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Abstract

The Configuration Path Integral Monte Carlo (CPIMC) method constitutes
an efficient approach for the computation of thermodynamic equilibrium
quantities of warm dense matter states. A restraining factor of this method
is the fermion sign problem. This problem is NP-hard, thus generally cannot
be resolved, so one has to indirectly bypass it. This thesis lays the founda-
tion for such an endeavour, by conducting a higher order Taylor expansion
in the high temperature approximation for discrete numbers of M . It is
expected that this may lead to a lower mean sign 〈s〉′, therefore reducing
the sign problem. For the case of the uniform electron gas estimators and
Monte Carlo steps are calculated, providing the theoretical foundations for
a possible implementation.

Zusammenfassung

Die Configuration Path Integral Monte Carlo (CPIMC) Methode stellt eine
effiziente Möglichkeit der Berechnung von thermodynamischen Eigenschaften
warmer, dichter Materiezustände dar. Ein Beitrag der die Effizienz der Meth-
ode verringert, ist das fermionische Vorzeichenproblem. Da dieses NP-Schwer
ist, deshalb nicht konventionell vereinfacht werden kann, muss man Methoden
finden, um dieses indirekt zu verringern. Diese Arbeit stellt die Grundlage
für eine solche Verbesserung dar. Durch einen, im Vergleich zu vorherigen
Arbeiten, niedrigeren Fehler in der Hochtemperaturnäherung wird sich eine
schnellere Konvergenz versprochen. Im Testsystem des homogenen Elektro-
nengases werden Estimatoren und Monte Carlo Schritte vorgestellt, welche
den Grundbaustein einer zukünftigen Implementierung legen.
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1 Introduction

Figure 1: Warm dense matter
(Dornheim et al., 2018)

The investigated topic of this the-
sis is the description of warm dense
matter. Matter in such a state is
characterized by certain configura-
tions of temperatures and densities,
which lie between hot plasma and
condensed matter. (Dornheim et al.,
2018)

The description of warm dense mat-
ter states is of increasing interest,
because it enables the possibility
of studying important physical sys-
tems, such as the core of certain
stars and planets or matter that is
created in the inertial confinement
fusion context.
However, there are difficulties in finding a suitable description of matter in
such a state, because it is affected by quantum- and strong coupling effects.
Thus the configuration path integral Monte Carlo (CPIMC) method was
introduced which enables the calculating of properties in such a regime.

Since the introductory paper in 2011 (Schoof, Bonitz, Filinov, Hochstuhl, &
Dufty, 2011) the method was further developed by Prof. Bonitz et al.. The
current algorithm has successfully produced numerous measurements, which
advanced the understanding of systems such as the uniform electron gas at
warm dense matter conditions (Dornheim et al., 2018). In its current form,
it is already highly optimized in for example utilizing the worm algorithm
(Schoof, 2016) for the reduction of statistical variance of estimators or us-
ing parallelized code for the computation on the HLRN the computation of
complex systems is achieved. The notorious bottleneck of the fermion sign
problem, that is especially severe for weakly to moderately coupled systems
and highly degenerated systems, still is limiting its efficiency.

Reducing the sign problem is important, but not easily feasible. The problem
is NP-hard, thus cannot be generically solved (Troyer, Matthias & Wiese,
Uwe-Jens, 2005). Hence the need for an indirect reduction of the problem
arises. The main innovation of this thesis starts with the transition from
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continuous time-slices to discrete times. This, of course, imposes an error.
To then compensate this error, a higher order Taylor expansion in the high
temperature approximation is applied.

Figure 2: Sign problem (Schoof, 2016)

It is expected that this pro-
cedure has a positive impact
on the sign problem. The
smaller error in the Taylor-
expansion translates to a
smaller number of M that
are necessary for the same
accuracy of the simulation.
Furthermore, fewer M di-
rectly implies a reduction of
the sign problem, because
the sign of different contri-

butions in the sum, that is, to evaluate numerically, oscillates less. This
thesis develops the theoretical principles of a higher order expansion in de-
riving the estimators of thermodynamic quantities and Monte Carlo steps in
the test-system of the uniform electron gas. Thereby, the foundation for a
possible implementation is set.
The literature that was used for this thesis focuses on the work that was done
by Prof. Bonitz, Dr. Simon Groth, Dr. Tim Schoof, and lectures from Prof.
Pehlke. It is also important to note that parts of this thesis were developed
in collaboration with Jakob Nazarenus. The differences in the two works lie
in e.g. the considered ensemble and the Monte Carlo steps. Complimentary
results that are derived in the other thesis can be found in the appendix.
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2 Theory

In this chapter, an introduction to the basic theory that is necessary for
the understanding of this bachelor thesis is presented. First, the occupation
number representation is introduced, since it is the formalism that is used for
the description of quantum many-body systems in this thesis. Operators in
this formalism are briefly outlined, and the Slater-Condon rules that describe
the effect of a two-particle operator on an arbitrary state are introduced. For
a more comprehensive overview of the formalism see (Schwabl, 2008), and
(Schoof, 2011).
Following that, the density operator and the concept of the Grand canonical
ensemble are introduced. Moreover, different realizations of systems in the
Grand canonical ensemble are presented, and important correlations for the
calculation of thermodynamic expectation values are provided.

2.1 Second quantization

Second quantization is a formalism that is used to efficiently describe quan-
tum many-body systems. In this approach, a many-body state is represented
in the Fock state basis, which can be constructed by assigning a number of
identical particles to a single-particle state. An arbitrary quantum many-
body state can then be expressed as a linear combination of aforementioned
Fock states.
This description of a state through an occupation number is an important
distinction from the first-quantization many-body wave function description.
The occupation number formalism changes the required information for the
sufficient description of a many-body state from ”which particle is in which
state” to ”how many particles are in each state”, thus eliminating redun-
dancy that arises through the indistinguishability of quantum particles. This
is demonstrated in the following chapters.

2.1.1 Slater determinants

Starting point for the derivation is the Hamiltonian of an ideal, N particle
system.

Ĥ =
N∑
α=1

ĥα (1)
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Here ĥα = p̂2α
2m

+ v̂α denotes the single-particle Hamiltonian that consists

of the kinetic energy operator p̂2α
2m

and the potential energy operator v̂α
of the particle α. The wave function of the particle can be expressed as
〈rσ|α〉 = ψα(r, σ) = ψα(x). And, each particle is characterized by its posi-
tion r as well as its spin σ. Therefore, both position- and spin coordinates
are combined into the x coordinate. It is also important to note that in this
thesis the natural units ~ = kB = 1 are used.

The N -particle eigenvalue problem Ĥ|Ψ〉 = E|Ψ〉 can be resolved by utilizing
a solution that uses a product state of single-particle states |i〉. This is
possible, because the Hamiltonian in (1) is separated into a sum of single-
particle Hamiltonians.
One can express |Ψ〉 as a product state:

|Ψ〉 = |i1i2 . . . iN〉 = |i1〉1|i2〉2 . . . |iN〉N

Where |in〉n denotes the n-th particle in the n-th orbital, the orbitals are
labeled according to increasing energy eigenvalues, ε1 ≤ ε2 ≤ ε3 ≤ . . . and
are assumed to form a complete orthonormal basis, 〈i|j〉 = δij. Thus, the N -
particle eigenvalue problem can be expressed in terms of the single-particle
eigenvalue problem.

ĥα|α〉 = εα|α〉

This leads to a product state that is an eigenstate of the ideal Hamiltonian
(1).

N∑
α=1

ĥα|i1〉1|i2〉2 . . . |iN〉N =
N∑
α=1

εiα|i1〉1|i2〉2 . . . |iN〉N

Up until now, the assumption of indistinguishability of particles has not
been accounted for. When considering the indistinguishability of quantum
particles, one has to correctly anti-symmetrize states1. Anti-symmetry in
states manifests itself in a sign change under particle exchange:

| . . . , iα, . . . , iβ, . . . 〉− = −| . . . , iβ, . . . , iα, . . . 〉 (2)

1This is the case for fermions. When considering bosons, states have to be symmetric
under particle exchange.

9



This can be implemented through the superposition of N ! permuted product
states. The resulting anti-symmetric state has to fulfil the prerequisite that
it remains an eigenstate of the Hamiltonian (1).

|i1i2 . . . iN〉− =
1√
N !

∑
P

(−1)P P̂(|i1〉1 . . . |iN〉N) (3)

Here P̂ is the permutation operator, and P is the number of particle ex-
changes in P̂ . This leads to the Slater determinant, which is the expression
that describes the wave function of a multi-fermionic system.

〈x1x2 . . . xN |i1i2 . . . iN〉− =
1√
N !

∣∣∣∣∣∣∣∣∣
ψi1(x1) ψi2(x1) . . . ψiN (x1)
ψi1(x2) ψi2(x2) . . . ψiN (x2)

...
...

...
...

ψi1(xN) ψi2(xN) . . . ψiN (xN)

∣∣∣∣∣∣∣∣∣
It is apparent that the structure of a determinant prohibits the occurrence
of two or more particles with the same quantum number, because the deter-
minant would disappear. This is also known as the Pauli principle.

2.1.2 Occupation number representation

The anti-symmetrization procedure in (3) results in the loss of informa-
tion about which particle is in which single-particle state. A system is now
uniquely defined by the number of occupied states and the number of particles
they contain. The quantity ni (that denotes the latter) is called an occupa-
tion number. Therefore, one can express an anti-symmetric state fully via
occupation numbers:

|i1 . . . iN〉− := |n0n1n2 . . . 〉 := |{n}〉

With |{n}〉 as the occupation number vector2. For fermions these occupation
numbers are either one or zero, i.e. ni ∈ {0, 1}.

Additionally, important properties of the occupation number vectors are the
completeness relation,

2These occupation number vectors are also called Fock states.
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∑
{n}

|{n}〉〈{n}| = 1̂ with
∑
{n}

=
1∑

n0=0

1∑
n1=0

. . . (4)

as well as the orthogonality relation

〈{n}|{ñ}〉 = δ{n},{ñ} (5)

2.1.3 Fermion creation and annihilation operators

The fermion creation- and annihilation operators are introduced below, along
with their effects on an arbitrary Fock states.
The creation operator creates a particle in the orbital α, raising its occupation
number nα.

â†α| . . . , nα, . . . 〉 = (1− nα)(−1)φ(0,α,{n})| . . . , nα + 1, . . . 〉 (6)

The annihilation operator removes a particle from the orbital α.

âα| . . . , nα, . . . 〉 = nα(−1)φ(0,α,{n})| . . . , nα − 1, . . . 〉 (7)

The prefactors (nα − 1) in (6) and nα in (7) ensure that the Pauli exclusion
principle is always met, i.e. that an orbital can only be occupied by either
no fermion or a single fermion. The phase factor

φ(β, α, {n}) =
∑
β<α

nβ (8)

may cause a sign change, which depends on the occupation numbers of the
preceding orbitals.
The occupation number operator can be expressed in terms of these operators

â†αâα|nα〉 := n̂α|nα〉 = nα|nα〉

and is used for the introduction of the particle number operator N̂ :=
∑

α n̂α.
Lastly, the transition of a particle from orbital α to orbital β is introduced.

â†βâα| . . . , 1α, 0β, . . . 〉 = | . . . , 0α, 1β . . . 〉

This transition can also be displayed using the following abbreviation:

â†βâα|{n}〉 = |{n}βα〉
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Using this simplified notation, multi-particle excitations are also able to be
displayed. For example, a two-particle excitation can be described as:

â†βâαâ
†
γ âδ|{n}〉 = |{n}β<γα<δ〉

2.1.4 Single-particle operators in second quantization

In second quantization, operators are expressed in terms of creation and
annihilation operators. The expression for a single-particle operator in first
quantization is of the form Â =

∑
α âα. Transitioning to the representation

in second quantization leads to the following expression:

Â =
∞∑

i,j=1

aij â
†
i âj

with aij := 〈i|â|j〉 =
∫
ψ∗i (x)a(x)ψj(x)dx as the single-particle integral. Note

that the computation of aij requires the summation over σ and integration
over r.
For the computation of the matrix elements of Â, one can compute the matrix
elements of the product of creation and annihilation operators, to then trace
the result back to the initial problem.

〈{n}|â†αâβ|{ñ}〉 =

{
nαδ{n},{ñ}, if α = β

(−1)φ(0,α,{n})+φ(0,β,{ñ})δnα,1δñα,0δnβ ,0δñβ ,1δ
βα
{n},{ñ}, if α 6= β

With δβα{n},{ñ} :=
∏∞

i=0
i 6=α6=β

δni,ñi as the generalized Kronecker delta. This then

leads to the matrix element of an arbitrary single-particle operator in second
quantization:

〈{n}|Â|{ñ}〉 := A{n},{ñ} =



∞∑
i=0

aiini, if {n} = {ñ}

apq(−1)
∑max(p,q)−i
i=min(p,q)+1

ni , if {n} = {ñ}pq
0, else

The case structure of the matrix element shows that only certain combi-
nations of states lead to a contribution. If {n} and {ñ} are identical, a
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contribution to the diagonal matrix elements occurs. If {n} and {ñ} differ
in exactly one orbital or two occupation numbers, then a contribution to the
off-diagonal matrix elements occurs. This case can be described as a single-
particle excitation.

To give the reader an example on how to utilise this information, matrix
elements of the kinetic energy operator in the system of the uniform electron
gas are computed in the following passage. It is important to note that the
UEG3 is described in the basis of k-space.
Starting point, of course, is the representation of the kinetic energy operator
in second quantization.

T̂ =
∑
i,j

tij â
†
kjσj

âkiσi .

The single-particle integral tij is easily computable, because the momentum
operator is diagonal.

tij =

〈
kjσj

∣∣∣∣ p̂2

2

∣∣∣∣kiσi〉 =
k2
i

2
〈kjσj|kiσi〉 =

k2
i

2
δkjkiδσjσi ,

With the momentum eigenvalues pi = ~ki. This yields the kinetic energy
operator in occupation number representation:

T̂ =
∑
i,j

k2
i

2
δkjkiδσjσi â

†
kjσj

âkiσi =
∑
i

k2
i

2
â†kiσi âkiσi =

∑
i

εin̂i ,

where εi :=
k2
i

2
denotes the free electron energy.

Now, the matrix elements of T̂ are computed. The occupation number op-
erator is diagonal, hence one can replace the operator with its eigenvalues:

T{n},{ñ} =
∞∑
i=0

εini〈n|ñ〉 =


∑
i

εi ni, if {n} = {ñ}

0, else

(9)
3A more comprehensive overview of the UEG is given in chapter (2.5)
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2.1.5 Two-particle operators in second quantization

The expression for a two-particle operator in first quantization is of the form
Ŵ = 1

2

∑
i 6=j=1 ŵi,j, with ŵi,j as the interaction operator of particle i and

j. Transitioning to the representation in second quantization leads to the
following expression

Ŵ =
1

2

∑
i,j,k,l=0

wijklâ
†
i â
†
j âlâk

With the two-particle integrals wijkl = 〈ij|ŵ|kl〉. For the case of the Coulomb
interaction the matrix element wijkl in the plain wave basis is given by the
Fourier transform of the Coulomb potential.

wijkl =
4πe2

L3

δki+kj ,kk+kl

(ki − kk)2
(10)

The Kronecker delta δki+kj ,kk+kl enforces momentum conservation. Further-
more, the anti-symmetrized two-particle integrals w−ijkl = wijkl−wijlk enables
the rewriting of the pair-interaction operator.

Ŵ =
∞∑
i=0

∞∑
j=i+1

∞∑
k=0

∞∑
l=k+1

w−ijklâ
†
i â
†
j âlâk

The matrix elements of the two-particle operator in the N-particle Fock state
basis can be compactly displayed via the Slater-Condon rules:

W{n},{ñ} =



W I =
∞∑
i=0

∞∑
j=i+1

w−ijijninj, if {n} = {ñ} (11)

W II =
∑
i=0
i 6=p,q

w−ipiq(−1)
∑max(p,q)−1
l=min(p,q)+1

nlni, if {n} = {ñ}pq (12)

W III = w−pqrs(−1)
∑q−1
l=p+1 nl+

∑s−1
l=r+1 ñl , if {n} = {ñ}p<qr<s

0, else .

When comparing the matrix elements of a single-particle operator with those
of the two-particle operator, it can be seen that there are additional contri-
butions in the latter. This occurs, if the two states {n} and {ñ} differ in two
orbitals. This case can be described as a two particle excitation.
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2.2 Density operator and the Grand canonical ensem-
ble

The Grand canonical ensemble(GCE) is a statistical ensemble that represents
all possible states of a mechanical system that is in thermodynamic equilib-
rium and in contact with a reservoir. The system can exchange energy as
well as particles with the reservoir, thus the particle number of the system
is not fixed. The GCE is dependent on the two thermodynamic variables
chemical potential µ and temperature T as well as the mechanical variable
volume V . (Fließbach, 2018)
The thermodynamic properties of a system are determined by the density
operator, which can be defined as the sum over all possible microstates with
their respective probabilities

ρ̂ =
∑
α

P (|Ψα〉)|Ψα〉〈Ψα|

The index α denotes every possible state in the system and P (|Ψα〉) denotes
the corresponding probability of observing such state. In the case of a system
in the GCE, one can express the density operator as

ρ̂ =
1

Z
exp(−β(Ĥ − µN̂)) Tr(ρ̂) = 1 (13)

with

Z = Tr(exp(−β(Ĥ − µN̂))) (14)

as the grand canonical partition function that follows from the normaliza-
tion of ρ̂ and β = 1/T as the inverse temperature. The trace is over all Fock
states, i.e. includes states with arbitrary particle numbers N .

Of further interest is whether altering the considered statistical ensemble to
the canonical ensemble influences the calculations in the following chapters.
In the canonical ensemble the number of particles in the system is fixed
and the contribution from the chemical potential µ is omitted. Thus, the
diagonal contributions of the matrix elements change, the Monte Carlo steps
in chapter (3.3) change, and the estimators of thermodynamic quantities
change. An example for the latter change is the expectation value of the
occupation number operator of an ideal Fermi gas. In the case of the GCE
this quantity is easily computable, which changes in the canonical ensemble.
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2.3 Ideal Fermi gas

The ideal Fermi gas is the quantum mechanical analogy of the ideal gas. It
describes a number of non-interacting fermions, i.e. particles with a spin of
1
2
. For this chapter the ”Theoretische Physik IV” lecture from Prof. Pehlke

was used as a source. This chapter is included, because it demonstrates that
non-interacting systems can be described rather easily. Furthermore, the
derived expressions for the observables are later used in chapter (4), for the
comparison with numerically computed results.

2.3.1 Partition function

As introduced in the previous chapter, the partition function (14) of a system
describes its statistical properties. For the case of the ideal Fermi gas, the
partition function can be calculated analytically.
Starting point of the computation is the consideration of the Hamiltonian of
the system. The Hamiltonian of an ideal system Ĥ0 is undisturbed, hence
its corresponding eigenvalue problem is trivial:

Ĥ0|{n}〉 =
∑
α

εαnα|{n}〉

The partition function can now be calculated:

Z(T, V, µ) = Tr(exp(−β(Ĥ − N̂µ)))

=
∑
{n}

〈{n}|exp(−β(Ĥ − N̂µ))|{n}〉

=
∑
{n}

exp(−β(H{n},{n} −N{n},{n}µ))〈{n}|{n}〉

=
∑
{n}

exp(−β
∞∑
i=0

(εi − µ)ni)

=
∞∏
i=0

1∑
n1=0

. . . exp(−β
∞∑
i=0

(εi − µ)ni)

=
∞∏
i=0

(1 + exp(−β(εi − µ)))
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The computation is analytically possible, because the matrix elements of the
operators are entirely diagonal. Thus, the operators simply can be replaced
with their eigenvalues.

2.3.2 Observables

The thermodynamic relations that are used for the calculation of observables
can be derived from the general expression:

〈n̂j〉 = Tr(ρ̂ n̂j)

=
∑
{n}

〈{n}|n̂jexp(−β(Ĥ − N̂µ))|{n}〉

=
∑
{n}

njexp(−β
∞∑
i=0

(εi − µ)ni)

= − 1

β

∂

∂εj

∑
{n}

exp(−β
∞∑
i=0

(εi − µ)ni)

= − 1

β

∂

∂εj
ln(Z)

∣∣∣∣
β,µ,V

=
1

1 + exp(β(εj − µ))
(15)

This quantity is also known as the Fermi distribution, which denotes the
mean occupation number of a state with the energy εj. Additional observ-
ables can be calculated similarly. The fluctuation of the mean occupation
number is given by the following expression:

〈(∆n̂j)2〉 =
exp(β(εi − µ))

(1 + exp(β(εi − µ)))2
(16)

The mean occupation number of the system can be calculated by considering
the occupation number of each energy state.

〈N̂〉 =
∞∑
i=0

ni =
∞∑
i=0

1

1 + exp(β(εi − µ))
(17)
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2.4 Non-ideal systems

The considered system now changes to one of interacting fermions. In con-
trast to the ideal Fermi gas in chapter (2.3), the Hamiltonian in this model
contains contributions from particle interactions.

Ĥ = T̂ + V̂ = Ĥ0 + Ŵ

In this case the Hamiltonian and the interaction operator do not commute,
[Ĥ0, Ŵ ] 6= 0. Therefore, the density operator ρ̂ cannot be directly computed,
as previously seen in (2.3.1). In the following chapters a method for approx-
imating the density matrix is introduced, which will lead to the so-called
Feynman path integral formulation of quantum mechanics. (Feynman, 1965)
As a preliminary, the argument of the exponential function is assorted by
diagonal and off-diagonal contributions:

ρ̂ = Tr(exp(−β(Ĥ − N̂µ)))

= Tr(exp(−β(D̂ + Ŷ )))

D̂ = Ĥ0 + Ŵ I − N̂µ, (18)

Ŷ = Ŵ II + Ŵ III (19)

The three contributions of the interaction potential, Ŵ = ŴI + ŴII + ŴIII ,
follow from the Slater-Condon rules (12). The matrix element of the diagonal
part (18) contains kinetic energy as already seen in chapter (2.3), a mean field
contribution from the interaction in the first Slater-Condon equation (11) as
well as a contribution due to the chemical potential.

2.4.1 High temperature approximation

Now, the density matrix is transformed. The goal is to approximate the
matrix, but such an endeavour introduces an error. This error providentially
disappears with increasing temperatures, thus the temperature is artificially
increased.

18



ρ{n},{ñ} =
1

Z
〈{n}| exp(−β(D̂ + Ŷ ))|{ñ}〉

=
1

Z
〈{n}|(exp(−β̃(D̂ + Ŷ )))M |{ñ}〉)

=
1

Z

∑
{n(1)}

· · ·
∑

{n(M−1)}

〈{n}| exp(−β̃(D̂ + Ŷ ))|{n(1)}〉 . . .

. . . 〈{n(M−1)}| exp(−β̃(D̂ + Ŷ ))|{ñ}〉 (20)

This is implemented with the introduction of the inverse of the M times
higher temperature, β̃ = β/M . The original exponent is expressed as a
product of M ∈ 2, 3, . . . exponents. Between two successive factors, using
the completeness relation (4), a set of new states is inserted. This procedure
will result in the path integral representation in Fock space.

Furthermore, the partition function(14) can be transformed analogous to the
density matrix.

Z =
∑
{n}

〈{n}|exp(−β(D̂ + Ŷ ))|{n}〉

=
∑
{n}

〈{n}|
[
exp(−β̃(D̂ + Ŷ ))

]M
|{n}〉

=
∑
{n}

∑
{n(1)}

· · ·
∑

{n(M−1)}

〈{n}| exp(−β̃(D̂ + Ŷ ))|{n(1)}〉 . . .

. . . 〈{n(M−1)}| exp(−β̃(D̂ + Ŷ ))|{n}〉 (21)

For the calculation of the M matrix elements, a Taylor expansion up to
second order is applied:

exp(−β̃(D̂ + Ŷ )) = 1̂− β̃(D̂ + Ŷ ) +
1

2
β̃2(D̂ + Ŷ )2 +O

(
β̃3
)

(22)

This approximation introduces an error of O(β̃3) for each expanded factor
and an error of O(β̃2) for the product of M factors (20). These errors are
one magnitude smaller than in predecessing models, e.g. (Schoof, 2011),
thus constituting the main innovation of this thesis. For the calculation of
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the matrix element of the operator (22), the definition of the off-diagonal
operators of the Hamiltonian (19) is applied and the term is expanded.

exp(−β̃Ĥ) = 1̂− β̃(D̂ + Ŵ II + Ŵ III)

+
1

2
β̃2(D̂2 + D̂Ŵ II + Ŵ IID̂ + D̂Ŵ III + ŴIIID̂)

+
1

2
β̃2((Ŵ II)2 + Ŵ IIŴ III + Ŵ IIIŴ II + (Ŵ III)2)

The second order terms of the expansion contribute an expression, where two
operators are successively applied. The evaluation of mixed states containing
a diagonal operator is easily feasible:

(D2){n},{ñ} =
∑
{n̄}

〈{n}|D̂{n̄}〉〈{n̄}|D̂{ñ}〉 =
(
D{n}

)2
δ{n},{ñ}

(W II,IIID){n},{ñ} =
∑
{n̄}

〈{n}|Ŵ II,III{n̄}〉〈{n̄}|D̂{ñ}〉 = W II,III
{n},{ñ}D{ñ}(

DW II,III
)
{n},{ñ} =

∑
{n̄}

〈{n}|D̂{n̄}〉〈{n̄}|Ŵ II,III{ñ}〉 = D{n}W
II,III
{n},{ñ}

The computation of matrix elements with strictly non-diagonal operators
cannot be done easily. The successive application of operators that alter the
orbitals of a state enables the possibility for multiple contributions to a ma-
trix element.
The computation of the matrix element (W II)2

{n},{ñ} was done in detail, for
more insights on the calculation of the matrix elements, a graphical repre-
sentation can be found in the appendix.

(W II)2
{n},{ñ} =



∑
p 6=q

p,q<NB

|〈{ñ}pq|Ŵ II |{ñ}〉|2, if {n} = {ñ} ,

∑
i<NB
i 6=p,q

〈{n}|Ŵ II |{ñ}iq〉〈{ñ}iq|Ŵ II |{ñ}〉, if {n} = {ñ}pq ,

∑
x∈{r,s}
y∈{p,q}

〈{n}|Ŵ II |{ñ}yx〉〈{ñ}yx|Ŵ II |{ñ}〉, if {n} = {ñ}p<qr<s ,

0, else.
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In the diagonal case, there is an excitation into an intermediate orbital from
the first single-particle excitation, which is then undone. In the calculation
of this specific contribution, every physically feasible4 excitation into inter-
mediate states has to be considered, hence the sum over all p, q. A constraint
on the calculation is Nb, which denotes the threshold number of orbitals that
are to be considered. This constraint is set to enable a more efficient numer-
ical calculation of such a sum.
The next matrix element was computed likewise. (W IIW III){n},{ñ} =



∑
i,j<NB
i 6=j

i,j /∈{p,q}

〈{n}|Ŵ II |{ñ}p,iq,j〉〈{ñ}
p,i
q,j|Ŵ III |{ñ}〉, if {n} = {ñ}pq ,

∑
i<NB
x∈{p,q}
i/∈{p,q,r,s}

〈{n}|Ŵ II |{ñ}x,ir,s〉〈{ñ}x,ir,s|Ŵ III |{ñ}〉, if {n} = {ñ}p<qr<s ,

∑
a<b∈{p,q,r}
c<d∈{s,t,u}

〈{n}|Ŵ II |{ñ}a,bc,d〉〈{ñ}
a,b
c,d|Ŵ

III |{ñ}〉, if {n} = {ñ}p<q<rs<t<u ,

0, else.

Again, the matrix element was computed likewise. (W IIIW II){n},{ñ} =



∑
i,j<NB
i 6=j

i,j /∈{p,q}

〈{n}|Ŵ III |{ñ}ij〉〈{ñ}ij|Ŵ II |{ñ}〉, if {n} = {ñ}pq ,

∑
i<NB
x∈{r,s}

i/∈{p,q,r,s}

〈{n}|Ŵ III |{ñ}ix〉〈{ñ}ix|Ŵ II |{ñ}〉, if {n} = {ñ}p<qr<s ,

∑
x∈{s,t,u}
y∈{p,q,r}

〈{n}|Ŵ III |{ñ}yx〉〈{ñ}yx|Ŵ II |{ñ}〉, if {n} = {ñ}p<q<rs<t<u ,

0, else.

4Contributions that contain invalid intermediate states, e.g. excitation from an empty
orbital, excitation into an occupied orbital, etc., are 0.
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Lastly, the resulting matrix element is of the following form. (W III)2
{n},{ñ} =



∑
r<s<NB
p<q<NB

|〈{ñ}p<qr<s|Ŵ III |{ñ}〉|2, if {n} = {ñ} ,

∑
i,j,k<NB
i 6=j 6=k
j<k

〈{n}|Ŵ III |{ñ}j,kq,i 〉〈{ñ}
j,k
q,i |Ŵ III |{ñ}〉, if {n} = {ñ}pq ,

∑
i<j<NB

〈{n}|Ŵ III |{ñ}i<jr<s〉〈{ñ}i<jr<s|Ŵ III |{ñ}〉, if {n} = {ñ}p<qr<s ,∑
i<NB

i/∈{p,q,r,s,t,u}
z∈{p,q,r}
x<y∈{s,t,u}

〈{n}|Ŵ III |{ñ}i,zx,y〉〈{ñ}i,zx,y|Ŵ III |{ñ}〉, if {n} = {ñ}p<q<rs<t<u ,

∑
c<d∈{p,q,r,s}
a<b∈{t,u,v,w}

〈{n}|Ŵ III |{ñ}c<da<b〉〈{ñ}c<da<b|Ŵ III |{ñ}〉, if {n} = {ñ}p<q<r<st<u<v<w ,

0, else.

With these results, it is now possible to compute all contributions to the
matrix element of one factor of the approximated partition function. How-
ever, in order to obtain an actually useful representation, further efforts are
necessary. This includes sorting the contributions of the matrix elements
according to their order of excitation.

(
exp(−β̃(D + Y ))

)
{n},{ñ}

≈



A0T
{n},{ñ}, if {n} = {ñ} ,

A1T
{n},{ñ}, if {n} = {ñ}pq ,

A2T
{n},{ñ}, if {n} = {ñ}p<qr<s , (23)

A3T
{n},{ñ}, if {n} = {ñ}p<q<rs<t<u ,

A4T
{n},{ñ}, if {n} = {ñ}p<q<r<st<u<v<w ,

0, else.

Here AnT denotes an excitation of n-th order, e.g. A1T describes a single-
particle excitation. The sorted contributions are specified in the following.
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A0T
{n} = 1− β̃D{n} +

1

2
β̃2

[
(D{n})

2 +
∑
p6=q

p,q<NB

|〈{n}pq|Ŵ II |{n}〉|2

︸ ︷︷ ︸
DII{n}

+
∑

r<s<NB
p<q<NB

|〈{n}p<qr<s|Ŵ III |{n}〉|2

︸ ︷︷ ︸
DIII{n}

]

= 1− β̃D{n} +
1

2
β̃2
[
(D{n})

2 +DII
{n} +DIII

{n}
]

= 1− β̃

[
D{n} −

β̃

2
DII
{n} −

β̃

2
DIII
{n}

]
+

1

2
β̃2(D{n})

2

= 1− β̃

[
D{n} −

β̃

2
DII
{n} −

β̃

2
DIII
{n}

]
+

1

2
β̃2

[
D{n} −

β̃

2
DII
{n} −

β̃

2
DIII
{n}

]2

+O
(
β̃3
)

= exp

(
−β̃

[
D{n} −

β̃

2
DII
{n} −

β̃

2
DIII
{n}

])
+O

(
β̃3
)

(24)

In the case of the no-particle excitation it is possible to reverse the Taylor
expansion. The error in equation (24) that arises in the reversing process
is of the same order as the error in the Taylor expansion of each factor
of the density operator in (22). Thus, it won’t be repeated in the further
expressions.
All contributions to the matrix element of the single-particle excitations can
be written as:

A1T
{n},{ñ} = −β̃ W II

{n},{ñ} +
1

2
β̃2

[(
D{n} +D{ñ}

)
W II
{n},{ñ}

+
∑
i<NB
i 6=p,q

〈{n}|Ŵ II |{ñ}iq〉〈{ñ}iq|Ŵ II |{ñ}〉

+
∑

i,j<NB
i 6=j

i,j /∈{p,q}

〈{n}|Ŵ III |{ñ}ij〉〈{ñ}ij|Ŵ II |{ñ}〉
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+
∑

i,j<NB
i 6=j

i,j /∈{p,q}

〈{n}|Ŵ II |{ñ}p,iq,j〉〈{ñ}
p,i
q,j|Ŵ III |{ñ}〉

+
∑

i,j,k<NB
i 6=j 6=k
j<k

〈{n}|Ŵ III |{ñ}j,kq,i 〉〈{ñ}
j,k
q,i |Ŵ III |{ñ}〉

]

Likewise, the contributions from two-particle excitations can be written as:

A2T
{n},{ñ} = −β̃ W III

{n},{ñ} +
1

2
β̃2

[(
D{n} +D{ñ}

)
W III
{n},{ñ}

+
∑

x∈{r,s}
y∈{p,q}

〈{n}|Ŵ II |{ñ}yx〉〈{ñ}yx|Ŵ II |{ñ}〉

+
∑
i<NB
x∈{p,q}
i/∈{p,q,r,s}

〈{n}|Ŵ II |{ñ}x,ir,s〉〈{ñ}x,ir,s|Ŵ III |{ñ}〉

+
∑
i<NB
x∈{r,s}

i/∈{p,q,r,s}

〈{n}|Ŵ III |{ñ}ix〉〈{ñ}ix|Ŵ II |{ñ}〉

+
∑

i<j<NB

〈{n}|Ŵ III |{ñ}i<jr<s〉〈{ñ}i<jr<s|Ŵ III |{ñ}〉

]

The contributions from three-particle excitations can be written as:

A3T
{n},{ñ} =

1

2
β̃2

[ ∑
a<b∈{p,q,r}
c<d∈{s,t,u}

〈{n}|Ŵ II |{ñ}a,bc,d〉〈{ñ}
a,b
c,d|Ŵ

III |{ñ}〉

+
∑

x∈{s,t,u}
y∈{p,q,r}

〈{n}|Ŵ III |{ñ}yx〉〈{ñ}yx|Ŵ II |{ñ}〉

+
∑
i<NB

i/∈{p,q,r,s,t,u}
z∈{p,q,r}
x<y∈{s,t,u}

〈{n}|Ŵ III |{ñ}i,zx,y〉〈{ñ}i,zx,y|Ŵ III |{ñ}〉

]
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Lastly, the contributions from four-particle excitations can be written as:

A4T
{n},{ñ} =

1

2
β̃2

∑
c<d∈{p,q,r,s}
a<b∈{t,u,v,w}

〈{n}|Ŵ III |{ñ}c<da<b〉〈{ñ}c<da<b|Ŵ III |{ñ}〉

For later calculations the introduction of the off-diagonal term is needed

Aoff
{n},{ñ} := A1T

{n},{ñ} + A2T
{n},{ñ} + A3T

{n},{ñ} + A4T
{n},{ñ}

2.4.2 Path integral

The derived results in the previous chapters allow for the so-called Feynman
path integral formulation of the partition function. (Feynman, 1965)

Z =
∑
{n(0)}

∑
{n(1)}

· · ·
∑

{n(M−1)}

M−1∏
i=0

A{ni},{ni+1} (25)

In this representation, the classical notion of a single, unique trajectory for a
system is replaced with a sum over all quantum-mechanically possible trajec-
tories. Using the already derived expression for the partition function (25),
the sum over all trajectories or paths can be described by the sum over all
configuration of states c = {{n(0)}, · · ·, {n(M)}}.

This representation can be further enhanced. Another possibility of repre-
senting a configuration of states c is the kink-representation, which describes
the change of states at given points in the path, rather than specifying each
intermediate state. (Prokof’ev, Svistunov, & Tupitsyn, 1998) This allows all
factors in which the state does not change to be summarised and therefore
be calculated more efficiently. A path in kink-representation is defined by a
3-tuple ckink = {K, ({n(0)}, . . . , {n(K−1)}), (l1, . . . , lK)}, where K is the num-
ber of kinks (i.e. changes of states in the path), li defines the position of the
kink in the path, and {n(i)} denotes the state following the i-th kink. This
leads to the following representation of the partition function:
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Z =
M∑
K=0
K 6=1

∑
{n(0)}

={n(K)}

∑
{n(1)}
6={n(0)}

· · ·
∑

{n(K−1)}
6={n(K−2)}
6={n(0)}

M−K+1∑
l1=1

M−K+2∑
l2=l1+1

· · ·
M∑

lK=lK−1+1

(
K∏
i=0

(A0T
{n(i)})

(li+1−li−1)

)
·

(
K−1∏
i=0

Aoff
{n(i)}{n(i+1)}

)
=

∑
ckink

w(ckink)

with {n(0)} = {n(M)}. The exponential expression (24) can be inserted for
A0T . This allows for further simplifications.

w(ckink) = exp

(
−β̃

K∑
i=0

(li+1 − li − 1)

[
D{n(i)} −

β̃

2
DII
{n(i)} −

β̃

2
DIII
{n(i)}

])

·
K−1∏
i=0

Aoff
{n(i)}{n(i+1)} (26)

This formulation of the partition function, with the sum over all weights of
configurations, is used in chapter (2.5.3) for the calculation of estimators and
allows for the application of Monte Carlo methods in chapter (3).

2.5 Uniform electron gas

In the following, the results of the previous chapters are applied to a spe-
cial case of many-fermion systems; the uniform electron gas (UEG). As the
source for this chapter (Dornheim et al., 2018) was used. The UEG describes
electrons in a cell with open boundary conditions, where the main simulation
cell is periodically repeated in all directions. This is particularly important
for the case of Coulomb interaction, due to its slow decay with the parti-
cle distance. This requires to take into account that not only do particles
interact within the main simulation cell, but also with the periodic images
of their partners. In the second quantization representation, this so-called
Ewald interaction solely manifests itself in an addend in the Hamiltonian,
which is called the Madelung constant ζM . An efficient realization of this
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longe-range interaction is the Ewald summation. This approach leads to
a modification of the Coulomb potential, this was studied in e.g. (Schoof,
Groth, Vorberger, & Bonitz, 2015; Dornheim et al., 2018). In addition to
this electron-electron Coulomb interaction, the interaction of the electrons
with the positively charged background is also considered. This interaction
leads to overall charge neutrality in the system.

The boundary conditions have implications on the wave function of a particle
inside the box. A particle can be realised as a plane wave, which can be
derived by solving the Schrödinger equation for this case. In coordinate
representation (Dornheim et al., 2018):

Ψkσ(r, s) = 〈rs|kσ〉 =
1√
V
eik·r δsσ

together with periodic boundary conditions. For any fixed box length L, this
leads to a quantization of the of the wavenumbers, k ∈ {2π

L
n;n ∈ Z3}. The

particle in the orbital i is characterized by its momentum ki as well as its spin
projection σi. Each state is normalized to 1 whereas different orbitals are
mutually orthogonal. Furthermore, it is important to note that momentum
conservation has to be considered in this system5.

2.5.1 Hamiltonian

The Hamiltonian of the system consists of the kinetic energy of the electrons,
electron-electron interaction energy given by the Coulomb interaction as well
as the Madelung constant:

Ĥ =
N∑
i=1

p̂2
i

2m
+
e2

2

N∑
i 6=j

1

|r̂i − r̂j|
+
N̂

2
ζM = T̂ + Ŵ +

N̂

2
ζM

The transformation of the Hamiltonian to the second quantization formalism
using creation and annihilation operators, was done in chapter (2.1.4) and
(2.1.5), where the momentum conservation now imposes a restriction on the
matrix elements, hence single-particle excitations, e.g. Ŵ II can be omitted.

5See the δ in (10)
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H{n},{ñ} =



∑
i

εini +
∞∑
i=0

∞∑
j=i+1

w−ijijninj +
ζM
2

∑
i

ni, if {n} = {ñ}

0, if {n} = {ñ}qp ,

w−pqrs(−1)α(p,q)+α(r,s), α(p, q) =

q−1∑
l=p+1

nl, if {n} = {ñ}p<qr<s ,

0, else .

To include the Madelung constant, the diagonal contribution to the density
operator D̂ (18) is modified.

D̂ := Ĥ0 + Ŵ I + N̂(
ζM
2
− µ)

2.5.2 Simplification of matrix elements

As stated above, an important distinction from the general partition function
is that, in the UEG, there are no single-particle excitations. Hence, these
excitations are omitted in the Hamiltonian of the system. These changes
are transitive, so the derived representation of the partition function (26) is
affected. Applying the modified Hamiltonian yields:

A0T
{n} = exp(−β̃

[
D{n} −

β̃

2
DIII
{n}

]
) (27)

A1T
{n},{ñ} =

β̃2

2

∑
i,j,k<NB
i 6=j 6=k
j<k

〈
{n}|Ŵ III |{ñ}j,kq,i

〉〈
{ñ}j,kq,i |Ŵ III |{ñ}

〉
= 0 , (28)

A2T
{n},{ñ} = −β̃ W III

{n},{ñ} +
β̃2

2

[(
D{n} +D{ñ}

)
W III
{n},{ñ}

+
∑

i<j<NB

〈
{n}|Ŵ III |{ñ}i<jr<s

〉〈
{ñ}i<jr<s|Ŵ III |{ñ}

〉]
, (29)

A3T
{n},{ñ} =

β̃2

2

∑
i<NB

i/∈{p,q,r,s,t,u}
z∈{p,q,r}
x<y∈{s,t,u}

〈
{n}|Ŵ III |{ñ}i,zx,y

〉〈
{ñ}i,zx,y|Ŵ III |{ñ}

〉
, (30)
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A4T
{n},{ñ} =

β̃2

2

∑
c<d∈{p,q,r,s}
a<b∈{t,u,v,w}

〈
{n}|Ŵ III |{ñ}c<da<b

〉〈
{ñ}c<da<b|Ŵ III |{ñ}

〉
. (31)

The restriction of momentum conversation also effects the matrix element〈
{ñ}j,kq,i |Ŵ III |{ñ}

〉
in (28). It can be shown that this expression vanishes by

formulating the momentum balance:

ki + kp = kj + kk = ki + kq

⇔ ki + kp = ki + kq

⇔ kp = kq

⇔ p = q  

The matrix elements of equations (27), (29) as well as (30) all contain sums
over all orbitals, which can be restricted to intermediate states that conserve
momentum. Likewise, between the final state 〈{n}| and the initial state |{ñ}〉
the momentum has to be conserved. For the sake of further simplification,
a function o is defined as o(ki) = i. Furthermore, let {n}o be the set of
occupied orbitals in the state {n}.

A0T
{n} = exp

−β̃D{n} +
β̃2

2

∑
r<s∈{n}o
p<q<Nb

q=o(kr+ks−kp)

∣∣∣〈{n}p<qr<s|Ŵ III |{n}
〉∣∣∣2
 ,

A2T
{n},{ñ} = −β̃ W III

{n},{ñ} +
β̃2

2

[(
D{n} +D{ñ}

)
W III
{n},{ñ}

+
∑

i<j<NB
j=o(kr+ks−ki)

〈
{n}|Ŵ III |{ñ}i<jr<s

〉〈
{ñ}i<jr<s|Ŵ III |{ñ}

〉]
,

A3T
{n},{ñ} =

β̃2

2

∑
z∈{p,q,r}
x<y∈{s,t,u}

i=o(kx+ky−kz)
i/∈{p,q,r,s,t,u}

〈
{n}|Ŵ III |{ñ}i,zx,y

〉〈
{ñ}i,zx,y|Ŵ III |{ñ}

〉
,

A4T
{n},{ñ} =

β̃2

2

∑
c<d∈{p,q,r,s}
a<b∈{t,u,v,w}

〈
{n}|Ŵ III |{ñ}c<da<b

〉〈
{ñ}c<da<b|Ŵ III |{ñ}

〉
.
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In this representation of the matrix elements the run time for the computation
of each sum is reduced. While the sums in A3T

{n},{ñ} and A4T
{n},{ñ} can now be

computed in constant time, the sum in A2T
{n},{ñ} is now computed with O(Nb)

addends. For the sum in A0T
{n} each of the

(
N
2

)
∈ O(N2) pairs of occupied

orbitals r and s has to be considered. Additionally, i runs over all basis
orbitals, which leads to a run time of O(N2 ·Nb).

2.5.3 Estimators

The protruding goal of this thesis is the computation of thermodynamic ex-
pectation values with a Monte Carlo procedure. This requires the expectation
value of an observable Ô to be of the form (Schoof, 2011)

〈Ô〉 =
1

Z

∑
c

O(c)w(c) (32)

in order to use these methods for the computation. Here O(c) only depends
on the configuration and is called estimator for the observable Ô.

In the following chapters, examples of the conversion of expectation values
of quantities from their known thermodynamic representation, into a form
that can be used for numerical simulations are presented. For the following
chapters the diploma thesis (Schoof, 2011) was used as a source

2.5.4 Mean occupation number

The mean occupation number describes the average number of particles in a
given system. It can be calculated by differentiating the partition function
with respect to the chemical potential µ.

〈N̂〉 =
β

Z

∂

∂µ
Z

=
β

Z

∑
c

{
∂exp(x)

∂µ
·
K−1∏
i=0

Aoff{n(i)}{n(i+1)} + exp(x)
∂

∂µ

K−1∏
i=0

Aoff{n(i)}{n(i+1)}

}

=
β

Z

∑
c

{
K−1∏
i=0

Aoff{n(i)}{n(i+1)} · exp(x)
∂

∂µ
x

}
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The derivative of x can be expressed as :

∂

∂µ
x =

∂

∂µ

{
− β̃

K∑
i=0

∆li

[
D{n(i)} −

β̃

2
DIII
{n(i)}

]}
(33)

= −β̃
K∑
i=0

∆li
∂

∂µ
D{n(i)}

= β̃

K∑
i=0

∆li N{n(i)}

Here N{n(i)} =
∑∞

j=0 n
(i)
j denotes the particle number of system in a given

configuration, with n
(i)
j as the occupation number of the orbital j in the

configuration {n(i)}. Furthermore, the abbreviation ∆li = li+1 − li − 1 was
introduced. This yields the following estimator:

N(c) = β̃2M
K∑
i=0

∆li N{n(i)}

This result was then compared with the estimator of the occupation number
N ′(c) in the first order Taylor expansion. As was to be expected, the estima-
tors did not differ. Despite the difference in in the Taylor expansions, both
systems generally are expected to maintain the same number of particles.

2.5.5 Mean orbital occupation number

In the second quantization representation, the mean occupation number of
the orbital i is given by ni = 〈a†iai〉. The expectation value for the mean
orbital occupation number 〈ni〉 can be derived via differentiation of the par-
tition function with respect to εi, see (Schoof, Groth, & Bonitz, 2014):

〈n̂i〉 = Tr(n̂iρ̂) = − 1

β

∂

∂εi
ln(Z)

This yields the following expression for the expectation value6:

6For more insigths on the calculation, see chapter (6.5)
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〈nx〉 =
1

Z

∑
c

[
neffx −

∑
i<K

∆({n(i)},{n(i+1)})=4

β̃

2M

·
(n

(i)
x + n

(i+1)
x )W III

{n(i)}{n(i+1)}

A2T
{n(i)}{n(i+1)}

]
· w(c)

Here, neffx has been defined as: neffx := 1
M

∑K
j=0 ∆lj n

(j)
x and the definition

of x was introduced in (33).
The estimator of the mean orbital occupation number is given by:

nx(c) = neffx −
∑
i<K

∆({n(i)},{n(i+1)})=4

β̃

2M

(n
(i)
x + n

(i+1)
x )W III

{n(i)}{n(i+1)}

A2T
{n(i)}{n(i+1)}

This result was then compared to the estimator of a system with a lower
Taylor expansion.

n′x(c) = neffx

This procedure reveals that the higher order expansion introduces additional
contributions to the estimator.

2.5.6 One-particle density matrix

The one-particle density matrix describes the transition of particles from
orbital i to j, thus constitutes a generalization of the occupation number
operator. It is defined as n̂ij = â†i âj, with the expectation value

nij = 〈n̂ij〉 = Tr â†i âj ρ̂

Diagonal matrix elements of the one-particle density matrix are the mean or-
bital occupation numbers 〈n̂i〉, which were introduced in the previous chap-
ter. The estimator allows for an alternative formulation of the expectation
value of an arbitrary single-particle operator, as introduced in (32)

〈Ô〉 =
∞∑

i,j=0

oijnij
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If the Hamiltonian contains a single-particle potential7, the matrix element
can be computed through derivation of the partition function.

nij =
1

Z
Tr â†i âjexp(−β(D̂ + Ŷ + V̂ )) = − 1

β

∂

∂vij
lnZ (34)

Here, V̂ is the newly introduced single-particle potential.

V̂ =
∞∑

i,j=0

vij â
†
i âj

In the following, the density matrix in the case of the UEG is calculated. As
a preliminary, one can identify which contributions to the matrix elements
are altered by the modified Hamiltonian. The matrix elements of a single-
particle operator were already calculated in chapter (2.1.4).

V{n},{ñ} =


VI =

∞∑
m=0

vmmnm, if {n} = {ñ}

V II = vpq(−1)α(p,q), if {n} = {ñ}pq (35)

0, else .

The matrix element has diagonal as well as single-particle excitation contri-
butions, thus the external potential breaks the translation symmetry of the
UEG.8

The computation of the density matrix has to be redone. The matrix ele-
ments of the single-particle potential (35) are added to their respective con-
tributions to the density matrix (36). This yields the following expression:

7After computing the differentiation in equation (34), one can perform the limit vij → 0
for the amplitude. Therefore, it is not necessary to perform simulations with an off-
diagonal potential V̂ included.

8This was studied e.g. in Ref. (Groth, Dornheim, & Bonitz, 2017).
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(
exp(−β̃(D + Y + V ))

)
{n},{ñ}

≈



A0T
{n},{ñ}, if {n} = {ñ} ,

A1T
{n},{ñ}, if {n} = {ñ}pq ,

A2T
{n},{ñ}, if {n} = {ñ}p<qr<s (36)

A3T
{n},{ñ}, if {n} = {ñ}p<q<rs<t<u ,

A4T
{n},{ñ}, if {n} = {ñ}p<q<r<st<u<v<w ,

0, else.

The different contributions of the matrix element are specified in the ap-
pendix (6.3). With these results, one can rewrite the partition function to
the path integral representation, as shown in chapter (2.3).

Z =
∑
c

exp (x) ·
K−1∏
m=0

Aoff
{n(m)}{n(m+1)}

Here, x is the abbreviation for the expression below:

x = −β̃
K∑
m=0

∆lm

[
D{n(m)} + V I

{n(m)}

− β̃

2

∑
p 6=q

p,q<NB

〈{n}|V̂ II |{n}pq〉 · 〈{n}pq|V̂ II |{ñ}〉 − β̃

2
DIII
{n(m)}

]
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The one-particle matrix is then calculated by derivation of the partition
function (34).

nij = − 1

β

1

Z

∂

∂vij
Z

= − 1

β

1

Z

∑
c

K−1∏
m=0

Aoff
{n(m)}{n(m+1)}

∂

∂vij
exp(x) + exp(x)

∂

∂vij

K−1∏
m=0

Aoff
{n(m)}{n(m+1)}

= − 1

β

1

Z

∑
c

K−1∏
m=0

Aoff
{n(m)}{n(m+1)} · exp(x)

∂

∂vij
x

− 1

β

1

Z

∑
c

exp(x)
K−1∑
m=0

∂

∂vij
Aoff
{n(m)}{nm+1)}

∏
b 6=m

Aoff
{n(b)}{n(b+1)}

The derivatives of x, and the off-diagonal contributions are now calculated
separately. This procedure is not easily feasible, because one has to consider
different combinations of measured orbitals i, j and orbitals that change from
{nm+1} to {nm}.

∂

∂vij
x = −β̃

K∑
m=0

∆lm
∂

∂vij

[
D{n(m)} + V I

{n(m)}

− β̃

2

∑
p 6=q

p,q<NB

〈{n}|V̂ II |{n}pq〉 · 〈{n}pq|V̂ II |{ñ}〉 − β̃

2
DIII
{n(m)}

]

=
K∑
m=0

∆lm
∂

∂vij

−β̃V I
{n(m)} +

β̃2

2

∑
p 6=q

p,q<NB

〈{n}|V̂ II |{n}pq〉 · 〈{n}pq|V̂ II |{ñ}〉



=
K∑
m=0

∆lm
∂

∂vij

−β̃∑
α

vααnα +
β̃2

2

∑
p 6=q

p,q<NB

vpqvqp


=

K∑
m=0

∆lm

(
−β̃niδij +

β̃2

2
vji(1− δij)

)
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For the computation of the derivative of x, one has to identify which matrix
elements may contain a contribution. In the case of x, there are only two
possibilities for this to occur, because of the prerequisite that the equation
{nm} = {nm+1} has to be fulfilled. First, in the case of equal orbital indices
i = j, the matrix element of V̂ I contributes to the derivative. Following that,
in the case that the orbital indices are not equal i 6= j, the matrix element
of V̂ II may contribute. In the expression∑

p 6=q
p,q<NB

〈{n}|V̂ II |{n}pq〉 · 〈{n}pq|V̂ II |{ñ}〉

a particle is excited from orbital q to p, to then be de-excited to its starting
orbitals. This yields the following expression:∑

p6=q
p,q<NB

vpqvqp

In the case of matching i,j and p,q, there is a contribution to the derivative.
The same procedure is used for the computation of the derivatives of the
off-diagonal matrix elements.

∂

∂vij
Aoff{n(m)},{n(m+1)} =

∂

∂vij

(
A1T
{n(m)},{n(m+1)} + A2T

{n(m)},{n(m+1)} + A3T
{n(m)},{n(m+1)}

)

First, the derivative of the single-particle excitation contributions are com-
puted. Effectively, a particle is excited from orbital q to p, but different
intermediate states in the excitation process impose a challenge in the cal-
culation of the derivative.

36



∂

∂vij
A1T
{n},{ñ} = −β̃ ∂

∂vij
V II
{n},{ñ} +

1

2
β̃2 ∂

∂vij

[(
D{n} +D{ñ}

)
V II
{n},{ñ}

+
∑
x<NB
x 6=p,q

〈{n}|V̂ II |{ñ}xq 〉〈{ñ}xq |V̂ II |{ñ}〉

+
∑

x,y<NB
x 6=y

x,y /∈{p,q}

〈{n}|Ŵ III |{ñ}xy〉〈{ñ}xy |V̂ II |{ñ}〉

+
∑

x,y<NB
x 6=y

x,y /∈{p,q}

〈{n}|V̂ II |{ñ}p,xq,y〉〈{ñ}p,xq,y |Ŵ III |{ñ}〉

]
,

The different cases of non-disappearing derivatives are listed below:

Case 1 There is a contribution if V̂ II leads to a direct excitation. This can
be described as {n} = {ñ}pq = {ñ}ij.

Case 2 In the expression
∑

x<NB
x6=p,q
〈{n}|V̂ II |{ñ}xq 〉〈{ñ}xq |V̂ II |{ñ}〉, V̂ II excites

a particle from orbital j to i. This state is then further excited into the
final state q. This procedure can be written as {n} = {ñ}pq = {ñ}pj .

Case 3 Another possibility is that in
∑

x<NB
x 6=p,q
〈{n}|V̂ II |{ñ}xq 〉〈{ñ}xq |V̂ II |{ñ}〉,

V̂ II excites a particle from orbital q into j, to then further excite it into
orbital i. This can be written as {n} = {ñ}pq = {ñ}iq.

Case 4 In
∑

x,y<NB
x 6=y

x,y /∈{p,q}

〈{n}|Ŵ III |{ñ}xy〉〈{ñ}xy |V̂ II |{ñ}〉, V̂ II excites a particle

from orbital j to i. This excitation is then undone by Ŵ III , which also
excites a particle from orbital q to p.
In
∑

x,y<NB
x 6=y

x,y /∈{p,q}

〈{n}|V̂ II |{ñ}p,xq,y〉〈{ñ}p,xq,y |Ŵ III |{ñ}〉, Ŵ III excites two par-

ticles into the orbitals p and j. The V̂ II operator then de-excites the
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particle from orbital j to i. Both of these possibilities are characterized
by contributions that stem from entirely intermediate states.

Lastly, the derivative can be compactly expressed in a case structure:
∂
∂vij

A1T
{n(m)},{n(m+1)} =

X ′ + (1− δij)



−β̃(−1)α(i,j) +
β̃2

2

(
D{n(m)} +D{n(m+1)}

)
(−1)α(i,j), if case 1

β̃2

2
vpi(−1)α(i,j)(−1)α(p,i), if case 2

β̃2

2
vqj(−1)α(q,j)(−1)α(i,j), if case 3

β̃2

2
(−1)α(i,j)

(
W III
{npq},{nij}

+W III
{np,jq,i },{n}

)
, if case 4

0, else.

The abbreviation X ′ = β̃2

2
V II
{n(m)},{n(m+1)}(n

(m)
i + n

(m+1)
i )δij denotes the offset

in all 4 cases. The reason for this offset can can be seen in the expression
V II
{n(m)},{n(m+1)}

∂
∂vij

(V I
{n(m)} + V I

{n(m+1)}) that is a result from the product rule

in the derivation. Here, the sum in the matrix element of the V̂ I operator
guarantees a contribution to the derivative while the V̂ II operator can match
any case of excitation.
The derivative of the two-particle excitation contributions is computed like-
wise.

∂

∂vij
A2T
{n},{ñ} =

1

2
β̃2 ∂

∂vij

[
(D{n} +D{ñ})W

III
{n},{ñ}

+
∑

x∈{r,s}
y∈{p,q}

〈{n}|V̂ II |{ñ}yx〉〈{ñ}yx|V̂ II |{ñ}〉

+
∑
z<NB
x∈{p,q}

z /∈{p,q,r,s}

〈{n}|V̂ II |{ñ}x,zr,s 〉〈{ñ}x,zr,s |Ŵ III |{ñ}〉
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+
∑
z<NB
x∈{r,s}

z /∈{p,q,r,s}

〈{n}|Ŵ III |{ñ}zx〉〈{ñ}zx|V̂ II |{ñ}〉

]

Here, there are 4 different cases for contributions:

Case 5 There is a contrribution if Ŵ III excites into a state {n} = {ñ}pq ,
with i, j 6= p, q. Here, the matrix element of the V̂ I operator creates a
contribution.

Case 6 In
∑

x∈{r,s}
y∈{p,q}

〈{n}|V̂ II |{ñ}yx〉〈{ñ}yx|V̂ II |{ñ}〉, one of the V̂ II operators

excites a particle from orbital j to i, while the other operator excites
a particle from orbital b to a. This can be written as {n} = {ñ}i,aj,b.
With this simplified description of non-contributing orbitals a := y \ i
and b := x \ j, the problem of the indistinguishability of the particles
is bypassed.

Case 7 In
∑

z<NB
x∈{p,q}

z /∈{p,q,r,s}

〈{n}|V̂ II |{ñ}x,zr,s 〉〈{ñ}x,zr,s |Ŵ III |{ñ}〉, the Ŵ III operator

excites into the orbital x (either p or q) and an intermediate state j.
The particle in the intermediate orbital j is then further excited into
the orbital a that was not affected in the initial excitation.

Case 8 In
∑

z<NB
x∈{r,s}

z /∈{p,q,r,s}

〈{n}|Ŵ III |{ñ}zx〉〈{ñ}zx|V̂ II |{ñ}〉, V̂ II excites a particle

from orbital j into an intermediate orbital i. The Ŵ III operator then
further excites this particle from i to either p or q. Furthermore, a
particle is excited from orbital b := x \ j to either p or q.

These contributions yield the case structure:
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∂

∂vij
A2T
{n(m)},{n(m+1)} = X + (1− δij)



0, if case 5

β̃2

2
vab(−1)α(a,b)(−1)α(i,j), if case 6

β̃2

2
(−1)α(i,j)W III

{ñ}j,xr,s ,{ñ}
, if case 7

β̃2

2
(−1)α(i,j)W III

{ñ}p,qi,b ,{ñ}
i
j
, if case 8

0, else.

Again, the offset X = β̃2

2
W III
{n(m)},{n(m+1)}(n

(m)
i + n

(m+1)
i )δij is introduced.

The matrix element of the three-particle excitation contributions is computed
likewise.

∂

∂vij
A3T
{n},{ñ} =

1

2
β̃2

[ ∑
a<b∈{p,q,r}
c<d∈{s,t,u}

〈{n}|V̂ II |{ñ}a,bc,d〉〈{ñ}
a,b
c,d|Ŵ

III |{ñ}〉

+
∑

x∈{s,t,u}
y∈{p,q,r}

〈{n}|Ŵ III |{ñ}yx〉〈{ñ}yx|V̂ II |{ñ}〉

]
,

Case 9 In this case, the only contributions stem from direct excitations. In
each∑

a<b∈{p,q,r}
c<d∈{s,t,u}

〈{n}|V̂ II |{ñ}a,bc,d〉〈{ñ}
a,b
c,d|Ŵ III |{ñ}〉 and∑

x∈{s,t,u}
y∈{p,q,r}

〈{n}|Ŵ III |{ñ}yx〉〈{ñ}yx|V̂ II |{ñ}〉, Ŵ III excites into random

orbitals a from b and c from d. This can be written as a, c, i ∈ {p, q, r}
from b, d, j ∈ {s, t, u}

The derivative can be expressed in the following case structure: ∂
∂vij

A3T
{n(m)},{n(m+1)} =

(1− δij)

 β̃2

2
(−1)α(i,j)

(
W III
{na,cb,d},{ñ}

+W III
{na,cb,d},{n

i
j}

)
, if case 9

0, else.
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Now, the limit vij → 0 is performed, leading to the following expressions:

∂

∂vij
x

∣∣∣∣
vij=0

=
K∑
m=0

∆lm

(
−β̃niδij

)
The derivatives of the off-diagonal matrix elements maintain contributions.
Performing the limit on the derivative of the one-particle excitations leads

to: ∂
∂vij

A1T
{n(m)},{n(m+1)}

∣∣∣∣
vij=0

=

(1− δij)


−β̃(−1)α(i,j) +

β̃2

2

(
D{n(i)} + D{n(i+1)}

)
(−1)α(i,j), if case 1

β̃2

2
(−1)α(i,j)

(
W III
{npq},{nij}

+ W III
{np,jq,i },{n}

)
, if case 4

0, else.

Performing the limit on the derivative of the two-particle excitations leads

to: ∂
∂vij

A2T
{n(m)},{n(m+1)}

∣∣∣∣
vij=0

=

X + (1− δij)



0, if case 5

0, if case 6

β̃2

2
(−1)α(i,j)W III

{ñ}j,xr,s ,{ñ}
, if case 7

β̃2

2
(−1)α(i,j)W III

{ñ}p,qi,b ,{ñ}
i
j
, if case 8

0, else.

Lastly, performing the limit on the derivative of the three-particle excitations

leads to: ∂
∂vij

A3T
{n(m)},{n(m+1)}

∣∣∣∣
vij=0

=

(1− δij)

 β̃2

2
(−1)α(i,j)

(
W III

{na,bc,d},{ñ}
+W III

{na,bc,d},{n
i
j}

)
, if case 9

0, else.

These results show that the addition of an external potential leads to non-
disappearing contributions, even after the amplitude of the potential was
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omitted vij → 0. This is particularly interesting for the A1T contributions,
considering the prerequisite of no single-particle excitations.
Lastly, the results can be used to obtain the estimator nij(c):

nij(c) =
1

M

K∑
m=0

∆lmniδij −
1

β

K−1∑
m=0

(
∂
∂vij

Aoff{n(m)},{n(m+1)}

)
Aoff
{n(m)},{n(m+1)}

The comparison of this result to the estimator of a lower Taylor expansion
n′ij(c)

n′ij(c) = (−β̃)K

[
1

M

K∑
m=0

∆lmniδij −
1

β

K−1∑
m=0

(−1)α(i,j)(1− δij)
W III
{n(m)},{n(m+1)}

]

shows that both estimators take on similar expression. The higher order
Taylor expansion introduces several new contributions to the estimator.
This result was then validated by considering the estimator for matching
orbital indices i = j and comparing it to the estimator of the mean occupation
number in the previous chapter.

nii(c) =
1

M

K∑
m=0

∆lmni −
1

β

K−1∑
m=0

X

A2T
{n(m)},{n(m+1)}

Thus, this demonstrates that the special case of i = j can be derived from
the one-particle density matrix.
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3 Monte Carlo

In general, the sum (32) that denotes the calculation of an expectation value
is high-dimensional, because numerous particles are to be considered in a
given system. Therefore, a trivial approach of evaluating the sum is not ef-
ficient. Numerical methods, such as Monte Carlo approximations, are used
to bypass this problem of the calculation, because their computation time
does not scale with the dimensionality of the approximated sum (Bonitz &
Semkat, 2006).

The expectation value of an arbitrary observable Ô, that is in thermodynamic
equilibrium, is defined as

〈Ô〉 =
∑
x

O(x)p(x) (37)

with p(x) as the probability distribution9 and x as an arbitrary multi-variable.
Applying a Monte Carlo scheme for the evaluation of the sum leads to

〈Ô〉 =
1

NMC

NMC∑
i=0

O(xi) +O(
1√
NMC

)

Here, a number of NMC micro states xi are sampled from p(x). This so-
called importance sampling ensures greater accuracy of the expectation value
in comparison to a computation with the same number of NMC , but with
uniformly sampled micro states. This expression also presents one of the ad-
vantages of Monte Carlo approximations. The central limit theorem (Kwak,
Sang Gyu & Kim, Jong Hae, 2017) states that the uncertainty of the quantity
disappears with NMC →∞. Therefore, one can virtually reach an arbitrary
accuracy of the calculated observable, with sufficient computing power.

Substituting the probability with p(c) = w(c)/Z leads to the representation
of an expectation value that was introduced in (32).

〈Ĥ〉 =
∑
c

H(c)
w(c)

Z
(38)

This representation imposes a new challenge, because the normalization Z
is not necessarily known. A solution for this problem is presented in the
following chapter.

9i.e. p(x) > 0 and
∑

x p(x) = 1
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3.1 Metropolis–Hastings algorithm

In 1953, Metropolis et al. introduced an algorithm, which was later gen-
eralised by Hastings, that generates a sequence of random samples from
a given distribution function without the knowledge of its normalization.
(Metropolis, Arianna, Marshall, Rosenbluth, & A., 1953)
The creation of this so-called Markov chain (C0, . . . , CNMC

) of samples can
be illustrated via a simple framework:

• First the Markov chain has to be initiated with a randomly chosen
initial state C0

• For each iteration i ∈ {1, . . . , NMC} that follows after C0, preconditions
such as the detailed balance equation10 and ergodicty11 have to be
fulfilled:

– Using the proposal density Q(Ci → C ′i)
12, a new possible configu-

ration (Monte Carlo step) C ′i is generated

– The probability of accepting such a configuration is computed

A(Ci → C ′i) = min
[
1,

Q(C′i→Ci)w(C′i)

Q(C′i→Ci)w(Ci)

]
In this step, the normalization disappears by using p(x) = w(x)/Z.

A(Ci → C ′i) = min
[
1,

Q(C′i→Ci)p(C′i)
Q(C′i→Ci)p(Ci)

]
– The proposed change is either accepted or rejected with a proba-

bility of 1− A:

∗ Generate a random number a ∈ [0, 1]

∗ Accept the change if A(Ci → C ′i) > a and set Ci+1 = C ′i
∗ Reject the change if A(Ci → C ′i) < a and set Ci+1 = Ci

– The framework is continued with the next iteration i = i+ 1

When using this framework, it is important to note that a high number of
samples leads to a better approximation of the desired distribution p(x).
One also has to consider the equilibrium time when using a Markov chain.

10The DBE is of the form p(Ci)v(Ci → C ′
i) = p(C ′

i)v(C ′
i → Ci) with v(Ci → C ′

i) as the
transition probability from Ci to C ′

i
11Every possible configuration has be reachable in a finite number of Monte Carlo steps
12In the implementation process an arbitrary proposal density may be chosen, with the

prerequisite that the Monte Carlo steps are ergodic
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Due to the randomly chosen initial state C0, numerous iterations may be
necessary to generate samples that are actually distributed according to the
distribution p(x). Therefore, an appropriate number of initial samples should
be discarded from the Markov chain. It is also necessary to consider the
autocorrelations between adjacent configurations. This correlation of samples
can be compensated by only considering every n-th configuration.

3.2 Sign problem

A further aspect of the weight of a configuration w(c) (38) that needs to be
considered is that its sign is not necessarily positive. Therefore, it cannot
be interpreted as a probability density. Different sources for these negative
signs can be identified:
In the product of the off-diagonal matrix elements, the Ŵ III 13 operator may
induce a negative sign, depending on the configuration of {ni} and {ni+1}.

To bypass this problem, one can ascribe the sign of the weight s(x) to the
estimator. This can be realized by changing the definition of an expectation
value to:

〈Ô〉 =

∫
O(x)s(x)p(x)′∫
s(x)p(x)′

=
〈Ôŝ〉′

〈ŝ〉′

Here, 〈s〉′ is the expectation value of the sign and p(x)′ = |p(x)|∫
|p(x)|dx is the

probability that the configurations x are distributed in accordance with. In
the case of an average sign 〈ŝ〉′ that is much smaller than 1, the expression
〈Ôŝ〉′ has to determined with a high accuracy in order to obtain a reliable
result for 〈Ô〉.
The expectation value of the mean sign 〈s〉′ = Z

Z′
= exp(−βN(f − f ′)) is

small in the case of large inverse temperatures β, large systems with a nu-
merous particles N , and large differences in the free energy per particle of f
and f ′.
In this case, the relative error of the observable (Schoof, 2011) can be ex-
pressed as:

∆O

Ō
∼ ∆s

s̄
≈ 1√

NMC

exp(βN∆f)

This relation illustrates the fermion sign problem. The reduction of the rela-
tive error of the observable is severely inefficient in comparison to the scaling

13This can be seen in the Slater Condon rules in (12)
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of the system.

In the past, there were numerous approaches for bypassing this problem,
for example the permutation-blocking method (Dornheim, Groth, Filinov,
& Bonitz, 2015). In this thesis, the approach of reformulating the partition
function to a discrete time representation, with a lower error in the Taylor
expansion (22), is taken. This procedure shows promise in reducing the sign
problem, because a smaller number of time slices M (21) have to be used in
order to obtain a similar accuracy in comparison with previous works. This
is the case, because the error in (22) is lower by default. A smaller number of
M should then affirmatively affect the mean sign 〈s〉′, because the individual
signs of the different contributions oscillate less.

An additional, but more ambiguous, motivation for the chosen approach is
the modification of the weight that a higher order expansion introduces. In
previous works (Schoof, 2011), the weight w′(c) was of the following form:

w′(c) = (−β̃)Kexp(x′)
K−1∏
i=0

W III
{ni},{ni+1}

In the higher order Taylor expansion (26) the expression changes to

w(c) = exp(x)
K−1∏
i=0

Aoff{ni},{ni+1}

The comparison shows that the main difference of these two expressions is
in the product of the matrix elements. In the latter weight, the off-diagonal
contributions consist of three matrix elements that each introduce successive
application of the Ŵ III operator. This characteristic is a new feature of the
algorithm, therefore further research will show if it impacts the effectiveness
of the algorithm.
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3.3 Monte Carlo steps

As introduced in the framework in chapter (3.1), a Monte Carlo step denotes
a specific transition from a given configuration C to the next configuration
C ′ in the Markov chain. The possible Monte Carlo steps will be determined
by applying one of the seven steps listed below as well as in the appendix.
The new configuration C ′ will be proposed with the probability p(C → C ′)
and, eventually, be accepted with an acceptance probability A(C → C ′)
which satisfies the detailed balance equation. For each of the steps there is
a corresponding probability to be applied:

• Create stationary orbital: pcs

• Remove stationary orbital: prs

• Add two kinks: pa2k

• Remove two kinks: pr2k

• Appendix: Shift one kink: pshift

• Appendix: Add one kink: pa1k

• Appendix: Remove one kink: pr1k

If it is known that, for a given configuration, one of the steps cannot be
applied (for example adding one kink if there is none in C) then its proposal
probability is set to 0, and the other probabilities are scaled accordingly so
they still add up to 1.
Furthermore, there are two different ways to implement this algorithm. As
all excitations need to fulfil momentum conservation each new kink will be
created by choosing an excitation vector. In the naive approach, these ex-
citation vectors are chosen completely randomly. This allows for an easy
computation of proposal probabilities and finding each of those vectors in
constant time. But it might also result in vectors that produce invalid new
states, for example by exciting into an orbital that is already occupied or by
exciting into an orbital i > Nb. In the algorithm above, this is dealt with by
allowing these vectors nevertheless and, therefore, producing invalid states,
which will then always lead to configurations with W (C ′) = 0. These config-
urations will then always have an acceptance probability of A(C → C ′) = 0.
Therefore, these proposals are never accepted and those configurations never
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appear in the Markov chain.
The second approach is to only consider valid vectors. This has the advan-
tage of never proposing a new configuration C ′ where one knows beforehand
that the acceptance probability will be zero. There are two disadvantages to
consider. The first is that every valid option has to be counted, which leads
to longer run times for finding the excitation vectors and for the computation
of the acceptance probability. The second problem is that it might happen,
that, in a certain situation, there is no valid option for an excitation vector.
This would then require to propose an invalid configuration, which will be
guaranteed to be rejected.
This approach is going to be used for this algorithm. To allow the compu-
tation of the acceptance probability, the number of valid options has to be
tracked in every decision made in the algorithm.

3.3.1 Create stationary orbital

p

m

O
cc

u
p
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d
or

b
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s

1 M

The left figure shows the creation
of an occupied stationary orbital
p from an empty orbital p. The
x-axis parameter m describes the
individual factors of the path.

Let nsf (C) be the number of stationary free orbitals in a configuration C.
Furthermore, let Cfail be a configuration with w(Cfail) = 0 which leads to
an acceptance probability of A(Cfail) = 0. Then the following algorithm is
used to propose the next configuration C ′:

Precondition for creation : nsf (C) > 0

1. Count the number of stationary free orbitals nsf (C).

2. Choose one of the nsf (C) free orbitals p.
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3. Propose C ′ which results from inverting the occupation numbers of the
orbitals p in every state {ni} in C.

p(C → C ′) = pcs ·
1

nsf (C)
= pcs ·

1

nsf (C ′)
= p(C ′ → C)

A(C → C ′) = min

[
1,
W (C ′)

W (C)

p(C → C ′)

p(C ′ → C)

]
= min

[
1,
W (C ′)

W (C)

]
3.3.2 Remove stationary orbital
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The left figure shows the removal
of an occupied stationary orbital p.

Let nso(C) be the number of stationary occupied orbitals in a configuration
C. Then the following algorithm is used to propose the next configuration
C ′:
Precondition for removal : nso(C) > 0

1. Count the number of stationary occupied orbitals nso(C).

2. Choose one of the nso(C) occupied orbitals p.

3. Propose C ′ which results from inverting the occupation numbers of the
orbitals p in every state {ni} in C.

p(C → C ′) = prs ·
1

nso(C)
= prs ·

1

nso(C ′)
= p(C ′ → C)

A(C → C ′) = min

[
1,
W (C ′)

W (C)

p(C → C ′)

p(C ′ → C)

]
= min

[
1,
W (C ′)

W (C)

]
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3.3.3 Add two kinks

m

S
ta

te
{n
}(
m

)

li l′ l′′ li+1

{n(i)}

{n}′

{n(i+1)}

For a randomly chosen kink at the
position li two new kinks at the po-
sitions l′, l′′ ∈ (li.li+1) are created.

Let na2k be the number of different i ∈ [0, K] with ∆l := li+1 − li − 1 ≥ 2.

Precondition: na2k > 0

1. Choose one of the na2k valid positions i.

2. Choose two new kink positions l′ < l′′ ∈ (li, li+1).

3. Decide for new T4, T6, or T8 kinks with the according probabilities
pT4, pT6 and pT8.

(a) New T4 kinks:

i. Choose two occupied orbitals r, s in the state {n(i)}.
ii. Count the number nk of all k that satisfy k 6= 0, k2 ≤ k2

max

and o(kr − k), o(ks + k) are unoccupied orbitals.

iii. If nk = 0, then propose Cfail, else continue.

iv. Randomly choose one of the nk vectors as an excitation vector
k.

v. Calculate r′ := o(kr − k) and s′ := o(ks + k).

vi. Propose new configuration C ′ with two new T4 kinks. The
first is at position l′ with the state {n(i)}r′,s′r,s and the second

kink at position l′′ with the state {n(i)}.
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(b) New T6 kinks:

i. Choose three non-identical occupied orbitals p, q, r in the state
{n(i)}.

ii. Count the number nk of all pairs of vectors k(1), k(2) that
satisfy (k(1)), (k(2)) 6= 0, (k(1))2, (k(2))2 ≤ k2

max and o(kp −
k(1)), o(kq + k(1) + k(2)), o(kr − k(2)) are unoccupied orbitals.

iii. If nk = 0, then propose Cfail, else randomly choose one of the

nk pairs k(1), k(2).

iv. Calculate p′ := o(kp − k(1)), q′ := o(kq + k(1) + k(2)) and

r′ := o(kr − k(2)).

v. If |{p, q, r} \ {p′, q′, r′}| 6= 3, then propose Cfail.

vi. Else, propose new configuration C ′ with two new T6 kinks.
The first is at position l′ with the state {n(i)}p′,q′,r′p,q,r and the

second at position l′′ with the state {n(i)}.
(c) New T8 kinks:

i. Choose four non-identical occupied orbitals p, q, r, s in the
state {n(i)}.

ii. Count the number nk of all pairs of vectors k(1), k(2) that
satisfy (k(1)), (k(2)) 6= 0, (k(1))2, (k(2))2 ≤ k2

max, o(kp − k(1)),

o(kq + k(1)), o(kr − k(2)) and o(ss + k(2)) are unoccupied or-
bitals.

iii. If nk = 0, then propose Cfail, else continue.

iv. Choose one of these nk pairs of excitation vectors k(1), k(2).

v. Calculate p′ := o(kp−k(1)), q′ := o(kq+k(1)), r′ := o(kr−k(2))

and s′ := o(ss + k(2)).

vi. If |{p, q, r, s} \ {p′, q′, r′, s′}| 6= 4, then propose Cfail.

vii. Else, propose new configuration C ′ with two new T8 kinks.
The first is at position l′ with the state {n(i)}p′,q′,r′,s′p,q,r,s and the

second at position l′′ with the state {n(i)}.

As before, in the case of no valid options for excitation vectors, an alternative
configuration Cfail is proposed which is guaranteed to have a zero acceptance
probability. In all other cases, the probability for proposing a specific new
configuration is determined by the options to choose the orbitals which will
be excited and the number of possible excitation vectors nk:
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p(C → C ′) =
pa2k

nk · na2k

(
∆l

2

)−1

·



pT4

N(N − 1)
, if case a

pT6

N(N − 1)(N − 2)
, if case b

pT8

N(N − 1)(N − 2)(N − 3)
, if case c

With the proposal probabilities for removing two kinks from below, this yields
the following acceptance probabilities:

A(C → C ′) = min

[
1,
W (C ′)

W (C)

p(C → C ′)

p(C ′ → C)

]
= min

[
1,
W (C ′)

W (C)
p(C → C ′)

nr2k(C) + 1

pr2k

]

A(C → C ′) =



min
[
1,
W (C ′)

W (C)

pa2k

nk · na2k

(
∆l

2

)−1

·nr2k(C) + 1

pr2k

pT4

N(N − 1)

]
, if case a

min
[
1,
W (C ′)

W (C)

pa2k

nk · na2k

(
∆l

2

)−1

·nr2k(C) + 1

pr2k

pT6

N(N − 1)(N − 2)

]
, if case b

min
[
1,
W (C ′)

W (C)

pa2k

nk · na2k

(
∆l

2

)−1

·nr2k(C) + 1

pr2k

pT8

N(N − 1)(N − 2)(N − 3)

]
, if case c
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3.3.4 Remove two kinks

m
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)

li−1 li li+1

{n(i−1)}

{n(i)}

{n(i+1)}
For a randomly chosen kink at
the position li with {n(i−1)} =
{n(i+1)}, the two kinks at positions
li and li+1 are removed from the
path.

Let nr2k(C) be the number of kink positions i in the configuration C which
satisfy {n(i−1)} = {n(i+1)}.

Precondition: nr2k(C) > 0

1. Choose i ∈ [1, K − 1] with {n(i−1)} = {n(i+1)}.

2. Propose new Configuration C ′ which results from removing the two
kinks with indices i and i+ 1 from the current configuration C.

Assuming a satisfied precondition, the probability for proposing a specific
removal is only determined by the number of possible positions nr2k(C),
which results in the following proposal probability:

p(C → C ′) =
pr2k

nr2k(C)
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This leads to the following acceptance probability:

A(C → C ′) =



min
[
1,
W (C ′)

W (C)

pr2k
nr2k(C)

nk(C ′) na2k(C
′)

pa2k

(
∆l

2

)
·N(N − 1)

]
, if case a

min
[
1,
W (C ′)

W (C)

pr2k
nr2k(C)

nk(C ′) na2k(C
′)

pa2k

(
∆l

2

)
·N(N − 1)(N − 2)

]
, if case b

min
[
1,
W (C ′)

W (C)

pr2k
nr2k(C)

nk(C ′) na2k(C
′)

pa2k

(
∆l

2

)
·N(N − 1)(N − 2)(N − 3)

]
, if case c
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4 Results for the simulation of the ideal Fermi

gas

In this chapter several statistically computed expectation values of thermo-
dynamic quantities are compared with their analytically derived values. The
considered system, the ideal Fermi gas, was introduced in chapter (2.3), hence
only the implementation of the algorithm is presented in the following.

Omitting particle interaction simplifies the Monte Carlo algorithm used for
the numerical approximation of the system. A configuration of the system
can be described via the Fock state |n0, . . . , nNB〉 with ni as the occupation
numbers of single-particle states that are sorted by increasing energies εi ≤
εi+1. For this algorithm a number of NB = 100 basis orbitals was chosen.
Furthermore, the construct, that is to evaluate numerically, is simplified,
since the path solely consists of stationary orbitals. Hence, the only Monte
Carlo steps that are considered are create- or remove stationary orbital.
The algorithm that is used for the computation of the expectation values of
thermodynamic quantities can be displayed with the following framework:

• Initialize a randomly occupied Fock state |n0, . . . , nNB〉

• Choose random orbital ni according to a normal distribution p(x) with
the chemical potential µ as the mean of the distribution

• Depending on the occupation status of the random orbital, chose a
Monte Carlo step and calculate the acceptance probability
A(Ci → C ′i) = min [1, exp(−β(∆E − µ) · occ(ni))]14

• Accept or reject the proposed change with the probability (1− A)

• Iterate NMC-times

• Process the results for plotting

This algorithm was used for the computation of the following results.
The first observable that was computed is the mean orbital occupation num-
ber (15).

14The function occ(n) :=

{
−1,if n=1

1,else
may induce a sign change.
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Figure 3: Mean occupation number at three inverse temperatures as a func-
tion of the energy. The chemical potential was set to µ = 50 and NMC = 107

Monte Carlo steps were used for the simulation.

This graph displays the so-called Fermi distribution. The mean occupation
numbers decline with increasing energys. At energys at the chemical poten-
tial µ the occupation number is 0.5. With increasing inverse temperatures
the slope of the distribution of occupied states increases. The case of β →∞
would result in the so-called Fermi edge.

Additionally, the fluctuation of the mean orbital occupation number (16) was
computed.
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Figure 4: Fluctuation of the mean occupation number at three inverse tem-
peratures as a function of the energy. The chemical potential was set to
µ = 50 and NMC = 107 Monte Carlo steps were used for the simulation.
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This result shows a peak of the fluctuation at the chemical potential and a
decrease for higher/lower energys. For small temperatures the distribution
is confined to energys near the chemical potential, because excitations to en-
ergys that strongly differ from the chemical potential are unlikely.

Lastly, the mean occupation number (17) was computed.
β Theoretical value N Numerical result N Percentage deviation
1
10

50.492 50.483 −0.018

1
15

50.466 50.486 0.040

1
5

50.500 50.488 −0.024

These results demonstrates that the algorithm is successful in the numerical
computation of thermodynamic quantities.
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5 Outlook

The research presented in this thesis has opened a number of research oppor-
tunities that could be explored in the future. For instance, the test-case of the
ideal Fermi gas may be further developed into the uniform electron gas. In
particular, this would require the implementation of the 6 additional Monte
Carlo steps that result from the consideration of particle interactions. The
uniform electron gas also is a well researched system, so one could compare
the measurement results with existing data to determine the effectiveness
of the higher order expansion. If the developed algorithm proves to be re-
ducing the sign problem, one could further lower the error in the Taylor
expansion with a third-order expansion. An intrinsic problem of this higher
order expansion method is that it is not entirely foreseeable which order of
an expansion has an affirmative influence on the simulation. Furthermore, an
even higher expansion would entail an increased time commitment, because
of the number of new matrix elements that would have to be derived and
computed.
Further possibilities of expanding the algorithm, with the prerequisite that
the changes prove to be valuable, is the implementation of optimizing meth-
ods that were introduced in the CPMIC algorithm. This would include the
worm algorithm which is an important tool in the case of the Grand canonical
ensemble.
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6 Appendix

6.1 Graphical representation of possible particle exci-
tations in the computation of matrix elements

In the following, the matrix elements of the non-diagonal operators that arise
from the second order Taylor expansion in chapter (2.4.1) are graphically
displayed. In second quantization, particles are indistinguishable from one
another, thus, in a multi-particle excitation, one cannot obtain information
concerning which particle has been excited into which orbital.
Therefore, the following representation uses dotted lines to denote the first
application of a given operator and dashed lines to denote the second appli-
cation. Two arrows of the same type describe a two-particle excitation.
The white circles represent randomly chosen orbitals, which do not differ
from |{n}〉 to |{ñ}〉.

q

p

W 2
II{n},{ñ} =

∑
p 6=q

p,q<NB

|〈{ñ}pq|ŴII |{ñ}〉|2

if {n} = {ñ}

The left figure shows the case of
identical states before and after
the two single-particle excitations.
In the first step the particle in the
randomly chosen orbital p is ex-
cited to a randomly chosen orbital
q. In the second step, the excita-
tion is reversed.

60



r

p

s

q Two double excitations (up and
down arrows, respectively) that
are reversed.

W 2
III{n},{ñ} if {n} = {ñ}

q

p

i

W 2
II{n},{ñ} if {n} = {ñ}pq

q

p

j

i

(WIIIWII){n},{ñ} if {n} = {ñ}pq
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(WIIWIII){n},{ñ} if {n} = {ñ}pq

q

j

i

k

p

(W 2
III){n},{ñ} if {n} = {ñ}pq

r

s

p

q

(W 2
II){n},{ñ} if {n} = {ñ}p<qr<s
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W 2
III{n},{ñ} if {n} = {ñ}p<q<r<st<u<v<w

6.2 Matrix elements in the one-particle density matrix

These are matrix elements in equation (36).

A0T
{n} = exp

(
− β̃

[
D{n} + V I

{n} −
β̃

2

∑
p 6=q

p,q<NB

〈{n}|V̂ II |{n}pq〉

· 〈{n}pq|V̂ II |{ñ}〉 − β̃

2
DIII
{n}

])

A1T
{n},{ñ} = −β̃ V II

{n},{ñ} +
1

2
β̃2

[(
D{n} +D{ñ}

)
V II
{n},{ñ}

+
∑
i<NB
i 6=p,q

〈{n}|V̂ II |{ñ}iq〉〈{ñ}iq|V̂ II |{ñ}〉

+
∑

i,j<NB
i 6=j

i,j /∈{p,q}

〈{n}|Ŵ III |{ñ}ij〉〈{ñ}ij|V̂ II |{ñ}〉
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+
∑

i,j<NB
i 6=j

i,j /∈{p,q}

〈{n}|V̂ II |{ñ}p,iq,j〉〈{ñ}
p,i
q,j|Ŵ III |{ñ}〉

+
∑

i,j,k<NB
i 6=j 6=k
j<k

〈{n}|Ŵ III |{ñ}j,kq,i 〉〈{ñ}
j,k
q,i |Ŵ III |{ñ}〉

]
,

A2T
{n},{ñ} = −β̃ W III

{n},{ñ} +
1

2
β̃2

[(
D{n} +D{ñ}

)
W III
{n},{ñ}

+
∑

x∈{r,s}
y∈{p,q}

〈{n}|V̂ II |{ñ}yx〉〈{ñ}yx|V̂ II |{ñ}〉

+
∑
i<NB
x∈{p,q}
i/∈{p,q,r,s}

〈{n}|V̂ II |{ñ}x,ir,s〉〈{ñ}x,ir,s|Ŵ III |{ñ}〉

+
∑
i<NB
x∈{r,s}

i/∈{p,q,r,s}

〈{n}|Ŵ III |{ñ}ix〉〈{ñ}ix|V̂ II |{ñ}〉

+
∑

i<j<NB

〈{n}|Ŵ III |{ñ}i<jr<s〉〈{ñ}i<jr<s|Ŵ III |{ñ}〉

]
,

A3T
{n},{ñ} =

1

2
β̃2

[ ∑
a<b∈{p,q,r}
c<d∈{s,t,u}

〈{n}|V̂ II |{ñ}a,bc,d〉〈{ñ}
a,b
c,d|Ŵ

III |{ñ}〉

+
∑

x∈{s,t,u}
y∈{p,q,r}

〈{n}|Ŵ III |{ñ}yx〉〈{ñ}yx|V̂ II |{ñ}〉

+
∑
i<NB

i/∈{p,q,r,s,t,u}
z∈{p,q,r}
x<y∈{s,t,u}

〈{n}|Ŵ III |{ñ}i,zx,y〉〈{ñ}i,zx,y|Ŵ III |{ñ}〉

]
,

A4T
{n},{ñ} =

1

2
β̃2

∑
c<d∈{p,q,r,s}
a<b∈{t,u,v,w}

〈{n}|Ŵ III |{ñ}c<da<b〉〈{ñ}c<da<b|Ŵ III |{ñ}〉
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6.3 Number of allowed direct excitations for adding
one kink

This table is used in the chapter (6.4.2).

New kink Kink at li Direct excitations
T4 T4 0,1
T4 T6 0,1
T4 T8 0,1,2
T6 T4 0,1
T6 T6 0,1,2
T6 T8 0,1,2
T8 T4 0,1,2
T8 T6 0,1,2
T8 T8 0,1,2,3

Figure 5: When adding a single kink, an existing kink is replaced by a new
kink and a changed kink. For example, a new T4 kink will be added to an
existing T4 kink. In this case, the direct excitation of two particles to their
final orbitals is prohibited, as it would already put the system into its final
state, therefore making it impossible to perform any other excitation with
the second kink.
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6.4 Excluded Monte Carlo Steps

The Monte Carlo steps that are presented in the following were derived by
Jakob Nazarenus. These results are indispensable in the implementation of
the UEG, hence they are presented in the appendix.

6.4.1 Shift one kink

m

S
ta

te
{n
}(
m

)

li−1 li l′i li+1

{n(i−1)}

{n(i)}

{n(i+1)}

This figure shows the shift of the i-
th kink from the position li to the
new position at l′i. Both of these
positions have to lie within the in-
terval (li−1, li+1).

Precondition: K > 0

1. Choose i as one of the K kink positions.

2. Choose a new kink position l′i ∈ (li−1, li+1).

3. Propose new configuration C ′, which results from changing li → l′i in
the current configuration C.

p(C → C ′) = pshift ·
1

K

1

(li+1 − li−1 − 1)
= p(C ′ → C)

A(C → C ′) = min

[
1,
W (C ′)

W (C)

p(C → C ′)

p(C ′ → C)

]
= min

[
1,
W (C ′)

W (C)

]
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6.4.2 Add one kink

S
ta

te
{n
}(
m

)

l′ l′li

{n(i−1)}

{n}′

{n(i)}
For a randomly chosen kink at the
position li it has been randomly
decided that one kink should be
added at its left (green) or right
(blue) side at the corresponding
new position l′. In both cases, the
introduction of the new kink will
effect the existing kink at the po-
sition li.

Let ∆({n}, {ñ}) ∈ N be the number of orbitals that differ in their occupation
between {n} and {ñ}.
Precondition: K ≥ 2

1. Randomly choose a kink with index i.

2. Decide to add a right or a left kink.

(a) If a left kink will be added, choose l′ ∈ (li−1, li) and set ∆l :=
li− li−1−1. If li = li−1 + 1, propose Cfail. Furthermore, the inter-
mediate state {n}′ will be created by exciting the state {n}ex :=
{n(i−1)}.

(b) If a left kink will be added, choose l′ ∈ (li, li+1) and set ∆l := li+1−
li−1. If li+1 = li+1, propose Cfail. Furthermore, the intermediate
state {n}′ will be created by exciting the state {n}ex := {n(i)}.

3. Decide to add a T4, T6 or T8 kink with the according probabilities
paT4, paT6 and paT8.

4. Determine the set of orbitals E which are excited from {n(i−1)} to {n(i)}
for the left case and from {n(i)} to {n(i−1)} for the right case.

(a) Adding a T4 kink:

i. Choose two occupied orbitals r, s in {n}ex.
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ii. Count the number nk of all k that satisfy k 6= 0, k2 ≤ k2
max

and o(kr − k), o(ks + k) are unoccupied orbitals in {n}ex.
Moreover, the number of direct excitations (to an orbital in
E) must comply with the numbers given in the appendix at
6.3.

iii. If nk = 0, then propose Cfail, else continue.

iv. Randomly choose one of the nk vectors as an excitation vector
k.

v. Calculate r′ := o(kr − k) and s′ := o(ks + k).

vi. Set {n}′ := ({n}ex)r
′,s′
r,s .

(b) Adding a T6 kink:

i. Choose three non-identical occupied orbitals p, q, r in the state
{n}ex.

ii. Count the number nk of all pairs of vectors k(1), k(2) that
satisfy (k(1)), (k(2)) 6= 0, (k(1))2, (k(2))2 ≤ k2

max and o(kp −
k(1)), o(kq + k(1) + k(2)), o(kr − k(2)) are unoccupied orbitals
in {n}ex. Moreover, the number of direct excitations (to an
orbital in E) must comply with the numbers given in the
appendix at 6.3.

iii. If nk = 0, then propose Cfail, else randomly choose one of the

nk pairs k(1), k(2).

iv. Calculate p′ := o(kp − k(1)), q′ := o(kq + k(1) + k(2)) and

r′ := o(kr − k(2)).

v. If |{p, q, r} \ {p′, q′, r′}| 6= 3, then propose Cfail.

vi. Set {n}′ := ({n}ex)p
′,q′,r′
p,q,r .

(c) Adding a T8 kink:

i. Choose four non-identical occupied orbitals p, q, r, s in the
state {n(i)}.

ii. Count the number nk of all pairs of vectors k(1), k(2) that
satisfy (k(1)), (k(2)) 6= 0, (k(1))2, (k(2))2 ≤ k2

max, o(kp − k(1)),

o(kq+k(1)), o(kr−k(2)) and o(ss+k(2)) are unoccupied orbitals
in {n}ex. Moreover, the number of direct excitations (to an
orbital in E) must comply with the numbers given in the
appendix at 6.3.

iii. If nk = 0, then propose Cfail, else continue.
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iv. Choose one of these nk pairs of excitation vectors k(1), k(2).

v. Calculate p′ := o(kp−k(1)), q′ := o(kq+k(1)), r′ := o(kr−k(2))

and s′ := o(ss + k(2)).

vi. If |{p, q, r, s} \ {p′, q′, r′, s′}| 6= 4, then propose Cfail.

vii. Set {n}′ := ({n}ex)p
′,q,′r′,s′
p,q,r,s .

5. For a left kink, propose a new configuration C ′ which is created by
adding a new kink at the position l′ with the state {n}′ in the previous
configuration C.

6. For a right kink, propose a new configuration C ′ which is created by
changing the state of the i-th kink to {n}′ and introducing a new kink
at the position l′ with the state {n(i)} in the previous configuration C.

Assuming a satisfied precondition and a successful proposal which is not
Cfail, the proposal probability is as follows:

p(C → C ′) =
pa1k

2 K ∆l nk

·



paT4

N(N − 1)
, for a T4 kink ,

paT6

N(N − 1)(N − 2)
, for a T6 kink ,

paT8

N(N − 1)(N − 2)(N − 3)
, for a T8 kink .

With the proposal probability for removing one kink from below, this yields
the following acceptance probability:

A(C → C ′) = min

[
1,
W (C ′)

W (C)

p(C → C ′)

p(C ′ → C)

]
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A(C → C ′) =



min
[
1,
W (C ′)

W (C)

pa1k

2 K ∆l nk

paT4

N(N − 1)

· 2 (nT4 + 1)

pr1k prT4

]
, if T4

min
[
1,
W (C ′)

W (C)

pa1k

2 K ∆l nk

paT6

N(N − 1)(N − 2)

· 2 (nT6 + 1)

pr1k prT6

]
, if T6

min
[
1,
W (C ′)

W (C)

pa1k

2 K ∆l nk

paT8

N(N − 1)(N − 2)(N − 3)

· 2 (nT8 + 1)

pr1k prT8

]
, if T8
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6.4.3 Remove one kink

Removing one kink is essentially combining two kinks into a single new kink.
For two T4 kinks, this is always possible, because in this representation, every
kink arises from the combination of two T4 kinks. Thus, the removal would
result in a new T4, T6 or T8 kink. In all other cases, one has to determine
the number of orbitals that differ in their occupation between the left and
the right state. If there are more than 8 differently occupied orbitals after
two kinks, this can not be combined into a single new kink. Therefore, if a
T4 kink has to be removed, one has to check if the previous and the following
state of the one to be removed differ in 4, 6 or 8 orbitals. If this is the case,
the kink can be removed, otherwise not.

S
ta

te
{n
}(
m

)

li li+1

{n(i−1)}

{n(i)}

{n(i+1)} Randomly, a kink at position i
shall be removed from the path. It
has been checked that the differ-
ence in orbitals between {n(i−1)}
and {n(i+1)} is exactly 4, 6 or 8.
As it is indicated in the left exam-
ple, there are two different ways
to undo the creation of a single
kink. It can either be removed as a
left kink (green) or as a right kink
(blue).

Precondition: K > 2

1. Decide to remove an x-Kink with x ∈ {T4, T6, T8} with given proba-
bilities prT4, prT6, prT8.

2. Count the number nx of x-Kinks at their position i which satisfy
∆({n(i−1)}, {n(i+1)}) ∈ {4, 6, 8}.

3. If nx = 0, then propose Cfail.

4. Choose one of the nx kinks with its position i.

5. Decide whether to remove a left or a right kink.
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(a) If a left kink will be removed, propose C ′ which is created by
removing the kink at position i in C.

(b) If a right kink will be removed, propose C ′ which is created by
removing the kink at position i in C and changing the kink at the
position li+1 to be at the former position li.

Assuming K > 2 and nx > 0, the probability for proposing a specific removal
is only determined by the number of possible positions Nx, which results in
the following proposal probability:

p(C → C ′) =
pr1k

2
·



prT4

nT4

, if T4

prT6

nT6

, if T6

prT8

nT8

, if T8

With the proposal probability for adding one kink from above, this yields
the following acceptance probability:

A(C → C ′) = min

[
1,
W (C ′)

W (C)

p(C → C ′)

p(C ′ → C)

]

A(C → C ′) =



min
[
1,
W (C ′)

W (C)

pr1k prT4

2 nT4

· 2 (K − 1)∆l(C ′) nk(C ′) N(N − 1)

pa1k paT4

]
, if T4

min
[
1,
W (C ′)

W (C)

pr1k prT6

2 nT6

· 2 (K − 1)∆l(C ′) nk(C ′) N(N − 1)(N − 2)

pa1k paT6

]
, if T6

min
[
1,
W (C ′)

W (C)

pr1k prT8

2 nT8

· 2 (K − 1)∆l(C ′) nk(C ′) N(N − 1)(N − 2)(N − 3)

pa1k paT8

]
, if T8
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6.5 Outsourced calculations

Computation of the estimator of the mean occupation number in chapter
(2.5.5).

〈nx〉 = − 1

β

1

Z

∑
c

[(
K−1∏
i=0

Aoff{n(i)}{n(i+1)}

)
∂

∂εx
exp(x)

+ exp(x)
∂

∂εx

(
K−1∏
i=0

Aoff{n(i)}{n(i+1)}

)]

= − 1

β

1

Z

∑
c

[
− β neffx

+
∑
i<K

∆({n(i)},{n(i+1)})=4

β̃2(n
(i)
x + n

(i+1)
x )W III

{n(i)}{n(i+1)}

2 A2T
{n(i)}{n(i+1)}

]
· w(c)

=
1

Z

∑
c

[
neffx

−
∑
i<K

∆({n(i)},{n(i+1)})=4

β̃(n
(i)
x + n

(i+1)
x )W III

{n(i)}{n(i+1)}

2 M A2T
{n(i)}{n(i+1)}

]
· w(c)
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References for figures

Figure 1: (Dornheim et al., 2018)
Figure 2: (Schoof, 2016) Note from Author:” Average sign versus a) ba-
sis size and b) temperature for N = 4 particles and densities given by
rs ∈ [1, 2, 3, 4, 5], indicated by colours green, blue, red, violet ,and orange
respectively. In a), the temperature is Σ = 0.0625 and in b), NB = 515 basis
functions are used. Solid lines are guides to the eye. Note the different scales
of abscissia.”
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