

Step = 1851031 25!

5.335165

orbital index

Figure 3.14.: Graphical output of the program: Missing configuration for a simu-
lation (without virtual kinks) of 3 particles in 15 basis functions at an inverse
temperature of 5 = 10. The y-axis denotes the orbitals (0-14), whereas the
x-axis represents the imaginary time 7 € [0, §]. Since there are three particles,
at each time of the path, exactly three orbitals are occupied.

virtual kinks perfectly coincided with that of the standard CPIMC algorithm
without virtual kinks. Hence, the Monte Carlo steps of the former algorithm
allow for the construction of single kinks or combinations of these that were
missing in the WA without virtual kinks. Unfortunately, simulations with
virtual weights are likely to become unstable and inefficient when spending too
long times in virtual configurations since these do not count for the sampling
process. Therefore, the missing paths in the WA had to be found, and then,
appropriate steps that allow for the construction of those configurations had to
be designed.

Solution: Rewrite the steps of the standard CPIMC algorithm

Since we knew the problem was connected to the type 4 kinks only, we used
a test Hamiltonian only consisting of type 4 kinks. First, we checked if all
non-forbidden kinks would be realized in simulations without virtual kinks.
This was the case, and hence, we were missing some more complex constructions
of kinks. Then, we did simulations for a very small system, i.e., three particles
in 15 basis functions, and restricted the maximum number of kinks to 3. For
this small system, a unique number could be assigned to every possible path.
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3. Configuration path integral Monte Carlo

We first performed a long simulation with virtual weights and then without,
where, for both simulations, all occurring, pairwise different configurations were
stored. After comparing these configurations, we could eventually find those
that were missing in simulations without virtual kinks. Fig. 3.14 shows the
graphical output of the program for such a missing configuration. As expected,
it turned out that these could only be constructed by first adding a virtual
type 4 kink, then doing some intermediate steps, and afterwards removing the
virtual kink. We could not find a simple step that would fix this problem, and
thus, we transformed the steps of the standard CPIMC algorithm into the kink
picture. After implementing the steps 7 and 8 of adding and removing a kink
via a one- or two-particle excitation, we finally obtained correct results for
the observables and the average kink number even without the second worm.
Therefore, the steps 1-8 are sufficient to be ergodic. For simulations in the
closed path only, i.e., without worm, we additionally had to implement the
steps 9-13. In that case, especially adding a pair of type 2 or 4 kinks is required
since there are no closed paths with only one kink. Further, the excitation of a
whole orbital in step 12 is necessary if there are orbitals that are not part of
any type 2 kink. Finally, the changing of two kinks via a one- or two-particle
excitations (step 12 and 13) has been implemented since we could reuse a lot
of code from step 7 and, in the majority of cases, more different Monte Carlo
steps reduce the auto-correlation time of the samples. Thus, the steps 7-12 can
be used for the simulation of systems in the canonical ensemble.

Due to the more sophisticated choice of the proposed excitations in the
CPIMC WA, the acceptance probabilities could be improved by a factor 2
to 4 compared to that of the standard CPIMC algorithm (without WA). In
combination with a more efficient programming, this leads to a speed up at
least of the order O(10), which strongly increases with the system size, i.e.,
with the number of basis function Ng. However, the acceptance probabilities
are still small so that we have to perform 103 to 4 - 103> Monte Carlo steps
(cycles) to obtain a sufficiently small auto-correlation time.
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4. Estimators

After we have defined the configuration space to be sampled and explained the
Monte Carlo steps, it remains to derive the estimators! for the quantities of
interest. Before, some general remarks on the sampling of quantities should
be made: Performing Metropolis Monte Carlo with the steps described in Sec
3.5, generates a Markov chain consisting of closed and open paths of varying
particle number. According to the partition function of the total configuration
space Z. . (see Eq. (3.28)), the sampled closed paths are distributed with the

probablhty M whereas open paths are distributed with w‘W()g(ip)‘ in

the Markov chaln However we can also ignore all closed paths in this Markov
chain and interpret these as a macro Monte Carlo update for the open paths.
Then, the remaining Markov chain consists of open paths distributed with
%, regardless of the actual value of the constant? w. Similarly, ignoring

the open paths, the sampled closed paths are distributed with 'WC;&

Moreover, the same holds true for closed paths with a certain particle number
N’. When only taking into account those closed paths with particle number N’,
these are distributed with % For that reason, we can use a dlfferent
length of Monte Carlo cycles Neyae (see Sec. 2.1) for quantities that either
receive a contribution from closed paths, open paths, or closed paths with a
given particle number. In other words, we sample canonical quantities, grand

canonical quantities and the MGF in one simulation.

4.1. Estimators of thermodynamic observables

To find an estimator for an observable, we have to write its expectation value
in the form of Eq. (2.1), where, for the partition function, we use the expansion
(3.18). It is straightforward to do this by utilizing the standard relations of
statistical physics between expectation values and the partition function. For
the expectation value of the total energy of a system in the canonical ensemble,
we have to differentiate the canonical partition function with respect to the

inverse temperature 3, i.e., (f[ ) = Zép aggp To perform the differentiation,

!The notion estimator has been introduced in Sec. 2.1.
20f course, for extremely large or small values of w, we (practically) either sample only
closed or open paths.
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4. Estimators

we substitute 7; = fGt; and d7; = (dt; in the closed path partition function
(3.18) and obtain

Ze =3 YTV Y /Oldtl/tlldtz.../;ldt;(

K=0, S1 82 SK—1
oy

K K
(—B)" exp {—5 Z D{n(i)}(ti-‘rl - tz)} H q_{n(i)}{n(i—l)}(si> :
i=0 i=1

Computing the partial derivative of this expression with respect to 5 and then
back substituting, yields

=7 Y YYY . Z/Oﬁdﬁ/jdfg.../ildn(

CP K=o, {n} s1 S2 SK—1
K#1

K& (Tig1 — Tz))
— + D N
( 5t
K K
(=) exp {_ > Doy (Tig1 — Ti)} T gy -y (53)
=0 =1

_ K - o
- i ([3[( + ;D{n(i)}(TlJﬂﬁ Tl)) WCPZ(CfCP) )

Ccp

which is the desired form (2.1). We can identify the corresponding estimator of
the total energy
K
E(Ccp) = 7[( + ZD{n(i)}M
[ s
Thus, the energy of a closed path C¢p is given by E(Ccp), where all realized
ONVs {n®} contribute with their corresponding diagonal matrix element
weighted with the relative (time) length of the ONV in the path. Interestingly,
the off-diagonal contribution is only given by the number of kinks in the path
divided by the inverse temperature f3, i.e., the actual values of the kink matrix
elements do not enter directly in the total energy of the path.

In case of the grand canonical closed path partition function (3.26), where
D{n@)} is replaced by D{ni} = D{n@} + uN (n®} and the summation over the
first ONV is not restricted to a fixed particle number, we obtain exactly the
same estimator (4.1) for the total energy because the partial differentiation
with respect to 3 is carried out for uf =const.

Next, we consider the expectation value of the one-particle density matrix in
the canonical ensemble

(4.1)

Npg = (ala,) = — Tt {a;aqe—ﬁH} .
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4.2. Estimators of the MGF

After inserting the general second quantized Hamiltonian (3.7), we can express
this expectation value in terms of a partial derivative of the partition function
with respect to the one-particle integrals

ata R
Npg = ; Tr {& & (217 h”ai“J*qu k<l mkla‘zajalak) }

1197

B Z Ohyy

Carrying out the differentiation for the closed path partition function (3.18)
for p = ¢, we obtain the estimator of the average occupation number of the
p—th one-particle orbital

K
A\ _ (i) (Ti—i—l - Ti) WCP(CCP)
== (S o) Mol

1=0

np(Ccp)

where the estimator can be rewritten as

1 B
ny(Cop) = 5/0 ny,(7)dr | (4.2)

which is the average occupation of the p—th orbital in the closed path Cp. For
the off-diagonal elements of the one-particle density matrix, the differentiation
leads to the estimator

1 & 1
Mpg(Cor) = =5 D G )551',(1)7‘1) : (4.3)
6 i=1 hpq + Zﬁép q WpjqsTj

That means, we get a contribution of one over the corresponding kink matrix
element without phase factor for all type 2 kinks s; in the path with s; = (p, ¢).
Obviously, for the grand canonical ensemble, where we sum over closed paths
of all particle numbers, the estimators for the elements of the one-particle
density matrix are also given by Eq. (4.2) and (4.3).
Note that, as described in Sec 2.1, we can only sample closed paths distributed

with WerlOerll and then calculate the expectation values according to Eq. (2.7).
Ccp

4.2. Estimators of the MGF

After having developed an ergodic set of the Monte Carlo steps, the next major
part of this work consists of finding a sufficiently fast converging estimator for
the MGF.

At first, we derive the trivial estimator for the MGF and explicitly take into
account the sign of the sampled paths. Apart from some other disadvantages,
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4. Estimators

this estimator, in practice, introduces a discretization error. Therefore, we
developed an estimator that does not require a discretization. Unfortunately,
this estimator produces poor results due to a bad convergence with the number
of samples. To speed up the convergence, we utilized an idea that significantly
improves the estimator of the MGF in the DPIMC method [17]. In the case of
CPIMC, the improvement turns out to be insignificant. Eventually, from the
obtained results of the first two estimators (without a discretization error), the
ideas can be combined yielding an estimator with a much better convergence.

4.2.1. The trivial estimator

From the definition of the open path partition function (cf. Egs. (3.26)), it
directly follows that the MGF Z.xGyj (7)., 7., ) is given by the summation over

all weights of open paths with Ira on the orbital ¢ at time 7/ and Masha on
the orbital 5’ at time 7/

ZC’sz] ,ra ma IWOP CP7Z ]a lra ma) (44)
Ccp
where
(CCP7 )]7 1r7 ma) ({n}7 Tirs maa 1, y TK, 1 7.] 817"'7SK>7

In other words, the summation only goes over the closed path degree of freedom
of the open paths since the worm ends are fixed to the arguments of the MGF.
Therefore, we easily obtain an estimator for the MGF by adding the summation
over the worm ends and compensate this with delta functions® and Kronecker
deltas

gZ] ( 1r7 ma - Zj Z/ dTll‘/ dTma(S’LZ ,5(7—11”Tlr)(s(Tmava/na)WOP(OOP)
CP
Zop P P
= 200 S (510880 )0 7)) o)
ZCP Cop ZOP

- <5i,i’5 ’5(TlraT1r)5(Tma7T;;a)>op .

In analogy to the closed paths, we can sample only open paths distributed with

W‘”;w (cf. Eq. (3.28)), and hence, we have to rewrite the expectation value
OoP

3To shorten the notation, we write the delta functions as 6(z, ') := §(x — a').
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4.2. Estimators of the MGF

of the MGF analog to Eq. (2.7)
Zop X cop (06,65, 0 (T, )6 (Tina Thoa) Sor (Cor ))) %OCPOP)I

Girj (Toes Toa) =
v ZCP XC()P OP(COP)‘WOP Lop)
_ P <5i,i’5 ,5(7—1r’7—1r)6( maaTma)SOP> oP (45)
ZCP <SOP>/OP ’

where Sop(Cop) = sgn(Wop(Cop)) is the sign of the open path weight function
Wop(Cop). The prefactor consisting of the fraction of the open and closed path
partition functions has to be sampled separately*. For that purpose, we express
it in terms of averages over the actually sampled paths

Zoo Loy Wor(Cor)  Zow L iop Sor(Cop) WoplC) 1 g vr
Zecp B ICCP WCP<CCP) - Z(IJP ICcp SCP(CCP)% - Zép <SCP>/CP '
(4.6)
The fraction of the primed partition functions can be further rewritten as
Zhy _ Lo WorlCor)| _ Lo, Sor(Cu) i ™oy (5,1,
Zte Loow WerlCor)l Loy, Sor(Crnd) rgfCmall — 0 {dcp)y,

(4.7)

where Cy,, € {Ccp} U{Cop}, i.e., the summation goes over all closed and open
paths, and we used the following notations

’II_)WOP(CTM) lf CTot € {COP}

Wo C’Tot = ’
Tot(Cror) {ch(Cm) if  Cro € {Ccr}

1 if Cr, € {Ccp}
0 else

1 if Cr, € {Cop}
0 else '

5CP<CTot) = { s 5OP<CTot) = {

Hence, ggié%‘“ is estimated by the fraction of the total number of open to the
Tot

total number of closed paths in the sampled Markov chain. Inserting Eqs. (4.6)
and (4.7) into Eq. (4.5), we obtain an estimator for the MGF that can actually
be sampled

(5 (511/5 ) Tiry T ) s 'S P/
gz] ( Tips T, )_ < >T0t < J»J ( ) (7— Tma> o >OP

1
W (dcp)l, <Scp>;p

4In the DPIMC WA for bosons, the normalization of the MGF is automatically included
when interpreting the MGF as a quantity in the total configuration space. For fermions,
where paths can only be sampled according to the modulus weights, this is not correct,
and the normalization has to be sampled in terms of a total configuration quantity, both,

in the DPIMC and CPIMC WA.

, (48
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4. Estimators

where we notice that, instead of dividing by the average sign of the open paths,
we now divide by the average sign of the closed paths®. This cancellation
is the reason for explicitly taking into account the sign in the derivation of
the MGF estimator (in contrast to the derivation of the estimators for the
thermodynamic observables in the previous Sec. 4.1). Strictly speaking, Eq.
(4.8) is not one estimator but consists of four estimators. However, it has an
obvious drawback: In practice, we have to replace the delta functions for the
continuous times by

§(r,7) = og(r,7) = {;ﬁ’ if 7elr—3,7+7%]
0 else.

Otherwise, we would never get a contribution to the estimator in the numerator
(4.8). This introduces a discretization error, which can be reduced by minimizing
B (the bin width). Thereby, the number of samples for that time point is
reduced, which, in turn, enhances the statistical error. In addition, due to
the exponential time dependence of the MGF, an exponential rather than
an equidistant grid should be used for the time points at which the MGF' is
sampled. Further, in Eq. (4.8), we have not taken advantage of the MGF being
homogeneous in time (cf. Eq. (3.20)). Hence, we actually want to sample the
MGF Gy (7p,0) at time points 7, with p = 0... N,. Due to the anti-periodicity
with respect to shifts of 8 (cf. Eq. (3.21)), we only have to sample the MGF at
time points 7, € (0, 5].

4.2.2. First estimator without discretization error

Next, an estimator for G, ;/(7,,0) without a discretization is derived. Utilizing
Eq. (3.20), it is

g,;/j/ (Tp, 0) = gi/j/ (Tp + 7',, T’) with Tp, 7 S [0, B] (49)
Since Gy (7, 0) is only defined for 7 € (0, 5], the r.h.s. is defined by

Girji(mp +7',7) it (r,+7)<p

Gerltpt7,7) = {—gi/j/wpw—ﬂ,r') it (rp+7)> 5.

5 Actually, this is surprising since the MGF represents an open path quantity and as such,
we would expect that we have to divide by the average sign of the open paths as in Eq.
(4.5), thereby enhancing the statistical error of the nominator by one over the average
open path sign. Fortunately, it is always <SCP>/CP > <SOP>£)P, for in the open paths there
are always two more kinks, namely Ira and Masha, each contributing with a sign changing
phase factor.
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4.2. Estimators of the MGF
The r.h.s. in Eq. (4.9) does not depend on 7/, and it follows
1 B
Gijr(15,0) = = / ATaGir i (Tp + Tinay Tona)

i Z/ dTma(SZ ’L,(s] ]’WOP(CCP7 Z?j? Tp + Tma7 ma) )
Ccp

(4.10)

ZCP

where in the second line Eq. (4.4) has been inserted for the integrand. Now
we employ the simple fact that for a # 0 it is a = $b if b # 0. Using the

abbreviation C' = (Cep,1i,7), it is

_ 1 8 Woe(C
WOP(C7 Tp + Tma? Tma) = 7) / d7—1r OP( : Tp + Tma’ n

=~ = ma) WOP(C 7_1r7 Tma)
Lir(Cu Tima WOP(C7 7—ir7 Tma)

where
~ B ~
Lir(C7 Tma) - / dTir@0(|WOP(Ca Tir) Tma)|) 9 (411)
0
1 if >0
C) D=
ol2) {0 else,

i.e., in a given open path (Cep, 1, J, Ty, Tma), We can interpret L, (Cep, i, 7, Tina)
as the length of the interval where Ira can be shifted without vanishing of the
resulting weight. This interval is determined by the time of the next left and
right kink on the orbital ¢ with respect to 7,. Inserting Eq. (4.11) into (4.10),
yields

ZZ/ dflr/ A7 Ouryg

CP Caop 4,j 1r C de)

Wor(C C
. OP( 7T~p +Tma’Tm“)Wop(C,TiraTma>
Wop(c’7 7—ir7 Tm&)

1
gi"’7—70 )
](p 6

o l ZOP < 6i,i’5j,j’ WOP<57 Tp + Tmas Tma)) WOP(éa Tiry Tma)
ﬁ ZCP Cop Lir(é, Tma) Wop(é, Tirs Tma> ZOP

_ lZOP < 5i,i/6j,j’ WOP(é Tp _I_ Tma ma)>
B Zep Lir(é',Tm) WOP(C Ties Tma) op '

Obviously, the fraction of weights in the estimator is related to the acceptance
probability of moving Ira in time (cf. Eq. (3.32)) in the sampled closed path
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Cor = (Copy 1, Jy Tiry Twa) 10 CLp = (Copy iy J, Ty + Tina, Twa) according to

(é Tp + Tm"n ma)
OP(O Tlra Tma)

|
b,

whereby the notation AR4IT7COP is introduced for the fraction of weights corre-
sponding to shifting Ira from 7, to 7, + 7,.. in the open path Cop. In fact, the
length Lir(C~’ , Tma) Of the interval where Ira is allowed to be shifted is nothing
but the length L Turrcop of the interval where /IMIT,COP does not vanish. Thus,

AMIT(COP — C(/)P = (é, Tp + Tma,Tma)) — min {17

=: min {1,

AMIT,COP (Tir — Tp + Tma)

we have

Girjr (1p,0) =

]_ ZOP < 5’5‘71:/5‘7‘7]‘/

B Z A’NHT,COP (Tir — Tp + Tma)>
Cp

AMIT,Cop op

(4.12)

Inserting relation (4.6) for the fraction of the closed to the open path partition
function and rewriting Eq. (4.12) for the sampling of open paths according to
the modulus weights, we finally end up with

!/

1 Sop), 8000 ~
gi/j, (Tpa 0) = S !/ <5OP>TOt < ~7 22 ANHT,COP (7—1r — Tp + 7-ma)‘S1Ol:' >
wﬂ< CP>0P< CP>T0t AMIT,Cop op
::Ng _gz[esjt 17- (CO )
" /
= Ng <gz’ g7 1TP<COP>>OP : (413)

In contrast to (4.8), this estimator has no discretization error. Assuming
we have generated a Markov chain of open paths {Cop,,} of length Ny op
distributed with W, then (4.13) is estimated according to

OP

1 Nmc,op

gi’j’ (Tpu O) ~ NQ,M07 Z gzes; 1]7,, COP,m) = NQ,MC <gles; 1TP<COP>>

NMC,OP o OP,MC

with

1 <5OP>/T0t,Mc
wf3 <SCP>/CP,MC <5CP>/Tot,Mc

Thus, for each sampled open path Cop ,,, with Ira on the orbital ¢ and Masha

on j, we get a non-vanishing contribution of gl[?;fT;](COP,m> for all times 7,

Ng = Ng e =
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Figure 4.1.: Complete sample history of the MGF estimator gj[.,zo,j,:%:ﬁ, (Cop,m)
(without normalization factor Ng,Mc) for Nyicop =5+ 10° samples. The paths
are sampled for a test system of N = 3 ideal particles (A = 0) in Np = 15 basis
functions at three different temperatures. The actual test system is defined in
Sec. 6.1 and is of no relevance for the interpretation of this graphic.

with a non-vanishing acceptance probability Ayir.cop(Tie — Tp + Tma). This
strongly improves the statistics of G;;(7,,0) for each 7,7 € {0,..., Ng — 1} and
p € {0,...,N, — 1} in contrast to the estimator (4.8), where we only get a
single non-vanishing contribution to G;;(7,, T.) for each sampled open path.
Nevertheless, we could not obtain sufficiently good results with the estimator
(4.13) since, according to Eq. (3.33), it is
|AVMIT,COP (Tir — Tp + Tma>| X 6_5AED )

and thus, if the shift of Ira from 7, to 7, + 7,. in the sampled path Cqp
corresponds to a strongly negative change in the diagonal energy AFEp, then
the values of |1‘~1MIT’COP<TH — Tp + Twma)| can become extremely large. This, of
course, becomes worse for lower temperatures. As an example for the severity of
this problem, Fig. 4.1 shows the values of g([)ej‘;é]_ (Copm) forallm =1... Nycop
open path samples for three different temperatures, where Nycop = 5 - 10°.
While for # = 5, the sample history behaves smoothly, corresponding to a small
variance, for 3 = 10, there are a few extremely large peaks of the order O(10%).
Obviously, the samples for 5 = 10 are not even Gaussian distributed, and the
mean value strongly depends on how many peaks we have in the samples; or in
other words, how many samples we generated. Consequently, it is not possible
to compute a statistical error of the mean value. In addition, the samples in
Fig. 4.1 are generated for an ideal system, i.e., there are no kinks at all in the
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paths so that Ira can always be shifted to any time in the path. Consequently,
in Eq. (4.13) it is always Liine = B. For an interacting system, i.e., with
»'“OP

kinks in the sampled paths, L can become very small. Thereby, the

ZMIT,COP
discussed problem of the estimator is significantly enhanced, i.e., the peaks
in the samples are even much larger for an interacting system. However, an
estimator with such a behavior is unemployable, and a better one had to be

found.

4.2.3. Second estimator: Utilizing the idea of the DPIMC
estimator

Employing the idea of the MGF estimator in the DPIMC method [17], we
rewrite Eq. (4.13) as

8
Girj (15,0) = Ng /0 AT i P (Tt

AB ~
< 5i,i’5j,j’ 5Ttria1a7p Awirr,Cop (Tir — Tp + Tma) IS >
oP

!/

LZMIT,COP Aﬂ P(Ttrial) op
AB e ,
— N < 5i7il5j,jl 57-‘:“&1’7—17 AMITchP (7_1r — Tp ‘I’ Tma) S >
- oP ,
AMIT,Cop Ap P(Tma1> oF
::gﬁs;/i] (Cop;Ttrial)
3T
(4.14)
where
AB = 1 lf Tp e [Ttrial o Tma o %7 Ttrial - Tma + %] 4 15
Terial,Tp © 0 else , ( ) )

and P(7) is some arbitrary, normalized probability density, i.e., foﬁ drP(1) = 1.
Thus, from Eq. (4.13) to Eq. (4.14) we only added

1 8 8 et 1
]- = x5 / d tria 5Aﬁ - / d tria P tria TirialTp
A/B 0 Torial Ttrial,Tp 0 Tirial (T 1) A/B P(Ttrial)

for some arbitrary A5 € (0,5]. In fact, for a chosen Af, the integral over
the Kronecker delta is not always Ap3, in particular, if 7, + % & [—f, B since
Te — Tma € [—5, 8]\{0}. For simplicity, we neglect this as it is not necessary
for the understanding of the main idea. In practice, of course, this has to be
taken into account. For the evaluation of the estimator (4.14), we not only
have to sample an open path Cop but also another variable 7., distributed
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Figure 4.2.: Same as Fig. 4.1 but for the estimator G5, (Cop) (cf. Eq. (4.13))

Zl:jlsz
(red curve) and QZ[?S;,Q]TP (Cops Tiria) (cf. Eq. (4.14)) (blue and green curve) for two
different AS.
with P(7,..). Then, we get a contribution to all G; ;(7,) for which 62% =1
) g 5J p Ttrial, Tp
and ﬁMIT’COP (T = Tp + Tua) # 0. If we choose
P(T ) o |AMIT,COP (7—1r — Ttrial)| . |AMIT,COP (Tir — Ttrial)’ (4 16)
trial ) — ~ T 9 .
J3 a7 Avier,cop (i = 7)) Nz
then it is
g;lei;/i]_p (COP7 7-(;rial) = B TuialTp N~ MIT’COP( - ) OoP

i
ZMIT,COP AB |AMIT,C’op (Tir — Ttrial)|

Due to the Kronecker delta (4.15), we only update those 7,’s with 7, & Ty10—Tia
if Ap is chosen sufficiently small, i.e., for each non-vanishing contribution, it is
approximately

|AVMIT7COP (7—1r —> Tp + Tma)| ~

|AVMIT,COP (Tn - Ttrial)|

Hence, the introduction of an additional variable 7,,.,; that is sampled according
to the probability density (4.16), replaces the exponential factor |Ayyr oy, | that
causes the huge peaks in the estimator (4.13) by the normalization factor A° q
in Eq. (4.14). If |AMIT700P| is some peaked function, then this should reduce
the peak height in the samples. In Fig. 4.2, the sample history of the first
estimator (4.13) is compared to that of the second estimator (4.14) with two

69
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different choices of AS. Obviously, the peak height and at the same time the
number of samples is reduced for Ag = /10 = 1 (blue curve) by roughly a
factor of two in comparison to the first estimator (red curve), while for A =6
(green curve) there are no significant changes compared to the first estimator.
However, these peaks are still far too large to obtain good results, and further
reducing AS does not help since we divide each sample by AfS. Besides, too
small Ap leads to very few samples in the same computation time. We tried
some other choices for P(7,,,) but without success concerning the peaks in the
samples.

4.2.4. Combining the first and the second estimator

The idea of extending the sampling process by an additional variable has
sufficiently improved the estimator of the MGF in the DPIMC WA[17]. Unfor-
tunately, for CPIMC, this is not the case. Nevertheless, from the results of the
first and second estimator, we conclude that an estimator which contains the
factor

A’I\/IIT,COP (7—11" — Tp + Tma)l
OBdT|AMIT,COP (Tir — T)|

instead of only |AVMIT700P(Tir — Tp + Twma)|, most likely produces much better
results (provided we do not additionally divide by some small interval). And
indeed, it is possible to rewrite the estimator such that this desired factor is
obtained. For that purpose, we return to Eq. (4.10)

ZOP WOP(CCP7i7j7 Tp + TmaJTma>
Gy (73,0) gj > / A7,..6:.00 .
" Zew Z,
CP /6 CP OoP

(4.17)
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4.2. Estimators of the MGF

Dropping all arguments of the open path weight function except that for the
time of Ira, it is

B B 1B dr, [Wep(T)
A7, Wop(Tp + T :/ s U — = Wop(Tp + T
/ or (T + 7o) = | AT
WOP Tir
_/ dTma/ d7—|r ’,3 ar Wor () |WOP<Tir)
Wop (Tir)

Wopr (Tp+Tma)

WOP(Tlr)
_/ dT““"‘/ dr. J0B qr | Wor(r) Wor (1)
WOP(TH')

ir — ma
- / dTma/ d ur g/HT COP (T Tp + 7 ) WOP<Tir) 9
dT‘AMIT Cop (7_” — T)l

(4.18)

where from the second to the third line, we have multiplied and divided by the
sign of Wop(7,). The integration of 7, has to be restricted to such times where
Wop(T.) # 0, which is indicated by the prime. We insert this into Eq. (4.17)
and obtain®

gi’j/(Tp70) _ ZOP 1 ( S ANIIT,Cop(ﬂr — Tp + Tma)> WOP(OCP,/I:7]77—H7T )

Zop B Cop T f(’)g dTlAVMIT,COP (7'{1- — T)| Zop

Again explicitly taking into account the sign and utilizing relation (4.6), we
end up with
/
gi’j’ (Tp, 0) = Ng< 51,1’5j,j’S~Pir (Tma + Tp)Sop >OP s (4].9)

,gEst 3 (COP)

ij

’Ahle,COp (7—1r — Tma + Tp)’

f(? dr ‘ZlMIT,Cop (Tir — 7_—)‘

Pir<7_ma + Tp) L=

?

where S3 denotes the sign of ZlMIT,COP (Tie = Toma +Tp). Now, P, (7T, + 7,) is the
probability density to find Ira at 7,,, 4+ 7, if all other parameters of the sampled
paths, i.e., times and types of the kinks, remain fixed. According to Eq. (4.18),
P (Ta + 7',,) is independent of the time of Ira (7;,) in the sampled open path
Cop. Fig. 4.3 shows the sample history of the final estimator (4.19) for the
same test system as in Fig. 4.2 but for three different coupling parameters (for
its Def. see Sec. 6.1). For the ideal system (green curve), we always get the

SIn Eq. (4.17), Wop(7i,) # 0 is ensured since we sample open paths with Ira at 7.
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Figure 4.3.: Same as Fig. 4.1 but for the estimator g g and for three different
coupling parameters of the test system defined in Sec 6.1.

same contribution for each sampled path, i.e., in that case the estimator (4.19)
reduces the height of the peaks by almost five orders of magnitude (see Fig.
4.2). For the interacting system (blue curve), the kinks in the paths can result
in very small intervals on which ;lMITy(;OP (1. — 7) does not vanish since we can
move Ira only to times 7 that are in between the left and the right kink of 7, on
Ira’s orbital. Consequently, in such cases, P,(7) is a peaked distribution leading
to large values in the samples for P, (7,, + 7,). This problem is enhanced for
increasing coupling (red curve) since this means, on average, more kinks in the
paths. Nevertheless, doubling the coupling from 0.5 to 1.0 only doubles the
peak height, which is still three orders of magnitudes smaller than that of the
other estimators. Besides, for the interacting system, the peaks are positive and
negative since the weights of the paths can be positive and negative. Hence,
most of them cancel in the mean value of the samples. For that reason, it
requires many samples to obtain a good value of the true mean value. Moreover,
the normalization factor is inversely proportional to the average sign of the
closed paths which tends to zero for stronger coupling. That means, a very
precise mean value of G;°. (Cop) is required. The just said is nothing but the
manifestation of the fermion sign problem in the sampling of the MGF.

It should be mentioned that the existence of various estimators for the same
physical quantity is not unusual. Another example is the estimator for the
energy in the DPIMC method. There, the standard estimator obtained from
the differentiation of the partition function is also numerically unstable, while
another estimator obtained by employing the viral theorem is stable. Yet, in
the limit of an infinite number of samples, the mean value of these different
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4.2. Estimators of the MGF

estimators is of course the same, but the number of samples required for the
convergence up to a given error can be very different.

Furthermore, in terms of computation time, we do not get a better estimator
for free. For the trivial estimator (4.8), only delta functions have to be evaluated.
For the fi