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Abstract

This thesis is devoted to the ab initio path integral Monte Carlo (PIMC) simulation of
electrons at finite temperature. The antisymmetry of fermions with respect to exchange is
the origin of the notorious fermion sign problem (FSP). In particular, the FSP leads to an
exponential increase in computation time both with system size and inverse temperature and
prohibits standard PIMC simulations when fermionic exchange effects become important.

The first major goal of this thesis is the development and implementation of a new
approach—the permutation blocking PIMC (PB-PIMC) method—that is substantially less
affected by the FSP at medium to strong degeneracy. The basic idea is given by the com-
bination of antisymmetric imaginary-time propagators (determinants) with a fourth-order
factorization of the density matrix and a novel Monte Carlo sampling algorithm.

As a first test bed, electrons in a 2D harmonic trap are considered, since the PB-PIMC
results can be compared to exact reference data both from standard PIMC (strong coupling)
and configuration PIMC (CPIMC, weak nonideality). It is demonstrated that PB-PIMC
significantly extends standard PIMC towards stronger degeneracy and allows for the compu-
tation of highly accurate data for conditions where no other ab initio quantum Monte Carlo
(QMC) simulations are feasible.

The second major goal of this thesis is the description of the uniform electron gas (UEG)
at warm dense matter (WDM) conditions, i.e., at extreme density and temperature. For this
purpose, PB-PIMC is extended to the simulation of periodic systems and, again, proofs to be
a substantial improvement with respect to standard PIMC. It is shown that the combination of
PB-PIMC with the complementary CPIMC approach—which does not have a sign problem
for the ideal system, but breaks down with increasing coupling strength—makes it possible
to carry out ab initio QMC simulations of the warm dense UEG over the entire density range.

To extrapolate the QMC data for the finite model system to the thermodynamic limit, a
new finite-size correction, which is based on a combination of QMC data with the long-range
behavior from linear response theory, is presented and shown to be accurate within the full
scope of WDM. This allows to obtain extensive results for the interaction energy of the UEG
for a broad range of densities, temperature, and spin polarizations, with an unprecedented

accuracy of the order of 0.3%. Subsequently, these data are used as input for the construction
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of a complete parametrization of the exchange—correlation (XC) free energy, fxc, over the
entire WDM regime.

This XC-functional constitutes the capstone of the present thesis and provides a complete
thermodynamic description of the UEG. In addition to its expected utility as input for thermal
density functional theory, astrophysical models, and beyond, it allows to assess the accuracy
of previous approximations. In particular, comparisons to, e.g., linear response theory,
the finite-temperature Green function method, and PIMC calculations in the fixed-node
approximation are presented in detail.

Finally, the possibility to compute ab initio results for the static density response function
of the UEG by extending PB-PIMC to the simulation of the harmonically perturbed system
is outlined, motivated and demonstrated. The thesis is concluded with a brief outlook to
the reconstruction of the dynamic structure factor of the UEG from PIMC results for an
imaginary-time correlation function.



Kurzfassung

Die folgende Arbeit ist der ab initio Pfadintegral Monte-Carlo (PIMC) Simulation von
Elektronen bei endlicher Temperatur gewidmet. Die Antisymmetrie von Fermionen beziiglich
Vertauschens ist die Ursache des beriichtigten fermionischen Vorzeichenproblems (FVP).
Insbesondere fithrt das FVP zu einem exponentiellen Anstieg in der Rechenzeit sowohl mit
der Systemgrof3e, als auch mit der inversen Temperatur, und verhindert Standard-PIMC
Simulationen sobald fermionische Austauscheffekte wichtig werden.

Das erste Hauptziel dieser Arbeit ist die Entwicklung und Implementierung eines neuen
Zugangs—der permutation blocking PIMC (PB-PIMC) Methode—welche bei mittlerer bis
starker Entartung deutlich weniger vom FVP beeintrichtigt ist. Die Grundidee besteht in der
Kombination von anti-symmetrischen imaginir-zeitigen Propagatoren (Determinanten) mit
einer Faktorisierung der Dichtematrix in vierter Ordnung, und einem neuartigen Monte-Carlo
Sampling-Algorithmus.

Als erstes Testumfeld werden Elektronen in einer zwei-dimensionalen harmonischen
Falle betrachtet, da die PB-PIMC Ergebnisse hier mit exakten Referenzdaten von Standard-
PIMC (starke Kopplung) und Configuration PIMC (CPIMC, schwache Nicht-Idealitit)
verglichen werden konnen. Es wird gezeigt, dass PB-PIMC den Standard-PIMC Zugang
hin zu deutlich groBerer Entartung erweitert, und die Berechnung hochakkurater Daten fiir
Parameterbereiche erlaubt, welche fiir kein anderes Quanten-Monte-Carlo (QMC) Verfahren
zuginglich sind.

Das zweite Hauptziel dieser Arbeit ist die Beschreibung des homogenen Elektronengases
(HEG) unter Bedingungen der warmen dichten Materie (WDM), das heil3t, bei extremen
Dichten und Temperaturen. Zu diesem Zweck wird PB-PIMC fiir die Simulation periodischer
Systeme erweitert, und es wird erneut eine substantielle Verbesserung im Vergleich zu
Standard-PIMC gefunden. Es wird gezeigt, dass die Kombination von PB-PIMC mit dem
komplementiren CPIMC Zugang—welcher kein Vorzeichenproblem fiir das ideale System
aufweist, aber mit zunehmender Kopplungsstirke versagt—die Durchfiihrung von ab initio
QMC-Simulationen des warmen dichten HEGs iiber den gesamten Dichtebereich ermdéglicht.

Um die QMC-Daten fiir endliche Modellsysteme zum thermodynamischen Limes zu

extrapolieren, wird eine neue Finite-Size-Korrektur prasentiert, welche auf einer Kombination
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der QMC-Daten mit dem langreichweitigen Verhalten der Linear-Response-Theorie basiert,
und iiber den gesamten WDM-Parameterbereich akkurat ist. Dies ermdglicht die Berechnung
umfangreicher Ergebnisse fiir die Wechselwirkungs-Energie des HEGs iiber einen weiten
Bereich von Dichten, Temperaturen, und Spin-Polarisierungen, mit einer zuvor unerreichten
Genauigkeit in der GroBenordnung von 0.3%. Anschlieend werden diese Daten als Input
fiir die Konstruktion einer vollstindigen Parametrisierung der freien Austausch-Korrelations
Energie, fxc, verwendet, welche den gesamten WDM-Bereich abdeckt.

Dieses Austausch-Korrelations-Funktional stellt das kronende Ergebnis der vorliegen-
den Arbeit dar und bietet eine vollstindige thermodynamische Beschreibung des HEGs.
Zusitzlich zu dem erwarteten Nutzen als Input fiir beispielsweise die thermische Dichte-
funktionaltheorie und astrophysikalische Modelle, ermoglicht dies die Beurteilung der
Genauigkeit fritherer Ndaherungen. Insbesondere werden detaillierte Vergleiche zu, unter
anderem, der Linear-Response-Theorie, der thermischen Green-Funktions Methode, und
PIMC-Rechnungen unter der Nidherung fixierter Knotenflichen présentiert.

SchlieBlich wird die Moglichkeit zur Berechnung von ab initio Ergebnissen fiir die statis-
che Antwortfunktion des HEGs unter Erweiterung des PB-PIMC Zugangs zur Simulation
des harmonisch gestorten Systems skizziert, motiviert, und demonstriert. Die Arbeit wird
mit einem knappen Ausblick iiber die Rekonstruktion des dynamischen Strukturfaktors
des HEGs ausgehend von PIMC Ergebnissen fiir eine imaginérzeitige Korrelationsfunktion

abgeschlossen.
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Chapter 1
Introduction

The raison d’étre of modern computational physics is the numerical solution of the well-
known, but highly complex equations that describe the universe around us. This is necessary
since, in Paul Dirac’s words [1], "the fundamental laws necessary for the mathematical
treatment of a large part of physics and the whole of chemistry are thus completely known,
and the difficulty lies only in the fact that application of these laws leads to equations that
are too complex to be solved."

No less than Richard Feynman picked up this challenge and outlined two completely dif-
ferent strategies forward: (i) the construction of a quantum-simulator [2], or general quantum
computer [3, 4], that uses the intrinsically quantum mechanical nature of our world to com-
pute properties of specific materials (thereby providing a solution to, e.g., the Schrodinger
equation without having to do the math), and (ii) the mapping of a complicated quantum
system onto an ensemble of classical ring-polymers via the path integral formalism [5, 6].

Despite the paradigm changing nature of the first idea and its many theoretical advan-
tages', the field of quantum computation still remains in its infancy [10] and various practical
challenges prevent the large-scale application to realistic many-body problems, see, e.g.,
Ref. [11]. Hence, the present work is devoted to Feynman’s second idea, i.e., the formulation
of thermodynamic expectation values as high-dimensional integrals in the imaginary-time
path integral formalism [12]. Since the high dimensionality quickly renders standard quadra-
ture methods impractical, one usually makes use of stochastic integration methods, which,
remarkably, are almost completely unaffected by this problem [13, 14]. Here, stochastic
implies the use of random numbers, hence the umbrella term Monte Carlo methods [15].

In particular, the utilization of the Metropolis Monte Carlo algorithm [16—18] within
the imaginary-time path integral formulation is the basic idea of the highly successful

LOf particular relevance in the context of the present work is the absence both of the fermion sign problem
[7, 8], and the dynamical sign problem in time-dependent quantum Monte Carlo simulations [9].
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path integral Monte Carlo (PIMC) method [19-21]. Since its first applications to the
simulation of *He in the 1960s [22, 23], PIMC has been of fundamental importance for the
investigation of many exciting physical effects such as superfluidity [24—28], Bose—FEinstein
condensation [29, 30] and collective excitations [31-34]. Moreover, recent advances in Monte
Carlo sampling techniques [35, 36] now allow for quasi-exact® simulations of up to N ~ 10*
bosons (such as *He) or boltzmannons (distinguishable particles, e.g., Refs. [37, 38]).
Unfortunately, for the even more important case of fermions (such as electrons, in which I
am interested in this work), the situation turns out to be entirely different. The antisymmetry
of the fermionic density matrix with respect to pair exchange requires a complete summation
over all N! possible permutations (with N being the number of fermions from the same
particle species, e.g., spin-up electrons), where each term has either a negative or positive
sign, depending on the parity of a particular permutation [5]. This can result in an almost
complete cancellation of different contributions, which, ultimately, might lead to a vanishing
signal-to-noise ratio. This is the origin of the notorious fermion sign problem (FSP) [39, 40],
which causes an exponential increase in the computation time both with system size N
and also with inverse temperature 3 = 1/kgT (with T and kg denoting temperature, and
Boltzmann constant, respectively). Further, I mention that the FSP in Metropolis Monte
Carlo simulations has been shown to even be N P-hard for certain types of Hamiltonians [40].
In practice, the FSP prevents standard PIMC simulations of fermions at strong degeneracy,
i.e., towards low temperature and weak coupling [41-43]. More specifically, this eliminates
the possibility of PIMC simulations of electrons at warm dense matter (WDM, see Sec. 1.2)

conditions, and overcoming this obstacle constitutes a central goal of the present work.

1.1 Path Integral Monte Carlo Simulation of Fermions

Being inspired by the success of the fixed-node approximation [44, 45] in ground-state
quantum Monte Carlo (QMC) simulations [46, 47], Ceperley introduced an extension of
this idea to finite temperature [48, 49], often denoted as restricted PIMC (RPIMC). The
basic idea is to use the nodes of the fermionic density matrix to recast the partition function
into a sum that only contains positive terms. While being formally exact?, the required
complete knowledge of the nodal structure is equivalent to a solution of the full many-body
problem, thereby rendering the RPIMC calculation obsolete. Therefore, in practice, one uses

approximate trial nodes—typically those of the ideal density matrix. In a nutshell, RPIMC

2Here, quasi-exact means that the exact result is recovered in the limit of infinitely many Monte Carlo steps,
or, equivalently, that the statistical uncertainty can be made arbitrarily small.
3Note that the formally exact nature of RPIMC was disputed by Filinov [50, 51].
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allows for fermionic QMC simulations without a sign problem at arbitrary degeneracy*, but
this comes at the cost of an uncontrolled approximation® such that the quasi-exact ab initio
character of standard PIMC is lost. Nevertheless, RPIMC has been applied to the simulation
of many realistic warm dense matter applications, e.g., Refs. [53-58], which makes a critical
assessment of the nodal error highly desirable®.

A different strategy to at least mitigate the FSP is given by the introduction of anti-
symmetric imaginary-time propagators, i.e., determinants [41, 60-62]. This allows one to
combine permutations of different signs into a single term (often denoted as blocking), so
that a substantial part of the cancellation is carried out before the Monte Carlo evaluation.
The thus achieved reduction of the FSP has successfully been exploited within the fermionic
PIMC simulations of numerous systems by Filinov and co-workers, see, e.g., Refs. [63-71].

Unfortunately, as I will demonstrate in this work, there is a major problem with this
approach. With increasing quantum degeneracy, i.e., towards low temperature and weak
coupling, one either looses the benefits from the determinants or the quasi-exact nature of
the PIMC methods. This is particularly disadvantageous, as the FSP is most severe precisely
in this regime. This problem is solved by the new permutation blocking PIMC (PB-PIMC)
approach [72], the development, implementation, and benchmarking of which constitutes the
first central achievement of my thesis (see Sec. 3.1).

A detailed overview over different thermodynamic QMC methods for the simulation of
fermions, including the configuration PIMC (CPIMC) approach that has been developed in
our group [73-76] and has played an important role for the development of PB-PIMC [72, 77],
can be found in Chpt. 2.

1.2 The Uniform Electron Gas at Warm Dense Matter Con-
ditions

Over the last decade, there has been remarkable progress in the investigation of so-called
warm dense matter [78, 79], which is of high relevance for, e.g., astrophysical objects such as
brown and white dwarfs [80-84], giant planets [85-88], and meteor impacts [83]. Moreover,
WDM plays an important role in inertial confinement fusion research [89-91], see Chpt. 2

for an extensive overview. From an experimental point of view, WDM conditions are now

4Note that, in practice, the reference point freezing problem [52] might prevent RPIMC simulations at low
temperature and high density, see Chpt. 2 for more details.

>In the ground state, the nodes are variational with respect to the energy E, which can be exploited for
optimization. At finite temperature, the same is true only for the free energy F', a quantity that is not easily
accessible within a PIMC simulation and requires an additional coupling constant integration [52], see Sec.6.2.

®This was first achieved in 2015 by Schoof ef al. [59] using the recent Configuration PIMC method.
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routinely investigated at large research centers such as the national ignition facility (NIF) [92],
the Linac Coherent Light Source (LCLS) [93-95], or the European X-FEL (i.e., free electron
laser) near Hamburg [96, 97]. This extreme state (i.e., high temperature and density) is
typically characterized by two parameters being of the order of unity: the Briickner parameter
(also known as Wigner—Seitz radius) ry = (47n/ 3)_1/ 3 and the degeneracy temperature’
0 = kgT /Er, with Er denoting the Fermi energy. A thorough theoretical description of
WDM is highly nontrivial [79] as it must incorporate the intricate interplay of (i) fermionic
exchange, (ii) long-range Coulomb coupling, and (iii) thermal excitation effects. Since ab
initio quantum Monte Carlo simulations of realistic warm dense matter applications are
severely limited by the fermion sign problem, the combination of a density functional theory
(DFT) treatment of the electrons with a classical molecular dynamics (MD) simulation for the
heavier (and, thus, often classically treated) ions constitutes the working horse in this field [99—
103]. More specifically, for each MD-step of the ions, a thermal DFT calculation [104-106]
of the electronic sub-system, which is subject to the attractive Coulomb potential of the ions,
is carried out.

The basic idea of density functional theory is to map the nonideal many-body system
of interest onto an effective single-particle problem, which leads to a great reduction in
computational cost. At finite temperature, the total free energy is expressed as a functional of

the electronic density n as [107]
Fn] = Ko[n] — T So[n] + Fu[n] + Fxc[n] (1.1)

where Ky and Sy correspond to the ideal (i.e., non-interacting) kinetic energy and entropy,
Fy to the mean field Coulomb contribution, and F. to the exchange—correlation free energy.
The task at hand for the DFT simulation?® is then to find the particular electronic density
that minimizes F[n]. While the first three terms on the rhs. of Eq. (1.1) are known, the
exact knowledge of Fy.[n] would presuppose the solution of the full many-body problem so
that nothing was gained. Therefore, the quality of the DFT results crucially depends on the
accuracy of the employed approximation for F;., which must be supplied as input in advance.

In the ground state, a major step towards the arguably unrivaled success of DFT simula-
tions [108-110] is the so-called local density approximation (LDA), where the exchange—

correlation energy of the inhomogeneous system of interest is locally approximated by the

"Note that @ is related to the usual degeneracy parameter, y = nlg, with Ag = /273 being the thermal

wavelength (in atomic units), by 8 = 4x/(312)*3y2/3, see, e.g., Ref. [98].
8Note that for 7 = 0, the minimization is carried out with respect to the total energy E[n] and the entropic
contribution vanishes.
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value for a uniform electron gas’ (UEG) of the same density, EVEC[n]. Therefore, the LDA
requires accurate knowledge of the exchange—correlation energy of the UEG over the entire
relevant density range. This was achieved in the beginning of the 1980s, when Ceperley
and Alder [111] employed ground-state QMC calculations to obtain the energy, which was
subsequently used as input for parametrizations, most notably by Vosko et al. [112] and
Perdew and Zunger [113]. In addition, these parametrizations form the basis of the more
sophisticated generalized gradient approximations, with the Perdew—Burke—Ernzerhof (PBE)
functional [114] being one of the most highly cited works in physics!©.

Naturally, at warm dense matter conditions the use of ground-state exchange—correlation
functionals is often not appropriate [115-117]. To carry over the success of ground-state
DFT—starting with LDA—to finite temperature [118], we require a parametrization of the
exchange—correlation free energy of the UEG with respect to both density and temperature'!,
which, in turn, depends on accurate simulation data for the warm dense electron gas. While
there have long existed many results based on various uncontrolled approximations [107, 119—
128] (see Ref. [129] for a recent overview), their respective accuracy has remained unclear.

In the present work, we!? apply the new PB-PIMC method—in combination with CPIMC,
which is used at strong degeneracy and weak coupling—to the simulation of the warm dense
UEG (Chpt. 4) and derive a highly accurate extrapolation to the thermodynamic limit (finite-
size correction, see Sec. 5.1). The final construction of a complete parametrization'? of
fxe(rs, 0,&) with respect to density (rg), temperature (6), and spin-polarization (&) that
covers the entire WDM regime and is based on our extensive new ab initio data constitutes
the capstone of this thesis (Sec. 6.2). This allows us to assess the accuracy of previous
approximations, and we find systematic errors of Afxc ~ 1 —10% in all parametrizations.

Although the importance of DFT for modern many-body theory can hardly be overstated,
it should be noted that the accurate description of the UEG is of high importance for many
other applications. In the ground state, it has facilitated key insights such as Fermi-liquid
theory [130, 131], the quasi-particle picture of collective excitations [132, 133], and the
Bardeen—Cooper—Schrieffer (BCS) theory of superconductivity [134]. Moreover, the UEG
is often employed as a simple model for conducting electrons in alkali metals [131, 135]

9The uniform electron gas is given by an infinite system of Coulomb interacting electrons in a positive
neutralizing background, see Chpt. 2 for a detailed introduction.

101y December 2017, scholar. google.com lists over 79.000 citations for PBE [114], and over 13.900 citations
for the ground-state QMC study by Ceperley and Alder [111].

1A third variable is the spin-polarization & = [NT — N*+|/(NT +N*+), which is necessary for DFT calculations
in the local spin-density approximation [107].

12 A5 a rule of thumb, the usage of I refers strictly to my own work, whereas we indicates the collaboration
with my co-workers.

I3Note that lower case letters denote energies per particle, i.e., fxc = Fxc/N.
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(especially Na [136]) and qualitatively reproduces phenomena such as Wigner crystalliza-
tion [137-139] and a spin-polarization transition [140].

Similarly, at warm dense matter conditions the thermodynamic description of the UEG
(i.e., the parametrization of fy.) is of high importance as input for, e.g., quantum hydrody-
namics [141, 142] and astrophysical models [143—145], or for the further development of
Fermi-liquid theory [146].

In addition, the UEG is frequently employed as a test bed for the development of many-
body simulation methods, e.g., Refs. [147-156]. Thus, the extensive new QMC data for
various quantities and the parametrization of fxc(rs, 0, &) that are presented within this work
will also be valuable as a benchmark for the future development of methods. Moreover,
these new results put us in the unique position to gauge the accuracy of various previous
approximations such as RPIMC [157], dielectric methods (linear response theory) [158, 126,
128], and finite-temperature Green functions [155, 159, 160, 59], which is presented in detail
in Chpt. 2.

1.3 Outline: How to read this Thesis

The present work is a cumulative thesis and contains all my publications that are of relevance
to it (see Sec. 1.3.1 for a complete list). To increase the readability and provide a golden
thread, I decided against a chronological order and, instead, grouped together different papers
that are devoted to a similar topic. Chapter 2 contains an extensive review article of the
UEG at WDM conditions, Ref. [161], and can be read from cover to cover to get a complete
overview of our work and key results, including the state of the art when we entered the
field, the development of new QMC methods, the construction of the parametrization of f,
the extensive comparison to various different approximations, and more. All subsequent
sections can be viewed as an appendix to Chpt. 2, and contain the various publications in
which we investigated in more technical detail the separate aspects of our work, such as
the development of PB-PIMC and its first application to the UEG. Each of these sections is
accompanied by a brief introduction that outlines the specific tasks that are addressed in the
corresponding papers, and puts them into the broader context of this thesis.

* Chapter 2: The Uniform Electron Gas at Warm Dense Matter Conditions

An extensive review [161] of the uniform electron gas at warm dense matter conditions.

Provides a concise overview of WDM applications and the corresponding system
parameters and a comprehensive discussion of previous works in the field. All our key
results are presented in detail and compared to other theories and approximations.
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* Chapter 3: Method Development
Motivation for and situation during the development of the PB-PIMC approach, and its

first application to electrons in a 2D harmonic confinement, Ref. [72]. Implementation
of a new center-two particle correlation function and proof of concept regarding
future investigations in this direction, Ref. [38]. First application of PB-PIMC to
the warm dense UEG, comparison to CPIMC and RPIMC, and demonstration of the
complementary nature to the former, Ref. [77].

* Chapter 4: Combination of PB-PIMC and CPIMC
Combination of PB-PIMC (at stronger coupling) and CPIMC (at higher degeneracy) to

achieve an accurate description of the warm dense UEG over the entire density range,
both for the spin-polarized (Ref. [162]) and unpolarized (Ref. [163]) case.

* Chapter 5: Finite-Size Corrections, Static Structure Factors and Pair Correlation

Functions
Discussion of the extrapolation of QMC data for a finite number of electrons to

the thermodynamic limit!#

and derivation of a new, improved finite-size correction,
Ref. [164]. Presentation of extensive results for the static structure factor, Ref. [165],
and discussion of the pair-correlation functions, including a comparison to dielectric ap-
proximations (Sec. 5.2.1). Road map towards the construction of a full parametrization

of fxe(rs,0,E), Ref. [42].

* Chapter 6: Parametrization of the Exchange-Correlation Free Energy

Overview of existing parametrizations of fx., including a detailed discussion of their
respective construction and range of applicability, Ref. [129]. Presentation of our
new, highly accurate parametrization of fx.(rs,0,&) based on our ab initio QMC
data, Ref. [166]. Comparison against previous results and presentation of consistency-
checks.

* Chapter 7: The Inhomogeneous Electron Gas

Discussion of the extension of our QMC methods to the simulation of the harmonically
perturbed electron gas to compute the static density response function and local-field
correction. Proofs of principle are given regarding both PB-PIMC, Ref. [167], and
CPIMC, Ref. [168].

* Chapter 8: Other Works
Collection of further publications that are of relevance to this thesis, in particular the

141 e., to the limit of an infinite amount of electrons, at a constant density.
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construction of ion—ion potentials on the basis of the static density response of the
UEG, Ref. [169], and a brief review of various aspects of the recent research initiative
SFB-TR24 including a juxtaposition of the UEG with the classical one-component
plasma, Ref. [98].

* Chapter 9: Summary and Outlook

Summary and discussion of the present results regarding both the development of
the PB-PIMC method and the accurate description of the warm dense UEG. Concise
overview of possible future applications of PB-PIMC and discussion of the utility of
the UEG results both as input for, e.g., DFT or quantum hydrodynamics, as benchmark
for method development, and beyond. Finally, the feasibility to obtain the dynamic
structure factor of the UEG on the basis of ab initio PIMC simulations is demonstrated
and motivated (Sec. 9.2.3).

1.3.1 List of related Publications

The following list contains all publications that are included in this work. To increase the
transparency, for each paper I explicitly state my contribution to it. Moreover, as a result of
the close collaboration with S. Groth (SG), there are six publications with equal contributions
from SG and the me (TD). In the following, these articles are indicated by the green font of

the author names.

1. T. Dornheim, S. Groth, A. Filinov and M. Bonitz, Permutation blocking path integral
Monte Carlo: a highly efficient approach to the simulation of strongly degenerate
non-ideal fermions, New J. Phys. 17, 073017 (2015)

* TD contributed 85% to this work by developing and implementing the permu-
tation blocking PIMC algorithm, and carrying out all simulations. In addition,
TD wrote the entire manuscript, and created all figures. The paper is included on
p. 134.

2. T. Dornheim, T. Schoof, S. Groth, A. Filinov, and M. Bonitz, Permutation blocking
path integral Monte Carlo approach to the uniform electron gas at finite temperature,
J. Chem. Phys. 143, 204101 (2015)

* TD contributed 80% by extending the PB-PIMC algorithm to the simulation of
the electron gas and carrying out all calculations. Further, TD wrote the entire

manuscript and created all figures except Fig. 1. The paper is included on p. 165.


http://iopscience.iop.org/1367-2630/17/7/073017 
http://scitation.aip.org/content/aip/journal/jcp/143/20/10.1063/1.4936145 
http://scitation.aip.org/content/aip/journal/jcp/143/20/10.1063/1.4936145 
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3. T. Dornheim, H. Thomsen, P. Ludwig, A. Filinov, and M. Bonitz, Analyzing Quantum
Correlations Made Simple, Contrib. Plasma Phys. 56, 371 (2016)

* TD contributed 50% to this work by implementing a new correlation function
into the PB-PIMC algorithm, and carrying out all calculations. In addition, TD
wrote substantial parts of the text. The paper is included on p. 154.

4. S. Groth, T. Schoof, T. Dornheim, and M. Bonitz, Ab Initio quantum Monte Carlo
simulations of the uniform electron gas without fixed nodes, Phys. Rev. B 93, 085102
(2016)

* TD contributed 20% to this work by carrying out all PB-PIMC calculations.
Moreover, TD wrote the PB-PIMC specific section of the text and worked on the

rest of the manuscript. The paper is included on p. 174.

5. T. Dornheim, S. Groth, T. Schoof, C. Hann, and M. Bonitz, Ab initio quantum Monte

Carlo simulations of the uniform electron gas without fixed nodes: The unpolarized
case, Phys. Rev. B 93, 205134 (2016)

* TD contributed 45% by further developing the PB-PIMC method to allow for
simulations of the unpolarized electron gas and carrying out all PB-PIMC simu-
lations. In addition, TD wrote half of the manuscript, in particular the PB-PIMC
specific parts. The paper is included on p. 187.

6. T. Dornheim, S. Groth, T. Sjostrom, F.D. Malone, W.M.C. Foulkes, and M. Bonitz,
Ab Initio Quantum Monte Carlo Simulation of the Warm Dense Electron Gas in the
Thermodynamic Limit, Phys. Rev. Lett. 117, 156403 (2016)

* TD contributed 45% by carrying out all PB-PIMC simulations, writing substantial
parts of the manuscript and creating all figures. The central idea for the finite-size
correction was worked out in equal parts by TD and SG. The paper is included
on p. 205.

7. S. Groth, T. Dornheim, and M. Bonitz, Free energy of the uniform electron gas:
Testing analytical models against first-principles results, Contrib. Plasma Phys. 57,
137 (2017)

* TD contributed 45% by writing substantial parts of the text. The paper is included
on p. 243.


http://onlinelibrary.wiley.com/doi/10.1002/ctpp.201500120/abstract;jsessionid=7614DA5945EBEFDF42F8E2452B401259.f04t04
http://link.aps.org/doi/10.1103/PhysRevB.93.085102 
http://link.aps.org/doi/10.1103/PhysRevB.93.205134 
http://link.aps.org/doi/10.1103/PhysRevLett.117.156403
http://onlinelibrary.wiley.com/doi/10.1002/ctpp.201600082/abstract
http://onlinelibrary.wiley.com/doi/10.1002/ctpp.201600082/abstract
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T. Dornheim, S. Groth, ED. Malone, T. Schoof, T. Sjostrom, W.M.C. Foulkes, and
M. Bonitz, Ab initio quantum Monte Carlo simulation of the warm dense electron gas,
Phys. Plasmas 24, 056303 (2017)

* TD contributed 45% by writing substantial parts of the manuscript and by creating
three of the figures. The paper is included on p. 231.

. S. Groth, T. Dornheim, T. Sjostrom, E.D. Malone, W.M.C. Foulkes, and M. Bonitz,

Ab initio Exchange—Correlation Free Energy of the Uniform Electron Gas at Warm
Dense Matter Conditions, Phys. Rev. Lett. 119, 135001 (2017)

* TD contributed 45% by carrying out all PB-PIMC calculations and writing
substantial parts of the text. The central ideas needed for the parametrization of
the exchange—correlation free energy were worked out in equal parts by TD and

SG. The paper is included on p. 255.

T. Dornheim, S. Groth, J. Vorberger, and M. Bonitz, Permutation-blocking path-
integral Monte Carlo approach to the static density response of the warm dense electron
gas, Phys. Rev. E 96, 023203 (2017)

* TD contributed 80% to this work by extending the PB-PIMC algorithm to the
harmonically perturbed electron gas, implementing the related observables, and
carrying out all simulations. Further, the entire text and all figures have been
produced by TD. The paper is included on p. 271.

S. Groth, T. Dornheim, and M. Bonitz, Configuration path integral Monte Carlo
approach to the static density response of the warm dense electron gas, J. Chem. Phys.
147, 164108 (2017)

* TD contributed 15% to this work by providing PB-PIMC benchmark results and
partly working on the theory regarding the finite-size correction. The paper is

included on p. 286.

T. Dornheim, S. Groth, and M. Bonitz, Ab initio results for the static structure factor
of the warm dense electron gas, Contrib. Plasma Phys. 57, 468 (2017)

* TD contributed 80% to this work by performing the spline interpolations, writing
the bulk of the manuscript and creating all figures. The paper is included on
p. 216.


http://aip.scitation.org/doi/full/10.1063/1.4977920
https://link.aps.org/doi/10.1103/PhysRevLett.119.135001
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.96.023203
http://aip.scitation.org/doi/10.1063/1.4999907
http://aip.scitation.org/doi/10.1063/1.4999907
http://onlinelibrary.wiley.com/doi/10.1002/ctpp.201700096/full
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13. Zh.A. Moldabekov, S. Groth, T. Dornheim, M. Bonitz, and T.S. Ramazanov, lon
potential in non-ideal dense quantum plasmas, Contrib. Plasma Phys. 57, 532 (2017)

* TD contributed 10% to this work by working on the text, in particular the linear
response theory section. The paper is not included as a full text version in this

work.

14. T. Ott, H. Thomsen, J. Abraham, T. Dornheim, and M. Bonitz, Recent progress in
the theory and simulation of strongly correlated plasmas: phase transitions, transport,

quantum, and magnetic field effect, accepted for publication in Eur. Phys. J. D

* TD contributed 10% to this work by writing the PB-PIMC specific parts of the
text and providing references. The paper is not included as a full text version in

this work.

15. T. Dornheim, S. Groth, and M. Bonitz, The Uniform Electron Gas at Warm Dense
Matter Conditions, arXiv:1801.05783, submitted as an invited article to Phys. Rep.
(2018)

* This review was written in equal parts by SG (45%) and me (45%). It constitutes
the centerpiece of both our PhD theses and is included on p. 14 (Chpt. 2). To pro-
vide maximum transparency, a detailed breakdown of our respective contributions
to the different chapters is listed in the following:

— 1. Introduction: SG and TD contributed equally.
— 2. Important quantities and definitions: SG and TD contributed equally.

— 3. Dielectric Approximations and Linear Response Theory: written by
SG.

— 4. Other Approximate Approaches: written by SG (20%, half of Sec. 4.1)
and TD (80%, Sec. 4.2 and half of Sec. 4.1)

— 5. Quantum Monte Carlo Methods: SG wrote the CPIMC section (25%),
and TD the rest (75%).

— 6. Finite-Size Correction of QMC Data: written by TD .
— 7. Benchmarks of other methods: written by TD.
— 8. Parametrizations of the XC Free Energy: written by SG .

— 9. Inhomogeneous Electron Gas: QMC study of the density response:
SG wrote Sec. 9.3.2 (33%), and TD the rest (67%).

— 10. Summary and Outlook: SG and TD contributed equally.


http://onlinelibrary.wiley.com/doi/10.1002/ctpp.201700109/full
https://arxiv.org/abs/1801.05783




Chapter 2

The Uniform Electron Gas at Warm
Dense Matter Conditions

Our recently published highly accurate parametrization of the exchange—correlation free
energy over the entire warm dense matter regime [166] allows for the computation of all other
thermodynamic quantities of the uniform electron gas. The following review, Ref. [161],
aims to bring the ongoing investigation of the static properties of the UEG to a conclusion.

In addition to a broad motivation and a concise overview of the state of the art in the field,
we provide an extensive discussion of the most important theoretical methods, including
all approaches that are of relevance to the present work. In particular, we discuss in detail
the dielectric formalism (linear response theory, p. 10 et seq. in Ref. [161]) and different
approximation schemes for the static local field correction such as the Singwi—Tosi—Land—
Sjolander (STLS) approach that is of high importance both for the finite-size correction of
QMC data (see Sec. 5.1) and for the construction of the parametrization of the exchange—
correlation free energy fx. (see Sec. 6.2). Moreover, we provide an extensive yet accessible
discussion of fermionic QMC simulations at finite temperature (p. 18 et seq. in Ref. [161]).
In particular, the ubiquitous path integral Monte Carlo method is introduced (p. 19 et seq.)
and the fermion sign problem is discussed. To avoid the FSP, we employ two complementary
methods, namely the PB-PIMC approach (p. 26 et seq. in Ref. [161]) that was developed in
the present thesis and the CPIMC method by Schoof and co-workers (p. 31 et seq.).

Further, we address the extrapolation of QMC data to the thermodynamic limit (p. 45 et
seq. in Ref. [161]) and provide extensive comparisons of our new ab initio data for various
quantities to other approximations (p. 52 et seq. in Ref. [161]).

Of particular importance is the discussion of the exchange—correlation free energy (p. 59
et seq. in Ref. [161]), where we present the construction of our new parametrization and

gauge the accuracy of previous approximate results. Finally, we outline the possibility to use
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QMC simulations of the inhomogeneous electron gas to obtain accurate results for the static
density response of the UEG (p. 74 et seq. in Ref. [161]).

In a nutshell, Ref. [161] contains all our key results regarding the warm dense UEG and
can be read from cover to cover to get a comprehensive overview of the present thesis.
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Abstract

Motivated by the current high interest in the field of warm dense matter research, in this article we review the
uniform electron gas (UEG) at finite temperature and over a broad density range relevant for warm dense matter
applications. We provide an exhaustive overview of different simulation techniques, focusing on recent developments
in the dielectric formalism (linear response theory) and quantum Monte Carlo (QMC) methods. Our primary focus
is on two novel QMC methods that have recently allowed us to achieve breakthroughs in the thermodynamics of
the warm dense electron gas: Permutation blocking path integral MC (PB-PIMC) and configuration path integral
MC (CPIMC). In fact, a combination of PB-PIMC and CPIMC has allowed for a highly accurate description of the
warm dense UEG over a broad density-temperature range. We are able to effectively avoid the notorious fermion
sign problem, without invoking uncontrolled approximations such as the fixed node approximation. Furthermore,
a new finite-size correction scheme is presented that makes it possible to treat the UEG in the thermodynamic
limit without loss of accuracy. In addition, we in detail discuss the construction of a parametrization of the
exchange-correlation free energy, on the basis of these data — the central thermodynamic quantity that provides a
complete description of the UEG and is of crucial importance as input for the simulation of real warm dense matter
applications, e.g., via thermal density functional theory.

A second major aspect of this review is the use of our ab inito simulation results to test previous theories, includ-
ing restricted PIMC, finite-temperature Green functions, the classical mapping by Perrot and Dharma-wardana,
and various dielectric methods such as the random phase approximation, or the Singwi-Tosi-Land-Sjolander (both
in the static and quantum versions), Vashishta-Singwi and the recent Tanaka scheme for the local field correction.
Thus, for the first time, thorough benchmarks of the accuracy of important approximation schemes regarding vari-
ous quantities such as different energies, in particular the exchange-correlation free energy, and the static structure
factor, are possible. In the final part of this paper, we outline a way how to rigorously extend our QMC studies to
the inhomogeneous electron gas. We present first ab initio data for the static density response and for the static
local field correction.
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1. Introduction

1.1. The uniform electron gas at zero temperature

The uniform electron gas (UEG), often referred to as “jellium”, is one of the most important model sys-
tems in physics and quantum chemistry, and consists of Coulomb interacting electrons in a positive neutraliz-
ing background [1]. Therefore, it constitutes the quantum mechanical analogue of the classical one-component
plasma (OCP) [2] and qualitatively reproduces many physical phenomena [3] such as Wigner crystallization, spin-
polarization transitions, and screening. Often, it is used as a simple model system for conducting electrons in
alkali metals [1, 4]. The investigation of the UEG at zero temperature has lead to several key insights, like the
BCS theory of superconductivity [5], Fermi liquid theory [6, 1], and the quasi-particle picture of collective exci-
tations [7, 8]. Further, as a continuous correlated electronic quantum system, it has served as a workbench for
the development of countless computational many-body methods, most prominently dielectric approximations, e.g.,
Refs. [8, 9, 10, 11, 12, 13, 14] and quantum Monte Carlo (QMC) methods [15, 16, 17, 18, 19, 20, 21, 22]. Even
though the UEG itself does not represent a real physical system, its accurate description has been of paramount
importance for the unrivaled success of density functional theory (DFT) [23, 24], the working horse of modern many-
body simulations of realistic materials in solid state physics, quantum chemistry, and beyond [25, 26, 27]. Within
the DFT framework, the complicated interacting many-electron system is mapped onto an effective one-particle
(non-interacting) system via the introduction of an effective potential containing all exchange and correlation ef-
fects. While exact knowledge of the latter would require a complete solution of the many-body problem so that
nothing was gained, it can often be accurately approximated by the exchange-correlation energy of the UEG, using
a parametrization in dependence of density [28, 29, 30].

The first accurate data of the ferromagnetic and paramagnetic UEG were obtained in 1980 by Ceperley and
Alder [16], who carried out ground state QMC simulations (see Ref. [17] for a review) covering a wide range of
densities. Subsequently, these data were used as input for parametrizations, most notably by Vosko et al. [28] and
Perdew and Zunger [29]. Since then, these seminal works have been used thousands of times for DF'T calculations in
the local (spin-)density approximation (L(S)DA) and as the basis for more sophisticated gradient approximations,
e.g., Refs. [31, 32]. Note that, in the mean time, there have been carried out more sophisticated QMC simulations [33,
34, 35, 36, 37, 38], with Spink et al. [38] providing the most accurate energies available.

In addition to the exchange-correlation energy, there exist many parametrizations of other quantities on the
basis of QMC simulations such as pair distribution functions and static structure factors [39, 40, 41, 42] and the
momentum distribution [34, 35, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54]. Finally, we mention the QMC
investigation of the inhomogeneous electron gas [55, 56, 57, 58, 59], which gives important insights into the density
response formalism, see Sec. 9 for more details.

1.2. Warm dense matter

Over the last decades, there has emerged a growing interest in the properties of matter under extreme conditions,
i.e., at high temperature and densities exceeding those in solids by several orders of magnitude. This exotic state
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Figure 1: Temperature-density plane around the warm dense matter (WDM, orange) regime — Shown are lines of constant density
parameter rs (blue) and reduced temperature 6 (green). Purple and grey bubbles schematically sketch experimental and astrophysical
applications, respectively. The various parameter ranges have been taken from Refs. [60, 61].

is usually referred to as warm dense matter (WDM) and is characterized by two parameters being of the order of
unity: (i) the density parameter (Wigner-Seitz radius) r,, and (ii) the reduced temperature 0

3\'/* kT
Ts aB — (E) s 0= E—F 5 (1)

with Er being the Fermi energy defined in Eq. (5). Here rg plays the role of a quantum coupling parameter: at
high density (rs — 0), the electrons behave as an ideal Fermi gas and towards low density, the Coulomb repulsion
predominates, eventually leading to a Wigner crystal [62, 63, 64, 37]. Further,  can be understood as the quantum
degeneracy parameter, where 6 > 1 indicates a classical system (typically characterized by the classical coupling
parameter I' = 1/(rsagkpT), cf. the red line in Fig. 1); for an overview on Coulomb correlation effects in classical
systems, see ref. [65]. On the other hand, the case § < 1 characterizes a strongly degenerate quantum system.
Thus, in the WDM regime, Coulomb coupling correlations, thermal excitations, and fermionic exchange effects are
equally important at the same time. Naturally, this makes an accurate theoretical description of such systems most
challenging [66].

In nature, WDM occurs in astrophysical objects such as giant planet interiors [67, 68, 69, 70, 71, 72, 73, 74, 75,
76, 77], brown and white dwarfs [78, 79, 80, 81, 82] and neutron star crusts [83], see Refs. [60, 84] for a recent review.
Further areas of interest contain the physics of meteor impacts [81] and nuclear stewardship [85]. Another highly
important aspect of warm dense matter research is the concept of inertial confinement fusion [86, 87, 88, 89, 90, 91],
which could become a potentially nearly infinite source of clean energy in the future.

WDM conditions are now routinely realized at large research facilities such as the national ignition facility
(NIF) at Lawrence Livermore National Lab, California [92, 93], the Z-machine at the Sandia National Labs in
New Mexico [94, 95, 96, 97, 98], the Linac Coherent Light Source (LCLS) in Stanford, California [99, 100, 101],
FLASH and the European X-FEL (free electron laser) in Hamburg, Germany [102, 103] and other laser and free
electron laser laboratories. Moreover, we mention shock-compression experiments, e.g. [104, 105, 95]. Of particular
importance is X-ray Thomson scattering (XRTS), e.g. Refs. [106, 107, 108, 109, 110, 102, 111], which provides
a widespread diagnostics for warm dense matter experiments, see Ref. [112] for a review. More specifically, it
allows for the direct measurement of the dynamic structure factor, which can subsequently be used to obtain, for
example, the temperature [112]. Finally, we stress that WDM experiments allow for the investigation of many other
quantities, such as the dielectric function [113, 114], electrical and thermal conductivities [115, 116, 117, 118], the



electron-ion temperature equilibration [119] and even the formation of transient nonequilibrium states [120, 117].
As a schematic overview, in Fig. 1 various important applications are depicted in the density-temperature plane
around the warm dense matter regime. For a recent text book overview we refer to [121].

Despite the remarkable experimental progress, a thorough theoretical description of warm dense matter is still
lacking (even in the case of thermodynamic equilibrium), and it is well-known that simple analytic models do not
sufficiently reproduce experimental measurements [122, 123]. Naturally, an exact quantum mechanical treatment
that incorporates all correlation and excitation effects is not feasible. Unfortunately, quantum Monte Carlo methods
which often allow for accurate results in the ground state are not straightforwardly extended to the simulation of
fermionic matter at finite temperature. More specifically, exact fermionic path integral Monte Carlo (PIMC)
simulations (see Sec. 5.2) are severely hampered by the so-called fermion sign problem; nevertheless, there has been
made some progress in direct fermionic QMC simulations by Filinov and co-workers [124, 125, 126, 127, 128, 129,
130, 131, 132]. To avoid the fermion sign problem, usually the fixed node approximation is utilized [133, 134, 135]
(also “Restricted PIMC”, RPIMC, see Sec. 5.3) breaks down at low temperature and high density. Therefore,
RPIMC is not available over substantial parts of the warm dense regime, and the accuracy is, in general, unknown.

The probably most widespread simulation technique for warm dense matter is the combination of molecular
dynamics (for the heavy ions) with a thermal density functional theory description of the electrons [136, 137, 138],
usually denoted as DFT-MD [139, 140, 141, 142, 143]. Naturally, the decoupling of the ionic and electronic systems
according to the Born-Oppenheimer approximation might not be appropriate in all situations. In addition, similar
to the ground state, the accuracy of the DFT calculation itself strongly relies on the specific choice of the exchange-
correlation functional [144, 145]. An additional obstacle for thermal DFT calculations is the explicit dependence
of the exchange-correlation functional on temperature [146, 147], a topic which has only recently attracted serious
attention, but might be crucial to achieve real predictive capability [66, 148]. Even worse, at moderate to high
temperature, the usual thermal Kohn-Sham (KS) treatment of DFT becomes unfeasible, due to the increasing
number of orbitals necessary to reach convergence. For this reason, Militzer and co-workers have proposed to
combine RPIMC at high temperature with DFT elsewhere, and successfully applied this idea to the simulations of
many different materials at warm dense matter conditions [149, 150, 151, 152, 153, 154]. A possible extension of
KS-DFT towards stronger excitations is given by the so-called orbital free (OF) DFT [155, 156, 157, 158, 159, 160],
where the total electronic density is not represented by Kohn-Sham orbitals. While being computationally cheap
and, in principle, still exact, in practice orbital free DFT relies on an approximation for the ideal part of the (free)
energy [161], whereas the latter is treated exactly within KS-DFT. Since the ideal part usually constitutes the
largest contribution, it is widely agreed that OF-DFT does not provide sufficient accuracy, and, therefore, cannot
give a suitable description of warm dense matter [160]. A recent, more promising, strategy to extend KS-DFT
towards higher temperature has been introduced by Zhang and co-workers, see Refs. [162, 160, 163] for details.

On the other hand, even at relatively low temperature, when the electrons are in the ground state, a DFT
description for the electronic component is often not sufficient [144, 145]. For this reason, Ceperley, Pierleoni
and co-workers proposed to combine a classical Monte Carlo (instead of MD) for the heavy ions, with highly
accurate ground-state QMC calculations for the electrons. This so-called coupled electron-ion QMC (CEIMC)
method [164, 165, 166, 167] has subsequently been applied, e.g., to the (controversially discussed, see also the recent
experiments in Ref. [168]) liquid-liquid phase transition in hydrogen [169, 170]. Note that, within the CEIMC
approach, quantum effects of the ions can easily be included, e.g., Refs. [170]. In a similar spirit, Sorella and
co-workers [171, 172, 173, 174, 175, 176] introduced a combination of electronic ground state QMC calculations
with classical MD for the ions, although, to our knowledge, no consensus with CEIMC (and, for that matter, with
DFT-MD) simulations has been reached so far regarding liquid hydrogen.

In addition, there has been remarkable recent progress in the development of real time-dependent DFT calcula-
tions [177, 178, 179, 180], which would also give direct access to the dynamic properties of the electrons, although
this topic remains in its infancy due to the high computational cost of accurate exchange correlation functionals.

Finally, we mention the possiblity of so-called quantum-classical mappings employed by Dharma-wardana et
al. [181, 182, 183, 184], where the complicated quantum mechanical system of interest is mapped onto a classical
model system with an effective “quantum temperature”, see Sec. 4.2 for more details.

1.3. The warm dense electron gas

Of particular interest for the theoretical description of WDM are the properties of the warm dense uniform
electron gas. As mentioned above, an accurate parametrization of the exchange-correlation free energy with respect
to temperature 6, density 75, and spin-polarization £ is of paramount importance for thermal DFT simulation both
in the local (spin) density approximation or as a basis for more sophisticated gradient approximations [185, 32].
Further, direct applications of such a functional include astrophysical models [186, 187, 188, 189, 190, 191], quantum



hydrodynamics [192, 193, 194], and the benchmark for approximations, such as finite-temperature Green function
methods [195, 196], for a recent study see Ref. [197].

However, even the description of this simple model system, without an explicit treatment of the ionic component,
has turned out to be surprisingly difficult. Throughout the eighties of the last century, Ebeling and co-workers [198,
199, 200, 201, 202] proposed various interpolations between different known limits (i.e., high temperature, weak
coupling, and the ground state). A more sophisticated approach is given by the dielectric formalism, which, at
finite temperature, has been extensively developed and applied to the UEG by Ichimaru, Tanaka, and co-workers,
see Refs. [203, 204, 205, 206, 207, 208]. For a more comprehensive discussion of recent improvements in this field,
see Sec. 3. In addition, we mention the classical-mapping based scheme by Perrot and Dharma-wardana [209, 210],
the application of which is discussed in Sec. 4.2.1. Unfortunately, all aforementioned results contain uncontrolled
approximations and systematic errors of varying degrees, so that their respective accuracy has remained unclear.

While, in principle, thermodynamic QMC methods allow for a potentially exact description, their application
to the warm dense UEG has long been prevented by the so-called fermion sign problem, see Sec. 5. For this
reason, the first QMC results for this system were obtained by Brown et al. [211] in 2013 by employing the fixed
node approximation (i.e., RPIMC). While this strategy allows for QMC simulations without a sign problem, this
comes at the cost of the exact ab-initio character and it has been shown that results for different thermodynamic
quantities are not consistent [212]. Nevertheless, these data have subsequently been used as the basis for various
parametrization [213, 212, 214].

This overall unsatisfactory situation has sparked remarkable recent progress in the field of fermionic QMC
simulations of the UEG at finite temperature. The first new development in this direction has been the configuration
path integral Monte Carlo method (CPIMC, see Sec. 5.5), which, in contrast to standard PIMC, is formulated in
second quantization with respect to plane waves, and has been developed by Schoof, Groth and co-workers [215, 216,
217]. In principle, CPIMC can be viewed as performing a Monte Carlo simulation on the exact, infinite perturbation
expansion around the ideal system. Therefore, it excels at high density and strong degeneracy, but breaks down
around rs ~ 1 and, thus, exhibits a complementary nature with respect to standard PIMC in coordinate space.
Surprisingly, the comparison of exact CPIMC data [218] for N = 33 spin-polarized electrons with the RPIMC data by
Brown et al. [211] revealed systematic deviations exceeding 10% towards low temperature and high density, thereby
highlighting the need for further improved simulations. Therefore, Dornheim and co-workers [219, 220] introduced
the so-called permutation blocking PIMC (PB-PIMC, see Sec. 5.4) paradigm, which significantly extends standard
PIMC both towards lower temperature and higher density. In combination, CPIMC and PB-PIMC allow for an
accurate description of the UEG over the entire density range down to half the Fermi temperature [217, 221]. Soon
thereafter, these results were fully confirmed by a third independent method. This density matrix QMC (DMQMC,
see Sec. 5.6) [222, 223, 224] is akin to CPIMC by being formulated in Fock space. Hence, there has emerged a
consensus regarding the description of the electron gas with a finite number of particles [225]. The next logical step
is the extrapolation to the thermodynamic limit, i.e., to the infinite system at a constant density, see Sec. 6. As it
turned out, the extrapolation scheme utilized by Brown et al. [211] is not appropriate over substantial parts of the
warm dense regime. Therefore, Dornheim, Groth and co-workers [221, 226] have developed an improved formalism
that allows to approach the thermodynamic limit without the loss of accuracy over the entire density-temperature
plane.

Finally, these first ab initio results have very recently been used by the same authors to construct a highly
accurate parametrization of the exchange-correlation free energy of the UEG covering the entire WDM regime [227],
see Sec. 8. Thereby, a complete thermodynamic description of the uniform electron gas at warm dense matter
conditions has been achieved.

1.4. Outline of this article
e In Sec. 2, we start by providing some important definitions and physical quantities that are of high relevance
for the warm dense UEG. Further, we discuss the jellium Hamiltonian for a finite number of electrons in a
box with periodic boundary conditions, and the corresponding Ewald summation.

e In Sec. 3, we give an exhaustive introduction to the dielectric formalism within the density-density linear
response theory and its application to the uniform electron gas, both in the ground state and at finite tem-
perature. Particular emphasis is put on the STLS approach, which is extensively used throughout this work.
Most importantly, it is a crucial ingredient for the accurate extrapolation of QMC data to the thermodynamic
limit, see Sec. 6. In addition, we summarize all relevant equations that are required for the implementation
and numerical evaluation of various dielectric approximations.

e In Sec. 4, we briefly discuss other approximate methods that have been applied to the warm dense UEG. This
includes the finite-temperature Green function approach, as well as two different classical mapping formalisms.



e In Sec. 5, we provide an all-encompassing discussion of the application of quantum Monte Carlo methods
to the uniform electron gas at warm dense matter conditions. We start with a brief problem statement
regarding the calculation of thermodynamic expectation values in statistical physics. The solution is given by
the famous Metropolis algorithm, which constitutes the backbone of most finite-temperature quantum Monte
Carlo methods (Sec. 5.1). Undoubtedly, the most successful among these is the path integral Monte Carlo
method (Sec. 5.2), which, unfortunately, breaks down for electrons in the warm dense matter regime due to the
notorious fermion sign problem (Sec. 5.2.3). Two possible workarounds are given by our novel permutation
blocking PIMC (Sec. 5.4) and configuration PIMC (Sec. 5.5) methods, which we both introduce in detail.
Further mentioned are the approximate restricted PIMC method (Sec. 5.3) and the recent independent density
matrix QMC approach (Sec. 5.6). The section is concluded with a thorough comparison between results for
different quantities by all of these methods for a finite number of electrons (Sec. 5.7).

e In Sec. 6, we discuss the extrapolation of QMC data that has been obtained for a finite number of electrons to
the thermodynamic limit. A brief introduction and problem statement (Sec. 6.1) is followed by an exhaustive
discussion of the theory of finite-size effects (Sec. 6.2). Due to the demonstrated failure of pre-existing
extrapolation schemes, in Sec. 6.3 we present our improved finite-size correction and subsequently illustrate
its utility over the entire warm dense matter regime (Sec. 6.4).

e In Sec. 7, we use our new data for the thermodynamic limit to gauge the accuracy of the most important
existing approaches, both for the interaction energy and the static structure factor.

e In Sec. 8, we give a concise introduction (Sec. 8.1) of the state of the art of parametrizations of the exchange-
correlation energy of the warm dense uniform electron gas, and of their respective construction (Sec. 8.2).
Particular emphasis is put on the parametrization of the spin-dependence, Sec. 8.3. Finally, we provide
exhaustive comparisons (Sec. 8.4) of fy. itself, and of derived quantities, which allows us to gauge the accuracy
of the most widely used functionals.

e In Sec. 9, we extend our QMC simulations to the inhomogenous electron gas. This allows us to obtain highly
accurate results for the static density response function and the corresponding local field correction (Sec. 9.1).
As a demonstration, we give two practical examples at strong coupling using PB-PIMC (Sec. 9.3.1) and at
intermediate coupling using CPIMC (Sec. 9.3.2). Further, we employ our parametrization of fx. to compute
the long-range asymptotic behavior of the local field correction via the compressibility sum-rule and find
excellent agreement to our QMC results.

e In Sec. 10, we provide a summary and give an outlook about future tasks and open questions regarding the
warm dense electron gas.

2. Important quantities and definitions

2.1. Basic parameters of the warm dense UEG

In the following, we introduce the most important parameters and quantities regarding the warm dense electron
gas. Observe, that Hartree atomic units are assumed throughout this work, unless explicitly stated otherwise. Of
high importance is the above mentioned density parameter (often denoted as Wigner-Seitz radius, or Brueckner

parameter)
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which is independent of temperature and spin-polarization and solely depends on the combined density of both
spin-up and -down electrons, n = n' 4+ nt. The spin-polarization parameter ¢ is defined as

Tt
n' —n
n
where it is implicitly assumed that nT > n*. Thus, £ = 0 corresponds to the unpolarized (paramagnetic) case,
whereas £ = 1 is being referred to as the spin-polarized (ferromagnetic) case. For completeness, we mention that 7
and ¢ are sufficient to fully determine the thermodynamics of the UEG in the ground state. At warm dense matter



conditions, we also require information about the temperature, usually characterized by the quantum degeneracy
parameter

T
-t (4)
with
kT 2
e = o) o)

denoting the Fermi energy. Observe that we always define Er with respect to the Fermi wave vector of the spin-up
electrons,

kL = (6x2nT)1/3 (6)

Hence, for an ideal electron gas at zero temperature Er defines the maximum energy of the occupied one-particle
orbitals. Note that in the relevant literature, there exists another possible definition of Fr, where the Fermi wave
vector is computed with respect to the total electron density, i.e., using kr = (371'271)1/3 in Eq. (4).

The warm dense matter regime, to which the present work is devoted, is roughly characterized by 0.1 < rs < 10
and 0 < 0 < 10.

2.2. The Jellium Hamiltonian: Coordinate representation

The description of an infinite system based on a quantum Monte Carlo simulation of a finite number of electrons
N in a finite simulation box with volume V = L3 is usually realized by making use of periodic boundary conditions.
In addition to the Coulomb interaction of the electrons in the simulation cell, one also includes the interaction with all
electrons in the infinitely many images (the same applies to the positive homogeneous background). Unfortunately,
such an infinite sum with diverging positive and negative terms is only conditionally convergent, i.e., the result
depends on the ordering of the terms and is not well defined [228]. In practice, one usually employs the Ewald
summation technique (see Ref. [229] for a recent accessible discussion), which corresponds to the solution of Poisson’s
equation in periodic boundary conditions [230, 231]. The full Hamiltonian is then given by
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with the periodic Ewald pair potential being defined as [231]
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where G = nL and R = mL~! denote reciprocal and real lattice vectors, respectively (n,m € Z3). Furthermore,
&vr is the so-called Madelung constant, which takes into account the interaction of a charge with its own background
and array of images,

i = lim (WE<r,s>—1) (9)

r—s |r — s|
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Observe that both Egs. (8) and (9) are independent of the specific choice for the Ewald parameter x, which can
be exploited for optimization. Further, we note that in Eq. (7) there appear no additional terms describing the
uniform positive background as the average value of Wg(r,s) within the simulation box vanishes [231].

Let us conclude this section with some practical remarks. Obviously, a direct evaluation of the infinite sums in
reciprocal and real space in Eq. (8) is not possible. Fortunately, the optimal choice of the free parameter x leads
to a rapid convergence of both sums. Furthermore, there exist numerous schemes to accelerate the computation
of the Ewald potential that are advisable in different situations, such as multipole expansions [232] or using a
basis of Hermite interpolants [233], see, e.g., Refs. [230, 234] for an overview. Finally, we mention the possibility
for pre-averaged pair potentials, e.g., Refs. [235, 236, 237, 238], which can potentially get rid of “artificial crystal
effects” due to the infinite periodic array of images, and are computationally cheap. Recently, this idea has been
applied to quantum Monte Carlo simulations of an electron gas by Filinov and co-workers [130].



2.8. The Jellium Hamiltonian: Second quantization

Second quantization is an efficient way to incorporate the symmetry or anti-symmetry of quantum particles in
a many-particle description. Due to the indistinguishability of quantum particles the relevant observables are the
occupation numbers of individual single-particle orbitals |i¢) which are solutions of the one-particle problem. Here
we will concentrate on the UEG where the natural choice of orbitals are plane waves spin states. For a general
introduction to the theory of second quantization we refer the reader to standard text books, e.g. [195, 239].

In case of the UEG, the quantization is naturally performed with respect to plane wave spin orbitals, i) — |k;0;),
with the momentum and spin eigenvalues k; and o;, respectively. In coordinate representation they are written as
(ro ko) = 375765, withk = 2Zm, m € Z* and o; € {1, |} so that the UEG Hamiltonian, Eq. (7), becomes
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Here, the creation (annihilation) operator dz (a;) creates (annihilates) an electron in the 4-th spin orbital, and for
electrons (fermions) the operators obey the standard anti-commutation relations. Also, Wy = Wigkl —Wijik denotes
the antisymmetrized two-electron integral with

4me?
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and we used the Fourier representation of the Coulomb potential. Further, the N —particle states are given by
Slater determinants

‘{n}> = |n17n27"'> ’ (13)

with the fermionic occupation number n; € {0,1} of the i-th plane wave spin-orbital. Obviously, the second
quantization representation of the UEG Hamiltonian has two practical advantageous compared to its coordinate
representation: 1) the Ewald interaction only enters in a trivial way via the Madelung constant, &y, thus not
requiring any elaborate evaluation of the interaction part, and 2), the correct Fermi statistics are automatically
incorporated via the usual fermionic anti-commutator relations of the creation and annihilation operators.

3. Dielectric Approximations and Linear Response Theory

8.1. Introduction

Before the advent of the first exact but computationally highly demanding quantum Monte Carlo simulations of
the UEG in the late 1970s, the approximate approaches based on the dielectric formulation [11, 12, 13, 14, 1] have
arguably constituted the most vital tool for gaining crucial insights into correlated quantum many-body systems.
In the ground state, a seminal work in this direction have been provided by Bohm and Pines with the formulation
of the random phase approximation (RPA) [8, 14, 240], which becomes exact in both the long wavelength and high
density limit and thus sufficiently describes long-range phenomena. Later, an alternative derivation of the RPA has
been performed by Gell-Mann and Brueckner [241] through a summation of Feynman diagrams leading to the first
exact expansion of the correlation energy of the UEG in the high density regime. However, at metallic densities,
rs ~ 1.5,...,7, the RPA dramatically overestimates short-range correlations between the electrons resulting in
significantly too low correlation energies and an unphysical negative value of the pair-correlation function at zero
distance. To overcome these shortcomings, Singwi, Tosi, Land and Sjdlander (STLS) [9] proposed a self-consistent
scheme that allows for an approximate but greatly improved treatment of the short-range exchange and correlation
effects. Most notably, the STLS scheme predicted the exchange-correlation energies that have later been accurately
computed by Ceperley and Alder [15, 16] with an impressive accuracy of ~ 1% even up to densities 75 ~ 20 (see
e.g. Ref. [242]). Nevertheless, the obtained pair-correlation functions still become slightly negative at densities
rs > 4, but, compared to the RPA, the magnitude of this error is strongly reduced. A further issue regarding the
STLS scheme is the violation of the exact compressibilty sum rule, Eq. (39). Vashishta and Singwi (VS) could
modify the self-consistent scheme by also taking the density derivative of the pair-correlation function into account
so that the compressibility sum rule is almost exactly verified [10, 243], though this lead to a reduced quality of the
pair-correlation function and exchange-correlation energy.

All of the mentioned schemes beyond RPA rely on a static (frequency-independent) approximation of the so-
called local field correction, the central quantity in the dielectric formulation. There have been many attempts to



further increase the overall accuracy of the static dielectric methods (for an overview see e.g. Ref. [13]), and even the
extension to a more consistent formulation based on a dynamical local field correction has been achieved [244, 245].
However, regarding the interaction energy, the static STLS scheme turned out to give the most accurate results.

Due to a former lack of experimental motivation, the extension of some of the dielectric approaches to finite
temperature and their application to the UEG were carried out much later. The first calculations in the RPA
have been carried out by Gupta and Rajagopal [246, 247, 137], which have later been revised and parametrized by
Perrot and Dharma-wardana [248]. After that, countless important contributions to this field have been made by
Tanaka and Ichimaru [203, 204, 205, 206, 207, 208], who applied many of the static dielectric methods, i.e. with
some static ansatz for the LFC, to the quantum and classical UEG at finite temperature. Among these works is the
finite temperature STLS scheme [204], which, likewise to the ground state, predicted the exact exchange-correlation
energy [227, 242, 249] with a similar impressive accuracy of ~ 1%, cf. Sec. 7. However, a consistent extension of
the static finite temperature VS scheme [250] could only be achieved much later [213], since the fulfillment of the
compressibility sum rule turned out to be more elaborate here. Furthermore, Schweng and Bohm developed the
finite temperature version of the dynamical STLS scheme [251] and successfully used it for a detailed investigation
of the static LFC of the UEG, while a generalization to arbitrary spin-polarization of this formalism has been
provided only very recently [252].

We mention that, regarding the benefits and merits of the specific variants of the dielectric methods, the
qualitative statements for the ground state given above also apply to their finite temperature extensions. Moreover,
in addition to its predictive capabilities prior to the advent of the more accurate QMC simulations, in particular
the RPA and STLS approach played an important role in the extrapolation of the results obtained from a finite

simulation system (finite particle number N and simulation box with volume V) to the thermodynamic limit,

ie. N,V n=consty o (see Sec. 6). In addition, very recently, the temperature dependence of the STLS interaction

energy has been successfully used to bridge the gap between the ground state and finite temperature QMC data
which are available only above half the Fermi temperature (see Sec. 8).

3.2. Density response, dielectric function, local field correction, and structure factor

The dielectric formulation is derived within the framework of the linear density-density response theory, where
we are interested in the change of the electron density when a periodic (both in space and time) external potential
with wavenumber q, frequency w, and amplitude ®(q,w) is applied to the system, i.e.,

1 . .
Do (1, 1) = () el (14)
The infinitesemal positive constant 7 = 0% ensures that the perturbation vanishes at + — —oo so that we can
assume that the system has been in thermal equilibrium in the past and the external field has been switched on
adiabatically. Provided that the amplitude is sufficiently small and the unperturbed system is homogeneous, one
can show that the resulting change in the electron density is given by [1, 207]

on(r,t) =n(r,t) — n(r) = %Q)(q, w)x(q,w)e! Tt L ee. (15)
where we have introduced the Fourier transform of the density-density response function
) = Jimy [ dr 7 (q,r) (16)
with its standard definition!
xX(a,7) = —i([a(q, 7), 2(=q,0)]); O(7) - (17)

Here, (-), denotes the ensemble average of the unperturbed system, and the time dependence of the Fourier transform
of the density operator a(q) = >, e~ "% is determined by the Heisenberg picture with respect to the unperturbed

Hamiltonian, i.e., 7(q,t) = efota(q)e~Hot. From Eq. (15) we immediately see that the amplitude of the induced
density fluctuations is simply

() = 5P w)x(aw) (15)

INote that we restrict ourselves to the unpolarized case throughout the present section. Therefore, the response function x is equal
to the total response function of both spin-up and -down electrons.
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Hence, all information of the system’s response to the external perturbation, Eq. (14), is contained in the density-
density response function x(q,w). Via the polarization potential approach [207] it can be shown that the exact
density response function can always be expressed in terms of the ideal (Lindhard) response function, yg, and the
so-called local field correction (LFC), G, as

Xo(q,w)
X(CL OJ) = T ) (19)
where the RPA response function is recovered when setting G =0, i.e.,
, W
Xrpa(Qw) = _ Xo(a,w) (20)

- %XO(CL UJ) '

Thus, the LFC covers all correlation effects in the response of the system to a weak external potential. The imaginary
part of the response function is linked to the dynamic structure factor S(q,w) via the fluctuation dissipation
theorem [1]

hnx(a,w) = —3; (1 - ¢ ™) S(a.w) (21)

which can in turn be utilized to express the static structure factor

1 . ..
S(a) = [ dwSaw) =  @i(-a), (22)
in terms of the response function
S(q) = —%P /_OO dw coth( T)Imx(q, w), (23)

where P denotes the principal value, which is necessary due to the poles of the integrand on the real axis. Thereby
we have obtained a direct connection between the dynamic properties of the system, i.e., within the linear response
regime, and its thermodynamic properties. Note that the response function obeys the Kramers-Kronig relations

VImx vImx(q,w)

RGX q,w) = 77)/ — w2 ) (24)
Re ,
Imx(q,w) = 7’ / VQX (_qwz) )

and hence, the real part of the response function can always be computed from its imaginary part and vice versa.
The central idea of all dielectric approaches consists in deriving an approximate expression for the LFC so that it is
expressed as a functional of the static structure factor, i.e. G = G[S]. Then, together with Eqgs. (19) and (24), one
has a closed set of equations, which, in principal can be solved iteratively starting from the RPA (G = 0), where
the real and imaginary part of the ideal (Lindhard) response function, o, are readily evaluated numerically [1].
However, from a numerical point of view this approach is highly inconvenient due to the infinitely many poles of the
integrands in the Eqgs. (23) and (24). A solution to this problem has been provided by Tanaka and Ichimaru [204],
who reformulated the aforementioned set of equations for the complex valued density-density response function
defined by

taz) = [ Srimdan), (25)

s vV —z

which, under the frequency integral, fulfills 2ilmy(q,w) = lim,_,o+ X(q,w + in) — X(q,w — in), so that Eq. (23)
becomes

oo

w ~ . ~ .
P lim [ dweoth () [¥(aw+ in) — Slaw — )] (26)

S(a) =

Now the integral can be interpreted as a closed contour integral

S(q) = — lim lim lim dzcoth( T)Imx(q, z), (27)

47in e—0+ n—0+ R—oo C
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Figure 2: Illustration of the integration contour C in Eq. (27). Crosses indicate the poles of the hyperbolic cotangent.

with the explicit form of the contour being depicted in Fig. 2, where the limit R — oo is taken prior to the
integration whereas e,7 — 071 is taken afterwards. Since the integrand is analytic on C, the contour integral can
be solved by applying the residue theorem yielding

S(q) = —% > @), (28)

l=—00

with the Matsubara frequencies z; representing the poles of the cotangent hyperbolic function on the imaginary
axis,

21 = 2milT . (29)

Hence, the frequency integral in Eq. (23) can be replaced by a sum over the Matsubara frequencies, which is much
more convenient for numerical evaluation.

Similar to the real frequency dependent response function, cf. Eq. (19), the exact complex valued response
function can be rewritten in terms of the complex valued ideal response function and LFC [203, 251],

Xo(q, 2) (30)

)E(CLZ) = 1— 2_721'[1 — é(q,Z)sz(qu) .

In the thermodynamic limit?, the finite temperature complex valued ideal response function is given by

Xo(q,z):ﬁ/ dk f(k+<1)—f(k)7 (31)

(2m)3 2z — extq + €x

with e = k2/2 and f being the Fermi distribution

1

fk) = T —a 11 (32)

2As usual, replacing % Zq by [ (2d—ﬂ_q)3' transforms the expressions for the finite system (with periodic boundary conditions) to the

thermodynamic limit.
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where the reduced chemical potential o = 11/T is determined by the normalization condition

dk n
| a0 =5 - (3)

For numerical evaluation of the ideal response function at the different Matsubara frequencies the following form is
most suitable [203, 204]:

2 /°° dk k (4mIT)? + (¢* + 2qk)?

v = —— . 4
XO(qv Zl) q (27‘(’)2 ek?/(T2)—a 4 1 n (47TZT)2 + (q2 — 2(]]15)2 (3 )

3.8. Approximations for the local field correction

In the static dielectric approaches one approximates the dynamic LFC by its static value, i.e., replacing G (q,2)
by G(q,0) in Eq. (30), which turns out to be highly accurate in many cases. The most successful and widely used
approximation for the static LFC is given by the one utilized in the STLS scheme [9]

1 dk q-k
Gsrrs(g,0) = 0 (2m)3 K

1 [ dk q® —k? (q+Fk)?
== E2[S(k) — 1 1 1
i s - | () +
This expression is derived from the classical equation of motion of the one-particle distribution function, f(ry,p1,t),
by making the following product ansatz for the two-particle distribution function?:

[S(a—k) —1] (35)

f(rla Pi1, r27p2at) ~ f(rlvplvt)f(r27p27t)geq(rl - 1'2) 3 (36>

where geq(r) denotes the exact equilibrium pair-distribution function. Since the two-particle distribution function
couples to the three-particle distribution function and so on, Eq. (36) serves as a closure relation of the hierarchy.

The equations (28), (30), and (35) now form a closed set of equations, which are self-consistently solved as
follows:

1. Compute the reduced chemical potential a by solving Eq. (33).

2. Compute and store the values of the ideal response function, xo(q, z;), for sufficiently large values of [ ensuring
that Eq. (28) always converges throughout the iteration.

3. Compute the response function from Eq. (30), initially by setting G = 0.

4. Compute the static structure factor S(q) from Eq. (28).

5. Compute the new LFC Ggsrrs(q, 0) from Eq. (35).

6. Repeat steps 3 to 5 until convergence is reached.

For completeness we mention that, in particular at low temperature, the sum in Eq. (28) may only converge for
extremely large values of [, but this obstacle can be overcome by separating those contributions for which the
summation can be performed analytically beforehand, see Ref. [203] for details.

Naturally, from the converged static structure factor we directly obtain the interaction energy (per particle) for
the corresponding temperature and density parameter,

o(0,r2) = %/OOO dk [S(kir, 0) — 1] | (37)

which can in turn be used to compute the exchange-correlation free energy via the standard coupling constant
integration

Fre(re, 8) = %2/0 "dr, 0(0,7) - (38)

As mentioned before, both in the ground state and at finite temperature, the STLS scheme provides highly accurate
interaction energies, which is partly the result of a favourable error cancellation in Eq. (37) as the STLS static

3Note that this ansatz can be further improved by considering an explicitly time-dependent pair distribution function, see Refs. [253,
254].

13



structure factor tends to be slightly too large for small k-vector and vice versa, see Fig. 31 in Sec. 6. It is important
to note that, compared to the RPA, the STLS structure factor and related thermodynamic properties are of
substantially higher accuracy. In particular, the negative values of the pair-distribution function at zero distance,
9(0), are significantly reduced, although it still becomes slightly negative at lower densities [204]. However, there
is a well-known drawback regarding the consistency of the STLS results: the compressibility sum rule (CSR) is
violated. The CSR is an exact property of the UEG linking the long-wavelength limit of the static LFC G(q,0) to
the second derivative of the exchange-correlation free energy:

) q2 32

(}l_r}}) G(q,0) = o2 (nfxc) - (39)
Substituting GSTS(¢,0) and fSTYS on the left- and right-hand side of Eq. (39) gives different results, which
demonstrates that the STLS scheme does not provide a consistent physical description of the UEG. Moreover, the
long range limit of the LFC differs significantly from the exact QMC result, which is shown in Fig. 43 in Sec. 9. In
the ground state, Vashishta and Singwi [10] proposed to modify the STLS expression, Eq. (35), for the LFC such
that

)
GVS(q,0) = (1 + anan> GSTL8(q,0) , (40)

where the right choice of the additional free parameter a, in principle, allows for the exact fulfillment of Eq. (39). In
fact, they empirically found that setting a = 2/3 reasonably satisfies the CSR for all densities in the ground state.
Only recently, Sjostrom and Dufty [213] successfully extended this approach to the finite temperature UEG. They
even refined the approach by making the free parameter dependent on density and temperature, i.e., a = a(rs,0),
and actually included the CSR, Eq. (39), into the self-consistent scheme, which requires to simultaneously perform
calculations for different values of r,. Thereby, the obtained results are physically more consistent in that they do
exactly fulfill the CSR. However, the overall quality of the thermodynamic quantities is decreased compared to the
STLS scheme; for example, g(0) becomes more negative [213].

Since the accuracy of the STLS scheme decreases when the density parameter becomes too large, rs 2 20, there
have been many attempts to derive more refined expressions for the static LFC that perform better in the strong
coupling regime (see e.g. [206, 13]). Among them are the so-called (modified) convolution [(M)CA] and hypernetted
chain approximations [(M)HNC] for the LFC. Both are known to be highly accurate for the description of the
classical one-component plasma over the entire fluid regime [206]. While the MCA scheme has been used earlier
for the construction of a temperature, density, and spin-dependent parametrization of the exchange-correlation
free energy of the UEG [205], the HNC scheme has only recently been applied to the UEG at warm dense matter
conditions [242] and, compared to the STLS scheme, showed overall improved results for the thermodynamic
properties but not for the interaction energy. The LFC in the HNC approximation is derived from the hypernetted
chain equation for classical liquids [255, 256], which yields [242]

G (a,0) = 651,00+ - [ 5 S0~ 10~ 1i6(k.0) = S0~ 1] (1)
where the CA expression is recovered by setting G(k,0) = 0 on the left-hand side of Eq. (41). Further, the
corresponding modified versions, MCA and MHNC, are obtained by replacing S(q — k) by a screening function

_ q2

S(q) = Pl (42)

The screening parameter ¢ is determined consistently from the condition
1 dq 47, - 1 dq 47
— | —=—=150) 1=z | —=—[5(g) —1 43
5 | oen g -1 =3 [ G218 -1, (13)

so that S and S must correspond to the same interaction energy. Using the modified versions with the screening
function has the practical advantage that, like the STLS contribution to the total LFC, cf. Eq. (35), also the second
term in Eq. (41) can be recast into a one-dimensional integral [242], i.e.,

GMHNG (q,0) = GST15(q,0) + &= /OOO (zd:)z {1 +k +4qqk+ % <E: - 22 i Z2>] [G(k) — 1)[S(k) — 1], (44)
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which significantly speeds up the convergence process. Unfortunately, this is not possible for the full HNC LFC,
Eq. (41), and thus, one actually must carry out the three dimensional integration.

At this point it is important to note that all the above static dielectric schemes are somewhat classical in spirit
since the utilized approximate expressions for the static LFC are all derived within purely classical theories. In
other words, the discussed methods may be interpreted as being quantum mechanically only on the level of the
RPA, while correlation effects are treated classically. In accordance to Egs. (19) and (34) the exact LFC must
also depend on the frequency. First, Hasegawa and Shimizu [244] performed the formal derivation of the dynamic
STLS LFC by closing the hierarchy for the equation of motion of the Wigner distribution with the same product
ansatz, Eq. (36), that has been used in the static STLS formalism for the classical distribution function. Due to its
consistent quantum mechanical derivation, this approach has been termed quantum STLS (qSTLS). In the ground
state, the first numerical calculations and detailed investigations have been carried out by Holas and Rahman [245].
Later, the qSTLS scheme has also been applied to the finite temperature UEG, and more recently, it has been
generalized to allow for the calculation of spin-resolved quantities [251, 252]. The dynamical LFC in the qSTLS
scheme is given by

1 [ dk Yola,k, z) k2
GTIS (g, ) = Xo(q l’qﬂS(k—q)—lm (45)

“n) @r)? xola )

with the generalized response function (two arguments) being defined as

B dp f(p+k/2)— f(p—k/2)
xo(a ke z1) = _2/ (2m)3 2 — €p+q/2 T €p—q/2

_ 2 [ dp N (47mlT)? + (2pq + gk)
=2 aaErson {<4sz>2+<2pq—qk>

For practical purposes, the ¢STLS LFC, Eq. (45), can be reduced to a three-dimensional integral [251]. Overall,
compared to the static STLS approach, the gSTLS approach significantly improves the short-range behavior of the
pair-correlation function. Most notably, the obtained results for the static LFC are physically more reasonable as
they can exhibit important physical features. For example, they can actually have a maximum larger than one, a
necessary condition for the occurrence of charge density waves [251]. This is in stark contrast to the static dielectric
approaches where the static LFC usually converges monotonically to unity with increasing k—vector. Yet, the
improvement of the interaction energy due to the qSTLS scheme is rather small.

An exhaustive overview of comparison between the dielectric approximation and recent, highly accurate quantum
Monte Carlo data can be found in Sec. 7 for the static structure factor and the interaction energy and, in Sec. 9,
for the static density response function and local field correction.

(46)

4. Other approximate approaches

4.1. Finite-temperature (Matsubara) Green functions

An alternative derivation of the dielectric function encountered in the previous section can be achieved within
the framework of quantum kinetic theory [239]. In this formalism, correlation effects are usually incorporated by
approximating the collision integrals, which take the role of the local field correction in the dielectric formulation. For
instance, completely neglecting collisions gives the random phase approximation, whereas invoking the relaxation
time approximation [257, 258] leads to the well-known Mermin dielectric function.

A closely related strategy is used in Green functions theory where a suitable approximation of the so-called
self-energy is used to truncate the Martin-Schwinger hierarchy [259]. In the following, we briefly outline the
approximation introduced by Montroll and Ward [260] and also the additional e*-contribution (see Ref. [218] for
a recent application to the warm dense UEG). For simplicity, we restrict ourselves to the spin-polarized case and
write the total energy as a perturbation expansion with respect to coupling strength (dropping terms beyond second
order) as [195, 196]

E = EYT,a.)+E" 4+ MY 4 g (47)
Here Ej denotes the ideal energy
3T
Ey= o5 I32(0) (48)
203
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with App = +/27h23/m being the thermal wavelength, and EM¥ corresponds to the well-known Hartree-Fock energy

i

(e

3
do/ 12, (o) — W[—Uz(a)hm(a) , (49)
o) DB

where Ij; is the Fermi integral of order k, see, e.g., Ref. [195], and o = Bu. As usual, the chemical potential y is
defined by the normalization of the Fermi function to the total density, see Eq. (33). To compute the Montroll-Ward
(MW) and e*-contribution, it is convenient to utilize the pressure p, which is connected to the different parts of the
total energy by

. . o .
B=—p +T—p = MW, e
P’ + 7P J W, e (50)
The MW-component of the pressure is then given by
-1 7 T Bw Imegpa(p,w)
MW 2 )
=— [d d th (| — tan ————= — 1 51
D 4773/ pp P/ w co < 5 ){arc an Re enpa (7, @) megrpa(p,w)| (51)
0 0

with erpa (p, w) denoting the dielectric function in the random phase approximation, see Sec. 3. Therefore, neglecting
the et-term in Eq. (47) gives the total energy in the RPA. To include second order contributions, we compute

et :/ dpdqldqQ 1 fQ1f(12fTQ1+PfQ2+P - fQ1+PfQ2+PfQ1f(I2
6477 p*(P+ai+a2)? ¢ +¢3— (P+ai)? — (p+az)?

(52)

with f, = [exp(8p?/2—Bu)+1]~! being the Fermi function, and f, = [1 — f,] denotes the Pauli blocking factor.
Detailed benchmarks of the energy computed from Eq. (47) will be presented in Sec. 7.

For completeness, we also mention the recent finite-temperature extension of the retarded cumulant Green
function approach [197] that is predicted to allow, both, for the computation of thermodynamic properties of the
UEG (see Sec. 8.4 for a comparison to QMC data) and, in addition, spectral properties.

4.2. Classical mapping approaches

In addition to the dielectric formalism (Sec. 3) and the quantum Monte Carlo methods introduced in Sec. 5,
quantum-classical mappings constitute a third independent class of approaches to a thermodynamic description
of the electron gas. In this section, we give a concise overview of two different formulations, namely the works
by F. Perrot and M.W.C Dharma-wardana [210, 209] and the more recent and rigorous works by S. Dutta and
J.W. Dufty [261, 262, 263].

4.2.1. Classical mapping approach by Perrot and Dharma-wardana

The basic idea of the formalism by Perrot and Dharma-wardana [210, 209] (hereafter denoted as PDW) is to
define a classical system of charged particles at an effective quantum temperature Ty, such that an input value for the
ground state exchange-correlation energy Fy. obtained from outside the theory is reproduced. While, in principle,
data from any theory could be used, PDW chose the then most accurate data based on quantum Monte Carlo
calculations by Ortiz and Ballone [34]. The properties of the effective classical system are approximately computed
by solving the corresponding hyppernetted chain (HNC) equations [255, 256]. A potentially more accurate albeit
computationally considerably more demanding treatment using the classical Monte Carlo or Molecular Dynamics
methods, e.g. Ref. [264], was deemed unnecessary as the error due to the HNC approximation was expected to
be negligible for the densities of interest. For completeness, we mention that this assumption was somewhat
contradicted by the recent works of Liu and Wu [265], who found that a more accurate inclusion of short-range
correlations is important to describe the first peak in the pair distribution function at low density. Once the classical
system is solved (thereby recovering the input value for Fy.), it is straightforward to obtain other observables such
as the pair distribution function (or, equivalently, the static structure factor, cf. Sec. 6) or the static density response
function x(k), cf. Sec. 3. A particular advantage of the classical mapping approach is that the resulting PDF is
always positive. This is in stark contrast to the dielectric approximations from Sec. 3, where the PDF tends to
become negative at small distances for intermediate to strong coupling. Further, a comparison of the classical
mapping with the ground state QMC results revealed quantitative agreement.

To extend this formalism to finite temperature 7', for which back in the early 2000s no accurate data for
Ey.(rs, T) existed, PDW introduced a modified classical temperature

Ty = (T°+T12)"? | (53)
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which is motivated by the fact that the leading dependence of the energy on T is quadratic. Note that the expression
for T, in Eq. (53) depends only on the density parameter rs,

1
qua_’_b\/a_’_crs 9 (54)
where the free parameters a, b, and ¢ were obtained to reproduce the ground state data for E,. as explained
above. It is easy to see that Eq. (53) becomes exact for high and low temperature, but constitutes an uncontrolled
approximation for intermediate temperatures, most notably in the warm dense matter regime.

In their seminal paper from 2000, PDW [210] provided extensive results for the uniform electron gas at finite
temperature, including a parametrization of the exchange-correlation free energy fy. with respect to temperature,
density, and spin-polarization. A concise introduction of the latter is presented in Sec. 4.2.1, where it is compared
to the recent, highly accurate parametrization by Groth, Dornheim and co-workers [227].

Further, the PDW formalism for the classical-mapping has subsequently been employed in numerous calculations
of more realistic (and, thus, more complicated) systems, e.g., Refs. [181, 182, 183], and an excellent review can be
found in Ref. [184]. Finally, we mention that the shortcoming of the PDW classical-mapping at intermediate
temperature was recently somewhat remedied by Liu and Wu [266], who replaced the simple interpolation for Tis
from Eq. (53) by the explicitly temperature-dependent expression

1
~a(T) +b(T)\/rs +c(T)rs

where the functions a(7T"), b(T), and ¢(T) where chosen to reproduce the RPIMC data by Brown et al. [211] for
Ex., see Ref. [266] for more details. It was found that this gives better data for the pair correlation function, in
particular for the description of long-range correlations.

(55)

Tc f

4.2.2. Classical mapping approach by Dutta and Dufty

Recently, Dufty and Dutta [267, 263] presented a more rigorous classical-mapping formalism operating in the
grand canonical ensemble (volume V', chemical potential i, and inverse temperature 3 are fixed). While the volume
V' is equal both for the true quantum system and the effective classical one, a modified inverse temperature .,
chemical potential y., and pair potential ¢.(r) are introduced. To determine these two parameters and one function,
we enforce the equivalence of pressure p, electron number density n and of the pair distribution function g(r) for
the true and effective systems,

pc(ﬁm Vv, ,uc|¢c(r))
Ne(Bes Vi el de(r)) n(B,V, ulé(r))
gc(T, 507‘/7/ffc|¢c<r)) 9(7";5;‘/,/4(17(7")) ,

where, for the uniform electron gas, ¢(r) is simply given by the Coulomb potential. Observe that the vertical bars
in Eq. (56) indicate that all three quantities are in fact functionals of the classical or quantum pair potentials,
in addition to the functional dependence on the three thermodynamic variables. In practice, one has to provide
expressions for p, n and g(r) of the quantum system, starting from which the relations in Eq. (56) can be inverted
for fic, Be, and (ZSC(T)'

Since providing two thermodynamic and one structural property of the system of interest as input for an
approximate many-body formalism might admittedly seem like circular reasoning, we must ask ourselves what kind
of information has been gained at which point. The answer is as follows: in practice, we provide the quantum input
computed from the random phase approximation (see Sec. 3), and subsequently compute the classical parameters
Be, the, and ¢.(r) by solving Eq. (56) in the classical weak-coupling approximation. The main assumption is that
the quantum effects are either local (such as diffraction) or weakly nonideal (such as antisymmetry under particle-
exchange). In this case, the bulk of the more pronounced nonideality effects would be captured by subsequently
feeding the obtained results for B, p., and ¢.(r) into a more accurate classical many-body method, such as
the classical Monte-Carlo method, molecular dynamics, or, like in the PDW approach, the hypernetted chain
approximation.

Overall, the application of the Dufty-Dutta formalism to the UEG at warm dense matter conditions [262, 261] has
given results of similar accuracy as the PDW formalism, although not nearly as extensive data have been presented.
For completeness, we mention that this approach is not limited to the UEG or, in general, to homogeneous systems.
For example, first results for charges in a harmonic confinement have been reported in Refs. [262, 268]. The
application to a realistic electron-ion plasma remains an important task for the future.

p(B,V, ulop(r)) (56)
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5. Quantum Monte Carlo Methods

In the following section, we will discuss in detail various quantum Monte Carlo methods and discuss the
fermion sign problem, which emerges for the simulations of electrons. In particular, we introduce the Metropo-
lis algorithm [269], which constitutes the backbone of all subsequent path inegral Monte Carlo methods except
the density matrix QMC paradigm. Not mentioned are the multilevel blocking idea by Mak, Egger and co-
workers [270, 271, 272, 273, 274] and the expanded-ensemble approach by Vorontsov-Velyaminov et al. [275, 276].

5.1. The Metropolis algorithm
Due to its fundamental importance for the understanding of the quantum Monte Carlo methods introduced
below, in this section we give a comprehensive introduction of the widely used Metropolis algorithm [269].

5.1.1. Problem statement

In statistical many-body physics, we often encounter probabilities of the form

P(X) = wX) . (57)
Z

For example, the multi-dimensional variable X might correspond to a configuration of classical particles, or spin-
alignments in an Ising model, and W = exp(—FE(X)f) to the corresponding ”Boltzmann distribution” describing
the probability of X to occur (with EF(X) being the energy of said configuration). The aim of a Monte Carlo
simulation is then to generate a set of random configurations {X;} that are distributed according to Eq. (57), which
can subsequently be used to compute averages such as the internal energy.

Usually, the problem with such a statistical description of a system is that the normalization of Eq. (57),

Z:/HXMNX% (58)

is not readily known. For the canonical ensemble (volume V', particle number N and inverse temperature 3 are
fixed), to which we will restrict ourselves throughout this work, Z corresponds to the canonical partition function.
In this case, the exact knowledge of Z allows to directly compute all observables (e.g., energies, pressure, etc.)
via thermodynamic relations, thereby eliminating the need for a Monte Carlo simulation in the first place. The
paramount achievement by Metropolis et al. [269] was to introduce an algorithm that allows to generate a set of
random variables {X;} with an unknown normalization Z. The significance of this accomplishment can hardly be
overstated and the Metropolis algorithm has emerged as one of the most successful algorithms in computational
physics and beyond.

5.1.2. The detailed balance condition
The starting point is the imposition of the so-called detailed balance condition,
T(X - X)=T(X = X), (59)

which states that the transition probability 7" to go from a state X to another state X is equal to the same
probability the other way around. While Eq. (59) constitutes an unnecessary rigorous restriction, it allows for a
simple straightforward solution. Prior to that, we split the transition probability into a product of three separate
parts,

T(X - X)=P(X) S(X = X) AX = X), (60)

speciﬁcally the probabilities to occupy the initial state X, P(X), to propose the target state X starting from X,
S(X — X), and finally to accept the proposed transition, A(X — X). Inserting Eq. (60) into (59) leads to the
generalized form of the detailed balance equation,

P(X) S(X - X) A(X = X)=P(X) S(X = X) A(X = X), (61)

which is of central importance for the development and design of state of the art quantum Monte Carlo algorithms.
The solution of Eq. (61) for the acceptance probability by Metropolis et al. [269] is given by

. . P(X) S(X = X)
AX —X) = min (1, P(X) S(X X)) ) (62)

=i [ X SX - X)
a TW(X) $(X—>X))’
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which can be easily verified by considering Eq. (60) for the cases P(X)S(X — X) > P(X)S(X — X) and vice
versa. Observe that the unknown normalization Z cancels in Eq. (62), which means that the acceptance probability
can be readily evaluated.

We conclude this section with a sketch of a practical implementation of the Metropolis algorithm:

1. Start with an (in principle arbitrary) initial configuration X.

2. Propose a new configuration X according to some pre-defined sampling probability S (X; — X)

3. Evaluate the corresponding acceptance probability A(X; — X), see Eq. (62), and subsequently draw a uniform
random number y € [0,1). If we have y < A(X; — X), the update is accepted and the configuration is updated
to X411 = X. Otherwise, we reject the update and the "new” configuration is equal to the old one, Xit1 = X;.

4. Repeat steps 2 and 3 until we have generated sufficiently many configurations.

Assuming an ergodic set of Monte Carlo updates (random ways to change between different configurations), the
outlined algorithm can be used to generate a Markov chain of configurations {X;} that are distributed according
to P(X), as asked in the problem statement. The concept of ergodicity is of central importance for the design of
QMC algorithms and updates and means that (i) all possible configurations must be reachable in a finite (though,
in principle, arbitrarily large) number of updates and (ii) the probability to go from one configuration X to another
configuration X must only depend on X itself (no memory effects). A possible segment of such a Markov chain as
generated by the Metropolis algorithm is given by

Xp=a—>X;=a—>Xo=b—=>X3=...

Starting at an initial configuration Xy, a new configuration is proposed, but the update is rejected. Therefore the
second element of the Markov chain is equal to the first one, Xo = X; = a. The second update is accepted, meaning
that the third element is changed to the new configuration, Xs = b. It is important to understand that, even if
a proposed update from X to X is rejected, the old configuration must still be counted as a new element in the
Markov chain. Appending the Markov chain only after an update has been accepted is plainly wrong.

5.2. Path Integral Monte Carlo

The path integral Monte Carlo approach [277] (see Ref. [278] for a review) is one of the most successful methods
in quantum many body physics at finite temperature. The underlying basic idea is to map the complicated quantum
system onto a classical system of interacting ring polymers [279]. The high dimensionality of the resulting partition
function (each particle is now represented by an entire ring polymer consisting of potentially hundreds of parts)
requires a stochastic treatment, i.e., the application of the Metropolis Monte Carlo method [269]. In particular,
PIMC allows for quasi-exact simulations of up to N ~ 10* bosons (and distinguishable, spinless particles, often
referred to as boltzmannons, e.g., Ref. [280]) and has played a crucial role for the theoretical understanding of such
important phenomena as superfluidity [281, 282, 283, 284], Bose-Einstein condensation [285, 286, 287] or the theory
of collective excitations [288, 289]. Unfortunately, as we will see, PIMC simulations of electrons (and fermions, in
general) are severely limited by the so-called fermion sign problem [290, 291].

5.2.1. Distinguishable particles

Let us start the discussion of the PIMC method by considering the partition function of N distinguishable
particles (so-called boltzmannons), in the canonical ensemble (i.e., volume V and and inverse temperature 8 =
1/kgT are fixed)

Z=Trp. (63)

Here p = e=BH denotes the canonical density operator and the Hamiltonian is given by the sum of a kinetic and
potential part,

H=K+V. (64)
In coordinate space, Eq. (63) reads
Z= / dR (R|e"" R) , (65)
with R = {r1,...,rx} containing all 3N particle coordinates. The problem is that the matrix elements are not
known, as K and V do not commute
¢ BEFV) _ =BV —BK —p%C (66)
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where the error term is obtained from the Baker-Campbell-Hausdorff formula as [292]

1 .~ - 1
Q[VvK]_6<6

C

WV, [V, K] - é[[v,m,m) I (67)

To overcome this obstacle, we exploit the group property of the exponential function

e~BH H (68)

where e = 8/P. By using Eq. (68) and simultaneously inserting P — 1 unity operators of the form

i:/dRa Ro) (Ra| (69)

we obtain
Z:/dX (Role“® |Ry) (Ry|... Rp_1) (Rp_1]e 7 |Ry) . (70)

Observe that Eq. (70) is still exact and the integration is carried out over P sets of particle coordinates, dX =
dRy...dRp_;. Despite the increased dimensionality of the integral, this re-casting proves to be advantageous since
each of the matrix elements must now be evaluated at a P times higher temperature, and for sufficiently many
factors we can introduce a high temperature approximation, e.g., the primitive factorization

efeH ~ €7€K€75V ; (71)

which, according to the Trotter formula [293, 294], becomes exact in the limit of P — oo

o N _\P

e PEAY) — Iim (eiGKe*V) . (72)
P—oo

A more vivid interpretation of Eq. (68) is given in terms of imaginary time path integrals. In particular, we note

that the density operator is equivalent to a propagation in imaginary time by 7 = —if (henceforth, we shall adopt

the more conventional definition 7 — 7/(—i) € [0, 5]). Therefore, Eq. (68) corresponds to the introduction of P

imaginary "time slices” of length € and a factorization like Eq. (71) to an imaginary time propagator. Inserting
Eq. (71) into (70) finally gives

P—1
Z:/dX H (E_EV(RQ)pO(RayRa—&-lvE)) ) (73)
a=0

where V(R,,) denotes all potential energy terms on time slice a,

V(Ra) Zvéxt o +ZW |ra1 | kl) (74)

k>1

and W (r) is an arbitrary pair interaction, e.g., the Coulomb repulsion, W (r) = 1/r, and Ve (r) denotes an external
potential. The ideal part of the density matrix is given by

po(Ra,Rat1,€) = )\JN H [Zexp( 2 (rak — ra+1,k+nL)2>] ’ (75)

with Ac = v/27e being the thermal wavelength corresponding to the P-fold increased temperature. The sum over
n = (ng,ny,n.)", n; € Z, is due to the periodic boundary conditions. For completeness, we note that, technically,
Eq. (75) constitutes an approximation as the correct ideal density matrix in a periodic box is given by an elliptic
theta function [278]. However, this difference is of no practical consequence and, for P — oo, Eq. (75) becomes
exact.

Following Chandler and Wolynes [279], Eq. (73) can be visualized as interacting ring polymers via the so-called
“classical isomorphism”, which is illustrated in Fig 3. The complicated quantum many-body system has been
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Figure 3: Schematic illustration of path integral Monte Carlo: The left panel shows a random configuration of three particles in a 3D
simulation box. The right panel shows the same configuration, but the z-axis has been replaced by the imaginary time 7. Beads on
adjacent slices are harmonically linked by the free particle density matrix (see Eq. (75), red lines) and beads from different particles on
the same time slice are subject to the pair interactions (dashed blue lines).

mapped onto a classical system of interacting ring polymers. Each particle is represented by a closed path of P
“beads” (i.e., the polymer), see the left panel. Beads on adjacent time slices are effectively linked by a harmonic
interaction, see Eq. (75). This is further illustrated in the right panel of Fig. 3, where the z-axis has been replaced
by the imaginary time 7. In addition, we note that beads from different particles on the same time slice interact
via the given pair interaction W (r), cf. the dashed blue lines. The extension of the paths of each particle roughly
corresponds to the thermal wavelength Ag. At high temperature, the paths resemble point particles and quantum
effects are negligible. With increasing 3, however, the ring polymers become more extended and the quantum
nature of the system of interest starts to dominate. In practice, Eq. (73) requires a high dimensional integration,
which is most effectively achieved using Monte Carlo methods. In particular, we employ the Metropolis algorithm
to generate all possible configurations X according to the corresponding configuration weight W,

7= /dX W(X) , (76)

where W (X) is defined by Eq. (73).
Furthermore, we stress that we are not interested in the partition function itself, but instead in thermodynamic
expectation values of an (in principle arbitrary) observable A,

() = [ar R ApIR) . (77)

In practice, we have to derive a Monte Carlo estimator A(X) so that we can estimate (A) from the set of Ny
randomly generated configurations {X}nc

<A> ~ AMC and (78)
1
Avc = NMC;A(X)' (79)

Eq. (78) seems to imply that the path integral Monte Carlo approach does not allow to obtain the exact thermody-
namic expectation value of interest, but, instead, constitutes an approximation. More precisely, the MC estimate
from a PIMC calculation is afflicted with a statistical uncertainty

(42 - (A

AA =
Nmc

(80)

The statistical interpretation of Eq. (80) is that Ay is with a probability of 66% within +=AA of the exact result.
Furthermore, this uncertainty interval decreases with an increasing number of MC samples Nyic so that, in principle,
an arbitrary accuracy is possible. Therefore, PIMC is often described as “quasi-exact”.
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Figure 4: Schematic illustration of path integral Monte Carlo: Shown are two PIMC configurations in the 7-z-plane with no pair
exchange (left) and a single pair exchange (right). The corresponding configuration weights W (X) are positive and negative.

5.2.2. PIMC simulations of fermions

Let us now extend our considerations to the PIMC simulation of N = NT + NV electrons, with NT and N+
denoting the number of spin-up and spin-down electrons, respectively. To take into account the antisymmetric
nature due to the indistinguishability of fermions, we must extend the PIMC partition function from Eq. (73) by
the sum over all permutations of electrons from the same species (Sy+ and Sy.)

Z = (NT' N“ /dX H Z Z sgn(al)sgn (ai) e_EV(R“)pO(Ra,ﬁ'glfrgéRa+1,e) . (81)

ohES Nyt ThES L

Here & ot denotes the exchange operator corresponding to a particular permutation ol* and sgn(ol'*) denotes
the correspondlng signum. Note that, due to the idempotency of the antisymmetry operator, the sum over all
permutations can be carried out on each time slice without changing the result. In practice, the sum over all
possible configurations X in the PIMC simulation must now be extended to include paths incorporating more than
a single particle. This is illustrated in Fig. 4 where two PIMC configurations with N = NT = 2 spin-polarized
electrons are shown. In the left panel, there are two distinct paths. Hence, there is no pair exchange and the sign
sgn(W (X)) is positive. In contrast, in the right panel, the paths cross and a single path incorporates both particles.
Due to this single pair exchange, the sign of the configuration weight is negative.

5.2.8. The fermion sign problem

At this point, we must ask ourselves how to generate the configurations X when the corresponding weights can
be both positive and negative. Obviously, this cannot be done using the Metropolis algorithm in a straightforward
way, since probabilities must be strictly positive. To circumvent this issue, we switch to a modified configuration
space, where we generate paths according to the absolute value of their weights, and define the modified partition
function

A /dX wW'(X) :/dX [W(X)] . (82)
The correct fermionic observables are then calculated as
A oA
A SA
Ay =841 (53)
(S)

where (.. . denotes the expectation value corresponding to the modulus weights

' =5 [ax A, (34)
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and S measures the sign of a configuration,

Z
? )

®) =7 [ X s - (85)

with S(X) = W(X)/|W(X)|. The problem with Eq. (83) is that for a decreasing average sign S = <S’>/, both
the enumerator and the denominator vanish simultaneously. This, in turn, leads to an exponentially increasing
statistical uncertainty [225, 295]

AA 1 BN(f—f")
=~ ;S , (86)
A Nuc (S) Nuic

where f and f’ denote the free energies per particle of the original and modified systems, respectively. In particular,
Eq. (86) implies that the statistical uncertainty exponentially increases with the particle number N. However, even
for a fixed system size the simulations can become infeasible towards low temperature and weak coupling. Note that
Troyer and Wiese [291] have shown that the FSP is N P-hard for a certain class of Hamiltonians. Therefore, a general
solution to this problem is unlikely. The FSP within fermionic path integral Monte Carlo simulations is illustrated
in Fig. 5, where we show two random configurations from a PIMC simulation of the uniform electron gas with
N = 33 spin-polarized electrons, P = 100 imaginary time slices and a density parameter rs = 1 (for completeness,
we mention that we use a sampling scheme based on the worm algorithm [296, 297]). In the top panel, we chose
0 =4, i.e., a relatively high temperature. Therefore, the particle paths are only slightly extended and the thermal
wavelength is significantly smaller than the average inter-particle distance. This, in turn, means that pair exchange
only seldom occurs within the simulation and the average sign is large, rendering such conditions perfectly suitable
for PIMC simulations. In the bottom panel, the temperature is decreased to § = 1. At such conditions, Ag is
comparable to the particle distance and fermionic exchange plays an important role. This is manifest in the many
exchange cycles, i.e., the paths that contain more than a single particle. Since each pair exchange leads to a sign
change in the weight function, positive and negative weights occur with a nearly equal frequency, resulting an
average sign of S ~ 1073, cf. Fig. 6. For this reason, standard PIMC simulations are confined to relatively high
temperature or strong coupling where the exchange effects are suppressed by the Coulomb repulsion of the electrons.

This is investigated more quantitatively in Fig. 6. In the left panel, we show the rs-dependence of the average sign
of PIMC simulations of the UEG of N = 33 spin-polarized electrons, which corresponds to a closed momentum shell
and, therefore, is often used in QMC studies [211, 218, 220, 217, 223]. The number of imaginary time propagators
was chosen as P = 50 and the green, red, and blue points correspond to § = 4, § = 1, and 6 = 0.5, respectively.
All three curves exhibit the same qualitative behavior, that is, a decreasing sign towards smaller r; (i.e, towards
high density). This can be understood by recalling that the density parameter rs plays the role of the coupling
parameter for the UEG [298]: For strong coupling, the paths of different particles in the PIMC simulation are
spatially separated and, hence, exchange cycles are not very probable. With decreasing r,, the system becomes
more ideal and the occurring pair exchanges lead to smaller values of S. Furthermore, we observe that this effect is
significantly increased for lower temperatures, see the discussion of Fig. 5 above. For § = 4, the sign does not drop
below S = 0.3 and standard PIMC simulations are efficient over the entire density range. For § = 1, simulations
for rs = 4 are barely feasible with reasonable computational effort, whereas for 6 = 0.5, even r; = 10, which
corresponds to relatively strong coupling, is difficult.

In the right panel, we show the dependence of the average sign on system size for a constant density parameter
rs = 1. For all three depicted temperatures, S exhibits an exponential decay with N as predicted by Eq. (86),
which becomes significantly more steep for low 0. For 6§ = 4, simulations of N ~ 100 spin-polarized electrons are
feasible. Yet, we stress that even at such high temperatures, fermionic exchange leads to an exponential increase
of computation time with respect to N. For § = 1, the situation is considerably worse and the decay of S restricts
PIMC simulations to N < 20. Finally, for 8 = 0.5, even simulations of N = 10 electrons are not feasible.

We thus conclude that standard PIMC cannot be used to obtain an accurate description of the UEG at warm
dense matter conditions since the FSP renders simulations unfeasible towards high density and low temperature.

5.8. Restricted Path Integral Monte Carlo

A relatively common strategy to avoid the fermion sign problem is the so-called fized node approximation, which
is also known as the restricted PIMC (RPIMC) method [133]. On the one hand, RPIMC gets completely rid of the
FSP and, therefore, simulations are feasible at low temperature and strong degeneracy. On the other hand, as we
shall see, this comes at the cost of an uncontrollable systematic error so that the exact ab initio character of the
quantum Monte Carlo paradigm is lost.
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Figure 5: Screenshots from PIMC simulations of the warm dense electron gas with N = 33 spin-polarized electrons, P = 100, and
rs = 1 with 6 = 4 (top) and 6 =1 (bottom).

24



100

101 | ]
n 102 |
1073 |
—O— —O0—
—eo— —o—
10—4 | il - 10-5 I 1 1 1 T T
1 10 20 40 60 80 100
s N

Figure 6: Average sign of PIMC simulations of the spin-polarized UEG: The left panel shows S in dependence of the density parameter
rs for N = 33 electrons for § = 4 (green), 6 = 1 (red), and 6 = 0.5. The right panel shows the dependence on system size for a fixed
density parameter rs = 1. All points have been obtained with P = 50 imaginary time propagators.

In statistical mechanics, the fermionic density matrix elements in coordinate space p(R, R/, 3) are often intro-
duced as the solution to the Bloch equation

~ "® R’,8) = Hp(R,R/, 8) , (87)

with the initial condition
p(R,R’,0) = A5(R - R') (88)

where A denotes the antisymmetrization operator. For the restricted path integral Monte Carlo approach developed
by Ceperley [133, 134], the initial condition from Eq. (88) is replaced with a zero boundary condition. Following
Ref. [133], we denote the second argument of the density matrix as the reference slice Ry. Assuming that Eq. (88)
holds, we can define a nodal surface

7(R077_) = {R ‘ p(Ra ROaT) = 0} ) (89)

for all imaginary times 0 < 7 < 8. Obviously, Eq. (89) divides the total configuration space into sub-regions of a
fixed sign, described by the so-called reach

F(R07T) = {R.,— | p(R’v RO,T) 7é 0} . (90)

Equation (90) can be interpreted as the set of all paths R, — Ry avoiding the nodes, which are the only paths
contributing to the thermal density matrix. Odd permutations cross the nodal surface an odd number of times and,
therefore, do not satisfy Eq. (90). They do not contribute to p(R, Rg, 7) as they cancel with the node-crossing paths
of even permutation, which is sometimes denoted as the tiling property proved in Ref. [133]. This, in turn, means
that all contributions to the thermal density matrix of a fixed reference slice R are strictly positive and, thus,
perfectly suited for a Metropolis Monte Carlo simulation similar to Sec. 5.2 without the sign problem. The fermionic
expectation value of an arbitrary observable can then be computed by averaging over Ry itself. In principle, this
re-casting of the fermionic path integral Monte Carlo scheme in terms of different nodal regions is exact, given
complete knowledge of the nodes. However, this information can only be obtained from a solution of the full
fermionic many-body problem in the first place and, thus, little seems to be gained. In practice, we introduce an
approximate trial ansatz for the density matrix, most commonly from the ideal system (i.e., a Slater determinant
or, for multiple particle species, a product thereof). Naturally, one would assume that the ideal nodes work best for
weak coupling, i.e., at high temperature and density. In particular, RPIMC simulations of the UEG should become
exact for ry — 0.

In practice, within a RPIMC simulation we propose a new path and subsequently enforce the nodal constraint,
Eq. (90), by computing the sign of the new configuration weight and by rejecting the move if the sign is negative.
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This becomes particularly problematic when the reference slice Ryg is changed (remember that RPIMC simulations
require us to average over Ryg) since the constraint then has to be checked on all time slices. The problem is that
for low temperature (i.e., for long paths, see Sec. 5.2) the nodal surface for large distances in imaginary time 7
to the reference slice can significantly change for small changes of the latter. This means that even small updates
of Ry can be rejected most of the time and the reference point freezes. This purely practical ergodicity problem
potentially introduces a second source of systematic bias to RPIMC simulations. A comprehensive comparison of
RPIMC data to other QMC methods can be found in Sec. 5.7.

As a final note, we mention that, in contrast to the ground state, the fixed node approximation as outlined above
constitutes an uncontrolled approximation since the total energy is not variational. A possible strategy to overcome
this issue is to perform an additional coupling constant integration (see Sec. 8) to compute the free energy f. The
next step would then be to introduce a parametrization of the nodes with respect to a set of free parameters, which
can be used to minimize f. However, this is substantially more complicated than at 7 = 0 and, to the best of
our knowledge, has not yet been pursued in practice. Furthermore, we mention that RPIMC has nevertheless been
applied to various realistic systems (such as deuterium, neon, or carbon plasmas) at warm dense matter conditions,
e.g., Refs. [135, 149, 150, 151].

5.4. Permutation Blocking Path Integral Monte Carlo

The permutation blocking PIMC (PB-PIMC) approach [219, 220, 217, 221, 299] can be viewed as a further
development of the standard PIMC method from Sec. 5.2 and allows to go both towards lower temperature and
increased density, i.e., towards the WDM regime where fermionic exchange is crucial. Here ’blocking’ refers to the
combination of multiple configurations with different signs into a single weight, which means that some part of
the cancellation due to the fermion sign problem is carried out analytically. To further explore this point, let us
consider an illustrative example. Let us split the partition function into the two parts

Z:/_dX W(X)+/ X W(X) , (91)

where X~ (X™) denotes those configurations with a negative (positive) weight . Now suppose that you could
pair each negative weight X, with a positive weight X;" with a larger (or equal) modulus weight and, in this way,
obtain a new ’'meta-configuration’ X; with a meta-configuration weight

W(X;)=W(EX;)+ WX >0. (92)

In this way, we have recasted the partition function as the integral over terms that are strictly positive,
7 = / dX W (X), (93)

and the fermion sign problem would be solved. Unfortunately, in practice, such a perfect implementation of
the blocking idea is not possible. Instead, we combine positive and negative permutations from the fermionic
partition function, Eq. (81), within determinants both for the spin-up and down electrons. The benefits due to such
intrinsically antisymmetric imaginary time propagators have long been known, see e.g. Refs. [300, 301, 302, 303].
In particular, they have been successfully exploited within the PIMC simulations by Filinov and co-workers [124,
125, 126, 127, 128, 129, 130, 131, 132]. As we will see, the problem with this approach is that with an increasing
number of time slices P [which are needed to decrease the commutator errors due to the primitive factorization,
cf. Eq. (67)], the effect of the blocking due to the determinant vanishes and the original sign problem is recovered.
For this reason, the second key ingredient of the PB-PIMC approach is the introduction of a more sophisticated
fourth-order factorization scheme that allows for sufficient accuracy with fewer time slices [304, 305, 306, 307, 308].
The simulation scheme is completed by an efficient update scheme that allows for ergodic sampling in the new
configuration space [219].

Let us begin the derivation of the PB-PIMC partition function with an introduction of the fourth-order factor-
ization of the density matrix [305]

efefl ~ efvleWal e*hﬁf{e*vzﬁwl—zal €7t16R67U15Wa1 6722506[% ) (94)
which has been studied extensively by Sakkos et al. [307]. First and foremost, we note that there occur three factors
involving the kinetic energy operator K. Therefore, for each imaginary time propagator there are three time slices.
This is illustrated in the left panel of Fig. 7, where the path of a single particle is shown in the 7-z-plane with
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Figure 7: Schematic illustration of the PB-PIMC approach — Left panel: Illustration of the fourth-order factorization from Eq. (94) in
the 7-z-plane. Beads of different colors correspond to the main (green), ancilla A (blue), and ancilla B (purple) slices, which occur for
each of the P = 3 imaginary time propagators. The ratio to/t1 is not fixed and can be used for optimization. Right panel: Combination
of 3PN! configurations from standard PIMC into a new 'meta-configuration’ due to the determinants on all time slices.

P = 3 fourth-order factors. For each propagator of length e, there are two equidistant slices of length ¢;e, which
we denote as the main slice (green beads) and ancilla slice A (blue beads). Furthermore, there is a third slice of
length 2¢pe = €(1 — 2¢1), i.e., ancilla slice B (purple beads). Note that the ratio of ¢y/¢; is not fixed and ¢y can
be chosen freely within 0 < ¢y < (1 —1/ \/§), which can be exploited to further accelerate the convergence with
P [307]. In order to fully cancel the first error terms from the factorization error, Eq. (67), the W-operators in
Eq. (94) combine the potential energy V with double commutator terms

IV, K], ZIF ?, (95)

with F; = —=V,;V(R) denoting the entire force on particle 7. In particular, it holds

N
F oo, Yo o 2
We, = V4 — F;|°, 96
1 + e LIF (96)
W172a1 = V + 1 - 20,1 Z |F |2

and the coefficients ug, v1, and vy are fully determined by the choice for tg and 0 < a; <1,

1 1 1
= _— 1 —
1o 12 ( 126 @ 6(1— 2t0)3> ’ (o7)
1
(%1 - 6(1 N 2t0)2 9 (98)
Vg = 1-— 2’01 . (99)

Eq. (96) implies that, in addition to the potential energy, we have to evaluate all forces (both due to an external
potential and pair interactions) on all slices for each propagator, albeit the weight of the individual contributions
from the different kind of slices can be adjusted. For example, by choosing a; = 0, the forces are only relevant
on ancilla slice A, whereas for a; = 1/3 all three slices contribute equally. Again, we stress that this second free
parameter (in addition to tg) can be used for optimization.

Incorporating the fourth-order partition function into the expression for Z from Eq. (81) leads to the final result
for the PB-PIMC partition function [221]

— eV —€3ugFy T
Z= (NNN“ BP/dX H( =< uo DaDa) : (100)
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where V,, and F,, contain all contributions due to the potential energy and the forces for a specific propagator «,

Vo = 01V(Rgy)+v2V(Ran)+01V(Rap) , (101)
N

F, = Z(a1|Fa,i|2 + (1 —2a1)|[Fonil* + a1|Fap.il®) - (102)
=1

Further, we stress that the integration has to be carried out over all possible coordinates on the ancilla slices as
well, i.e.,

=[] dRadRaAdR,5 - (103)

All fermionic exchange is contained within the exchange-diffusion functions
DI, = det(p})det(p] 4)det(p)p) , (104)
DL = det(ph)det(p} 4)det(p} ) , (105)

which constitute a product of the determinants of the free particle (diffusion) matrices between particles ¢ and j on
two adjacent time slices (not propagators)

. 1
pg(l,]) = )\? Z eXp <_ A2 (I.;TX Jj PZA,i + nL)2> ) (106)
. 1 T
phaing) = N > exp (—/\% (rha; —thpi+ nL)2> : (107)
1€ pn 1€
. 1 T
pIxB(,L’J) = )\3 Zexp <_ /\2 (rlB,j - a+l % + IIL) ) ’ (108)
2tpe p 2tpe

with an analogous definition for the spin-down electrons. Note that we have again exploited the idempotency
property of the antisymmetrization operator to introduce determinants on all the ancilla time slices as well. The
reason for this choice becomes obvious by closely examining the new configuration space, which is illustrated in the
right panel of Fig. 7. Shown is a configuration of two particles in the 7-z-plane and beads on different types of time
slices are distinguished by the different colors. For standard PIMC, a typical configuration would be given by the
two red paths, which would correspond to two separate paths without a pair exchange. In addition, one would also
have to consider all configurations with the same positions of the individual beads, but different connections between
beads on adjacent slices, which would lead to contributions with different signs. By introducing the determinants
within the PB-PIMC scheme, we combine all N! possible connections between beads on adjacent slices into a single
configuration weight. As explained in the beginning of this section, this analytic blocking of configurations with
different signs results in a drastically less severe sign problem and, therefore, to perform simulations in substantial
parts of the WDM regime.

This is further illustrated in Fig. 8, where we show a random screenshot from a PB-PIMC simulation with P = 4
fourth-order propagators and N = 33 spin-polarized electrons at r; = 1 and 6 = 1. Again, the beads of different
color correspond to different kind of time slices. The different line width of the red connections between some beads
on adjacent slices symbolize the magnitude of the diffusion matrix elements, Eq. (106). Without the determinants,
each bead would have exactly two connections. Hence, beads with more than two visible links in Fig. 8 significantly
contribute to the permutation blocking, which, in stark contrast to standard PIMC, makes simulations feasible
under such conditions.

As explained in Sec. 5.1, we use the Metropolis Monte Carlo algorithm [269] to generate all possible paths X
according to the appropriate configuration weight defined by Eq. (100). Let us now discuss how we can compute
physical expectation values from this Markov chain of configurations. For example, the total energy of the system
can be computed from the partition function via the well-known relation

107
E= 795 (109)
and plugging in the PB-PIMC expression for Z, Eq. (100), into (109) gives the desired Monte Carlo estimator (for
N spin-polarized electrons, the generalization to an arbitrary degree of spin polarization is obvious),

1 P—-1 ~ ~ 3DN 7'[‘ P—-1 N N
= F Z (VOé + 362UOF’€) % E Z Z nk z)‘he + nk 7 Ahe + nk 7 )‘Qtoe) ’ (110)
a=0 a=0 i=1
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Figure 8: Screenshot of a PB-PIMC simulation of the spin-polarized UEG with N =33, P =4, rs = 1, and § = 1. The green, blue, and
purple beads correspond to main, ancilla A, and ancilla B slices, respectively. The different width of the red connections symbolizes
the magnitude of the diffusion matrix elements, cf. Eq. (106). Beads with more than two visible links significantly contribute to the
permutation blocking.
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Figure 9: Effect of an increasing number of imaginary time slices on the permutation blocking — Shown are configurations with two
spin-polarized electrons in the 7-z-plane with P = 2 (left) and P = 5 (right) fourth-order propagators. For P = 2, the thermal
wavelength of a single time slice, A¢;e = /2mt1€ , is comparable to the average particle distance. Therefore, the off-diagonal (blue)
diffusion matrix elements [cf. Eq. (106)] are comparable in magnitude to the diagonal (red) elements, and the permutation blocking
within the determinants is efficient. In contrast, for P = 5 there are either large diagonal (as in the depicted configuration) or large
off-diagonal elements, but not both simultaneously, and the permutation blocking will have almost no effect.

with the definitions

—1), — I (fa,k—TaAa,i+Ln)?
e o= —(pf\g)k’l > (e e (Fask = Tani + Ln)2> (111)
t1€ n
—1 . 2
Poa ki — 35— (taA k—TaB,i+Ln)
na = ales i‘é‘) > (6 e (Taak = Tap,;+Ln)® (112)
t1€ n
-1 b 2
i 77("& N ,iJan)
’[’]?;LB = (p;\x?)B)kﬂ <€ )\%toe B,k +1 (raB’k — g1 + Ln)2> ) (113)
2tp€e n

Here the notation (p; ') ; indicates the (k, i)-element of the inverse diffusion matrix. Interestingly, the contribution
of the force-terms to E in Eq. (110) splits to both the kinetic and potential energy, see Refs. [307, 219] for more
details.

Finally, let us consider the effect on the permutation blocking of an increasing number of imaginary time
propagators P, which is illustrated in Fig. 9. In the left panel, we show a configuration of two spin-polarized
electrons in the 7-z-plane with P = 2 fourth-order propagators. In this case, the thermal wavelength of a single
time slice, A\¢,e = v/27t1€, is comparable to the average particle distance. Hence, the off-diagonal diffusion matrix
elements (blue connections) are similar in magnitude to the diagonal elements (red connections) and the permutation
blocking within the determinants is effective. However, this situation is drastically changed for increasing P, cf. the
right panel where a similar configuration is depicted for P = 5. Evidently, in this case Ay ¢ is much smaller than the
particle distance and there are either large diagonal [which is the case in the depicted configuration] or off-diagonal
diffusion matrix elements, but not both simultaneously. Therefore, the permutation blocking will be ineffective and
for P — oo the original sign problem from standard PIMC will be recovered. In a nutshell, the introduction of
antisymmetric imaginary time propagators allows to significantly alleviate the FSP and therefore to extend standard
PIMC towards more degenerate systems. However, since this effect vanishes with increasing P, it is vital to combine
the permutation blocking with a sophisticated factorization of the density matrix that allows for sufficient accuracy
with only few propagators.

Let us conclude this section with a more quantitative discussion of the fermion sign problem within PB-PIMC
simulations of the spin-polarized UEG at warm dense matter conditions. In the left panel of Fig. 10, we show the
dependence of the average sign on the density parameter ry for PB-PIMC simulations of N = 33 spin-polarized
electrons with P = 2 imaginary time propagators at § = 1 (red), # = 2 (blue), and 6 = 4 (black). All three curves
exhibit a qualitatively similar behavior, i.e., a decreasing sign towards higher density, see also the discussion of
Fig. 6 above. However, in stark contrast to standard PIMC (green curve for § = 1), the sign stays finite for all
rs. Thus, it has been demonstrated that, for the present conditions, PB-PIMC simulations are feasible over the
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Figure 10: Average sign in PB-PIMC simulations of N = 33 spin-polarized electrons at warm dense matter conditions — Left panel:
Density-dependence of S for P = 2 propagators for § = 1 (red), 6 = 2 (blue), and 6 = 4 (black). Right panel: Temperature-dependence
of S for P =2 for rs = 10 (red), rs = 1 (blue), and rs = 0.1 (black). All standard PIMC results for S (green curves) have been taken
from the Supplemental Material of Ref. [211]. Both panels are reproduced with the permissions of the authors of Ref. [220].

entire density range. In the right panel, the dependence of the average sign on € is shown for the same system for
rs = 10 (red), rs = 1 (blue), and 7, = 0.1 (black). For large temperatures, the sign is nearly equal to unity and
the computational effort is small. With decreasing 6, both the diagonal and off-diagonal diffusion matrix elements
become larger and both positive and negative determinants appear within the PB-PIMC simulations, eventually
leading to a steep drop of .S, which is more pronounced at weak coupling. Still, we stress that it is precisely at such
conditions that the permutation blocking is most effective as well. Therefore, the sign problem is much less severe
compared to standard PIMC (green curve). Overall, it can be seen that for warm dense matter conditions, i.e., for
rs =1,...,6, PB-PIMC simulations are feasible down to 6§ = 0.5.

5.5. Configuration Path Integral Monte Carlo

Another PIMC variant that has been proven to be highly valuable for the simulation of the UEG is the Config-
uration PIMC (CPIMC) method [215, 216, 218, 227]. It belongs to the class of continuous time world line Monte
Carlo algorithms (CTWL-MC), which avoid the imaginary time discretization error by switching to the interaction
picture with respect to a suitable part of the Hamiltonian. The basic idea of CTWL-MC stems from the works
of Prokofev et al. [309] and Beard and Wiese [310]. Subsequently, many system specific CTWL-MC algorithms
had been developed and highly optimized for fermionic as well as bosonic lattice models, most importantly for
different variants of Hubbard and impurity models. A comprehensive review of the existing CTWL-MC algorithms
and their applications can be found in Ref. [311]. However, until the development of CPIMC, continuous fermionic
systems with long range Coulomb interactions have not been tackled with the CTWL-MC formailism mainly for
two reasons: 1) the long range Coulomb interaction causes a severe sign problem and 2) it introduces new complex
classes of diagrams which require a significantly more elaborate Monte-Carlo algorithm.

Essentially, CPIMC can be viewed as performing Metropolis Monte Carlo with the complete (infinite) perturba-
tion expansion of the partition function with respect to the coupling strength of the system. As such, this method
is most efficient at weak coupling and becomes infeasible at strong coupling where it suffers from a severe sign prob-
lem; yet, the critical coupling parameter lies well beyond the failure of analytical approaches. Moreover, CPIMC
is practically applicable over the entire temperature range, even down to the ground state. Thus, regarding the
range of applicability with respect to density and temperature, CPIMC is highly complementary to the PB-PIMC
approach discussed in Sec. 5.4.

5.5.1. CPIMC representation of the partition function

For the derivation of both the standard PIMC and the PB-PIMC expansion of the partition function we started
with utilizing N —particle states in coordinate representation to perform the trace over the density operator in
Eq. (63). The correct Fermi statistics are then taken into account via a subsequent anti-symmetrization of the
density operator, which causes the weight function to alter the sign with each pair exchange and, hence, can be
regarded as the source of the FSP. To avoid this particular source, in CPIMC, we switch gears by making use of
the second quantization representation of quantum mechanics for the UEG, which has been introduced in Sec. 2.3.
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Here, the N-particle states, Eq. (13), are given by Slater determinants, which form a complete basis set of the
N —particle states in Fock space. Thus, we can compute the partition function, Eq. (63), by carrying out the trace
over the density operator with these states, yielding

Z =Y ({n}e P |{n}) . (114)
{n}

Unfortunately, the evaluation of the matrix elements of the density operator is not straightforward since the Slater
determinants of plane waves are no eigenstates of the interacting UEG Hamiltonian, Eq. (11), but only of the ideal
UEG. One solution to this problem is to use the series expansion of the exponential function

2=% 3 (i} S A )

K=0 {n}

=YY Y Y E O ) (O ) ) ) SO (115)

K=0{n}® {n}()  [p}(K-1)

where we have inserted K —1 unities of the form 1 = >ty Hn3D) ({n} @] so that {n}® = {n}¥) holds implicitly.
Applying the Slater-Condon rules to the UEG Hamiltonian we readily compute its matrix elements according to

1 1 _ _
Diny = 9 Zlenl + ) szklk”l”k> {n}={n},
1

({n}|H|{n}) = 1<k (116)
Yin{n) = Whgps (1) vt {n} = {a})2f,
with the phase factor
max(p,q)—1
An},pg = Z o, (117)
l=min(p,q)+1

and the two-particle integrals being defined in Eq. (12). In this notation, [{7}2<?) refers to the Slater determinant

that is obtained by exciting two electrons from the orbitals r and s to p and ¢ in |{fi}). Performing Metropolis
Monte Carlo with the derived expression for the partition function, Eq. (115), has been termed the Stochastic
Series Expansion (SSE) method. In particular, this approach has been successfully used for the simulation of the
Heisenberg model [312, 313, 314, 315, 316], for which Eq. (115) can be recast into a form that has solely positive
addends, thereby completely avoiding the sign problem. However, this is not possible for the UEG and, in addition
to the factor (—3)%, we observe that the matrix elements can also attain both positive and negative values, which
causes a serious sign problem. In CPIMC, we therefore follow a different strategy and separate the diagonal part
D of the Hamiltonian by exploiting the following identity of the density operator

w B ] 8
ePH = ¢=BDT o= I Y(Ddr _ —BD Z/dn/d@... / dre (D) 5Y ()Y (15 —1) - ... V(7)) ,  (118)
K=07p 1 TK—1

where T} denotes the time-ordering operator and the time-dependence of the off-diagonal operator Y refers to the
interaction picture in imaginary time with respect to the diagonal operator D,

V(r) =ePVe D (119)

Note that, independent of the underlying one-particle basis of the quantization, according to the Slater-Condon
rules the Hamiltonian can always be split into a diagonal and off-diagonal contribution such that H = D+Y . After
inserting Eq. (118) into Eq. (115) and re-ordering some terms, the partition function becomes

B K

00 B B K
= > D, ), (Tig1—Ti)
7 = Z Z Z Z /dﬁ/d’l’z... / dTK(_l)Ke i=0 {n(y e HY{n(i)},{n(ifl)} . (120)
0 T

%7:&[1) {n}©® {n}®) {n}E-1) - 1 i=1
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Figure 11: Sketch of a typical CPIMC path of N = 4 unpolarized electrons in Slater determinant (Fock) space in imaginary time. The
starting determinant {n}(o at 7 = 0 undergoes three two-particle excitations at times 71, 72, and 73, where the last excitation defined by
the involved orbitals s3 = (0,1,2,7) must always ensure that the last state {n}(3) is equivalent to {n}(®. Reproduced from Ref. [221]
with permission of the authors.

Taking into account that the off-diagonal matrix elements do not vanish only if the occupation numbers of the left
and right state, i.e. {n}® and {n}=1 differ in exactly four orbitals p,q,r,s, cf. Eq. (116), we may introduce a
multi-index s; = (pgrs) defining these four orbitals and re-write the summation as follows

B B B

%) Eis K
=2 D i)y (Tig1—Ti)
7 = E E E /dTl/dTQ... / dTK(—l)Ke = ' HY{n(i)L{n(i—n}(Si) 5 (121)

(1) {n} s1...sKk-1 b TH_1 i=1

where {n} = {n}(® = {n}¥) always holds. This is the exact CPIMC expansion of the partition function. Regarding
the application of the Metropolis algorithm, the benefit of Eq. (121) over the SSE, Eq. (115), is obvious: by switching
to the interaction picture we got rid of all sign changes that are caused by the diagonal matrix elements since in
Eq. (121) these solely enter in the exponential function, which is always positive. Nevertheless, the sign changes due
to the off-diagonal matrix elements are still present and are the source of the sign problem in the CPIMC method.

Similar to the standard PIMC and PB-PIMC approach, each contribution to the CPIMC expansion of the
partition function, Eq. (121), can be interpreted as a path in imaginary time, X, that is entirely defined by the
starting set of occupation numbers {n} and all subsequent excitations {s1,$2...,8x} with their corresponding
times {1, 72 ..., 7k}, L.e.,

X:(K>{n}751:"'78K717T17~~~37K) . (122)

In contrast to the standard PIMC formulation, these paths now evolve in the discrete Fock space instead of the
continuous coordinate space. Moreover, there is no time discretization in the CPIMC formulation as the excitations
occur at continuous times 7;. Hence, unlike PIMC in coordinate space, there is no time discretization error. A
sketch of a typical path occurring in the simulation of N = 4 unpolarized electrons is depicted in Fig. 11, where
we chose the ordering of the spin orbitals such that even (odd) numbers correspond to up (down) spin projections.
In correspondence to their visual appearance in these paths we refer to the excitations as “kinks”. According to
Eq. (121), the corresponding weight of each paths is given by

5Dy )&

- )y (Tig1—Ti

W(X) = (_1)K€ & Py Tt HY{n(,i)}7{n(i—l)}(87j) . (123)
=1

Note that, as discussed in detail in Sec. 5.2.3, the Metropolos algorithm can only be applied when using the
modulus of the weight function. As usual, the Monte Carlo estimator of an observable, cf. Eq. (78), is derived from
its thermodynamic relation to the partition function. For example, for the energy we have

(H) = —%mz: i D /ﬁdﬁ/ﬁd@... /ﬂ dTK@iDW)}(TM ) — I;)W(X). (124)
1=0

%;(1) {n} s1.5x 1 0 T1 TK—1
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Figure 12: Snap shots of CPIMC paths from the simulation of N = 4 unpolarized electrons at rs = 1 ant § = 1 in Ng = 14 plane wave
spin-orbitals (indicated by the grey lines). The orbitals are ordered according to their corresponding kinetic energy k?/?. Depicted
are the occupied orbitals (red lines) in dependence of the imaginary time, which sum up to 4 at any specific time 7 € [0, 3]. Panel a)
shows the initial path that is used as the starting configuration in the Markov chain: no kinks with the lowest orbitals being occupied.
In panel b) an entire orbital is excited, after which a pair of kinks is added in panel ¢). Only then is it possible add single kinks by
changing another kink in the path, which is depicted in panel d). This way, depending on the density and temperature, the CPIMC
algorithm eventually generates paths with more complicated structures as shown in panels e) and d).
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Figure 13: Average sign a) and average number of kinks b) in CPIMC simulation in dependence on the density parameter for N =
4,14,66 at 0 = 1. Shown are the results from the simulation of the spin-polarized (circles) and unpolarized (dots) UEG. Reproduced
from Ref. [221] with permission of the authors.

In practice, in CPIMC simulations, we start the generation of the Markov chain from an initial path without kinks
and with the lowest N plane wave spin-orbitals being occupied, where we choose the ordering of the orbitals in
accordance to their kinetic energy k?/2. Fig. 12 a) shows a snap shot of such a starting path from a CPIMC
simulation of N = 4 unpolarized electrons in Ng = 14 spin orbitals. Due to the fact that there are no S—periodic
(closed) paths containing only a single kink, only two possible changes can be proposed to proceed: either an
entire occupied orbital can be excited to an unoccupied orbital, see Fig. 12 b), or a symmetric pair of kinks can be
added at once, see Fig. 12 ¢). These proposed changes are accepted or rejected with the corresponding Metropolis
acceptance probability, cf. Eq. (62), which is computed using the modulus of the weight function |W(X)|. Ounly
after a symmetric pair of kinks has been successfully added is it possible to add single kinks by changing another as
demonstrated in Fig. 12 d). Depending on the temperature and density parameter in the simulation, the CPIMC
algorithm eventually generates paths containing more kinks and more complex structures, see Figs. 12 e) and f).

5.5.2. The sign problem in the CPIMC approach

As discussed in Sec. 5.2.3, we can only apply the Metropolis algorithm to a partition function that has a weight
function with alternating signs by simulating a modified system defined by the modulus of the weight function,
cf. Eq. (82). Yet, this procedure comes at the cost of introducing the FSP. It is important to note that each kink
enters the CPMC weight function, Eq. (121), with three possible sign changes: 1) the factor (—1)%, 2) the sign
of the corresponding two-particle integral, Eq. (12), and 3) the phase factor, Eq. (117), that depends on the set
of occupation numbers at the time of the kink. To investigate the FSP in the CPIMC approach, Fig. 13 shows
the average sign, a), and the average number of kinks, b), of all sampled paths in the generated Markov chain for
simulations of N = 4 (red), N = 14 (green), and N = 66 (blue) electrons at § = 1 in dependence of the density
parameter r,, both for the polarized (circles) and unpolarized (dots) UEG. Since simulations with an average sign
below ~ 1072 are not feasible, these quantities determine the applicable regime of the basic CPIMC method in the
density-temperature plane. Independent from the number of electrons, the average sign is always unity in the ideal
limit s — 0, since here the UEG Hamiltonian is diagonal in the utilized plane wave basis. Hence, there cannot be
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Figure 14: Snapshot of a typical path occurring in a CPIMC simulation of N = 14 unpolarized electrons at rs = 0.7 (panel a)) and
rs = 1 (panel b)), both at § = 1 in Np = 778 plane wave spin-orbitals, which are ordered according to their corresponding kinetic energy
kf /2. Plotted is the occupation of each orbital (red and grey indicate occupied and unoccupied orbitals, respectively) in dependence
on the imaginary time. Note that the density of the 778 orbitals (grey lines) appears to be continuous on this scale but when further
zooming into the path it is of course discrete like in Fig. 12 where N = 14.
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Figure 15: Snapshot of a typical path occurring in a CPIMC simulation of N = 14 unpolarized electrons at rs = 0.7 (panel a)) and
rs = 0.4 (panel b)) both at § = 0.01 in Ng = 778 plane wave spin-orbitals, which are ordered according to their corresponding
kinetic energy k% /2. Plotted is the occupation of each orbital (red and grey indicate occupied and unoccupied orbitals, respectively) in

dependence on the imaginary time.
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Figure 16: Convergence of a) the internal energy, b) the average sign and c) the average number of kinks with the kink potential
parameter k. Each point results from a complete CPIMC simulation of N = 66 unpolarized electrons at rs = 2 and 6 = 4 (left) and
rs = 0.8 and # = 1 (right). The blue (green) line shows a horizontal (linear) fit to the last points. The asymptotic value (black point)
in the limit 1/k — 0 is enclosed between the blue and green lines and, within error bars, coincides with the PB-PIMC result (orange
points). Left (right) graphic reproduced (modified) from Ref. [221] with permission of the authors.

any kinks in the paths and their weight is always positive.

However, with decreasing density, i.e., increasing 75, we observe that the average sign drops drastically at some
critical density that strongly depends on the number of electrons, temperature, as well as the spin-polarization.
This drop is caused by an enormous increment of the average number of kinks at this critical density (note the
logarithmic scale). For example, in case of N = 14 unpolarized electrons (green), at this temperature, the critical
density is at rs ~ 0.8. In Fig. 14, we further explore this case by showing snap shots of typical CPIMC paths
occurring in the simulation of N = 14 electrons in N = 778 basis functions at rs = 0.7, a), and r; = 1, b), both
at @ = 1. While at r; = 0.7 the paths contain only very few kinks, at s = 1, many paths contain ~ 100 kinks
which are highly entangled and thereby induce many sign changes. When lowering the temperature while keeping
the other system parameters constant this critical value of rs becomes even smaller, wich is illustrated by the two
simulation snap shots in Fig. 15 for r¢ = 0.7, a), and rs = 0.4, b), now at 6 = 0.01. At these low temperatures close
to the ground state, even a density parameter of r; = 0.7 is clearly not feasible with the basic CPIMC method as
the paths typically contain about 500 kinks, while, at s = 0.4, the average number of kinks is reduced by two orders
of magnitude so that simulations pose no problem here. Further, we point out that the structure of the generated
CPIMC paths changes significantly with the temperature: at high temperature, see Fig. 14, the average occupation
of higher orbitals is much larger due to the increased kinetic energy of the electrons, while at low temperatures,
see Fig. 15, most of the kinks tend to occur in symmetric pairs with only very short imaginary time in between,
so that theses structures appear as needles in the paths. Interestingly, the overall sign change of these symmetric
pairs always exactly compensates to one and thus they do not worsen the FSP.

Finally, we stress that the linear dependence of the average number of kinks in Fig. 13 b) before and after the
critical density is not an artefact due to the inevitable practical restriction to a finite number of basis functions
in the simulation. In particular, this demonstrates that the modified CPIMC partition function with the modulus
weight function is actually a convergent sum for any finite system parameters of the UEG. Mathematically this
must not necessarily be the case, since if a sum with alternating signs of its summands converges, of course, the
same sum with the modulus of the summands can be divergent. Nevertheless, the fact that the FSP in the basic
CPIMC approach has a ”hard-wall-like” character is rather unsatisfactory: there is either none when there are on
average less than ~ 2 kinks in the paths or it is so strong that simulations are not feasible due to hundreds or even
thousands of kinks. A problem which we will strongly mitigate in the next section.

38



5.5.8. Reduction of the FSP with an auziliary kink potential
The restriction of the CPIMC approach to the nearly ideal regime, i.e. very large densities, due to a severe FSP
at some critical value of r; can be significantly alleviated by the use of a Fermi-like auxiliary kink potential

1
Vi(K) = e—(n—K+05) 4 1 (125)
by replacing the modulus of the weight function |W (X)|, cf. Eq. (123), by the modified weight
(Wi(X)| = [W(X) - V(K| - (126)

When performing simulations for fixed values of k, this potential acts as a smoothly increasing penalty of paths
with a large number of kinks K, thereby effectively suppressing the occurrence of these paths in the simulation.
Since it is limy, o0 Vi (K) = 1, we can extrapolate the results from CPIMC simulation with different values of
to the exact limit 1/x — 0, which is illustrated in in the left panel of Fig. 16 for N = 66 electrons at rs = 2 and
0 = 4. Indeed we observe that the total energy, a), is well converged at xk ~ 10 while the average sign, b), and the
average number of kinks, c), are clearly not. In fact, for these parameters, the basic CPIMC simulation without
the kink potential equilibrates at an average number of several hundreds of kinks. This fortunate behavior can be
explained by a complete cancellation of all contributions to the energy of all paths that contain a larger number
of kinks than about 10. In other words, the simulated modified partition function with the modulus of the weight
function converges at much larger values of K than the physical partition function due to a complete cancellation
of the weights. In this sense one may also call this circumstance a ”sign blessing” rather than a ”sign problem”.

Since the convergence with the potential parameter 1/« is monotonic, we can obtain a highly accurate upper
and lower bound of the exact result even in those cases where convergence is not entirely reached, which is shown
in the right panel of Fig. 16 for the example of N = 66 electrons at rs = 0.8 and § = 1. For these parameters
the bare CPIMC method generates paths that contain about a thousand kinks [see solid blue points in Fig. 13
b)]. Nevertheless, within the given error bars, the resulting value (black) agrees well with that from the PB-
PIMC simulation (orange). Overall, at a fixed number of electrons N and temperature 6, the usage of the kink
potential, Eq. (125), increases the feasible rs parameter in CPIMC simulations by at least a factor of two. Thus,
the applicability of the method is pushed into density regimes where common analytical perturbation theories break
down.

5.6. Density Matriz Quantum Monte Carlo

The density matrix quantum Monte Carlo (DMQMC) approach developed by Foulkes, Malone, and co-workers [224,
222, 223] is similar to the CPIMC method from the previous section in so far as both are formulated in antisym-
metrized Fock space. As we shall see, this leads to a similar range of applicability (see Sec. 5.7). However, in
contrast to the path integral Monte Carlo paradigm, in DMQMC we directly sample the unnormalized thermal
density matrix (expanded in a basis of Slater determinants). Therefore, it constitutes a direct extension of the full
configuration interaction quantum Monte Carlo (FCIQMC) method [317, 19, 18, 20], which has proven to be highly
successful in the ground state [318], to finite temperature. Furthermore, it can be viewed as the diffusion Monte
Carlo analogue of CPIMC.

Following Ref. [222], we write the Bloch equation [cf. Eq. (87)] in a symmetrized form,

;Lg _ —%(Hﬁ +pH) . (127)
Thus, propagating the density matrix in imaginary time by an amount of Aj using a simple (explicit) Euler scheme
gives

R R AB o AN B

FB+ A8) = 5(8) = S (HHB) + p(B)H) + O(AB) (128)
The basic idea of the density matrix QMC method is to stochastically solve Eq. (128) by evolving a population
of positive and negative walkers (sometimes denoted as ”particles”, ”psi-particles”, or "psips”) in the operator

space spanned by tensor products of Slater determinants. Writing down Eq. (128) in terms of matrix elements
pij = (i| p|j) (with |é) being a Slater determinant of plane waves) leads to

pij(B+ AB) = pi;(B) — % Z[(sz = S0i)prj — pir(Hrj — Soi;j)] (129)
k
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with S being an, in principle, arbitrary shift that can be used to control the population of walkers [319, 317, 222].
Furthermore, it is convenient to introduce the update matrix

Tij = —(Hij = 54ij) (130)

which allows us to write Eq. (129) as
Ap
pij (B +AB) = pi(B) + —- > (Tinprs + pirThj) - (131)
k

The update scheme governing the stochastic evolution of the walkers can be summarized in three straightforward
rules:

1. Spawning — A walker can spawn from matrix element p;; to p;; with the probability pspawn(tk — ij) =
ApB|Tyj|/2 (the spawning process from py; to p;; is similar).

2. Clone/Die — Walkers on p;; can clone or die, leading to an increase or decrease of the population with the
probability pq(ij) = AB|Ti;+Tj;|/2. In particular, the population is increased if sign(T}; +1};) x sign(p;;) > 0
and decreased otherwise.

3. Annihilation — Walkers on the same matrix elements, but with an opposite sign, are annihilated. This
drastically improves the efficiency of the algorithm.

Starting at § = 0 (where p;; = d;;, realized by populating the diagonal density matrix elements with uniform
probability), the above algorithm is used to propagate p to the desired (inverse) temperature of interest. The full
DMQMC simulation, i.e., the computation of thermodynamic expectation values, is then given by averaging over
many independent of such ”3-loops”.

Regarding simulations of the electron gas using this basic version of DMQMC there appear two practical prob-
lems: (i) the distribution within the thermal density matrix changes rapidly with § and (ii) important determinants
are often not present in the initial configuration. To overcome these obstacles, Malone and co-workers [222] proposed
to solve a different differential equation, describing the evolution of a mean-field density matrix to the exact, fully
correlated density matrix, both at inverse temperature 5. This so-called interaction picture DMQMC method has
turned out to be dramatically more efficient and was used to obtain all DMQMC data shown in Sec. 5.7.

As a final note, we mention that the fermion sign problem in DMQMC manifests as an exponential growth of
the number of walkers needed to resolve the exact thermal density matrix, eventually rendering even a stochastical
approach unfeasible. To delay this ”exponential wall”, the exact DMQMC simulation scheme can be used as a
starting point for approximations. In particular, one can exploit the extreme degree of sparsity of the thermal
density matrix to reduce the computational demands [223]. This, in turn, allows to significantly increase the range
of applicability in terms of coupling strength, similar to the controlled kink extrapolation in the CPIMC method, see
Sec. 5.5. The basic idea of this initiator approzimation [223] is to prevent walkers on density matrix elements with
a comparatively small weight from spawning off-spring on other small elements. Spawning events to unpopulated
matrix elements are only possible from the set of so-called initiator determinants, which are occupied by a number
of walkers above a certain threshold niu;, or if they result from multiple sign-coherent spawning events from other
determinants. It is important to note that the bias due to the initiator approximation can be reduced by increasing
the total number of walkers within the simulation, Nyaker, and vanishes completely in the limit Nyaker — 0.
Therefore, this "i-DMQMC” algorithm can be viewed as a controlled approximation, although a non-monotonic
convergence towards the exact result with Nyaker is possible. Furthermore, the accuracy for any finite number
Nyalker s significantly reduced for quantities that do not commute with the Hamiltonian.

5.7. Comparison of QMC methods

In this section, we present comparisons between data from different QMC methods in a chronological order,
starting with the investigation by Schoof et al. [218] and finishing with the most recent comparison in Ref. [225],
where all four methods had been included into the same plot. It is important to note that all results in this section
have been obtained for a finite model system of N = 33 (spin-polarized) or N = 66 (unpolarized) electrons. An
exhaustive introduction, explanation and discussion of finite-size errors, i.e., the extrapolation to the thermodynamic
limit, can be found in section 6.
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Figure 17: Low-temperature results for the exchange-correlation energy of the spin-polarized UEG with N = 33 electrons. The filled
circles correspond to the configuration PIMC data by Schoof et al. [218] and the empty circles have been obtained by subtracting the
finite-size correction from the restricted PIMC data in the Supplemental Material of Ref. [211]. The black diamond corresponds to
6 = 0.0625 and has been obtained via an approximation based on the extrapolation of permutation cycles introduced by DuBois et
al. [320]. Reproduced from Ref. [218] with the permission of the authors.

5.7.1. The limits of the fixed node approximation
In 2013, Brown and co-workers [211] published the first QMC data for the UEG using the restricted PIMC

method both for ¢ = 0 and £ = 1 covering substantial parts of the warm dense matter regime (0 = 0.0625,0.125,0.25, . ..

and 1 < rg < 40). It is well known that employing a nodal constraint (using the free particle nodes) constitutes an
uncontrolled approximation so that the accuracy of the RPIMC data was not clear. However, the remarkably high
accuracy of the fixed node approximation in ground state calculations [16, 38, 17] lead to a high confidence in their
results, which were subsequently used as input for various applications, e.g., Refs. [213, 212, 214, 321, 185]. In their
seminal 2015 paper, Schoof et al. [218] were able to obtain ezact CPIMC data for the spin-polarized electron gas
up to rs = 1,...,4 (depending on temperature), thus enabling them to gauge the bias in the RPIMC data. The
results are shown in Fig. 17, where the exchange-correlation energy Ey. = E — Up (with Up being the energy of
the ideal system) is plotted versus rs for N = 33 electrons and four different temperatures in the low temperature
regime, 6 = 0.0625,0.125,0.25,0.5. The filled and empty circles correspond to the CPIMC and RPIMC data, re-
spectively. For completeness, we mention that the black diamond corresponds to a single data point for = 0.0625
from Ref. [320], which was obtained by performing an approximate extrapolation over the permutation cycles in the
PIMC simulation; yet, it is not relevant in the present context. Although the sign problem is practically absent in
the CPIMC simulations at rs < 0.1, the statistical uncertainty (error bars) increases towards even higher density.
The explanation for this behaviour is simple: with decreasing r, the system becomes more similar to the ideal case,
thereby making F. the difference between two large numbers, which naturally leads to an increased relative error.
On the other hand, the relative CPIMC errors also increase in magnitude for 7y > 0.6 due to the fermion sign
problem, which eventually leads to an exponential wall at some critical value of r,, at which CPIMC simulations
are no longer feasible. However, at r; = 1 the error bars in the CPIMC data is clearly an order of magnitude smaller
than those of the RPIMC data.

The most interesting feature of Fig. 17 is the striking disagreement between the exact CPIMC and RPIMC
points where the data overlap. In particular, the fixed node approximation leads to an unphysical drop towards
high density and the bias in F,. exceeds 10%. This is in stark contrast to ground state results, where already the
data by Ceperley and Alder from 1980 [16] had an accuracy of the order of 0.1%. Furthermore, the decreasing
quality of the RPIMC data towards high density and weaker coupling contradicts the usual assumption that the
systematic error due to the free particle nodes should be most pronounced at stronger nonideality, but vanish for
rs = 0 (ideal case). While we do not have a definitive explanation of this finding, a possible answer might be a lack
of ergodicity within the RPIMC simulation due to the reference point freezing, see Sec. 5.3, an explanation that
would be in good agreement with the observed increment of the RPIMC error bars towards higher density. Finally,
we mention that Filinov [322, 323] called into question the validity of the fixed node approximation even for the
ideal case.
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Figure 18: Combination of the configuration PIMC and permutation blocking PIMC methods. Shown is the exchange-correlation energy
of N = 33 spin-polarized electrons in dependence of the density parameter rs (left) and the reduced temperature 6 (right). The colored
filled circles and crosses correspond to the CPIMC and PB-PIMC data, respectively, and the faded empty circles to the RPIMC data
by Brown et al. [211]. Reproduced from Ref. [217] with the permission of the authors.

5.7.2. Combining CPIMC and PB-PIMC

The important findings by Schoof et al. [218] from the previous section seriously called into question the utility
of the RPIMC data as a basis for density functional theory or other applications at warm dense matter conditions
(even more so when considering the additional need for a sufficiently accurate finite-size correction, see Sec. 6).
The problem is that the exact CPIMC method (see Sec. 5.5), due to its formulation as an infinite perturbation
expansion around the ideal system, is limited to moderate coupling (around 75 = 1, depending on temperature) and,
therefore, cannot be used over substantial parts of the relevant WDM regime. To overcome this issue, Dornheim et
al. [219] introduced the permutation blocking PIMC idea (see Sec. 5.4 for a detailed introduction) and subsequently
demonstrated its utility for simulation of the electron gas [220]. In particular, it was suggested that the combination
of CPIMC and PB-PIMC at complementary parameters could be used to obtain highly accurate results over the
entire density range [217, 221].

This is demonstrated in the left panel of Fig. 18, where the exchange-correlation energy is shown in dependence
of the density parameter 5 [217]. The faded empty circles correspond to the RPIMC data by Brown et al. [211], the
filled circles to CPIMC and the crosses to PB-PIMC data. Note that we show either a CPIMC or a PB-PIMC point,
depending on which method provides the smaller statistical uncertainty at a given rs-6-combination. Again, we
mention that the comparatively large error bars in Fy. at small 74 and high temperature are due to its nature as the
difference between two large numbers, the total and ideal energies E and Uy, respectively. Evidently, the PB-PIMC
data is in excellent agreement with and smoothly connects to the CPIMC results for all depicted temperatures.
This means that the combination allows for a highly accurate description down to 8 = 0.5. While CPIMC is also
available for lower temperature, cf. Fig. 17, the permutation blocking PIMC approach eventually becomes infeasible
due to the FSP, which is the reason for the relatively large error bar at rs = 2 and 8 = 0.5. For completeness, we
mention that the interaction energy V', which is sufficient to construct a parametrization of the exchange-correlation
free energy fxc (see Sec. 8), can be obtained with a significantly higher accuracy at 6 = 0.5, see Refs. [220, 221, 226].

The RPIMC data, on the other hand, exhibit an unphysical behavior even at moderate to high temperature. In
particular, both for # = 0.5 and 6 = 1 there occurs a drop in Fy., while for § = 2 and 6 = 4 there are pronounced
bumps in the region 1 < r; < 6.

In the right panel of Fig. 18, we show the temperature dependence of Fy. for four different values of the density
parameter, rs = 0.2,0.6,1,4. The RPIMC data are available for the two largest rs-values, but again there appears
a substantial disagreement to the combined CPIMC and PB-PIMC data. While all methods find a minimum in
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Figure 19: Combination of the configuration PIMC and permutation blocking PIMC methods for the unpolarized electron gas with
N = 66 electrons. In the top left panel, we show results for the density-dependence of the exchange-correlation energy from configuration
PIMC (filled circles), permutation blocking PIMC (crosses), and restricted PIMC (empty circles, taken from Ref. [211]). The bottom
left panel shows all E;. data for § = 1 both from PB-PIMC and CPIMC, where they are available. In the top right and center right
panel, we show the kinetic energy (in units of the ideal result, Up) and interaction energy from all three methods. Finally, the bottom
right panel shows the relative deviation between RPIMC and our data for V. Reproduced from Ref. [221] with the permission of the
authors.

FEy. around 6 = 0.3 for all depicted densities, the fixed node approximation leads to a drastically deeper minimum
for ry =1 (see also Fig. 17 above). Groth and co-workers [217] gave a possible explanation of this non-monotonic
behavior as the competition of two effects: on the one hand, thermal broadening of the particle density leads to
a reduction of the interaction energy with temperature, while, on the other hand, Coulomb interactions might be
partly increased as the thermal deBroglie wavelength (see Sec. 5.2) decreases with increasing 6. Note that a similar
trend has been predicted in the vicinity of Wigner crystallization in 2D, see Ref. [324].

Up to this point, all depicted results had been obtained for the spin-polarized case, i.e., £ = 1. However, as real
systems are found predominantly in an unpolarized state, the £ = 0 case is arguably even more important for real
applications. For this reason, in the left panel of Fig. 19, we show the rs-dependence of Fy. for N = 66 unpolarized
electrons. Again, we show either a CPIMC or PB-PIMC data point, depending on the statistical uncertainty. Due
to the two-fold increase in system size (it is conventional to use a closed momentum shell, i.e., Ny = N} = 33
spin-up and -down electrons), PB-PIMC results for the exchange-correlation energy are only available above half
the Fermi temperature. Regarding the CPIMC approach, there is an additional issue which further reduces the
feasible 75 parameter: electrons with opposite spin do not exchange which leads to an increased weight of kinks
between those electrons (compared to the same corresponding to two electrons of equal spin) [221]. The bottom left
panel of Fig. 19 shows data for § = 1 only, but both from PB-PIMC and CPIMC where they are available. Again,
we stress the excellent agreement between the two independent methods as all data agree within error bars and no
systematic deviations can be resolved. The comparion to the RPIMC data by Brown and co-workers [211] reveals
that, for the unpolarized case and for moderate temperatures, there is no systematic bias of the same order as for
the spin-polarized case. Only for the lowest depicted temperature, § = 0.5, there seems to appear a systematic drop
of the RPIMC data towards high density.

In the right part of Fig. 19, we consider separately both the kinetic and the potential (interaction) contribution
to the total energy. Specifically, in the top right panel, we plot the rs-dependence of the kinetic energy (here labelled
T and given in units of the ideal energy Up) for 8 = 1,2,4,8. Surprisingly, we find significantly larger disagreement
than in Ey. for all depicted temperatures as the RPIMC data are systematically too small. Furthermore, these
deviations do not vanish entirely even for large r.

The center right panel of the same figure shows the same information for the Ewald interaction energy V,
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Figure 20: Comparison of all QMC methods for the spin-polarized electron gas at warm dense matter conditions. Shown are results
for the rs-dependence of the exchange-correlation energy for N = 33 electrons from CPIMC (red circles, data taken from Ref. [217]),
PB-PIMC (red crosses, data taken from Ref. [217]), DMQMC (filled green diamonds) and initiator DMQMC (empty green diamonds,
data taken from Ref. [223]) and RPIMC (blue squares, data taken from Ref. [211]). For # = 0.5, all data have been shifted by 0.05
Hartree. Reproduced from Ref. [225] with the permission of the authors.

although, on the given scale, no deviations are visible with the naked eye. For this reason, in the bottom right
panel, we show the relative deviation between our data and RPIMC in V. Unsurprisingly, we find deviations of a
similar magnitude than in the kinetic part, but of an opposite sign, i.e., here the RPIMC data are always too large.

In a nutshell, our analysis of the unpolarized electron gas has revealed that (i) the fixed node approximation
gives significantly more accurate results for the exchange-correlation energy than for the spin-polarized case, but
(ii) the separate kinetic and potential contributions are systematically biased for all temperatures, even for large
rs. Finding (ii) is a common property of approximations in quantum Monte Carlo methods for quantities that
do not commute with the Hamiltonian. Similar behaviors have been reported in ground state diffusion Monte
Carlo calculations using the fixed node approximation?, e.g., Refs. [325, 326], or in finite-temperature DMQMC
calculations employing the initiator approximation [223].

5.7.8. Emerging consensus of QMC methods

Shortly after the findings of the previous subsections had been reported, Malone and co-workers [223] achieved
major breakthroughs regarding the application of the density matrix QMC method to the electron gas at WDM
conditions. Their valuable set of additional, independent data has been included in Fig. 20 (green diamonds),
where the r-dependence of Fly. is shown for all four QMC methods introduced above [225]. Note that the 6§ = 2
data corresponds to the exact DMQMC algorithm whereas, for # = 0.5, the initiator approximation was employed.
Evidently, the green points fully confirm our data up to rs = 1 within error bars, although, at larger values of 7y,
the initiator approximation apparently cause Fy. to be systematically to large.

We thus conclude that over the last two years there has emerged a consensus between different, independent
QMC methods regarding the simulation of the UEG for a finite number of electrons. Naturally, the next step that
had to be accomplished was the extrapolation of these results to the thermodynamic limit without a significant loss
of accuracy. This turned out to be a surprisingly challenging task, which will be discussed and explained in detail
in the next section.

Finally, in Fig. 21, we show the density-temperature combinations where the different QMC methods are feasible.
Evidently, standard PIMC is only available at high temperature and strong coupling (due to the FSP). Our recent
PB-PIMC method extends this regime significantly towards lower temperature and high density, i.e., towards strong
degeneracy. In contrast, both the CPIMC and DMQMC methods, which are formulated in Fock space, excel at
weak coupling but break down when correlation effects start to dominate. Observe that the apparent advantage of
DMQMC over CPIMC at low temperature and intermediate rs is due to the utilized initiator approximation that
can lead to a significant bias for quantities that do not commute with the Hamiltonian, see Sec. 5.6 for details.

4In DMC, the bias can be removed by the Hellmann-Feynman operator sampling [325].
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Figure 21: Density-temperature plane around the warm dense matter regime. Shown are the parameter ranges where standard PIMC
(black), DMQMC (blue), CPIMC (red) and PB-PIMC (green) are feasible. Reproduced from Ref. [225] with the permission of the
authors.

6. Finite-size correction of QMC data

6.1. Introduction and problem statement

The big advantage of using the quantum Monte Carlo methods introduced in Sec. 5 is that they — in stark
contrast to the dielectric approximations or quantum classical mappings — allow to obtain an exact solution to the
UEG Hamiltonian, Eq. (7). However, this is only possible for a model system with a finite number of particles N
and a finite box length L. In practice, we are interested in the thermodynamic limit [327], i.e., the limit where both
L and N go to infinity while the density n (and, therefore, the density parameter rs) remain constant. To mimic as
closely as possible the infinite electron gas in our QMC simulations, we employ periodic boundary conditions and
incorporate the interaction of a single electron with an infinite array of periodic images via the Ewald interaction.
Nevertheless, the interaction energy per particle, Vv /N, does not remain constant for different N and is not equal
to the thermodynamic limit, which is defined as

v= lim 4] . (132)
N—roo rs=const

The difference between v and V/N is the so-called finite-size error

AVy VN

N VTN (133)
which needs to be compensated for by adding a so-called finite-size correction to the QMC results, i.e., an estimation
for AVx/N. This is illustrated in Fig. 22, where, in the left panel, we plot the interaction energy per particle of
the unpolarized electron gas with 6 = 2 and r; = 0.5 versus the inverse number of particles 1/N. The green
crosses correspond to the bare QMC results and, obviously, are not converged with respect to N. More precisely,
for N = 38 particles, there appears a finite-size error exceeding 10%. For a higher density, s = 0.1 (see the right
panel), things appear to be even more dire and, for N = 38, AV /N is comparable in magnitude to v and V/N
themselves. In this situation it might seem natural to perform a a direct extrapolation to the TDL by performing a
fit to the QMC data. However, the problem is that the exact functional form of the finite-size error in dependence
of N is not known. The solid black and dashed yellow lines correspond to two fits with different functional forms,
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Figure 22: System size dependence of the potential energy per particle of the unpolarized UEG at 6 = 2 and rs = 0.5 (left) and rs = 0.1
(right) — Shown are bare QMC (CPIMC) results (green crosses) and the QMC results plus the finite-size correction proposed by Brown
et al. [211] (ABCDC, red circles). The solid black and dashed yellow curves correspond to two equally reasonable fits to the QMC data
of the form f(x) = a + bz and g(x) = a + bx + cx?, respectively. The left panel has been adapted from Ref. [226] with the permission
of the authors.

specifically
NhH = — 134
FNTY) = at o (134)
b c
1 o
g(N~Y) = G+N+m ) (135)

with a,b,c and d being the free parameters. Evidently, for r, = 0.5 both fit functions are equally appropriate
and reproduce the QMC data quite well. Still, the estimation of the value in the TDL differs by several per
cent. This clearly demonstrates that a reliable extrapolation of the QMC data is not possible without knowing
the exact N-dependence of the finite-size error, which is not the case. Therefore, we need to derive a readily
evaluable approximation to Eq. (133). In the ground state, finite-size effects are relatively well understood, see, e.g.,
Refs. [231, 328, 329, 330, 331]. In their pioneering work, Brown et al. [211] introduced a straightforward extension
of the finite-size correction for the interaction energy by Chiesa et al. [329] to finite temperature [cf. Eq. (142)].
Adding this correction to the QMC results leads to the red circles in Fig. 22. Obviously, the finite-size errors are
overestimated and the remaining bias is of the same order as the original one. Even worse, for rs = 0.1 and N < 100
the corrected data exhibit a larger N-dependence than the bare QMC results. Hence, we conclude that in order to
obtain accurate interaction energies in the thermodynamic limit we need to derive an improved finite-size correction.
This requires us to analyze and understand the source of the finite-size error and find an accurate estimation for it.

6.2. Theory of finite-size effects

To derive an expression for the finite-size error due to the final simulation box [329, 330, 226, 225], it is convenient
to express V/N in terms of the static structure factor S(k)

V 1 . £
WN:mZ[SN(G)—l]E-F?M, (136)
G#0

where the subscripts "N’ denote quantities computed for a finite number of particles, and the sum is to be carried
out over the discrete reciprocal lattice vectors G. In the thermodynamic limit, the Madelung constant vanishes,
&v — 0, and the potential energy per particle, Eq. (132), can be written as a continuous integral

v = %/K (2‘1;3 1S (k) — 1] i—g , (137)

where we have made use of the fact that for a uniform system the static structure factor solely depends on the
modulus of the wave vector, S(k) = S(k). Obviously, the finite-size error is given by the difference of Eqs. (137)
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and (136),
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N [S(k),Sn(k)] = v-— N )
1 dk A 1 i .
= 5/k<ooW[S(k)*1}ﬁ* QLBGZ?&O[SN(G)”G2+£2 ’

v
VN /N

and, thus, is a functional of the SF's of the infinite and finite systems, respectively. To derive a more easily workable
expression for Eq. (138), we approximate the Madelung energy by [330]

1 AT _ o2 1 A _ 42
o Y D@ dk = e=¢ 139
=5 2 e /k dlegfe (139)

which becomes exact for € — 0. Inserting Eq. (139) into (138) gives
AVy 1 dk 4 1 4
27N - Sk s~ arg D iy 14
N [S(k), Sn (k)] 9 /IKOO (27r)35(k) L2 9I3 & Sn(G) G2 (140)

Evidently, in Eq. (140) there are two possible sources for the finite-size error of V: (i) the difference between the
SFs of the finite and infinite system, i.e., a finite-size effect in the actual functional form of S(k) itself, or (ii)
the approximation of the continuous integral from Eq. (137) by a discrete sum. Chiesa et al. [329] pointed out
that, in the ground state, the SF converges remarkably fast with system size (this also holds at finite temperature,
see Refs. [226, 225] and the discussion of Fig. 23), leaving (ii) as the sole explanation. In fact, the same authors
suggested that the main contribution to Eq. (140) is the G = 0 term, which is completely omitted from the sum. To
derive an analytic expression of this term, one makes use of the fact that the random phase approximation becomes
exact in the long wave length limit, ¥ — 0, which is valid at finite temperatures as well [332]. In particular, an
expansion of the RPA static structure factor around k = 0 gives a parabolic expression,

k2 Bw
RPA P
So- (k) = 2wpcoth( 5 ) , (141)

with w, = \/3/7’3/ 2 being the plasma frequency. These considerations lead to the finite-T' extension of the FSC
from Ref. [329], hereafter labelled as 'BCDC’ [211]

. SRPA(LY 4

= ZJTZ\)TCOth (5;%) .
Thus, the first order finite-size correction used by Brown and co-workers predicts a finite-size error with a simple
1/N behavior. However, this ansatz is not appropriate for the conditions encountered in Fig. 22, as we shall now
explain in detail.

In Fig. 23, we show the static structure factor for the unpolarized UEG at § = 2 and r, = 0.5, i.e., the same
conditions as in the left panel of Fig. 22 above. The blue, green, and yellow crosses correspond to QMC results for
N = 100, N = 66, and N = 38 electrons, respectively and the grey solid line to a cubic spline fit to the largest
depicted particle number. Due to momentum quantization in a finite simulation cell, data for Sy (k) are available
on an N-dependent discrete k-grid, and restricted to k > kmin = 27/ L. Nevertheless, the functional form of Sy (k)
is remarkably well converged with system size for as few as N = 38 electrons, see also the inset. This means that
the finite-size errors in the interaction energy are indeed the consequence of a discretization error as explained
above. The light blue curve in Fig. 23 corresponds to the RPA expansion around k = 0, i.e., Eq. (141). Evidently,
the parabola does not connect to the QMC data even for the largest particle number. Therefore, Eq. (142) is not

sufficient to correct for the finite size error. In sum, the construction of a more accurate FSC requires accurate
knowledge of S(k) for k < 2m/L, i.e., for those wave vectors that are not accessible within the QMC simulations.

(142)

47



0.8 . -

4 6 8 10

Figure 23: Static structure factor of the unpolarized UEG at § = 2 and rs = 0.5 — Shown are QMC data for N = 100 (blue), N = 66
(green), and N = 38 (yellow) particles and the parabolic RPA expansion around k = 0 (light blue), cf. Eq. (141). The solid grey line
corresponds to a cubic spline fit to the N = 100 data and the inset shows a magnified segment. Adapted from Ref. [226] with the
permission of the authors.
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Figure 24: Static structure factor of the unpolarized UEG at § = 2 and rs = 0.5 — Shown are QMC data for N = 100 particles (blue
crosses), the parabolic RPA expansion around k = 0 (light blue), cf. Eq. (141), full STLS and RPA data (green dash-dotted and red
dashed lines, respectively), and a spline connecting STLS for small k with QMC elsewhere (solid grey). The inset shows a magnified
segment. Adapted from Ref. [226] with the permission of the authors.
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Figure 25: Improved finite-size correction for the interaction energy per particle of the unpolarized electron gas at § = 2 and rs = 0.5
— Shown are the bare QMC data (green crosses) and the QMC data plus different finite-size corrections, namely Agcpc [red circles,
see Eq. (142)], and our new FSC from Eq. (143) evaluated using the static structure factors from the spline (black stars), STLS (blue
squares) and full RPA (yellow triangles). The solid black lines correspond to a linear and a constant fit to the black stars and the black
diamond depicts our result for V/N in the thermodynamic limit. The right panel shows a magnified inset around the results obtained
by adding our new FSCs and the subsequent extrapolation. Evidently, using the static SF's solely from full STLS or RPA is sufficient
to accurately estimate the finite-size error. Adapted from Ref. [226] with the permission of the authors.

6.3. Improved finite-size correction of the interaction energy

To obtain accurate data for the static structure factor for small k, we carry out full calculations within RPA
and also with a static local field correction from the STLS formalism [204, 213], see Sec. 3. The results are shown
in Fig. 24, where S(k) is shown for the same conditions as in Fig. 23. The dashed red and dash-dotted green lines
correspond to the full RPA and STLS data, respectively, and the blue crosses to the exact QMC results for N = 100.
In the limit & — 0, both the RPA and STLS curves are in perfect agreement with the parabolic form from Eq. (141),
but strongly deviate for k 2 0.5. Further, both dielectric approximations exhibit a fairly good agreement with the
QMC point at ki, and the STLS result is within the statistical uncertainty. Therefore, the combination of STLS
at small k with the exact QMC data elsewhere allows for exact, unbiased structure factor over the entire k-range.
In practice, this is realized by a (cubic) spline, cf. the solid grey line in Fig. 24. Further, we note that the accuracy
of both STLS and RPA decreases for larger k, see the inset, although the static local field correction from STLS
constitutes a significant improvement. This complementarity of QMC and the dielectric approximations allows
for a rather vivid interpretation: Quantum Monte Carlo methods provide an exact treatment of all short-range
exchange and correlation effects within the finite simulation box. However, due to the finite number of particles,
the long-range limit cannot be resolved. In contrast, both RPA and STLS are formulated in the thermodynamic
limit. Since the effect of correlations decreases for large distances, the small k-behavior is described accurately,
whereas short-range XC effects are treated insufficiently. For completeness, we note that an accurate knowledge
of S(k) would allow to obtain an unbiased result for the interaction energy per particle in the TDL by directly
evaluating Eq. (137). However, as we will see below, the detour over the finite-size corrections turns out to be
advantageous for multiple reasons.

The thusly obtained model function for the static structure factor [i.e., the spline, Sspiine(k)] allows us to
accurately estimate the finite-size error by straightforwardly evaluating Eq. (138) as

AV,
AVN |:Smodcl(k):| = TN [Smodol(k)7 Smodcl(k) ) (143)

which we compute numerically. The resulting FSC is shown in Fig. 25, where we again show the N-dependence of
the interaction energy per particle for the same conditions as above. Let us first consider the black stars, which have
been obtained by adding to the bare QMC results AVy [Sspline(k)]. Evidently, the dependence on system size has
been decreased by two orders of magnitude. The right panel shows a magnified segment around the new corrected
results and we detect a small remaining finite-size error with a linear behavior. The main source of this residual
error is the small N-dependence of Sy (k) itself. However, even for as few as N = 38 particles, this bias is of the
order of AV/V ~ 1073, In practice, we always remove any residual errors by performing an additional extrapolation
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of the corrected data. In particular, we perform a linear fit over all N and a constant fit to the last few points that
are converged with N within twice the error bars (the latter corresponds to the assumption that the small system
size dependence in Sy (k) vanishes for large N, which it might), see the solid black lines. Our final estimation of
the interaction energy per particle in the thermodynamic limit is then obtained as the mean of both fits, and the
difference between the two constitutes the remaining uncertainty interval. Let us now consider the blue squares
and yellow triangles, which have been obtained by evaluating Eq. (143) solely using the static structure factors
from STLS and RPA, respectively, over the entire k-range. Surprisingly, both data sets are in good agreement with
the black stars. This means that — despite the rather significant bias for intermediate & — both the full RPA and
STLS SFs are sufficient model functions to estimate the discretization error in the interaction energy per particle.
Therefore, it is not necessary to perform a spline interpolation for each case, and, in the following, we will compute
AV using STLS. It is important to note that while the dielectric approximations allow to accurately estimate the
discretization error in Vi /N, we still need a QMC result for Viy /N itself, i.e.,

QMo
v = ]\A;V + AVy l:SSTLS(k)] . (144)

Replacing Viy /N by the STLS value, which is equivalent to evaluating Eq. (137) using Ssts(k), would neglect the
short-range exchange-correlation effects and induce a systematic bias of the order of AV/V ~ 1072, see Sec. 7.

6.4. Examples of finite-size corrections of QMC data

6.4.1. Coupling strength dependence of the finite-size correction of QMC data

To demonstrate the universal applicability of the improved finite-size correction, in Fig. 26 we show results both
for the static structure factor and the interaction energy per particle for the unpolarized UEG over three orders of
magnitude of the coupling parameter r, at § = 2. In the top row, results are depicted for rs = 10, i.e., a relatively
strongly coupled system. The left panel shows the static structure factor, where the QMC results for N = 140
electrons are depicted by the black crosses. Furthermore, the dashed blue line corresponds to the parabolic RPA
expansion around k = 0 [see Eq. (141)], the dash-dotted green and dotted yellow lines to the full STLS and RPA
results, respectively, and the solid red line to the spline connecting STLS for small k£ with QMC data elsewhere.
For such parameters, QMC results for S(k) range down to small S and for ki, all depicted data sets — even the
RPA expansion — are in excellent agreement. Therefore, the finite-size correction proposed by Brown et al. [211] is
appropriate, cf. the right panel. Overall, we observe substantial errors in the RPA curve for intermediate k starting
around k 2 0.1. The STLS curve is in much better agreement to the QMC data everywhere, although it is too large
for k < 0.35 and too small for larger k. The inset shows a magnified segment where, in addition to the QMC data
for N = 140, we also show results for N = 80 (squares) and N = 66 (circles). Evidently, no system size dependence
of Sy (k) can be resolved within the given statistical uncertainty. Let us now consider the interaction energy per
particle, which is depicted as a function of 1/N in the right panel. As usual, the green crosses correspond to the
bare QMC results and, even for as few as N = 34 electrons, the finite-size error does not exceed AV/V = 1%. This
can be explained by recalling the interpretation of finite-size effects as a discretization error in the integration of
S(k), which is densely sampled by the QMC points down to small values of S, cf. the left panel. Further, we note
that the QMC points seem to exhibit a linear behavior as predicted by the BCDC-FSC, Eq. (142). Consequently,
adding Agcpce to the QMC data (red circles) removes the finite-size error and no system size dependence can be
resolved within the given statistical uncertainty. Furthermore, we note that the improved FSC [Eq. (143)] using
SsTrs as a model function leads to the same results.

In the center row, we show results for intermediate coupling, rs = 1. Here, in contrast to the previous case, the
RPA expansion does clearly not connect to the QMC results, which are not available down to such small S-values
as above. Furthermore, we note that both the full RPA and STLS curves exhibit much smaller deviation to the
QMC data, as it is expected. In fact, the STLS curve is only seldom not within twice the statistical uncertainty of
the QMC points. For completeness, we mention that again no difference between QMC data for different particle
numbers can be resolved, see the inset. The interaction energy per particle exhibits a rather peculiar behavior.
First and foremost, we note that the finite-size error for N = 34 is of the order of 10% and, thus, larger than
for the strong coupling case. Again this comes as no surprise when comparing the static structure factors and
re-calling the discretization error. In addition, the bare QMC results seem to exhibit a linear dependence in 1/N.
This is further substantiated by a linear fit, cf. the solid green line, which reproduces all points within error bars.
Interestingly, however, the calculated slope is not equal to the BCDC prediction by Eq. (142). Consequently, the
red circles exhibit a distinct system size dependence and are not in agreement with the linear extrapolation. Finally,
the improved FSC leads to significantly reduced finite-size errors, which we subsequently remove by an additional
extrapolation as explained in the discussion of Fig. 25. The thusly obtained final result for the TDL significantly
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Figure 26: Coupling dependence of static structure factors (left) and interaction energies per particle (right) of the unpolarized electron
gas at 6 = 2 — Top row: rs = 10, center row: rs = 1, bottom row: rs = 0.1. Shown are results for the static SF from QMC simulations
with three different particle numbers (black symbols, the data for the two smallest N appear in the inset only), the RPA expansion
around k = 0 (dashed blue), cf. Eq. (141), and full RPA and STLS data (dotted yellow and dashed dotted green lines, respectively).
The solid red line corresponds to a spline connecting STLS for small £ with QMC data elsewhere and the insets depict a magnified
segment. The interaction energies per particle correspond to the bare QMC results (green crosses), and finite-size corrected data using
Apcpc (red circles) and the new improved FSC by Dornheim et al. [226] using Sstis (blue squares). The solid black line corresponds
to an extrapolation of the residual finite-size error and the black diamond depicts the extrapolated result for V/N in the TDL.
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deviates from the linear extrapolation as well, which again demonstrates the problems with a direct extrapolation
without knowing the exact functional form of the N-dependence.

Finally, in the bottom row we show results for r; = 0.1, which corresponds to weak coupling and high density.
Even for as many as N = 700 electrons, the QMC results are not available for the k-range where S is small. Hence,
the RPA expansion does come nowhere near the QMC point at ki, and the BCDC-FSC is not expected to work.
Further, both the full RPA and STLS curves are in good agreement with the QMC data and each other over the
entire k-range. Again, we note that Sy (k) converges remarkably fast with system size, see the inset. The large
value of Sy (k) at kmin indicates that the wave vector range where S varies most is not sampled sufficiently, or not
accessed by QMC points at all. Consequently, the finite-size errors are substantially increased compared to rs = 10
and 7, = 1 and, for N = 38 particles, are comparable in magnitude to Vi /N itself. Furthermore, the BCDC-FSC
is not useful and severly overestimates the discretization error. In particular, for N < 100, the thusly ’corrected’
data exhibit a larger system size dependence than the original bare QMC data. The improved FSC computed from
SstLs again works remarkably well even for small N, and reduces the system-size dependence by two orders of
magnitude.

6.4.2. Temperature dependence of the finite-size correction of QMC data

As a second demonstration of the versatility of the improved finite-size correction, in Fig. 27 we investigate the
temperature dependence of the static structure factor and the interaction energy per particle of the spin-polarized
UEG at ry = 0.3. The top row shows results for § = 0.5, which is the lowest temperature considered in the
recent QMC simulations by Dornheim, Groth, and co-workers [226, 227]. The QMC results for S(k) range down
to intermediate values of S, but do not connect to the RPA expansion. Further, we note that both the full RPA
and STLS curves are in good agreement with each other and the QMC data over the entire k-range. As usual, the
largest deviations occur for intermediate k but are of the order of 0.1%. The bare QMC results for the interaction
energy per particle seem to exhibit a linear behavior, but, similar to the observation in the center row of Fig. 26,
not with the slope predicted by Eq. (142). Consequently, adding the BCDC-FSC does not remove the system-size
dependence, as expected from the discussion of the static structure factors. The improved FSC from Eq. (143) using
Sstrs as a model function to estimate the discretization error immediately improves the system size dependence
by two orders of magnitude and no residual errors can be resolved with the naked eye.

The center and bottom rows show the same information for § = 1 and 0 = 4, respectively. First and foremost, we
observe that the decline of S(k) becomes steeper for increasing temperatures. This means that more QMC points
are needed to accurately sample S, which, in turn, leads to increased discretization errors. In particular, for § = 4
and N = 33, the finite-size error is comparable in magnitude to Viy/N itself, and, even for N = 1000 electrons,
no QMC results are available for S < 0.6. Further, we note that both the full RPA and STLS results for the
static structure factor become increasingly accurate for large 6. This is, of course, expected as large temperatures
render correlation effects less important. Finally, we mention that, while the BCDC-FSC becomes significantly less
accurate, the improved FSC from Eq. (143) works well for all temperatures (and densities).

7. Benchmarks of other methods

The improved finite-size correction introduced in this section has subsequently been used to obtain an exhaustive
and very accurate data set for the interaction energy for different temperature-density combinations and four
different spin-polarizations (§ = 0, £ = 1/3, £ = 0.6, and £ = 1), see Refs. [226, 227]. This puts us, for the first
time, in a position to gauge the accuracy of previously developed theories and approximations, most importantly
that of the dielectric methods from Sec. 3.

7.1. Benchmarks of the interaction energy

In Fig. 28, we show the rs-dependence of the interaction energy per particle of the unpolarized electron gas at
two relevant temperatures, § = 0.5 (left) and = 1 (right). The red diamonds correspond to our recent finite-size
corrected QMC data and the solid red lines to simple fits at constant temperature 6, see Ref. [226] for details. Let
us start our investigation by considering the most simple dielectric approach, i.e., the random phase approximation
(brown dots). As expected, RPA only allows for a qualitative description at weak coupling, and even at extreme
densities, r; = 0.1, there appear deviations exceeding 2% in v. At moderate coupling, r; = 1, we find relative errors
of Av/v = 9% for both depicted temperatures, indicating that RPA is of limited use for the description of electrons
in the warm dense matter regime. The same applies for both depicted finite-temperature Green function data sets,
where the Montroll-Ward approximation (MW, dotted pink line) closely follows RPA and the e*-approximation
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Figure 27: Temperature dependence of static structure factors (left) and interaction energies per particle (right) of the spin-polarized
electron gas at rs = 0.3 — Top row: 6 = 0.5, center row: 6 = 1, bottom row: 6§ = 4. Shown are results for the static SF from QMC
simulations with three different particle numbers (black symbols, the data for the two smallest N appear in the inset only), the RPA
expansion around k = 0 (dashed blue), cf. Eq. (141), and full RPA and STLS data (dotted yellow and dashed dotted green lines,
respectively). The solid red line corresponds to a spline connecting STLS for small k with QMC data elsewhere and the insets depict a
magnified segment. The interaction energies per particle correspond to the bare QMC results (green crosses), and finite-size corrected
data using Agpcpc (red circles) and the new improved FSC from Ref. [226] using Sstrs (blue squares). The solid black line corresponds
to an extrapolation of the residual finite-size error and the black diamond depicts the extrapolated result for V/N in the TDL.
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Figure 28: Comparison of the interaction energies for the unpolarized electron gas at # = 0.5 (left) and 6 = 1 (right). The red diamonds
correspond to the finite-size corrected QMC data by Dornheim, Groth and co-workers [226] and the red lines depict fits to these data (see
Ref. [226]). Further shown are the RPIMC data by Brown et al. [211] (blue circles), finite-temperature Green function data computed
in the Montroll-Ward (MW, dotted pink) and e*-approximation (dashed light blue), cf. Sec. 4, and various dielectric approximations,
specifically RPA (brown dots), STLS (black squares), quantum STLS (green crosses, data obtained via integration of structure factors
provided in Ref. [252]), Vashista-Singwi (VS, purple downward triangles) [213], and the recent static local field correction based on the

hypernetted chain (HNC) equation by Tanaka [242].
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exhibits a similar systematic error of the opposite sign (for more details on MW and e*, see the Supplemental
Material of Ref. [218]).

Let us next consider the STLS approximation, both using the static (black squares) and dynamic (so-called
quantum STLS or gSTLS, green crosses) versions of the local field correction. Obviously, this inclusion of correlation
effects via G(q) leads to a remarkable improvement in the interaction energy even up to relatively strong coupling,
rs = 10. In particular, we find a maximum deviation of Av/v &~ 2%, which, for § = 1, are most pronounced
around r; = 1. This might seem surprising as the STLS closure relation for the LFC is expected to worsen towards
increasing correlation effects. This is indeed the case both for the local field correction [and thus for the static density
response function x(q)] as well as for the static structure factor. However, the interaction energy per particle is
obtained from S(k) via integration, cf. Eq. (37), and benefits from an error cancellation. For more details, see
the investigation of the static structure factor in the next section. Furthermore, we note that the inclusion of the
frequency dependency of the STLS local field correction has only a minor effect on v and even leads to slightly worse
results compared to the static version introduced in Ref. [204]. At 6 = 1, we can also investigate the performance
of a recently introduced (static) local field correction that is based on the hypernetted chain equation [242]. The
results for the interaction energy are shown as the yellow triangles in the right panel of Fig. 28. For weak coupling,
rs < 1, the results are similar to both STLS versions, whereas for stronger coupling there appear differences between
these dielectric methods of up to dv/v = 3%. However, while the SLTS results for v intersect with the exact QMC
results, the HNC data are always too low by up to 3%, making STLS the dielectric approximation of choice for
the interaction energy. Again, this is in contrast to S(k) and G(k), where the new HNC-based formalism turns out
to be superior, cf. Figs. 31 and 43. The purple downwards triangles correspond to the Vashista-Singwi formalism
computed by Sjostrom and Dufty [213], which, for the present conditions, constitutes the least accurate dielectric
approximation (excluding RPA) regarding v. Finally, let us consider the restricted PIMC results by Brown et
al. [211] (blue circles), which are available down to rs = 1. For the two depicted temperatures, these data are more
accurate than the dielectric approximations with a maximum deviation of Av/v ~ 1.5% at r; =1 and 6 = 0.5.

Next, we consider the spin-polarized case, which is shown in Fig. 29. While RPA turns out to be similarly
inaccurate as for the unpolarized case, we find a slightly worse performance of both STLS variants in this case. In
particular, there appear maximum deviations of around Av/v = 4% at rs = 2, and the curves do not intersect with
the exact results. Again, both STLS and gSTLS lead to almost indistinguishable results in the interaction energy,
although at & = 1 the qSTLS is slightly superior to STLS at large rs. The RPIMC data from Ref. [211] are also
slightly worse with a maximum deviation of Av/v = 3.5% at rs = 4 and 6 = 1. In fact, this point constitutes an
outlier, which has already been reported for the investigation of the finite model system [220].

Let us conclude this section with the investigation of the electron gas at high temperature, § = 8, which is shown
in Fig. 30. Both for the paramagnetic (left panel) and ferromagnetic (right panel) case, STLS and qSTLS lead to
systematically too small results over the entire depicted density-range (the same is true for the VS data shown for
¢ = 0) with a maximum deviation slightly exceeding 2% around r; = 4 for £ = 1. For completeness, we mention
that coupling effects decrease with increasing 6, leading to a large ratio of kinetic and interaction contribution to
the total energy. However, this does not necessarily have to result in an improved relative accuracy in v of the
dielectric approximations, although, obviously, the total energy will be more accurate in this case. The random
phase approximation exhibits a significantly improved performance compared to the previous figures, although there
still appear errors of Av/v ~ 4% at rs = 1, which are rapidly increasing towards stronger coupling. In contrast to
the lower temperature case, the finite-temperature Green function data, exhibits a pronounced unphysical bump in
v around r, = 0.7 with a maximum deviation of 7% and 10% for MW and e?*, respectively. Finally, the RPIMC
data are considerably less accurate at high temperature and exhibit an increasing systematic bias towards high
density with a maxium error of Av/v = 12% at rs = 1 and £ = 1. This is mainly a consequence of the inappropriate
finite-size correction, which becomes more severe both towards high density and temperature. The effect is more
pronounced for the ferromagnetic case, since (i) § = 8 constitutes a higher temperature than for £ = 0 due to the
different Fermi energies, cf. Eq. (4), and (ii) only N = 33 electrons were simulated in contrast to N = 66 for the
paramagnetic case.

7.2. Static structure factor

Finally, let us evaluate the accuracy of different theories regarding the static structure factor S(k), which is of
central importance for the dielectric approximations introduced in Sec. 3. In the left panel of Fig. 31, we show
S(k) for the unpolarized electron gas at # = 1 and rs = 1. The solid black line corresponds to a cubic basis
spline connecting the STLS data for the limit of small ¥ with our QMC data elsewhere, see Ref. [333] and the
explanation of finite-size effects in v above. At these conditions, all dielectric approximations give the correct
qualitative description of the SSF. The most pronounced systematic deviations occur for intermediate k, with a
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Figure 29: Gauging the accuracy of the interaction energy (per particle) of different approximations for the spin-polarized electron
gas at 6 = 0.5 (left) and § = 1 (right). The red diamonds correspond to the finite-size corrected QMC data by Groth, Dornheim
and co-workers [227] and the red lines depict corresponding fits to these data (see the Supplemental Material of Ref. [226] for more
details). Further shown are the RPIMC data by Brown et al. [211] (blue circles) and various dielectric approximations, specifically RPA
(brown dots), STLS (black squares), and quantum STLS (green crosses, data obtained via integration of structure factors provided in

Ref. [252)).
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Figure 30: Gauging the accuracy of the interaction energy (per particle) of different approximations for the unpolarized (left) and
spin-polarized (right) electron gas at @ = 8. The red diamonds correspond to the finite-size corrected QMC data by Dornheim, Groth
and co-workers [226, 227] and the red lines depict corresponding fits to these data (see the Supplemental Material of Ref. [226] for more
details). Further shown are the RPIMC data by Brown et al. [211] (blue circles), finite-temperature Green function data computed
in the Montroll-Ward (MW, dotted pink) and e*-approximation (dashed light blue), cf. Sec. 4, and various dielectric approximations,
specifically RPA (brown dots), STLS (black squares), quantum STLS (green crosses, data obtained via integration of structure factors
provided in Ref. [252]), and, for £ = 0, recent Vashista-Singwi based data by Sjostrom and Dufty [213] (purple downward triangles).
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Figure 31: Gauging the accuracy of different approximations for the static structure factor of the unpolarized electron gas at 6§ = 1
and rs = 1 (left) and rs = 10 (right). The solid black line corresponds to cubic spline fits connecting STLS at small k£ with our
QMC data elsewhere [333], the double-dashed purple line to RPA, the dash-dotted red line to Vashista-Singwi (VS) [213], the dashed
blue line to STLS, the dotted green line to gSTLS [252], and the dashed orange line to the recent local field correction based on the
hypernetted-chain (HNC) approximation by Tanaka [242]. The bottom panels depict the relative deviations to our spline.
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maximum deviation of AS/S = 10% for RPA. On the other hand, STLS, qSTLS, and HNC exhibit a very similar
behavior with maximum inaccuracies of 2%, and standard STLS being the most accurate approximation in this
case. Further, the VS curve is significantly less accurate, albeit the overall behavior resembles the other LFC-based
data.

In the right panel of Fig. 31, the same information is shown for stronger coupling, rs = 10. In this case, our
QMC-based spline exhibits a pronounced maximum around k = 0.45, which is due to Coulomb correlation effects,
and cannot be accurately resolved by any of the dielectric methods. The random phase approximation breaks down,
with a systematically too small structure factor over the entire k-range and deviations exceeding 25%. Again, STLS
and qSTLS are very similar and give too large results for k£ < 0.35 and too small results elsewhere. The maximum
deviations occur around k = 0.2 with AS/S =~ 10%, although qSTLS performs slightly better everywhere. The
observed deviation AS (bottom panel) towards our spline is of high importance to understand the observed high
performance of STLS in the interaction energy v. Since the latter is, for a uniform system, simply given by a one-
dimensional integral over S(k)—1, the area under the AS curve is directly proportional to the error in v. Evidently,
the negative area for small k is of a similar magnitude as the positive one for larger k, which leads to a beneficial
cancellation of errors and, thus, accurate results in v. In contrast, the recent HNC results for S(k) by Tanaka [242]
are significantly better than STLS almost over the entire k-range. Nevertheless, the corresponding results for v do
not enjoy the error cancellation to the same degree. Finally, let us consider the VS curve from Ref. [213], which
exhibits a qualitatively different behavior from the other dielectric approximations. More specifically, the results for
S (k) are too low for small k and slightly too large in the vicinity of large wave vectors. While the overall accuracy is
again better than for STLS, there is almost no cancellation of errors when one is interested in v or, via an additional
coupling-constant integration, in fy..

8. Parametrizations of the XC free energy

8.1. Introduction

In the ground state, the first parametrization of the exchange-correlation energy, ex.(rs), of the unpolarized UEG
on the basis of QMC data (by Ceperley and Alder [15, 16]) has been obtained in 1981 by Perdew and Zunger [29].
Shortly afterwards, Vosko, Wilk, and Nusair [28] extended the parametrization to arbitrary spin-polarizations &,
and provided a functional for ey.(rs, &) in the entire parameter regime relevant to DFT calculations in the LSDA.

At finite temperature, a parametrization of the exchange-correlation free energy, fx.(rs,6,£), in dependence of
density, temperature and spin-polarization is required. In lieu of accurate finite temperature QMC data, in 1982,
Ebeling et al. [198, 199, 200, 201, 202] carried out first attempts to obtain such a functional for the unpolarized
case in terms of Pade approximations that interpolate between the known limits, i.e., the ground state limit,
limg_o fxe(rs,0) = exc(rs,0), and the Debye-Hiickel limit [334], limg— oo fxe(rs,6) = —%TS_B/QT*UZ. After that,
various approximate functionals have been obatained on the basis of the results from different dielectric approaches
(see Sec. 3). Starting in the mid 1980s, Ichimaru, Tanaka and co-workers constructed a functional of fy.(rs,6)
by fitting a complex Pade approximation to the finite temperature STLS data [203], which has subsequently been
improved (IIT) by incorporating the exact ground state limit via a suitable bridge function [206]. Only very recently,
this functional has been extended to arbitrary polarizations [249]. In addition to the STLS approach, the Vashishta-
Singwi [213], hypernetted chain [242] (HNC), and the modified convolution approximation [205] (MCA) have been
successfully explored in the construction of parametrizations of the exchange correlation free energy. However, a
suitable spin-interpolation function has only been deduced from the MCA results. This MCA spin-interpolation
function is also utilized for the generalization of the IIT and HNC functionals to arbtitrary spin-polarizations.

Further, Dharama-wardana and Perrot presented [210, 209] another widely used functional [181, 182, 183] based
on data from their classical mapping approximation (see Sec. 4.2.1). Then, after the first finite temperature QMC
data by Brown et al. [211] became available in 2013, several attempts have been made to obtain functionals from
these [213, 214, 212]. Among these, the most refined parametrization has been presented by Karasiev et al. [212]
(KSDT), who, following the ITT functional, incorporated all known limits: ground state, Debye-Hiickel and the high-
density Hartree-Fock limit [248]. Yet, since Brown applied the RPIMC method solely to the fully polarized and
unpolarized cases, the spin-interpolation of the KSDT functional has been constructed from the classical mapping
data, for intermediate spin-polarizations. In addition, even for £ = 0 and £ = 1 the RPIMC data has turned out to
be unreliable, as was shown in Sec. 7.

Ouly recently, Groth, Dornheim et al. [227] presented a complete ab initio parametrization of the exchange-
correlation free energy, fyc(rs, 0, ), that is based on highly accurate data obtained from two novel finite temperature
QMC methods, CPIMC and PB-PIMC see Sec. 5.5 and Sec. 5.4 and references therein.
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8.2. Parametrizations

In the following, we will provide the concrete functional form of all parametrizations, which are shown in the
comparison plots in Sec. 8.4. Further, the precise way in which these were constructed as well as the included
limits are discussed in detail. To be as concise as possible, we have restricted ourselves to the 5 most accurate
functionals: IIT, HNC, PDW, KSDT, and GDB. For a discussion of the accuracy of the parametrization by Ebeling
and co-workers, see Ref. [335].

8.2.1. IIT parametrization

Since the dielectric methods are based on a self-consistency loop for the static structure factor and the local field
correction, the natural thermodynamic quantity within this framework is given by the interaction energy computed
from the static structure factor according to Eq. (37). For fixed spin-polarization £ = (ny — n})/n with the total
electron density n = (n4 4+ ny), the interaction energy is linked to the exchange-correlation free energy via the
well-known coupling constant integration formula

fEC(TS,e) = iQ/Sd?s Ts UE(F379)~ (145)
s Jo

In the literature, the classical coupling parameter I' = 1/(rsapT) is often utilized, so that Eq. (145) reads
Y
fi(rs,0) = o /0 dl' T v%(T, 0) . (146)

For the unpolarized (¢ = 0) and polarized (£ = 1) case, Ichimaru, Tanaka and co-workers [206, 249] proposed the
following Pade fit function for the interaction energy:

1 wea(0/w?) + 05 (O)VOVT + ¢4 ()T

1S _
v&(T, 0) = , 147
(r6) Ts 1+ ds(0)VOVT + e (0)6r (147)
with the spin-factor we = (1 + £)'/? and
0.75 + 3.043630% — 0.0922763 + 1.703564
0) =0.610887 tanh (6" 148
a(6) anh (077) 1+ 8.3105162 + 5.11056* (148)
ensures that the correct Hartree-Fock limit, i.e., lim, ,ov® = —%wga(é/wg), as parametrized in Ref. [248] is
fulfilled. The remaining functions b, ¢, d, and e are of the form L
1 < £ 02 §pd
b5(0) = tanh () M
VO] 141502 + 050
&) = {cﬁ +c§ - exp (79_1)] et (6)
3 € 02 € n4
d€(0) = tanh <1> di +d36” + ds6”
VO 1+ d50% + dso
1 3 €92 €94
ef(f) = tanh <> e s 652 * 653 )
0) 14 €562 4 ezt

where the constants bi, e ,655 are determined by a fit to the modified STLS data for the interaction energy. These
modified results have been obtained by correcting the raw STLS interaction energy such that the exact ground
state limit (f = 0), that is known from the QMC simulations by Ceperly and Alder [15, 16, 28], and the classical
limit (6 — oo) are restored. This is achieved via a hypothetically assumed interpolation function that interpolates
between these two limits [249], so that the accuracy for intermediate values of 6 is naturally unclear. Once the fitting
constants in Eq. (147) are known (for their concrete values see Ref. [249]), the corresponding exchange-correlation
free energy is immediately computed by analytically carrying out the coupling constant integration in Eq. (146),
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yielding
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Fun) =~ 50 (149)
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where the relation T'9 = 2)\?r, with A = (4/(97))"/3 may be used to recast this into a modified function f5.(T',0). We
mention that although the IIT parametrization for the unpolarized case (£ = 0) has been provided long ago [206],
the polarized case (£ = 1) became available only recently [249]. Furthermore, we again stress that the IIT functional
exactly fulfills all three know limits: classical, ground state and Hartree-Fock.

It is important to note that there are two different definitions of the degeneracy parameter for polarizations other
than the fully unpolarized case. First, regardless of the polarization ¢, one may always use = 2kgTm,/ h%k% with
kp = (37%n)/3 where n = nt + ny is the total density of the system. This way, the parameter 6 is independent of
the spin-polarization at constant values of r4, but its physical meaning is somewhat unclear. The second possibility,
which we employ, is to define the Fermi vector as kIE = (672n4), corresponding to the particle species with the
higher density, ny > ng, cf. Eq. (4). Naturally, in the unpolarized case, where ny = ny = n/2, both definitions
are equal, whereas at arbitrary polarizations the relation 8 = 0(1 + {)2/ 3 = ng holds. Since the authors of the

+

X

IIT parametrizations chose the definition of # for the degeneracy parameter in the determination of the fitting
constants®, we must evaluate Eq. (149) at (1 +&)2/3. For completeness, we mention that Sjostrom and Dufty [213]
used the same Pade ansatz for the interaction energy, Eq. (147), to obtain a functional of fx. both from the VS
scheme (see Sec. 3) and the RPIMC data by Brown et al. [211].

8.2.2. PDW parametrization

Perrot and Dharma-wardana [210] came up with a different idea to parametrize f2,(rs,6) that is more suitable for
their classical mapping approach, see Sec. 4.2.1, which allows for the direct computation of the exchange-correlation
free energy. These values have been directly fitted to the following parametrization

GXC(TS,O) - Pl(rsa 9)

0 _
o(rs,0) = Py 0) ; (150)
Py (Ts7 9) = (A2(7"8)u1 (TS) + AB(TS)U2(7"8)) 92Q2(T5) + A2(TS)UZ(TS)95/2Q5/2(7"8)7
Py(re,0) = 14 Ai(r)0Q%(rs) + As(ry)0°2Q%2(ry) + As(r)0°Q* (),
_ 3 B 2+/mn(rs
Q) = @) )=l = T ) = 2,
Ai(rs) = exp (yk(rS)liﬁ;k((;s))zkm))7 Br(rs) =exp (5(rs — 1)),
b1 kT 2 ba,kTs
() = v log(r) + SEEPEGEEIE ) = T

5Note that the authors of Ref. [248] also chose the definition of § that is used here, which is the reason for the temperature scaling

factor wg 2 in the Hartree-Fock parametrization a.
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where the fitting constants are provided in Ref. [210]. This functional recovers the correct QMC ground state limit,
exc(rs,0), as & — 0 and the Debye-Hiickel limit as § — co. However, the Hartree-Fock limit at r, — 0 has not
been included even though it were the very same authors who presented the Hartree-Fock parametrization [248] 16
years earlier. For completeness, we mention that an ansatz of the form Eq. (150) has also been utilized by Brown
et al. [214] to obtain the first parametrization from a fit to their RPIMC data [211], yet, the overall functional
behavior of this parametrization has later been shown to be unsatisfactory [212].

8.2.3. HNC parametrization
In the recently proposed HNC functional [242], Tanaka exploited the same Pade ansatz for the rs-dependency
of the HNC interaction energy as the IIT parametrization, cf. Eq. (147):

1) +b5(0)/rs +E(O)rs

E(r,.0) = r 151
v (T y ) s 1+d5(9)\/ﬁ+55(9)7’5 ) ( )
but slightly modified the #-dependence by using the general form
1 62 63 o4
9(0) = Glo) 2 (152

L+ y20% + y30° + ya0*

for all functions b¢, &, d¢, &, The major difference is that also terms with 6% are included in the fit. The Hartree-
Fock limit of the HNC parametrizations is incorporated in a®(f). After fitting Eq. (151) to the interaction energy
from the HNC scheme (values of the fitting constants can be found in Ref. [242]), the functional for the exchange-
correlation free energy is again obtained by analytically carrying out the coupling constant integration, Eq. (145),
which leads to a very similar expression as Eq. (149). While the thus constructed HNC functional properly fulfills
the classical Debye-Hiickel limit, it does of course not include the exact QMC ground state limit.

8.2.4. KSDT parametrization

The KSDT functional is based on the RPIMC data by Brown et al. [214]. These data have been obtained for the
interaction, kinetic, and exchange-correlation energy covering the relevant warm dense matter regime of the UEG.
Therefore, Karasiev et al. came up with a slightly different strategy to construct a parametrization by utilizing the
IIT Pade anastz, Eq. (147), directly for the exchange-correlation free energy instead of the interaction energy, i.e.,

1 wea(¥) + bS(0) (/75 + c(0)rs

Feelrs,0) = = - L+ dE(0)rs + £@O)ry

(153)

with the temperature Pade functions b — e of Eq. (149) and the Hartree-Fock parametrization, a, Eq. (148). First,
they fitted the ground state limit of Eq. (153)

1 wear + bﬁw/rs + cfe%rs

154
Ts  14d5rs + iy (154

lim f)fc(rs, 0) = ef(c(rs,O) =
6—0

to the most recent QMC data by Spink et al. [38], separately for £ = 0 and £ = 1, which determines the four ground
state coefficients bi, c§, dﬁ, e%. The exchange-correlation free energy, f<., is linked to the interaction (v¢), kinetic,

(k%), and exchange-correlation energy e$. via the standard thermodynamic relations

§
W (re, 0) = 2FE (ra, 0) + 7y P25 0) (155)
ors 0
3
€5o(rs,0) = fec(rs,0) — 0 Ofse(rs,0) (156)
0 |
Ofze(rs,0) dfe(rs, 9)
3 — 1S(r. _p DIxc\I7) | g€ _ e ZIxe\T8 7
k (1”3,0) ks (Téve) 0 89 . fxc(rsa 9) Ts 67’5 0 9 (157)

with k& (rs,6) being the ideal kinetic energy. Therefore, the RPIMC data sets for each of these quantities can be
used for a fit of the right hand sides to these data, thereby determining the remaining coefficients in Eq. (153) that
contain the temperature dependency. By carrying out all three of these fits both for £ = 0 and £ = 1, the authors
of Ref. [212] found that using RPIMC data for €S results in the smallest average and maximum deviation of the
fit function to the data. Moreover, they performed the consistency checks of re-computing the two thermodynamic
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quantities from f&. that have not been used for the fit, and then compared the result to the corresponding RPIMC
data. Again, the deviations were smallest when using e, as input for the fit. In addition to the exact Hartree-Fock
and ground state limit, the KSDT functional also fulfills the Debey-Hiickel limit as # — oo by simply fixing b5 to
(3/2)/207 b3 for € = 0 and to (3/2)/221/3X"1by with A\ = (4/(97))'/3 for £ = 1. Finally, we mention that one of
the temperature Pade functions, c(6) [cf. Eq. (149)], had to be modified in the KSDT functional to reproduce the
RPIMC data sufficiently well. Naturally, this has been accomplished by adding an additional parameter c3 in the
exponent, i.e.,

EO) = |E+-exp (—039*1)} et (0) . (158)
The concrete values of all fitting constants of the KSDT functional are to be found in Ref. [212].

8.2.5. GDB Parametrization

In the construction of the GDB parametrization [227], we followed the same strategy as the previously discussed
KSDT functional (Sec. 8.2.4), but instead used our new finite size corrected QMC data for the interaction energy
(see Sec. 6), which, due to the fermion sign problem, are available down to § = 0.5. To close the remaining gap to
the ground state, we computed a small temperature correction

AGTE(rs,0,€) = v¥T5(r,0,€) = 0¥TH5(r,0,9), (159)

from the STLS method, (see Sec. 3), and added this onto the most accurate ground state QMC data by Spink et
al. [38] for temperatures 6 < 0.25. Thereby, we obtained a highly accurate data set for the interaction energy over
the entire relevant warm dense matter regime, which we fitted to the right hand side of Eq. (155) with the Pade
ansatz, Eq. (153) for the exchange-correlation free energy. However, we found that the additional parameter ¢z in
Eq. (158) is not necessary for a smooth fit through our data set. The values of the fitting constants in Eq. (153)
can be found in Ref. [227].

8.3. Spin-interpolation
8.3.1. Spin-interpolation of the KSDT and GDB functional

To obtain an accurate parametrization of fy. at arbitrary spin polarization 0 < & < 1, the KSDT and GDB
functional employ the ansatz [210]

Fre(1,0,8) = fou(r,0) + | fae(rs,0 - 272/%) — [0 (r,,0) | ®(rs,0,€) , (160)

with § = (14 €)?/3 ensuring that the right hand side is evaluated at the same temperature 7" for the given density
parameter rs. Knowing that the exact ground state spin-interpolation function in the ideal limit, s — 0, is given
by

L+ + (1 =g -2
24/3 _ 2 ’

D(ry=0,0=0,¢) = (161)

Perrot and Dharama-wardana [210] proposed to extend this to the correlated system at finite temperature with the
ansatz:

(1 + f)a(rs,e) + (1 o g)a(u,e) )

@(Ts,e,f) = 9a(rs,0) — 9 ) (162)
alrs,0) =2 — h(rs)e_‘”(rs’o),
2/3+ hl’l"s
hry) = 22T
(T ) 1+ hg’l“s

A(rs,0) = A1 4 AoOrt/?

which fulfills the ground state limit of the ideal system, Eq. (161). Both in the GDB and KSDT functional the
parameters hy and ho are obtained by fitting fyc(7s,0,&) to the ground state data of Ref. [38] for £ = 0.34 and
& = 0.66. Then, in the case of the KSDT functional, the remaining two parameters A; and Ay, which carry the
temperature dependent information of the interpolation function, had to be determined by a subsequent fit to the
approximate hypernetted chain data [210] of fy. at intermediate spin-polarization ¢ since Brown et al. did not
provide these data. Whereas in case of the GDB functional [227], we performed vast additional QMC simulations
to obtain ab initio data for the interaction energy v¢(ry, ) at &€ = 1/3 and & = 0.66, which we utilized to determine
the parameters A1 and A2 via Eq. (155). Interestingly, we find that the spin interpolation depends only very weakly
on #, and in contrast to KSDT, A5 in fact vanishes within the accuracy of the fit and, thus, we set Ay = 0.
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8.3.2. Spin-interpolation of the IIT and HNC' functional

In 1989, Tanaka and Ichimaru [205] introduced a different spin-interpolation for the warm dense electron gas on
the basis of the modified convolution approximation (MCA) (see Sec. 3). Specifically, their ansatz for the interaction
energy is given by

s(rs, 0)

0(ren8.6) = (1= €007 0) + €501 (o) + (567 + e’ = et ) 0 (163)

with the definition

B as(0) + bs(0)rs
14 cs(0)rs + ds(0)r2

s(rs,0) = (164)
Note that the temperature-dependent coefficients as(6),bs(6),cs(6),ds(0) are of the same form as Eq. (152), see
Ref. [205] for the appropriate fitting constants. This, in turn, leads to the spin-interpolation for the exchange-
correlation free energy

1 5 59
(e = (1— €59 (r, 61 (., S22t 0% 6wy, 1
8,6 = (1= €)1%0r0.0) + € 2L 0) + (5624 5560 = T8 ) Dlrd) (165)
and plugging Eq. (163) into (145) immediately gives
1T
S 0) =5 [ dre s(r0) (166)
s JO

which (up to moderate temperature, see the discussion of Fig. 39 below) can be evaluated analytically as

Y (rs,0), if 2 < 4ds
Y(rs,0) = ¢ B_(rs,0), if 2 =4ds (167)
Y. (rs,0), otherwise
with
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,(71 ; ) 7”2 |:2d5 Og| —+ csTs + (719! ds(2d3T5+cs):| ( )
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2dg+/c2 — 4d, & 2dsrs + cs + 1/ 2 — 4d, & cs + 1/ —4d;

As the spin-dependence of MCA is expected to be similar both to STLS and also the recent HNC-based LFC by
Tanaka, Egs. (163) and (165) are used for both of these parametrization with the same fitting constants as in the
original reference [205].

8.4. Comparison of parametrizations

8.4.1. Interaction energy

In Fig. 32, we compare various results for the temperature-dependence of the interaction energy per particle of
the unpolarized electron gas for different densities. The red crosses correspond to the finite-size corrected (using
our new, improved finite-size correction, see Sec. 6) thermodynamic QMC results by Groth, Dornheim and co-
workers [226, 227] and the red diamonds to the ground state QMC data [38] with an STLS temperature correction
obtained from Eq. (159). Observe the smooth connection between the two data sets over the entire density-range.
Thus, in combination, these constitute the most accurate existing data for the interaction energy over the entire
warm dense matter regime and have subsequently been used as input for our recent parametrization, i.e., the red
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Figure 32: Temperature dependence of the interaction energy of the unpolarized electron gas for rs = 0.1, 1,4, 10 — Shown are the recent
QMC results from Refs. [226, 227] (red crosses), STLS temperature-corrected ground state QMC data (see Eq. (159), red diamonds),
the parametrization by Groth, Dornheim and co-workers (GDB, red line) [227], RPIMC data (blue circles, BCDC, Ref. [211]) and the
corresponding parametrization by Karasiev and co-workers (blue line, KSDT, Ref. [212]), data from an improved local field correction
based on the hypernetted-chain approximation (green squares, HNC, Ref. [242]) and a corresponding parametrization (green line), the
improved STLS parametriprzation by Ichimaru and co-workers (black line, IIT, Ref. [206, 249]), and the parametrization by Perrot
and Dharma-wardana (yellow line, PDW, Ref. [210]). The bottom panels depict the relative deviation towards the GDB curve and the
insets correspond to magnified segments.
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line (GDB, Ref. [227]). Evidently, the employed Pade ansatz is an appropriate fit function, as the input data are
accurately reproduced with a mean and maximum deviation of 0.12% and 0.63%, see also the corresponding bottom
panels where we show the relative deviations of all data sets to the GDB curve.

Although the parametrization of the interaction energy is, for the most part, just a means to obtain the exchange-
correlation free energy fxe, cf. Eq. (155), it is still worth to consider, at this point, v itself to gauge the accuracy
of various previous approximations and XC-functionals. The blue circles correspond to the RPIMC data from
Ref. [211] (BCDC) and the blue line to the corresponding parametrization by Karasiev et al. [212] (KSDT). First
and foremost, we note that the BCDC data are available for low to moderate densities, s > 1, and exhibit the
largest deviations for the smallest rs-value. This is a combination of two different effects. At low temperature,
the observed systematic bias is mostly a consequence of the employed fixed node approximation (and, possibly,
related to ergodicity problems in the QMC algorithm, see Sec. 5.3), whereas at high temperature the effects of
the inappropriate finite-size correction dominate (cf. Sec. 6), leading to a maximum error of Av/v = 7% for the
unpolarized case. In contrast, the BCDC data are substantially more accurate at stronger coupling, with maximum
deviations of 2% and 1% for ry = 4 and rs; = 10, respectively.

The KSDT parametrization has been obtained from a fit to the BCDC data for Fy, i.e., the sum of v and the
exchange-correlation part of the kinetic energy ky.. However, the results for the interaction energy computed from
fxe [cf. Eq. (155)] do not agree with the blue circles, which means that the parametrization and input data are
not consistent as the exact thermodynamic relations, Egs. (155)-(157), are strongly violated. In particular, there
appear pronounced deviations between the two at low temperature as the KSDT functional incorporates the correct
ground state limit. The largest deviations (AV/V a 11%) between the KSDT and GDB curves appear at high
density, r; = 0.1. This is a consequence of the lack of input data for the former in this regime, which is bridged by
an interpolation between the RPIMC data at rs > 1 and the correct Hartree Fock limit at r, = 0. Furthermore,
we stress the surprisingly large errors at high temperature both for r; = 4 and rs = 10, and the unphysical bump
at low temperature in the latter case.

The black line depicts the widely used improved STLS parametrization that is due to Ichimaru and co-workers
(IIT, Ref. [206, 249]). Given the incorporation of the exact behavior for ry — 0, § — oo and § — 0, and the
remarkable accuracy of the STLS formalism inbetween (cf. Sec.6), the overall good performance of this functional
does not come as a surprise. In particular, the most severe systematic errors occur for intermediate density (rs = 1)
and temperature, but do not exceed Av/v = 4%.

Next, let us consider the green curve corresponding to a fit to the recent data based on the improved local
field correction derived from the hypernetted-chain approximation (HNC, green squares) by Tanaka [242]. While
this new LFC does constitute an improvement, both, for the static structure factor (see Sec. 7.2) and G(g) itself
(Sec. 9), the same does not apply for the interaction energy, as for this quantity STLS benefits from a fortunate
error cancellation in the integration, in particular at large r;, cf. Fig. 31. Furthermore, the HNC parametrization
exhibits a pronounced minimum around 6 = 0.5, the origin of which is probably an artifact of the lack of HNC input
data for these parameters, see the insets for r¢ = 4 and ry = 10. In addition, the ground state limit is obtained
from the zero temperature HNC data and not from the more accurate QMC results, which leads to relative errors
of around 1% towards 6 = 0. Hence, we conclude that the green curve does not improve the twenty years older IIT
parametrization, although it exhibits an overall similar accuracy.

Finally, we include the interaction energy computed from the parametrization of classical-mapping data (cf. Sec. 4.2.1)
by Perrot and Dharma-wardana (yellow line, PDW, Ref. [210]). This curve was constructed from input data in the
range 1 < ry < 10, and, somewhat ironically, the Hartree-Fock limit that was parametrized by the same authors in
1984 [248], was not incorporated. For this reason, the functional exhibits large deviations at high density and should
not be used below r; = 1. While PDW did include the correct ground state limit, the lowest finite temperature
values correspond to # = 0.25, which explains the unphysical behavior of the yellow curve at low temperature for
rs = 1. Overall, we find that the PDW parametrization exhibits the largest systematic errors (with Av/v 2 6%) at
intermediate temperatures around € = 1, which is not surprsing given the employed interpolation of the quantum
temperature parameter in the classical mapping formalism, cf. Eq. (53).

In Fig. 33, we show the same comparison but for the spin-polarized case, £ = 1. While we do find similar
trends as in the previous figure, the relative biases of the different approximations are, overall, increased. In
particular, the KSDT curve exhibits a maximum deviation exceeding 15% at high density, and even at ry = 1 we
find Av/v ~ 8% around 6 = 5. Furthermore, this parametrization exhibits an unphysical plateau-like behavior in
the low-temperature regime both at rs = 4 and rs = 10. In addition, the BCDC data are substantially more biased
both at low and high temperature, with a maximum deviation of Av/v &~ 14% at r; = 1 and 6 = 8. The increased
deviation for the latter case is a consequence of the definition of the reduced temperature, resulting in a larger
temperature at equal f-values for the spin-polarized case. This, in turn, exacerbates the inaccuracy of the employed
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Figure 33: Temperature dependence of the interaction energy of the spin-polarized electron gas for rs = 0.1,1,4,10 — Shown are

the recent QMC results from Refs. [226, 227] (red crosses), STLS temperature-corrected ground state QMC data (see Eq. (159), red
diamonds), the parametrization by Groth, Dornheim and co-workers (GDB, red line) [227], RPIMC data (blue circles, BCDC, Ref. [211])
and the corresponding parametrization by Karasiev and co-workers (blue line, KSDT, Ref. [212]), data from an improved local field
correction based on the hypernetted-chain approximation (green squares, HNC, Ref. [242]) and a corresponding parametrization (green
line), and the improved STLS parametriprzation by Ichimaru and co-workers (black line, IIT, Ref. [206, 249]). The bottom panels
depict the relative deviation towards the GDB curve and the insets correspond to magnified segments.



finite-size correction, cf. Sec. 6. At low temperature, the fixed node approximation exhibits a worse performance
even for a finite model system [221]. The HNC and IIT parametrizations are of a similar quality, but the latter
appears to be superior due to the incorporation of the correct ground state limit. The main difference compared to
the unpolarized case is the significantly larger deviation for large temperature at ry = 10. Interestingly, this is not
a consequence of a worse performance of the STLS approximation itself, cf. Fig. 30 but, instead, of the a posteriori
modification of the STLS data to incorporate the exact high and low temperatuere limit. Finally, we mention the
excellent agreement between the GDB parametrization and its input data with a mean and maximum deviation of
0.17% and 0.63%, respectively.

8.4.2. FExchange-correlation free energy

Let us now consider the main quantity of interest, i.e., the exchange-correlation free energy fyx.. In Fig. 34, we
compare the temperature dependence of the five most accurate functionals for the unpolarized case and at the same
densities as in the previous section. All curves exhibit a qualitatively similar behavior except PDW at ry = 0.1,
which is again a consequence of the not incorporated Hartree-Fock limit and the density range of the input data
(1 <rg <10). Overall, the KSDT parametrization is relatively accurate at low temperature (6 < 1) although there
appears a bump in both v and fy. at large ry, which leads to an unphysical slightly negative entropy [336]. In
contrast, at intermediate to high temperature we find substantial systematic deviations (exceeding 10% at rs = 0.1),
which are a direct consequence of the utilized RPIMC input data. Again, the IIT and HNC curves exhibit a very
similar performance, with the former being superior due to the correct ground state limit. More specifically, for the
unpolarized case we find maximum deviations of around 3% at intermediate rs-values and temperatures. Finally,
the classical-mapping based PDW parametrization by Perrot and Dharma-wardana [210] exhibits deviations of up
t0 Afxe/ fxe = 5% around the Fermi temperature.

For completeness, in Fig. 35 we show the same information for the spin-polarized electron gas. Again, we
find an overall qualitatively similar behavior as for £ = 0, but with increased systematic biases in the various
approximations. The KSDT fit exhibits maximum deviations of up to 15% and 12% at the highest depicted
densities, s = 0.1 and rs = 1, respectively, around 6§ = 6. With increasing coupling strength, these errors decrease
with a maximum of A fy./fxe = 2% at rs = 10 around § = 0.4. Moreover, there again appears an unphysical bump
in the low temperature limit at low density. The IIT and HNC parametrizations roughly follow the same behavior
as the interaction energy for the ferromagnetic case, cf. Fig. 33. Interestingly, the maximum deviation of the IIT
curve does not appear at intermediate temperature, as for the paramagnetic case, but towards ¢ > 10 at r5 = 10.
Further, we note that the green curve also exhibits some unphysical behavior towards low 6 and large r,, which
is similar to the KSDT function. Finally, let us consider the four PDW data points that are available at r; = 1.
Somewhat surprisingly, at the present conditions the employed classical mapping constitutes the most accurate of
all depicted approximations with a maximum error of A fy./ fxc &~ 3% around the Fermi temperature.

8.4.3. Exchange-correlation energy

Let us now consider another important thermodynamic quantity, i.e., the exchange-correlation energy ey, which
is connected to fx. via Eq. (156). Recall that the KSDT functional is actually based on the RPIMC data for ey,
whereas our GDB parametrization was based on our QMC (and temperature corrected ground state QMC) data
for the interaction energy alone. The main reason for our choice was the, in general, higher statistical uncertainty
and greater difficulty of the finite-size correction for the kinetic contribution to the total energy. Nevertheless,
for the ferromagnetic case we were able to obtain accurate QMC data for ey (using CPIMC for § < 0.5 and
PB-PIMC elsewhere) over the entire temperature-range at rs = 1. For completeness, we mention that we applied
a twist-averaging procedure [328, 330] for 6 < 0.5 and added an additional finite-size correction onto the QMC
data, see Ref. [227] for details. The results are depicted as the red points in Fig. 36 and are compared to the
exchange-correlation energy that has been computed from the GDB parametrization via Eq. (156) (solid red line).
Evidently, those independent data are in striking agreement over the entire temperature-range. This is an important
cross-check for our functional and, in particular, for the temperature-corrected ground state data used for § < 0.25,
see also the inset showing a magnified segments around the low-temperature regime. The blue circles correspond to
the RPIMC data by Brown et al. [211] and are consistently too low over the entire depicted temperature range. The
KSDT parametrization (blue solid line), which corresponds to a direct fit to these data, reproduces them for 6 > 1,
leading to an unphysical dent for 4 < 6 < 20 until the correct Debye-Hiickel limit is attained. At low temperature,
the KSDT curve does not reproduce the RPIMC input data, but performs significantly better, which is due to the
incorporation of the exact ground state and high-density limits, which preclude this unphysically deep minimum at
re = 1.

Next, we investigate the performance and consistency of the various parametrizations with respect to eyx. at
rs = 10, starting with the unpolarized case (Fig. 37, left panel). For these conditions, we were able to obtain
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Figure 34: Temperature dependence of the exchange-correlation free energy of the unpolarized electron gas for rs = 0.1, 1,4, 10 — Shown
are the parametrizations by Groth, Dornheim et al. (red line, GDB, Ref. [227]), Karasiev et al. (blue line, KSDT, Ref. [212]), Tanaka
(green line, HNC, Ref. [242]), Ichimaru et al. (black line, IIT, Ref. [206, 249]) and Perrot and Dharma-wardana (yellow line, PDW,
Ref. [210]). The bottom panels depict the relative deviation towards the GDB curve and the insets correspond to magnified segments.
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Figure 35: Temperature dependence of the exchange-correlation free energy of the spin-polarized electron gas for rs = 0.1,1,4,10 —
Shown are the parametrizations by Groth, Dornheim et al. (red line, GDB, Ref. [227]), Karasiev et al. (blue line, KSDT, Ref. [212]),
Tanaka (green line, HNC, Ref. [242]), and Ichimaru et al. (black line, IIT, Ref. [206, 249]) and, for rs = 1, data points by Perrot and
Dharma-wardana (yellow triangles, PDW, Ref. [210]). The bottom panels depict the relative deviation towards the GDB curve and the
insets correspond to magnified segments.
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Figure 36: Cross-check of the GDB-parametrization via the exchange-correlation energy — Shown are the temperature dependence of
exc (solid lines and points) and fxc (dash-dotted lines) for the spin-polarized electron gas at rs = 1. The red and blue lines correspond
to the parametrizations by Groth, Dornheim et al. [227] and Karasiev et al. [212] and the red and blue points to our finite-size corrected
QMC data (red) and the RPIMC data by Brown et al. [211]. Reproduced from Ref. [227] with the permission of the authors.
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Figure 37: Temperature dependence of the exchange-correlation energy of the unpolarized (left) and spin-polarized (right) electron gas
at rs = 10 — Shown are results computed from the parametrizations by Groth, Dornheim et al. (red line, GDB, Ref. [227]), Karasiev et
al. (blue line, KSDT, Ref. [212]), Tanaka (green line, HNC, Ref. [242]), Ichimaru et al. (black line, IIT, Ref. [206, 249]), and Perrot and
Dharma-wardana (yellow line, PDW, Ref. [210]). In addition, we include the RPIMC data by Brown et al. [211] (BCDC, blue circles)
and our recent finite-size corrected QMC results (red points, QMC). For completeness, we also compare with the very recent results of
Kas and Rehr [197], which have been obtained from a refined finite temperature Green’s function approach.
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independent finite-size corrected QMC data down to # = 0.5 that has not been included in the construction of the
functional. Again, the exchange-correlation energy computed from our GDB-parametrization via Eq. (156) is in
perfect agreement with our QMC data for all temperatures. The RPIMC data (blue circles) and the KSDT fit to
these data (blue line) are also in good agreement even at low temperature, which is in contrast to r, = 1. Overall,
there occur only small deviations to our data, although there does appear a small bump towards low temperature,
which is connected to an unphysical negative entropy [336]. The improved STLS parametrization by Ichimaru et
al. [206, 249] (black line) is of a similar quality to the KSDT curve and gives systematically too low results for
6 2 1. In constrast, the green line, which corresponds to the recent parametrization of the HNC-LFC data by
Tanaka [242], exhibits a substantially different behavior. While it is quite accurate for 6 2 2, it shows a significantly
too deep minimum around 6 = 0.8 followed by a pronounced unphysical bump at 6 = 0.25. The classical-mapping
based parametrization by Perrot and Dharma-wardana [210] (yellow curve) clearly gives the least accurate data for
0>1.

In addition, for the exchange-corrlation energy, we can also compare with the very recent results by Kas and
Rehr [197] (brown crosses), which have been computed via a refined finite temperature Green’s function procedure
(FT-GF). For the exchange-correlation energy of the unpolarized UEG, we can also perform the comparison for this
quantity and thereby gauge the accuracy of this new approach. Surprisingly, at these parameters, the corresponding
data exhibit a completely unphysical behavior with an additional local maximum in ey, at 8 ~ 1, where both our
ab initio functional and independent QMC data (red points) predict a minimum. Even at higher temperatures, the
systematic bias of the FT-GF results is largest compared to all other depicted approaches.

Let us conclude this section with a brief discussion of the spin-polarized case, which is shown in the right
panel of Fig. 37. Again, we observe perfect agreement between our QMC data and the GDB-parametrization
for all temperatures. While the KSDT curve is also in good agreement with the underlying RPIMC data, there
appear significantly larger deviations towards our results. In particular, there abruptly appears a plateau between
0 ~ 0.9 and # = 0.1, followed by an unphysical bump before the ground state limit is reached. In contrast, the
IIT parametrization gives a qualitatively more similar behavior with respect to the red curve, although the overall
accuracy is comparable to KSDT. Finally, the HNC parametrization again exhibits a too deep minimum and, in
addition, does not incorporate the correct ground state limit.

8.4.4. Spin-dependency of the parametrizations

In Fig. 38, we show the spin-dependency of the interaction energy of the uniform electron gas for four different
densities and six relevant temperatures. Note that we always define the Fermi energy entering the reduced temper-
ature 0 with respect to the spin-up electrons, cf. Eq. (4), which is different from definitions in parts of the relevant
literature [205, 242, 210, 212]. The red points correspond to our recent finite-size corrected thermodynamic QMC
data [226, 227], which is available at two intermediate spin-polarizations, £ = 1/3 and £ = 0.6. We stress that
these data still constitute the only ab initio investigation of the £-dependency of the warm dense electron gas. The
solid red line depicts our GDB-parametrization [227], which utilizes the spin-interpolation between the para- and
ferromagnetic limits from Eq. (162). Surprisingly, we find that a single free parameter [\ in Eq. (162)] is sufficient
to accurately describe the temperature-dependence of the spin-interpolation, resulting in an average and maximum
deviation between parametrization and QMC data of 0.15% and 0.8%, respectively, at intermediate £&. The dot-
ted blue curve corresponds to the functional by Karasiev et al. [212], who used the same functional form as the
GDB-parametrization. However, due to the lack of RPIMC data for 0 < £ < 1, they determined the 6-dependent
parameters in Eq. (162) from a fit to the sparse classical-mapping data from Perrot and Dharma-wardana [210] (12
values for fy. at rs = 1,3,6 and £ = 0.6). At zero temperature, KSDT and GDB are in excellent agreement as both
utilize the same ground state QMC data [38] to construct the ground state limit for all values of . Towards higher
temperatures, there occur increasing deviations that are most pronounced (in terms of the relative deviation) at
rs = 0.1 and @ = 4,8. This is again a consequence of the lack of input data for the KSDT functional for s < 1 at
finite temperature, and the poor quality of the RPIMC data at r; = 1 for the £ = 0,1 limits.

The dashed-dotted black and dashed green lines correspond to the improved STLS parametrization by Ichimaru,
Tanaka, et al. [206, 205, 249] and the recent HNC-based parametriztion by Tanaka [242], respectively. Both use
the finite-temperature spin-interpolation from Eq. (163) that has been constructed on the basis of the modified
convolution approximation, see Ref. [205]. First and foremost, we note that the two curves do not agree, even in the
ground state, since the £ = 0 and £ = 1 limits in IIT incorporate ground state QMC data, whereas the HNC limits
have been constructed solely on the basis of the HNC data. Further, the IIT ground state limit for the £&-dependence,
at rs = 10, is slightly non-monotonic, with a shallow minimum around & ~ 0.8. Towards high temperature, the
deviations between the IIT and Tanaka parametrizations vanish, since both the STLS and HNC input data sets for
the interaction energy eventually converge. At high density and temperature, we find an excellent agreement to our
GDB curve, which is expected in this weak coupling regime. In contrast, towards lower density and temperature,

72



Figure 38:  Spin-dependency of the interaction energy of the uniform electron gas — Shown are the parametrizations by Groth,
Dornheim et al. (GDB, Ref. [227], red solid line), Karasiev et al. (KSDT, Ref. [212], blue dotted line), Ichimaru, Tanaka et al. (IIT,
Refs. [206, 205, 249], black dash-dotted line), and the recent HNC-based function by Tanaka (Ref. [242], dashed green). The red points
correspond to our finite-size corrected thermodynamic QMC data from Refs. [226, 227]. Note that we define the Fermi energy in the
reduced temperature with respect to the spin-up electrons for all polarizations, cf. Eq. (4), which is different from the definitions in
parts of the literature [205, 212, 210]. At rs =4 and rs = 10, the 8 = 0 curves are shifted downward by 0.05 Hartree for better visibility.
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Figure 39: Spin-dependency of the exchange-correlation free energy of the uniform electron gas — Shown are the parametrizations by
Groth, Dornheim et al. (GDB, Ref. [227], red solid line), Karasiev et al. (KSDT, Ref. [212], blue dotted line), Ichimaru, Tanaka et
al. (IIT, Refs. [206, 205, 249], black dash-dotted line), and the recent HNC-based function by Tanaka (Ref. [242], dashed green). Note
that we define the Fermi energy in the reduced temperature with respect to the spin-up electrons for all polarizations, cf. Eq. (4), which
is different from the definitions in parts of the literature [205, 212, 210].
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there occur substantial deviations and, in addition, unphysical dents around & = 0.8. In summary, we find that the
KSDT, IIT and Tanaka curves exhibit, overall, a similar degree of accuracy.

Let us conclude the discussion of the different parametrizations with a comparison of the relative spin-dependency
of the exchange-correlation free energy of the uniform electron gas at warm dense matter conditions which is
presented in Fig. 39. In the ground state, all four depicted curves are close, although IIT and Tanaka substantially
deviate from the other two at r; = 10. In this case, IIT attains the correct limit for £ = 1 due to the incorporation
of ground state QMC data, which is lacking for Tanaka. Furthermore,, similar to our findings for the interaction
energy in Fig. 38, there occur unphysical dents in fy. for IIT and Tanaka around £ = 0.8, even at s = 1, which are
caused by the MCA-based spin-interpolation for fyc, cf. Eq. (165). Finally, the KSDT results are best at rs = 10,
whereas there occur substantial deviations, both, towards high temperature and high density.

9. Inhomogeneous Electron Gas: QMC study of the static density response

9.1. Introduction

In Sec. 3, we gave a comprehensive introduction to the linear response theory of the uniform electron gas at warm
dense matter conditions. In particular, we introduced several suitable approximations for the density response of
the system to an external harmonic perturbation, which is fully characterized by the frequency-dependent response
function x(q,w), cf. Eq. (19). The gist has been that the consideration of the perturbed system served as a means
to an end, as complete knowledge of x(q,w) allows to compute all static properties of the unperturbed electron gas,
such as the static structure factor, S(k), or the interaction energy, v.

In contrast, in the following we will consider the calculation of the density response function as an end in itself,
as this information is of high importance for many applications [1]. First and foremost, the local field correction,
G(q,w), defined by Eq. (19) is directly related to the exchange-correlation kernel

47
Kxc(qvw) = _?G(qvw) ) (171)

which is the main input for density functional theory calculations in the adiabatic-connection fluctuation-dissipation
formulation [337, 338, 339]. Albeit computationally demanding, this formulation of a true non-local XC-functional
is a promising approach to go beyond widespread gradient approximations such as PBE [32] or its recent extension
to finite temperature by Karasiev et al. [185]. In addition, accurate data for the LFCs of the warm dense electron
gas are needed for the calculation of the dynamic structure factor S(q,w) of real systems (such as two-component
plasmas), e.g. Refs. [340, 341, 342, 66]. We stress that the cutting-edge theoretical description of S(q,w) is among
the most pressing goals of current warm dense matter research, as it is nowadays routinely obtained in experiments
from x-ray Thomson scattering measurements for many systems, see Ref. [112] for a review. Further applications
of G(q,w) include the calculation of electrical and optical conductivities [343, 344], energy transfer rates [345, 346],
EOS models of ionized plasmas [195, 347, 189], and the construction of pseudo-potentials [348, 349, 350, 351, 352]
that can be used, e.g., within simple molecular dynamics simulations.
In the following, we will explain how the static limit of the density response function,

x(a) = lim x(q,w) (172)

can be obtained with high precision from ab initio quantum Monte Carlo simulations at warm dense matter condi-
tions.

9.2. Theory

At zero temperature, the static density response function was computed from ground state QMC simulations
of the harmonically perturbed (and, thus, inhomogeneous) electron gas [57, 58, 55, 56] back in the first half of the
1990s. Further, these accurate ab initio data have subsequently been parametrized by Corradini et al. [59]. In
contrast, at warm dense matter conditions, until very recently, there were no ab initio data available, and one had
to rely on interpolations between known limits, e.g. Ref. [353]. In the following, we will demonstrate how this gap
was closed by extending the idea from Refs. [58, 57] to finite temperature, in the recent work by Dornheim and
co-workers [354].

Consider a modified Hamiltonian of the form

I:[ = ﬁ() + Hext(t) ) (173)
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where Hy corresponds to the standard Hamiltonian of the unperturbed uniform electron gas, cf. Eq. (7), and Hey (t)
denotes an, in general, time-dependent perturbation. In particular, we choose

He (1) = 2AZCOS (ri-q—Qt) (174)

i.e., a sinusoidal external charge density (of perturbation wave vector q and frequency Q) with the potential
Gext(r,t) =2A cos(r-q—Qt) . (175)

Let us recall the standard definition of the density response function as [1]

ta.) = 5 {[p(a ), p(-a,0)1 () (176)

with (...), indicating that the thermodynamic expectation value has to be carried out with respect to the unper-
turbed system. Naturally, Eq. (176) solely depends on the time difference, 7 = ¢ — ¢/, and on the modulus of the
wave vector, i.e. the wavenumber g. Further, it is often convenient to consider the Fourier transform of Eq. (176)
with respect to the second argument,

xaw) = lim [ dr (g, a7

However, at the time of this writing, time-dependent QMC simulations are still severely limited by an additional
dynamical sign problem, e.g. Refs. [355, 356, 357]. Therefore, in the present work, we restrict ourselves to the static
limit x(q) [cf. Eq. (172)], i.e., the density response to a constant (time-independent) perturbation,

Gext(r) =24 cos(r-q) . (178)

Still, we stress that the basic idea that is explained below can be applied within time-dependent simulations, such
as the nonequilibrium Green functions technique [358, 259, 239], in exactly the same way. Note that all time-
dependencies are, in the following, dropped for simplicity. In particular, x(q) characterizes the linear relation
between the induced and external charge densities,

pina(q) = % x() pext(q) - (179)

The external density is straightforwardly obtained from the Poisson equation as

ZA
pext(@) = L= (Bicq + dica) - (180)

and, by definition, the induced density is given by the difference between the densities of the perturbed and
unperturbed systems,

pina(@) = (Pa)s = (Pa)g (181)

)
il e—iaT; )
V& )

We note that the notation (...) , indicates that the thermodynamic expectation value has to be computed in the
perturbed system, and that, for the second equality in Eq. (181) we made use of the fact that (q), = 0. Finally,
this gives a simple, direct expression for the static density response function,

x@) = 5 (Pa)s (182)

In practice, we carry out several ab initio quantum Monte Carlo calculations of the harmonically perturbed
electron gas for each perturbation wave vector q = 2rL~1(a,b,c)” (with a, b, c € Z), for a variety of amplitudes A.
This allows us to compute the exact induced density for arbitrarily strong perturbations. In the small A-regime,
linear response theory is accurate and, thus, Eq. (182) holds, implying that (pq) , is linear in A, with x(q) being
the slope.
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For completeness, we mention a second, closely related way to estimate x(q) from a QMC simulation of the
inhomogeneous system. In linear response theory, the perturbed density profile is given by

(n(r)) 4 =no + 24 cos(q-r) x(a) , (183)

with ng being the density of the unperturbed system. In particular, the LHS. of Eq. (183) is easily obtained within
a QMC simulation in coordinate space (such as PB-PIMC, but also standard PIMC), and a subsequent cosinusoidal
fit gives another estimation of the desired static density response function.

9.8. Ab initio QMC results for the static density response

In the following section, we will demonstrate the feasibility of computing ab initio data for the static density
response using QMC methods. In particular, we will focus on two exemplary test cases at low and high density and
moderate temperatures to illustrate the range of validity of linear response theory. We will discuss the necessity of
finite-size corrections at certain parameters and demonstrate how this can be accomplished, and compare our new
data for x(q) to the dielectric approximations introduced in Sec. 3.

9.3.1. Strong coupling: PB-PIMC results

In Fig. 40, we show ab initio PB-PIMC results [354] for the density profile along the x direction (i.e., along
the direction of the perturbation wave vector q = 2rL~%(2,0,0)7). The simulation was carried out for N = 54
spin-unpolarized electrons at v, = 10 and # = 1, which corresponds to moderate to strong coupling at a moderate
temperature. The results for relatively weak perturbation amplitudes A are depicted in panel a). The solid
black lines correspond to the cosinusoidal fits according to Eq. (183). Evidently, for the two smallest perturbations
(A =0.001, green crosses and A = 0.005, yellow asterisks) no deviations from linear response theory can be resolved.
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Figure 41: PB-PIMC results for the perturbation strength dependence of the induced density modulation pg for N = 54 unpolarized
electrons at 75 = 10 and § = 1. The panels (a) and (b) correspond to the perturbation wave vectors q = 2L~ (gs,0,0)” with g, = 2
and g, = 1, respectively. The black squares correspond to the direct evaluation of Eq. (182), the green crosses have been obtained from
the cosine-fits, cf. Eq. (183), and the red lines depict linear fits to the QMC points. Reproduced from Ref. [354] with the permission of
the authors.

This is a rather remarkable result, as the yellow points exhibit maximum deviations from the mean value, ng, of
more than 10%, i.e., the system is already moderately inhomogeneous. A doubling of the perturbation amplitude to
A = 0.01 (red circles) leads to density modulations of the order of 25%, and deviations from the cosine-fit are clearly
visible around the maxima and minima. Still, these differences between data and fit are of the order of 1%. In panel
b), we show density profiles for further increased perturbation amplitudes, A = 0.015 (blue crosses) and A = 0.02
(light blue triangles). Evidently, the observed shell structure further departs from the cosinusoidal prediction from
LRT, as it is expected. Nevertheless, even at strong inhomogeneity, with density modulations exceeding 50% of
the mean value, LRT provides a good quantitative description as the maximum error around the maxima does still
not exceed 10%. Finally, in panel ¢) of Fig. 40, we show results for strong perturbations, namely A = 0.05 (blue
crosses) and A = 0.1 (light blue triangles). Eventually, the system is dominated by the external potential and, for
the strongest depicted perturbation amplitude, two distinct shells with negligible overlap are formed. Obviously,
Eq. (183) is no longer appropriate and LRT does not capture the dominant physical effects. For completeness, we
mention that the relatively large statistical uncertainty in the light blue triangles, in particular around the maxima,
is a consequence of the fact that the fermion sign problem becomes more severe towards increasing inhomogeneity,
see Ref. [354] for a more detailed explanation.

In Fig. 41, we show a comparison of the QMC results for the static density response function x(q) as obtained
from cosinusoidal fits to the density profile (green crosses), cf. Fig. 40, or via the direct evaluation of Eq. (182)
(black squares). More specifically, we show the perturbation strength dependence of the induced density pina(q) for
two different wave vectors (q = 2rL~1(2,0,0)7, panel a) and q = 2rL~!(1,0,0)7, panel b). Further, the solid red
line corresponds to a linear fit of the black squares in the small A regime (A < 0.01). Let us start by considering the
same g-vector as in the previous figure, i.e., with panel a). We note the perfect agreement between the cosine-fit
and direct results for p;,q for weak perturbations. Interestingly, this still holds for A = 0.01, where we found visible
deviations between density profile and fit, cf. Fig. 40 a). With increasing A, both sets of data differ from the linear
fit, although the deviations of the black squares are significantly smaller. In panel b), the same information is shown
for a smaller wave vector, q = 2rL~'(1,0,0)”. Overall, we observe the same trends as in panel a), although the
density response is considerably smaller. This is a consequence of screening effects inherent to the uniform electron
gas, e.g. Ref. [332]. As a consequence, the system is less inhomogeneous, and linear response theory holds up to
larger A-values than in the former case.

Let us now continue the discussion of the PB-PIMC results for the static density response function by considering
the full wave vector dependence of x(q), which is depicted in Fig. 42 for the same parameters as in the previous
figures. The different symbols correspond to N = 54 (blue crosses), N = 34 (light blue circles), N = 20 (yellow
squares), N = 14 (black triangles) and N = 8 (green diamonds) unpolarized electrons. The main effect of the
different system size is the unique g-grid for each N, which is a direct consequence of the momentum quantization
in the finite simulation cell, cf. Sec. 6. The functional form of x(q) itself, however, is, for the current set of
parameters, remarkably well converged with system size. Even in the right panel, where a magnified segment
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Figure 42: PB-PIMC results for the wave vector dependence of the static density response function x for the unpolarized electron
gas at 7 = 10 and 6 = 1. Shown are QMC results [cf. Eq. (182)] for different particle numbers N (symbols), and results from
dielectric approximations, namely RPA (grey line) and STLS (red line). Further, the black arrow indicated the Fermi wave vector,
kp = (97/4)1/3 /rs. Panel (b) shows a magnified segment. Reproduced from Ref. [354] with the permission of the authors.

around the smallest g-values is shown, no finite-size effects in the density response function can be resolved (note
that this changes for higher densities, see Sec. 9.3.2). Furthermore, we note that the increased error bars towards
large wave vectors are a consequence of the quickly oscillating nature of the external potential in this regime, see
Ref. [354] for more details. The solid grey and red lines correspond to dielectric approximations, namely RPA and
STLS, respectively. In the small g-regime, both curves are in excellent agreement with each other and the parabolic
asymptotic behavior known from the literature [332]. With increasing ¢, however, they substantially deviate with
a maximum difference of Ay ~ 50% around twice the Fermi vector kg. In particular, we find that the inclusion of
an appropriate local field correction is crucial to account for the pronounced coupling effects at these parameters.
Consequently, the STLS approximation (see Sec. 3) gives significantly improved data for the static density response
function, although the agreement with the QMC data is still only qualitative.

We conclude this section with a discussion of the static local field correction, G(q), which is readily computed
from x(q), cf. Eq. (185) below. The results are shown in Fig. 43, where we compare the QMC data for N = 34
(light blue circles) and N = 54 (blue crosses) to the static local field correction from STLS theory (solid black line).
First and foremost, we note that no system-size dependence can be resolved within the given statistical uncertainty,
as expected. Furthermore, the systematic bias in the STLS results is substantially larger than in the total density
response function, since G(q) is dominated by exchange-correlation effects. In addition, we note that the recent
LFC based on the hypernetted chain equation by Tanaka [242] is significantly more accurate than STLS, which is
in stark contrast to the corresponding results for the interaction energy v, cf. Sec. 6. Moreover, the solid purple
curve depicts the LFC obtained in the Vashista-Singwi scheme [213] and, overall, exhibits a similar accuracy as the
HNC curve. The dotted yellow and dash-dotted green lines are predictions for the asymptotic behavior of the local
field correction based on the compressibility sum-rule, cf. Eq. (39), using as input the parametrization of fy(rs,6)
by Groth, Dornheim et al. [227] or Karasiev et al. [212], respectively (for a review on sum rules in classical and
quantum mechanical charged fluids, see Ref. [359]).

For completeness, we mention that it is well known that the local field correction from STLS (and also from
HNC) does not fulfill Eq. (39) and, thus, does not give the correct long-range behavior [in contrast to the total
static density response function x(q)]. In stark contrast, the VS curve is in perfect agreement to the asymptotic
expansion, which is somewhat surprising given the systematic bias in the interaction energy itself. Although both
utilized parametrizations for fy. deviate by less than four percent, at the present conditions, the pre-factors of the
parabolic behavior of G differ by more than a factor of two. The reason for this striking deviation is that the
compressibility sum-rule is not sensitive to fx. itself, but to its second derivative with respect to the density (or the
density parameter r5). Evidently, the yellow curve is consistent with the QMC results for the smallest wave vectors,
whereas the KSDT prediction does not appear to be better than the STLS curve. Therefore, this investigation of
the compressibility sum-rule convincingly demonstrates that a highly accurate parametrization of fy. is not only
important as input to finite-temperature DFT calculations in the local density approximation. These data are
equally important for observables that are related to derivatives of fx., e.g., Ref. [360].
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Figure 43: PB-PIMC results for the wave vector dependence of the static local field correction GG for the unpolarized electron gas at
rs = 10 and 6 = 1. Shown are QMC results [cf. Eq. (185)] for N = 54 (blue crosses) and N = 34 (light blue circles), data from STLS
(solid black line), the recent LEC based on the HNC equation by Tanaka [242] (red dashed line) and Vashista-Singwi (solid purple
line, Ref. [213]), and asymptotic long-range predictions from the compressibility sum-rule [cf. Eq. (39)] using the exchange-correlation
functionals by Groth, Dornheim et al. [227] (yellow dotted) and Karasiev et al. [212] (green dash-dotted, KSDT).

9.3.2. Moderate coupling: CPIMC results

To obtain highly accurate data for the static density response function of the UEG at high densities, we also
extended the CPIMC method to the simulation of the inhomogeneous electron gas, which leads to a significantly
more complicated algorithm, compared to the unifrom electron gas. This is due to the substantially larger number of
possible diagrams that have to be taken into account. Most importantly, in addition to the two-partical excitations
(so-called type-4 kinks) in the CPIMC simulation paths, which are already present in the homogeneous case (see
Sec. 5.5), there also occur one-partical excitations (type-2 kinks). For more details on the specific changes of the
CPIMC algorithm we refer to Ref. [361].

In the top panel of Fig. 44, we show CPIMC results for the induced density, pina(q), for N = 14 unpolarized
electrons at moderate coupling and temperature, 7, = 0.5 and 8 = 0.5 (red crosses), for the perturbation wave
vector q = 2rL~1(1,0,0)”. The solid grey line corresponds to the linear response prediction for an ideal system
and the dashed black line to a linear fit according to Eq. (182). Clearly, linear response theory provides a remarkably
accurate description of the static density response over the entire depicted A-range. The bottom panel of Fig. 44
shows the corresponding simulation results for the average sign and the numbers of type-2 and type-4 kinks. First,
we observe that the sign (yellow dash-dotted line) attains an almost constant value for A < 0.5 and does not drop
below S = 0.3, even for the largest considered perturbation amplitude, explaining the small statistical uncertainty
in the results for pinq. The average number of type-4 kinks (green dotted line) exhibits a qualitatively similar
behavior, although with a slight increase towards increasing A. In stark contrast, the average number of type-2
kinks (red solid line) distinctly increases with the perturbation strength, as expected. Further, we note that, for
weak inhomogeneity, the CPIMC simulation is dominated by Coulomb interaction effects, which manifests itself
in the occurrence of type-4 kinks. With increasing A (around A ~ 0.8), there are on average more type-2 kinks
present as the system becomes increasingly altered by the external potential.

As we have seen above (cf. Fig. 42), at s = 10 no system size dependence has been resolved for as few as four
electrons. However, it is well known that finite-size effects become more pronounced at higher densities. This is
investigated in Fig. 45, where we show the wave vector dependence of the static density response function for the
same conditions as in Fig. 44. The red circles, blue diamonds, yellow squares, and purple crosses correspond to the
raw CPIMC simulation results for N = 38, N = 20, N = 14, and N = 4 electrons, respectively. Further, we show
results from RPA (dashed black) and STLS (solid brown), as well as the static response function of the corresponding
noninteracting system (solid black line). The dielectric approximations exhibit the same exact parabolic behavior
for small q values [332], whereas the ideal function attains a maximum at ¢ = 0. This contrast is a consequence of
the absence of Coulomb screening effects in the latter case. Further, we note that the inclusion of the static local
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Figure 44: In the top panel, we show CPIMC results for the perturbation strength dependence of the induced density modulation, pg,
for N = 14 unpolarized electrons at rs = 0.5 and § = 0.5 with the perturbation wave vector q = 2wL~1(1,0,0)”. The red crosses
depict the CPIMC data and the dotted black line depicts a corresponding linear fit. Also shown is the linear response of ideal fermions
at the same parameters (solid grey line). In the bottom panel, we show data for the average numbers of type-2 (red) and type-4 (green)
kinks and the average sign (yellow) corresponding to the CPIMC simulations from the top panel. Reproduced from Ref. [361] with the
permission of the authors.

field correction from STLS theory leads to differences in x(q) of around 5%, which are most pronounced around the
Fermi wave vector kp. Let us now consider the uncorrected CPIMC simulation results. Evidently, these data are
not converged with respect to system size (see in particular the bottom panel where we show a magnified segment)
and, without further improvement, no systematic errors in the STLS curve can be resolved.

At the same time, it is well known from ground state QMC calculations of the static density response function [55,
56] that the static local field correction, G, which contains all information about short-range exchange-correlation
effects, can be accurately obtained from simulations of few electrons in a small box, i.e., Gny(q) = G(q). Therefore,
the bulk of the system size dependence observed in Fig. 45 is due to finite-size effects in the ideal density response
function, i.e., x5'(q) # xo(q). In the following, we will exploit this fact to compute the density response function,

xTPL(q), in the thermodynamic limit from the QMC result for a specific, finite number of electrons N, x™(q). For
this purpose, we rewrite Eq. (19) in terms of finite-size quantities,
N
Xo (@)
XN (a) ° (184)

S 1—dn/?1 -GN (@)lxg' (@)
and solve Eq. (184) for the local field correction,
2 1 1
GNq—1+q<> . 185
(@ 4r \xMa)  x{ () 1)

The finite-size corrected result for the density response function is then obtained by plugging the QMC result for
the static local field correction, Eq. (185), into Eq. (19),

XTPL(q) = . - Xo(q) 1 . (186)
q - —*
I+ 4= (XN(Q) xé\’(Q)) Xo(a)

Let us now verify the underlying assumption of this finite-size correction procedure, i.e., that G (q) does not
depend on system size. In Fig. 46, we show the wave vector dependence of the local field correction computed
from the QMC results for YV (q) depicted in Fig. 45. The black symbols correspond to the direct evaluation of
Eq. (186). Evidently, no finite-size effects can be resolved within the statistical uncertainty over the entire depicted
g-range. We note that the increasing error bars towards large wave vectors are a consequence of the reduced impact

81



0.00 T ‘
—— Ideal —— STLS
-------- RPA —— Spline
—0.05 |- @ CPIMC N=38 @ CPIMC FSC N =38 .
$ CPIMC N=20 T CPIMC FSC N =20
CPIMC N=14 @I CPIMCFSC N =14
_o0.10 L X CPIMC N=4 X CPIMCFSCN =4 |
w —0.15 -
—0.20 |- > -
—0.25 - |
—0.30 £ 1 1 \ \ 1 ]
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Q/kF
T T I I
—0.18 |- — Ideal — STLS 7
RPA —— Spline
@ CPIMC N=38 ® CPIMC FSC N =38
—0.19 L $ cPIMCN=20 T CPIMCFSCN=20| i
CPIMC N=14 M CPIMCFSC N =14/
X CPIMC N=4 X CPIMCFSC N =4
—0.20 | -
>é
>
—0.21 | -
—0.22 | T -
—0.23 | -
| |
0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Q/kF

Figure 45: Wave vector dependence of the static density response function x of the unpolarized electron gas at rs = 0.5 and 6 = 0.5.
The colored circles, diamonds, squared and crosses depict the bare CPIMC data for N = 38, N = 20, N = 14, and N = 4 electrons,
respectively, and the corresponding black symbols have been obtained by applying the finite-size correction using the N-consistent data
for the ideal density response function as explained in the text. The solid green line depicts a spline fit to the black points. Further
shown are the ideal response function xo(g) (solid black), and dielectric approximations in RPA (dotted black) and STLS (solid brown).
The bottom panel shows a magnified segment. Reproduced from Ref. [361] with the permission of the authors.
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Figure 46: Wave vector dependence of the static local field correction G(q) for the unpolarized electron gas at # = 0.5 and rs = 0.5.
The circles, diamonds, and squares have been obtained from CPIMC calculations with N = 38, N = 20, and M = 14 electrons,
respectively. The colored symbols correspond to the results using the ideal response function in the thermodynamic limit [i.e., by
replacing in Eq. (185) Xév by xo] whereas the black symbols were computed directly from Eq. (185) in a consistent manner by using
the ideal response function with the same finite number of electrons as the CPIMC simulations. Reproduced from Ref. [361] with the
permission of the authors.
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of G(q) on the total density response function, as it becomes the decreasing difference between two almost equal,
large numbers, amplified by the factor of ¢g?. The green line corresponds to a spline fitted to the black symbols
and the brown line depicts the local field correction from the STLS formalism. Again, note that the STLS theory
does not give the correct asymptotic behavior for G [in contrast to x(q)] as the compressibility sum-rule is violated,
cf. Sec. 3. In addition, we observe increasing deviations between the green and brown curves that start around
the Fermi wave vector, kg, and reach values of the order of 50%. Despite the good quality of STLS data for, e.g.,
interaction energies and static structure factors, this is not surprising since G(q) constitutes one of the quantities
in many-body theory that is most sensitive to exchange-correlation effects. For completeness, we mention that the
colored symbols in Fig. 46 were obtained by replacing in Eq. (184) the size-consistent ideal density response function,
X&' (q), by the analogue in the thermodynamic limit, xo(q). This inconsistency results in significantly biased data
for the local field correction, which highlights the necessity to use xj'(q). We point out that the calculation of
the latter is surprisingly involved at finite temperature as, to the best of our knowledge, no readily computable
expression (such as the usual spectral representation in the ground state) exists. However, a detailed discussion of
this issue is beyond the scope of the present work, for a comprehensive analysis, we refer to Ref. [361].

Finally, let us examine the thus finite-size corrected data for the static density response function itself, i.e., the
black symbols in Fig. 45. Evidently, no system size dependence can be resolved for N > 14, over the entire wave
vector range. This allows us to construct a smooth spline fit of these data, which is depicted by the solid green line.
In addition, we note that even the results obtained from a CPIMC simulation of as few as four electrons exhibit
only minor deviations for intermediate g-values. We conclude this discussion with a brief comparison of our new
accurate data for the static density response function to dielectric theories, namely the above mentioned RPA and
STLS curves. Specifically, all curves (apart from the ideal result) exhibit the correct behavior for the limits ¢ — 0
and ¢ — oo, as it is expected. Further, neglecting correlation effects causes substantial errors in the RPA results
over a broad range of wave vectors, whereas the STLS data exhibit a maximum bias of around one percent between
one and two Fermi wave vectors.

10. Summary and Outlook

10.1. Summary and Discussion

The present work has been devoted to the thermodynamic description of the uniform electron gas at warm
dense matter conditions — a topic of high current interest in many fields including astrophysics, laser plasmas and
material science. Accurate thermodynamic data for these systems are crucial for comparison with experiments
and for the development of improved theoretical methods. Of particular importance are such data as input for
many-body simulations such as the ubiquitous density functional theory. Our data are also highly valuable as input
for other models such as quantum hydrodynamics, e.g. [362, 193], in order to study screening effects and effective
potentials, e.g. [363] and transport and wave phenomena. We have discussed a variety of theoretical approaches
that are broadly used to compute the static properties of the electron gas, which include the dielectric formalism
(Sec. 3), various quantum Monte Carlo methods (Sec. 5), quantum-classical mappings, and finite-temperature Green
functions (Sec. 4). Among these approaches, the most accurate results are provided by path integral Monte Carlo
(PIMC) calculations (Sec. 5), which, for the UEG, however, are severely limited by the fermion sign problem. For
this reason, over the last years, much effort has been undertaken to develop improved fermionic QMC simulations
at finite temperature that were reviewed in Sec. 5.2. Particular progress was achieved by the present authors which
we summarize in the following:

1. We introduced two novel QMC methods — CPIMC (Configuration PIMC, Sec. 5.5) and PB-PIMC (Permuta-
tion blocking PIMC, Sec. 5.4) — that are accurate and efficient in complementary parameter regions.

2. We have demonstrated in detail that the combination of CPIMC and PB-PIMC allows for a highly accurate
description of electrons in the warm dense matter regime over the entire density range, down to half the Fermi
temperature without the use of uncontrolled approximations such as the fixed node approximation (RPIMC,
see Sec. 5.3).

3. Our results have been fully confirmed by a third, independent new method—DMQMC (Density matrix QMC,
Sec. 5.6), thereby leading to a consensus regarding the thermodynamic properties of the warm dense UEG for
a finite number N of electrons.

4. The next natural step has been the extrapolation of the finite N-simulations to the thermodynamic limit
(Sec. 6) — a task that turned out to be surprisingly nontrivial. We have shown that the previously used finite-
size correction is not appropriate over substantial parts of the WDM regime. Further, we demonstrated that
the major finite-size error is due to the missing long-range contribution, which cannot be accessed directly
within QMC simulations of a finite number of electrons in a finite simulation cell.
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5. To compensate for this, we combined the exact treatment of short-range exchange-correlation effects from
QMC with the dielectric formalism (specifically, with the STLS approximation), that is known to be exact
precisely in the long wavelength limit, ¢ — 0. This combination of QMC and STLS data allows (i) for a highly
accurate description of the static structure factor, S(¢), in the thermodynamic limit over the entire g-range,
and (ii) for an improved finite-size correction that is efficient over the entire WDM regime.

6. Applying this scheme, we have performed extensive simulations for a broad parameter range and, thus,
obtained the first ab initio thermodynamic results for the warm dense UEG in the thermodynamic limit, with
an unprecedented accuracy of 0.3%.

7. Using these new data, for the first time, it became possible to benchmark previous approximations, including
RPIMC and dielectric methods such as RPA, STLS, and the recent improved HNC-scheme by Tanaka (Sec. 7).

8. For practical applications, we constructed — based on an exhaustive QMC data set — a new parametrization
(GDB parametrization) of the exchange-correlation free energy of the warm dense UEG with respect to
density, temperature, and spin-polarization, i.e., fxc(rs,6,&), that bridges the gap to the well-known ground
state limit, see Sec. 8.

9. Based on the new GDB parametrization we performed unambiguous tests of the accuracy and applicatbility
limits of earlier parametrizations and fits.

10. Finally, we have outlined strategies how to extend our ab initio approach to the inhomogeneous electron gas.
This was achieved by performing, both, PB-PIMC and the CPIMC simulations for harmonically perturbed
systems (Sec. 9).

11. These simulations were utilized to compute the first ab inito results for the static density response function,
x(q), and for the static local field correction, G(q).

Even though the results for the inhomogeneous electron gas are still preliminary they demonstrate that the present
approach is very promising. They also demonstrate that accurate QMC data are not only important for the exchange
correlation free energy. Of possibly even greater importance is their use for quantities that are derivatives of the
free energy that are much more sensitive to incaccuracies. This includes the compressibility and the local field
corrections.

10.2. Outlook

A natural extension of our work is given by the thorough investigation of the static density response of the
warm dense electron gas as outlined in Sec. 9. Similar to the parametrization of fy., the construction of a complete
parametrization of the static local field correction with respect to density, temperature, and wave vector, G(q, 7, 6),
constitutes a highly desirable goal, since it allows, e.g., for the computation of a true nonlocal exchange-correlation
functional within the adiabatic connection fluctuation dissipation formulation of density functional theory [339, 337,
338]. Interesting open questions in this direction include the large g-behavior of G and the possible existence of
charge- and spin-density waves [1, 251].

A further topic of high importance is the investigation of the dynamic properties of warm dense electrons such
as the single-particle spectrum [364, 197], A(q,w), the single-particle dispersion, w(q), or the density of states. The
spectral function A(q,w) is a key quantity of many-body theories such as Matsubara and nonequilibrium Green
functions theory, e.g. [365, 195], that are extensively applied to describe the properties of correlated macroscopic
systems [366], atoms and molecules [367], Hubbard clusters [368], or ultracold atoms in traps [369]. Unbiased QMC
results may play a crucial role to test and improve selfenergy approximations. Moreover, to probe the collective
properties of correlated electrons, the dynamic structure factor, S(q,w), plays a key role. It is of particular
importance, e.g., for the description of collective excitations of realistic warm dense matter within the Chihara
decomposition [370, 112]. Furthermore, the dynamic structure factor is directly linked to other dynamic and optical
properties such as the dielectric function or the dynamic conductivity and reflectivity. Also, the dynamic structure
factor yields the plasmon spectrum which is an important experimental diagnostic of warm dense matter. For
correlated charged particles in traps, the plasmon spectrum transforms into discrete normal modes that contain
important information on the state of the system. Of particular importance are the center of mass (dipole or Kohn)
mode e.g. [371], and the breathing (monopole) mode [372, 373], and may serve as a diagnostic tool for electrons
in quantum dots or ultracold atoms in traps, e.g. [374, 375] and references therein. Here, exact solutions of the
Schrédinger equation are limited to a few particles, and QMC may provide the necessary ab initio results.

In principle, dynamical properties and spectra of correlated electrons in equilibrium and nonequilibrium can be
directly computed via time-propagation, as demonstrated with nonequilibrium Green functions in Ref. [358, 376],
calling for similar approaches using Monte Carlo methods. Unfortunately, time-dependent QMC simulations are
severely hampered by the so-called dynamical sign problem [356, 357] that permits only very short simulations that
are not suitable to generate spectra. An alternative strategy is given by the approximate method of moments [377],
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where the possibility to include our ab initio results for the static structure factor is currently being investigated. In
addition, it is straightforward to utilize our QMC methods to compute imaginary-time correlation functions [378].
These can be used as the basis for the reconstruction of dynamic quantities [379], such as S(q,w), which is a
well established procedure for the investigation of bosons, e.g., Refs. [380, 288, 289]. A particular advantage of
this strategy is the exact treatment of correlation effects, which allows to benchmark other approaches including
the above mentioned method of moments, (dynamic) RPA and STLS, or the interpolation between various limits
proposed by Gregori et al. [353]. For completeness, we note that a similar strategy has recently been explored by
Motta et al. [381, 382] for the 2D electron gas in the ground state, and the recent remarkable progress in the field
of reconstruction, in general, Refs. [383, 384, 385, 386, 387].

Another important quantity is the momentum distribution, n(k), of warm dense matter which is directly ac-
cessible experimentally via photoionization of atoms and molecules [388, 389] or photoemission from solids and
liquids, e.g. [390]. The tail of n(k) is crucial for impact excitation and ionization processes and directly reflects
correlation and quantum effects in the system. Knowledge of the exact large-k asymptotics of n(k) is crucial
for accurate predictions of impact excitation and ionization rates of chemical reactions and of nuclear fusion
rates in a dense plasma environment, such as in the solar interior [46], in compact stars or in laser fusion ex-
periments. The momentum distribution of the UEG has been extensively investigated at zero temperature, e.g.,
Refs. [34, 35, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 391]. However, at warm dense matter conditions, to our
knowledge, no similar studies exist. Due to its formulation in momentum space, the CPIMC method is perfectly
suited to compute highly accurate results for the momentum distribution in dense quantum systems.

We further note that, in many ultracompact astrophysical objects such as dwarf stars or neutron stars, densities
are so high (small rs values), that relativistic effects become important [207, 208]. For this task, one can extend
our CPIMC method to the simulation of the relativistic Hamiltonian of the UEG (i.e., by using the appropriate
modified dispersion relation).

Finally, aside from its relevance as a model system in many-body physics and a benchmark tool for approxima-
tions and simulations, the warm dense electron gas constitutes the key contribution to real warm dense matter that
contains, in addition, heavy particle species. The extension to realistic multi-component simulations can be done
in various ways. One is to use the UEG data as an input to finite-temperature DFT simulations. Here the ab initio
data for the exchange-correlation free energy of the warm dense electron gas and the analytical parametrization
presented in this review are of direct importance. On the other hand, dense two-component plasmas have been
successfully investigated by path integral Monte Carlo methods by Ceperley amd Militzer and co-workers (RPIMC),
e.g. [164, 135, 86] and by Filinov and co-workers (direct fermionic PIMC), e.g. [392, 127]. The problems analyzed
include the thermodynamic functions, the pair distribution functions [393] and proton crystallization at high density
[394, 129]. For two-component plasmas, of course, the fermion sign problem is even more severe than for the UEG.
So the accuracy of the commonly used fixed node approximation remains to be verified against unbiased methods.
A powerful tool for these simulations is the use of effective quantum pair potentials, that incorporate many-body
and quantum effects and have been derived by Kelbg [395, 396, 397], Ebeling and co-workers and many others, see
e.g. refs. [398, 399] and references therein. Another promising strategy is to extend the coupled electron-ion Monte
Carlo method [166] to finite temperatures. Yet the high complexity and the vast parameter space of warm dense
matter requires the parallel development of independent theoretical and computational methods that can be used
to benchmark one against the other. The present ab initio data is expected to be a valuable reference for these
developments.

10.3. Open resources

Finally, we mention the paramount value of the UEG as a test bed for the development of simulation techniques,
as it requires an accurate treatment of (i) fermionic exchange, (ii) Coulomb correlation, and (iii) thermal excitations
at the same time. For this reason, our extensive QMC data set (for various energies and the static structure factor)
and the GDB parametrization of the free energy are openly available [400].
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Chapter 3

Method Development

3.1 Introduction of Permutation Blocking PIMC

The beginning of my PhD thesis in November 2014 coincided with a spike in fermionic QMC
simulations at finite temperature, see, e.g., Refs. [74, 157, 170-172]. Beforehand, it used to
be common wisdom that path integral Monte Carlo simulations would become infeasible as
soon as fermionic exchange effects become important, i.e., in the most interesting regime.
For this reason, back in 2013, Brown and co-workers published the first thermodynamic
QMC results for the uniform electron gas at warm dense matter conditions [157] using
the fixed-node approximation [48]. While formally avoiding the fermion sign problem,
they utilized the nodal structure of the ideal system for all coupling parameters, so that the
accuracy of these data had remained unclear.

Independently, Tim Schoof and Simon Groth were developing a new approach to
fermionic QMC simulations at finite temperature as part of their PhD and Master the-
ses [75, 76, 173]. Their so-called configuration PIMC approach [73, 74, 59] is formulated
in the antisymmetric Fock space and can be interpreted as a Monte Carlo simulation on the
exact, infinite perturbation expansion around the ideal system. In contrast to the standard
PIMC methods in coordinate space, CPIMC excels at weak coupling and strong degeneracy
and has no sign problem for the ideal system. Instead, it eventually breaks down with
increasing coupling strength. Therefore, it was clear that CPIMC was complementary to
standard PIMC, and, due to its exact nature, is capable to provide valuable benchmark data
for other methods. In their seminal paper, Schoof ef al. [5S9] managed to obtain highly
accurate data for N = 33 spin-polarized electrons up to r¢ = 1, which made it possible to
evaluate the quality of the available RPIMC data. Surprisingly, they found deviations of
up to 10% in the exchange—correlation energy towards low temperature and high density,

which is in stark contrast to the ground state, where the fixed-node approximation is known
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to provide a highly accurate description of the electron gas [46, 111, 174]. Therefore, it was
clear that a new method was needed that, on the one hand, could extend standard PIMC
towards lower temperature and higher densities, while, on the other hand, being sufficiently
accurate to allow for a smooth connection with the CPIMC data in the weak coupling regime:
the development of such an approach—PB-PIMC—is the first central goal of this thesis.

In theory, it was known since the late 70s and early 80s that the application of antisym-
metric imaginary-time propagators, i.e., determinants, leads to a significant reduction of
the fermion sign problem in standard PIMC simulations [41, 60, 61, 66]. This is due to
a grouping together of terms of different signs into a single term—a strategy that is often
denoted as blocking in the QMC community [175]. In particular, Filinov and co-workers have
successfully pursued this strategy within their QMC simulations of various systems, see, e.g.,
Refs. [63—71]. However, there is a catch-22: for an increasing number of imaginary-time
slices, which are needed for a sufficient description towards low temperature and strong
degeneracy, the advantage due to the determinants vanishes. In other words, the determinants
do not work when they are needed most.

The basic idea of the permutation blocking PIMC scheme is to combine said antisym-
metric propagators with a higher-order factorization of the density matrix [176—178] that
allows for sufficient accuracy with a small number of time slices. In this way, the onset of
the sign problem, compared to standard PIMC, is delayed both towards lower temperature
and weaker coupling. For completeness, I mention that in early 2015, Chin [62] proposed
a similar strategy, although his aim was the approximation of the ground-state energy of
electrons in a quantum dot.

The development and implementation of the PB-PIMC method constitutes the foundation
of this thesis. As a proof of principle, I initially implemented it for electrons in a harmonic
trap, where a comparison to exact CPIMC and standard PIMC' data is possible at weak and
strong coupling, respectively. As it turns out, the introduction of the determinants leads to a
significantly more complicated configuration space without any fixed trajectories or paths.
To still have an efficient sampling procedure, I developed a new update scheme based on the
temporary construction of artificial trajectories, which is inspired by the continuous-space
worm algorithm paradigm by Boninsegni et al. [35, 36]. The underlying equations, derivation
of Monte Carlo estimators and a comprehensive discussion of said update scheme can be
found in the following paper?, Ref. [72], together with a concise discussion of numerical

results. In particular, it was found that, indeed, PB-PIMC is capable to provide accurate

IThe standard PIMC results for electrons in the trap were obtained using the PIMC code that T implemented
as part of my Master thesis [43].

2T. Dornheim, S. Groth, A. Filinov, and M. Bonitz, New J. Phys. 17, 073017 (2015), reproduced under the
Creative Commons 3.0 license.
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data where no other ab initio methods are available, and that the optimal choice of two free
parameters in the factorization scheme allows for a significantly improved accuracy for only

two or three imaginary-time propagators.
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Abstract

Correlated fermions are of high interest in condensed matter (Fermi liquids, Wigner molecules), cold
atomic gases and dense plasmas. Here we propose a novel approach to path integral Monte Carlo
(PIMC) simulations of strongly degenerate non-ideal fermions at finite temperature by combining a
fourth-order factorization of the density matrix with antisymmetric propagators, i.e., determinants,
between all imaginary time slices. To efficiently run through the modified configuration space, we
introduce a modification of the widely used continuous space worm algorithm, which allows for an
efficient sampling at arbitrary system parameters. We demonstrate how the application of
determinants achieves an effective blocking of permutations with opposite signs, leading to a
significant relieve of the fermion sign problem. To benchmark the capability of our method regarding
the simulation of degenerate fermions, we consider multiple electrons in a quantum dot and compare
our results with other ab initio techniques, where they are available. The present permutation blocking
PIMC approach allows us to obtain accurate results even for N = 20 electrons at low temperature and
arbitrary coupling, where no other ab initio results have been reported, so far.

1. Introduction

The ab initio simulation of strongly degenerate nonideal fermions at finite temperature is of high current
importance for many fields. The numerous physical applications include electrons in a quantum dot [1-4],
fermionic bilayer systems [5—7], the homogeneous electron gas [8—10], dense two-component plasmas [11—13]
in stellar interiors and modern laser compression experiments (warm dense matter) [14, 15] and inertial fusion
[16]. Despite remarkable recent progress, existing simulation methods face serious problems.

The widely used path integral Monte Carlo (PIMC) method, e.g. [17], is a highly successful tool for the
ab initio simulation of both distinguishable particles (‘boltzmannons’, e.g. [18, 19]) and bosons [17] and allows
for the calculation of quasi-exact results for up to N ~ 10° particles [20] at finite temperature. However, the
application of PIMC to fermions is hampered by the notorious sign problem [21], which renders even small
systems unfeasible for state of the art techniques and has been revealed to be NP-complete for a given
representation [22]. With increasing exchange effects, permutation cycles with opposite signs appear with nearly
equal frequency and the statistical error increases exponentially. For this reason, standard PIMC is applicable to
fermions only at weak degeneracy, that is, at relatively high temperature or low density.

The recently introduced configuration path integral Monte Carlo (CPIMC) method [9, 23, 24] exhibits a
complementary behavior. This conceptually different approach can be interpreted as a Monte Carlo simulation
on a perturbation expansion around the ideal quantum system and, therefore, CPIMC excells at weak
nonideality and strong degeneracy. Unfortunately, the physically most interesting region, where both fermionic
exchange and interactions are strong simultaneously, remains out of reach.

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. [llustration of the capability of PB-PIMC—in panel (A), the average sign S from different methods is plotted versus the
coupling parameter 4, equation (31), for N =20 electrons in a quantum dotat = 3.0 (oscillator units). Region [I] denotes the weakly
nonideal Fermi gas, [II] the transition region and [III] the strongly correlated regime. CPIMC (PIMC) is limited to weak (strong)
coupling, i.e. to the region left (right) of the blue (green) line. Panel (B) shows a comparison of density profiles n (r), plotted versus the
distance to the center of the trap , across the entire coupling range.

A popular approach to extend standard PIMC to higher degeneracy is Restricted PIMC (RPIMC) [25], also
known as fixed node approximation. This idea requires explicit knowledge of the nodal surfaces of the density
matrix, which are, in general, unknown and one has to rely on approximations, thereby introducing an
uncontrollable systematic error. In addition, it has been shown analytically [26, 27] that RPIMC does not
reproduce the exact density matrix in the limit of the ideal Fermi gas and, therefore, the results become
unreliable at increasing degeneracy [9].

Recently, DuBois et al [28] have suggested that, at least for homogeneous systems, the individual exchange
probabilities in PIMC are independent of the configuration of other permutations present and that permutation
frequencies of large exchange cycles can be extrapolated from few-particle permutations. This would allow for a
significant reduction of the configuration space and a drastic reduction of the sign problem. While first
simulation results with this approximation for the short-range interacting >He are in good agreement with
experimental data [28], the existing comparison [9] for long-range Coulomb interaction is insufficient to assess
the accuracy and, in addition, inhomogeneous systems remain out of reach.

Another possibility to relieve the sign problem in fermionic PIMC without introducing any approximations
is the usage of antisymmetric imaginary time propagators, i.e., determinants [10, 29-31]. It is well known that
the sign problem becomes more severe with an increasing number of propagators arising from the Trotter-type
factorization of the density operator. Consequently, it has been proposed to combine the antisymmetric
propagators with a higher order factorization [32—35] of the density matrix. This has recently allowed to obtain
an accurate estimate of the ground state energy of degenerate, strongly nonideal electrons in a quantum dot [36].

In the present work, we extend this idea to finite temperature. For this purpose, we combine a fourth-order
propagator derived in [37], which has already been succesfully applied to PIMC by Sakkos et al [38], with a full
antisymmetrization on all time slices to simulate fermions in the canonical ensemble. We demonstrate that the
introduction of determinants effectively allows for the combination of N! configurations from usual PIMC into
asingle configuration weight, thereby reducing the complexity of the problem and blocking both positive and
negative weights to drastically increase the sign. To efficiently exploit the resulting configuration space with the
Metropolis algorithm [39] at arbitrary parameters, we develop a set of Monte Carlo updates similar to the usual
continuous space worm algorithm (WA) [20, 40].

To demonstrate the capability of our permutation blocking (PB-PIMC) method, we consider Coulomb
interacting fermions in a 2D harmonic confinement, cf equation (30), which can be experimentally realized e.g.
by spin-polarized electrons in a quantum dot [ 1—4]. Figure 1(A) shows the average sign S for N = 20 electrons,
plotted versus the coupling strength 4, cf equation (31). CPIMC is applicable in the weakly nonideal regime [I],
where the system is predominantly shaped by the Fermi statistics. In contrast, standard PIMC allows one to
accurately simulate systems in the strongly coupled regime [III], where exchange effects are not yet dominating,
and bosons and fermions exhibit a very similar behavior. The PB-PIMC method, as will be shown in this work, is
applicable over the entire coupling range yielding reasonably accurate results with acceptable computational
effort. Interestingly, this includes the physically most interesting transition region [II], where both the Coulomb
repulsion and quantum statistics govern the system. Here no ab initio results have been reported to this date,
except for very small particle numbers, since PIMC and CPIMC fail, due to the sign problem. In panel (B), we
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show density profiles from all three regimes. Evidently, the transition from the strongly coupled system with a
pronounced shell structure (4 = 15) to the nearly ideal Fermi gas with the characteristic weak density
modulations (4 = 0.1) can be resolved.

In the remainder of this work, we introduce the PB-PIMC method in detail. We show that the optimal choice
of two free parameters of the fourth-order factorization allows for a calculation of energies and densities with an
accuracy of the order of 0.1% with as few as two or three propagators, even in the low temperature regime. We
calculate energies and densities from PB-PIMC for N = 20 electrons at low temperature over the entire coupling
range. We find excellent agreement with both PIMC and CPIMC in the limitting cases of strong and weak
coupling, respectively, and perform simulations in the transition regime, where no other ab initio results are
available. Finally, we investigate the performance behavior of our method when the system size is varied.

2. Theory

2.1.I1dea of PB-PIMC
We consider the canonical ensemble (the particle number N, volume Vand inverse temperature § = 1/kg T are
fixed) and write the partition function in coordinate representation as

7= 1' Y sgn(o) de (R| e |,R), (1)

N‘ cESN

where R = {r},..., ry} contains the coordinates of all particles and 7, denotes the exchange operator
corresponding to a particular element o from the permutation group Sy. The Hamiltonian is given by the sum of
the kinetic (K ) and potential (V) energy, H = K + V. For the next step, we use the group property of the
density operator

p=eM=T] e, (2)

with € = /P, and insert P — 1 unities of the form 1= dea |Rg) (Rg|. This gives

P-1
1 71
7= /dRo...dRp_ln o D" sgn(o)(Ral e |#,Ray1) |- (3)
a=0 " 0€ESN

Note that we have exploited the permutation operator’s idempotency property in equation (3) to introduce
antisymmetry on all Pimaginary time slices. Following Sakkos ef al [38], we introduce the factorization from
(371,

e—efl ~ e—V1€Wm e—hef(e—VzSWl —2a1 e—tleke—vle‘;\/ﬂl e—2tg€f<) (4)

for each of the exponential functions in equation (3). By including double commutator terms of the form
R N
VK] V] == YIEE, 5
[V, k] v]=—~ ZIF (5)

we have to evaluate the total force on each particle, F; = — V; V (R), and equation (4) is accurate to fourth order
in €. The explicit form of the modified potential terms W is given by

A A Uo flz N
W, =V + —ae? —Z|F1'|2 and
1 m i1

V2

2 N
Wia =V + =21 —al)eZ[%gw} (6)

There are two free parameters in equation (4), namely 0 < a; < 1, which controls the relative weight of the
forces on a particular slice,and 0 < t, < (1 — 1/ \/3)/2, which determines the ratio of the, in general, non-
equidistant time steps between ‘daughter’ slices, cf figure 2. All other factors are calculated from these choices:

3
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Figure 2. Illustration of the configuration space—in the left panel, the imaginary time is plotted versus the (arbitrary) spatial
coordiante x. Each time step of length ¢ is further divided into three non-equidistant subintervals, with two ‘daughter’ slices A and B.
The right panel illustrates the combination of all 3PN'! possible trajectories into a single configuration weight W (X). Between each
two adjacent time slices, both the connection between beads from the same particle (diagonal elements of the diffusion matrix, the
blue and red lines) and between beads from different particles (off-diagonal elements, the green lines) are efficiently grouped together
to improve the average sign.

1 1 1
up=—|1- |
12 L=2t0 (1 -2
1
= >
6(1 - 2to)
v,=1—=2» and
1
l‘lzg—l‘o- (7)

The fourth-order approximation of the imaginary time propagator ¢! is visualized in figure 2. The inverse

temperature ff has been split into P = 4 intervals of length €, which are further divided into three, in general, non-
equidistant sub-intervals. Thus, for each main ‘bead’ z,,, there exist two daughter beads, 7,4 and 7,5.

Let us for a moment ignore the antisymmetry in equation (3) and evaluate the imaginary time propagator in
astraightforward way [38]:

N . 2
(Rql e~H [Rgs1) = deaAdRaB [e_e%e_UOES?”Fa

N
T1 2.Gs DpanGis DpapGis i) |, (8)

i=1
with the definitions of the potential terms

Vo=nV(Ra) + 12V (Raa) + 1V (Ras),
N

Fo= Y (an 1Fuil + (1 = 2a) [Fun il + a1 [Fus i), ()
i=1

and the diffusion matrices

.. _ T
P (05 j) = Aie exp —— (1) — L §
te
. .« _ 2-D T 2
Par (> J) = Aie exp| —— (Taa,j — Tap,i)” |>
te
. .« _ 2-D T ) 32
PaB (1’ ]) - /IZtge exp| — ) (raB,] - 1‘a+1,1) > (10)
2tp€e




10P Publishing

New J. Phys. 17 (2015) 073017 T Dornheim et al

where 14 denotes the thermal wavelength 1 ; = 2nh’B / mand D is the dimensionality of the system. Thus, the
matrix elements of equation (10) are equal to the free particle density matrix, p, (i, j) = p, (¥aj> Taai> HE)-

The permutation operator commutes with both  and H and we are, therefore, allowed to artificially
introduce the antisymmetrization between all 3P slices without changing the result. This transforms
equation (8) to

1 T 1A
7 2 @O Ral e 7o Rus)

: ocESN
1 3 5 h g
= (ﬁ) /dRaAdRaB[e cVage ”“mE’det(pa)det(/)aA)det(paB)]. (11)
Finally, this gives the partition function
(N')3P / H € < SuomFdet(gx)det(paA)det(paB) (12)

and the integration is carried out over all coordinates on all 3P slices:
dX = dRO dRp_ldRoA dRp_ lAdROB dRp_lg. ( 13)

The benefits of the partition function equation (12) are illustrated in the right panel of figure 2 where
the beads of two particles are plotted in the z—x-plane. In the usual PIMC formulation (without the
determinants), each of the particles would correspond to a single closed trajectory as visualized by the
blue and red connections. To take into account the antisymmetry of fermions, one would also need to
sample all configurations with the same positions of the individual beads but different connections
between adjacent time slices, which have both positive and negative weights. By indroducing
determinants between all slices, we include all N! possible connections between beads on adjacent slices
(the green lines) into a single configuration weight and the usual interpretation of mapping a quantum
system onto an ensemble of interacting ringpolymers [41] is no longer appropriate. Therefore, a large
number of sign changes, due to different permutations, are grouped together resulting in an efficient
compensation of many terms (blocking), and the average sign (cf equation (22)) in our simulations is
significantly increased [31].

2.2. Energy estimator
The total energy E follows from the partition function via the familiar relation

F=_L192 (14)
Z op
Substituting the expression from equation (12) into (14) and performing a lengthy but straightforward
calculation gives the final result for the thermodynamic (TD) estimator

_3DN _¥yvy Pk il .
k=0x=1£=1 P’lée b e
77,"1”,5? , n—l[/kB
P2, (Trax — Trpe)” + Pi (Tip e = Tip1,e)? ]
P-1
+ %;(\7;(+ 3€2u0%215k), (15)

with the definitions
i = ("), (e

P = (p,;l)Ké (Prade

-1
'Pxé = (PkB >K§ (Pip)ex- (16)
To split the total energy into a kinetic and a potential part, we evaluate
K=" 0 , (17)
pZ om
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and find the TD estimator of the kinetic energy

P-IN N
_3ND pad
— (l‘kK - re) + KZ (Teax — Tkp,e)?
k=0k=1&=1 Pllfle ePﬂ,tle
i i n
¢
—— (g — T |+ = D | Puo—Fi |- (18)
€PA31e P k=0 m
Thus, the estimator of the potential energy is given by
1@ n
V=E-K==) Vit 2620 —Fi | (19)
P

We notice that the forces contribute to both the kinetic and the potential energy. For completeness, we mention
that, for an increasing number of propagators, P — oo, the first and second terms in equation (15) diverge,
which leads to a growing variance and, therefore, statistical uncertainty of both E and K. To avoid this problem,
one might derive a virial estimator, e.g. [42], which requires the evaluation of the derivative of the potential
terms instead. However, since we are explicitly interested in performing simulations with few propagators to
relieve the fermion sign problem, the estimator from equation (15) is sufficient.

3. Monte Carlo algorithm

In section 2, we have derived an expression for the partition function Z, equation (12), which incorporates
determinants of the diffusion matrices between all 3P time slices, thereby combining 3PN! different
configurations from the usual PIMC into a single weight W (X). However, each determinant can still be either
positive or negative, depending on the relative magnitude of diagonal and off-diagonal elements. Hence, we
apply the Metropolis algorithm [39] to the modified partition function

= [ax (v, (20)
and calculate fermionic expectation values as
(osy
O) =~ (21)
(S
with the definition of the average sign
, 1
(8 =— [ax 1w, (22)
and the signum of the configuration X,
P-1
sx =] [sgn(det(pa))sgn(det(paA))sgn(det(paB))]. (23)
a=0

Let us summarize some important facts about the configuration space defined by equation (20):

(i) With increasing number of propagators P, the effect of the blocking decreases and, for P — oo, the sign
converges to the sign of standard PIMC. Blocking is maximal if 4, . and A, are comparable to the average
interparticle distance d, cf figure 3. Only in such a case, there can be both large diagonal and off-diagonal
elements in the diffusion matrices.

(ii) Configuration weights |W (X)| can only be large, when at least one element in each row of each diffusion
matrix is large. Therefore, we sample either large diagonal or large off-diagonal elements. Blocking happens
naturally as a by-product and does not have to be specifically included into the sampling. This also means
that we have to implement a mechanism to sample exchange, i.e., to switch between large diagonal and off-
diagonal diffusion matrix elements.

(i) There are no fixed trajectories. Therefore, beads do not have a previous or a next bead, as in standard PIMC.
For an efficient and flexible sampling algorithm, we temporarily construct artificial trajectories and choose
the included beads randomly.

The most efficient mechanism for the sampling of exchange cycles in standard PIMC is the so-called worm
algorithm [20, 40], where macroscopic trajectories are naturally realized by a small set of local updates which

6
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B/e

Figure 3. Influence of the imaginary time step € on the efficiency of the permutation blocking—two configurations of N = 2 particles
are visualized in the 7—x-plane. In the left and right panel, there are P=2 and P= 5 time slices, respectively (daughter slices are
neglected for simplicity). Only with few propagators, the thermal wavelength 4. of a single propagator is comparable to the mean
interparticle distance d, which is crucial for an efficient grouping of permutations into a single configuration weight. With increasing
P, diagonal (red and blue lines) and off-diagonal (green lines) distances are no longer of the same order and the permutation blocking
is inefficient.

enjoy a high acceptance probability. In the rest of the section, we modify this algorithm to be applicable to the
new configuration space without any fixed connections between individual beads.

3.1. Sampling scheme
To take advantage of the main benefits from the usual continuous space WA, we will temporarily construct
artificial trajectories and sample new beads according to standard PIMC techniques, e.g. [43]. The initial
situation for our considerations is illustrated in the left panel of figure 4, where a pre-existing trajectory (pink
curve) with four missing beads in the middle is shown in the 7—x-plane. We choose the sampling probability to
close the configuration as
M-1
Hi:o Po (s Fiy1, Tiv1 — Ti)

Tsample = > (24)
p()(r()) I, T — T())

which results in the consecutive generation of M — 1 new coordinates r;,i € [1, M — 1], according to

Po(Ticts Xi, T — Tim1) po (X, Tars T — Ti)

P(r)=

po(l‘i—h I, Tv — Tiel)

D 2
1 (vi-¢&)
=|—| ep| ———| (25)
2706} 20;

which is a Gaussian (cf the blue curves in figure 4) with the variance

2 (zi = 7o) (om — )
=T -, (26)
m ™ — Ti—1

around the intersection of the connection between the previous coordinate, r;_, with the end point r; and the
time slice z;
™ — Ti Ti — Ti-1
gi = Ti_1 + Inr. (27)
™ — Ti—1 ™ — Ti-1

3.2. Artificial worm algorithm

In the usual WA-PIMC, the configuration space is defined by the Matsubara Green function (e.g. [44]) which
implies that the algorithm does not only allow for the change of the particle number N (grand canonical
ensemble) but, in addition, requires the generation of configurations with a single open path, the so-called
worm. However, in the PB-PIMC configuration space defined by equation (12), there are no trajectories and,
therefore, no direct realization of a worm is possible. Instead, we consider an extended ensemble, which
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Figure 4. Illustration of the sampling scheme (left) and the extended configuration space (right)—in the left panel, an artificial
trajectory (pink curve) with four missing beads is plotted in the 7—x-plane. The new coordinates (green circles) are sampled according
to a Gaussian (blue curves) around the intersection of the connecting straight lines between the previous and last bead with the current
time slice (black crosses). The right panel gives an example for an open configuration in the extended configuration space with two
special beads which are denoted as ‘head’ and ‘tail’. There are only N — 1beads on eight time slices, going forward in imaginary time
starting from 7he,d = 724. The circles, triangles and squares distinguish beads from three different particles and the empty symbols at
the right boundary indicate the missing beads on a particular slice.

combines closed configurations with a total of 3NP beads and open configurations, where on some consecutive
time slices the number of beads is reduced by one, to N — 1. Such a configuration is illustrated in the right panel
of figure 4. There are two special beads which are denoted as ‘head’ and ‘tail’ and the triangles, circles and squares
symbolize beads from three different particles. There are eight beads from different particles missing (indicated
by the empty symbols at the right boundary) between 7y,e,q = 724 and 7y, = 714, going forward in

imaginary time.

For most slices, the computation of the diffusion matrix allows for no degree of freedom in the extended
ensemble. We define the latter in a way, that the head bead does not serve as a starting point for the elements but
is treated as if it was missing. This is justified because, otherwise, there does not necessarily exist a large matrix
element in this particular row because no artificial connection has been sampled on the next slice. For the
configuration from figure 4, the diffusion matrix of the head’s time slice is given by

Po (1'1,2A, 2B, l‘1€) ,00(1'1,2A> 228 t1€) 0
Pra = 1 1 1
Po(l‘a,zA> I1,28s t1€) ,00<1‘3,2Aa 2B, l‘1€) 0

= det(p,,) = det (28)

Po(rl,2A> I 2B, t1€) Po(rl,ZA: 18, t1€)

ﬂo(l'3,2A; 1 2B, t1€) Po(ra,zA, 1228, HE

All diffusion matrices with N — 1beads on their slices are computed in the same way. The other degree of
freedom for which the extended ensemble allows is the choice whether the tail will be included as the final
coordinate in the diffusion matrix or not. Here, it makes sense to allow for this possibility, because there does
exist at least a single large element in this particular row anyway. The corresponding matrix for the configuration
from figure 4 looks like

po(l‘l,b 14> t1€) /10(1‘1,1) 214> t1€) po<1‘1,1, 314, t1€)

= . 29
Paa Po(l'z,b 14> t1€> 00(1‘2,1; 12,14, t1€) Po(l‘z,h 1314, t1€) (29)

1 1 1

However, we emphasize that the particular choice of the extended ensemble does not influence the extracted
canonical expectation values as long as detailed balance is fulfilled in all updates. We have developed a simulation
scheme which consists of four different types of moves that ensure detailed balance and ergodicity. The updates
are presented in detail in the appendix.
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4, Simulation results

As atest system to benchmark our method, we consider N spin-polarized electrons in a quantum dot [1-4],
which can be described approximately by a harmonic confinement with a frequency £2. We use oscillator units,
i.e., the characteristic energy scale Ey = /(2 and oscillator length | = +/A/£m, and obtain the dimensionless
Hamiltonian

1w 1 < < A
H=-—YVi4-Yri+ )y , (30)
23 23 s |t — 1l
with the coupling parameter
2
=—, (31)
1oh Q2

being defined as the ratio of Coulomb and oscillator energy. For large 4, the electrons are strongly coupled and
exchange effects become negligible (region [III] in figure 1), while, for A < 1, the ideal Fermi gas will be
approached and the system is governed by the fermionic exchange (region [I] in figure 1). To confirm the quality
of our simulations, we compare the results at weak and strong coupling with CPIMC and standard PIMC,
respectively, where they are available.

4.1. Optimal choice of a; and £,
We start the discussion of the simulation results by investigating the effects of the two free parameters a, and t,
on the convergence of two different observables, namely the energy E and radial density n (r).

In figure 5, results are summarized for N= 4 electrons with A = 1.3and § = 5, i.e., moderate coupling and
low temperature, and panel (A) shows the convergence of the total energy as a function of the inverse number of
propagators which is proportional to the imaginary time step, € o 1/P. The red diamonds [(a) t, = 0.04,

a; = 0.0] and blue circles [(b) £, = 0.13, a; = 0.33] denote two different combinations of free parameters and
exhibit a clearly different convergence behavior towards the exact result known from CPIMC, i.e., the black line.
For P =2, the energy with parameter set (a) is too low by almost one percent. With increasing P, E increases and
reaches a maximum around P = 5, until the curves approach the exact energy from above. For parameter set (b),
the energy converges monotonically from above and, even for P= 2, the deviation from the CPIMC result is as
small as 0.2%. The selected energies which are listed in table 1 reveal that the total energy is converged for P= 14
within the statistical uncertainty. For the panels (C) and (D), the energy has been split into a potential (V) and
kinetic (K) contribution. For both parameter combinations, V converges monotonically, although from
different directions. In addition, parameter set (b) gives a much better result for small P. Panel (D) reveals, that
the kinetic energy K is responsible for the non-monotonous convergence of E for parameter set (a), which again
delivers worse results for P = 2, as compared to the blue circles. Finally, panel (B) shows the average sign Sasa
function of 1/P. Both curves exhibit a similar decrease with an increasing number of propagators, as it is
expected. However, parameter set (a) always allows for a better sign than (b). The reason for this behavior is the
free parameter t,, which controls the relative spacing between the three time slices of an imaginary time step €.
For ¢y = 0.04, there are a single small and two large steps. The latter allow for more blocking, since the
corresponding decaylength 1, in the diffusion matrices is large as well. For t; = 0.13, on the other hand, there
are three nearly equal steps, each of which with a smaller decay length than the two large ones for parameter set
(a). Therefore, less blocking is possible and more determinants with a negative sign appear in the Markov chain.

The different convergence behaviors of the two free parameter combinations for small Pleads to the
question how to choose fy and a; for optimal results. To provide an answer, we consider the same system as in
figure 5, and investigate the accuracy of the total energy as a function of #, for a fixed a; = 0.33. The simulation
results are shown in the left panel of figure 6 for P=2 (red squares), P= 3 (blue circles) and P =4 (green
diamonds). All three curves exhibit a similar decay towards the exact value starting from small #,, followed by a
minimum around ¢, = 0.14 and finally an increasing error for larger values. We note that as few as two
propagators allow for an accuracy of [AE|/E < 2 X 1072 for the best choice of the free parameters. Figure 6(B)
shows the dependency of the average sign S on #,. Again, we observe that S decreases with increasing t, as
explained during the discussion of figure 5. In addition, it is revealed that the combination of P=4 and ¢, = 0.01
leads to a larger sign than P=3 and #, > 0.10. However, the optimum free parameters allow for a higher
accuracy even for P= 2, compared to small t, with more propagators. Therefore, it turns out to be advantagous
to use the fourth order factorization with the two free parameters despite the smaller average sign for the same P
compared to the factorization with only a single daughter slice for each propagator, i.e., t, = 0.0.

Finally, we mention that the optimal choice of a; and #, depends on the observable of interest. In figure 7, we
investigate the effects of the free parameters on the convergence of the radial density distribution 7 () for the
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Figure 5. Convergence of the energy for N=4, A = 1.3 and = 5.0—panel (A) shows the convergence of the total energy versus the
inverse number of propagators P! « ¢. Shown are the results for two different choices of the parameters, (a) to = 0.04, a; = 0.0 and
(b) tp = 0.13, a; = 0.33, and the correct energy from CPIMC with the corresponding confidence interval. Panel (B) shows the decay
of the average sign S with increasing P and panels (C) and (D) display the potential and kinetic energy Vand K, respectively, where
E=V+K.

Table 1. Convergence of the energy for N=4, 1 = 1.3and f = 5.0 for selected
parameter combinations shown in figure 5.

Simulation E \%4 K S
pP=2° 12.1924(3) 9.0283(3) 3.1641(3) 0.4907 (3)
p=2° 12.3186(2) 9.0927(2) 3.2258(2) 0.3771(2)
P=14" 12.293(4) 9.083(1) 3.210(4) 0.02664 (1)
P=14° 12.292(2) 9.0831(6) 3.209(2) 0.020600(7)
CPIMC 12.293(3) — — —

* fy = 0.04, a; = 0.0
b ¢y = 0.13,a; = 0.33

same system as in figures 5 and 6. The left panel shows n as a function of the distance to the center of the trap, r,
for four different P and the parameter combination 4, = 0.33 and ¢, = 0.13, which has been proven to allow for
nearly optimum energy values at P =2, cf figure 6. The black curve corresponds to P = 10 and is converged within
statistical uncertainty. For P =2 (red diamonds), there appear significant deviations to the latter, in particular n
is too large around the maximum r & 1.25 and too small at the boundary of the system. The P = 3 results (blue
squares) exhibit the same trends although the differences towards the black curve are reduced. Finally, the
density for P=4 (green circles) can hardly be distinguished from the converged data. The right panel compares
the density for P =2 with two different combinations of free parameters. The red diamonds (parameter set (a))
correspond to the curve from the left panel and the green circles (parameter set (b)) to a; = 0.0 and ¢, = 0.04.
The latter parameters clearly allow for a density distribution which is much closer to the exact results than the a,
and t, values which provide the optimal energy.
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Figure 6. Influence of the relative interslice spacing t, for N=4, A = 1.3 and f§ = 5.0—in the left panel, the total energy is plotted
versus the free parameter ¢, for P=2, P=3 and P = 4. The right panel shows the behavior of the average sign.

0.4 T T

Figure 7. Convergence of the radial density for N=4, 4 = 1.3and f = 5.0—the radial density  is plotted versus the distance to the
center of the trap, r. In panel (A), the free parameters are chosen as o = 0.13 and a; = 0.33 and the convergence with Pis illustrated.
Panel (B) compares two different sets of free parameters, (a) tp = 0.13 and a; = 0.33 and (b) ¢, = 0.04 and a; = 0.0, for P=2.

4.2. Temperature dependence

In the last section, we have demonstrated that the optimal choice of the free parameters a, and ¢, allows for the
calculation of energies with an accuracy of 0.1% with as few as two propagators, even at a relatively low
temperature, f# = 5.0. However, with decreasing T (i.e., increasing #) the number of required propagators must
be increased to keep the commutator error fixed. In figure 8, we investigate the effect of a decreasing temperature
on the accuracy provided by a few propagators P for N = 4 electrons at indermediate coupling, 4 = 1.3. The left
panel shows the total energy E as a function of the inverse temperature 5. We compare results for P=2 (green
circles), P=3 (red diamonds) and P = 4 (blue triangles) to exact results from CPIMC (black stars). At larger
temperature, § < 7.0, all four datasets nearly coincide and exhibit the expected decrease towards the energy of
the ground state. With increasing 3, the P = 2 results exhibit an unphysical drop because two propagators are not
sufficient and the commutator errors become more significant. The red and blue curves exhibit a qualitatively
similar trend, however, the energy drop is weaker and shifted to lower temperature. Evenat # = 10.0, which is
already very close to the ground state, three propagators allow for an accurate description of the system.

In the right panel of figure 8, the average sign S is plotted versus the inverse temperature. At small 4, the
wavefunctions of the electrons do not overlap and, hence, the system is not degenerate. With decreasing
temperature, exchange effects become increasingly important which leads to a decrease of S. However, while for
standard PIMC the sign is expected to exponentially decrease with f3, S seems to converge for PB-PIMC with
P=3and P=4 and exhibits an even slightly non-monotonous behavior for P = 2. The application of
antisymmetric propagators leads to a competition with respect to S and . On the one hand, with increasing
inverse temperature off-diagonal matrix elements are increased, which leads to more negative determinants and,
therefore, more negative weights in the Markov chain. On the other hand, the thermal wavelengths 4, . and A,
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Figure 8. Temperature dependence for N=4and A = 1.3 with #, = 0.14 and a; = 0.33—in the left panel, the total energy is plotted
versus the inverse temperature  for P=2, P=3 and P =4 propagators and compared to exact CPIMC results. The right panel shows
the behavior of the sign.

are increasing with 5, which makes the blocking of large diagonal and off-diagonal elements more effective.
Hence, the sign can even become larger with /3 once the system has reached the ground state, because the particle
distribution remains constant while more elements in the diffusion matrix compensate each other in the
determinants.

We conclude that few propagators allow for the calculation of accurate results up to low temperature,
p < 10.0. For higher f, the system is in its ground state and finite temperature PIMC is no longer the method of
choice.

4.3. Dependence on the coupling strength

In the previous sections, we have restricted ourselves to the investigation of small systems to illustrate the
convergence and sign behavior depending on relevant parameters. In this section, we demonstrate that PB-
PIMC allows for the calculation of accurate results at parameters where no other ab initio results have been
reported, so far. Figure 9 shows results for N =8 and N =20 electrons at # = 3.0 over a wide range of coupling
parameters, A. In panel (A), the average sign Sis plotted versus 4 for standard PIMC (squares), CPIMC (circles)
and the present PB-PIMC (diamonds) with P =2 and the parameter sets t, = 0.14 and a; = 0.33 (N =8, blue
symbols) and #y = 0.10 and a; = 0.33 (N =20, red symbols), which are known to allow for accurate energies, cf
figure 6. It is well understood that PIMC allows for the simulation of strongly coupled fermions, where exchange
effects do not play a dominant role. With decreasing 4, the sign exhibits a sharp drop and the sign problem
prevents the simulation within feasible computation time for 4 < 2.0 and 4 < 5.0, respectively. Evidently,
larger systems lead to a more severe decrease of S at larger coupling strength. CPIMC, on the other hand, can be
interpreted as a Monte Carlo simulation on a perturbation expansion around the ideal quantum system, i.e.,

A = 0.0. Hence, the method efficiently provides exact results for small coupling, where the system is close to an
ideal one. For N=20around 4 ~ 0.3, the sign almost instantly drops from S ~ 0.97 towards zero, and CPIMC
is no longer applicable, without further approximation. This means that, in particular for larger systems, there
have only been results for systems that are (a) almost ideal or (b) so strongly coupled that fermions and bosons
lead to nearly equal physical properties. The physically particularly interesting regime where Coulomb
correlations and Fermi statistics are significant simultaneously, has remained out of reach.

However, the average sign from PB-PIMC exhibits a much less severe drop with decreasing 4 than standard
PIMC and saturates for A < 0.7. For N = 8, the average sign remains above S = 0.08, which allows for good
accuracy with relatively low effort. The small sign, S ~ 1073, for N = 20 indicates that the simulations are
computationally involved but, in contrast to PIMC and CPIMG, still feasible. In panel (B) of figure 9, the total
energy E for N =20 is plotted versus A over the entire coupling range and the statistical uncertainty from the PB-
PIMC results is smaller than the size of the data points. Both, at small and large 4, the P =2 results are in excellent
agreement with the exact energy known from the other methods and, in addition, results are obtained for the
particularly interesting transition region (region [II] in figure 1). In panel (C), we show the radial density for
N=20andlow coupling, 4 = 0.10, calculated with the parameter set t, = 0.04 and a; = 0.0, which has been
proven effective for accurate densities # (r). The PB-PIMC results (red diamonds) are in excellent agreement
with the exact CPIMC data (blue squares) over the entire r-range. For completeness, we mention that this
combination of parameters allows for an approximately three times as high sign as the choice from panels (A)
and (B), which was choosen to allow for a good energy, and the results have been obtained within tcpy ~ 10°
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Figure 9. Coupling dependence for N=8and N=20at = 3.0—panel (A) shows the average sign as a function of 1 for CPIMC,
PIMC and PB-PIMC with N = 8 (blue symbols, parameter set t, = 0.14 and a; = 0.33) and N =20 (red symbols, parameter set

tp = 0.10 and a; = 0.33) and panel (B) the corresponding total energies, E, for the latter. In panels (C) and (D), the radial density nis
plotted versus the distance to the center of the trap, r, for N=20 with 4 = 0.1 and 4 = 15.0, respectively, and the parameter set

a; = 0.0 and t, = 0.04.

core hours. Panel (D) shows the density of a strongly coupled system, 4 = 15.0, and N = 20. Again, the two
propagators already provide very good agreement with the exact curve. In figure 1(B), we have shown density
profiles for coupling parameters over the entire coupling range. At 1 = 15 (red pluses), there are three distinct
shells and the physical behavior is dominated by the strong Coulomb repulsion. Decreasing the coupling to

A = 5 (green bars) leads to a reduced extension of the system, and the three shells exhibit a much larger overlap.
Atindermediate coupling, A = 2 (blue crosses), both the interaction and fermionic exchange govern the system.
The density profile is still significantly more extended than the ideal pendant, but n exhibits modulations instead
of aflat curve. Decreasing the repulsion further to 4 = 0.7 (pink circles) leads to a further reduction of the
extension. However, nn does not approach a Gaussian-like profile as for ideal boltzmannons or bosons, but
continues to exhibit the density modulations which are characteristic for fermions. For 4 = 0.1, the system is
almost ideal and the density is completely dominated by the quantum statistics.

Finally, in figure 10 we compare density profiles for N =20 particles at § = 3.0 with Fermi-, Bose- and
Boltzmann statistics. Panel (A) shows results for intermediate coupling, 4 = 2.0. The distinguishable
boltzmannons (blue diamonds) exhibit a nearly flat profile without any shell structure, i.e., aliquid-like
behavior. The bosonic particles (green circles) lead to an even smoother curve, with a slightly reduced extension
of the system. For fermions (red squares), on the other hand, the exchange already plays a significant role, as the
particles exhibit an additional repulsion due to the Pauli principle, and n decays only at larger r. In addition, the
fermionic density profile exhibits distinct modulations. In panel (B), we show a comparison for smaller
coupling, 4 = 0.7. Again, the boltzmannons and bosons lead to smooth density profiles which are very similar,
despite a reduced extension of the Bose-system and an increased density around the center of the trap. The
fermions exhibit a different behavior as the system is significantly more extended and the density profile again
features distinct modulations.

In conclusion, we have presented ab initio results for the energy and the density for up to 20 electrons over
the entire coupling range. A comparison with standard PIMC and CPIMC has revealed excellent agreement in
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Figure 11. Particle number dependence of the average sign for A = 0.1and # = 3.0 and two different combinations of the simulation
parameters.

both the limits of weak and strong coupling. A more detailed investigation of the transition from the classical to
the degenerate regime, including systematic comparisons with bosons and boltzmannons, is beyond the scope of
this work and will be published elsewhere.

4.4. Particle number dependence

In the last section, we have shown that the sign problem is more severe for larger systems, cf figure 9(A). Here, we
provide a more detailed investigation of the performance of our method in dependence on the particle number.
In figure 11, the average sign Sis plotted versus Nfor A = 0.1and = 3.0, i.e., a very degenerate system, with
two different combinations of free parameters. It is revealed that S exhibits an exponential decay with the system
size and, as usual, the smaller #, leads to a more effective blocking. Therefore, the PB-PIMC approach still suffers
from the fermion sign problem, and feasible system sizes for 2D quantum dots at weak coupling are limited to

N < 30. This is a remarkable result since standard PIMC simulations for 4 = 0.1and f = 3.0 are possible only
for N < 4.

5. Discussion

In summary, we have presented a novel approach to the PIMC simulation of degenerate fermions at finite
temperature by combining a fourth-order factorization of the density matrix with a full antisymmetrization
between all imaginary time slices. The latter allows to merge 3PN/ configurations from the standard PIMC
formulation into a single configuration weight, thereby efficiently grouping together permutations of opposite
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signs which leads to a significant relieve of the fermion sign problem. To efficiently run through the resulting
configuration space at arbitrary system parameters, we have modified the widely used continuous space WA by
introducing an extended ensemble with open configurations and by temporarily constructing artificial
trajectories. We have demonstrated the capabilities of our method by simulating up to N =20 electronsin a
quantum dot. It has been revealed that the (empirical) optimal choice of the free parameters a, and ¢, from the
fourth order factorization allows for the calculation of energies with an accuracy of 0.1% even for just two
propagators. For completeness, we mention that different observables lead to different optimal parameters. We
have concluded, that it appears to be favourable to use two instead of a single daughter time slice for each time
step €, despite the reduced sign for the same number of propagators.

The investigation of the temperature dependence of the convergence with respect to the number of time
steps P has revealed, that as few as three propagators are sufficient to accurately simulate fermions, up to
< 10.0. For larger inverse temperatures, the system approaches its ground state and finite temperature PIMC
techniques are no longer the methods of choice.

To demonstrate that our PB-PIMC approach allows for the calculation of accurate results for systems
beyond the capability of any other quantum Monte Carlo technique, we have simulated N = 20 electrons at
relatively low temperature, # = 3.0, and arbitrary coupling strength. CPIMC excells at weak coupling and
provides exact results for 1 < 0.3, i.e., in the region where the systems are still close to the ideal case. Standard
PIMGC, on the other hand, is applicable at strong coupling 4 > 5.0 where exchange effects are not yet
dominating, until the rapid decrease of the sign renders any simulation unfeasible. For PB-PIMC, the sign
converges for A < 0.7 and, hence, computations are possible at arbitrary degeneracy, in particular, in the
physically most interesting transition region between classical and ideal quantum behavior. We find excellent
agreement with both PIMC and CPIMC in both the limits of strong and weak coupling. Finally, we have
demonstrated that PB-PIMC still suffers from the fermion sign problem, since, as expected, S decreases
exponentially with the particle number.

A possible future application of PB-PIMC to the quantum dot system might include the investigation
of the transition from the classical to the degenerate quantum regime, in particular a systematic
comparison of fermions to bosons and boltzmannons. To describe realistic quantum dots, it will be
important to include the spin degrees of freedom into the simulation. In particular, this should allow us
to recover, for weak coupling, Hund’s rules physics and also to address the spin contamination problem
[45, 46]. Furthermore, it could be interesting to extend the considerations to 3D confinements, e.g.

[47, 48], and study the impact of quantum statistics on structural transitions [49]. In addition, we expect
our method to be of interest for the future investigation of numerous Fermi systems, including the finite
temperature homogeneous electron gas [8—10], two-component plasmas [11-13] and fermionic bilayer
systems [5-7].
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Appendix. Monte Carlo updates

In this appendix, we present an ergodic set of Monte Carlo updates which are based on the usual continuous
space WA [20, 40] from standard PIMC.

(i) Deform: this update is similar to standard PIMC techniques, e.g. [43], and deforms a randomly constructed
artificial trajectory.

o Selectastart time 7, uniformly from all 3P slices.
e Selecta ‘start’ bead on ;.

e Select the number of beads to be changed, m € [1, M].
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Figure Al. Illustration of the updates Deform (left) and Swap (right)—in the left panel, the Deform update is executed in an open
configuration. The random construction of an artificial trajectory (the beads marked by black arrows) is followed by the re-sampling
of all beads between its first (start) and last (end) bead. In the right panel, the Swap move is demonstrated. The current head is
‘connected’ to arandom target bead on the time slice of the tail.

e Select m + 1beads on the next slices according to

e Po( (’)ld) r?—}-dl’ €1)
Teelect = H T I (A.1)
i

i=0

with ' being the normalization and the label ’old’ indicates the configuration before the update.

e Resample m beads in the middle according to equation (24):

m new _.new
Hi:O ,00( i > Tif]» 6'1)

Po (1o, Y+l €tot)

’Eesample = 5 (A.2)

and €, denotes the imaginary time difference between the fixed endpoints.The constant M is a free
parameter and can be optimized to enhance the performance. The update is self-balanced and the Metropolis
solution for the acceptance probability is given by

m 1d new
- X0 detp,
ADeform (X - X) min 1, e_EAQ) H Znew de tp lold

(A.3)

with @ containing both the change in the potential energy and all forces. Deform is illustrated in the left panel
of figure Al .

(ii) Open/ Close: this update pair constitutes the only possibility to switch between open and closed
configurations. The Open move is executed as follows:

Select the time slice of the new head, 7,4, uniformly from all 3P slices.
o Select the bead of the new head, 1.q.

o Select the total number of links to be erased as m € [1, M].

e Select mbeads on the next slices from

m—1

Po (T, Tigy, €)
Eelect = H f’ (A'4)
i=0 i

the last one will be the new tail after the update.

e Delete m — 1beads between the new head and tail. The reverse move closes an open configuration. Let
denote the number of missing links between head and tail. If m > M, the update is rejected.
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e Sample m — 1 newbeads according to equation (24) with head and tail being the fixed endpoints:

m—1
H._O Po(Ti> Tit1, €)
= . (A.5)
po(rhead) Ttail» etot)

’I;ample =

The acceptance ratios are computed as

m—1 detpvnew
Y) — mi —€AD ,—€rot U
Aopen(X — X) =min | 1, ['e”*%e Ctt# il:! 2 detpi"ld
~ —€AD eioipt m—1 1 det new
Actose (X = X) = min| 1, "—— — p’old , (A.6)
r sy | %i detp;
with the definition
3CPMN

r= . (A7)
po(rtaila Thead> Etot)

The parameter u is another degree of freedom of the algorithm and plays the same role as the chemical
potential in the usual WA-PIMC scheme.

(iii) Swap: the Swap move very efficiently generates exchange, i.e., allows for a switch between large off-diagonal
or diagonal diffusion matrix elements as it is illustrated in the right panel of figure A1. Let 1 denote the
number of missing beads between head and tail.

e Choose atarget bead on the slice 7,; according to
Po (rhead: Iy, €tot )
Ttarget = > (A.8)
Z‘forward

with X, ward being the normalization. The tail itself cannot be chosen.

e Choose backwards m + 1beads according to

1d _old
i ﬂo(r?ﬂa e, €i)
Tielect = H BT TR (A9)
i

i=0
The head itself cannot be selected on the last slice and the last bead will be the new head after the update.

e ‘Connect’ the old head with the target bead by re-sampling the m beads between the slices of head and tail
according to

m new _.new
I Ii=0 ﬂo(ri > Yixlo €i)
T;ample = . (AlO)
p()(rhead: Ttargets etot)

The update is self-balanced and the acceptance ratio is calculated as

m 1d new
o > old detp,
Asyap [ X = X) = min| 1, 5 L (A.11)
o(x=%) [ e
with the abbreviation
n= e_€A¢Zforward , (AIZ)

Zreverse

and X cyers being the normalization of the selection of the target bead from the reverse move.

(iv) Advance/ Recede: these updates move the head forward (backward) in the imaginary time. However, they
are optional and, in principle, not needed for ergodicity. The Advance move is executed as follows:

o Calculate the number of missing beads between head and tail, a. If a = 0, the update is rejected.
e Select the number of new beads to be sampled, m € [1, al.

o Sample the position of the new head from p;, (Thead> Thead> €tot )-
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e Samplethe m — 1beads between old and new head according to equation (24)

m—1
new new
Hi:o ,00(1'1- > Fitls €i)

new
Po (rhead: Thead> etot)

T;ample = (A.13)

The reverse move is given by Recede. Let k denote the total number of beads which can be removed. If « = 0, the
update is rejected.
e Select the total number of beads to be removed as m € [1, .

o Select mbeads backwards starting from the old head from

m—1 new _new .

/)o(ri > Tigls 51)

Tielect = I I s new > (A.14)
i=0 i

with 2,V being the normalization. The last one will be the new head after the update. Here ‘new’ denotes
new with respect to Advance, since the coordinates are pre-existing for the Recede move. Delete the m beads
between the new head and tail.

This gives the acceptance ratios

m—1 new
- 1 detp.
— i —eAD i

A Advance (X - X) =min| 1, fe™* I I e detpf’l 3
1

i=0
~ _eAp m—1 detp new
Arecede (X = X) =min | 1, I1 zi“ewm , (A.15)
i=0 i
with the definition
9= Locon (A.16)

K

The presented list of Monte Carlo moves constitutes an ergodic set of local updates, which allows for an
efficient sampling of both the extended configuration space and a canonical Markov chain.
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3.2 Resolving Correlation and Exchange Effects using Re-

duced Correlation Functions

In early 2015, Thomsen and Bonitz [179] were able to report remarkable progress regarding
a notoriously hard topic in computational statistical physics: the accurate estimation and
interpretation of phase transitions® in finite systems, see, e.g., Ref. [180]. In particular, they
exploited various symmetries (e.g., the spherical symmetry in a harmonic trap) to define a
reduced correlation function, which can subsequently be used to compute a reduced entropy*.
Unsurprisingly, abrupt peaks in said reduced entropy can be identified with different phase
transitions, for example, angular melting within a shell or radial melting between different
ones [181]. A further advantage of this strategy is that all required quantities can be obtained
within thermodynamic Monte Carlo simulations (such as PIMC in the quantum case), as no
dynamic information like for the Lindemann parameter [182] is required.

Being motivated by the promising capability of PB-PIMC regarding the simulation of
electrons in a 2D quantum dot that was demonstrated in Ref. [72] (Sec. 3.1), I implemented
such a reduced correlation function—specifically the so-called center-two particle correlation
function, for a definition, see the following paperS, Ref. [38]—into the PB-PIMC code (and,
in addition, into the standard PIMC program from my master thesis [43]). Subsequently,
I carried out simulations of N = 13 charged quantum particles in a 2D harmonic trap at
moderately low temperature over two orders of coupling strength (A = 0.1, 1,10 in oscillator
units). In particular, standard PIMC was used to simulate bosons and boltzmannons (i.e.,
distinguishable particles without any exchange effects, see, e.g., Refs. [20, 37]) and PB-PIMC
to simulate fermions (i.e., electrons). Thereby, we were able to spatially resolve the resulting
nontrivial interplay of Coulomb repulsion and exchange effects.

In the context of the present thesis, the following Ref. [163] should be viewed as an
excursion into a topic of potential interest for future research and as a first proof of principle
regarding the utility of reduced correlation functions for the investigation of quantum systems.
Possible future investigations might include the spatial distribution of superfluidity within
trapped bosons [28, 26] or Wigner crystallization of electrons in quantum dots, see, e.g.,
Refs. [183-185].

3In finite systems, these are often denoted as crossovers as real phase transitions only occur in the bulk.

“Note that the term entropy here refers to its definition from information theory but, for a quantum system,
is not equal to the physical entropy.

ST, Dornheim, H. Thomsen, P. Ludwig, A. Filinov, and M. Bonitz, Contrib. Plasma Phys. (2016), 56,
p. 371-379, Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.
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The understanding of correlations in degenerate nonideal many-particle systems is complex and theoretically
challenging. Using the recently proposed permutation blocking path integral Monte Carlo (PB-PIMC) scheme,
which allows for an exact treatment of many-body correlations, we study the influence of quantum statistics
in a confined few-particle Coulomb (quantum dot) system. As a versatile tool to gain insight into the internal
structure of correlated many-body systems, the application of triple correlation functions is extended to quantum
systems.

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Self-organized structure formation of interacting particles is one of the most fundamental processes in na-
ture [1]. The basic theoretical understanding and analysis of this cooperative phenomena requires (i) sophisti-
cated simulation techniques that allow us to solve the basic equations of many-particle physics on first principles,
and (ii) advanced tools for the analysis of the details of collective behaviour in these interacting systems such as
structure formation, spatial correlations and melting (phase) transitions. However, even simple models used to
describe interacting quantum systems in the regime where strong Coulomb correlations and quantum exchange
effects are present are computationally very demanding. Therefore, trapped few-particle systems such as elec-
trons in quantum dots [2] (“artificial atoms™) serve as a suitable laboratory for the investigation of fundamental
many-body interaction phenomena without requiring undesirable (uncontrollable) simplifications of the funda-
mental physics.

Path integral Monte Carlo (PIMC) is a finite temperature simulation technique for an ab-initio description of
correlated quantum systems with arbitrarily strong Coulomb and quantum exchange (spin) effects [3, 4]. Fur-
thermore, it provides a high flexibility with respect to trap geometry or the inclusion of defects et cetera, and
quasi exact simulations with up to N ~ 10* bosons and boltzmannons are feasible [5,6]. However, a rigorous
and exact treatment of fermionic quantum exchange with standard PIMC is strongly limited by the fermion sign
problem [7, 8]. For that reason, the permutation blocking path integral Monte Carlo (PB-PIMC) scheme [9, 10]
has been recently introduced which allows us to significantly reduce this issue and to extend the range of appli-
cation of the PIMC method towards stronger degeneracy, i.e., lower temperature and higher densities. Therefore,
we are able to obtain approximation-free data for Bose, Boltzmann and Fermi statistics on the footing of first
principle quantum Monte Carlo simulations.

Apart from an accurate computation, a central aspect of this contribution concerns the analysis of quantum cor-
relations. To this end, we will extend the application of the recently derived triple-correlation functions [11-13]
in order to resolve the influence of different quantum statistics on spatial correlations in degenerate 2D Coulomb
(quantum dot) systems. While the (radial) pair distribution function—as a widely used tool for the structural
analysis—is well suited for the investigation of the structure in homogeneous macroscopic systems with isotropic
pair interaction potentials, in confined systems, where translational symmetry is lost, the distribution of pairs may
depend on the position within the trap and a function that solely depends on the modulus of the pair distance does
not allow for a local differentiation (e.g. between shells). For that reason, we utilize an appropriate generalized,
angle resolved quantity to visualize complex spatial correlations in confined systems with an inhomogeneous den-
sity profile. The concept of such a many-body correlation function has possible applications over wide ranges:
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from finite quantum systems such as electronic structures, classical systems like dusty plasma Coulomb crystals
in confining potentials [11-15] or self-organized barrier discharges [16, 17], to the constellation of extragalactic
objects in astrophysics [18, 19].

1 System of study

As a representative model of a strongly correlated electronic system, we consider a single quantum dot consisting
of N = 13 charged particles in a (concentric) 2D harmonic confinement of frequency €2, which is described by
the dimensionless Hamiltonian

1 1 Ny

H=—= 24 - 2 - 1
32 Vit ) M
k=1 k=1 k<l

Oscillator units (i.e., the characteristic length I = ///m{) and energy scale Ey = h{)) are used throughout
this work. The coupling constant A = ¢%/(IphS2) (with q being the particle’s charge) characterizes the strength
of the Coulomb repulsion and can be controlled (experimentally) by the variation of the trap frequency. In
order to analyze the characteristics of quantum exchange, we study fermions (e.g. spin-polarized electrons in
a quantum dot [20-22]), bosons (e.g. indirect excitons [23, 24]), and distinguishable particles referred to as
“boltzmannons”, see e.g. [25]. To simulate the system at finite temperature, we are using rigorous path integral
Monte Carlo methods as outlined in section 2. Here, we consider a relatively low temperature, i.e., inverse
temperature 3 = 1/kgT = 3 and vary the coupling strength X over two orders of magnitude.

2 Finite temperature quantum Monte Carlo simulations

The Path Integral Monte Carlo (PIMC) method [3] is one of the most powerful available tools for the treatment
of strongly correlated and degenerate quantum systems yielding direct results for the particle density distribu-
tions that are free from any approximations or fit parameters. The only simulation input data involved are the
fundamental pair (e.g. Coulomb) interaction potentials as well as the boundary (confinement) conditions allow-
ing for a high flexibility regarding to specific setups (system’s geometry, defects, external fields, etc.). PIMC is
based on the Metropolis algorithm [26], which allows to generate configurations from the canonical distribution
and, therefore, yields direct thermodynamic averages, i.e., finite temperature results. Despite the complexity of
a physical system, the PIMC method achieves excellent performance, as long as the particles obey Boltzmann!
or Bose statistics. In the path integral picture (i.e., the imaginary time path integral representation of the density
matrix), quantum statistics requires the additional sampling of the particle permutations, which significantly in-
creases the dimensionality of the configuration space. These permutations can be decomposed into a sequence
of two-particle exchanges along the imaginary timeline. In the case of fermions, the superposition of all N! per-
mutations of N identical particles leads to the inherent? fermionic sign problem, since an alternating sign of the
prefactor of the many-body density matrix causes an essential cancellation of positive and negative contributions
corresponding to even and odd permutations, respectively [7]. Thus, an accurate calculation of these vanishing
differences is exponentially aggravated [8] with the increase of quantum degeneracy arising at low temperatures
and high densities, where all permutations appear with nearly equal probability. The recently introduced Per-
mutation Blocking PIMC (PB-PIMC) scheme employed in this contribution allows us to overcome these severe
limitations of standard PIMC and thereby to significantly extend the accessible parameter ranges of fermions
towards higher degeneracy [9, 10].

' PIMC runs most efficient if quantum statistics is neglected and distinguishable spinless (Boltzmann) particles are considered [1].

2 One has to distinguish between the cancellation of contributions inherent to the Metropolis Monte Carlo sampling scheme and the
limited numerical precision due to a finite number of bits, which can be neglected here.

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.cpp-journal.org
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2.1 Standard PIMC

We consider the canonical ensemble (with fixed particle number N, trap frequency {2 and inverse temperature
B = 1/kgT) and write the partition function for NV distinguishable particles in coordinate representation as

7= /dR<R| e PH |R), )
with R = {ry,...,ry} containing all particle coordinates. To simulate the system using the standard path
integral Monte Carlo method, e.g. [3,4], we exploit a group property of the density matrix
. S\ P
S O 3)

with e = 8/P, and insert P — 1 unities of the form 1 = [ dR, [R)q(RJa to transform Eq. (2) to
2= [ aX Rol e R)(Ra| -+ [Rpo) (Rpa| e Ro). @

with the integration being carried out over P sets of coordinates, dX = dRy...dRp_;. Eq. (4) is exact and
constitutes an integral over P density matrices at P times the temperature. This allows one to use the primitive
approximation e~ H K¢~V with K and V being the kinetic and potential contribution to the Hamiltonian,
respectively, which yields exact results for P — oco. The separate matrix elements of e~V and e~“¥ are known,
and the resulting high-dimensional integral can be evaluated using the Metropolis algorithm [26]. To simulate
bosons or fermions, one has to extend the partition function by the sum over all permutations

~ e

) A
Z=77 ) senlo) / dR (R e "7 |7, R) | ®)

" oeSn

with 7, being the exchange operator which corresponds to a particular element o from the permutation group
Sn. Hence, Eq. (5) requires the employed PIMC approach to generate exchange cycles, which can be very
efficiently accomplished using the worm algorithm [5, 6]. For bosons and boltzmannons, all terms are strictly
positive. However, the sign of fermionic contributions depends on the parity of the particular permutation. With
increasing exchange effects, towards high density and low temperature, permutation cycles with positive and
negative signs appear with nearly equal probability and, therefore, the statistical error increases exponentially.
This numerical issue is known as the fermion sign problem [7] and limits standard PIMC to weak degeneracy,
i.e., strong coupling and/or high temperature, where exchange effects play only a minor role.

2.2 Permutation Blocking PIMC

PB-PIMC is basically a combination of (i) antisymmetric imaginary time propagators, i.e., determinants [27-29],
which allow for an analytic cancellation of positive and negative permutations within a single configuration
weight (permutation blocking), (ii) a higher-order factorization of the density matrix [30-32], and (iii) a highly
efficient Monte Carlo sampling scheme based on artificial trajectories [9]. While the blocking of permutations
can lead to a significant reduction of the fermion sign problem, with an increasing number of propagators P this
advantage quickly vanishes. Therefore, instead of the primitive approximation, the PB-PIMC implementation
utilizes the fourth order factorization [31,32]

—eH —v1eW,

e ~e ay e*tleKef’UzEWl,Qal eftléKefvleW

a ef2toék (6)

)

of the density matrix, which allows for sufficient accuracy with only a few high temperature factors. The W op-
erators in Eq. (6) denote a modified potential, which combines V' with double commutator terms of the form [32]

o Y
V. KLV = [Fif*. ™
i=1
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Therefore, PB-PIMC requires the evaluation of the force acting on each particle F;, = —V,;V(R). The final
result for the partition function is given by

P—1

]. [/ 12 7

7= pr / dX [T emVee" 0w Fadet(pa)det(paa)det(pas) , @®)
: a=0

with V,, and F, containing the contributions of the potential and the forces, respectively, and the diffusion matrix

. _ 0
pa(ij) = A, Pexp (_>\2(ro¢,j - raA,i)2> , )
t1e
with A¢,c = /2met; h2/m being the thermal wavelength of a single time slice. Instead of explicitly sampling

each permutation cycle as in standard PIMC, we combine configuration weights of both positive and negative
sign in the determinants, which leads to a cancellation of terms and, therefore, a highly effective blocking of
permutations. When the wavelength \;, . is comparable to the mean inter-particle distance, the blocking is most
effective and the average sign in the Monte Carlo simulations is significantly increased. However, with an increas-
ing P, M\, decreases and, eventually, the average sign converges towards the sign from standard PIMC. Hence,
it is crucial to employ the fourth order factorization from Eq. (6), which allows for sufficient accuracy with as
few as two or three propagators. To ensure an ergodic and highly efficient sampling procedure for this modified
configuration space, we have combined the worm algorithm idea [6] with the temporary construction of artificial
trajectories where blocking happens automatically as a by-product. For a detailed description of PB-PIMC, we
refer to [9].

For the sake of completeness, we mention that the recently introduced Configuration PIMC (CPIMC) ap-
proach [33-35] exhibits a complementary range of applicability (A < 1). CPIMC can be interpreted as a Monte
Carlo simulation on an expansion around the ideal system and, therefore, excels at weak coupling and strong
degeneracy. Unfortunately, the physically most interesting transition region remains out of reach. A popular ex-
tension of standard PIMC towards higher degeneracy is Restricted PIMC (RPIMC), often denoted as fixed node
approximation [36]. However, this approach requires explicit knowledge of the nodal structure of the density
matrix, which is a priori unknown. Therefore, one has to rely on approximations which introduce an uncontrolled
systematic error [37,38]. To circumvent these issues, here we pursue the above introduced permutation blocking
idea which allows us to simulate the system over the entire coupling range.

3 Particle distribution functions

Microscopic phase-space information, and in particular the distribution of particles and particle pairs are central
quantities in statistical physics. While the radial pair distribution function g(r) = g(Jra — r1|) is well suited for
the analysis of the structure in homogeneous isotropic systems, see e.g. [39], an advanced quantity is required
for confined systems. In the homogeneous system, the two-particle distribution p2(ri, r2) must not depend on
the position of the particle pair or on its orientation due to the symmetry. Hence, the pair correlations can be
described solely as a function of the absolute pair distance r.

3.1 Two-particle density

For a harmonically trapped system, po is not invariant under translation, but under rotation with respect to the
trap center. Consequently, an appropriate pair correlation function requires three coordinates: r, and 7, as the
radial position of the first and the second particle of the pair, respectively, and the enclosed angle 1) with respect
to the trap center, cf. Fig. 1. The two-particle density in generalized coordinates py (7, 7y, 1) is sampled as a
three-dimensional histogram in the PIMC simulation. This quantity is referred to as center-two-particle (c2p)
density and can be interpreted as the probability of measuring a pair of particles of which the first (second) has a
distance r, (r,;) from the trap center and where both particles enclose an angle 9 with the trap center, cf. Fig. 1.
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"u Fig. 1 Generalized coordinates of the center-two-particle correlation function pa (71, 71, )

. for a harmonically confined 2D Coulomb cluster. All possible positions of two particles are

b sampled and compiled with respect to three parameters: distance 7 of the first particle from

. . ‘ ' the trap center, distance 7y of the second particle from the trap center, and their connecting
angle 9. In the center-two-particle distribution function, the trap center serves as a third

‘ . reference point. The classical particle positions serve as an example, where the N = 13

particles arrange themselves on two concentric shells.

3.2 Two-particle correlations

In order to emphasize angular correlations, it has proven reasonable to define the center-two-particle (c2p) cor-
relation function

P2 (Tlv T, 19)

: 10
pgl(rnrnaﬁ) ’ (10)

9c2p (Tla T, 79) =

which is normalized by the ideal two-particle density p& of a corresponding system with the same radial density
profile but without any angular modulations. This allows one to compensate for the non-correlation related
effects that are solely caused by the inhomogeneous density profile. For 2D systems, this density is given by?
o = %47rrlrnn(rl)n(rn) as the product of the radial density n(r) at both particle radii [11-13].

While geop (7, 7, ¥) is a function of three coordinates, a two-dimensional distribution function gicgtp (ru, ) is
extracted by the integration over a particular r, range. Here, we have integrated over an r, range that corresponds
to the outer (inner) shell or region when the shell structure has vanished. For classical or localized quantum
particles, this can be interpreted as choosing one reference particle from the outer (inner) shell.

Being derived from the concept of a many-particle correlation function, the c2p function takes explicitly into
account the concentric symmetry of the harmonically confined system. It provides local insight into the structure
and allows one to resolve the radial and relative angular distribution of two particles with respect to the trap
center. In particular, it is sensitive to the mutual orientation of particle pairs, but not affected by a rotation of the
particle cluster as a whole (e.g. during the simulation run). The c¢2p function is well defined and robust yielding
reliable information also in the case of partially incomplete data sets, e.g. from experiments. As this quantity
relies only on the statistical distribution of particle positions, it does neither require explicitly labeled particles
nor dynamical information such as particle trajectories, which makes the c2p function well suited for equilibrium
Monte Carlo simulations.

4 Analysis of spatial quantum correlations

Considering Bose, Boltzmann and Fermi statistics for a system of N = 13 particles, we investigate the influence
of quantum statistics on the spatial correlations over a wide range of the coupling parameter \ covering two
orders of magnitude.

Figure 2 shows the integrated c2p-density where we have carried out the r-integration over the outer region of
the system (shaded area in the inset density profile). The first column shows a strongly coupled system (A = 10).
Due to the strong Coulomb repulsion, the particles are quasi localized and the quantum statistics has only a small
influence on the structure because of the negligible overlap of the wave function. The radial density (top panel
and black line in the insets) is virtually the same for all three particle types and exhibits two distinct shells. In
parts (a), (d) and (g) of Fig. 2, the c2p correlation function reveals no significant differences between the three
systems as well. The most prominent feature is the correlation hole at a radial coordinate r, ~ 4 and small
angular pair distances 9 < 30°.

3 The factor (NN —1)/N is conventional and ensures that the normalization of both pa and pi2d is the number of particle pairs. The factor
has only minor influence on the result especially for large particle numbers. It has no qualitative impact on the structures which are found in
the plots. For small particle numbers, one finds that with the factor included, gc2p approaches a value slightly above unity for large distances
and weak correlations, cf. bottom row of Fig. 2. This can be understood since the correlation hole at small distances has to be compensated.
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Fig. 2 Effect of quantum statistics in the outer shell: Center panel: center-two-particle correlation function for a system of
N = 13 bosons, boltzmannons, and fermions at strong (A = 10), moderate (A = 1) and weak (A = 0.1) coupling strength.
The radial density is shown as an inset where the shaded area indicates the 7 integration range. The red line indicates the
angular density cut (scanline) through the outer shell which is shown in the lower panel. Top panel: comparison of the radial
density profiles for the three different statistics. Bottom panel: scanlines through the ;-1 plane as indicated by the red line in
(a-1) at constant 7.

This hole is followed by a sequence of maxima and minima in ¢ direction which correspond to angular pair
correlations within the outer shell. These correlations are found even for distant particles with 1 ~ 180°, i.e.,
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the particles are located at opposite sides of the trap. Since it is difficult to meter the absolute height in color
maps, we show a scanline at the middle of the outer shell in the bottom panel. This scanline gscan (¢) confirms
that virtually the same intra-shell angular correlations are found for bosons, boltzmannons and fermions at strong
coupling. As a further interesting feature in panels (a), (d) and (g), we find angular correlations with the particles
on the inner shell, which appear as—less pronounced—maxima and minima at a radius r, ~ 1.5 that corresponds
to the inner shell. This means that orientations of inner and outer shell are not independent.

A=10 A =101
i =L o N L (LI o e 1.5
- 3k (©
@ 3k 25
b 2§ . A
1 NN 1F R
o Bl ) v L T ™
SR e LO |
4 3C =
g t T .
T 3 2 =
i 2 2 5
= —g ﬁ"\q 1: o
m = .M\ 1 = =]
NN : =
0 0L 0.5 &
4 3'_' 8
o C o,
z 2 3}
3 2
= 1
1 NN
— 0= 0 o 0.0
§ & & a s & &8 & &4 &
ESF S ST ELIES
angular pair distance
A=10 A=1 A=0.1
. 1.5»|I 'Illlll'll.lll_ —Il |||I|III|II||I_ _II Illllllllll II—
§ 1.0 e
&) r 3 3 ]
bt E ] ] B ]
£ os5fF a P - ]
E C Boltzmann —— C ]
2 C 1 Fermi —— - - .
0.0 -||||||i|=|-||| |1||||-|i||l‘||||| |-||-|r|||1|‘|||-|
i s 2 e & o e . T 2 & & & e . e & 2 & o e
S ST 58858 ¢88858 8

angular pair distance

Fig. 3 Effect of quantum statistics in the inner shell: Center-two-particle correlation function (top panel) as in Fig. 2 but
with r; being integrated over the inner region (shaded area in the inset). The scanlines (bottom panel) at the r; value which is
marked by the red line show the intra-shell angular correlations within the inner shell.

At a ten times lower coupling parameter (A = 1) shown in the central column of Fig. 2, the quantum statistics
has a noticeable impact on the spatial structure of the systems. In the radial density shown at the top panel, we
find that the cluster of fermions is enlarged compared to bosons and boltzmannons because of the degeneration
pressure. In parts (b), (e) and (h), the c2p correlation function again shows the correlation hole* around r, = 3
and small angular pair distances 9 for all three quantum statistics. As a unique feature, the fermionic system
exhibits angular correlations also at larger distances. These appear as a sequence of dark and bright areas along

4 For fermions, the correlation hole is caused by both quantum exchange effects and the Coulomb repulsion. In this case, one might refer
to this as an exchange correlation hole.
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the direction of ¥J. In the scanline (bottom panel), the angular correlations beyond the correlation hole at ¥ = 0°
are reflected as a maximum around ¥ = 40° followed by a minimum around ¥ = 60°°. This feature is a
manifestation of the Pauli blocking which leads to an effective "hard-core’ repulsion. The "hard-core’ interaction
separates the fermions in addition to the Coulomb repulsion that is present for all three types of particles.

The right column of Fig 2 shows the three systems at weak coupling (A = 0.1). Here, the radial density (top
panel) shows that both bosons and boltzmannons concentrate at the trap center while the radial profile of the
fermionic system does not change significantly compared with A = 1.0. For bosons and boltzmannons, hardly
any angular correlations are visible at weak coupling. Solely the correlation hole at small pair angles remains as
a shallow minimum in parts (c) and (f) of Fig. 2. The scanline (bottom panel) reveals that the total variation of
the pair density is below 20 %. In contrast, the fermionic system in part (i) of the figure exhibits clear angular
correlations although these are weaker than in part (h) at moderate coupling. The scanline clearly indicates the
difference between fermions on the one hand and bosons and boltzmannons on the other hand. Only the fermionic
system has a pronounced (exchange) correlation hole where the correlation function drops almost down to zero

which is due to the governing effect of Fermi repulsion®.

Figure 3 displays, as a supplement for Fig. 2, the analogous function with an 7, integration that corresponds to
the radial range of the inner instead of the outer shell. In that case, the angular correlations within the inner shell
are visible as pronounced peaks around 7, ~ 1.5 while very weak inter-shell angular correlations are found as
weaker peaks around 7; =~ 5. The inner shell is populated by N; = 4 particles on average which explains why
the peak for nearest on-shell neighbors appears at ¥} = 90°. For classical particles at zero temperature with such a
configuration, one would expect another maximum around r;; ~ 1.5 and ¥ = 180° caused by the opposite particle
within the inner shell, cf. Fig. 1. Both to the quantum mechanical delocalization and the finite temperature cause
the maximum to be smeared out. For this reason, the minimum at ¥ = 135° in the scanline (bottom panel) as
well as the maximum at 180° are both very weak. Overall, we again find a crossover from a nearly classical
system at strong coupling (A = 10) towards a degenerate quantum system, where for fermions the Pauli blocking
dominates. This leads to a significantly different behaviour in comparison to bosons and boltzmannons.

5 Conclusion

As a main goal, in this contribution we have investigated the influence of quantum statistics on spatial correlations
in a degenerate 2D quantum dot system. Using state of the art quantum Monte Carlo techniques to simulate
bosons, boltzmannons and fermions from first principles, we have studied the crossover from a nearly classical
system with governing repulsive Coulomb interaction towards a density (coupling) regime that is dominated by
quantum exchange effects. To resolve this effect in great detail, we have used the recently introduced center
two-particle correlation function [13] which allows to study spatial many-body correlations on a level widely
beyond the standard radial pair distribution function g(r). A future application of this quantity may include
the investigation of the spatial distribution of superfluidity in finite systems [40-42]. Furthermore, we note
that a reduced entropy can be directly computed from the proposed correlation function, which is well suited
to determine various kinds of phase boundaries (such as multistage intra-shell, inter-shell, and radial melting
transitions) in both finite and macroscopic systems [12, 13]. In contrast to the Lindemann parameter, it is a
thermodynamic quantity and therefore directly accessible to equilibrium Monte Carlo simulations as it does not
require any dynamical information [1,43].

Acknowledgements This work has been supported by the Deutsche Forschungsgemeinschaft via grant SFB-TR24 Teilpro-
jekt A9 and by grant SHP00O15 for CPU time at the Norddeutscher Verbund fiir Hoch-und Hochstleistungsrechnen (HLRN).

5 Two further maxima around ¥ = 80° and ¢ = 120° as well as a minimum around ¥ = 105° are clearly visible only in Fig. 2 (h).
The reason for this is that the color map offers a wider overview which is missing in the scanline that includes only one bin in 7y direction.

6 The reason why gscan (9) is not exactly zero at small ¥ is the finite integration range for ;. Therefore, two particles can be aligned in
radial direction, i.e. 19 = 0° and still have finite distance.
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3.3 Application of PB-PIMC to the Uniform Electron Gas

The high current interest and experimental progress in warm dense matter research lead to a
surge of fermionic QMC simulations of the uniform electron gas at finite temperature. As
mentioned in Sec. 3.1, Brown’s RPIMC data [157] were seriously called into question by the
new, exact CPIMC data obtained by our group [59]. In addition, Filinov and co-workers [69]
published a third, independent set of QMC data, although the comparability to the other
results has remained unclear due to (i) the different treatment of the positive homogeneous
background and (ii) the absence of reliable benchmarks. Given the observed ability of
PB-PIMC to strongly alleviate the FSP, an extension to the UEG was highly desirable.

To make this happen, the underlying equations that are governing the PB-PIMC formalism
had to be adjusted to include periodic boundary conditions®, which requires the modification
both of the Monte Carlo estimators (for example, for the energy, see Eq. (8) in the following
paper, Ref. [77]) and the acceptance probabilities of the updates. In addition, the sampling
procedure itself had to be adapted to the periodicity inherent to the UEG. Furthermore, the
long-range nature of the Coulomb interaction requires one to consider the interaction not
only between different electrons in the simulation cell, but also with the infinite array of
periodic images (the same applies to the positive uniform background). This is achieved by
employing the so-called Ewald summation [186, 187], which corresponds to the solution of
Poisson’s equation in periodic boundary conditions [188, 189]. In particular, one splits the
infinite sum over all images into two separate parts in real and reciprocal space, which are
rapidly converging’.

In the following paper [77], the application of PB-PIMC to the warm dense electron gas is
demonstrated for the spin-polarized case. More specifically, we discuss the modifications of
the PB-PIMC partition function, as well as the resulting changes in the Monte Carlo estimator
for the energy. A brief demonstration of the convergence with the number of propagators is
followed by the exhaustive investigation of N = 33 spin-polarized electrons at warm dense
matter conditions.

In a nutshell, we found that PB-PIMC does again significantly extend standard PIMC
towards both lower temperature and higher density and, for 8 > 0.5, simulations are feasible
over the entire density range. The comparison with previous results revealed excellent
agreement to the exact CPIMC data, where they are available, whereas the RPIMC data by
Brown et al. [157] exhibit significant deviations, which increase with density.

®In practice, the ideal density matrix is implemented as a periodic sum over Gaussians [41, 21].
"Given the appropriate choice of a free parameter.
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Overall, this paper constitutes the proof of principle regarding the utility of PB-PIMC for
the simulation of warm dense electrons and regarding its complementary nature with respect
to CPIMC.
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The uniform electron gas (UEG) at finite temperature is of high current interest due to its key
relevance for many applications including dense plasmas and laser excited solids. In particular,
density functional theory heavily relies on accurate thermodynamic data for the UEG. Until recently,
the only existing first-principle results had been obtained for N = 33 electrons with restricted path
integral Monte Carlo (RPIMC), for low to moderate density, r¢ = 7/ag = 1. These data have been
complemented by configuration path integral Monte Carlo (CPIMC) simulations for ry < 1 that
substantially deviate from RPIMC towards smaller r; and low temperature. In this work, we present
results from an independent third method—the recently developed permutation blocking path integral
Monte Carlo (PB-PIMC) approach [T. Dornheim et al., New J. Phys. 17, 073017 (2015)] which we
extend to the UEG. Interestingly, PB-PIMC allows us to perform simulations over the entire density
range down to half the Fermi temperature (6 = kgT/EFr = 0.5) and, therefore, to compare our results
to both aforementioned methods. While we find excellent agreement with CPIMC, where results are
available, we observe deviations from RPIMC that are beyond the statistical errors and increase with

®
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Permutation blocking path integral Monte Carlo approach to the uniform
electron gas at finite temperature

density. © 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4936145]

. INTRODUCTION

Over the last years, there has been an increasing interest
in the thermodynamic properties of degenerate electrons in
the quantum mechanical regime. Such information is vital
for the description of highly compressed matter,' including
plasmas in laser fusion experiments* and in compact stars
and planet cores.'®!?> In addition, the widespread density
functional theory (DFT) approach crucially depends on the
availability of accurate quantum Monte Carlo (QMC) data
for the exchange correlation energy of the uniform electron
gas (UEG), hitherto at zero temperature.'>”!” However, in
recent years more and more applications with highly excited
electrons have emerged, which require to go beyond ground
state DFT. Hence, there exists a high current need for an ab
initio thermodynamic description of the UEG at finite 7.

The widely used path integral Monte Carlo (PIMC)
method, e.g., Ref. 18, is a powerful tool for the ab initio
simulation of both distinguishable particles (often referred to
as “boltzmannons,” e.g., Refs. 19 and 20) and bosons and
allows for quasi exact results for up to N ~ 10° particles at
finite temperature.?'>> However, the application of PIMC to
fermions is hampered by the notorious fermion sign problem
(FSP), e.g., Ref. 23, which might render even small systems
unfeasible for state of the art QMC methods and is known
to be NP-hard for a given representation.”* With increasing
degeneracy effects, permutation cycles with opposite signs
nearly cancel each other and the statistical uncertainty grows
exponentially. Hence, standard PIMC cannot provide the
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desired results without further improvement. Brown et al.?’
have presented the first finite temperature results for the UEG
down to ry = 1 using restricted PIMC (RPIMC),® a popular
approach to extend PIMC to higher degeneracy, that is, lower
temperature and higher density. To avoid the FSP, this method
requires explicit knowledge of the nodal surface of the density
matrix, which is, in general, unknown and one has to rely
on approximations. The use of the ideal nodes for a nonideal
system appears to be problematic, as has been shown for
the case of hydrogen.”’?® In addition, it has been shown
analytically that RPIMC does not reproduce the exact limit
of the ideal Fermi gas (r; — 0).2%3° Therefore, the quality of
the RPIMC data remains unclear. Indeed, recent configuration
PIMC (CPIMC)*!'* results for the highly degenerate UEG
by Schoof et al.’* have revealed a significant disagreement
between the two methods at small r; and low temperature.
While the first application of a novel density matrix QMC
(DMQMC) approach®* to the UEG for four particles reports
excellent agreement with CPIMC,* additional simulations
of larger systems are needed to resolve the discrepancy
towards RPIMC. For completeness, we mention that QMC
results by Filinov et al.’® cannot be used as a benchmark
due to the different treatment of the homogeneous positive
background and a different account of the long-range Coulomb
interaction®”*® than the usual Ewald summation. In this
situation, an independent third first-principle method, capable
to treat warm dense matter (WDM) parameters, would be
highly desirable.

In this work we, therefore, investigate the applicability
of the recently developed permutation blocking PIMC (PB-
PIMC) approach® to the uniform electron gas. We note

©2015 AIP Publishing LLC
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that PB-PIMC is essentially standard PIMC but combines
two well known concepts: (1) antisymmetric imaginary time
propagators,‘“Hz i.e., determinants, between all “time slices”
and (2) a higher order factorization of the density matrix.*~4¢
This means that each particle is represented by a “path”
consisting of 3 X P coordinates (“beads”), where P is the
number of high-temperature factors (or propagators). (3)
To efficiently sample this more complicated configuration
space, PB-PIMC uses a novel Monte Carlo update scheme
which combines the worm algorithm idea®"?> with the
temporary construction of artificial trajectories, cf. Ref. 39.
The application of determinants leads to a relieve of the
FSP by an effective cancellation of positive and negative
terms in the partition function, which belong to permutation
cycles of different parity in standard PIMC. However, since
the blocking is most effective if the thermal wavelength of a
single propagator is of the same order as the mean interparticle
distance, it is crucial to employ a higher order factorization
scheme which allows for sufficient accuracy with only a few
time slices. Therefore, it is the combination of the above three
ingredients that allows us to significantly extend the range of
applicability of standard PIMC towards stronger degeneracy,
see also Fig. 1.

The details of our PB-PIMC scheme, for the UEG, are
described in Section II B, after a brief introduction of the
employed model in Section II A. In Section III A, we present
our simulation results starting with a detailed investigation of
the convergence behavior with respect to the factorization of
the density matrix. We proceed by simulating N = 33 spin-
polarized electrons, which is a commonly used model system
of the UEG, see Section III B. Interestingly, our PB-PIMC
approach allows us to obtain accurate results over the entire
density range and, therefore, to make a comparison with the
pre-existing RPIMC and CPIMC results for the UEG. Finally,
in Section III C we investigate the applicability of our method
with respect to the temperature. We find that PB-PIMC,
in combination with CPIMC, allows for the simulation of
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FIG. 1. Density-temperature plain around the warm dense matter (WDM)
regime. PB-PIMC significantly extends the range of applicability of standard
PIMC (qualitatively shown by the red dashed line, see also Figs. 5 and 7)
towards lower temperature and higher density while CPIMC is applicable
to the highly degenerate and weakly nonideal UEG.?> RPIMC data® are
available for rg > 1. The orange area marks the conditions of WDM and
inertial confinement fusion (ICF).%
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the UEG over a broad parameter range, which includes the
physically most interesting regime of warm dense matter, cf.
Fig. 1.

Il. THEORY
A. Model Hamiltonian

The uniform electron gas, often referred to as “Jellium,”
is a model description of Coulomb interacting electrons
with a neutralizing background of positive charges which
are uncorrelated and homogeneously distributed. To describe
an infinite system based on a finite number of particles, one
implements periodic boundary conditions and includes the
interaction of the N electrons in the main cell with all their
images via Ewald summation. Following the notation from
Ref. 47, we express the Hamiltonian of the N electron UEG
(in atomic units) as

N R Neé?
H= _E ZV% + E ZZeZ‘I’(ri,rj) + Tf,
i=1 i=1 j#i

with & being the Madelung constant and the periodic Ewald
pair potential

e—ﬂsz/Kzezﬂ'iG(l‘—S)

1
W(r.s) = v Z G2

G#0
T Z erfc(klr —s + Rl)'

TRV [r—s+R|

ey

Here, R = n;L and G = ny/L denote the real and reciprocal
space lattice vectors, respectively, with the box length L and
volume V = L3. The specific choice of the Ewald parameter
k does not influence the outcome of Eq. (1) and, therefore,
can be used to optimize the convergence. PB-PIMC requires
explicit knowledge of all forces in the system, and the force
between the electrons i and j can be obtained from

F;j = -V,¥(r;r)). 2

The evaluation of Eq. (2) is relatively straightforward and we
find

2
F;; = v Z (E sin[27G(r; — I‘j)] e_,rl(;z/,(z)

G2
G#0
r,»—rj+R( 2/<a'22)
+ —— |erfc(ka) + —=e 7|,
3 —

with the definition & = |r; —r; + R|.

B. Simulation method

To calculate canonical expectation values with the PB-
PIMC approach,®® we write the partition function in coordinate
representation as

1 ~
- —-BH | A
Z=5 Z sgn(c) / dR (RlePH|2,R),  (3)
oeSN
withR =ry,...,ry containing the coordinates of all electrons,
7, denoting the exchange operator which corresponds to
a specific element o from the permutation group Sy and
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B = 1/kgT. For the next step, we make use of the usual group
property of the density matrix in Eq. (3) and arrive at an
expression for Z which requires the evaluation of P density
matrices at P times higher temperature. However, instead of
the primitive approximation e=# ~ ¢=Ke=<V with € = B/P
being the imaginary time step of a single propagator and the
kinetic and potential contributions to the Hamiltonian K and
V, respectively, we use the fourth order factorization,**

—eH —Ulswule—tlék

€W —t1eF €W —DtneR
e ~e e veW] 2a10 tleKe vleWule 2toeK. (4)

The W operators in Eq. (4) denote a modified potential, which
combines V with double commutator terms of the form

[[V.R].V] = Z'F ? s)

and, therefore, requires the evaluation of all forces on each

particle, F; = —=V;V(R). Our final result for the partition
function is given by
| P-1
_ —€Vy —€ MomFa
" /dxn ‘
x det(pq)det(pq 4)det(pq B), (6)

with the definition of the potential and force terms

Va

v1V(Re) + 02V(Raa) + 01V(Rap),

< 2 2 2 0
(a1[Fo > + (1 = 2a1)|Fonil* + a1lFop.il%),

i=1

Fo

and the diffusion matrices

flf Z exp( )&, E(ra,j —TaA,i + nL)z) 5
1

n

pa(i»j) =

with D being the dimensionality, see, e.g., Ref. 40.
Eq. (6) contains two free coefficients, to and a;, which
can be used for optimization, cf. Fig. 2, and the
integration is carried out over 3P sets of coordinates, dX
= dR() . dRp_ldR()A . dRp_lAdROB . dRp_lg. Instead of
explicitly sampling each permutation individually, as in
standard PIMC, we combine configuration weights of both

I
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FIG. 2. Influence of the relative interslice spacing #o for N =4, rg =4, and
6 =0.5 on the convergence of the propagator. The exact result known from
CPIMC (green line) is compared to the PB-PIMC results for P =2, P =3,
and P =4 for the fixed free parameter a; = 0.33 over the entire #( range. The
optimal value is located around 7o =0.14.
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positive and negative signs in the determinants, which leads
to a cancellation of terms and, therefore, an effective blocking
of permutations. When the thermal wavelength of a single
time slice, A/ = \2met h2/m, is comparable to the mean
interparticle distance, the effect of the blocking is most
pronounced and the average sign in our simulations is
significantly increased. However, with an increasing number
of propagators P, A; . decreases and, eventually, the blocking
will have no effect and the sign converges towards the
sign from standard PIMC. Hence, it is crucial to employ
the high order factorization from Eq. (4), which allows for
reasonable accuracy even for only two or three propagators.
We simulate the canonical probability distribution defined by
Eq. (6) using the Metropolis algorithm.*® For this purpose,
we have introduced a set of efficient Monte Carlo updates
that combine the worm algorithm idea®'>? with the temporary
construction of artificial trajectories, see Ref. 39 for a more
detailed description.

C. Energy estimator

The consideration of periodicity in the diffusion matrices
requires minor modifications in the energy estimator presented
in Ref. 39, which can be derived from the partition function
via the familiar relation

10z
E:_fﬁ- (8)

Inserting the expression from Eq. (6) into (8) and performing
a lengthy but straightforward calculation leads to

P-1

1 ) 3DN
E=— Vie + 3€"ug— Fx
P 2e
k=0
¥y i( mige T T )
k=0 k=1 £=1 €PN €PM, em‘%z )
with the definition
-1
(Pk ) T
Tl,]fg =—3 “ exp [— 5 (ke — Frae + Ln)*
>\‘t16 n 1€
X (I’k’,( - I'kA’ér + Ln)Z. (9)

For completeness, we note that the total energy E splits into
the kinetic and potential contributions, K and V, in precisely
the same way as before.®

lll. RESULTS
A. Convergence

We begin the discussion of our simulation results by
investigating the convergence of the energy with the number
of imaginary time propagators P. To enhance the performance,
the free parameters from the propagator, a; and #j, can be
optimized. In Fig. 2, we choose a; = 0.33, which corresponds
to equally weighted forces on all time slices, and plot the
potential energy V, calculated with P =2, P = 3, and P = 4,
versus #y over the entire possible range for a benchmark
system of N =4 spin-polarized electrons with 6 = 0.5 and
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ry = 4. To assess the accuracy, we compare these results
with the exact energy known from CPIMC (green line).
Evidently, the optimal choice for this free parameter is located
around 7y = 0.14, which is consistent with previous findings
by Sakkos et al.** and the application of PB-PIMC to electrons
in a quantum dot.*® For completeness, we mention that the
kinetic energy K exhibits the same behavior. Hence, we use
the combination a; = 0.33 and ¢y = 0.14 for all presented
simulations in this work. However, it should be noted that
our method converges for all possible choices of the free
parameters. In Fig. 3, we demonstrate the convergence of the
energy with respect to the number of propagators for the same
system as in Fig. 2. However, since V and K nearly cancel
for this particular combination of rg, 6, and N, we investigate
the convergence of both contributions separately. The top
panel shows the potential energy versus the inverse number of
propagators P~! oc € and we compare the PB-PIMC results to
the exact value (with the corresponding confidence interval)
from CPIMC. We find that as few as two propagators allow
for a relative accuracy AV/|V|~ 107 and with P =4 the
potential energy is converged within error bars. In the bottom
panel, we show the same information for the kinetic energy K.
The variance of K is one order of magnitude larger than that
of V and, for two propagators, we find the relative time step
error AK/K ~ 1073, With increasing P, the PB-PIMC results
are fluctuating around the exact value, within error bars.
Finally, we address the r,—dependence of the time step
error by comparing PB-PIMC results for V with P =2
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FIG. 3. Convergence of the potential (top) and kinetic (bottom) energy for
N =4, r¢=4, and 6=0.5 with 79=0.14 and a;=0.33. In the top panel,
the potential energy V is plotted versus the inverse number of propagators
P~ '« e and the PB-PIMC results are compared to the exact value known
from CPIMC. The bottom panel shows the same information for the kinetic
energy K.
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FIG. 4. Accuracy of two and three propagators over a broad rg range for
N =4 and 6 =0.5 with t(=0.14 and a; =0.33. We show the relative differ-
ence between the potential energy from PB-PIMC and CPIMC, AV /|V/|, for
the optimal parameters from the fourth order propagator.

(red crosses) and P =3 (blue squares) to the exact values
from CPIMC. In Fig. 4, the relative error of the potential
energy AV/|V| is plotted versus rg for N = 4 spin-polarized
electrons at 8 = 0.5. The increased errorbars for larger r are a
manifestation of the sign problem from CPIMC,*? while for the
rest the statistical uncertainty from PB-PIMC predominates.
The time step error is smaller for three propagators over the
entire rg—range, as it is expected, and adopts a maximum
around r; = 1. This can be understood by recalling the source
of the systematic error in PB-PIMC. For r; — 0, the UEG
approaches an ideal system and the commutator error from K
and V vanishes. For ry — oo, on the other hand, the particles
are more separated and the system becomes more classical.
Therefore, the neglected commutator terms are most important
at intermediate r, which is the case for the results in Fig. 4.

We conclude that as few as two or three propagators
provide sufficient accuracy to assess the discrepancy between
CPIMC and RPIMC observed in previous studies.* In
particular, the selected benchmark temperature, 6 = 0.5, is
even lower than for all other simulations to be presented in
this work. Hence, the observed time step error constitutes an
upper bound for the accuracy of our results in the remainder
of the paper.

B. Density parameter dependence

Among the most interesting questions regarding the
implementation of PB-PIMC for the UEG is the range
of applicability with respect to the density parameter r;.
To address this issue, we simulate N = 33 spin-polarized
electrons, which corresponds to a closed momentum shell and
is often used as a starting point for finite size corrections.
In Fig. 5, we show the average sign S versus r, for three
different temperatures over a broad density range. All PB-
PIMC data exhibit a qualitatively similar behavior, that is, a
smooth decrease of S towards smaller ry until it saturates.
At large rg, the coupling induced particle separation mostly
exceeds the extension of the single particle wavefunctions
and quantum exchange effects do not play a dominant role.
With decreasing r,, the UEG approaches an ideal system and
the particles begin to overlap, which leads to sign changes in
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FIG. 5. The average sign of PB-PIMC is plotted versus the density parameter
rs for three different temperatures and N =33 spin-polarized electrons with
P =2,a;=0.33, and to=0.14. The standard PIMC data (green crosses) are

taken from the supplement of Ref. 25.
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the determinants. However, due to the blocking, the average
sign, instead of dropping exponentially, remains finite which
implies that, for the three depicted temperatures, PB-PIMC
is applicable over the entire density range. This is in stark
contrast to standard PIMC (cf. the green curve), which exhibits
a significantly smaller average sign and, for 6 = 1, is not
feasible for ry < 3. Nevertheless, with decreasing temperature
the sign of PB-PIMC drops and the FSP makes the simulations
more involved, cf. Section III C.

In Fig. 6, we compare the corresponding energies with
RPIMC* and CPIMC,*® where they are available. The top
row displays the relative difference in the potential energy
towards PB-PIMC with two propagators. For § = 4 and 6 = 2,
we find excellent agreement with CPIMC. For the lowest
temperature, 6 = 1, the CPIMC values are systematically
lower by AV/|V| < 1073, However, this discrepancy can be
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FIG. 6. Comparison of PB-PIMC with CPIMC and RPIMC for N =33 spin-polarized electrons and three temperatures. In the top row, the relative deviation of
the potential energy from PB-PIMC with P =2, to=0.14 and a; =0.33 is plotted versus rs. The center and bottom rows display the same information for the
kinetic and total energy, respectively. The black dot in the bottom left panel (AE/E for 8 = 1) corresponds to standard PIMC and is taken from the supplement

of Ref. 25.
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explained by the convergence behavior of the propagator, cf.
Fig. 4, since the potential (and kinetic) energy is expected
to converge from above towards the exact result. To confirm
this assumption, we also plot results for P =3 and 0 =1,
visualized by the grey triangles. Evidently, these points
coincide with the CPIMC data everywhere within the errorbars
and, thus, can be regarded as quasi-exact. The RPIMC data for
V, on the other hand, exhibit a systematic discrepancy with
respect to PB-PIMC and CPIMC.** At r, = 1, the energies
approximately differ by AV/|V|~ 0.02, but the difference
decreases with increasing r. In the center row, we display the
relative difference in the kinetic energy. Again, all PB-PIMC
results are in good agreement with CPIMC. On the other hand,
there is no clear systematic deviation between the PB-PIMC
and RPIMC data, although most RPIMC-values for 6 = 1 are
lower while the opposite holds for most values for 6 = 4.
Finally, the bottom row displays the relative difference in the
total energy. Interestingly, for 6 = 1 the difference of RPIMC
in V and K towards PB-PIMC nearly cancels, so that E appears
to be in good agreement. In particular, even the value for 8 = 1
and rg = 4, where the potential energy is an outlier, and both
V and K exhibit a maximum deviation, is almost within single
error bars. For completeness, we have also included the total
energy for 8 = 1 and r; = 40 from standard PIMC,* cf. the
black circle, which is in excellent agreement with PB-PIMC
as well. For 0 =2 and 6 = 4, most RPIMC values for E are
higher than PB-PIMC, although the deviation hardly exceeds
twice the error bars.

C. Temperature dependence

Finally, we investigate the performance of PB-PIMC
with respect to the temperature. In Fig. 7, the average sign
of PB-PIMC is plotted versus 6 for N = 33 spin-polarized
electrons at ry = 10, r¢ =1, and rg = 0.1. All three curves
exhibit a similar behavior, that is, a large sign S at high
temperature and a monotonous decay for 7 — 0. However,
for ry = 10, the system is significantly less degenerate than
for both other density parameters, and even at 8 = 0.5, the
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FIG. 7. The average sign of PB-PIMC is plotted versus the temperature 6
for r¢=10, r¢=1, and rg=0.1 and N =33 spin-polarized electrons with
P =2 and the free parameters 79=0.14 and a; =0.33. The standard PIMC
data (green crosses) are taken from the supplement of Ref. 25.

J. Chem. Phys. 143, 204101 (2015)

average sign of S = 0.056 indicates that the simulations are
feasible. For ry = 1 and r; = 0.1, the decay of S is more rapid
and, at low temperature, the simulations are more involved.
In particular, half the Fermi temperature seems to constitute
the current limit down to which reasonable results can be
achieved for such rg—values (and this particle number) and,
for rg = 0.1, the sign is zero within error bars, cf. the dashed
line. For completeness, we also show the average sign of
standard PIMC for ry = 1, cf. the green curve. Evidently,
these simulations are significantly more severely affected by
the FSP and simulations are feasible only for 6 > 2. Finally,
we note that the average signs of PB-PIMC for the two
smaller depicted ry parameters are more similar to each other
than to ry = 10. We characterize the temperature in units
of the ideal Fermi temperature, which is appropriate for
weak coupling. However, for large r,, the system becomes
increasingly nonideal and, therefore, 6 does not constitute an
adequate measure for the degeneracy.

In Fig. 8, we compare the energies of the N = 33 electrons
at ry = 1 from PB-PIMC both to RPIMC* and CPIMC. The
top panel displays the relative difference in the potential energy
versus 6. The CPIMC results for V are in good agreement
with PB-PIMC, while the RPIMC data are systematically
higher, by about 2%. Interestingly, this behavior appears to
be almost independent of the temperature. In the bottom
panel, the same information is shown for the kinetic energy
and, again, PB-PIMC agrees with CPIMC over the entire
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FIG. 8. Comparison with CPIMC and RPIMC as a function of tempera-
ture. In the top panel, the relative deviation of the potential energy from
the PB-PIMC result is plotted versus 6 for N =33 spin-polarized electrons
and rs = 1. The bottom panel displays the same information for the kinetic
contribution.
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temperature range. The large statistical uncertainty at 8 = 0.5
is a manifestation of the FSP in PB-PIMC, which prevents
us from obtaining more precise kinetic energies with feasible
computational effort. The RPIMC data for K are slightly
lower, at low temperature, which confirms the trend observed
by Schoof et al.,*’ and seems to converge towards the other
methods for large 6.

IV. DISCUSSION

In summary, we have successfully extended the PB-PIMC
approach® to the uniform electron gas at finite temperature.
We have started the discussion with a brief introduction
of our simulation scheme, which combines a fourth-order
factorization of the density matrix with the application of
antisymmetric imaginary time propagators, i.e., determinants.
This allows us to combine permutations, which appear as
individual configurations with positive and negative sign in
standard PIMC, into a single configuration weight (hence
the label permutation blocking). Furthermore, we employ an
efficient set of Monte Carlo updates which is based on the
temporary construction of artificial trajectories. Due to the
combination of these three concepts, the average sign in our
simulations is significantly increased.

To assert the quality of our numerical results, we have
investigated the optimization of the free parameters of our
propagator and demonstrated the convergence of both the
potential and kinetic energies with respect to the number of
imaginary time steps. We have found that even for the lowest
considered temperature, 8 = 0.5, as few as two propagators
allow for a relative accuracy of 0.1% and 0.01% in the kinetic
and potential energies, respectively. After this preparatory
work, we have shown results for N =33 spin-polarized
electrons, which is a commonly used model system as it
is well suited to be a starting point for the extrapolation to the
macroscopic limit (finite size corrections). In striking contrast
to previous implementations of standard PIMC, PB-PIMC is
feasible over the entire density range and, therefore, allows us
to compare our results to both CPIMC and RPIMC data, where
they are available. Our PB-PIMC data exhibit a very good
agreement with CPIMC, for both the potential and kinetic
energies, for all three investigated temperatures. On the other
hand, we observe deviations between PB-PIMC and RPIMC
of up to 3% in the potential energy, which decrease towards
strong coupling. For the kinetic energy, we find no systematic
trend although, for 8 = 1, most of the RPIMC-values are
smaller while, for 6 = 4, most are larger than the PB-PIMC
results. However, for both temperatures this deviation hardly
exceeds twice the RPIMC errorbars.

Finally, we have investigated the applicability of PB-
PIMC to the N = 33 spin-polarized electrons with respect to
the temperature. With decreasing 6, exchange effects lead to
more negative determinants in the configuration weights and,
therefore, a smaller average sign. For the physically most
interesting density regime, ry ~ 1, simulations are feasible
above 6 = 0.5 while for larger r; even lower temperatures
are possible. Therefore, it has once more been demonstrated
that the range of applicability of standard PIMC has been
significantly extended. A comparison of the energies for
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ry = 1 over the entire applicable temperature range has again
revealed an excellent agreement with CPIMC. On the other
hand, we observe a nearly #-independent relative deviation
between PB-PIMC and RPIMC in the potential energy of
approximately 2%, whereas differences in the kinetic energy
are observed only towards low temperature.

We conclude that our permutation blocking PIMC
approach is capable to provide accurate results for the UEG
over a broad parameter range. This approach is efficient
above a minimum temperature of about 0.57F and, thus,
complements CPIMC. Even though PB-PIMC carries a small
systematic error (which is controllable and depends only on
the number of time slices), we expect it to be useful for
the development and test of other new techniques such as
DMQMC3*35 and other novel versions of fermionic PIMC,
such as the approximate treatment of exchange cycles by
DuBois et al.” or a variational approach to the RPIMC nodes,
e.g., Ref. 51.

A natural follow-up of this work will be the extension
of PB-PIMC to unpolarized systems which, in combination
with CPIMC, should allow for a nearly complete description
of the finite temperature UEG over the entire density range.
In addition, we aim for the application or derivation of finite
size corrections in order to extrapolate our results to the
macroscopic limit*’>>3% which could be followed by the
construction of a new analytical fit formula for the UEG
at finite temperature, e.g., Refs. 54 and 55. Finally, since
PB-PIMC allows for efficient simulations in the warm dense
matter regime, applications to two-component plasmas, such
as dense hydrogen,’*-® are within reach.
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Chapter 4

Combination of PB-PIMC and CPIMC

4.1 The Spin-polarized Case

The successful application of the PB-PIMC approach to the uniform electron gas shown in
the previous section 3.3 demonstrated (i) the complementary nature to CPIMC, (i1) the utility
of CPIMC to provide exact benchmark data at high density, and (iii) that the combination
of both methods allows for a highly accurate description of the UEG over the entire density
range down to half the Fermi temperature without the fixed-node approximation. Indeed, the
final point constitutes a reoccurring theme throughout the rest of this thesis and was explored
in detail in the next paper', Ref. [162], for the case of N = 33 spin-polarized electrons.

First of all, I carried out extensive PB-PIMC simulations and obtained new data for the
total, kinetic, and interaction energy for four additional temperatures (8 = 0.5,0.75,6 and
8). The combined data from PB-PIMC and CPIMC was made available in a data table,
for example, as a benchmark for future method development. Secondly, the comparison of
the exchange—correlation energy between PB-PIMC, CPIMC, and the RPIMC data from
Ref. [157] (Fig. 7 in the following paper, Ref. [162]) again revealed the excellent agreement
between the first two methods everywhere and the significant systematic bias of the latter
even at intermediate to high temperatures.

A further achievement of this paper is the systematic investigation of the so-called kink
extrapolation procedure that extends the CPIMC method to larger rs values (approximately
by a factor of two), to which, however, I did not contribute.

IS. Groth, T. Schoof, T. Dornheim, and M. Bonitz, Phys. Rev. B 93, 085102 (2016). Copyright by the
American Physical Society (2016).
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The uniform electron gas (UEG) at finite temperature is of key relevance for many applications in the warm
dense matter regime, e.g., dense plasmas and laser excited solids. Also, the quality of density functional theory
calculations crucially relies on the availability of accurate data for the exchange-correlation energy. Recently,
results for N = 33 spin-polarized electrons at high density, ry = 7/ap < 4, and low temperature have been
obtained with the configuration path integral Monte Carlo (CPIMC) method [T. Schoof et al., Phys. Rev. Lett.
115, 130402 (2015)]. To achieve these results, the original CPIMC algorithm [T. Schoof et al., Contrib. Plasma
Phys. 51, 687 (2011)] had to be further optimized to cope with the fermion sign problem (FSP). It is the purpose
of this paper to give detailed information on the manifestation of the FSP in CPIMC simulations of the UEG
and to demonstrate how it can be turned into a controllable convergence problem. In addition, we present new
thermodynamic results for higher temperatures. Finally, to overcome the limitations of CPIMC towards strong
coupling, we invoke an independent method—the recently developed permutation blocking path integral Monte
Carlo approach [T. Dornheim et al., J. Chem. Phys. 143, 204101 (2015)]. The combination of both approaches
is able to yield ab initio data for the UEG over the entire density range, above a temperature of about one half
of the Fermi temperature. Comparison with restricted path integral Monte Carlo data [E. W. Brown ef al., Phys.
Rev. Lett. 110, 146405 (2013)] allows us to quantify the systematic error arising from the free particle nodes.

DOI: 10.1103/PhysRevB.93.085102

I. INTRODUCTION

The uniform electron gas (UEG) constitutes a well-known
simple model for metals [1]. At finite temperature, the
spin-polarized UEG is described by the density parameter
ry =7/ap [F is the mean interparticle distance related to
the density by n~! = 4773/3, and ap is the Bohr radius]
and the dimensionless temperature (degeneracy parameter)
® = kpT/EF, with the Fermi energy Er. Besides being an
interesting theoretical model system for studying correlated
fermionic many-body systems, exact data for the exchange-
correlation energy of the UEG is essential for the construction
of exchange correlation functionals [2,3] for density functional
theory (DFT) calculations of more realistic systems, e.g.
atoms, molecules, and novel materials. For the ground state this
data has been provided many years ago by Ceperley and Alder
[4] utilizing the fixed node diffusion Monte Carlo approach.
Based on these calculations, Perdew and Zunger computed the
density functionals [5], which have been the basis for countless
DFT applications.

Often one is interested in properties of chemical systems
or condensed matter at low temperature, not exceeding room
temperature, for which it is justified to use ground state
results. However, in recent years more and more applications
have emerged where the electrons are highly excited, e.g., by
compression of the material or by electromagnetic radiation.
Examples are dense plasmas in compact stars or planet cores,
e.g., [6-8], and laser fusion experiments at the National
Ignition Facility, e.g. [9-11], at Rochester [12], or Sandia
[13,14]. It is now widely agreed upon that the theoretical
description of these experiments requires to go beyond ground
state DFT. This leads to a high demand for exact data for the
UEQG at finite temperature and high to moderate density where
fermionic exchange and correlation effects play an important
role simultaneously, namely the warm dense matter (WDM)
regime, where both r; and ® are of order one.

2469-9950/2016/93(8)/085102(12)
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Quantum Monte Carlo (QMC) simulations are the method
of choice for the computation of exact thermodynamic
quantities at finite temperature. However, it is well known
that, when applied to fermions, path integral Monte Carlo
(PIMC) methods suffer the fermion sign problem (FSP),
which may render the simulation even of small fermionic
systems impossible and was shown to be NP hard [15]. In the
standard PIMC formulation in coordinate space, e.g. [16], the
FSP causes an exponential loss of accuracy with increasing
degeneracy, i.e., towards low temperature and high density
of the system. For this reason, standard fermionic PIMC
calculations of the commonly used N = 33 spin-polarized
UEG are not feasible in the warm dense matter regime [17].
Presently, the search for accurate and efficient strategies to
weaken the FSP is one of the most important questions in
condensed matter and dense plasma theory.

A popular approach to avoid the FSP is the restricted
(fixed-node) PIMC (RPIMC) method [18], which is claimed to
be exact if the true nodal surface of the density matrix would be
known. Usually this is not the case, and one has to rely on ap-
proximations, thereby introducing an uncontrolled systematic
error. Brown et al. [17] performed RPIMC calculations with
ideal nodes of the UEG in a broad density-temperature range
downtory, = 1 and ® = 0.0625. These results have been used
by many groups, e.g., for the construction of analytical fits for
the exchange-correlation free energy [2,3] and as benchmarks
for models and simulations [19,20].

In a recent paper [21], we applied the configuration path
integral Monte Carlo (CPIMC) approach to the uniform
electron gas and were able to obtain ab initio simulation results
for finite temperatures and high degeneracy. These results
also showed that the RPIMC data of Ref. [17] are inaccurate
for high densities, r; < 4. As any fermionic PIMC approach,
CPIMC as well suffers from the FSP. But, being formulated in
Fock space of Slater determinants [22,23], CPIMC experiences
an increasing FSP with decreasing quantum degeneracy,

©2016 American Physical Society
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FIG. 1. Available ab initio quantum Monte Carlo data in the
warm dense matter range for N = 33 spin-polarized electrons. Dots:
CPIMC. Squares: PB-PIMC. Red: Additional combined CPIMC
and PB-PIMC results of this paper. Gray: Previous results from
CPIMC [21] and PB-PIMC [25], respectively. ICF: Typical inertial
confinement fusion parameters [10]. Quantum (classical) behavior
dominates below (above) the line ® = 1. T' = ¢?/FkzT is the
classical coupling parameter.

i.e., towards low density. In the case of the UEG with
N = 33 particles, direct CPIMC simulations were possible
only for r; < 0.4. Nevertheless, in Ref. [21] an extension to
substantially larger r; was achieved by introducing an auxiliary
kink potential which leads to a complication of the original
CPIMC algorithm.

For this reason, the present paper aims at giving a
comprehensive explanation of the modified CPIMC approach,
in particular of the details of the kink potential and the issues
of convergence and accuracy. In order to give a systematic
analysis of these concepts and their capabilities, we concen-
trate on the simplest situation—the polarized UEG. Also, we
restrict ourselves to finite particle numbers, deferring the issues
of finite size effects and extrapolation to the thermodynamics
limit to a future publication. Here, we explore in detail how
the algorithm performs with varying particle number and what
range of densities and temperatures is accessible. This allows
us to extend the range of ab initio CPIMC data presented in
Ref. [21] to temperatures as high as ® = 8 and to larger r;
values, where the maximum accessible value is found to be
on the order of r"** ~ ®. However, we demonstrate that it is
possible to access the entire ry range without fixed nodes. To
this end, we invoke another ab initio approach—the recently
developed permutation blocking PIMC method (PB-PIMC)
[24,25] which has a complementary FSP, restricting the
simulations from the side of low temperatures. For N = 33
spin-polarized particles, the combination of CPIMC and PB-
PIMC allows us to present exact results for ® > 0.5, for all
densities, without fixed nodes, see Fig. 1.

The paper is organized as follows. After introducing the
model Hamiltonian of the UEG in Sec. I A, we start with a
brief but self-contained derivation of the CPIMC expansion of
the partition function in Sec. II B and, in Sec. I C, explain the
interpretation of the latter as being a sum over closed paths
in Fock space, in imaginary time. In Sec. IIT A, we proceed
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with addressing the FSP in direct CPIMC simulations, where
we find an abrupt drop of the average sign at a certain critical
value of ry depending on particle number and temperature.
Then, in Sec. IIIB, we demonstrate how the applicable
region of the CPIMC method can be extended to significantly
lower densities by the use of an auxiliary kink potential and
an appropriate extrapolation scheme. In Sec. IV, the main
ideas of PB-PIMC and its differences compared to standard
PIMC are explained. Finally, in Sec. V, we combine the two
complementary methods, CPIMC and PB-PIMC, to obtain
results for N = 33 spin-polarized particles over the whole
density range for several degeneracy parameters reaching from
0 =05t00 =8.

II. THEORY

A. The Jellium Hamiltonian

In second quantization with respect to plane waves, (r |k) =
ﬁeik'r with k = ZT”m, m € Z2, the Hamiltonian of the finite
simulation-cell 3D uniform electron gas consisting of N
electrons on a uniform neutralizing background in a periodic
box of length L takes the familiar form (Rydberg units)

A =>"Kala,+2 Y wyalalaa +Ey, (1)
l phrighy

with the antisymmetrized two-electron integrals, w;;, =
Wjjx — Wijik, Where

4me? 5 )
Wijk = Tk — k)2 ki +K; e+ 2)
and the delta function ensuring momentum conservation.
The first (second) term in the Hamiltonian Eq. (1) describes
the kinetic (interaction) energy. The Madelung energy Ej
accounts for the self-interaction of the Ewald summation in
periodic boundary conditions [26], for which we found E; ~
—2.837297 - (3/4n)%N§rs‘1. The operator &}L (a;) creates
(annihilates) a particle in the orbital |k;). The diverging
contributions in the interaction term, i.e., for k; = k; and
k; =k;, cancel with the contributions due to the positive
background. Note that choosing the plane wave basis, which
is the ideal, natural, and Hartree-Fock basis at the same time,
has the major advantage of having two-electron integrals that
can be computed analytically according to Eq. (2). In an
arbitrary basis one generally has to compute the two-electron
integrals prior to the simulation and store them in computer
memory, limiting the number of basis functions that can be
taken into account. Yet, it is well-known that plane waves
badly describe the Coulomb interaction, making a large
number of basis functions necessary to obtain converged
results.

B. CPIMC expansion of the partition function

In equilibrium many-body quantum statistics the central
quantity is the partition function, which is given by the trace
over the density operator

Z=Trp, 3)
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where, in the canonical ensemble,

p=erH, “
with the inverse temperature § = [kp T1~". In standard PIMC,
the trace in Eq. (3) is evaluated in coordinate space expressing
the density operator in terms of a product of M density
operators at M-times higher temperature, which is justified
by the Trotter formula. To correctly take into account Fermi
statistics, one then has to antisymmetrize the density operator
thereby introducing a sign change in the weight function for
odd particle permutations. This is the source of the FSP in
standard PIMC. In CPIMC instead we perform the trace in
Eq. (3) directly with antisymmetrized N -particle states (Slater
determinants)

|{I’l}> = |n1,n2,...), (5)

which form a complete basis of the Fock space. Here, the n;
denote the fermionic occupation numbers (n; = 0,1) of the
orbitals |k;).

To bring the partition function into a form suitable for a
Monte Carlo algorithm, one can split the Hamiltonian into
a diagonal and off-diagonal part, i.e., H = D + ¥, which
is always possible for any arbitrary basis. In the interaction
picture in imaginary time with respect to the diagonal operator
D,ie.,

V() =ePVe™?, 1 €(0,p), (©6)

the density operator can be written in terms of a perturbation
expansion in orders of Y

N . P
L e—ﬁDTreffO P(rydr

X B B B
= ¢ PP Z/ dn/ dfz---f dtg
K=0"0 7 K1

x (=DXY ()Y (tgon) - ... - Y(o), (7

where T, denotes the time-ordering operator. Inserting Eq. (7)
into Eq. (3), evaluating the trace and rearranging terms, yields
the following expansion of the partition function

Z—ZZ Z /dl']/ dt .. / dtg

KU {n} s1..5x-1

K
% (—I)Ke_ YK Dy (@i =) 1_[ Yooy -y (51), (8)
i=1
where s; denotes a multi-index defining the orbitals in which
the two sets of occupation numbers {n”} and {n¢~D} differ.
Due to the trace in Eq. (3) it has to be {n} = {(n @} = {n®}.
According to the Slater-Condon rules the Fock space matrix
elements of the UEG Hamiltonian do not vanish only if the
states differ in no (diagonal part) or exactly four occupation
numbers (off-diagonal part) so that

n‘” Z k[2n§l) + Z w;dkng')n,(f) s (9)
I<k
Y[n(i)},[n(i—l)}(si) = w_;(—l)a"i (10)

with s; = (pgrs) defining the four occupation numbers in
which {n®} and {n~D} differ, where itis p < ¢ and r < s.
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In this notation, the exponent of the fermionic phase factor is
given by

o, =), = Z AR

Monte Carlo estimators of observables are readily computed
as derivatives of the partition function Eq. (8), e.g., for the
internal energy one obtains

d
—ﬁlnz (11)

ZZ Z /dtlf dry .. / dtg

n S1eSK—1

(H)

1 & K
x (/3 ; Dyyoy(Tist — %) — F) W, (12)

We point out that the expansion (8) is exact and system inde-
pendent. Monte Carlo methods using this expansion belong to
the so-called continuous time QMC methods (in the interaction
picture) since there is no imaginary time discretization left.
This concept has been developed by Prokofev ef al. [27,28]
and extensively applied to lattice models, e.g., [27-30]. We
have presented an alternative derivation of Eq. (8) by starting
from the Trotter formula and developed an algorithm for
continuous systems [23] requiring more involved Monte Carlo
steps compared to lattice models.

C. Closed path in Fock space

A contribution to the partition function Eq. (8) can be
interpreted as a S— periodic path in Fock space, in imaginary
time, that is uniquely defined by the initial determinant
{n} = (n©@} at B =0 and the K two-particle excitations of
type s; = (pqrs) at times t;, where two particles are excited
from the orbitals r and s to p and g. An example of such a
path is illustrated in Fig. 2. Due to their visual appearance,
the excitations are called “kinks.” The weight of each path is
determined by the weight function which, according to Egs. (8)

s1=(2,5,0,3)  |[{n®}) =1001110...)

imaginary time 7

FIG. 2. Typical closed path in Slater determinant (Fock) space.
The state with three occupied orbitals |%0>,|£1),|§3) undergoes a
two-particle excitation s; at time 7, replacing the occupied orbitals
|120),|ié3> by |]22),|%5). Two further excitations occur at 7, and 3.
The states at the “imaginary times” v =0 and t = 8 coincide.
All possible paths contribute to the partition function Z, Eq. (8).
(Figure from Ref. [21].)
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and (10), reads

W(K,{n},s1,...,8k-1,T1, ...,Tk)

K
= (— DK e T Py =0 [Ty (~ 1™ (13)
i=1
The set of occupation numbers of a determinant between kinks
contributes to the exponential function with its corresponding
diagonal matrix element, cf. Eq. (9), weighted with the length
of the time interval on which the determinant is realized in
the path. On the other hand, each kink enters the product over
all kinks in the path with its corresponding antisymmetrized
two-electron integral and phase factor of the involved orbitals.
Since the two-electron integrals can be both positive and
negative, there are altogether three sources of sign changes
in the weight function.

III. SIGN PROBLEM OF CPIMC
A. Sign problem of the direct CPIMC method

Since the weight function W takes both positive and
negative values, it is not a probability density. Therefore, the
Metropolis algorithm can only be used to generate a Markov
chain of paths distributed according to the modulus of the
weight. This is achieved with an ergodic set of six Monte Carlo
steps in which single or paired kinks are added or changed. A
detailed description of these steps can be found in Ref. [22]. By
generating a Markov chain of paths according to the modulus
of the weight, we actually simulate a system described by

o B B B
2= % [an [ an..[ au
K=0, {n} S1..5x—1 0 ! K1
K#1
x |W(K,{n},s1,...,5k-1,T1, ..., Tg)| (14)

rather than the true physical system described by the partition
function Eq. (8). Physical expectation values of observables
are then obtained via

) 5)

where O is the Monte Carlo estimator, e.g., for the internal
energy the term in brackets in Eq. (12), (-)’ denotes the
expectation value with respect to the modified partition
function, Eq. (14), and s = sign(W) measures the sign of each
path. For the expectation value of s, which is called the average
sign, it holds
(s) = ; _ o BNG1) (16)
with f being the free energy per particle. It is straightforward
to show that the relative statistical error of quantities computed
with Monte Carlo methods via Eq. (15) is inversely propor-
tional to the average sign. Therefore, it grows exponentially
with particle number and inverse temperature, while it can only
be reduced by the square root of the number of Monte Carlo
samples. Depending on the available computational resources
acceptable statistical errors can be obtained for average signs
larger than about 10~*. This is the FSP.
Figure 3(a) shows the dependency of the average sign in
CPIMC simulations of the UEG on the density parameter
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FIG. 3. Average sign (a) and average number of kinks (b) of direct
CPIMC, plotted versus the density parameter for different particle
numbers in Nz = 2109 basis functions at 6 = 0.125.

at a fixed degeneracy parameter 6 = 0.125 for different
particle numbers. The number of basis functions is fixed to
Np = 2109, which is sufficient to obtain converged results
(within reasonable statistical errors) for all data points. We
generally observe a rather sharp drop of the average sign
from almost 1 to about 1073, This effect clearly increases and
shifts towards smaller r; with particle number. Consequently,
for N = 33 particles at this temperature we obtain negligible
small statistical errors for ry < 0.4, whereas for slightly larger
values of r; direct simulations are not feasible. To investigate
this behavior in more detail, in Fig. 3(b) we plot the average
number of kinks in the simulations for the same parameters.
This quantity is closely connected to the average sign since
each additional kink in the paths comes with three potential
sources of sign changes, cf. Sec. I C. In CPIMC simulations
with on average more than 30 kinks we find that, depending on
the temperature, the average sign is too small to obtain results
with reasonable statistical errors.

In the high density regime, the average number of kinks
grows linearly with ry, see Fig. 3(b), then at some critical
value of ry it starts growing exponentially. The slope of this
exponential growth increases with particle number so that for
N = 33 it appears to be rather a jump from below 1 to about
200 kinks at r; ~ 0.4 explaining the sudden drop of the average
sign in Fig. 3(a). Interestingly, for further reduced density,
the average number of kinks grows again linearly with r,. We
have carefully checked that this is not an effect of the finite
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FIG. 4. Average number of kinks of direct CPIMC, plotted versus
the density parameter for N =4 particles in Np = 5575 basis
functions at different temperatures.

number of basis functions. However, in this regime, even for
N = 4 particles the average number of kinks is larger than
1000 resulting in a practically vanishing average sign. For
N = 4 particles, Fig. 4 shows the average number of kinks
in dependence on r, for different degeneracy parameters. In
the linear regimes (both at very large and small values of
ry), the average number of kinks depends also linearly on
the degeneracy parameter while the onset of the exponential
growth shifts towards smaller r, for increasing degeneracy,
i.e., for decreasing 0. Further, at lower temperatures, the
transition from the exponential to the linear r; dependency is
smoother, cf. red and brown curve in Fig. 4. Summarizing, the
direct CPIMC method suffers an abrupt drop of the average
sign in particular for larger systems and lower temperature
caused by a strong increase of the average number of kinks in
the simulated paths.

B. Extending CPIMC towards lower density

In this section, the use of the auxiliary kink potentials is
explained, and its influence on the CPIMC method is investi-
gated in detail. These kink potentials have been introduced in
Ref. [21] to obtain the results for r, > 0.4.

The average number of kinks in the simulation is only
connected to the number of kinks K necessary for the partition
function of the primed system to be converged, cf. Eq. (14).
However, to obtain correct physical observables via Eq. (15) it
is sufficient to include only those paths in the simulation that
actually contribute to the physical partition function Eq. (8),
which, due to cancellations of contributions with opposite sign,
may converge for a much smaller value of K than the primed
partition function. In other words, if this cancellation applies,
then we can restrict the simulation paths to a certain number of
kinks and thereby strongly reduce the sign problem while still
obtaining exact results for the observables. In addition, since
both Egs. (8) and (14) are exact perturbation series in orders
of the number of kinks K, it is reasonable to investigate the
convergence of this series with respect to K. For this purpose,
we have introduced an auxiliary Fermi-like kink potential

1

e~k —K+0.5) + 1’ (17)

Vsi(K) =
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FIG. 5. Convergence of the internal energy with respect to the
kink potential parameter «, using different parameters é. The system
consists of N = 4 particles in Ng = 19 basis functions at 6 = 0.5
and ry = 40 for which the energy can be computed with an exact
configuration interaction (CI) method (dashed black line). Each point
is the result of a whole CPIMC simulation, where integer numbers
from 5 to 28 have been used for «.

which becomes a step function at K =k 4 0.5 in the limit
8 — o0o. We add this potential as an auxiliary factor in the
primed partition function so that it acts as a penalty, depending
on the values of § and «, for paths with a large number of kinks.
Hence, the simulated partition function is now parametrized
by § and « reading

o0 B B B
Z/(S,K):ZZ Z / dn/ dr2.../ dtg
K=0. {n} sy...5-1 ¥ 0 o K-
K#1
X VB,K(K)|W(K’{n}7s]3 ey SK—15T1y v e e 77:1()"
(18)

Obviously, for any non-negative value of §, we recover the
original primed partition function in the limit x — oo

Z' = lim Z'(8,k), V&3>=0. (19)
K—>00

Therefore, performing CPIMC simulations for different values
of « at fixed § converges to the exact result in the limit
1/k — 0.

This is demonstrated in Fig. 5, where the convergence of
the internal energy is shown for three different values of §.
The system size has been chosen to be very small, i.e., N = 4
particles in Ng = 19 basis functions até = 0.5 and ry, = 40, so
that the energy can be computed with an exact diagonalization
method (dashed black line). For the parameter k integer
values have been used from « =5 to 28. At § = 10 (red
points), the kink potential practically resembles a step function
restricting paths in the simulation to a maximum of K,,x = &
kinks. Interestingly, in this case the energy converges not
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FIG. 6. Convergence of the internal energy with respect to the
kink potential parameter x« and extrapolation to 1/k — 0, corre-
sponding to K — oo, atd = 1.0.(a) N = 4 particlesandr, = 10.0in
Np = 5575 basis functions. (b) N =33 and r; = 1.0 in Ny = 4169
basis functions. The asymptotic values (black points) are enclosed
between the blue and green lines and, within error bars, coincide with
the PB-PIMC result (orange points).

monotonically towards the exact result but oscillates with even
and odd numbers of k. Strictly speaking, for only odd numbers
of « the energy does converge monotonically while for even
numbers it first drops below the exact value before eventually
converging. This behavior may be explained by the factor
(—1X in the weight function, c.f. Eq. (13), dominating the
other two sign changing sources of the phase factor and the
two-electron integrals. Nevertheless, these oscillations render
a reliable extrapolation to the exact limit 1/« — 0 difficult
and hence, simply restricting the number of kinks is not a
good choice. For smaller values of § (green points in Fig. 5)
where we, to a larger extent, allow paths with a larger number
of kinks than «, the oscillations are significantly reduced. At
8 = 1 (blue points), the oscillations finally vanish completely
and the energy converges monotonically towards the exact
result. In fact, we always observe an s-shaped convergence
behavior with 1/« for Fermi potentials with § << 1. This allows
for a very robust extrapolation scheme to the exact result in the
limit 1/k — oo after the onset of convergence that is clearly
indicated by the change in curvature (at « ~ 17 in Fig. 5).

In Fig. 6(a), we demonstrate this extrapolation scheme for
a more difficult system of N = 4 particles in Ng = 5575 basis
functions at & = 1 and r; = 10, for which the direct CPIMC
method without the kink potential is not applicable due to on
average more than 50 kinks, cf. orange curve in Fig. 4, and a
resulting vanishing sign. To obtain an upper bound of the exact
energy, we perform a horizontal fit (blue line) to those points
after the onset of the convergence, while for the lower bound a
linear fit is performed to those points (green line). The concrete
fitting procedure is explained in Appendix. For comparison the
result for the energy of the likewise exact PB-PIMC method

PHYSICAL REVIEW B 93, 085102 (2016)

(cf. Sec. IV) is shown (orange point), which is well enclosed by
the horizontal and linear fit and hence perfectly confirms our
approach. Note that for the N = 4 particles in only Ng = 19
basis functions in Fig. 5 the energy is entirely converged for
k = 20 so that all points for « > 20 lie on the horizontal line of
the CI energy. This is because here the direct CPIMC algorithm
converges to an average number of 20 kinks. In contrast, in
Fig. 6(a), after the change in curvature at approximately x = 8§,
the energy is not entirely converged and still slowly decreasing.
In this regime a near cancellation of all contributions for
increasing « occurs. However, in the limit k — oo the energy
does not converge linearly towards the exact value, because
the direct CPIMC algorithm always converges at a finite value
of (K}, cf. Fig. 3(b) and Fig. 4. Therefore, from some value
of k onwards, depending on the average number of kinks in
the direct CPIMC algorithm, the points will be on a horizontal
line getting no further contributions for increasing «. For this
reason, the linear fit (green line) is indeed a true lower bound
of the exact energy for the used number of basis function. Our
extrapolation scheme also works well for larger systems, which
is illustrated in Fig. 6(b) for the example of N = 33 particles
atd =1 and r, = 1 in Np = 4169 basis functions. Here, the
extrapolated value (black point) also agrees with the PB-PIMC
result (orange point), which has a larger statistical error than in
Fig. 6(a), due to the larger density. For a convergence plot for
the same system at a lower temperature of 8 = 0.0625, where
no other results are available, we refer to Ref. [21].

In general, the use of the kink potential combined with
the extrapolation scheme actually more than doubles the
accessible density parameter within the CPIMC approach at
fixed other system parameters. Nevertheless, our procedure is
still limited by the FSP, which is indicated by the increasing
error bars of the last points in Fig. 6(a). For example, at « = 10
there are on average (K) ~ 9.4 kinks with a corresponding
average sign (s)’ ~ 0.05, while at « = 16 (last point) there
are (K) ~ 15.3 kinks with a corresponding average sign
(s) ~5x1073 causing a large statistical error. Of course,
if the sign problem becomes too severe before the onset
of convergence (indicated by the change in curvature), our
procedure is not applicable.

IV. BASIC IDEA OF PB-PIMC

In contrast to CPIMC, our permutation blocking PIMC
approach is essentially standard PIMC in coordinate space
but combines two well-known concepts: (1) antisymmetric
imaginary time propagators, i.e., determinants [31-33], and (2)
a fourth-order factorization of the density matrix [34-36]. In
addition, to sample this more complicated configuration space,
one of us has developed an efficient set of Monte Carlo updates
based on the temporary construction of artificial trajectories.
Since PB-PIMC and its application to the UEG have been
introduced in detail in Refs. [24] and [25], here we shall restrict
ourselves to a brief overview.

We start from the coordinate representation of the canonical
partition function (3) describing a system of N spin-polarized
fermions at inverse temperature

Z = % > sgn(o)de RlePA |7, R),  (20)

: (TGSN
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with 7, being the exchange operator that corresponds to a
particular element o from the permutation group Sy with
associated sign sgn(o). However, since the low-temperature
matrix elements of p are not known, we use the group
property p(B8) = H:;Ol p(€), with e = B8/ P, and approximate
each of the P factors at a P times higher temperature by the
fourth-order factorization [35,36]

-l

e ~ e—v.eW,,le—tleKe—vzeWI,ZaI

—nek

X e e—U1€Wal e—zloéK7 (21)

which allows for sufficient accuracy, for small P. The 7%
operators in Eq. (21) denote a modified potential that combines
the usual potential energy V with double commutator terms of
the form

o 2
[([V.K1.V]=

3|

N
IR F=-V,VR), (22)
i=1

where K denotes the operator of the kinetic energy. Therefore,
PB-PIMC requires the additional evaluation of all forces, and
the final result for the partition function is given by

1 s —€V 763140&—2 2
Z:W/ng(e Vgm0 oy Fu (23)
det(pe )det(pga)det(pyp))- 24)

Here, V, and F, contain all contributions of the potential
energy and the forces, respectively, and the diffusion matrix is
given by

pali.j) = A;f’exp(—%(ra, = raA,l-f), (25)
Aie
with A, = /2met;h?/m being the thermal wavelength of a
single “time slice.”

Instead of explicitly sampling each permutation cycle, as
in standard PIMC, we combine both positively and negatively
signed configuration weights in the determinants, which leads
to a cancellation of terms and, therefore, a significantly
increased average sign in our simulations. However, this “per-
mutation blocking” is only effective when A, . is comparable
to the mean interparticle distance. With increasing P, A,
decreases and the average sign eventually converges towards
that of standard PIMC. Hence, it is crucial to combine the
determinants with the fourth order factorization from Eq. (21),
which allows for sufficient accuracy with as few as two or three
propagators and thereby maximizes the benefit of the blocking
by the determinants.

V. CPIMC AND PB-PIMC BENCHMARK RESULTS
FOR THE POLARIZED UEG

Due to the complementary character of the FSP the CPIMC
and PB-PIMC approaches are well suited to be combined and,
thereby, to circumvent the sign problem. Concerning the N =
33 spin-polarized UEG, CPIMC is applicable practically over
the entire temperature range from 6 = 0.01 to 10 and suffers an
increasing sign problem for increasing r,. The critical region
at which the FSP becomes severe is around r; ~ 1 for6 < 0.5
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FIG. 7. Exchange-correlation energy E,. times ry of the N = 33
particle spin-polarized UEG over the density parameter r; for different
degeneracy parameters 6. Results have been obtained by combining
the CPIMC (dots) and PB-PIMC (crosses) approach taking the most
accurate values of each method (connected by the solid line). In
addition, RPIMC results from Ref. [17] are plotted for comparison
(open circles).

and ry ~ 6 forf 2 1.On the other hand, the PB-PIMC method
suffers a weak increase of the FSP for decreasing 7, yetitis in
principle capable of providing results over the entire density
range for degeneracy parameters 6 2 0.75. At temperatures
0 < 0.5, PB-PIMC is not feasible at high density.

For the construction of density functionals the exchange-
correlation energy Ey. (per particle) of the UEG is of particular
importance, which is obtained by subtracting the ideal energy
Uy from the total internal energy

Ey = E - Uy. (26)

In Fig. 7, we show our results for the exchange-correlation
energy. Note that we plot Ey. - r; which converges towards the
finite Hartree-Fock energy in the limit r; — 0. We always
took the most accurate value of CPIMC (solid dots) or
PB-PIMC (crosses), in cases where both are available. These
data complement our earlier results that are included here
as well, to have a complete set (for CPIMC, data for four
isotherms & = 0.5,1,2,4 have been reported in Ref. [21], while
for PB-PIMC, the internal energy for the three isotherms 6 =
1,2,4 has been presented in Ref. [25], where the application
of the method to the UEG is explained in detail). At 6 = 0.5,
CPIMC can provide data up to r; = 1, while PB-PIMC suffers
a too strong FSP below r; = 2 leaving a gap between both
approaches. We have fitted a spline of order 4 to the available
points and are thereby able to accurately close the gap (dotted
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TABLE I. Energies per particle for N = 33 polarized electrons: ideal energy Uy, kinetic energy E\i,, potential energy Ej, and exchange-
correlation energy Ey.. An a marks CPIMC results that have been obtained by an extrapolation as explained in Appendix. For these values, the
error given in parenthesis includes systematic effects. All other errors correspond to a 1o standard deviation. A b marks results from PB-PIMC

calculations. For CPIMC results, the number of basis functions Ny is given in the last column. Energies in units of Ryd.

0 s UO Ekin Epm Exc NB

0.50 0.05 2380.191(6) 2376.036(25) —20.63427(16) —24.77189(26) 2109
0.10 595.0477(16) 593.041(25) —10.40869(32) —12.416(25) 4169
0.20 148.7619(4) 147.818(5) —5.29077(12) —6.234(5) 4169
0.30 66.11641(18) 65.5186(17) —3.57994(9) —4.1777(17) 4169
0.40 37.19048(10) 36.7599(10) —272121(13) ~3.1518(11) 4169
0.60 16.52910(5) 16.2673(14) —1.8577(8)" —2.1198(21) 2109
0.80 9.297620(25) 9.1196(30)* —1.424(4)¢ —1.6034(26)* 2109
1.00 5.950477(16) 5.823(6)" —1.162(6)" —1.291(4)* 2109
2.00 1.487619(4) 1.426(22) —0.6202(23) —0.682(21)°

—0.661¢
4.00 0.3719050(10) 0.3618(6)" ~0.32970(8) ~0.3398(5)"
6.00 0.1652910(5) 0.16355(30) —0.22873(6)" ~0.23047(29)
8.00 0.09297600(25) 0.09356(14) —0.176150(30) —0.17557(13)"
10.00 0.05950500(16) 0.06130(8)" —0.143718(17)® —0.14192(7)®

0.75 0.05 3147.466(12) 3143.18(4) —18.84333(19) —23.13(5) 4169
0.10 786.8665(31) 784.718(10) ~9.51839(8) ~11.667(11) 4169
0.20 196.7166(8) 195.6818(24) —4.85031(4) —5.8851(26) 4169
0.30 87.42961(35) 86.7672(12) —3.289850(30) —3.9523(12) 4169
0.40 49.17916(19) 48.7016(4) —2.506603(22) —2.9842(5) 4169
0.50 31.47466(12) 31.10585(31) —2.034685(20) —2.40349(34) 4169
0.60 21.85740(9) 21.5612(7)" —1.71865(16) —2.0154(11) 4169
0.80 12.29479(5) 12.0878(5)“ —1.32039(10)“ —1.5280(8)“ 4169
1.00 7.868665(31) 7.7140(5)° —1.0793(6)° —1.2340(5) 4169
2.00 1.967166(8) 1.9097(6) —0.58218(7) —0.6397(6)"

4.00 0.4917920(19) 0.47535(10)" ~0.316986(20)" ~0.33343(10)

6.00 0.2185740(9) 0.21257(13) —0.221880(28)" —0.22788(13)

8.00 0.1229480(5) 0.120659(29)" —0.171940(11)’ —0.174229(29)"
10.00 0.07868700(31) 0.078268(32)" —0.140854(9) —0.141272(31)*

1.00 0.05 3957.262(19) 3953.20(9) —17.56511(21) —21.63(9) 4169
0.10 989.316(5) 987.269(20) —8.87662(10) ~10.923(21) 4169
0.20 247.3289(12) 246.337(5) —4.52798(5) ~5.520(5) 4169
0.30 109.9239(5) 109.2790(18) —3.07450(4) —3.7194(19) 4169
0.40 61.83222(30) 61.3643(11) —2.345237(22) —2.8132(11) 4169
0.60 27.48099(13) 27.1891(4) —1.611535(18) —1.9034(4) 4169
0.80 15.45805(8) 15.2540(7) —1.2450(15) —1.4491(8) 4169
1.00 9.89316(5) 9.7381(10)" —1.01625(29) —1L1717(7)" 4169
1.50 4.396958(21) 4.3066(15) —0.71068(17) —0.8010(15)

2.00 2.473289(12) 2.4136(8) —0.55337(12)" —0.6131(8)
3.00 1.099239(5) 1.06770(26)" —0.39052(5) —0.42206(26)"
4.00 0.6183220(30) 0.59980(14)" ~0.305012(33)" ~0.32353(15)"
5.00 0.3957260(19) 0.38361(7) —0.251795(19) —0.26392(8)
6.00 0.2748100(13) 0.26690(5) —0.215138(13) —0.22305(5)
8.00 0.1545810(8) 0.150966(20) —0.167579(7)° —0.171193(22)
10.00 0.0989320(5) 0.097380(13)" —0.137806(5)" —0.139358(13)

2.00 0.05 7335.15(4) 7331.95(15) —14.93186(20) ~18.13(15) 5575
0.10 1833.788(11) 1832.30(4) —7.54095(11) —9.02(4) 5575
0.20 458.4470(26) 457.718(8) —3.84305(5) —4.572(8) 5575
0.30 203.7542(12) 203.2810(32) —2.60821(4) —3.0815(34) 5575
0.40 114.6118(7) 114.2583(20) —1.989454(30) ~2.3429(21) 5575
0.60 50.93856(29) 50.7147(9) —1.368155(19) —1.5920(10) 5575
0.80 28.65294(16) 28.4931(5) ~1.055120(15) —1.2149(5) 5575
1.00 18.33788(11) 18.21454(30) —0.865709(17) —0.98905(31) 5575
1.50 8.15017(5) 8.0775(12)° —0.60945(21) —0.6821(12)°
2.00 4.584470(26) 4.5339(4)" —0.4780(5)“ —0.5287(6)* 5575
3.00 2.037542(12) 2.00917(27) —0.34120(8) ~0.36958(28)"

085102-8



Ab INITIO QUANTUM MONTE CARLO ...

TABLE 1. (Continued).

PHYSICAL REVIEW B 93, 085102 (2016)

0 Iy UO Ekin Epot Exc NB

4.00 1.146118(7) 1.12840(27) —0.26956(9)" —0.28727(28)"
5.00 0.733515(4) 0.72143(9)" —0.224617(35)" —0.23670(10)"
6.00 0.5093860(29) 0.50075(11) —0.19347(5) ~0.20210(13)
8.00 0.2865290(16) 0.28185(4)? —0.152706(18) —0.15739(4)

10.00 0.1833790(11) 0.180676(18)" —0.126841(10) —0.129543(21)

4.00 0.05 14258.10(14) 14256.29(19) —13.17459(10) —14.99(23) 24405
0.10 3564.525(35) 3563.55(5) —6.63750(5) —7.62(6) 24405
0.20 891.131(9) 890.660(12) ~3.367889(23) ~3.839(14) 24405
0.30 396.058(4) 395.752(5) —2.277115(17) ~2.583(7) 24405
0.40 222.7828(22) 222.5676(30) —1.731134(13) ~1.946(4) 24405
0.50 142.5810(14) 142.4029(24) —1.403167(13) —1.5812(27) 24405
0.60 99.0146(10) 98.8721(13) —1.184072(9) —1.3265(16) 24405
0.80 55.6957(5) 55.5925(13) —0.909464(11) ~1.0126(14) 24405
1.00 35.64525(35) 35.5622(10) —0.743926(12) ~0.8269(10) 24405
1.50 15.84233(15) 15.7935(18)" —0.5208(4)" ~0.5696(19)"

2.00 8.91131(9) 8.87718(18) —0.407967(8) —0.44210(20) 24405
3.00 3.96058(4) 3.9409(4)" —0.29176(17)" —0.3115(5)"
4.00 2.227828(22) 2.21563(34)" —0.23140(14)" —0.2436(4)"
5.00 1.425810(14) 1.41669(16)? —0.19370(8) ~0.20282(18)
6.00 0.990146(10) 0.98344(14) —0.16772(8) —0.17442(17)
8.00 0.556957(5) 0.55306(9)" —0.13378(5)" —0.13767(10)"
10.00 0.3564530(35) 0.35389(4)" —0.112127(25)" —0.11469(4)"

6.00 0.05 21232.56(31) 21231.34(28) —12.50240(7) —13.7(4) 38911
0.10 5308.14(8) 5307.53(7) —6.28885(4) ~6.90(11) 38911
0.20 1327.035(19) 1326.709(17) —3.181308(18) ~3.507(26) 38911
0.30 589.793(9) 589.566(8) —2.145065(12) —2.372(12) 38911
0.40 331.759(5) 331.602(5) —1.626612(9) —1.783(7) 38911
0.50 212.3256(31) 212.1926(34) —1.315274(9) —1.448(5) 38911
0.60 147.4484(21) 147.3440(24) —1.107473(8) ~1.2118(32) 38911
0.80 82.9397(12) 82.864(4) —0.847318(17) ~0.923(4) 38911
1.00 53.0814(8) 53.0227(25) —0.690775(17) —0.7494(26) 38911
2.00 13.27035(19) 13.2448(6) —0.374712(10) —0.4003(6) 38911
4.00 3.31759(5) 3.3074(5)" —0.21107(8)" —0.2216(6) 38911
6.00 1.474484(21) 1.46893(21) —0.15299(14)" —0.15854(26)"

8.00 0.829397(12) 0.82618(12) —0.12223(8) —0.12544(15)
10.00 0.530814(8) 0.52859(9)" —0.10284(7)" —0.10507(11)"

8.00 0.05 28224.1(5) 28222.5(4) —12.14740(7) —13.8(7) 44473
0.10 7056.03(14) 7055.43(10) ~6.103529(32) —6.71(17) 44473
0.20 1764.009(34) 1763.732(25) —3.081446(15) —3.36(4) 44473
0.30 784.004(15) 783.799(12) —2.073757(12) —2.279(19) 44473
0.40 441.002(9) 440.863(7) —1.569731(9) —1.709(11) 44473
0.50 282.241(5) 282.151(5) —1.267116(9) —1.358(8) 44473
0.60 196.001(4) 195.9224(35) —1.065252(7) —1.144(5) 44473
0.80 110.250521) 110.191(8) —0.812627(18) —0.872(8) 44473
1.00 70.5603(14) 70.509(9) —0.660769(30) —0.712(10) 44473
2.00 17.64009(34) 17.6191(11) —0.355004(10) —0.3760(12) 44473
3.00 7.84004(15) 7.8274(5) —0.251192(7) —0.2638(5) 44473
4.00 4.41002(9) 4.40107(15) ~0.198143(7) ~0.20709(17) 44473
6.00 1.96001(4) 1.95532(32)¢ —0.14327(8)" —0.1482(5)" 44473
8.00 1.102505(21) 1.09990(18)" —0.11447(13) —0.11708(22)

10.00 0.705603(14) 0.70369(11) —0.09639(7) —0.09830(13)

line). With this, we are able to present ab initio results for
this system for the entire density range, for all temperatures
® > 0.5.

In Table I, we present all CPIMC and PB-PIMC data points
shown in Fig. 7. In addition to the exchange-correlation energy,
the ideal, kinetic, and potential energy are listed. Note that

even the ideal energy in the canonical ensemble cannot be
calculated analytically. Further, we added the number of basis
functions Np that have been used in the corresponding CPIMC
simulation, where we have carefully checked convergence
of the energy (within statistical errors) with respect to Np.
The origin of the fluctuations at the highest temperature
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FIG. 8. Exchange-correlation energy E,. times r, of the N = 33
particle spin-polarized UEG over the degeneracy parameter 6 for
different density parameters r,. Shown are results from CPIMC (dots)
and PB-PIMC (crosses) calculations. In addition, RPIMC results from
Ref. [17] are plotted for comparison (lines with light colors and open
circles, for ry = 1 and ry, = 4).

are easily understood: At 6 = 8, the relative contribution
of the exchange-correlation energy to the internal energy
becomes very small since the kinetic energy dominates for
increasing temperature. Hence, Ey. is obtained by subtracting
two large numbers of similar size which, of course, is ill-
conditioned and, therefore, increases the statistical error of
Ey.. The same applies in the limit »; — 0. Nevertheless,
our exchange-correlation energies represent the most accurate
results published to date.

For comparison we also plot the RPIMC data from
Ref. [17]. It is evident that they not only have a significantly
larger statistical error, but they clearly deviate systematically
from our results. Interestingly, the deviations increase from
0 =1to6H =2, and even at & = 4, there is a significant dis-
crepancy. This observation stands in contrast to the assumption
that the systematic error due to the fixed node approximation
vanishes for increasing temperature.

Finally, Fig. 8 shows the dependence of the exchange-
correlation energy on temperature for four fixed densities.
We again show the most accurate points of either CPIMC
and PB-PIMC. CPIMC allows for calculations practically
down to the ground state, for r; < 1. On the other hand,
PB-PIMC is limited, at larger densities, to temperatures
6 > 0.5. We observe that all isochores are nearly parallel
and do not cross. An interesting feature is the existence of a
minimum around ® ~ 0.25, for all densities (some uncertainty
remains for the lowest density, r; = 4, as our simulations are
confined to ® > 0.5). Similar observations have been made
in the fit results of Ref. [2] and in the computation of the
screened potential of an ion in a streaming quantum plasma
[37].

The origin of this nonmonotonic behavior is a competition
of two effects. The governing trend is a decrease of the (mod-
ulus of the) interaction energy with temperature arising from a
thermal broadening of the particle density. At low temperatures
there exists a second trend arising from quantum diffraction

PHYSICAL REVIEW B 93, 085102 (2016)

effects: The thermal DeBroglie wavelength is reduced with
temperature increase which increases the Coulomb interaction.
A similar trend of an intermediate increase of correlations with
temperature has been predicted for Wigner crystallization in
2D [38].

In addition to the ab initio data, Fig. 8 also includes the fixed
node RPIMC data of Ref. [17] which are available for the two
lowest densities, r, = 1 and r; = 4. For the case r; = 4 the
RPIMC results are systematically too high by a few percent.
More severe deviations are observed for r, = 1 where the
energies are too low. Particularly strong deviations are seen
for low temperatures, 6 < 1 where the error exceeds 10%,
giving even rise to a crossing of two isochores.

VI. SUMMARY AND DISCUSSION

This paper was devoted to a detailed discussion of the
CPIMC simulation results for the uniform electron gas
reported in a recent paper [21]. We presented a systematic
analysis of the fermion sign problem of direct CPIMC for the
polarized UEG. For increasing particle number, a sharp drop
of the average sign, at a certain critical value of rJ"(®,N),
has been observed and was shown to be connected to a strong
increase in the average number of kinks in the simulation paths
in Fock space. By introducing an auxiliary Fermi-like kink
potential we introduced a modified CPIMC approach for which
the accessible ry range could be increased by more than a factor
2, for a fixed particle number and temperature [21]. When
restricting the number of kinks to a maximum number K,
it turned out that the energy does not converge monotonically
but rather oscillates towards the exact result with increasing
Kmax, which renders a reliable extrapolation scheme difficult.
However, by choosing the kink potential parameter § such that
it acts as a smooth penalty for paths with a larger number
of kinks, a monotonic convergence of the energy could be
achieved. We have developed a robust extrapolation scheme
that provides strict upper and lower bounds thereby yielding
an accurate value for the thermodynamic quantities of the
UEG.

An independent confirmation of our extrapolation proce-
dure could be obtained by a comparison to accurate PB-PIMC
results. Interestingly, utilizing the kink potential, the energy
of the simulation typically converges at about 20-30 kinks
(on average in the simulation paths), whereas the direct
CPIMC approach (without the potential) equilibrates at several
thousand kinks. This is explained by an almost complete
cancellation of contributions of paths with a large number
of kinks in the partition function, which sets the limitation of
the auxiliary kink potential method: It works only if we are
able to reach the onset of this near cancellation, before the sign
problem becomes too severe. This is clearly detectable from
the convergence behavior of the energy, cf. Fig. 6: Only when
the energy approaches the horizontal asymptote, as a function
of 1/k, the method is applicable.

The second goal of this paper was to extend the available
ab initio results for the exchange-correlation energy of the
polarized electron gas to higher temperatures and lower den-
sities. This was achieved by combining two complementary
independent methods—CPIMC and PB-PIMC. With this we
were able to avoid the sign problem for N = 33 electrons over
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the entire density range, for all temperatures 8 > 0.5, and we
presented data up to 6 = 8, completely avoiding fixed nodes
or similar approximations. In all cases where both methods
overlap we observed perfect agreement (within error bars),
allowing for extremely valuable cross-checks.

Below 6 = 0.5, the present combination of two methods
accesses only parts of the density range. Within the current
implementations (and reasonable numerical effort) PB-PIMC
is not applicable, for high densities, whereas CPIMC can only
provide accurate results up to a minimum density around
ry ~ 1, leaving open a gap in the density which further
increases with the particle number. Work is presently underway
to access larger particle numbers and, eventually, perform an
extrapolation to the thermodynamic limit, as was successfully
demonstrated for very high densities in Ref. [21].

The present results should be useful for the development of
improved quantum Monte Carlo simulations including density
matrix QMC [39,40] and tests of improved fermionic nodes for
RPIMC. The present scheme of combining CPIMC and PB-
PIMC should also be suitable to produce first-principle results
for the paramagnetic electron gas for which an increased sign
problem of CPIMC was observed [21].
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APPENDIX: EXTRAPOLATION WITH RESPECT
TO THE NUMBER OF KINKS

To obtain an upper bound for the energy from CPIMC
calculations utilizing the kink potential (see, e.g., Fig. 6) a
horizontal (constant) fit is performed as follows: First, all
data points with a relative error exceeding 1% are discarded
defining a maximum value of k, denoted k. (minimum
of 1/kmax), satisfying this condition. Second, all data points
are upshifted by 1o standard deviation. Then, horizontal fits
are performed to the next 6,7,8 ... ,n; points with k¥ < Kpax,
where we add additional points as long as these deviate no more
than 40 from the constant fit. This procedure ensures that we
only fit to those points belonging to the onset of convergence
(indicated by the change in curvature in Fig. 6).

A lower bound of the energy is obtained by starting with a
linear fit to the last n;, points with k < kpn,x. But instead of the
prior upshift of the data by 1o we now perform a downshift of
the data points by 1o prior to the fit. We proceed with adding
points included in the linear fit as long as there are less than
3 points deviating by 20 and less than 1 point deviating by
30 from the fit. The lower bound of the energy is given by
the lowest value of all linear fits at 1/« = 0. The result for the
energy is then computed as the mean value of the lower and
upper bounds with the error estimated (from above) as their
difference.
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4.2 The Unpolarized Case

Up to this point, we had limited our investigations to the spin-polarized (ferromagnetic) case.
However, as naturally occurring plasmas tend to be mostly unpolarized (i.e., paramagnetic),
this case certainly is of even higher interest for warm dense matter applications. For this
reason, with the aid of the Daad—Rise exchange student Connor Hann, I extended PB-PIMC
to the simulation of multiple particle species. In this case, these were given by spin-up
and -down electrons, although the future investigation of other scenarios like electrons and
holes [67] is easily possible.

The details regarding the modification of the underlying equations and the adaption of
the free parameters in the fourth-order factorization of the density matrix, which is necessary
due to the absence of the Pauli exclusion principle between spin-up and -down electrons, are
discussed in detail in the following paper?, Ref. [163]. Further, we investigated the fermion
sign problem for this case and, again, found a significant extension of the range of accessible
parameters compared to standard PIMC. However, the FSP tends to be in general more severe
than in the spin-polarized case. A similarly detailed discussion was given regarding the
extension of the CPIMC method to this system, although I did not contribute to it.

In addition, we performed extensive simulations of the unpolarized UEG and made
the combined data from both methods available for future method development. Overall,
we found that RPIMC delivers improved results for the exchange—correlation energy as
compared to the spin-polarized case, although both the kinetic and interaction contribution
still substantially deviate. In contrast, the independent PB-PIMC and CPIMC data are in
excellent agreement everywhere, as it is expected. Finally, we presented, for the first time,
a comparison to RPIMC for a quantity that is not some kind of energy, namely the pair

correlation function g(r).

2T. Dornheim, S. Groth, T. Schoof, C. Hann, and M. Bonitz, Phys. Rev. B 93, 205134 (2016). Copyright by
the American Physical Society (2016).
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Ab initio quantum Monte Carlo simulations of the uniform electron gas
without fixed nodes: The unpolarized case
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In a recent publication [S. Groth ef al., Phys. Rev. B 93, 085102 (2016)], we have shown that the combination
of two complementary quantum Monte Carlo approaches, namely configuration path integral Monte Carlo
[T. Schoof et al., Phys. Rev. Lett. 115, 130402 (2015)] and permutation blocking path integral Monte Carlo
[T. Dornheim et al., New J. Phys. 17, 073017 (2015)], allows for the accurate computation of thermodynamic
properties of the spin-polarized uniform electron gas over a wide range of temperatures and densities without

the fixed-node approximation. In the present work, we extend this concept to the unpolarized case, which

requires nontrivial enhancements that we describe in detail. We compare our simulation results with recent
restricted path integral Monte Carlo data [E. W. Brown ef al., Phys. Rev. Lett. 110, 146405 (2013)] for different
energy contributions and pair distribution functions and find, for the exchange correlation energy, overall better
agreement than for the spin-polarized case, while the separate kinetic and potential contributions substantially

deviate.
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I. INTRODUCTION

Quantum Monte Carlo (QMC) simulations of fermions
are of paramount importance to describe manifold aspects
of nature. In particular, recent experimental progress with
highly compressed matter [ 1-3] such as plasmas in laser fusion
experiments [4-9] and solids after laser irradiation [10], but
also the need for an appropriate description of compact stars
and planet cores [11-13], has lead to a high demand for
accurate simulations of electrons in the warm dense matter
(WDM) regime (i.e., density parameter ry =7/ag ~ 1 and
degeneracy temperature 0 = kg7 /Er ~ 1). Unfortunately, the
application of all QMC methods to fermions is severely
hampered by the fermion sign problem (FSP) [14,15]. A
popular approach to circumvent this issue is the restricted path
integral Monte Carlo (RPIMC) [16] method, which, however,
is afflicted with an uncontrollable error due the fixed node
approximation [17-20]. Therefore, until recently, the quality
of the only available QMC results for the uniform electron gas
(UEG) in the WDM regime [21] has remained unclear.

To address this issue, in a recent publication (pa-
per I, Ref. [22]) we have combined two complementary
approaches: our configuration path integral Monte Carlo
(CPIMC) method [23-25] excels at high to medium density
and arbitrary temperature, while our permutation blocking
path integral Monte Carlo (PB-PIMC) approach [26,27] sig-
nificantly extends standard fermionic PIMC [28,29] towards
lower temperature and higher density. Surprisingly, it has been
found that existing RPIMC results are inaccurate even at high
temperatures.

However, although the spin-polarized systems that have
been investigated in our previous works are of relevance for
the description of, e.g., ferromagnetic materials or strongly
magnetized systems, they constitute a rather special case,
since most naturally occurring plasmas are predominantly
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unpolarized. Therefore, in the present work we modify both
our implementations of PB-PIMC and CPIMC to simulate the
unpolarized UEG. So far only a single data set for a small
system (N = 14 electrons, one isotherm) could be obtained in
our previous work [25] because the paramagnetic case turns
out to be substantially more difficult than the ferromagnetic
one. Therefore, we have developed nontrivial enhancements
of our CPIMC algorithm that are discussed in detail. With
these improvements, we are able to present accurate results
for different energies for the commonly used case of N = 66
unpolarized electrons over a broad range of parameters.

Since many details of our approach have been presented
in our paper I [22], in the remainder of this paper we restrict
ourselves to a brief, but self-contained introduction to CPIMC
and PB-PIMC. We set the focus on the differences arising
from their application to the unpolarized UEG, compared to
the spin-polarized case and, therefore, the present investigation
complements our previous results [22,27] for the latter.
In Sec. II, we introduce the model Hamiltonian, both in
coordinate space (I A) and second quantization (Il B) and,
subsequently, provide a brief introduction to the employed
QMC approaches (Sec. III), namely PB-PIMC (IIT A) and
CPIMC (LI B). Finally, in Sec. IV, we present combined
results from both methods for the exchange correlation,
kinetic, and potential energy (IV A), as well as the pair
distribution function (IV B). Further, we compare our data
to those from RPIMC [21], where available. While we find
better agreement than for the spin-polarized case [22,27],
there nevertheless appear significant deviations towards lower
temperature.

II. HAMILTONIAN OF THE UNIFORM ELECTRON GAS

The uniform electron gas (“Jellium”) is a model system of
Coulomb interacting electrons in a neutralizing homogeneous
background. As such, it explicitly allows one to study effects
due to the correlation and exchange of the electrons, whereas

©2016 American Physical Society
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those due to the positive ions are neglected. Furthermore, the
widespread density functional theory (DFT) crucially depends
on ab initio results for the exchange correlation energy of the
uniform electron gas (UEG), hitherto at zero temperature [30].
However, it is widely agreed that the appropriate treatment of
matter under extreme conditions requires one to go beyond
ground state DFT, which, in turn, needs accurate results for
the finite temperature UEG. While the electron gas itself is
defined as an infinite macroscopic system, QMC simulations
are possible only for a finite number of particles N. Hence we
always assume periodic boundary conditions and include the
interaction of the N electrons in the main simulation cell with
all their images via Ewald summation and defer any additional
finite-size corrections [31-33] to a future publication.

A. Coordinate representation of the Hamiltonian

Following Refs. [27,31], we express the Hamiltonian (we
measure energies in Rydberg and distances in units of the
Bohr radius ag) for N = N4 + N unpolarized electrons in
coordinate space as

N N N
H=-) Vi+) Y W r)+Ne& (1)
i=1 i=1 j#i

with the well-known Madelung constant £ and the periodic
Ewald pair interaction

Y(r,s) = %Z ¢

b4 erfc(k|r —s + R))
- . 2
ﬂv+; @

—12G?/k? £2miGr—s)

7 G?

Ir—s+R|

Here R = n;L and G = ny/L denote the real and reciprocal
space lattice vectors, respectively, with the box length L, vol-
ume V = L3, and the usual Ewald parameter «. Furthermore,
PB-PIMC simulations require the evaluation of all forces
within the system, where the force between two electrons i
and j is given by

2 G
F;; = v Z <@sin[2ﬂG(ri _ l'j)]e_”sz/"2>
G0

r,—r;+R 2kt _ 22
+Z—f3<erfc(m)+—e”>, 3)
= a VT

with the definition o« = |r; — r; + R|.

B. Hamiltonian in second quantization

In second quantization with respect to spin orbitals of plane
waves, (ro |kjo;) = €78, with k; = Zm;, m; € Z°,
and o; € {1,]}, the model Hamiltonian, Eq. (1), takes the

form

A=>"Kaja,+2 Y wyalalaa + NPt @)
i i< jk<l
itk j#l
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with the antisymmetrized two-electron integrals, w;;, =
Wk — Wijk, Where

471 &2

YIS T — k2

Ok, +k; ki+k; 801,000,075 ®)]
and the Kronecker §’s ensuring both momentum and spin
conservation. The first (second) term in the Hamiltonian Eq. (4)
describes the kinetic (interaction) energy. The operator &,-T (@)
creates (annihilates) a particle in the spin orbital |k;o;).

III. FERMIONIC QUANTUM MONTE CARLO
WITHOUT FIXED NODES

Throughout the entire work, we consider the canonical
ensemble, i.e., the volume V, particle number N, and inverse
temperature 8 = 1/kgT are fixed. In equilibrium statistical
mechanics, all thermodynamic quantities can be derived from
the partition function

Z =Trp, (6)

which is of central importance for any QMC formulation and
defined as the trace over the canonical density operator

p=ePH. (7
The expectation value of an arbitrary operator A is given by

Tr(Ap) 1

(A) = = ETr(A,é). (8)

Trp

However, for an appropriate description of fermions, Egs. (6)
and (8) must be extended either by antisymmetrizing p — p~
or the trace itself [23], Tr — Tr™. Therefore, it holds that

Z=Trp~ =Tr p. )

While defining the trace in Eq. (9) as either expression does not
change the well-defined thermodynamic expectation values,
it does lead to rather different formulations of the same
problem. The combination of antisymmetrizing the density
matrix and evaluating the trace in coordinate space is the first
step towards both standard PIMC and PB-PIMC, cf. Sec. [IT A,
but also RPIMC. All these approaches share the fact that they
are efficient when fermionic quantum exchange does not yet
dominate a system, but they will become increasingly costly
towards low temperature and high density. Switching to second
quantization and carrying out the trace in antisymmetrized
Fock space, on the other hand, is the basic idea behind our
CPIMC method, cf. Sec. III B, and, in a different way, behind
the likewise density matrix QMC method [34]. The latter
approach has recently been applied to the case of N =4
spin-polarized electrons [35], where complete agreement with
our CPIMC results [24] was reported. These QMC approaches
tend to excel at high density, i.e., weak nonideality, and become
eventually unfeasible towards stronger coupling strength.

Therefore, it is a natural strategy to combine different
representations at complementary parameter ranges as this
does effectively allow one to circumvent the numerical
shortcomings with which every single fermionic QMC method
is necessarily afflicted [22,27].
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A. Permutation blocking PIMC
1. Basic idea

In this section, we will briefly introduce our permutation
blocking PIMC approach. A more detailed description of the
method itself and its application to the spin-polarized UEG
can be found in Refs. [26,27].

The basic idea behind PB-PIMC is essentially equal to
standard PIMC in coordinate space, e.g., Ref. [29], but, in ad-
dition, combines two well-known concepts: (1) antisymmetric
imaginary time propagators, i.e., determinants [36-38], and
(2) a fourth-order factorization of the density matrix [39-
42]. Furthermore, since this leads to a significantly more
complicated configuration space without any fixed paths, one
of us has developed an efficient set of Metropolis Monte
Carlo [43] updates that utilize the temporary construction of
artificial trajectories [26]. As mentioned above, we evaluate the
trace within the canonical partition functionfor N = Ny + N,
unpolarized electrons in coordinate representation

Z Z sgn(oy) sgn(o)

U¢€SNT ¢7¢68Ni

NT'Nl

x /dR (Rl e 7 |, 7, R) (10)

with 7, being the exchange operator that corresponds to
a particular element oy, | from the permutation group Sy,
with associated sign sgn(oy ) and 1 (}) denoting spin-up
(spin-down) electrons. However, since the kinetic and potential
contributions to the Hamiltonian, K and \7, do not commute,
the low-temperature matrix elements of p are not known.
To overcome this issue, we use the common group property
H(B) = ]_[P ! p(€) of the density matrix, with ¢ = 8/ P, and
approximate each of the P factors at a P times higher
temperature by the fourth-order factorization [40,41]

—eH

e ~ el

1y e—tleke—vzewl_z,ll

—r.e[%e—meWﬂl

xe e~ 20k (11)

The W operators in Eq. (11) combine the usual potential energy
V with double commutator terms of the form

[v,K1,v ZlF ’, Fi=-ViV(R), (12)

and, therefore, require the evaluation of all forces [44] within

the system; cf. Eq. (3). The explicit expressions of these
modified potential terms are given by

u h? N
& I 0
Wo =V 4+ UT‘”GZ<Z Z] |F,»|2>,
i
N

~ A Uuo hz
Wige =V +—( - 2a1)62<— > |F,«|2).

v2 me3

Furthermore, we note that there are two free parameters in
Eq. (11) that can be used for optimization, namely 0 < a; < 1
and 0 <7 < (1 — 1/\/5)/2. All other coefficients (uq, vy, v2,
and #;) are subsequently calculated from these choices; see
Refs. [26,41].

(13)
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The final result for the PB-PIMC partition function is given
by

1
P-1 _ 3, K2
X 1_[ (3_5Vae_é MUILTF"‘DO(,TDO(N)’ (14

with V, and F, containing all contributions of the potential
energy and the forces, respectively. For each propagator «,
there are N particle coordinates on the “main time slice,” Ry,
and, in addition, on two “daughter slices,” Ry4 and R, 5, with
the integration in Eq. (14) being carried out over all of them.
The exchange-diffusion functions are defined as

Dy 4 = det(pq,1)det(0g4,1)det(0n s, 1),

(15)
Dy, = det(py, | )det(pqa,,)det(pys, )

and contain the determinants of the diffusion matrices

L. 5 (Ya,t,j—Taa,pi+0L)
pat (i) = MZe i . e

with A, = /2met;h?/m being the thermal wavelength of a
single “time slice.”

In contrast to standard PIMC, where each permutation cycle
has to be explicitly sampled, we combine both positively and
negatively signed configuration weights in the determinants
both for the spin-up and spin-down electrons. This leads to a
cancellation of many terms and, consequently, a significantly
increased average sign in our Monte Carlo simulations. Yet,
this “permutation blocking” is only effective when A, is
comparable to the mean interparticle distance, i.e., when there
are both large diagonal and off-diagonal elements in the diffu-
sion matrices. With an increasing number of high-temperature
factors P, A, decreases and, eventually, when there is only but
a single large element in each row of the p, 1, the average sign
converges towards that of standard PIMC. For this reason, it
is crucial to combine the determinants from the antisymmetric
propagators with an appropriate factorization of the density
matrix that allows for sufficient (though finite) accuracy with
as few as two or three propagators, thereby maximizing
the benefit of the blocking within the determinants. This
requirement is met by the factorization scheme Eq. (11) which,
in the limit of large P, leads to a convergence behavior with
1/P* as was shown in Ref. [41]. However, even though this
asymptotic limit is not reached (which is the case for all
simulations presented in this work), the empirical choice of the
two free parameters 7y and a; allows for significantly improved
accuracy with only two or three propagators (compared to the
primitive factorization e=<# & ¢=<Ke=¢V) [41].

Furthermore, we note that since electrons with different
spin projections do not exchange at all, PB-PIMC simulations
of the unpolarized UEG with N = N; + N, do suffer from
a significantly less severe sign problem than for N = 2N,
spin-polarized electrons.

2. Application to the unpolarized UEG

The accuracy of our PB-PIMC simulations crucially de-
pends on the systematic factorization error for small P [26,27].
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FIG. 1. Influence of the relative interslice spacing #, on the
convergence—the potential energy from PB-PIMC simulations of
N = 4 unpolarized electrons at & = 0.5 and r; = 1 is plotted versus
to for the fixed choice a; = 0.33.

Thus we begin the investigation of the unpolarized electron
gas with the analysis of the empirical optimization of the
two free parameters from Eq. (11), namely a; (weighting
the contributions of the forces on different time slices) and
to (controlling the relative interslice spacing). In Fig. 1, we
fixed a; = 0.33 fixed, which corresponds to equally weighted
forces on all slices, and plot the potential energy V for
P = 2,3,4 over the entire fj range for a benchmark system of
N = 4 unpolarized electrons atr; = 1 and & = 0.5. Evidently,
for all #y values V approaches the exact result, which has
been obtained with CPIMC, monotonically from above. The
optimum value for 7, is located around #y = 0.14, where all
three PB-PIMC values are within single error bars with the
black line. For completeness, we mention that this particular
set of the optimum free parameters for the energy is consistent
with the previous findings for different systems [26,27,41].
A detailed investigation of the convergence properties of the
employed fourth-order factorization including the asymptotic
behavior for large P is beyond the scope of this work and can
be found in Ref. [41].

A natural follow-up question is how the factorization error
for few propagators behaves as a function of the density
parameter r, in the WDM regime, 6 = 1. In Fig. 2, we show
results for the relative error of the potential [AV /| V|, panel
(a)] and kinetic energy [A K / K, panel (b)], where the reference
values are again obtained from CPIMC (see Fig. 12 for a
similar plot for N = 66 electrons). The statistical uncertainty
is mainly due to PB-PIMC, except for 7; = 4 where the CPIMC
error bar predominates. For the kinetic energy, even for P = 3
there are no clear systematic deviations from the exact result
over the entire r; range. Only with two propagators, our
results for K appear to be slightly too large for r; € (0.5,1,2),
although this trend hardly exceeds AK/K =5 x 10~*. For
the potential energy, the factorization error behaves quite
differently. Forr; > 1, even with two propagators the accuracy
is better than 0.1%, while towards higher density (r; < 1),
the convergence significantly deteriorates. In particular, at
ry = 0.25 even with P = 5 there is a deviation of AV/|V| =
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FIG. 2. Density dependence of the relative time step error from
PB-PIMC with a; = 0.33 and ty, = 0.14—the relative differences
between PB-PIMC results with P = 2,3,4,5 and reference data from
CPIMC are plotted versus r; for the potential energy (a) and the
kinetic energy (b), with 6 = 1.

0.1%. This observation is in striking contrast to our previous
investigation of the polarized UEG, where the relative error
in both K and V decreased towards r, — 0. The reason
for this trend lies in the presence of two different particle
species which do not exchange with each other, namely N;
spin-up and N, spin-down electrons. Even at high density,
two electrons from the same species are effectively separated
by their overlapping kinetic density matrices that cancel in the
determinants, which is nothing else than the Pauli blocking.
Yet, a spin-up and a spin-down electron do not experience such
a repulsion and, at weak coupling (small r,), can be separated
by much smaller distances r from each other. With decreasing
r the force terms in Eq. (11) that scale as F(r) o< 1/r% will
eventually exceed the Coulomb potential V(r) o 1/r, i.e.,
the higher order correction predominates. This trend must
be compensated by an increasing number of propagators P.
Hence the fermionic nature of the electrons that manifests as
the Pauli blocking significantly enhances the performance of
our factorization scheme, which means that the simulation of
unpolarized systems is increasingly hampered towards high
density. In addition to the Monte Carlo inherent sign problem,
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this is a further reason to combine PB-PIMC with CPIMC,
since the latter excels just in this regime.

In our recent analysis of PB-PIMC for electrons in a
two-dimensional (2D) harmonic trap [26], it was found that,
while the combination a; = 0.33 and 7y = 0.14 [parameter set
(a)] is favorable for a fast convergence of the energy, it does
not perform so well for other properties like, in that case,
the density profile. To address this issue, we again simulate
a benchmark system of N =4 unpolarized electrons and
compute the pair distribution function g(r); see, e.g., Ref. [45]
for a comprehensive discussion. In Fig. 3, we show results for
the above combination of free parameters (a) and P = 2,3,4,5.
Panel (a) displays the data for the interspecies distribution
function g4 ;. We note that, for the infinite UEG, this quantity
approaches unity at large distances, but the small simulation
box for N = 4 restricts us to the depicted r range. All four
curves deviate from each other for » < 0.5, which indicates
that g4 is not yet converged even for P = 5 at small distances,
and are equal otherwise. This is again a clear indication
of the shortcomings of our fourth-order factorization, which
overestimates the Coulomb repulsion at short ranges. The
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FIG. 3. Convergence of the pair distribution function for N = 4
unpolarized electrons at 6 = 1 and r; = 4—shown are PB-PIMC
results for the inter- [g4,, panel (a)] and intraspecies [g4+, panel (b)]
distribution function for different numbers of propagators P and the
fixed free parameters a; = 0.33 and 7, = 0.14.
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intraspecies distribution function g4y = g, which is shown
in panel (b), does not exhibit such a clear trend since only the
green curve that corresponds to P = 2 can be distinguished
from the rest. This is, of course, expected and a consequence
of the Pauli blocking as explained above.

Evidently, our propagator with the employed choice of free
parameters (a) does not allow for an accurate description of
the Coulomb repulsion at short distances. To understand this
issue, we repeat the simulations with a different combination
a; = 0 and 7y = 0.04 [parameter set (b)], which has already
proven to be superior to parameter set (a) for the radial density
in the 2D harmonic trap. The results are shown in Fig. 4 for
different numbers of propagators. The data with P =2 are
nearly equal to the results from parameters (a) and P = 5. The
datafor P = 4 and P = 5 almost coincide and are significantly
increased with respect to the other curves. The main reason
for the improved accuracy of parameter set (b) is the choice
a; = 0, which means that the forces are only taken into account
on intermediate time slices. Due to the diagonality of the
pair distribution function in coordinate space, it is measured
exclusively on the main slices, for whose distribution the force
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FIG. 4. Convergence of the pair distribution function for N =4
unpolarized electrons at & =1 and r; = 4—shown is the same
information as in Fig. 3, but for a different combination of free
parameters, i.e., a; = 0 and #, = 0.04.
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terms do not directly enter. For this reason, the interspecies pair
distribution function is not as drastically affected by the diver-
gence of the F(r) o 1/r? terms at small r and the convergence
of this quantity is significantly improved. For completeness, in
panel (b) we again show results for g44, which, for parameter
set (b), are almost converged even for two propagators. It is
important to note that a relatively large factorization error in the
pair distribution function does not necessarily imply a similar
inaccuracy of the potential energy, since the latter is not directly
computed as the integral of the pair potential W(r,s) over g(r).
Instead, our estimator is derived as the derivative of Z, which
leads to the explicit inclusion of force terms [26,27]. Fur-
thermore, it should be understood that, while the description
of the Coulomb repulsion at very short ranges is particularly
challenging, this does not predominate in larger systems since
the average number of particles within distance r € [7,7 + AF)
increases as N(7) o« #2. For N = 66 unpolarized electrons,
which is the standard system size within this work, these effects
are by far not as important and, for the same combination of
and 6 as in Fig. 4, both the inter- and intraspecies distribution
function are of much higher quality; cf. Fig. 13.

Up to this point, only data for small benchmark systems
with N = 4 electrons have been presented. To obtain mean-
ingful results for the UEG, we simulate N = 66 unpolarized
electrons, which is a commonly used model system since
it corresponds to a closed momentum shell and, therefore,
is well suited as a starting point for an extrapolation to
the thermodynamic limit (finite size corrections). In Fig. 5,
the average sign, cf. Eq. (21), is plotted versus the density
parameter r, for five different temperatures. For 6 = 2,4,8,
(s)’ is almost equal to unity for r; = 40 and decreases just
a trifle towards higher density, until it saturates at r; ~ 0.5.
Consequently, simulations are possible over the entire density
range with relatively small computational effort. The slight
increase of (s)’ around r; € [1,10] is a nonideality effect:

1 .
0.1 :_ _:
A i :
(V5] o i
V - .
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FIG. 5. Average sign for PB-PIMC simulations of N = 66
unpolarized electrons at different temperatures—all PB-PIMC data
have been obtained for P = 2 with a; = 0.33 and 7y, = 0.14 and the
standard PIMC data (red curve) have been taken from Ref. [21].
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at high density, the system is approximately ideal and the
Fermi temperature 6 is an appropriate measure for quantum
degeneracy. With increasing r, coupling effects become more
important, which leads to a stronger separation of the electrons.
Thus there is less overlap of the kinetic density matrices
and the determinants become exclusively positive. For 6 = 1,
the average sign already significantly deviates from unity at
ry = 40 and exhibits a more severe decrease towards smaller
rs. Nevertheless, it attains a finite value (s) ~ 0.01 even
at high density r; = 0.1, which means that simulations are
more involved but still manageable over the entire coupling
range. This is in stark contrast to standard PIMC without
the permutation blocking (red circles), for which the sign
exhibits a sharp drop and simulations become unfeasible below
ry & 5. Finally, the green curve corresponds to 6 = (.75,
where PB-PIMC is capable of providing accurate results for
ry = 3.

B. Configuration PIMC
1. Basic idea

In this section, the main aspects of our CPIMC approach
are explained. A detailed derivation of the CPIMC expansion
of the partition function and the utilized Monte Carlo steps for
the polarized UEG can be found in Refs. [22,24].

For CPIMC, instead of evaluating the trace of the partition
function Eq. (6) in coordinate representation, we switch to sec-
ond quantization and perform the trace with antisymmetrized
N-particle states (Slater determinants)

{n}) = In1.na, . .0), amn

with n; being the fermionic occupation number (n; € {0,1})
of the ith spin orbital |k;o;), where we choose the ordering
of orbitals such that even (odd) orbital numbers have spin-
up (spin-down) o = 1({). In this representation, fermionic
antisymmetry is automatically taken into account via the
anticommutation relations of the creation and annihilation
operators, and thus, an explicit antisymmetrization of the
density operator is not needed. The expansion of the partition
function is based on the concept of continuous time QMC, e.g.,
Refs. [46,47], where the Hamiltonian is split into a diagonal
and off-diagonal part H = D + Y with respect to the chosen
basis. Summing up the entire perturbation series of the density
operator e ## in terms of ¥ finally yields

B B B
Z Z / d‘L’l / d‘L’2 . / d‘L’K
) 0 7 K1

)
K=0, {n} s1..5x—1
K#1

7 =

K
K
x (— 1)K ¢ Lizo Do (w1 =m0) l_[ Y0y, ma-0y(si),  (18)

i=1
with the Fock space matrix elements of the diagonal and off-
diagonal operator

Doy = SR+ Sl (19
1 1<k
Y{n(i)},{n(i—l)}(sl’) = w;(—l)”“f. (20)

Here, s; = (pgqrs) defines the four occupation numbers in
which {n®} and {n"~D} differ, where it is p < ¢ and r < s.
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FIG. 6. Typical closed path of N =4 unpolarized particles in
Slater determinant (Fock) space. The state with four occupied orbitals
ko?1), K1), ksl ),|ke?t) undergoes a two-particle excitation s; at
time t; replacing the occupied orbitals |ko1) ,|ks|) by |k21),[Ks).
Two further excitations occur at 7, and t3. The states at the “imaginary
times” v = O and T = B coincide. In addition, the total spin projection
is conserved at any time. All possible paths contribute to the partition
function Z, Eq. (18).

In this notation, the exponent of the fermionic phase factor is
given by

q—1

s—1

i @i—1) (i)

o, =ap =Y 0+ n.
I=r

I=p

Due to the trace, each addend in Eq. (18) fulfills {n} = {n©®} =
{n'®)} and hence can be interpreted as a S-periodic path in Fock
space. An example of such a path for the case of an unpolarized
UEG is depicted in Fig. 6. The starting determinant {n} at
7 = 0 undergoes K excitations of type s; at time t;, which
we refer to as “kinks.” The weight of each path is computed
according to the second line of Eq. (18), which can be both
positive and negative. Since the Metropolis algorithm [43] can
only be applied to strictly positive weights, we have to take
the modulus of the weights in our MC procedure and compute
expectation values according to
(Os)
(s)

where O is the corresponding Monte Carlo estimator of the
observable, (-}’ denotes the expectation value with respect to
the modulus weights, and s measures the sign of each path.
Therefore, (s)’ is the average sign of all sampled paths during
the MC simulation. It is straightforward to show that the
relative statistical error of observables computed according
to Eq. (21) is inversely proportional to the average sign. As
a consequence, in practice, reliable expectation values can be
obtained if the average sign is larger than about 1074,

(0) = ; 2

2. Application to the unpolarized UEG

The difference between CPIMC simulations of the polar-
ized and unpolarized UEG enters basically in two ways. First,
in addition to the particle number N, the total spin projection in
the summation over the starting determinant {n®} in Eq. (18)
has to be fixed, i.e., the number of spin-up N4 and spin-down
electrons N,. Thus, if a whole occupied orbital is excited
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during the MC procedure (for details, see Ref. [24]), it can
only be excited to an orbital with the same spin projection. For
example, orbital 6 in Fig. 6 could only be excited to orbital 8
or some higher unoccupied orbital with spin up (not pictured).
Moreover, when adding a kink or changing two kinks via
some two-particle excitation, it is most effective to include
spin conservation in the choice of the four involved orbitals,
since all other proposed excitations would be rejected due to
a vanishing weight.

For the second aspect, we have to explicitly consider the
modulus weight of some kink s; = (pgrs), which is given by
the modulus of Eq. (20)

|Y{;1<i>},{n<:—1>}(si)|
! 1
= [ e~ e

477 ¢?

X Tak,ﬂrkq,krﬂw (22)

where we have used the definition of the antisymmetrized
two-electron integrals from Sec. II B. If all of the involved spin
orbitals have the same spin projection, the Kronecker §’s due to
the spin obviously equal one, and the two-electron integrals are
efficiently blocked, i.e., in most (momentum conserving) cases
it is |w;q”| < |Wpgrs| and |w;q”| < |wpgsr|. However, if the
involved orbitals have different spin projections, one of the

two terms in Eq. (22) is always zero and |w; | = |wpgsr| or

rs
|w;q”| = |wpqrs|. Hence, for otherwise ﬁxe(qi system param-
eters, the average weight of kinks in the unpolarized system
is significantly larger. Since the diagonal matrix elements, cf.
Eq. (19), are independent of the spin, there ought to be more
kinks in simulations of the unpolarized system, which in turn
results in a smaller sign, because each kink enters the partition
function with three possible sign changes.

We address this issue in Fig. 7, where we plot the average
sign (a) and the average number of kinks (b) for the polarized
(circles) and unpolarized (dots) UEG of N = 4,14, and 66
electrons atd = 1. Coming from small values of r, the average
number of kinks grows linearly with r;. Depending on the
particle number, at some critical value of ry, it starts growing
exponentially, until it eventually turns again into a linear
dependency. The onset of the exponential growth is connected
to a drop of the average sign due to the combinatorial growth
of potential sign changes in the sampled paths with increasing
number of kinks. This behavior becomes more extreme
the larger the particle number, both for the polarized and
unpolarized system, so that for N = 66 electrons (blue lines),
the average number of kinks suddenly increases from less than
about two to a couple of hundred, which corresponds to a drop
of the average sign from almost one to below 10~3. However,
for the unpolarized system, the critical value of r; at which the
average sign starts dropping drastically is approximately half
of that of the polarized system containing the same number
of electrons. In practice, this means that for N = 66 polarized
electrons at & = 1 direct CPIMC calculations are feasible up
to r; ~ 0.6, whereas for N = 66 unpolarizd electrons direct
CPIMC is applicable only up to r; ~ 0.3.
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FIG. 7. Average sign (a) and average number of kinks (b) of
direct CPIMC, plotted versus the density parameter for three different
particle numbers N = 4,14,66 in Ny = 2109,4169,5575 plane wave
basis functions, respectively, at & = 1. Shown are the results from
the simulation of the polarized (circles) and unpolarized (dots) UEG,
where for the unpolarized case 2N g spin orbitals have been used.

3. Auxiliary kink potential

In Ref. [22], it has been shown that the use of an auxiliary
kink potential of the form

1

ViulK) = w1

(23)
significantly extends the applicability range of our CPIMC
method towards larger values of r,. This is achieved by adding
the potential to the second line of the partition function
Eq. (18), i.e., multiplying the weight of each path with the
potential. Obviously, since Vs ,(K) — 1 in the limit « — oo,
performing CPIMC simulations for increasing values of « at
fixed § always converges to the exact result. Yet, to ensure a
monotonic convergence of the energy, it turned out that the
value of § has to be sufficiently small. Both for the polarized
and unpolarized system, choosing § = 1 is sufficient. In fact,
the potential is nothing but a smooth penalty for paths with a
larger number of kinks than «.

In Fig. 8, we show the convergence of (a) the internal
energy (per particle), (b) the average sign, and (c) the average
number of kinks with respect to the kink potential parameter
k of N = 66 unpolarized electrons at r;, =2 and 6 = 4. We
have performed independent CPIMC simulations for different
k, using integer values from 2 to 17. While the energy
almost remains constant for ¥ > 10 with a corresponding
average sign larger than 0.1, the average sign and number
of kinks themselves clearly are not converged. Further, the
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FIG. 8. Convergence of (a) the internal energy, (b) the average
sign, and (c) the average number of kinks with respect to the kink
potential parameter k of N = 66 unpolarized electrons at r;, = 2 and
0 =4 in Np = 88946 spin orbitals. The potential parameter § has
been fixed to one. The blue (green) line show a horizontal (linear) fit
to the last converged points. The asymptotic value (black point) in
the limit 1/« — 0 is enclosed between the blue and green lines and,
within error bars, coincides with the PB-PIMC result (orange points).

direct CPIMC algorithm (without the kink potential) would
give a couple of thousand kinks with a practically vanishing
sign. However, for the convergence of observables like the
energy, apparently, a significantly smaller number of kinks is
sufficient. This can be explained by a near cancellation of all
additional contributions of the sampled paths with increasing
number of kinks. For a detailed analysis, see Ref. [22].

We generally observe an s-shaped convergence of observ-
ables with 1/«, where the onset of the cancellation and near
convergence are clearly indicated by the change in curvature.
This allows for a robust extrapolation scheme to the asymptotic
limit 1/k — oo, which is explained in detail in Ref. [22]. An
upper (lower) bound of the asymptotic value is obtained by
a horizontal (linear) fit to the last points after the onset of
convergence. The extrapolated result is then computed as the
mean value of the lower and upper bounds with the uncertainty
estimated as their difference. In Fig. 8, both, the horizontal
(blue line) and linear fit (green line) almost coincide due to
the complete convergence (within statistical errors) of the last
points. The asymptotic CPIMC result (black dot) perfectly
agrees (within error bars) with the PB-PIMC result (orange
dot). This confirms the validity of using the kink potential also
for the unpolarized UEG.

4. Further enhancement of the kink potential

It turns out that, in case of the unpolarized UEG, even with
the use of a kink potential with § = 1, the simulation may
approach paths with an extremely large number of kinks. This
is demonstrated by the turquoise data points in Fig. 9(c), where
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FIG. 9. Convergence of (a) the internal energy, (b) the average
sign, and (c) the average number of kinks with respect to the kink
potential parameter k of N = 66 unpolarized electrons atr; = 0.8 and
6 =1 in Np = 11150 spin orbitals. The potential parameter & has
been fixed to one. The three curves correspond to CPIMC calculations
where the kink potential has been cut off at different values V,, i.e.,
Vi« (K) [cf. Eq. (23)] is set to zero if it takes values smaller than
V.. The blue (green) line shows a horizontal (linear) fit to the last
converged red points. The asymptotic value (black point) in the limit
1/k — 0 is enclosed between the blue and green lines and, within
error bars, coincides with the PB-PIMC result (orange points).

the average number of kinks is shown for N = 66 unpolarized
electrons at & = 1 and r; = 0.8. For example, at k = 8, there
are on average about 30 kinks. However, increasing the penalty
for paths with a number of kinks larger than «, by increasing
8, 1s not a solution, since this would cause a nonmonotonic
convergence, oscillating with even and odd numbers of «, as
has been demonstrated in Ref. [22]. Therefore, we choose a
different strategy which is justified by the fact that paths with
a very large number of kinks do not contribute to physical
observables; cf. Sec. III B 3 and Ref. [22]: we cut off the
potential once it has dropped below some critical value V,,
thereby completely prohibiting paths where V; (K) < V.. If
the cutoff value is too large, we again recover an oscillating
convergence behavior of the energy with even and odd numbers
of k rendering an extrapolation difficult. This is shown by the
purple data points in Fig. 9(a), where the simulations have
been performed with V. = 0.03 so that paths with a number
of kinks larger than « + 3 are prohibited. On the other hand,
if we set V. = 107°, so that paths with up to x + 20 kinks are
allowed, the oscillations vanish (within statistical errors) and
we can again apply our extrapolation scheme. Indeed, even
with the additional cutoff the extrapolated value (black dot)
coincides with that of the PB-PIMC simulation (orange dot)
within error bars. In all simulations presented below we have
carefully verified that the cutoff value is sufficiently small to
guarantee converged results.
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To summarize, as for the polarized UEG [22], the accessible
range of density parameters r; of our CPIMC method can be
extended by more than a factor two by the use of a suitable
kink potential, in simulations of the unpolarized UEG as well.
For example, at 6 = 1 direct CPIMC simulations are feasible
up to ry ~ 0.3, see Fig. 7, whereas the kink potential allows
us to obtain accurate energies up to r; = 0.8, as demonstrated
in Fig. 9. In addition to the extrapolation scheme that has been
introduced before for the spin-polarized case [22], we have
cut off the potential at a sufficiently small value to prevent the
simulation paths from approaching extremely large numbers
of kinks. We expect this enhancement of CPIMC to be useful
for arbitrary systems. In particular, it will allow us to further
extend our previous results for the polarized UEG to larger ry
values.

IV. COMBINED CPIMC AND PB-PIMC RESULTS

A. Exchange-correlation energy

The exchange-correlation energy per particle, Exc, of the
uniform electrons gas is of central importance for the construc-
tion of density functionals and, therefore, has been the subject
of numerous previous studies, e.g., Refs. [21,22,25,48-50]. It
is defined as the difference between the total energy of the
correlated system and the ideal energy U,

Ex=E-U. (24)

In Fig. 10(a), we show results for this quantity for six different
temperatures in dependence on the density parameter r;.
All data are also available in Table I in the Appendix. In
order to fully exploit the complementary nature of our two
approaches, we always present the most accurate data from
either CPIMC (dots) or PB-PIMC (crosses). This allows us
to cover the entire density range for 6 > 1, since here, the
two methods allow for an overlap with respect to r,. For
completeness, we mention that the apparently larger statistical
uncertainty for & = § in comparison to lower temperature is
not a peculiar manifestation of the FSP, but, instead, an artifact
due to the definition (24). At high temperature, the system
becomes increasingly ideal and, therefore, the total energy E
approaches Uy. To obtain Ey. at & = 8, a large part of E is
subtracted, which, obviously, means that the comparatively
small remainder is afflicted with a larger relative statistical
uncertainty.

To illustrate the overlap between PB-PIMC and CPIMC,
we show all available data points for & = 1 for both methods
in panel (b). This is the lowest temperature for which this is
possible and, therefore, the most difficult example, because
the systematic propagator error from PB-PIMC at small r; is
most significant here. Evidently, both data sets are in excellent
agreement with each other and the deviations are well within
the error bars. Although we do expect that the increase of the
PB-PIMC factorization error for small r, cf. Fig. 2, should
become less severe for larger systems, any systematic trend
is masked by the sign problem anyway and cannot clearly be
resolved for the given statistical uncertainty.

Let us now consider temperatures below 8 = 1. For 6 =
0.75, CPIMC is applicable only for ry < 0.7, while PB-PIMC
delivers accurate results for r; > 3. Thus the intermediate
regime remains, without further improvements, out of reach
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FIG. 10. Exchange-correlation energy E. times r, of the unpolar-
ized N = 66 particle UEG over the density parameter r, for different
temperatures. In graphic (a), only the best results from CPIMC (dots)
or PB-PIMC (crosses) calculations are shown; cf. Table I in the
Appendix. In addition, RPIMC results by Brown et al. [21,51] are
plotted for comparison (lines with light colors and open circles).
Graphic (b) also shows PB-PIMC data forr; < 1 atf = 1.

and, for 8 = 0.5, PB-PIMC is not applicable for N = 66
unpolarized electrons in this density regime at all.

The comparison of our combined results to the RPIMC
data by Brown et al. [21], which are available for ry > 1,
reveals excellent agreement for the three highest temperatures,
0 =2,4,8. For 6 = 1, all results are still within single error
bars, but the RPIMC data appear to be systematically too low.
This observation is confirmed for & = 0.5, where the fixed
node approximation seems to induce an even more significant
drop of E,.. For completeness, we mention that although a
similar trend has been found for the spin-polarized UEG as
well [22,25,27], the overall agreement between RPIMC and
our independent results is a little better for the unpolarized
case.

Finally, we consider the kinetic and potential contribution,
K and V, to the total energy separately. In Fig. 11(a), the kinetic
energy in units of the ideal energy Uy, is plotted versus ry and we
again observe a smooth connection of the PB-PIMC (crosses)
and CPIMC (dots) data for all four shown temperatures.
The RPIMC data (circles), on the other hand, exhibit clear
deviations and are systematically too low even for r; = 10. In
panel (b), we show the same information for the potential
energy, but the large V range prevents us from resolving
any differences between the different data sets. For this
reason, in panel (c), we explicitly show the relative differences
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FIG. 11. Kinetic (a) and potential (b) energy of the unpolarized
N = 66 particle UEG over the density parameter r; for different
temperatures. Panel (c) shows the relative difference between our
results and RPIMC data by Brown ef al. [21,51].

between our results and those from RPIMC. Evidently, the
latter are systematically too high and the relative deviations
increase with density exceeding AV/V = 1%. Curiously,
AV/V attains its largest value for the highest temperature,
6 = 8, which contradicts the usual assumption that the nodal
error decreases with increasing 6. Yet, in case of the exchange
correlation energy, cf. Fig. 10, this trend seems to hold.

To explicitly demonstrate that the observed discrepancy
between our results and the RPIMC data is not due to the
systematic propagator error of PB-PIMC, in Fig. 12 we show
all available data from CPIMC and PB-PIMC over the entire
ry range for two representative temperatures, 6 = 1 and 6 = 4.
Evidently, the kinetic energy of our two methods is in excellent
agreement (i.e., within the statistical uncertainty) even at small
rs, where the propagator error is expected to be most pro-
nounced (cf. Fig. 2), whereas the RPIMC data clearly deviates.
In panel (c), we show the relative differences in the potential
energy between the PB-PIMC and CPIMC (dots) as well as
between the PB-PIMC and RPIMC results (circles). Again,
it can be seen that the PB-PIMC results agree with the exact
CPIMC results, where they are available, while the RPIMC
data are significantly too large for both6 = 1 and 6 = 4.

We summarize that, while RPIMC exhibits significant
deviations for both K and V separately, these almost exactly
cancel and, therefore, the total energy (and Ey.) is in rather
good agreement with our results. This trend is in agreement
with previous observations for the spin-polarized case [27].
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FIG. 12. Kinetic (a) and potential (b) energy of the unpolarized
N = 66 particle UEG over the density parameter r, for two different
temperatures. As a supplement to Fig. 11, we show all available data
points from CPIMC and PB-PIMC to illustrate their agreement where
both approaches are available. Panel (c) shows the relative difference
between the potential energy from PB-PIMC and CPIMC (filled dots)
as well as between PB-PIMC and RPIMC (empty dots).

B. Pair distribution function

Up to this point, we have compared RPIMC data for
various energies (Ex., V, K) to our independent results.
However, since only the total energy was in agreement while
V and K both deviated, it remains an open question how
other thermodynamic quantities are affected by the fixed node
approximation. To address this issue, in Fig. 13 we show
results for the pair distribution function (PDF) of the N = 66
unpolarized electrons at r; = 4 and 6 = 1. This appears to be
the most convenient parameter combination for a comparison
since, on the one hand, there are significant differences for both
K and V while, on the other hand, simulations with PB-PIMC
are possible up to P = 4, which should allow for accurate
results of both g4+ and g4, . In panel (a), the interspecies PDF
g4y 1s plotted versus r and shown are PB-PIMC results for
P =3 (green crosses) and P =4 (red squares) as well as
RPIMC data (blue circles) from Ref. [21]. All three curves
agree rather well and exhibit a distinct exchange correlation
hole for » < 1.5r, and a featureless approach to unity at larger
distances. The inset shows the short range part of the PDF,
which is the only segment where deviations are visible. The
PB-PIMC results for P = 3 and P = 4 are within each others’
error bars and, for the smallest resolved r, slightly below the
RPIMC data, although this trend hardly exceeds twice the error
bars as well. The results for the intraspecies PDF g4 show
a similar picture, although short range configurations of two
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FIG. 13. Pair distribution function of N = 66 unpolarized elec-
trons at r, = 4 and & = 1—the PB-PIMC results have been obtained
for tp = 0.04 and a; =0, and the RPIMC data are taken from
Ref. [21].

particles are even more suppressed due to the Pauli blocking.
Again, there appears a slight difference between PB-PIMC and
RPIMC, which, however, cannot clearly be resolved within the
given statistical uncertainty. Therefore, we conclude that our
independent simulation data are in good agreement with the
fixed node approximation for both pair distribution functions
despite the observed deviations in K and V for these particular
system parameters.

V. DISCUSSION

In summary, we have successfully extended the com-
bination of PB-PIMC and CPIMC, presented in paper I,
to the unpolarized UEG and, thereby, presented different
independent ab initio results at finite temperature.

For the unpolarized UEG, CPIMC suffers from a signif-
icantly more severe FSP due to the increased configuration
weight of interspecies kinks. To overcome this problem, we
have developed an additional enhancement of our extrap-
olation scheme. The introduction of a (very small) cutoff
parameter V. in the auxiliary kink potential prevents the
number of kinks from diverging and, thereby, significantly
extends the parameter range where simulations are feasible.
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Furthermore, we note that in the warm dense matter regime
with N = 66 the PB-PIMC approach, due to the FSP, is re-
stricted to only two or three propagators. Hence, the asymptotic
P ~*-convergence behavior of the utilized factorization scheme
is not yet reached. Therefore, the presented PB-PIMC data are
afflicted with an in principle uncontrolled systematic factor-
ization error, which is particularly increased at high density
(rs < 1) compared to the spin-polarized case. However, the
empirical optimization of the two free parameters (7o and a;)
still allows for accurate results, as we have demonstrated in
detail in Figs. 1 and 2 for N = 4, where a maximum systematic
factorization error (for P =2) of AV/V <3 x 1073 was
observed. For larger systems, N = 66, CPIMC and PB-PIMC
are in good agreement, where both are available (see Fig. 12).
In particular, even at high density, where the factorization error
of PB-PIMC with P = 2 is expected to be most pronounced,
both agree within statistical uncertainty. This is a strong
indication that the combination of both methods allows for
accurate results over the entire density range, for 6 > 1 and
N = 66 electrons.

Overall, the existing RPIMC data for the exchange cor-
relation energy are in better agreement with our results than
for the spin-polarized UEG, but there seems to be a similar
unphysical systematic drop around r; = 1 at low temperatures.
Interestingly, the separate kinetic and potential contributions
to the energy substantially deviate from our results by more
than one percent. This is illustrated in Fig. 12, where, at
6 = 4 and intermediate ry, CPIMC and PB-PIMC are within
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error bars, whereas RPIMC significantly deviates from both.
Furthermore, we have presented a comparison of the pair
distribution functions g44(r) and g4, (r), which are in good
agreement with RPIMC.

It remains an important issue of future work to perform an
extrapolation to the macroscopic limit, i.e., the development
of finite-size corrections, e.g., [31-33]. To this end simula-
tions with substantially larger particle numbers are required
which should be possible with the presented enhancements.
Furthermore, we expect that the presented combination of
the complementary CPIMC and PB-PIMC approaches can be
successfully applied to numerous other Fermi systems, such
as two-component plasmas [52-54] and atoms embedded in
jellium [55-57].
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APPENDIX

As a supplement to Figs. 10 and 11, we have listed all
combined simulation data from PB-PIMC and CPIMC in
Table I.

TABLE I. Energies per particle for N = 66 unpolarized electrons: ideal energy, Uy, kinetic energy, T, potential energy, V, and exchange-
correlation energy Ey.. While the unmarked results correspond to standard CPIMC simulations (without the auxiliary kink potential), the “a”
marks CPIMC results that have been obtained by the extrapolation as explained in Sec. III B 3 and Ref. [22]. For the latter values, the error
includes systematic effects. All other errors correspond to a 1o standard deviation. A “b” marks results from PB-PIMC calculations. For
CPIMC results, the utilized number of basis functions N is given in the last column and has been fixed for the same temperature. The ideal
energies have been computed using the same number of basis functions as for the interacting system. Energies in units of Ryd.

0 Fy UO T \%4 Exc NB
0.50 0.1 374.8592(12) 373.463(6) —8.60129(19) —9.997(6) 11150
0.50 0.2 93.71481(30) 93.1294(25) —4.506(4) —5.0911(25) 11150
0.50 0.3 41.65102(13) 41.3226(28)* —3.1130(10)* —3.4421(9)° 11150
0.50 0.4 23.42870(8) 23.2220(29)" —2.409(4) —2.618(6)° 11150
0.50 0.5 14.99437(5) 14.871(18)" —1.992(20)“ —2.126(16)° 11150
0.50 0.6 10.412756(34) 10.327(15)¢ —1.702(33)¢ —1.791(19)° 11150
0.75 0.1 495.690(4) 494.119(16) —7.90080(19) —9.472(17) 11150
0.75 0.2 123.9225(10) 123.2322(29) —4.16057(12) —4.8508(31) 11150
0.75 0.3 55.0767(5) 54.672(4)" —2.89413(31)" —3.2999(14)° 11150
0.75 0.4 30.98062(26) 30.712(4)° —2.2506(18)“ —2.5215(30)° 11150
0.75 0.5 19.82760(17) 19.637(4) —1.858(5) —2.054(8)" 11150
0.75 0.6 13.76916(12) 13.632(10)¢ —1.601(17) —1.741(14) 11150
0.75 0.7 10.11612(9) 10.018(18)¢ —1.400(23)" —1.511(18)" 11150
0.75 3.0 0.550767(5) 0.556(5) —0.4098(8)” —0.405(5)

0.75 4.0 0.3098060(26) 0.3173(18)" —0.3201(4) —0.3127(18)

0.75 6.0 0.1376920(12) 0.1469(6) —0.22488(13)" —0.2157(5)

0.75 8.0 0.0774520(7) 0.08610(19)? —0.17428(6)" —0.16563(19)

0.75 10.0 0.0495690(4) 0.05687(9) —0.142666(28) —0.13536(9)"

1.00 0.1 623.230(6) 621.686(15) —7.37511(9) —8.918(17) 11150
1.00 0.2 155.8074(15) 155.1203(34) —3.89359(12) —4.581(4) 11150
1.00 0.3 69.2477(7) 68.8312(18) —2.71561(11) —3.1322(19) 11150
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TABLE 1. (Continued.)

0 s Us T 1% Ex N
1.00 0.4 38.9518(4) 38.6661(33)" —2.1165(8)" —2.4025(25)° 11150
1.00 0.5 24.92918(24) 24.7222(32)" —1.7508(17)" —1.961(4) 11150
1.00 0.6 17.31193(17) 17.1543(34) —1.503(4) —1.663(4)" 11150
1.00 0.7 12.71897(12) 12.597(5) —1.327(10)" —1.450(7)¢ 11150
1.00 0.8 9.73796(9) 9.644(8)° —1.192(16)" —1.290(13)" 11150
1.00 1.0 6.23230(6) 6.170(10)" —0.9844(10) —1.046(10)"

1.00 2.0 1.558074(15) 1.5491(21) —0.55777(28)" —0.5667(21)

1.00 4.0 0.389518(4) 0.39370(21) —0.31304(5) —0.30886(21)

1.00 6.0 0.1731190(17) 0.17863(15) —0.22107(4)? —0.21556(15)

1.00 8.0 0.0973800(9) 0.10313(6)" —0.171900(18)" —0.16615(6)

1.00 10.0 0.0623230(6) 0.067639(31) —0.141041(11)? —0.135725(31)

2.00 0.1 1155.227(11) 1154.031(32) —6.22959(19) —7.425(33) 18342
2.00 0.2 288.8066(28) 288.258(7) —3.27971(9) —3.828(7) 18342
2.00 0.3 128.3585(12) 128.0151(35) —2.28648(6) —2.630(4) 18342
2.00 0.4 72.2017(7) 71.9583(17) —1.78368(6) —2.0270(18) 18342
2.00 0.5 46.2091(4) 46.0256(11) —1.47771(6) —1.6612(11) 18342
2.00 0.6 32.08963(31) 31.9444(29) —1.27090(35) —1.419(4) 18342
2.00 0.8 18.05042(17) 17.9532(27)° —1.0069(11)" —1.108(4) 18342
2.00 1.0 11.55227(11) 11.483(4)? —0.8440(32)" —0.916(5) 18342
2.00 2.0 2.888066(28) 2.8661(11)" —0.48960(21) —0.5115(11)

2.00 4.0 0.722017(7) 0.71815(19) —0.28421(6) —0.28807(20)

2.00 6.0 0.3208960(31) 0.32120(7)" —0.204649(24) —0.20434(8)"

2.00 8.0 0.1805040(17) 0.18183(4)" —0.161212(15) —0.15989(4)"

2.00 10.0 0.1155230(11) 0.117282(28) —0.133507(13)" —0.131748(32)

4.00 0.1 2245.508(30) 2244.80(9) —5.42045(19) —6.13(10) 88946
4.00 0.2 561.377(8) 561.050(26) —2.81969(9) —3.147(27) 88946
4.00 0.3 249.5008(34) 249.272(14) —1.94887(8) —2.177(15) 88946
4.00 0.4 140.3442(19) 140.173(8) ~1.51066(7) —1.682(8) 88946
4.00 0.5 89.8203(12) 89.699(6) —1.24591(7) —1.367(6) 88946
4.00 0.6 62.3752(8) 62.275(4) —1.06761(6) —1.168(4) 88946
4.00 0.8 35.0861(5) 35.0182(19) —0.84205(6) —0.9099(19) 88946
4.00 1.0 22.45508(30) 22.4019(15) —0.70405(7) —0.7572(16) 88946
4.00 2.0 5.61377(8) 5.5953(15) —0.41230(33)" —0.4317(4)" 88946
4.00 4.0 1.403442(19) 1.3981(4) —0.24535(17) —0.2507(4)"

4.00 6.0 0.623752(8) 0.62192(14)? —0.18022(7) —0.18205(16)

4.00 8.0 0.350861(5) 0.35047(9)" —0.14402(4) —0.14441(11)

4.00 10.0 0.2245510(30) 0.22466(5)" —0.120675(31) —0.12056(7)

8.00 0.1 4445.13(11) 4444.88(27) —4.93048(19) —5.18(29) 147050
8.00 0.2 1111.281(27) 1111.1209) —2.52994(12) —2.69(10) 147050
8.00 0.3 493.903(12) 493.75(5) —1.72864(9) —1.88(5) 147050
8.00 0.4 277.820(7) 277.730(30) —1.32690(8) —1.41731) 147050
8.00 0.5 177.805(4) 177.724(22) —1.08505(7) —1.166(22) 147050
8.00 0.6 123.4757(30) 123.431(15) —0.92338(6) —0.968(15) 147050
8.00 0.8 69.4551(17) 69.404(7) —0.71997(5) —0.771(8) 147050
8.00 1.0 44.4513(11) 44.415(6) —0.59679(5) —0.633(6) 147050
8.00 2.0 11.11281(27) 11.0997(16) —0.34329(5) —0.3564(16) 147050
8.00 3.0 4.93903(12) 4.9312(9) —0.2532(5)" —0.2626(33)" 147050
8.00 4.0 2.77820(7) 2.7746(6)" —0.20502(29) —0.2086(6)"

8.00 6.0 1.234757(30) 1.23274(28) —0.15214(15) —0.1542(4)"

8.00 8.0 0.694551(17) 0.69379(18)" —0.12321(10) —0.12396(23)

8.00 10.0 0.444513(11) 0.44399(11) —0.10430(7) —0.10482(13)
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Chapter 5

Finite-Size Corrections, Static Structure
Factors and Pair Correlation Functions

5.1 QMC Simulations in the Thermodynamic Limit

Hitherto, all of our QMC studies were devoted to the investigation of N electrons in a finite
simulation cell subject to periodic boundary conditions!. However, to be of use for practical
applications, for example, as input for a density functional theory calculation of a realistic
warm dense matter system in the local density approximation, we had to extrapolate these
data to the thermodynamic limit [190, 118].

Unfortunately, a direct extrapolation over the number of electrons is, in practice, not
feasible, mainly due to two reasons: (i) the fermion sign problem leads to an exponential
increase in computational cost with respect to system size and (i1) the exact functional
behavior of the quantity of interest (e.g., the total or interaction energy) regarding N is not
known, making an extrapolation highly unreliable. The usual strategy in this situation is
the development of a so-called finite-size correction [188, 191-194], which, when added
onto the data for a finite number of electrons N, approximately gives the thermodynamic
limit without the need for an additional extrapolation. More specifically, Brown et al. [157]
used the finite-temperature extension of the finite-size correction by Chiesa ef al. [192] and
presented separate results both for the kinetic and interaction contribution to the energy.

As it turned out, and is demonstrated in detail in the following paper?, Ref. [164], these

corrections are not appropriate over substantial parts of the warm dense matter regime. To

I'The publication by Schoof et al. [59] constitutes an exception, as they performed an uncontrolled direct
extrapolation to the thermodynamic limit for very high density.

2T. Dornheim, S. Groth, T. Sjostrom, F.D. Malone, W.M.C. Foulkes, and M. Bonitz, Phys. Rev. Lett. 117,
156403 (2016). Copyright by the American Physical Society (2016).
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overcome this issue, we investigated the main source of the system-size dependence in
the interaction energy. In doing so, we found that the static structure factor (SSF) Sy (k)
converges remarkably well with N, and the finite-size error in v =V /N is thus given by a
discretization error in the integration of S(k) ~ Sy (k). In particular, the main contribution is
due to the small k-behavior in the SSF that cannot be accessed within our QMC simulations,
which are restricted to k > 27t /L. To compensate for this missing contribution, we combined
our QMC data with the SSF from the dielectric formalism, specifically using the Singwi—Tosi—
Land-Sjolander (STLS) scheme [195], that was extended to finite temperature by Tanaka
and Ichimaru [196], and is known to be exact in the limit ¢ — 0, see, e.g., Ref. [197].

This combination® allows for a vivid interpretation: our QMC simulations provide an
exact treatment of the short-ranged exchange—correlation effects, but cannot access the
long-range correlations due to the finite size of the simulation cell. In contrast, the STLS
approximation captures the exact long-range behavior, but constitutes an uncontrolled ap-
proximation elsewhere. Together, this allows for the introduction of a dramatically improved
finite-size correction procedure, which immediately reduces the system size dependence in
our data by two orders of magnitude.

Finally, we carried out extensive new QMC simulations (using both PB-PIMC or CPIMC
for strong and weak coupling, respectively) for the unpolarized electron gas at warm dense
matter conditions over the entire relevant density range (0.1 < rg < 10) down to half the
Fermi temperature, the accuracy attained being of an unprecedented order of 0.3%. As usual,
we made all our results available, for example as a benchmark for the future development of
other simulation methods. As an outlook, we used our new data for the interaction energy
to compute the exchange—correlation free energy fi. for fixed temperature*, @ = const. A
comparison of these results to the most recent parametrization of fx. by Karasiev et al. [107]
revealed systematic deviations of up to 9%, thereby highlighting the need of an improved
exchange—correlation functional of the warm dense electron gas.

For completeness, I mention that the idea for the improved finite-size correction was

worked out together with S. Groth in equal parts.

3Note that the STLS data throughout Ref. [164] was provided by T. Sjostrom, see also Ref. [128].
“Le., £2.(rs), as opposed to a full parametrization with respect to temperature and density, fx.(7s, ), which
is the subject of Chpt. 6.
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We perform ab initio quantum Monte Carlo (QMC) simulations of the warm dense uniform electron gas
in the thermodynamic limit. By combining QMC data with the linear response theory, we are able to
remove finite-size errors from the potential energy over the substantial parts of the warm dense regime,
overcoming the deficiencies of the existing finite-size corrections by Brown et al. [Phys. Rev. Lett. 110,
146405 (2013)]. Extensive new QMC results for up to N = 1000 electrons enable us to compute the
potential energy V and the exchange-correlation free energy F,. of the macroscopic electron gas with an
unprecedented accuracy of |AV|/|V],|AF|/|F|y ~ 1073. A comparison of our new data to the recent
parametrization of F,. by Karasiev et al. [Phys. Rev. Lett. 112, 076403 (2014)] reveals significant

deviations to the latter.

DOI: 10.1103/PhysRevLett.117.156403

The uniform electron gas (UEG), consisting of electrons
on a uniform neutralizing background, is one of the most
important model systems in physics [1]. Besides being a
simple model for metals, the UEG has been central to the
development of the linear response theory and more
sophisticated perturbative treatments of solids, the formu-
lation of the concepts of quasiparticles and elementary
excitations, and the remarkable successes of density func-
tional theory (DFT)

The practical application of ground-state density func-
tional theory in condensed matter physics, chemistry, and
materials science rests on a reliable parametrization of the
exchange-correlation energy of the UEG [2], which in turn
is based on accurate quantum Monte Carlo (QMC) sim-
ulation data [3]. However, the charged quantum matter in
astrophysical systems such as planet cores and white dwarf
atmospheres [4,5] is at temperatures way above the ground
state, as are inertial confinement fusion targets [6—8], laser-
excited solids [9], and pressure-induced modifications of
solids, such as insulator-metal transitions [10,11]. This
unusual regime, in which strong ionic correlations coexist
with electronic quantum effects and partial ionization, has
been termed “warm dense matter” and is one of the most
active frontiers in plasma physics and materials science.

The warm dense regime is characterized by the existence
of two comparable length and energy scales: the mean
interparticle distance 7 and the Bohr radius ag; and the
thermal energy kzT and the electronic Fermi energy Er,
respectively. The dimensionless parameters r; = 7/a, and
©® = kzT/EF are of the order of unity. Because ® ~ 1, the
use of the ground-state density functional theory is inap-
propriate and extensions to finite 7 are indispensable; these
require accurate exchange-correlation functionals for finite

0031-9007/16/117(15)/156403(6)
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temperatures [12—-16]. Because neither r; nor ® is small,
there are no small parameters, and weak-coupling expan-
sions beyond Hartree-Fock such as the Montroll-Ward
(MW) and e* (e4) approximations [17,18] as well as the
linear response theory within the random-phase approxi-
mation (RPA) break down [19,20], see Fig. 1. Finite-T
Singwi-Tosi-Land-Sjolander (STLS) [21,22] local-field
corrections allow for an extension to moderate coupling
[22] but exhibit nonphysical behavior at short distances for
moderate to low densities, so improved expressions are
highly needed. Further, quantum-classical mapping [23,24]
allows for semiquantitative descriptions of warm dense
matter in limiting cases.

Therefore, an accurate description of warm dense matter,
in general, and of the warm dense UEG, in particular, can be
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FIG. 1. Potential energy per particle of the unpolarized UEG at

0 = 2 and ry = 0.5. The exact CPIMC results for different system
sizes are indicated by green crosses; the yellow asterisks show
these results after the AVycpc finite-size correction from Eq. (4)
has been applied. The horizontal arrows refer to many-body
theories (RPA, STLS [21], MW, and e4 [45]; see the text). The
black lines are two different, equally plausible, extrapolations of
the QMC data to infinite system size [44].
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achieved only using computational approaches, primarily
QMC methods which, however, are hampered
by the fermion sign problem [25,26]. The pioneering
QMC simulations of the warm dense UEG by Brown
et al. [27] eliminated the sign problem by invoking the
(uncontrolled) fixed-node approximation [28] but were
nevertheless restricted to small systems of N =33
(spin-polarized) and N = 66 (unpolarized) electrons and
to moderate densities 7, > 1. Recently, we were able to show
[29-31] that accurate simulations of these systems are
possible over a broad parameter range without any nodal
restriction. Our approach combines two independent meth-
ods, configuration path-integral Monte Carlo (CPIMC)
calculations [32-34] and permutation blocking PIMC
(PB-PIMC) calculations [35,36], which allow for accurate
simulations at high (r, < 1) and moderate densities (r; 2 1
and @ = 0.5), respectively. An independently developed third
approach, density matrix QMC [31,37,38], confirmed the
excellent quality of these results. The only significant errors
remaining are finite-size effects [34,39—43], which arise from
the difference between the small systems simulated and the
infinite [thermodynamic limit (TDL)] system of interest.

Direct extrapolation to the TDL [3,40,42] is extremely
costly and also unreliable unless the form of the function to
be extrapolated is known; the two black lines in Fig. 1 show
two equally reasonable extrapolations [44] that reach
different limits. Furthermore, the parameter-free finite-size
correction (FSC) proposed in Ref. [27] [see Eq. (4) below]
turns out to be inappropriate in parts of the warm dense
regime. The problem is clear from inspection of the yellow
asterisks in Fig. 1, which include this FSC but remain
system-size dependent.

In this Letter, we close the gap between the finite-N
QMC data and the TDL by deriving a highly accurate FSC
for the interaction energy. This allows us to obtain precise
(on the level of 0.1%) results for the exchange-correlation
free energy, making possible the ab initio computation of
arbitrary thermodynamic quantities for warm dense matter.

Theory.—Consider a finite unpolarized UEG of N
electrons subject to periodic boundary conditions. The
Hamiltonian is # = K + V5, where K is the kinetic energy
of the N electrons in the cell and

SR (. 1
Ve = E;QE(I},I‘O +§N5M (1)

is the Coulomb interaction energy per unit cell of an infinite
periodic array of images of that cell. The Ewald pair
potential ¢x(x,y) and Madelung constant £, are defined in
Refs. [39,40]. We use Hartree atomic units throughout this
work. The expected value of V/N carries a finite-size
error [46] that is the difference between the potential energy
v per electron in the infinite system and its value V /N in
the finite system. This difference may be expressed in terms
of the static structure factor (SF) as follows:

where L and G are, respectively, the length and reciprocal
lattice vector of the simulation cell and S(k) [Sy(G)] is the
SF of the infinite [finite] system. A first source of FS error
in Eq. (2) is the replacement of S(k) in the first term by its
finite-size analogue Sy(G) in the second term. However,
this effect is negligible, as we will demonstrate in Fig. 2.

Thus, the main source of error is the discretization of the
integral in the first term to obtain the sum in the second.
Chiesa er al. [41] suggested that the main contribution to
Eq. (2) comes from the omission of the G = 0 term from
the summation [47]. As is well known, the RPA becomes
exact in the limit of small k, and the expansion of S(k)
around k = 0 at finite 7 is given by [23]

SRPA () = zk—zcoth (ﬂ&) , (3)

o, 2

where = 1/kzT and w, =+/3/r} is the plasma fre-
quency. The finite-T version [48] of the Chiesa FSC [27],

12 - VI T T T
rs=0.5/ RPA(K=0) —
1 s STLS — |4
(b) OO RPA ——
0.8 QMC ——i [
n 0.6 ' =
0.4 N=100 4
N= -
0.2 66 I |
3.1 35
0 1 1 1 1
0 2 4 6 8 10

k[ag?]

FIG. 2. Static structure factors for 8 = 2, r, = 0.5, and three
values of N. In (a), the discrete QMC k points are plotted as
vertical lines for N = 100; the minimum k values for N = 66 and
N = 38 are indicated by the green and yellow line, respectively.
The colored horizontal bars indicate the k ranges where SST-S
(red), SRPA RPA (gray), and SKPA (light blue) are accurate.
(b) shows that the QMC results for S(k) converge rapidly with N
(see the colored symbols in the inset). The black curve shows
Seomp connecting SSTHS (k) at small k with the QMC data for
N = 100 which yields accurate results for all .
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smallest nonzero k in the QMC simulation, k., = 27/L, -0.75 | o x .
and (ii) all contributions to Eq. (2) not accounted for by the -0.79 | . ! | , | X 4
inclusion of the G =0 term were negligible. As we 0644 b ' ' ' '
demonstrate below, for high temperatures and intermediate ) QMC+An[SsTis] M
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Thus, we require an improved model SF, S,4(k), to > OMC+Ay[Srpal
compute the discretization error, -0.65 : ' : '
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N[ model( )] - ’ (5) .. . .
N FIG. 3. (a) Finite-size corrected QMC data for the potential

in Eq. (2). A natural strategy is to combine the QMC data
for k > k,;, with an approximation that is accurate for all k
up to (at least) k-

Results.—In Fig. 2, we analyze the static SF for § =2
and a comparatively high-density case, r; = 0.5, for three
different particle numbers. The use of a finite simulation
cell subject to periodic boundary conditions discretizes the
momentum, so QMC data are available only at the discrete
k points indicated by the vertical lines in the top panel. As
shown in the inset, the QMC S(k) is well converged with
respect to the system size for surprisingly small N,
providing justification to set Sy(G) ~ S(G). Therefore,
the FS error of Vy/N reduces as N increases, primarily
because the k grid becomes finer and k,;, decreases. The
figure also allows us to study the performance of the three
analytical structure factors SRPA, SSTLS [21,22], and SKPA.
We clearly observe that S§A(k) is accurate only for
kag < 0.3, explaining why the BCDC FSC, Eq. (4), fails.
In contrast, SRPA(k) and SST-S(k) match the QMC data
much better. On the left-hand side of Fig. 2(a), we indicate
the k ranges over which the three models are accurate,
showing that only SST-5(k) connects smoothly to the QMC
data. At larger k, SRPA and SST'S exhibit significant
deviations from the QMC data, although STLS is more
accurate. For completeness, we mention that, when the
density is lowered, the k ranges of accurate behavior of
SRPA " SSTLS " and SRPA continuously increase [49]. For
example, at 7, = 1, both S®PA and SSTLS smoothly connect
to the QMC data, whereas for r, = 10 this is observed even
for SRPA(k), revealing that there the BCDC FSC is accurate.

Based on this behavior, an obvious way to construct a
model SF that is accurate over the entire k range for all
warm dense matter parameters is to combine the QMC data
with the STLS data at small k. The result is denoted S.qmp
and computed via a spline function. The excellent behavior
is illustrated by the black line in Fig. 2(b) and in the inset.
This quasiexact SF is the proper input to compute the
discretization error from Eq. (5).

The results of this procedure are shown in Fig. 3 for the
most challenging high-density case, r, = 0.5 and 6 = 2.

energy for § = 2 and r, = 0.5. The yellow asterisks are obtained
using Eq. (4); the red diamonds use the combined SF S. .,
(cf. Fig. 2) to evaluate the discretization error, Eq. (5). (b) Mag-
nified part of (a) including an extrapolation of the residual finite-
size error to the TDL (the red cross). Results obtained using only
the full RPA (blue) and STLS structure factors (black) in Eq. (5)
are also shown.

Clearly, the raw QMC data (green crosses) suffer from
severe finite-size errors of the order of 10% for system sizes
from N = 38 to N = 200. These errors do not exhibit the
AV & 1/N behavior predicted by Eq. (4), and the BCDC-
corrected QMC data (yellow asterisks) do not fall on a
horizontal line. In contrast, using Ay[Scoms] produces
results that are very well converged for all system sizes
considered, including even N =38 (red diamonds).
Figure 3(b) shows that the removal of the discretization
error has reduced the FS bias by 2 orders of magnitude. The
residual error |AV/|/|V| ~ 1073 is due to the small finite-
size effects in the QMC data for Sy (k) itself and exhibits a
linear behavior in 1/N. Thus, it is possible to determine the
potential energy in the TDL (the red cross in the bottom
panel) with a reliable error bar [50].

To further explore the properties of our discretization
formula for the FS error, we recompute Ay using the purely
theoretical STLS and RPA SFs as S;,0401 in Eq. (5). The FS-
corrected data are depicted by the black squares and blue
circles, respectively, in Fig. 3(b). Surprisingly, we find very
good agreement with the FSCs derived from the substan-
tially more accurate S, Hence, despite their significant
deviations from the QMC data at intermediate k [cf. inset in
Fig. 2(b)], SS™5(k) and SRPA (k) are sufficiently accurate to
account for the discretization error of the potential energy
[51]. Since S, 18 sensitive to statistical noise, computing
the FSC solely from SSTHS(k) or SRPA(k) is in fact the
preferred approach. Of course, this does not eliminate the
need for accurate finite-N QMC data, the quality of which
sets the baseline for our thermodynamic result,
v = Vomen/N + Ay[Smoder]- Using instead the STLS or
RPA SF to estimate Vpce v as well as Ay poorly accounts
for the short-range correlations and, even for € = 2 and
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ry = 0.5, leads to ~10% errors (cf. Fig. 1), which further
increase with r.

By performing extensive QMC simulations and applying
our FSC to results for various system sizes N to allow
extrapolation of the residual FS error, we obtain the
potential energy of the UEG in the TDL over a very broad
density range, 0.1 < r, < 10. The results are displayed in
Fig. 4 for five different temperatures and listed in a table in
the Supplemental Material [49]. We also compare our
results to the most accurate data previously available—
the RPIMC results of Brown et al. (BCDC, circles), which
were corrected using the BCDC FSC, Eq. (4) [27,49]. We
underline that these results were limited to moderate
densities r; > 1 but even there substantially deviate from
our data. The error increases rapidly with the density and
temperature reaching 20% for r; = 1 and € = 8§ [49].

Finally, we obtain the exchange-correlation free energy
from a fit to the potential energy, regarded as a function of
r, for fixed 6. Figure 4(b) shows that the functional form
assumed [Eq. (S.2) in Ref. [49]] is indeed appropriate, as no
systematic deviations between the QMC data and the fit
(red crosses, 8 = 8) are observed. In Fig. 4(c), we compare
our new data for F,. to the recent parametrization by
Karasiev et al. [52]. By design, both curves coincide in the
limit r, — 0, approaching the exact asymptotic value
known from the Hartree-Fock theory (for r, < 0.1).
While both results are in very good agreement for
0 = 0.5, we observe severe deviations of up to 9% at

0.1 —————g5=p"
-0.2
-0.3f
-0.4
-0.5
-0.6

.0.7 H
0.02

(rs V) /N

QMC+FSC <
fit

e e

AV/|V|

-0.01

0.08
0.06
0.04
0.02

AFyc/Fyc

-0.02

I's

FIG. 4. Potential energy of the UEG in the TDL. (a) Our new
FS-corrected QMC data, the fits to our data [see Eq. (S.2) of
Ref. [49]], and the RPIMC results of Brown et al. [27], which
include BCDC FSCs. (b) Relative deviations of our data (for
® = 8) and Brown’s BCDC-corrected data from the correspond-
ing fit. (c) Relative deviation of our exchange-correlation free
energies from the fit of Ref. [52] for five temperatures. For
details, see Ref. [49].

0 =8 [5% at § = 2]. Despite the systematic RPIMC bias
and the lack of data for r; < 1 prior to our work, the major
cause of the disagreement is the inadequacy of the BCDC
FSCs for a high temperature and small r,. The absolute data
for F,. and the corresponding fit parameters are provided
in Ref. [49].

Summary and discussion.—We have presented a simple
but highly accurate procedure for removing finite-size
errors from ab initio finite-N QMC data for the potential
energy V of the UEG at a finite temperature. This is
achieved by adding to the QMC results the discretization
error  Ay[Smodel ()], Eq. (5), computed using simple
approximate structure factors based on the RPA or STLS
approximations. Our finite-size-corrected results include
excellent descriptions of both the exchange and short-range
correlation effects (from the QMC data) and the long-range
correlations (via the RPA or STLS corrections). These
results constitute the first unbiased ab initio thermody-
namic data for the warm dense electron gas. For temper-
atures above half the Fermi temperature and a density range
covering 6 orders of magnitude (0.1 < r, < 10), we achieve
an unprecedented accuracy not exceeding 0.3%; our results
will therefore serve as valuable benchmarks for the devel-
opment of accurate new theories and simulation schemes,
including improved static local field corrections. The recent
results of Brown et al. [27,49], which were obtained by
applying the BCDC FSC from Eq. (4) to RPIMC data,
exhibit deviations of up to 20%. The recent parametrization
of F,. by Karasiev et al. [52], which was mainly based on
the data by Brown et al., uses a good functional form but
exhibits errors of up to 9% at high temperatures. Even
though these inaccuracies constitute only a small fraction of
the total free energy, which might not drastically influence
subsequent density functional theory calculations of real-
istic multicomponent systems, it is indispensable to have a
reliable and consistent fit of F,. for all warm dense matter
parameters to achieve predictive power and agreement with
experiments. The construction of an improved complete
parametrization of F, with respect to density, temperature,
and spin polarization remains a challenging task for future
work. In particular, the fermion sign problem presently
limits our QMC simulations to 8 > 0.5 for r; ~ 1 (although
lower temperatures are feasible for both larger and smaller
rg with PB-PIMC and CPIMC, respectively). To overcome
this bottleneck, it will be advantageous to incorporate the
T = 0 limit of E,. and, thus, to perform an interpolation
across the remaining gap where no ab initio data are
available [52]. In addition, our data will be an important
input for time-dependent DFT and quantum hydrodynam-
ics [53,54]. Finally, our FSC procedure is expected to be of
value for other simulations of warm dense plasmas
[55-57], as well as 2D systems, e.g., Refs. [58,59].

We acknowledge stimulating discussions with Tim Schoof
and Jim Dufty and are grateful to Jan Vorberger for providing
the Montroll-Ward and e* data shown in Fig. 1. This work was

156403-4



PRL 117, 156403 (2016)

PHYSICAL REVIEW

week ending

LETTERS 7 OCTOBER 2016

supported by the Deutsche Forschungsgemeinschaft via
Project No. BO1366-10 and via SFB TR-24 Project
No. A9 as well as Grant No. shp00015 for CPU time at
the  Norddeutscher =~ Verbund  fiir Hoch-  und
Hochstleistungsrechnen (HLRN). T.S. acknowledges the
support of the U.S. DOE/NNSA under Contract No. DE-
AC52-06NA25396. F.D.M. is funded by an Imperial
College Ph.D. Scholarship. F.D.M. and W.M. C.F. used
computing facilities provided by the High Performance
Computing Service of Imperial College London, by the
Swiss National Supercomputing Centre (CSCS) under
Project ID No. s523, and by ARCHER, the United
Kingdom National Supercomputing Service, under EPSRC
Grant No. EP/K038141/1 and via a RAP award.
F.D.M. and W. M. C. F. acknowledge the research environ-
ment provided by the Thomas Young Centre under Grant
No. TYC-101.
T.D. and S. G. contributed equally to this work.

*domheim@theo-physik.uni-kiel.de

[1] P-F. Loos and P.M. W. Gill, The uniform electron gas,
Comput. Mol. Sci. 6, 410 (2016).

[2] J. P. Perdew and A. Zunger, Self-interaction correction to
density-functional ~approximations for many-electron
systems, Phys. Rev. B 23, 5048 (1981).

[3] D.M. Ceperley and B.J. Alder, Ground State of the
Electron Gas by a Stochastic Method, Phys. Rev. Lett.
45, 566 (1980).

[4] M.D. Knudson, M.P. Desjarlais, R.W. Lemke, T.R.
Mattsson, M. French, N. Nettelmann, and R. Redmer,
Probing the Interiors of the Ice Giants: Shock Compression
of Water to 700 GPa and 3.8 g/cm?, Phys. Rev. Lett. 108,
091102 (2012).

[5] B. Militzer, W. B. Hubbard, J. Vorberger, I. Tamblyn, and
S. A. Bonev, A massive core in Jupiter predicted from first-
principles simulations, Astrophys. J. 688, L45 (2008).

[6] R. Nora et al., Gigabar Spherical Shock Generation on the
OMEGA Laser, Phys. Rev. Lett. 114, 045001 (2015).

[7] P.F. Schmit et al., Understanding Fuel Magnetization and
Mix Using Secondary Nuclear Reactions in Magneto-
Inertial Fusion, Phys. Rev. Lett. 113, 155004 (2014).

[8] O. A. Hurricane et al., Inertially confined fusion plasmas
dominated by alpha-particle self-heating, Nat. Phys. 12, 800
(2016).

[9] R. Ernstorfer, M. Harb, C.T. Hebeisen, G. Sciaini, T.
Dartigalongue, and R.J. D. Miller, The formation of warm
dense matter: Experimental evidence for electronic bond
hardening in gold, Science 323, 1033 (2009).

[10] G. Mazzola, S. Yunoki, and S. Sorella, Unexpectedly high
pressure for molecular dissociation in liquid hydrogen by
electronic simulation, Nat. Commun. 5, 3487 (2014).

[11] M. D. Knudson, M. P. Desjarlais, A. Becker, R. W. Lemke,
K. R. Cochrane, M. E. Savage, D. E. Bliss, T. R. Mattsson,
and R. Redmer, Direct observation of an abrupt insulator-to-
metal transition in dense liquid deuterium, Science 348,
1455 (2015).

[12] T. Sjostrom and J. Daligault, Gradient corrections to the
exchange-correlation free energy, Phys. Rev. B 90, 155109
(2014).

[13] K. Burke, J. C. Smith, P. E. Grabowski, and A. Pribram-
Jones, Exact conditions on the temperature dependence of
density functionals, Phys. Rev. B 93, 195132 (2016).

[14] M. W.C. Dharma-wardana, Current issues in finite-T
density-functional theory and warm-correlated matter, Com-
putation 4, 16 (2016).

[15] V. V. Karasiev, L. Calderin, and S. B. Trickey, The impor-
tance of finite-temperature exchange-correlation for warm
dense matter calculations, Phys. Rev. E 93, 063207 (2016).

[16] A. Pribram-Jones, P. E. Grabowski, and K. Burke, Thermal
Density Functional Theory: Time-Dependent Linear Re-
sponse and Approximate Functionals from the Fluctuation-
Dissipation Theorem, Phys. Rev. Lett. 116, 233001 (2016).

[17] D. Kremp, M. Schlanges, and W.D. Kraeft, Quantum
Statistics of Nonideal Plasmas (Springer, New York, 2005).

[18] J. Vorberger, M. Schlanges, and W.-D. Kraeft, Equation of
state for weakly coupled quantum plasmas, Phys. Rev. E 69,
046407 (2004).

[19] U. Gupta and A.K. Rajagopal, Exchange-correlation
potential for inhomogeneous electron systems at finite
temperatures, Phys. Rev. A 22, 2792 (1980).

[20] F. Perrot and M. W. C. Dharma-wardana, Exchange and
correlation potentials for electron-ion systems at finite
temperatures, Phys. Rev. A 30, 2619 (1984).

[21] S. Tanaka and S. Ichimaru, Thermodynamics and correla-
tional properties of finite-temperature electron liquids in the
Singwi-Tosi-Land-Sjolander approximation, J. Phys. Soc.
Jpn. 55, 2278 (1986).

[22] T. Sjostrom and J. Dufty, Uniform electron gas at finite
temperatures, Phys. Rev. B 88, 115123 (2013).

[23] S. Dutta and J. Dufty, Classical representation of a quantum
system at equilibrium: Applications, Phys. Rev. E 87,
032102 (2013).

[24] M. W. C. Dharma-wardana and F. Perrot, Simple Classical
Mapping of the Spin-Polarized Quantum Electron Gas:
Distribution Functions and Local-Field Corrections, Phys.
Rev. Lett. 84, 959 (2000).

[25] E. Y. Loh, J. E. Gubernatis, R. T. Scalettar, S. R. White, D. J.
Scalapino, and R. L. Sugar, Sign problem in the numerical
simulation of many-electron systems, Phys. Rev. B 41, 9301
(1990).

[26] M. Troyer and U.J. Wiese, Computational Complexity and
Fundamental Limitations to Fermionic Quantum
Monte Carlo Simulations, Phys. Rev. Lett. 94, 170201
(2005).

[27] E. W. Brown, B. K. Clark, J. L. DuBois, and D. M. Ceperley,
Path-Integral Monte Carlo Simulation of the Warm Dense
Homogeneous Electron Gas, Phys. Rev. Lett. 110, 146405
(2013).

[28] D. M. Ceperley, Fermion nodes, J. Stat. Phys. 63, 1237
(1991).

[29] S. Groth, T. Schoof, T. Dornheim, and M. Bonitz, Ab Initio
quantum Monte Carlo simulations of the uniform electron
gas without fixed nodes, Phys. Rev. B 93, 085102
(2016).

[30] T. Dornheim, S. Groth, T. Schoof, C. Hann, and M. Bonitz,
Ab initio quantum Monte Carlo simulations of the uniform

156403-5



PRL 117, 156403 (2016)

PHYSICAL REVIEW

week ending

LETTERS 7 OCTOBER 2016

electron gas without fixed nodes: The unpolarized case,
Phys. Rev. B 93, 205134 (2016).

[31] F. D. Malone, N. S. Blunt, E. W. Brown, D. K. K. Lee, J. S.
Spencer, W. M. C. Foulkes, and J.J. Shepherd, Accurate
Exchange-Correlation Energies for the Warm Dense
Electron Gas, Phys. Rev. Lett. 117, 115701 (2016).

[32] T. Schoof, M. Bonitz, A. V. Filinov, D. Hochstuhl, and J. W.
Dufty, Configuration path integral Monte Carlo, Contrib.
Plasma Phys. 51, 687 (2011).

[33] T. Schoof, S. Groth, and M. Bonitz, Towards ab initio
thermodynamics of the electron gas at strong degeneracy,
Contrib. Plasma Phys. 55, 136 (2015).

[34] T. Schoof, S. Groth, J. Vorberger, and M. Bonitz, Ab Initio
Thermodynamic Results for the Degenerate Electron Gas at
Finite Temperature, Phys. Rev. Lett. 115, 130402 (2015).

[35] T. Dornheim, S. Groth, A. Filinov, and M. Bonitz, Permu-
tation blocking path integral Monte Carlo: A highly efficient
approach to the simulation of strongly degenerate non-ideal
fermions, New J. Phys. 17, 073017 (2015).

[36] T. Dornheim, T. Schoof, S. Groth, A. Filinov, and M.
Bonitz, Permutation blocking path integral Monte Carlo
approach to the uniform electron gas at finite temperature, J.
Chem. Phys. 143, 204101 (2015).

[37] N.S. Blunt, T. W. Rogers, J. S. Spencer, and W. M. Foulkes,
Density-matrix quantum Monte Carlo method, Phys. Rev. B
89, 245124 (2014).

[38] F.D. Malone, N. S. Blunt, J. J. Shepherd, D. K. K. Lee, J.S.
Spencer, and W. M. C. Foulkes, Interaction picture density
matrix quantum Monte Carlo, J. Chem. Phys. 143, 044116
(2015).

[39] L. M. Fraser, W. M. C. Foulkes, G. Rajagopal, R. J. Needs,
S.D. Kenny, and A.J. Williamson, Finite-size effects and
Coulomb interactions in quantum Monte Carlo calculations
for homogeneous systems with periodic boundary condi-
tions, Phys. Rev. B 53, 1814 (1996).

[40] N.D. Drummond, R.J. Needs, A. Sorouri, and W. M. C.
Foulkes, Finite-size errors in continuum quantum
Monte Carlo calculations, Phys. Rev. B 78, 125106 (2008).

[41] S. Chiesa, D. M. Ceperley, R. M. Martin, and M. Holzmann,
Finite-Size Error in Many-Body Simulations with Long-
Range Interactions, Phys. Rev. Lett. 97, 076404 (2006).

[42] C. Lin, F. H. Zong, and D.M. Ceperley, Twist-averaged
boundary conditions in continuum quantum Monte Carlo
algorithms, Phys. Rev. E 64, 016702 (2001).

[43] H. Kwee, S. Zhang, and H. Krakauer, Finite-Size Correction
in Many-Body Electronic Structure Calculations, Phys. Rev.
Lett. 100, 126404 (2008).

[44] The two fits in Fig. 3 are f(1/N)=a;+bs/N* and
g(1/N) =a,+by,/N + b./N".

[45] J. Vorberger (private communication).

[46] In the considered temperature range, shell-filling effects are
negligible, and twist averaging [40,42] is not required.

[47] The Madelung constant is approximated by [40]

1 4r > 1 4r )
Eum—= Y —e 0 — / dk — e~
M3 GZ;éO G2 27) Jicw K2

for small e and, therefore, cancels the minus unity con-
tributions to both the sum and the integral in Eq. (2).

[48] For f — oo, coth(ﬂﬂ) — 1, and the ground-state result

[40,41] is recovered.2

[49] See  Supplemental Material at  http:/link.aps.org/
supplemental/10.1103/PhysRevLett.117.156403 containing
technical details, additional numerical data and tables.

[50] We (i) perform a linear extrapolation and (ii) average over
the last few data points where V/N are indistinguishable
within the statistical error bars. Our final result for V/N is
the mean of (i) and (ii), which constitute reasonable lower
and upper bounds, respectively.

[51] The discretization FSC is insensitive to the choice of SF,
because the discretization error is unaffected by constant
shifts in the model SF (the three SFs in the inset in Fig. 2 are
nearly parallel).

[52] V. V. Karasiev, T. Sjostrom, J. Dufty, and S.B.
Trickey, Accurate Homogeneous Electron Gas Exchange-
Correlation Free Energy for Local Spin-Density Calcula-
tions, Phys. Rev. Lett. 112, 076403 (2014).

[53] N. Crouseilles, P.-A. Hervieux, and G. Manfredi, Quantum
hydrodynamic model for the nonlinear electron dynamics in
thin metal films, Phys. Rev. B 78, 155412 (2008).

[54] D. Michta, F. Graziani, and M. Bonitz, Quantum hydro-
dynamics for plasmas—A Thomas-Fermi theory perspec-
tive, Contrib. Plasma Phys. 55, 437 (2015).

[55] K.P. Driver and B. Militzer, All-Electron Path
Integral Monte Carlo Simulations of Warm Dense Matter:
Application to Water and Carbon Plasmas, Phys. Rev. Lett.
108, 115502 (2012).

[56] K. P. Driver and B. Militzer, First-principles simulations and
shock Hugoniot calculations of warm dense neon, Phys.
Rev. B 91, 045103 (2015).

[57] 3wB. Militzer and K.P. Driver, Development of Path
Integral Monte Carlo Simulations with Localized Nodal
Surfaces for Second-Row Elements, Phys. Rev. Lett. 115,
176403 (2015).

[58] D. M. Ceperley, Ground state of the fermion one-component
plasma: A Monte Carlo study in two and three dimensions,
Phys. Rev. B 18, 3126 (1978).

[59] M. Motta, D. E. Galli, S. Moroni, and E. Vitali, Imaginary
time density-density correlations for two-dimensional elec-
tron gases at high density, J. Chem. Phys. 143, 164108
(2015).

156403-6



Supplementary Material: Ab initio Quantum Monte Carlo simulation
of the warm dense electron gas in the thermodynamic limit

Tobias Dornheim', Simon Groth', Travis Sjostrom?, Fionn D. Malone3, W.M.C. Foulkes?, and Michael Bonitz'

nstitut fiir Theoretische Physik und Astrophysik, Christian-Albrechts-Universitit zu Kiel,

D-24098 Kiel, Germany

2Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
3Department of Physics, Imperial College London, Exhibition Road, London SW7 2AZ, UK

A. Static structure factors

In Fig. S1, as a supplement to Fig. 2 of the main
manuscript, we show the structure factors (SF) at 6 = 2
for intermediate (rs = 1) and lower (rs = 10) density. At
both densities the STLS structure factor smoothly con-
nects to the QMC data but exhibits significant deviations
at larger k. The low k expansion of the RPA SF fails to
connect to the QMC data at rs = 1, indicating that the
FSC by Brown et al. is inappropriate, while at ry = 10
the RPA expansion smoothly connects to the QMC data
so that the FSC by Brown et al. is applicable.

B. Practical details

For the evaluation of the discretization error (DE) ac-
cording to Eq. (5) in the main manuscript,

AVN Smodel(k) -1
max) — 2 k ————(S.1
WG = on(f S s

e model(G) -1
- Z W - €M )
G#0

the maximum modulus of the discrete lattice vectors Gax
has to be chosen large enough to ensure the convergence
of the FSC, which is demonstrated in Fig. S2 for three
different particle numbers at 6 = 2 and r; = 0.5. Clearly,
taking into account only the first k-vector is not sufficient.
In fact, the convergence of the DE with respect to Gax
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Figure S1: Static structure factors of N = 66 electrons at
0 =2 for a) rs = 1.0 and b) rs = 10.0: QMC data (green
crosses), STLS (red) and k& — 0 expansion of the the RPA SF
(light blue).
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Figure S2: Convergence of the FSC with the maximum k-

value for three particle numbers and § = 2 and rs = 0.5,
cf. Fig. 3 in the main manuscript.

is rather slow, and the number of k-vectors needed for
convergence of the DE only weakly depends on N. The
difference between the converged values is due to the
different k-mesh for different N.

C. Finite-size corrections for selected parameters

To demonstrate the broad range of applicability of
our finite size correction (FSC) procedure, we present
some more examples for different parameter combinations.
Figure S3 shows the convergence of the potential energy
with system size for the most challenging (with respect to
finite-size errors) case at § = 8 and r; = 0.1. Evidently,
the uncorrected QMC (CPIMC) data exhibit severe finite-
size errors of AV/V = 200% for N = 34. This is a direct
consequence of the steep drop of the static structure
factor S(k) at small k, that is not properly accessed
by the available k-values even in a QMC simulation of
N = 1000 electrons. Further, the potential energy that
is obtained by invoking the BCDC-FSCs even worsens
the convergence, as S§PA(k) does not come anywhere
near the QMC-data, even for N = 1000. In striking
contrast, our FSCs (using either SST55, or a combination
of STLS with the QMC data, Scomn) are converged to a
remarkably high degree, even for relatively small systems
(with |AV|/|V] ~ 1073, for N = 66) and the additional
extrapolation of the residual finite-size errors allows for
an accurate result for V' in the TDL even for such extreme
parameters.

Figure S4 shows the convergence for § =2 and ry = 1.
In this case, the uncorrected QMC (permutation blocking
PIMC) data exhibit finite-size errors of |[AV|/|V| =~ 10%
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Figure S3: Finite-size correction of the QMC results for the
potential energy with 6 = 8 and r; = 0.1.
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Figure S4: Same as Fig. S3, but for § =2 and r, = 1.
(for N = 34) and the convergence seems to follow

|AV|/N ~ 1/N, cf. the linear fit (the green line). Al-
though, in principle, the 1/N-behavior is predicted by
the BCDC-FSCs, the slope is different and the corrected
V/N-data do not agree with the linear extrapolation and
are not converged. The data that have been obtained
after adding our new FSCs are converged to a high degree,
but do not agree with the linearly extrapolated value as
well. This, again, clearly demonstrates the danger of
a direct extrapolation of the QMC data without being
certain about the exact functional form of the finite-size
error.

D. Fit of the potential energy

Following Karasiev et al. [1], we use the following
parametrization of the exchange-correlation free energy
for fixed 6:

FZL’C 1 b S S
(rs,0) = —— atOYTs s 7 (S.2)
N rs \1+d/rs +erg
which yields the potential energy via
8FIC S 9
V(Tsa 9)7’5 = 2T8ch(r87 9) + TSL ) (83)
ors 0

which allows us to fit the rhs. of Eq. (S.3) to our new
corrected QMC data. The parameter a follows from the
Hartree-Fock limit and the results of the fit procedure for
the five isotherms shown in Fig. 4 in the main article are
listed in table I.

E. STLS and RPA

The static structure factor (SF) is found by the
fluctuation-dissipation theorem as a sum over the Matsub-
ara frequencies for the polarizabilities of the interacting
system as

o0

—1 1 1
S0 = gn 2 <e<k, 2 1) - B4

with the particle density n, the Matsubara frequencies
z; = 2mil /Bh, and the Fourier transform of the Coulomb
potential v, = 47/k%. Following [2], the Singwi-Tosi-
Land-Sj6lander (STLS) SF is computed from the dielectric
function

. kaO(kv w)
1+ G(k)kaO(kvw) ’

ek,w)=1 (S.5)

with xo(q,w) being the finite-temperature polarizability

of the non-interacting UEG, G is the static local field
correction

1 [ dK' k-K
K= — [ & gk oK) -1 .
G = — [ G 1Sk—1)— 1. (59
and Eq. (S.4), (S.5), and (S.6) are solved self-consistently.
In the random phase approximation (RPA), G(k) — 0.

F. Finite-size corrections by Brown et al.

In Fig. 4 from the main manuscript, we have compared
our new corrected data for the potential energy to RPIMC
data (for N = 66) by Brown et al. that were corrected
with the BCDC-FSC [Eq. (4) of the main article]. How-
ever, it should be noted that this corrected data differs
from the data tabulated in the supplement of Ref. [3].
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Figure S5: Potential energy of the warm dense electron gas
in the TDL. Panel a) shows our new corrected data for three
temperatures, the fits to our data (see Eq. (S.3)), and the data
by Brown et al. (BCDC), taken directly from their supplement.
Panel b) shows the corresponding relative deviations to the
fits to our data.

For the latter, apparently, there was a problem caused
by a mix of Hartree and Rydberg atomic units within
their FSC. In Fig. S5, we compare our data to the BCDC
results as they are given in their supplement. While
the magnitude of the deviation is similar as in Fig. 4
from the main article, the sign changes with temperature.
In particular, for § = 8 the BCDC values are lower by
AV/V =~ 8% than ours instead of being too high, and the
two data sets significantly disagree even for ry = 10.

G. Data

As a supplement to Fig. 4 from the main article, we have
listed all data for the potential and exchange correlation
free energy of the macroscopic UEG in Table II.
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Table I: Fit parameters from Eq. (S.3), see Fig. 4 in the main article.

0 a b c d e
8.0 0.025 26 0.151 46 0.015624 0.15837 0.02173
4.0 0.049 81 0.216 40 0.046 744 0.31583 0.054 29
2.0 0.095 88 0.302 37 0.081 005 0.454 80 0.09317
1.0 0.173 85 0.389 00 0.097 468 0.554 82 0.11388
0.5 0.278 86 0.404 12 0.054 329 0.51984 0.063 44

Table II: Energies per particle of the warm dense electron gas in the
thermodynamic limit: Listed are the potential energy V/N (finite-size
corrected QMC data where the residual error has been removed by an
additional extrapolation, cf. Fig. 3 in the main article), the corresponding
uncertainty 6V/N and the exchange correlation free energy Fy./N that
has been obtained by the fit, see Sec. D.

0 7. V/N SV/N Fre/N
8.0 10.0 —0.05101 0.000 02 —0.038 442
8.0 8.0 —0.059 84 0.000 04 —0.044 601
8.0 6.0 —0.07291 0.00005 —0.053 789
8.0 4.0 —0.0956 0.0001 —0.069 583
8.0 2.0 —0.1483 0.0002 —0.106 794



Table II: (continued).

0 r V/N §V/N Fue/N
8.0 1.0 —0.2259 0.0004 —0.162990
8.0 05 —0.3442 0.000 19 —0.249 668
80 0.3 —0.4692 0.0003 —0.344 241
8.0 0.1 —0.9341 0.0003 —0.710052
4.0 10.0 —0.05974 0.000 01 —0.047 280
4.0 6.0 —0.08843 0.000 02 —0.068305
4.0 4.0 —0.11906 0.000 04 —0.090 529
4.0 2.0 —0.1929 0.0004 —0.144 405
40 1.0 —0.3060 0.0003 —0.228 337
4.0 0.5 —0.4811 0.0003 —0.361760
40 03 —0.6722 0.0003 —0.511220
4.0 0.1 —1.4091 0.0007 —~1.112758
2.0 10.0 —0.066 409 0.000 003 —0.055243
2.0 8.0 —0.080093 0.000 009 —0.065910
2.0 6.0 —0.101 461 0.000014 —0.082412
2.0 4.0 —0.14011 0.00003 —0.112123
2.0 2.0 —0.2380 0.0004 —0.187073
2.0 1.0 —0.3950 0.0011 —0.309 220
20 05 —0.6484 0.0007 —0.511632
2.0 0.3 ~0.9350 0.0010 —0.746 033
2.0 0.1 —2.0956 0.0013 —1.732828
1.0 10.0 ~0.070264 0.000014 —0.061098
1.0 8.0 —0.085 593 0.000 009 —0.073774
1.0 6.0 —0.10994 0.000 04 —0.093763
1.0 4.0 —0.15537 0.000 10 —0.130733
1.0 20 —0.2749 0.0003 —0.228 179
1.0 1.0 —0.4769 0.0005 —0.395507
1.0 05 —0.8225 0.0011 —0.686 721
1.0 0.3 —1.2301 0.0010 ~1.037072
1.0 0.1 —2.972 0.003 —2.585 960
0.5 10.0 —0.07147 0.000 10 —0.064 069
0.5 8.0 —0.087 60 0.000 04 —0.077981
05 6.0 ~0.11352 0.000 08 —0.100212
0.5 4.0 —0.1631 0.0006 —0.142231
05 2.0 —0.2938 0.0008 —0.257 459
05 1.0 —0.531 0.003 —0.465 543
05 05 —0.959 0.003 —0.845 752
0.5 0.4 —1.158 0.002 ~1.026811
05 0.3 —1.4808 0.0011 —1.320709
0.5 0.1 —3.851 0.004 —3.521367
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5.2 Spline Interpolations of Static Structure Factors

In the previous section, we explored the possible combination of the static structure factors
from the dielectric formalism (in particular RPA and STLS) at small ¢ (i.e., the long-range
behavior that cannot be accessed via a simulation of a finite number of particles N) with
our thermodynamic QMC data from either PB-PIMC or CPIMC elsewhere. In that context,
the consideration of the SSF served as a means to an end, which was the derivation of
an improved finite-size correction for the interaction energy. However, the availability of
accurate data for S(k) constitutes an important end in itself as it contains all information
about two-particle correlations in the system. For this reason, we constructed cubic basis
splines connecting the small-g behavior from STLS with a smooth interpolation of the QMC
data for ¢ > 27 /L. Extensive results of this procedure covering the entire relevant density
range (0.1 < r¢ < 20) for the unpolarized UEG are shown in the following paper”, Ref. [165].
All depicted results are freely available online. Possible applications of these data include
the benchmarking of other techniques (see Chpt. 2), the approximate estimation of the static
local-field correction [198], or the calculation of the dynamic structure factor using the
method of frequency moments, see, e.g., Ref. [199]. Furthermore, it gives direct access to

the pair correlation function, which is investigated in Sec. 5.2.1.

>T. Dornheim, S. Groth, and M. Bonitz, Contrib. Plasma Phys. (2017), 57, p. 468-478. Copyright Wiley-
VCH Verlag GmbH & Co. KGaA. Reproduced with permission.
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1 | INTRODUCTION

Over recent years, there has emerged a growing interest in warm dense matter (WDM)—an exotic state where strong electronic
excitations are realized at solid state densities.[!! In addition to astrophysical applications such as planet interiors>3! and white
dwarf atmospheres, such extreme conditions are now routinely created in the lab, for example, in experiments with laser excited
solids!*! or inertial confinement fusion.>-7) Despite this remarkable experimental progress, a rigorous theoretical description
remains notoriously difficult due to the simultaneous presence of three physical effects: (a) strong electronic excitations, (b)
Coulomb coupling effects, and (c) fermionic exchange. This is typically expressed by two parameters being of the order of
unity: the degeneracy temperature 8 = kg T/Er (with Eg = kg?/2 and kg = (97/4)'3/r, being the Fermi energy and wave vector,
respectively) and the Brueckner (coupling) parameter r; = 7/ag with r and ag being the mean interparticle distance and Bohr
radius, respectively.

Of particular importance is the calculation of the thermodynamic properties of the uniform electron gas (UEG), which is
comprised of Coulomb interacting electrons in a homogeneous neutralizing background. However, this has turned out to be
surprisingly difficult. The extension of Quantum Monte Carlo (QMC) methods, which have been employed to obtain very
accurate data in the ground state already three decades ago,’®°! to finite temperature is severely limited by the fermion sign
problem (FSP).l!%111 [t was only recently that the combination of two novel methods (configuration path integral Monte Carlo
[CPIMC]!!'2131y and permutation blocking path integral Monte Carlo [PB-PIMC]"'%!3)) that are available at complementary
parameter ranges allowed to conduct the first unbiased simulation of the UEG. At first, these efforts were limited to a finite
number of electrons N in a finite simulation cell of volume V.['617] In practice, however, one is interested in the thermodynamic
limit, which is given by the limit of an infinite number of particles at fixed density (or, equivalently, fixed r). This was real-
ized by combining QMC data, which exactly incorporates all short-range exchange-correlation effects, but cannot capture the
long-range effects due to the finite simulation cell, with the linear response theory, which is exact precisely in this limit.[18-21]
The resulting accurate data for the UEG in the thermodynamic limit have subsequently been used to construct a complete param-
eterization of the exchange-correlation free energy with respect to temperature, density, and spin-polarization over the entire
WDM regime.?>%3

Contrib. Plasma Phys. 2017;57:468-478 www.cpp-journal.org © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 468
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In this work, we further explore this strategy to investigate the static structure factor (SSF), S(k), of the UEG at WDM
conditions. In particular, we construct cubic basis splines to combine the SSF from the Singwi-Tosi-Land-Sjolander theory
(STLS),?*261 which is exact in the limit of small-wave vectors (k — 0),[?”] with the exact QMC data elsewhere. These new
extensive data for S(k) are subsequently compared both to the random phase approximation (RPA)3! and the full STLS results
themselves over two orders of magnitude of the coupling parameter r, and for three different temperatures. This allows us to
gauge the performance of the dielectric approximations and to show when they break down.

2 | THEORY

2.1 | The uniform electron gas

The UEG is defined as an infinite system of Coulomb interacting electrons in a uniform positive background ensuring charge
neutrality. Since QMC simulations are only possible in a finite simulation cell with box length L and volume V = L3, we employ
periodic boundary conditions and the standard Ewald summation to take into account the interactions of the electrons with
the infinite array of periodic images. Since PB-PIMC and CPIMC are formulated in coordinate space and momentum space,
respectively, both representations of the UEG Hamiltionian are given. We assume Hartree atomic units throughout this work.

2.2. | Coordinate representation of the Hamiltonian

Following Dornheim et al.!'3! and Fraser et al.,!*®! we express the Hamiltonian for N = N; + N unpolarized (N; = N) electrons
in coordinate space as

N N N

~ 1 1 N

H=—3 2 Vit 32 Yo+ 5o v
i=1 i=1 j#i

with the Madelung constant &y and the periodic Ewald pair interaction

-12G? /x? 27iG(r—s) £ _ R
‘I‘(r,s):lze e 7 +Zerc(x|r s+ R])

& 7G? K2V & r-s+R|

@

Here R=n;L and G =n,/L denote the real and reciprocal space lattice vectors, respectively, with n; and n, three-component
vectors of integers, and k denotes the (freely adjustable) Ewald parameter.

2.3 | Hamiltonian in second quantization

In second quantization with respect to spin-orbitals of plane waves,

1 k.
(ro |kio;) = mek’ "6, » 3

with k; = zf”m,-, m; €Z> and o; €{1, |}, the Hamiltonian, Equation (1), is expressed as

5 1 IAtA _ AfAtA A N
H= EZki a.a; + Z WG, d; didy + EfM.

i<j k<l
i#Fkj#l
4
Here, the antisymmetrized two-electron integrals are defined as Wiy = Wikl = Wijlks with
4re?
Wijki = m6k,+kj,kk+k156is0'k56j,0'1 s ®)]

and the Kronecker deltas ensure both momentum and spin conservation. The first (second) term in the Hamiltonian, Equation
(4), describes the kinetic (interaction) energy. As usual, the operator d'; (d;) creates (annihilates) a particle in the (spin-) orbital
|ki6 i>~

2.4 | QMC simulations

The task at hand to be solved using QMC methods is the calculation of canonic expectation values (temperature 7, volume V,
and particle number N are fixed), that follow from the canonic partition function

Z =Trp, (6)
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with p = ¢ P being the canonic density operator and the inverse temperature = 1/kgT. In particular, the thermodynamic
expectation value of an arbitrary observable A can be written as

(A) = —TrpA 7

The underlying idea of both the CPIMC and the PB-PIMC method is to find a representation of the partition function Equation

(6) of the form
z=7Y /C W(O), ®)

That is, as a sum or integral over some, in general, high-dimensional variable C, which is denoted as a configuration. The
function W(C) is the corresponding “configuration weight”, which must be of a form that can be readily evaluated. The latter
specification is not trivial as, for interacting electrons, the matrix elements of the density operator are not known when quantum
effects are not negligible. Once a representation of the form of Equation (8) is found, the thermodynamic expectation value,
Equation (7), becomes

(A) = / W(C)A(C), )

with A(C) being the so-called Monte Carlo estimator. In practice, we use the Metropolis algorithm®! to generate a set of
Nwmc random configurations {Cj, ..., Cy, .} that are distributed according to the probability P(C) = W(C)/Z, which is possible
without explicit knowledge of the normalization Z. The Monte Carlo estimate for the thermodynamic expectation value from

Equation (9) is then given by
NMC

(A) ~ (A = @ZMC) (10)

which in the limit of infinitely many random samples, Nyic — oo, becomes exact

(Ay = 1im (A)wc, (11)

Nyc—0

where the Monte Carlo error for any finite number of samples is given by

1/2
AA = <M) ' (12)
Nvic

Since the Monte Carlo estimates are exact within this statistical uncertainty, which is known accurately as well and can be
made arbitrarily small by generating more random configurations, QMC simulations are often denoted as “quasi-exact”.

Unfortunately, QMC simulations of electrons are not so straightforward as we shall briefly illustrate in the following. Due
to the antisymmetry of the many-fermion wave function under exchange, the weight function W in Equation (8) can be both
positive or negative. This, in turn, means that P(C) = W(C)/Z cannot be interpreted as a probability, which must be strictly
positive. In order to still be able to use the Metropolis algorithm, we switch to a modified configuration space (indicated by the
“prime” symbols) where the configurations are sampled according to the modulus weights.

= Z/|W(C>|, (13)
C

and the definition of the modified expectation value

~ 1
@y == /C AC)|W(C)]. (14)
The unbiased fermionic expectation value Equation (9) is then given by
~ (ASY
<A> = A~ >
sy

where S(C) = W(C)/IW(C)I is the so-called sign and, thus, S= (§) the “average sign” of the corresponding Monte Carlo sim-
ulation. It is important to note that the statistical uncertainty of the Monte Carlo estimation according to Equation (15) is (in
leading order) inversely proportional to S,

5)

A4 ; (16)

A <§>,VNMC

while the average sign itself exponentially decreases both with inverse temperature and system size,

(S = e, a7
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where f denotes the free energy per particle. Inserting Equation (17) into Equation (16) leads to

AA  PNC-)

A VNmc

Evidently, the statistical uncertainty exponentially increases both with system size and inverse temperature, which can only
be compensated by increasing the number of Monte Carlo samples, thereby decreasing AA with the inverse square root of Nyc.
This is the notorious fermion sign problem,!!%11:211 which has, for a long time, prevented ab initio PIMC (see Ceperley!*!! for a
review) simulations of electrons in the WDM regime.

The FSP has been shown to be NP-hard,!'!! and a complete solution is not in sight. However, to nevertheless obtain
accurate QMC results at WDM conditions, we have introduced two novel QMC methods that are efficient at complemen-
tary parameter regimes. The CPIMC method!!'>!3! is formulated in anti-symmetric Fock-space and can be interpreted as
a Monte Carlo simulation of the exact, infinite perturbation expansion around the ideal (non-interacting) system. There-
fore, it excels at strong degeneracy and high density, but becomes inefficient towards strong coupling. In contrast, the
PB-PIMC approach!!*!3! significantly extends standard PIMC towards lower temperature and higher density, while strong cou-
pling does not pose an obstacle. Thus, the combination of both methods allows for accurate results over a broad parameter
range.

A detailed comparison of the different ranges of applicability of fermionic QMC methods at WDM conditions can be found
in Dornheim et al.?!]

. (18)

2.5 | Dielectric approximations

The main advantage of QMC methods is the exact treatment of the short-range exchange-correlation effects, which are not
described accurately by any approximation. On the other hand, the main disadvantage (despite the relatively large computa-
tional effort and non-universal range of applicability due to the sign problem) is that QMC simulations are limited to the finite
simulation box. For this reason, QMC methods cannot be used to describe long-range correlations (corresponding to the limit
of small wave vectors, k — 0). On the other hand, it has long been known that the RPA becomes exact in the limit of small k for
arbitrary coupling strength or temperature.>”)

Furthermore, the accuracy of RPA can be significantly increased by including a so-called (static) local field correction G(q),
which is defined by the equation(*?!

XO((L a))

4x ’ (19)
1- %1 - G@ln@.)

x(q,w) =

with y(q, @) and y((q, @) denoting the density response function of the interacting and ideal system,?3! respectively.
Furthermore, it is often convenient to compute the dielectric function

Xo(k, @)
K2 /(4r) + G(K) yo(k, @)

ek,w)=1- (20)
where the RPA limit is recovered by setting G(q) =0 in Equations (19) and (20). Unfortunately, the local field correction is not
known in practice and one has to introduce an approximation. For the UEG, the most successful approach was introduced by
Singwi et al.l?*! and extended to finite temperature by Tanaka and Ichimaru.[?3! The idea is to express G(q) as a functional of
the SSF.

Gsms(k) = -+ / %%‘[S(k—k’)— 11, @1

which, in turn, is used again to compute the SSF via the fluctuation dissipation theorem

sw=-L3% ‘1_2< L) @2)
pn =~ 4n \ ek, z) ’

where the Matsubara frequencies are given by z; =2xil/fh. In practice, to obtain the SSF in STLS approximation we start
with (1) computing S(k) in RPA, (2) use it to compute Gsrrs(q) according to Equation (21), and (3) subsequently obtain
a new SSF from Equation (22). Steps (2) and (3) are then repeated until the structure factor and local field correction
are consistent, which is the case when convergence is achieved. For completeness, we mention that first QMC results for
the (static) density response function y(k) of the warm dense electron gas have been presented in Dornheim et al.l*¥ and
Groth et al.3%]
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FIGURE 1 Schematic illustration of static structure factors for the unpolarized 1 / - - STLS — |s
electron gas at 6 =2 and r; =0.5. In panel (a), the different ranges of validity are e b RPA ——
. . . . 08 . QMC —x—i
illustrated by the light blue (RPA expansion around k =0, Equation (23)), grey (full 3 0.86 |
RPA) and red (full STLS) results. The dark blue vertical lines depict the discrete v 061 ‘?K:; 7
k-grid for N =100 electrons. In addition, the vertical green and yellow lines show 0.4} N=100 0.83 71 4
the minimum k-values for N =66 and N = 38, respectively. Panel (b) shows results 02b / N=66 0.8 4 |
for the static structure factor from Equation (23), full RPA, full STLS, and quantum / 35
Monte Carlo (crosses) with the same three particle numbers as above. The solid 0 0 |2 f’-l 10

black line corresponds to a spline combining STLS for small £ with QMC
elsewhere. Reproduced from Dornheim et al.*”! with the permission of the authors

2.6 | Construction of SSFs

The construction of our new results for the SSF over the entire k-range is illustrated in Fig. 1 for the unpolarized UEG at 6 =2
and r; =0.5. The blue vertical bars in panel (a) correspond to the discrete k-values (due to momentum quantization in a finite
simulation cell) of a QMC simulation with N =100 electrons. Evidently, QMC results are not available below k,;, =2z/L and
the k-grid becomes denser for increasing k. The vertical green and yellow line corresponds to the minimum k-value for N = 66
and N =38, respectively. Furthermore, the horizontal bars illustrate the ranges of validity of an RPA expansion around k =0
(light blue) given by Kugler?”!
2

SEPA(k) = 2% coth (@) , (23)
the full RPA results (grey) and the full STLS data (red). For the present example, only the STLS data exhibits an overlap with
the QMC results.

In panel (b), we show results for S(k) itself. The crosses correspond to the QMC results for the three different particle numbers
shown in panel (a). The main difference between these data sets is the different k-grid, while the functional form of the SSF
is remarkably well converged with system size, see the inset. The light blue curve depicts the parabolic RPA expansion from
Equation (23), which is of interest for finite-size corrections of the interaction energy,!?*2!-* but does not provide a sufficient
description of the long-range correlations beyond the QMC data. The grey and red curves correspond to the full RPA and STLS
results (see Section 2.5), respectively, and are in perfect agreement with each other and Equation (23) for small , as expected.[?”)
Further, the STLS curve exhibits an overlap with the QMC point at ki, whereas the RPA data already exhibit a minor deviation.
However, for larger k, both STLS and RPA exhibit systematic errors, although the inclusion of the local field correction leads to
a significant increase in the accuracy, see the inset. Finally, the black line depicts a cubic basis spline (obtained using the GNU
scientific library [GSL]®”) combining the red curve (for k < kpi,/2) with the blue crosses (elsewhere). In this way, we have
obtained an accurate, smooth description of the SSF (in the thermodynamic limit) over the entire k-range. All the new results
presented in Section 3 are obtained analogously.

3 | RESULTS FOR THE SSF

Let us start our investigation with a discussion of the r,-dependence of the SSF at = 1, which is depicted in Fig. 2 (see also
Table 1 in the appendix). Shown are results for the SSF from full RPA (dashed green) and STLS (solid red) calculations,
QMC simulations (blue crosses) and the splines connecting STLS with QMC (dash-dotted blue). For high density (r;=0.1
and r;=0.3), the system is only weakly non-ideal and both RPA and STLS provide an accurate description over the entire
k-range, as it is expected. With increasing r,, coupling effects become more important and especially the RPA results become
substantially less accurate. In particular, the green curves are always systematically too low at intermediate &, which is most
pronounced at r; =10 and r; =20, where the bias is of the order of AS/S ~20%. This is due to a significant overestimation of
short-range correlations, resulting in a (substantially) negative pair correlation function!3! at short distances. In stark contrast,
the static local field correction due to Singwi et al.[>*! significantly improves the accuracy even for large r;. Still, with increasing
coupling strength there occur systematic deviations to the ab initio QMC data. In particular, the STLS results for smaller k (but
not for k — 0, where it becomes exact) are too large, whereas they are too low in the region where S(k) approaches unity. This is
most evident at r; = 20, where the STLS approximation does not capture the maximum around k£ =0.2. Here, too, the PCF from
STLS becomes negative for small 7. Another fortunate feature of the STLS scheme is an error cancellation in the interaction
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FIGURE 2 Density dependence of the static structure factor at @ = 1—Shown are results for the SSF from RPA (dashed green), STLS (solid red), a cublic
basis spline connecting STLS and QMC (dashed-dotted blue), and the raw QMC data (blue crosses). The depicted density parameters are r,=0.1, 0.5, 1, 2, 6,
10, and 20. All combined results for S(k) are available in website®, and selected data are given in Table 1
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TABLE 1 Static structure factor S(k) for the unpolarized electron gas at =1 (see Fig. 2)—all data have been obtained by combining STLS
data for small k with QMC data elsewhere. Extensive data for @ = 1, 2, 4, 8 and multiple r, values are available in website!*”!

ry=20 rg=1 ry=0.1
k S(k) k S(k) k S(k)
0.00837561 0.00186964 0.147084 0.014099 1.46222 0.11347
0.0168193 0.00755307 0.29553 0.0539904 2.94033 0.322402
0.025263 0.0170533 0.443975 0.113561 4.41844 0.484183
0.0337067 0.0303731 0.592421 0.18666 5.89656 0.593229
0.0421504 0.0475827 0.740867 0.267137 7.37467 0.662812
0.0505941 0.0689052 0.889313 0.348842 8.85278 0.70891
0.0590378 0.0945839 1.03776 0.425663 10.3309 0.741495
0.0674815 0.124863 1.1862 0.494009 11.809 0.766743
0.0759252 0.159989 1.33465 0.554356 13.2871 0.787148
0.0843689 0.200215 1.4831 0.60755 14.7652 0.804333
0.0928126 0.245794 1.63154 0.654436 16.2433 0.819583
0.101256 0.296967 1.77999 0.695858 17.7215 0.833513
0.1097 0.353825 1.92843 0.732662 19.1996 0.846342
0.118144 0.41634 2.07688 0.765664 20.6777 0.858384
0.126587 0.484484 2.22532 0.795312 22.1558 0.869857
0.135031 0.557997 2.37377 0.821801 23.6339 0.880723
0.143475 0.634963 2.52222 0.845323 25.112 0.891012
0.151919 0.712752 2.67066 0.86607 26.5901 0.900838
0.160362 0.78873 2.81911 0.884233 28.0682 0.910186
0.168806 0.860214 2.96755 0.900005 29.5464 0.918993
0.17725 0.924327 3.116 0.913588 31.0245 0.927267
0.185693 0.978152 3.26444 0.925229 32.5026 0.935014
0.194137 1.01878 3.41289 0.935189 33.9807 0.94223
0.202581 1.04501 3.56134 0.943728 35.4588 0.94892
0.211024 1.05927 3.70978 0.951108 36.9369 0.955095
0.219468 1.06441 3.85823 0.957587 38.415 0.960744
0.227912 1.0633 4.00667 0.963426 39.8931 0.965865
0.236356 1.05815 4.15512 0.968789 41.3713 0.970485
0.244799 1.05047 4.30356 0.973683 42.8494 0.974635
0.253243 1.04169 4.45201 0.978098 44.3275 0.978345
0.261687 1.03321 4.60046 0.982026 45.8056 0.981625
0.27013 1.02564 4.7489 0.985456 47.2837 0.984483
0.278574 1.01905 4.89735 0.98838 48.7618 0.986971
0.287018 1.01352 5.04579 0.990793 50.2399 0.989136
0.295461 1.00907 5.19424 0.99273 51.718 0.991
0.303905 1.00562 5.34268 0.994262 53.1962 0.992587
0.312349 1.00302 5.49113 0.995456 54.6743 0.993928
0.320793 1.00115 5.63958 0.996383 56.1524 0.995055
0.329236 0.999848 5.78802 0.99711 57.6305 0.995999
0.33768 0.999023 5.93647 0.997708 59.1086 0.99678

energy per particle v, which can be obtained from the SSF by the relation

1 dk i1 [7 _
v=3 /k oS- nE = /0 dk S — 17 , 24)

where for the second equality, we made use of the fact that the SSF only depends on the modulus of the wave vector k for
homogeneous systems. Therefore, the too large and too small STLS results for S(k) for small and large k cancel to some degree

under the integral in Equation (24), leading to STLS interaction energies that are more accurate than the SSF, see for example,
[21]

Dornheim et al.
In Figs. 3 and 4, we show the same information as in Fig. 2, but for higher temperatures, § =2 and 6 =8. For 8 =2, the
behaviour of the SSF is quite similar to @ = 1, although the maxima at r; =20 and even more so at r; = 10 are substantially less
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FIGURE 3 Density dependence of the static structure factor at § =2—Shown are results for the SSF from RPA (dashed green), STLS (solid red), a cublic
basis spline connecting STLS and QMC (dashed-dotted blue), and the raw QMC data (blue crosses). The depicted density parameters are r,=0.1, 0.5, 1, 2, 6,
10, and 20. All combined results for S(k) are available in website*!
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pronounced. At 6 = 8, which corresponds to a relatively high temperature where both quantum effects and Coulomb coupling are
significantly less important, the situation is quite different. In particular, the correlation-induced maximum in S(k) has vanished
and the STLS approximation provides an accurate description over the entire k-range, even for large r;. The largest deviations
occur at ry =20, but even here AS/S does not exceed 1%. While the RPA, too, becomes more accurate, there remain significant
systematic errors from intermediate to large r;. Therefore, we conclude that, despite the high temperature, a mean field ansatz
(RPA) for the density response function, Equation (19), is still not sufficient at the present parameters.

4 | SUMMARY AND CONCLUSION

In summary, we have combined the exact description of the short-range exchange-correlation effects from ab initio QMC sim-
ulations with results from the STLS approximation, which becomes exact in the long-range limit, kK — 0. In this way, we have
been able to obtain accurate data for the SSF (in the thermodynamic limit) over the entire relevant k-range. This has allowed
us to compare our new results both to the RPA and STLS over two orders of magnitude in the coupling parameter r; and for
three relevant temperatures 6. In agreement with findings in the ground state, we confirm that the RPA, due to the mean field
ansatz for the density response function y(q, ), is only accurate for weak non-ideality, but rapidly breaks down with increas-
ing r,. Even at the largest investigated temperature 8 =8, RPA exhibits substantial errors at intermediate 7,. In stark contrast,
the inclusion of the static local field correction proposed by Singwi et al.[>*! significantly increases the accuracy everywhere.
Only at strong coupling, r, =20 and 10, the STLS fails to accurately describe the maxima around k = 0.2 and 0.5, respectively.
Furthermore, we note that due to the too large SSF for small k and too small SSF for larger k, there occurs an error cancellation
in the calculation of the interaction energy v, which means that STLS results for this quantity are more accurate than for S(k).

We expect our new accurate SSFs (available at website>”) of the warm dense electron gas to be of broad interest for various
applications related to modern WDM research. In particular, they can be used to benchmark other dielectric approximations
such as quantum STLS%411 or the recent local field correction based on the hypernetted-chain approximation by Tanaka.[*?!
Furthermore, accurate data for S(k) can be used to approximate the local field correction itself!*3! or as input for the calculation
of dynamic quantities using the method of frequency moments.##!
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Fig. 5.1 Left: Static structure factor S(k) for the unpolarized electron gas at ry =4 and 6 = 1.
The dash-dotted blue and brown curves correspond to dielectric results via STLS and RPA,
respectively. The symbols depict PB-PIMC data for three different particle numbers and
the solid black, dotted red, and dashed green lines the respective cubic basis splines. Right:
Corresponding pair correlation function g(r) as computed from the splines via Eq. (5.2)
[lines] and direct PB-PIMC estimation of g(r) for N = 66 electrons taken from Dornheim et
al. [163] [yellow crosses].

5.2.1 The Pair Correlation Function

The static structure factor S(k) is directly connected to the pair distribution function by a
Fourier transform,

g(r) =1+ 1/%(5(@ — ek (5.1)

n

Note that, for a finite system, the integral in Eq. (5.1) is replaced by a sum over discrete
reciprocal lattice vectors. For a uniform system with g(r) = g(r) and S(k) = S(k), we have

1
2nmlr

o(F) =1+ /0 " dksin(kr)[S() — 1] (5.2)
i.e., a one-dimensional integral that can easily be evaluated numerically. This procedure
is demonstrated in Fig. 5.1 for the unpolarized electron gas at & = 1 and ry = 4. The left
panel shows results for the static structure factor, where the blue and brown dash-dotted
lines correspond to STLS and RPA data, respectively. The symbols depict PB-PIMC results
for three different particle numbers. First and foremost, no system size dependence can be
resolved in the SSF within the given statistical uncertainty, as already reported in Sec. 5.1.
Secondly, we find that both RPA and STLS are in good agreement with the QMC data for
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small g, but substantially deviate elsewhere, see also the inset depicting a magnified segment.
Finally, the solid black, dotted red, and dashed green lines correspond to the cubic basis
splines that were obtained by combining the STLS results for small ¢ with QMC data for
N =34, N =40, and N = 66 electrons, respectively. Evidently, the basis spline smoothly
interpolates between the noisy QMC data and the red and black curves are in excellent
agreement everywhere. Only the dashed green curve exhibits some minor deviations due to
the significantly larger statistical uncertainty in the underlying QMC input data.

The right panel shows the corresponding results for the pair correlation function g(r)
computed from the cubic basis splines via Eq. (5.2). First of all, the pair correlation functions
obtained from N = 34 and N = 40 coincide perfectly over the entire r-range, whereas the
N = 66-curve somewhat deviates. Obviously, this is a direct consequence of the deviations
observed in S(k) in the left panel. The yellow symbols correspond to the direct PB-PIMC
estimation® of g(r) taken from Dornheim et al. [163] and is, overall, in good agreement with
the spline-based results, as it is expected.

An interesting feature of the pair correlation function at the present conditions is the
non-vanishing value for » = 0. This value, g(0), is often denoted as the on-top pair correlation
function and is of high importance for various theories, including the construction of gradient
approximations for density functional theory calculations [117, 200] and the asymptotic
large-k expansion of the momentum distribution [201, 202] that is closely connected to the
nuclear fusion rate, e.g., in the solar interior [203]. The physical origin is a combination of
the absence of Pauli blocking between spin-up and -down electrons (for a spin-polarized
UEG, it always holds g(0) = 0) and the quantum mechanical delocalization alleviating the
Coulomb repulsion.

Let us conclude this section with a systematic discussion of the coupling strength de-
pendence of g(r), as depicted in Fig. 5.2 for the unpolarized UEG at 6 = 1. The solid red
curves were obtained using the splines from Dornheim et al. [165], and we find a decreasing
value of g(0) with increasing coupling strength, as it is expected. At r; = 0.1, the system is
only weakly nonideal and the on-top pair correlation function is close to the ideal value of
20(0) = 0.5, whereas, at ry = 10, it vanishes within the given degree of accuracy. Naturally,
this is a direct consequence of the increased Coulomb repulsion, which even leads to a
small but significant peak in g(r) in the latter case. Finally, let us consider the dielectric
approximations, which are depicted as dash-dotted blue and dotted brown lines for STLS and
RPA, respectively. Somewhat surprisingly, even at rg = 0.1 both curves exhibit deviations of
several per cent regarding g(0). Furthermore, it is well known that both the RPA and STLS

®Here direct means using a binned histogram estimator and not taking the route via the static structure
factor.



5.2 Spline Interpolations of Static Structure Factors 229

1.1 T 1 T T T 1-2 T T
Spline
STLS =-----
1H “Rpa S 1h
0.9 —_ B 0.8 | —_ —
08 r 0.54 F ' 2 06 ]
o ) o /75096
07 } 051 r gt 04l S .
0.48 |- L S 0.93 =
PR VA
0.6 L PR 1 02 F.; _
. 045 F . = oo | |
A 0.42 f.” -
0.5 ’:."" : 1 7 0r 0.87 I 1 7
s 0 0.15 0.3 g 1.3 1.5 1.7
04 1 1 1 1 1 _02 S 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3
r/rs r/rs

0 0.5 1 1.5 2 2.5 3

r/rs r/rs

Fig. 5.2 Coupling strength dependence of the pair correlation function g(r) of the unpolarized
electron gas at @ = 1. Shown are data computed from our spline fits to the static structure
factor S(k) (taken from Dornheim ef al. [165]) according to Eq. (5.2) [solid red line], and
dielectric results in the RPA (dotted brown) and STLS (dash-dotted blue) approximation.
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pair correlation functions become negative with increasing rg, which is usually interpreted
as the overestimation of correlation effects [131]. For RPA, this is the case even for mod-
erate coupling, s = 1, whereas the inclusion of the STLS local-field correction leads to a
significant improvement. Nevertheless, for ry = 4, the blue curve, too, exhibits a pronounced
negative feature at small r. This is in stark contrast to the static structure factor, where
STLS appears to be in much better agreement with our QMC based data, cf. the left panel of
Fig. 5.1.

5.3 Overview, Intermediate Status, and Road Map

The publication of the first ab initio results for the warm dense electron gas in the ther-
modynamic limit, cf. Sec. 5.1, constituted a major leap on the road to our final goal: the
construction of a reliable parametrization of the exchange—correlation free energy of the
uniform electron gas with respect to temperature, density, and spin-polarization, fx(rs,0,&),
covering the entire relevant warm dense matter range. As the supplement for an invited talk
at the APS meeting of the division of plasma physics’, we summarized the then state of
the art of thermodynamic quantum Monte Carlo simulations of the UEG in the following
paper, Ref. [42]. As such, it contains a concise overview of the relevant QMC methods,
including the novel density matrix QMC (DMQMC) approach by Foulkes, Malone, and
co-workers [171, 156, 204]. Of particular relevance is the given overview regarding the
applicability of standard PIMC, PB-PIMC, CPIMC, and DMQMC (Fig. 2 of Ref. [42]) in
the temperature—density plane and the emerging consensus with respect to the simulation of
the UEG with a finite number of electrons (Fig. 3 of Ref. [42]), as the independent DMQMC
data are in excellent agreement with our combination of CPIMC and PB-PIMC. Furthermore,
the paper contains a broad discussion of finite-size effects, including various examples, and
is concluded by a brief road map towards the desired complete description of the UEG at

warm dense matter conditions.

TThe talk was given by M. Bonitz on November 3rd, 2016 in San Jose, California.
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Warm dense matter is one of the most active frontiers in plasma physics due to its relevance for
dense astrophysical objects and for novel laboratory experiments in which matter is being strongly
compressed, e.g., by high-power lasers. Its description is theoretically very challenging as it con-
tains correlated quantum electrons at finite temperature—a system that cannot be accurately mod-
eled by standard analytical or ground state approaches. Recently, several breakthroughs have been
achieved in the field of fermionic quantum Monte Carlo simulations. First, it was shown that exact
simulations of a finite model system (30...100 electrons) are possible, which avoid any simplifying
approximations such as fixed nodes [Schoof ef al., Phys. Rev. Lett. 115, 130402 (2015)]. Second, a
novel way to accurately extrapolate these results to the thermodynamic limit was reported by
Dornheim et al. [Phys. Rev. Lett. 117, 156403 (2016)]. As a result, now thermodynamic results for
the warm dense electron gas are available, which have an unprecedented accuracy on the order of
0.1%. Here, we present an overview on these results and discuss limitations and future directions.
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I. INTRODUCTION

The uniform electron gas (UEG) (i.e., electrons in a uni-
form positive background) is inarguably one of the most fun-
damental systems in condensed matter physics and quantum
chemistry.! Most notably, the availability of accurate quan-
tum Monte Carlo (QMC) data for its ground state proper-
ties” has been pivotal for the success of the Kohn-Sham
density functional theory (DFT).*’

Over the past few years, interest in the study of matter
under extreme conditions has grown rapidly. Experiments
with not only inertial confinement fusion targets® and
laser-excited solids’ but also astrophysical applications such
as planet cores and white dwarf atmospheres'®'! require a
fundamental understanding of the warm dense matter
(WDM) regime, a problem now at the forefront of plasma
physics and materials science. In this peculiar state of matter,
both the dimensionless Wigner-Seitz radius ry = 7/ay (with
the mean interparticle distance 7 and Bohr radius a) and the
reduced temperature 0 = kgT/Er (Er being the Fermi
energy) are of order unity, implying a complicated interplay
of quantum degeneracy, coupling effects, and thermal excita-
tions. Because of the importance of thermal excitation, the
usual ground-state version of DFT does not provide an
appropriate description of WDM. An explicitly thermody-
namic generalization of DFT'? has long been known in prin-
ciple but requires an accurate parametrization of the
exchange-correlation free energy (f,.) of the UEG over the
entire warm dense regime as an input.'>~

Note: Paper TI2 4, Bull. Am. Phys. Soc. 61, 328 (2016).
“Electronic mail: dornheim@theo-physik.uni-kiel.de

"T. Dornheim and S. Groth contributed equally to this work.
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This seemingly manageable task turns out to be a major
obstacle. The absence of a small parameter prevents a low-
temperature or perturbation expansion, and consequently,
Green function techniques in the Montroll-Ward and ¢*
approximations'®!'? break down. Further, the linear response
theory within the random phase approximation®”*' (RPA)
and also with the additional inclusion of static local field cor-
rections as suggested by, e.g., Singwi, Tosi, Land, and
Sjolander’*2* (STLS) and Vashista and Singwi*** (VS), is
not reliable. Quantum classical mappings®®?’ are exact in
some known limiting cases but constitute an uncontrolled
approximation in the WDM regime.

The difficulty of constructing a quantitatively accurate
theory of WDM leaves thermodynamic QMC simulations as
the only available tool to accomplish the task at hand.
However, the widely used path integral Monte Carlo®®
(PIMC) approach is severely hampered by the notorious fer-
mion sign problem®>** (FSP), which limits simulations to
high temperatures and low densities and precludes applica-
tions to the warm dense regime. In their pioneering work,
Brown et al.*! circumvented the FSP by using the fixed-node
approximation®® (an approach hereafter referred to as
restricted PIMC, RPIMC), which allowed them to present
the first comprehensive results for the UEG over a wide tem-
perature range for ry > 1.

Although these data have subsequently been used to con-
struct the parametrization of f,. required for thermodynamic
DFT (see Refs. 24, 33, and 34), their quality has been called
into question. First, RPIMC constitutes an uncontrolled
approximation,”® which means that the accuracy of the
results for the finite model system studied by Brown et al.’'
was unclear. This unsatisfactory situation has sparked remark-
able recent progress in the field of fermionic QMC.**° In

Published by AIP Publishing.
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particular, a combination of two complementary QMC
approaches®'>? has recently been used to simulate the warm
dense UEG without nodal restrictions,42 revealing that the
nodal constraints in RPIMC cause errors exceeding 10%.
Second, Brown et al’! extrapolated their QMC results for
N =33 spin-polarized (N =66 unpolarized) electrons to the
macroscopic limit by applying a finite-T generalization of the
simple first-order finite-size correction (FSC) introduced by
Chiesa et al>® for the ground state. As we have recently
shown,*” this is only appropriate for low temperature and
strong coupling and, thus, introduces a second source of the
systematic error.

In this paper, we give a concise overview of the current
state of the art of quantum Monte Carlo simulations of the
warm dense electron gas and present new results regarding
the extrapolation to the thermodynamic limit (TDL). Further,
we discuss the remaining open questions and challenges in
the field.

After a brief introduction to the UEG model (II), we
introduce various QMC techniques, starting with the stan-
dard path integral Monte Carlo approach (A) and a discus-
sion of the origin of the FSP (B). The sign problem can be
alleviated using the permutation blocking PIMC (PB-PIMC,
C) method, the configuration PIMC algorithm (CPIMC, D),
or the density matrix QMC (DMQMC, E) approach. In com-
bination, these tools make it possible to obtain accurate
results for a finite model system over almost the entire warm
dense regime (IV). The second key issue is the extrapolation
from the finite to the infinite system, i.e., the development of
an appropriate finite-size correction,*’*>7 which is dis-
cussed in detail in Sec. V. Finally, we compare our QMC
results for the infinite UEG to other data (2) and finish with
some concluding remarks and a summary of open questions.

Il. THE UNIFORM ELECTRON GAS
A. Coordinate representation of the Hamiltonian

Following Refs. 44 and 54, we express the Hamiltonian
(using Hartree atomic units) for N = N; + N| unpolarized
electrons in coordinate space as

1AL N
REPIP DR IUL RS VR

1 =1 j#i

—

N

[\)

2

with the well-known Madelung constant &, and the periodic
Ewald pair interaction

1 eﬂrsz/lc2 £2miG(rs)
Yrsi=—» ———
=02
T erfc(k|r — s + R|)

- 2
2o = Ir —s+R] @

Here, R = n,L and G = n, /L denote the real and reciprocal
space lattice vectors, respectively, with n; and n, three-
component vectors of integers, L the box length, Q = L3 the
box volume, and « the usual Ewald parameter.
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B. Hamiltonian in second quantization

In second quantized notation using a basis of spin-
orbitals of plane waves, (ro [kio;) = Hze™7d,,,, with k;

= ZL—“mi, m; € 7 and g; € {1, !}, the Hamiltonian, Eq. (1),

becomes

| At A

HZEE 2ala; + E w,;klaaalak—i— fM 3)
i<j k<l
i#kj#l

The antisymmetrized two-electron integrals take the form
Wik = Wijkl = Wijiks where

4ne?

m Ok;-+k; ki +k 95;.6, 0.0 @)

Wijkl =
and the Kronecker deltas ensure both momentum and spin
conservation. The first (second) term in the Hamiltonian, Eq.
(3), describes the kinetic (interaction) energy. The operator
d; (a;) creates (annihilates) a particle in the spin-orbital
‘kiO' ,‘).

lll. QUANTUM MONTE CARLO

A. Path integral Monte Carlo

Let us consider N spinless distinguishable particles in
the canonical ensemble, with the volume Q, the inverse tem-
perature § = 1/kgT, and the density N/Q being fixed. The
partition function in coordinate representation is given by

7= JdR (R|e " |R), Q)

where R = {ry, ...,
and the Hamiltonian H = K + V is given by the sum of a
kinetic and a potential part, respectively. Since the low-
temperature matrix elements of the density operator,

ry} contains all 3N particle coordinates,

p= ePH  are not readily known, we exploit the group prop-

; NP
erty e P = (e=)" | with ¢ = B/P and positive integers P.
Inserting P — 1 unities of the form 1 = [dR, [R),(R|, into
Eq. (5) leads to

_ de ((Role™ IR )R- [Rp1) (Rp_1 e~ [Ro))
- dew(x). ©)

We stress that Eq. (6) is still exact and constitutes an integral
over P sets of particle coordinates (dX = dRy...dRp_;), the
integrand being a product of P density matrices, each at P
times the original temperature 7. Despite the significantly
increased dimensionality of the integral, this recasting is
advantageous as the high temperature matrix elements can
easily be approximated, most simply with the primitive
approximation, e~ ~ ¢~(¢=¢ which becomes exact for
P — oo. In a nutshell, the basic idea of the path integral
Monte Carlo method®® is to map the quantum system onto a
classical ensemble of ring polymers.”® The resulting high
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dimensional integral is evaluated using the Metropolis algo-
rithm,>® which allows one to sample the 3PN-dimensional
configurations X of the ring polymer according to the corre-
sponding configuration weight W (X).

B. The fermion sign problem

To simulate N spin-polarized fermions, the partition
function from the previous Section IIT A has to be extended
to include a sum over all N! permutations of particles:

1 N
Z= > sen(s) JdR (Rle™ P |7,R), (7)

T seSy

where 7t denotes the exchange operator corresponding to the
element s from the permutation group Sy. Evidently, Eq. (7)
constitutes a sum over both positive and negative terms, so
that the configuration weight function W(X) can no longer
be interpreted as a probability distribution. To allow fermi-
onic expectation values to be computed using the Metropolis
Monte Carlo method, we introduce the modified partition
function

7 = de W(X)], ®)

and compute fermionic observables as

(0s)’
<S>/ )

with averages taken over the modified probability distribu-
tion W (X) = |[W(X)| and S = W(X)/|W(X)| denoting the
sign. The average sign, i.e., the denominator in Eq. (9), is a
measure for the cancellation of positive and negative contri-
butions and exponentially decreases with inverse tempera-
ture and system size, (S)" oc e PNU/~/) with f and f’ being
the free energy per particle of the original and the modified
system, respectively. The statistical error of the Monte Carlo
average value AQ is inversely proportional to (S)’

(0) =

)

A 1 BN(fF)
Ao b e (10)
o0 <S> NMC Nvc

The exponential increase in the statistical error with § and N
evident in Eq. (10) can only be compensated by increasing
the number of Monte Carlo samples, but the slow 1/y/Nyc
convergence soon makes this approach unfeasible. This is
the notorious fermion sign problem,**~*® which renders stan-
dard PIMC unfeasible even for the simulation of small sys-
tems at moderate temperature.

C. Permutation blocking path integral Monte Carlo

To alleviate the difficulties associated with the FSP,
Dornheim ez al.*****® recently introduced a novel simulation
scheme that significantly extends fermionic PIMC simulations
towards lower temperature and higher density. This so-called
permutation blocking PIMC (PB-PIMC) approach combines
(i) the use of antisymmetrized density matrix elements, i.e.,

determinants;®* %2 (i1) a fourth-order factorization scheme to
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obtain accurate approximate density matrices for relatively
low temperatures (large imaginary-time steps);®* % and (iii)
an efficient Metropolis Monte Carlo sampling scheme based
on the temporary construction of artificial trajectories.*’
In particular, we use the factorization introduced in
Refs. 64 and 65
o ny o t1Way pticK 21 2

X eft]el(efvlswul6,72&)6/(7 (11)

where the W operators denote a modified potential term,
which combines the usual potential energy V with double
commutator terms of the form

o . hZ N )
VKL V] =3 IR, (12)
i=1

and, thus, requires the evaluation of all forces in the system.
Furthermore, for each high-temperature factor, there appear
three imaginary time steps. The final result for the partition
function is given by

z7— 1 deﬁ( VigmeulaF
_ e~ VoMl
(N!)SP

=0

X det(p%)det(pm)det(pw)), (13)

where the determinants incorporate the three diffusion matri-
ces for each of the P factors*

.o - 7'[]'1_'71'1,'4»[1[42
pm(l7j) = /1,[? Z eXp <_ ( ! = ) ) . (14)

Iy

The key problem of fermionic PIMC simulations is the
sum over permutations, where each configuration can have a
positive or a negative sign. By introducing determinants, we
analytically combine both positive and negative contribu-
tions into a single configuration weight (hence the label
“permutation blocking”). Therefore, parts of the cancellation
are carried out beforehand, and the average sign of our simu-
lations [Eq. (9)] is significantly increased. Since this effect
diminishes with increasing P, we employ the fourth-order
factorization, Eq. (11), to obtain sufficient (although lim-
ited,** |AV|/V <0.1%) accuracy with only a small number
of high-temperature factors. PB-PIMC is a substantial
improvement over regular PIMC, but the determinants can
still be negative, which means that the FSP is not removed
by the PB-PIMC approach. To illustrate this point, in Fig. 1,
we show simulation results for the average sign (here
denoted as S) as a function of the density parameter r, for a
UEG simulation cell containing N =33 spin-polarized elec-
trons subject to periodic boundary conditions. The red, blue,
and black curves correspond to PB-PIMC results for three
isotherms and exhibit a qualitatively similar behavior. At
high r,, fermionic exchange is suppressed by the strong
Coulomb repulsion, which means that almost all configura-
tion weights are positive and S is large. With increasing den-
sity, the system becomes more ideal and the electron wave
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FIG. 1. Density dependence of the average sign of a PB-PIMC simulation of
the uniform electron gas. Also shown are standard PIMC data taken from
Ref. 31. Reproduced with permission from J. Chem. Phys. 143, 204101
(2015). Copyright 2014 AIP Publishing LLC.**

functions overlap, an effect that manifests itself in an
increased number of negative determinants. Nevertheless,
the value of S remains significantly larger than zero, which
means that, for the three depicted temperatures, PB-PIMC
simulations are possible over the entire density range. In con-
trast, the green curve shows the density-dependent average
sign for standard PIMC simulations®! at =1 and exhibits a
significantly steeper decrease with density, limiting simula-
tions to ry > 4.

D. Configuration path integral Monte Carlo

For CPIMC,40’41 instead of performing the trace over
the density operator in the coordinate representation [see Eq.
(5)], we trace over Slater determinants of the form

{n}) = |n1,na,...), (15)

where, in the case of the uniform electron gas, n; denotes the
fermionic occupation number (1; € {0, 1}) of the i-th plane
wave spin-orbital |k;o;). To obtain an expression for the par-
tition function suitable for Metropolis Monte Carlo, we split
the Hamiltonian into diagonal and off-diagonal parts, H =
D + Y (with respect to the chosen plane wave basis, see Sec.
II), and explore a perturbation expansion of the density oper-
ator with respect to ¥

BB B

e P = e’wZJdﬁJd‘rz... J dtg
K=0

0 T TK-1

< (= P () (k1) o - Y (11),  (16)

with Y (1) = e®Ye ™. In this representation, the partition
function becomes

B B

Z = zx: Z Z Tdrljdrz... JdrK

K=0 {n} si...5k-1
K#1) 0

T1 TK-1

K
=2 D0y (T =) K
x (=1)fe = 1[0y ey aD
i=1
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The matrix elements of the diagonal and off-diagonal opera-
tors are given by the Slater-Condon rules

Doy = S ke + 3 winn}?, (18)
! 1<k
Y{n(i)}y{n(i—w}(si) = W;(_l)%la (19)

s

g—1 ) —1 .
I ST ALES D I
I=p

I=r

where the multi-index s; = (pgrs) defines the four orbitals in
which {1’} and {n'~V} differ, and we note that p < ¢ and
r < s. As in standard PIMC, each contribution to the partition
function (17) can be interpreted as a f—periodic path in
imaginary time, but the path is now in Fock space instead of
coordinate space. Evidently, the weight corresponding to any
given path (second line of Eq. (17)) can be positive or nega-
tive. Therefore, to apply the Metropolis algorithm, we have
to proceed as explained in Sec. III B and use the modulus of
the weight function as our probability density. In conse-
quence, the CPIMC method is also afflicted with the FSP.
However, as it turns out, the severity of the FSP as a function
of the density parameter is complementary to that of standard
PIMC, so that weakly interacting systems, which are the
most challenging for PIMC, are easily tackled using CPIMC.
For a detailed derivation of the CPIMC partition function
and the Monte Carlo steps are required to sample it see, e.g.,
Refs. 4042, and 51.

E. Density matrix quantum Monte Carlo

Instead of sampling contributions to the partition func-
tion, as in path integral methods, DMQMC samples the
(unnormalized) thermal density matrix directly by expanding
it in a discrete basis of outer products of Slater determinants

p=> g {inH{7}, @)
{n}{n'}

where pgy 6y = ({n}|e~P"|{n'}). The density-matrix coef-
ficients py,, 1,y appearing in Eq. (21) are found by simulat-
ing the evolution of the Bloch equation

dp L.~ .

—=——(pH+Hp 22

= 3 A +HD). (22)
which may be finite-differenced as

P{ny {n'} (B+AB) =P}y {n'} (B) —Aﬁz I:p{n}ﬁ{n”} (ﬁ)H{nﬂ},{n'}
{n"}

+H{n}’{nu}p{nu}’{n/}(ﬁ)}. (23)

The matrix elements of the Hamiltonian are as given as in
Egs. (18) and (19).

Following Booth and coworkers,®” we note that Eq. (23)
can be interpreted as a rate equation and can be solved by
evolving a set of positive and negative walkers, which sto-
chastically undergo birth and death processes that, on aver-
age, reproduce the full solution. The rules governing the
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evolution of the walkers, as derived from Eq. (23), can be
found elsewhere.***” The form of p is known exactly at infi-
nite temperature (f=0, p = 1), providing an initial condi-
tion for Eq. (22). For the electron gas, however, it turns out
that simulating a differential equation that evolves a mean-
field density matrix at inverse temperature [ to the exact
density matrix at inverse temperature f§ is much more effi-
cient than solving Eq. (22), an insight that leads to the
“interaction picture” version of DMQMC?>**® used through-
out this work.

The sign problem manifests itself in DMQMC as an
exponential growth in the number of walkers required for the
sampled density matrix to emerge from the statistical
noise.®”~"° Working in a discrete Hilbert space helps to reduce
the noise by ensuring a more efficient cancellation of positive
and negative contributions, enabling larger systems and lower
temperatures to be treated than would otherwise be possible.
Nevertheless, at some point, the walker numbers required
become overwhelming and approximations are needed.
Recently, we have applied the initiator approximation’'~”* to
DMQMC (i — DMQMCO). In principle, at least, this allows a
systematic approach to the exact result with an increasing
walker number. More details on the use of the initiator
approximation in DMQMC and its limitations can be found in
Ref. 39.

F. Applicability of the QMC methods

To conclude the discussion of Quantum Monte Carlo, in
Fig. 2, we give a schematic overview of the parameter com-
binations where the different methods can be used to obtain
results in the thermodynamic limit (for a discussion of finite-
size corrections, see Sec. V) with a relative accuracy of
AV /V ~0.003. Standard PIMC (black) is only useful for
high temperatures and low densities where fermionic
exchange does not play an important role and, therefore,
does not give access to the WDM regime. PB-PIMC (green)
significantly extends the possible parameter combinations to
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FIG. 2. Density-temperature-plane around the WDM regime. Shown are the
parameter combinations where standard PIMC (black), PB-PIMC (green),
CPIMC (red), and DMQMC (blue) can be used to obtain data in the thermo-
dynamic limit with an accuracy of AV/V ~ 0.003.

Phys. Plasmas 24, 056303 (2017)

lower temperature (down to 8 = 0.5 for r; > 1) and is avail-
able over the entire density range for 6 = 2. In contrast, both
CPIMC (red) and DMQMC (blue) are feasible for all 0 at
small r; and eventually break down with increasing r, due to
coupling effects. Despite their apparent similar range of
applicability, it turns out that CPIMC is significantly more
efficient at higher temperature, while DMQMC is superior at
low 0.

IV. SIMULATION RESULTS FOR THE FINITE SYSTEM

The first step towards obtaining QMC results for the
warm dense electron gas in the thermodynamic limit is to
carry out accurate simulations of a finite model system. In
Fig. 3, we compare results for the density dependence of the
exchange correlation energy E,. of the UEG for N =33 spin-
polarized electrons and two different temperatures. The first
results, shown as blue squares, were obtained with RPIMC?!
for r; > 1. Subsequently, Groth, Dornheim, and co-work-
ers**>! showed that the combination of PB-PIMC (red
crosses) and CPIMC (red circles) allows for an accurate
description of this system for 0 > 0.5. In addition, it was
revealed that RPIMC is afflicted with a systematic nodal error
for densities greater than the relatively low value at which
ry= 6. Nevertheless, the FSP precludes the use of PB-PIMC
at lower temperatures and, even at f = 0.5 and r, =2, the sta-
tistical uncertainty becomes large. The range of applicability
of DMQMC is similar to that of CPIMC, and the DMQMC
results (green diamonds) fully confirm the CPIMC results.**4°
Further, the introduction of the initiator approximation (i-
DMQMC) has made it possible to obtain results up to ry=2
for 0 = 0.5. Although i-DMQMLC is, in principle, systemati-
cally improvable and controlled, the results suggest that the
initiator approximation may introduce a small systematic shift
at lower densities.

In summary, the recent progress in fermionic QMC
methods has resulted in a consensus regarding the finite-N
UEG for temperatures 6 > 0.5. However, there remains a
gap at ry &~ 2 — 6 and 0 < 0.5 where, at the moment, no reli-
able data are available.

—0.45

CPIMC
PB-PIMC
DMQMC

—0.50

—0.55

Exc-7s

—0.60

—0.65
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FIG. 3. Exchange-correlation energy of N =33 spin-polarized electrons as a
function of the density parameter r; for two isotherms. Shown are results
from CPIMC and PB-PIMC taken from Ref. 51, restricted PIMC from Ref.
31, and DMQMC from Ref. 39. For 6 = 0.5, all data have been shifted by
0.05 Hartree. In the case of DMQMC, the initiator approximation is used.



056303-6 Dornheim et al.

V. FINITE SIZE CORRECTIONS

In this section, we describe in detail the finite-size cor-
rection scheme introduced in Ref. 47 and subsequently pre-
sent detailed results for two elucidating examples.

A. Theory

As introduced above (see Eq. (1) in Sec. I A), the poten-
tial energy of the finite simulation cell is defined as the inter-
action energy of the N electrons with each other, the infinite
periodic array of images, and the uniform positive back-
ground. To estimate the finite-size effects, it is more conve-
nient to express the potential energy in k-space. For the finite
simulation cell of N electrons, the expression obtained is a
sum over the discrete reciprocal lattice vectors G

VN - 1 4n éM
W—E(;[SN(Q —lm+ (24)

where S(k) is the static structure factor. In the limit as the
system size tends to infinity and &y — O, this yields the
integral

1 dk 4n
== ——=Stk) = 1] —. 25
' 2L<oc<zn>3[() e =

Combining Egs. (24) and (25) yields the finite-size error for
a given QMC simulation

AVN VN
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The task at hand is to find an accurate estimate of the
finite-size error from Eq. (26), which, when added to the
QMC result for Vy /N, gives the potential energy in the ther-
modynamic limit. As a first step, we note that the Madelung
constant may be approximated by>>

1 4z 2 1
VT Pt
L3 (}Z;é() G2 (27'[)3

J kI e . (28)
k<oo k?

an expression that becomes exact in the limit as € — 0. The
Madelung term thus cancels the minus unity contributions to
both the sum and the integral in Eq. (27).

The remaining two possible sources of the finite-size
error in Eq. (26) are (i) the substitution of the static structure
factor of the infinite system S(k) by its finite-size equivalent
Sy(k) and (ii) the approximation of the continuous integral
by a discrete sum, resulting in a discretization error. As we
will show in Sec. VB, Sy (k) exhibits a remarkably fast con-
vergence with system size, which leaves explanation (ii). In
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particular, about a decade ago, Chiesa er al.>* suggested that
the main contribution to Eq. (26) stems from the G = 0 term
that is completely missing from the discrete sum. To remedy
this shortcoming, they made use of the random phase
approximation (RPA) for the structure factor, which
becomes exact in the limit X — 0. The leading term in the
expansion of SRPA (k) around k=0 is*°
k2

SRPA (1) = Z—%th (%) , (29)

with @, = \/3/r? being the plasma frequency. The finite-T
generalization of the FSC introduced by Chiesa et al., hereaf-
ter called the BCDC-FSC, is*"*

. SEPA(k)4n
AViepe(N) = lim =275~

— 2 coth <%> . (30)

Eq. (30) would be sufficient if (i) SRA(k) were accurate for
k=2n/L and (ii) all contributions to Eq. (26) beyond the
G = 0 term were negligible. As is shown in Sec. V B, both
conditions are strongly violated in parts of the warm dense
regime.

To overcome the deficiencies of Eq. (30), we need a
continuous model function Spder(k) to accurately estimate
the discretization error from Eq. (27)

A
AVySmoqat(8)] = 2 [Smoe () Smoaat(K)]. B

A natural choice would be to combine the QMC results for
k > kmin, which include all short-ranged correlations and
exchange effects, with the STLS structure factor for smaller
k, which is exact as k — 0 and incorporates the long-ranged
behavior that cannot be reproduced using QMC due to the
limited size of the simulation cell. However, as we showed
in Ref. 47, a simpler approach using SstLs (k) [or the full
RPA structure factor Sgpa (k)] for all k is sufficient to accu-
rately estimate the discretization error.

B. Results
1. Particle number dependence

To illustrate the application of the different FSCs, Fig. 4
shows results for the unpolarized UEG at 0 =2 and r;=1.
The green crosses in panel (b) correspond to the raw, uncor-
rected QMC results that, clearly, are not converged with sys-
tem size N. The raw data points appear to fall onto a straight
line when plotted as a function of 1/N. This agrees with the
BCDC-FSC formula, Eq. (30), which also predicts a 1/N
behavior, and suggests the use of a linear extrapolation (the
green line). However, while the linear fit does indeed exhibit
good agreement with the QMC results, the computed slope
does not match Eq. (30). Further, the points that have been
obtained by adding AVgcpc to the QMC results, i.e., the yel-
low asterisks, do not fall onto a horizontal line and do not
agree with the prediction of the linear extrapolation (see the
horizontal green line). To resolve this peculiar situation, we
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compute the improved finite-size correction [Eq. (31)] using
both the static structure factor from STLS (Sstrs) and the
combination of STLS with the QMC data (S¢omp) as input.
The resulting corrected potential energies are shown as black
squares and red diamonds, respectively, and appear to
exhibit almost no remaining dependence on system size. In
panel (c), we show a segment of the corrected data, magni-
fied in the vertical direction. Any residual finite-size errors
[due to the QMC data for S(k) not being converged with
respect to N, see panel (d)] can hardly be resolved within the
statistical uncertainty and are removed by an additional
extrapolation. In particular, to compute the final result for V/
N in the thermodynamic limit, we obtain a lower bound via a
linear extrapolation of the corrected data (using Sstrs) and
an upper bound by performing a horizontal fit to the last few
points, all of which are converged to within the error bars.
The dotted grey line in panel (b), which connects to the
extrapolated result, shows clearly that the results of this
procedure deviate from the results of a naive linear
extrapolation.

Finally, in panel (d) of Fig. 4, we show results for the
static structure factor S(k) for the same system. As explained
in Sec. VA, momentum quantization limits the QMC results
to discrete k values above a minimum value kpi, = 27/L.

k [ag™]

Nevertheless, the N dependence of the k grid is the only
apparent change of the QMC results for S(k) with system size,
and no difference between the results for the three particle
numbers studied can be resolved within the statistical uncer-
tainty (see also the magnified segment in the inset). The STLS
curve (red) is known to be exact in the limit k — 0 and
smoothly connects to the QMC data, although for larger k
there appears an almost constant shift. The full RPA curve
(grey) exhibits a similar behavior, albeit deviating more sig-
nificantly at intermediate k. Finally, the RPA expansion
around k=0 [Eq. (29), light blue] only agrees with the STLS
and full RPA curves at very small k£ and does not connect to
the QMC data even for the largest system size simulated.

To further stress the importance of our improved finite-
size correction scheme, Fig. 5 shows results again for 0 =2
but at higher density, r; = 0.1. In this regime, the CPIMC
approach (and also DMQMC) is clearly superior to PB-
PIMC and simulations of N =700 unpolarized electrons in
N, =189 234 basis functions are feasible. Due to the high
density, the finite-size errors are drastically increased com-
pared to the previous case and exceed 50% for N =38 par-
ticles [see panels (a) and (b)]. Further, we note that the
BCDC-FSC is completely inappropriate for the N values
considered, as the yellow asterisks are clearly not converged
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STLS ——

25 T T T T T 12 T
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_ 6=2,
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FIG. 5. Finite-size correction for the
UEG at 0=2 and r;,=0.1: (a) N
dependence of the FSCs; (b) potential
energy per particle, V/N; (c) extrapola-
tion of the residual finite-size error;
and (d) corresponding static structure
factors S(k) from QMC (for N =66,
300, and 700), STLS, RPA, and the
RPA expansion around k =0, Eq. (29).
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and differ even more strongly from the correct TDL than the
raw uncorrected QMC data.

Our improved FSC, on the other hand, reduces the
finite-size errors by two orders of magnitude (both with
SstLs and Scomp) and approaches Eq. (30) only in the limit of
very large systems [N = 10*; see panel (a)]. The small resid-
ual error is again extrapolated, as shown in panel (c).

Finally, we show the corresponding static structure fac-
tors in panel (d). The RPA expansion is again insufficient to
model the QMC data, while the full RPA and STLS curves
smoothly connect to the latter.

2. Comparison to other methods

To conclude this section, we use our finite-size corrected
QMC data for the unpolarized UEG to analyze the accuracy
of various other methods that are commonly used. In Fig.
6(a), the potential energy per particle, V/N, is shown as a
function of r, for the isotherm with 6 =2. Although all four
depicted curves exhibit qualitatively similar behavior, there
are significant deviations between them [see panel (b), where
we show the relative deviations from a fit to the QMC data
in the TDL]. Let us start with the QMC results: the black
squares correspond to the uncorrected raw QMC data for
N =66 particles (see Ref. 52) and the red diamonds to the
finite-size corrected data from Ref. 47. As expected, the
finite-size effects drastically increase with density from
|AV|/V ~ 1%, at ry=10, to |AV|/V > 50%, at r; =0.1.
This again illustrates the paramount importance of accurate
finite-size corrections for QMC simulations in the warm
dense matter regime. The RPA calculation (green curve) is
accurate at high density and weak coupling. However, with
increasing ry, the accuracy quickly deteriorates and, already
at moderate coupling, ry=1, the systematic error is of the
order of 10%. The yellow asterisks show the SLTS result,

0.2 4
~—~— N=66 —&@—
-0.3 ‘\\\»‘ -FI{—EI/-{ —— 4
04 \« STLS ]
KSDT ——
Z o5t §
s P
v -0.6 |
0.7 b
0.8 | 4
(a)
0.9

AVIV

FIG. 6. Potential energy per particle of the uniform electron gas at
0 =2-simulations versus analytical models. Squares: QMC results for
N=66 particles,5 2 (red) rhombs: finite-size corrected QMC data (TDL),47
green (yellow) curves: RPA (STLS) data,”* and blue: results of the parame-
trization of Ref. 34 (KSDT). Bottom: relative deviations of all curves from
the fit to the thermodynamic QMC results.
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which agrees well with the simulations (the systematic error
does not exceed 3%) over the entire r-range considered, i.e.,
up to ry= 10. Finally, the blue curve has been obtained from
the recent parametrization of f,. by Karasiev et al.**
(KSDT), for which RPIMC data have been used as an input.
While there is a reasonable agreement with our new data for
rs =1 (with |AV|/V ~ 2%), there are significant deviations
at smaller r,, which only vanish for r; < 1074,

VI. SUMMARY AND OPEN QUESTIONS

Let us summarize the status of ab initio thermodynamic
data for the uniform electron gas at finite temperature. The
present paper has given an overview of recent progress in ab
initio finite temperature QMC simulations that avoid any addi-
tional simplifications such as fixed nodes. While these simula-
tions do not “solve” the fermion sign problem, they provide a
reasonable and efficient way on how to avoid it, in many prac-
tically relevant situations, by combining simulations that use
different representations of the quantum many-body state: the
coordinate representation (direct PIMC and PB-PIMC) and
Fock states (CPIMC and DMQMC). With this, it is now pos-
sible to obtain highly accurate results for up to N ~ 100 par-
ticles in the entire density range and for temperatures 6 = 0.5.
As a second step, we demonstrated that these comparatively
small simulation sizes are sufficient to predict results for the
macroscopic uniform electron gas not significantly losing
accuracy.*” This unexpected result is a consequence of a new
highly accurate finite-size correction that was derived by
invoking STLS results for the static structure factor.

With this procedure, it is now possible to obtain thermo-
dynamic data for the uniform electron gas with an accuracy
on the order of 0.1%. Even though pure electron gas results
cannot be directly compared to warm dense matter experi-
ments, they are of high value to benchmark and improve addi-
tional theoretical approaches. Most importantly, this concerns
finite-temperature versions of the density functional theory
(such as orbital-free DFT), which is the standard tool to model
realistic materials and which will benefit from our results for
the exchange-correlation free energy. Furthermore, we have
also presented a few comparisons with earlier models such as
RPA, STLS, or the recent fit of Karasiev et al. (KSDT),
the accuracy and errors of which can now be
unambiguously quantified. We found that among the tested
models, the STLS is the most accurate one. We wish to under-
line that even though exchange-correlation effects are often
small compared to the kinetic energy, their accurate treatment
is important to capture the properties of real materials, see
e.g., Ref. 74.

In the following, we summarize the open questions and
outline future research directions.

(1) Construction of an improved fit for the exchange-
correlation free energy due to their key relevance as
input for finite-temperature DFT. Such fits are straight-
forwardly generated from the current results but require
a substantial extension of the simulations to arbitrary
spin polarization. This work is currently in progress.

(2) The presently available accurate data are limited to tem-
peratures above half the Fermi energy, as a consequence
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of the fermion sign problem. A major challenge will be
to advance to lower temperatures, ® < 0.5, and to reli-
ably connect the results to the known ground state data.
This requires substantial new developments in the area
of the three quantum Monte Carlo methods presented in
this paper (CPIMC, PB-PIMC and DMQMC) and new
ideas on how to combine them. Another idea could be to
derive simplified versions of these methods that treat the
FSP more efficiently but still have acceptable accuracy.

(3) The present ab initio results allow for an entirely new
view on previous theoretical models. For the first time, a
clear judgment about the accuracy becomes possible,
which more clearly maps out the sphere of applicability
of the various approaches, e.g., Ref. 75. Moreover, the
availability of our data will allow for improvements of
many of these approaches via adjustment of the relevant
parameters to the QMC data. This could yield, e.g.,
improved static structure factors, dielectric functions or
local field correlations.

(4) Similarly, our data may also help to improve alternative
quantum Monte Carlo concepts. In particular, this con-
cerns the nodes for Restricted PIMC simulations, which
can be tested against our data. This might help to extend
the range of validity of those simulations to higher den-
sity and lower temperature. Since this latter method does
not have a sign problem, it may allow to reach parame-
ters that are not accessible otherwise.

(5) A major challenge of Metropolis-based QMC simula-
tions that are highly efficient for thermodynamic and
static properties is to extend them to dynamic quantities.
This can, in principle, be done via analytical continua-
tion from imaginary to real times (or frequencies).
However, this is known to be an ill-posed problem.
Recently, there has been significant progress by invoking
stochastic reconstruction methods or genetic algorithms.
For example, for Bose systems, accurate results for the
spectral function and the dynamics structure factor could
be obtained, e.g., Ref. 76 and references therein, which
encourage also for applications to the uniform electron
gas, in the near future.

(6) Finally, there are a large number of additional applica-
tions of the presented ab initio simulations. This includes
the 2D warm dense UEG where thermodynamic results
of similar accuracy should be straightforwardly accessi-
ble. Moreover, for the electron gas, at high density,
ry=0.1, relativistic corrections should be taken into
account. Among the presented simulations, CPIMC is
perfectly suited to tackle this task and to provide ab ini-
tio data also for correlated matter at extreme densities.
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Chapter 6

Parametrization of the
Exchange-Correlation Free Energy

6.1 Overview of Existing Parametrizations

To finally realize the construction of a new ab initio QMC based exchange—correlation
functional (cf. Sec. 6.2), it was indispensable to get an overview of the already existing zoo
of parametrizations. These were obtained using different quantities as input (typically the
exchange—correlation energy ey or the interaction energy v), which can be based on different
kinds of approximations, and are valid over different parameter ranges. A further note of
caution is in order regarding the different known limiting behaviors (i.e., Hartree—Fock [205]
for r¢ — 0, Debye—Hiickel [206] for 6 — oo, and the ground-state exchange—correlation
energy [112, 113] for 8 — 0), which are not fulfilled by all functionals.

Providing such an overview was one goal of the following paper!, Ref. [129], in which
we discuss the parametrizations of fx.(rs,0) (limiting ourselves to the unpolarized case
investigated in Sec. 5.1) by Ebeling and co-workers [119-121, 207, 208] (based on inter-
polations between various known limits), Ichimaru and co-workers [123, 209] (based on
the STLS formalism [124, 196]), Perrot and Dharma-wardana [122] (based on the approxi-
mate mapping of the quantum system onto an effective classical one [210]), Sjostrom and
Dufty [128] (based on the finite-temperature extension of the Vashista—Singwi local-field
correction [211, 212]), and Karasiev and co-workers [107] (based on the RPIMC data by
Brown et al. [157)).

A second goal was the comparison of fx. to our new ab initio QMC data for the warm
dense UEG in the thermodynamic limit [164], cf. Sec. 5.1, that was available for a few

I'S. Groth, T. Dornheim, and M. Bonitz, Contrib. Plasma Phys. (2017), 57, p. 137-146. Copyright Wiley-
VCH Verlag GmbH & Co. KGaA. Reproduced with permission.
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constant temperatures down to 6 = 0.5. In a nutshell, we found that [129] an accurate
parametrization of the exchange—correlation free energy that is valid for all rs-0 combina-
tions was not available, thereby further stressing the need for a new parametrization that is

based on accurate QMC results.
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1 | INTRODUCTION

Over the last decade, there has emerged growing interest in the so-called warm dense matter (WDM), which is of key importance
for the description of, for example, astrophysical systems, ! laser-excited solids,! and inertial confinement fusion targets.*-°!
The WDM regime is characterized by the simultaneous occurrence of strong (moderate) correlations of ions (electrons), thermal
effects, as well as quantum effects of the electrons. In dimensionless units, typical parameters are the Brueckner parameter
ry = r/ap and the reduced temperature § = kg T /EF, both being of the order of unity (more generally in the range 0.1-10). Here,
r and ag denote the mean interparticle distance and the Bohr radius, respectively. A third relevant parameter is the classical
coupling parameter of the ionic component, I'; = Zize2 /rks T, which is often larger than unity indicating that the ionic component
is far from an ideal gas. This makes the theoretical description of this peculiar state of matter particularly challenging, as there
is no small parameter to perform an expansion around.

In the ground state, there exists a large toolkit of approaches that allow the accurate description of manifold physical systems,
the most successful of which arguably being Kohn—Sham density functional theory (DFT) (e.g., [7,8]). The basic idea of DFT is
to map the complicated and computationally demanding quantum many-body problem onto an effective single-particle problem.
This would be exact if the correct exchange-correlation functional of the system of interest was available, which is, of course,
not the case. In practice, therefore, one has to use an approximation. The foundation of the great success of DFT has been
the local density approximation (LDA), that is, the use of the exchange-correlation energy E,. of the uniform electron gas
(UEG) with the same density as the more complicated system of interest. Accurate data for E,. of the UEG was obtained by
Ceperley and Alder!®! using a quantum Monte Carlo (QMC) method, from which Perdew and Zunger''%! constructed a simple
parameterization with respect to density, E,.(ry), which is still used to this day.

However, the accurate description of WDM requires the extension of DFT to finite temperature. This has been realized
long ago by Mermin!'!!, who used a superposition of excited states weighted with their thermal occupation probability. A

"Dedicated to Werner Ebeling on the occasion of his 80th birthday.
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strict approach to the thermodynamic properties of this system also requires an appropriate finite-temperature extension of
the LDA, in particular, replacement of the ground-state energy functionals by free energies, that is E — f = E — TS. This
means, a finite-temperature version of the LDA requires accurate parameterizations of the exchange correlation free energy
with respect to temperature and density,!'>"'7! that is, f,.(rs, 8), even though in some cases the entropic correction may be small.
This seemingly benign task, however, turns out to be far from trivial because accurate data for the free energy are much more
involved than the ground-state results. While for the ground state reliable QMC data have been known for a long time, until
recently,!'8-28] the notorious fermion sign problem!>*3%! has prevented reliable QMC simulations in the warm, dense regime.
Therefore, during the recent four decades, many theoretical approaches to f,.(r, 8) have been developed that have lead to a
variety of parameterizations (for an overview on early works, see e.g., Refs. [31,32]). Some of them have gained high popularity
and been successfully applied in many fields, even though their accuracy has not been thoroughly tested. It is the purpose of
this paper to present such a quantitative comparison of earlier models with new simulation results.

In Section 2, we introduce a selection of such functions. First, we analyze the purely analytical expression presented by
Ebeling et al. (e.g., Ref. [33]). Next, we study functional fits to linear response data based on static local field correction
schemes that were suggested by Singwi, Tosi, Land, and Sjolander (STLS)* (Section 2.2) and Vashishta and Singwi (VS)3>!
(Section 2.3). As a fourth example, we consider the quantum-classical mapping developed by Dharma-wardana and Perrot
(PDW)36:37] (Section 2.4). Finally, we consider the recent parameterization by Karasiev, Sjostrom, Dufty, Trickey (KSDT)38!
(Section 2.5), which is based on the restricted path integral Monte Carlo (RPIMC) data by Brown et al. that became available
recently.’”) However, those data have a limited accuracy because of (a) the use of the fixed-node approximation*®! and (b) an
inappropriate finite-size correction (see Dornheim et al.?”!), giving rise to systematic errors in the free energy results, as we will
show below. In Section 3, we compare all aforementioned parameterizations of f,. to the new, accurate QMC data by Dornheim
et al.l?7l, which are free from any systematic bias and, hence, allow us to gauge the accuracy of models. Particular emphasis is
laid on the WDM regime.

2 | FREE-ENERGY PARAMETERIZATIONS

2.1 | Ebeling’s Padé formulae

The idea to produce an analytical formula for the thermodynamic quantities that connects known analytical limits via a smooth
Padé approximant is due to Ebeling, Kraeft, and Richert et al.l*'=**] These approximations have been quite influential in the
description of nonideal plasmas and electron—hole plasmas in the 1980s and 1990s, receiving, in part, a substantial number of
citations. As they have been improved continuously in the following years, we, therefore, discuss only the more recent versions,
compare 3341 and references therein.

Ebeling et al. used Rydberg atomic units and introduced a reduced thermal density

n=nA> =6\/;rs_31_3/2 ()

with the usual thermal wavelength A, and © = kg7 /Ry being the temperature in energy units. The Padé approximation for f.
then reads®*!

iRy () _ o84 [0+ i (1)

fe @
1+ fi@n'? + i
with the coefficients
2 1/4 1 1 1/2
ho=3(2)" ==Vl +log@). f=3 f@=7(%) 3
3\rx 8fo(7) 4 \r
and the ground-state parameterization for the exchange correlation energy
211771
Ry = 22163 L o 1oadt0g (14— ). &)
s 1+ 0.3008\/75

To achieve better comparability with the other formulas discussed below, we re-express Equation 2 in Hartree atomic units
as a function of r; and the reduced temperature 6 = kgT'/EF:
1A7 20712 £ Bry 07! + CO3RY(ry)

Ebeling,Ha
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XC 0= 1+ D017\ 4 Co-3
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Evidently, Equation 5 incorporates the correct ground-state limit

. Ebeling,Ha _ _l Ry
él_l;% xc (rs7 0) - 2€ (rS) ’ (7)

where the pre-factor 1/2 is due to the conversion between Rydberg and Hartree units. Similarly, in the high-temperature limit,
the well-known Debye—Hiickel result is recovered, for example Ref. [46]

olim Ebeling,Ha(rs’ 0) = —%A r;1/29_1/2 _ —Lr_sz_l/z. ®)

Xc \/E s

Results for the warm, dense UEG computed from these formulas are included in the following figures. For the Padé
approximations to the UEG at strong coupling in the quasi-classical regime, see, for example, Ref. [47].

2.2 | Parameterization by Ichimaru et al.

In the mid-1980s, Tanaka, Ichimaru, and coworkers!*3*] extended the original STLS schemel®¥ for the static local field cor-
rections to finite temperature and numerically obtained the interaction energy V (per particle) of the UEG via integration of the
static structure factor S(k):

1 dk 4
V== Sk)— 11— 9
2/k<m(2n>3[() e ®
for 70 parameter combinations with 8 = 0.1, 1,5 and ry ~ 1073, ...,74. Subsequently, a parameterization for V was introduced
as a function of r, and #1011
V) = -] ar(0) + V24 *tanh(0-1/2)B(6) + 242r,C(0)E(H)tanh(0~") (10)
Ts, = -
Ts 1 + V24r2D(@)tanh(8-1/2) + 2421, E6)

with the definitions

0.75 + 3.43630% — 0.0922763 + 1.70356*

6) = 0.610887 tanh (9" , 11
e (6) anh (077) 1+ 83105162 + 5.11056° an
X1 +)C292 +X394 1
B)=—————— CO)=x¢+ -07), 12
O =T g CO=x+vexp (=67 (12)
X3 + x90% + x100* X13 + x140% + x150*
Do) = 8 + X9 _ 10 - EO) = 13 142 154 . (13)
14+ x1160% + x1,6 1+ x1660% + x176

In addition to the exact limits for § — 0 and § — oo, the parameterization from Equation 10 also approaches the well-known
Hartree—Fock limit for high density:

_anr(6)

s

lirr(l] V(rs, 0) = (14)

which has been parameterized by Perrot and Dharma-wardana,? see Equation 11. Naturally, the free parameters x;, i =
1,..., 17 have been determined by fitting Equation 10 to the STLS data for V, and the resulting values are listed in Table 1.
From the interaction energy V(ry, 8), the free exchange-correlation energy is obtained by integration:

fulrn0) =% [ @ TVGL0) ()
ry Jo
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TABLE 1 Fit parameters by Ichimarul®'! for the f,.(r,, #) parameterization from Equation 16, fitted to STLS datal*”’

X1 X X3 Xy X5

3.4130800 x 107! 1.2070873 x 10 1.148889 x 10° 1.0495346 x 10 1.326623 x 10°
X6 X7 Xg Xy X10

8.72496 x 107! 2.5248 x 1072 6.14925 x 107! 1.6996055 x 10 1.489056 x 10°
X1 X12 X13 X14 Xis5

1.010935 x 10 1.22184 x 10° 5.39409 x 107! 2.522206 x 10° 1.78484 x 107!
X16 X17

2.555501 x 10° 1.46319 x 107!

Plugging in the expression for V(ry, 8) from Equation 10 into 15 gives the final parameterization for f;.(rs, 8):

__1c®
Sre(rs, 0) = o) (16)
0 0\ d®) c(6)d(0)
T 2e0)2 2 [(aHF(e) - @) 0) (b(a) ) >]
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x log % +V2d0)ar 20712 41

e (b(g) . cw)d(e)) 0
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N 0 [ ) < 6(9)>
12 12¢(0)\/4e(0) — d*(0) e(0)
d2(0) c(0)d(6)
* <2 o) ) <b(6) ) >]
<23/2e(0),1rj/ 297172 4 d(0)> < d(©) )
X | atan — atan
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b(0) = 0'/ tanh (07'/%) B(9), c(6) = C(0)e(0), (17)
d(0) = 0'/* tanh (67'/2) D), e(h) = 0 tanh (67") E(0).

with the abbreviations

2.3 | VS parameterization

Despite the overall good performance of STLS in the ground state,!>3! it has long been known that this scheme does not fulfill the

compressibility sum rule (CSR, see e.g., Ref. [54] for a detailed discussion). To overcome this obstacle, Vashishta and Singwil>>!
introduced modified local field corrections (VS), where the CSR is automatically fulfilled. This idea had been extended in
an approximate way to finite temperature by Stolzmann and Résler,!>! and more recently Sjostrom and Dufty®*! obtained an
exhaustive dataset of results that are exact within the VS framework.

As already explained in the previous section for the STLS data, they first calculated the static structure factor S(k), computed
the interaction energy V by integration (Equation 9), fitted the parameterization from Equation 10 to this data, and thereby
obtained the desired parameterization of f,.(ry, ) as given in Equation 16 (albeit with the new fit parameters listed in Table 2).

2.4 | PDW parameterization

Dharma-wardana and Perrot337] introduced an independent, completely different idea. In particular, they employed a classical
mapping such that the correlation energy of the electron gas at 7 = 0 (that has long been known from QMC calculations [-1°T)
is exactly recovered by the simulation of a classical system at an effective “quantum temperature” 7,,. However, due to the lack
of accurate data at finite 7, an exact mapping had not been possible, and the authors introduced a modified temperature 7,

where they assumed an interpolation between the exactly known ground state and classical (high T) regimes, T, = 1/72 + qu.
Naturally, at WDM conditions this constitutes a largely uncontrolled approximation.
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TABLE 2  Fit parameters by Sjostrom and Dufty®¥ for the f,,(r,, §) parameterization from Equation 16, fitted to VS data

X X X3 Xy X5

1.8871493 x 10~! 1.0684788 x 10 1.1088191 x 10? 1.8015380 x 10 1.2803540 x 10?
X6 X7 Xg X9 *10

8.3331352x 10! —1.1179213 x 10~! 6.1492503 x 107! 1.6428929 x 10 2.5963096 x 10
X11 X12 X13 X14 X15

1.0905162 x 10 2.9942171 x 10 5.3940898 x 107! 5.8869626 x 10* 3.1165052 x 10°
X6 X17

3.8887108 x 10* 2.1774472 x 10°

TABLE 3  Fit parameters by Perrot and Dharma-wardanal®” for the f,.(r,, ) parameterization from Equation 18

A1k bk Clk Dk by ok Vi 43
1 5.6304 —2.2308 1.7624 2.6083 1.2782 0.16625 1.5 4.4467
2 5.2901 —2.0512 1.6185 —15.076 24.929 2.0261 3 4.5581
3 3.6854 —1.5385 1.2629 2.4071 0.78293 0.095869 3 4.3909

To obtain the desired parameterization for f;., extensive simulations of the UEG in the range r, = 1-10 and § = 0-10 were
performed. These were used as input for a fit (see Table 3 for the corresponding fit parameters) with the functional form

_ e(rs) — Pi(rs,0)
Jre(rs, 0) = Py (1, 0)

Pi(ry, 0) = (Aa(rous (ry) + A3 (r)ua(ry)) 02 Q*(r) + Ax(ry)ua(r)0°> Q¥ (ry),
Py(ry, 0) = 1+ A (10 Q% (ry) + A3(1)0°* Q72 (ry) + Ao (1)0° Q° (1),

; (18)

0(r) = (2124)", n(r) = % ui(ry) = ﬂnérs), up(r) = 2 ”3’1(@,

s

Yi(rg) + Br(rs)zi(rs)
A s) = 5 s) = 5 s B
x(rs) exp< T4 () Bi(rs) = exp (5(rs — 1)
ayg + bigrs + cipr? arx + byt
ry) = v log(ry) + — . —, () =rg———————,
Yi(rs) = vi log(rs) 1+72/5 1(rs) 1 oor?

which becomes exact for # — 0 and § — oo, but is limited to the accuracy of the classical mapping data in between. Further, it

does not include the exact Hartree—Fock limit for r; — 0, so that it cannot reasonably be used for 7, < 1. For completeness, we

mention that a functional form similar to Equation 18 was recently used by Brown et al. %! for a fit to their RPIMC datal®!.
Similar ideas of quantum-classical mappings were recently investigated by Dufty and Dutta (see e.g., Ref. [57,58]).

2.5 | Parameterization by Karasiev et al.

Karasiev et al.[*8! (KSDT) utilized as the functional form for f,. an expression similar to Equation 10, which Ichimaru and
coworkersP%3!l suggested for the interaction energy:

1 ane(0) + b©O)r* + c(O)r,
Frelr,0) = —— =5 s (19)
s 14+dO)r," + e(O)r
2 4
b(9) = tanh (6~'/2) bi+ 520" + 530 , ¢ = [m + ¢y exp <—C—3)] e(9),
1 + 5402 + \/1.54-1b30* 0
_ d, + d292 + d394 _1\ €1+ 6292 + 6394
d(0) = tanh (971/2) 2L =22 T2 0) = tanh (07') ————.
® O aerae @ O e v et
Further, instead of fitting to the interaction energy V, they used the relation
a Xc S 0
Ecr,0) = futr, 0) — 02200 0)
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TABLE 4  Fit parameters by Karasiev et al. %! for the f,.(r,, 8) parameterization from Equation 19

by by b by Cy &) C3
0.283997 48.932154 0.370919 61.095357 0.870089 0.193077 2.414644
d; dy dy dy ds el (7}
0.579824 94.537454 97.839603 59.939999 24.388037 0.212036 16.731249
e3 ey €s
28.485792 34.028876 17.235515

and fitted the rhs of Equation 20 to the recently published RPIMC data for the exchange correlation energy E,. by Brown
et al. *! that are available for the parameters r; = 1-40 and = 0.0625-8 (see Table 4 for the corresponding fit parameters).

3 | RESULTS

In this section we analyze the behavior of the analytical approximations for the exchange-correlation free energies that were
summarized above by comparison with our recent simulation results that cover the entire relevant density range for temperatures
0 > 0.5. These data have an unprecedented accuracy on the order of 0.1% (for details, see Refs. [27,28]).

3.1 | Temperature dependence

In Figure 1, we show the temperature dependence of the exchange-correlation free energy as a function of the reduced temper-
ature @ for two densities that are relevant for contemporary WDM research, namely r; = 1 (left) and r; = 6 (right). For both
cases, all depicted parameterizations reproduce the correct classical limit for large 6 [cf. Equation 8] and four of them (Ebel-
ing, KSDT, STLS, and PDW) are in excellent agreement for the ground state as well. For completeness, we note that the small
differences between KSDT and Ebeling and PDW are due to different ground-state QMC input data. In particular, Karasiev
et al. used more recent QMC results by Spink et al.,”®! although in the context of WDM research the deviations to older
parameterizations are negligible. The VS parameterization, on the other hand, does not incorporate any ground-state limit and,
consequently, the behavior of £¥5(r,, #) becomes unreasonable below 6 = 0.0625. Similarly, the lowest temperature (despite
the ground-state limit) included in the fit for ﬁ(PCDW(rS, 0) is 6 = 0.25 and the rather unsmooth connection between this point and
6 = 0 does not appear to be trustworthy as well.

Let us now check the accuracy of the different models at intermediate WDM temperatures. As a reference, we use the recent
accurate QMC results for the macroscopic UEG by Dornheim et al.,”””! that is, the red squares. For r; = 1, the semi-analytic
expression by Ebeling (blue) exhibits the largest deviations exceeding Afy. /fre = 25% for 8 ~ 1. For lower density, r; = 6, the
Ebeling parameterization is significantly more accurate, although here, too, appear deviations of Af,./fx. ~ 10% to the exact
data at intermediate temperature. Therefore, this parameterization produces reliable data in the two limiting cases of zero and
high temperature, but is less accurate in between.

Next we consider the STLS curve (black). It is in very good agreement with the QMC data, and the error does not exceed
Afve/fxe = 4% over the entire 6 range for both depicted r, values. The largest deviations appear for intermediate temperatures
as well.

Third, we consider the VS model (yellow line). For r; = 1, the VS parameterization by Sjostrom and Dufty>*! exhibits the
same trends as the STLS curve, albeit with larger deviations, Af;./fi. > 5%. Further, for r, = 6, f¥° exhibits much larger
deviations to the exact result and the error reaches Af,./fxc = 8%. Evidently, the constraint to automatically fulfill the CSR
does not improve the accuracy of other quantities, in particular the interaction energy V (which was used as an input for the
parameterization (see Section 2.3) or the static structure factor S(k) itself).

Fourth, the parameterization based on the classical mapping (PDW, light blue) exhibits somewhat opposite trends as compared
to Ebeling, STLS, and VS and predicts too large an exchange-correlation free energy for all 6. The magnitude of the deviations
is comparable to VS and does not exceed Afy. /fre = 5%.

Finally, we consider the recent parameterization by Karasiev et al. (KSDT, green),[*8! which is based on RPIMC results**!.
For ry = 6, there is excellent agreement with the new reference QMC data with a maximum deviation of Af,. /fi. ~ 1% for 0 = 4.
This is, in principle, expected since the main sources of error for their input data, that is, the nodal error and the insufficient
finite-size correction, are less important for larger r;. However, for r;, = 1 there appear significantly larger deviations exceeding
Afve/fre = 5% at high temperature. In fact, for r; = 1 and the largest considered temperature, 6 = 8, the KSDT parameterization
exhibits the largest deviations of all depicted parameterizations.
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FIGURE 1 Temperature dependence of f,. at fixed density r, = 1 (left) and r; = 6 (right). Top: Quantum Monte Carlo (QMC) data (symbols) taken from

Dornheim et al.,””” a parameterization of RPIMC data by Karasiev, Sjostrom, Dufty, Trickey (KSDT),"**! a semi-analytic Padé approximation by Ebeling,**
a parameterization fitted to Singwi, Tosi, Land, and Sjolander (STLS) and Vashishta and Singwi (VS) data by Ichimaru®" and Sjostrom and Dufty,">*
respectively, and a fit to classical mapping data by Perrot and Dharma-wardana (PDW).1*”! Bottom: Relative deviation to the QMC data.

3.2 | Density dependence

As a complement to Section 3.1, in Figure 2 we investigate in more detail the density dependence of the different parameteri-
zations for two relevant temperatures, 8 = 0.5 (left) and § = 4 (right).

Most notably, the Ebeling and PDW parameterizations do not include the correct high-density (r;, — 0) limit, that
is Equation 11, and therefore are not reliable for r; < 1. For 8 = 0.5, )Ebenng is in qualitative agreement with the correct results,
but the deviations rapidly increase with density and exceed Af,./fic = 10%, for ry = 1. At higher temperature, 8 = 4, the
situation is worse, and the Ebeling parameterization shows systematic deviations over the entire density range. The STLS fit
displays a similarly impressive agreement with the exact data as for the § dependence (cf. Figure 1), and the deviations do not
exceed Afy./fre ~ 3% for both depicted 6 values. On the other hand, the VS results are again significantly less accurate than
STLS although the deviation remains below Af;./fi. = 8% for both temperatures. Further, we notice that the largest deviations
occur for ry > 2, that is, toward stronger coupling, which is expected since here the pair distribution function exhibits unphysi-
cal negative values at short distance (see e.g., Ref. [54]). Again, the incorporation of the CSR has not improved the quality of
the interaction energy or the structure factor compared to STLS. The classical mapping data (PDW) does exhibit deviations not
exceeding Afy./frc = 5% for ry > 1, that is, in the range where numerical data have been incorporated into the fit. Overall, the
quality of this parameterization is comparable to the VS curve although the relative deviation appears to be almost constant with
respect to the density. This is not surprising, as the approximation has not been conducted with respect to coupling (the effec-
tive classical system is solved with the hypernetted chain method, which is expected to be accurate in this regime) but, instead,
in the interpolation of the effective temperature 7. Further, we notice a peculiar nonsmooth and almost oscillatory behavior of

FPDW around r, = 5, which is more pronounced for # = 0.5 and the origin of which remains unclear. Finally, we again consider
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FIGURE 2 Density dependence of f,.. at fixed temperature & = 0.5 (left) and 6 = 4 (right). Top: Quantum Monte Carlo (QMC) data taken from Dornheim et

al.,l?"! a parameterization of RPIMC data by Karasiev, Sjostrom, Dufty, Trickey (KSDT),*8! a semi-analytic Padé approximation by Ebeling,*3! a

parameterization fitted to Singwi, Tosi, Land, and Sj6lander (STLS) and Vashishta and Singwi (VS) data by Ichimarul®!! and Sjostrom and Dufty,>4

respectively, and a fit to classical mapping data by Perrot and Dharma-wardana (PDW).5”! Bottom: Relative deviation to the QMC data.

the KSDT fit based on the RPIMC data by Brown et al. 13! (a similar analysis for more temperatures can be found by Dornheim
et al.?7l). For § = 0.5, this parameterization is in excellent agreement with the reference QMC data and the deviations are in
the sub-percent regime over the entire depicted r, range. However, for larger temperatures there appear significant errors that,
at @ = 4, reach a maximum of Afy./fi. ~ 10% for ry, = 0.1, that is, at parameters where STLS, VS, and PDW are in very good
agreement with the reference QMC data. Interestingly, these deviations vanish only for r, < 107*. Naturally, the inaccuracies
of the KSDT fit are a direct consequence of the systematic errors of the input data and the lack of accurate simulation data for
ry < 1, prior to Dornheim et al.[>}

4 | DISCUSSION

In summary, we have compared five different parameterizations of the exchange-correlation free energy of the unpolarized
UEG to the recent QMC data by Dornheim et al.>’”! and, thereby, have been able to gauge their accuracy with respect to 6 and
ry over large parts of the WDM regime. We underline that all these parameterizations are highly valuable, the main merit being
their easy and flexible use and rapid evaluation. At the same time, an unbiased evaluation of their accuracy had not been done
and appears highly important, as this allows constraining the field of applicability of these models and indicating directions for
future improvements.

Summarizing our findings, we have observed that the semi-analytic parameterization by Ebeling'®3! is mostly reliable in
the high and zero temperature limits but exhibits substantial deviations in between. The STLS fit given by Ichimaru and
coworkersP%311 on the other hand, exhibits a surprisingly high accuracy for all investigated r,—6 combinations with a typical
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relative systematic error of ~ 2%. The more recent VS results,’*! which automatically fulfill the CSR, display a qualitatively sim-
ilar behavior but are significantly less accurate everywhere. The classical mapping suggested by Perrot and Dharma-wardanal?”!
constitutes an approximation rather with respect to temperature than to the coupling strength and, consequently, exhibits dif-
ferent trends. In particular, we have found that the relative systematic error is nearly independent of r,, but decreases with
increasing 6 and eventually vanishes for 8 — oo. Overall, the accuracy of the PDW parameterization is comparable to VS and,
hence, inferior to STLS. Finally, the more recent fit by Karasiev et al. 13! to RPIMC data!®! is accurate for large r, and low
temperature, where the input data is not too biased by the inappropriate treatment of finite size errors in the underlying RPIMC
results. For higher temperatures (where the exchange-correlation free energy constitutes only a small fraction of the total free
energy), there occur relative deviations of up to ~ 10%.

Thus we conclude that an accurate parameterization of the exchange-correlation free energy that is valid for all r,—6 combi-
nations is presently not available. However, the recent QMC data by Dornheim et al.?’! most certainly constitute a promising
basis for the construction of such a functional. In the mean time, of all the considered parameterizations, KSDT appears to be
the most accurate at low 6 and large r; while the STLS fit exhibits smaller deviations elsewhere. Further, thermal DFT cal-
culations in the local spin-density approximation require a parameterization of f,. also as a function of the spin polarization
& = (Ny —N,))/(Ny +N)), that is, fy. (75, 0, &) for all WDM parameters. Obviously, this will require an extension of the QMC sim-
ulations beyond the unpolarized case, & € (0, 1]; in addition, reliable data for # < 0.5 are indispensable. This work is presently
under way. We also note that the quality of the currently available KSDT fit for f,.(rs, 8, £) remains to be tested for & > 0. The
accuracy of this parameterization is limited by (a) the quality of the RPIMC data (for the spin-polarized UEG (¢ = 1), they are
afflicted with a substantially larger nodal error than for the unpolarized case that we considered in the present paper, see Ref.
[22]), and (b) by the quality of the PDW results/*’! that have been included as the only input to the KSDT fit for 0 < & < 1
at finite . Therefore, we conclude that the construction of a new accurate function f,.(rs, 8, &) is still of high importance for
thermal DFT and semi-analytical models, for comparisons with experiments, but also for explicitly time-dependent approaches
such as time-dependent DFT and quantum hydrodynamics.[6%-61]
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6.2 Ab initio Thermodynamic Description of the Warm

Dense Electron Gas

Obviously, the ultimate goal regarding the investigation of the warm dense uniform electron
gas is the construction of a complete parametrization of the exchange—correlation free energy
with respect to temperature, density, and spin-polarization, fxc(rs, 0,& ). As mentioned before,
such an exchange—correlation functional is of paramount importance for various applications,
including finite-temperature DFT calculations [104, 115, 116], quantum hydrodynamics [141,
142], and astrophysical models [143—-145]. For this reason, many publications had been
devoted to this topic, although still no consensus had emerged, see Sec. 6.1. This is in stark
contrast to the ground state, where the QMC results by Ceperley and Alder from 1980 [111]
already provided sufficient accuracy to facilitate the success of DFT.

Up to this point, using our new PB-PIMC and CPIMC methods and the improved finite-
size correction scheme, we had obtained an exhaustive and highly accurate data set for the
interaction energy v of the unpolarized electron gas over the entire relevant rs-range down
to half the Fermi temperature (6 = 0.5). While the interaction energy is fully sufficient to
parametrize fy. (see Eq. (2) in the following paper, Ref. [166]) there remained two major
obstacles that had to be solved: (i) the absence of accurate QMC data® for 0 < 6 < 0.5 and
(ii) the need for QMC data for different spin-polarizations, i.e., & > 0. While the second
point can be viewed as a matter of diligent work?, the lower boundary of our QMC methods
regarding 0 due to the fermion sign problem constituted a serious problem.

The solution to both issues, resulting in our new complete ab initio exchange—correlation
functional of the warm dense UEG, is presented in the following paper®, Ref. [166]. Having
been inspired by the overall good accuracy of the STLS formalism regarding the interaction
energy (for a detailed discussion of this feature, see the review in Chpt. 2), we bridged
the gap between 6 = 0 and our QMC data by adding onto the exact ground-state QMC
data [174] a small temperature correction computed within STLS (see Eq. (1) in the following
paper, Ref. [166]). In addition, we implemented the STLS formalism for arbitrary spin-
polarization (which was necessary for the finite-size correction) and carried out extensive
new QMC simulations for & = 0,1/3,0.6. Of course, all data were carefully extrapolated to
the thermodynamic limit.

2Note that, for 6 = 0, there exist accurate ground-state QMC data, the most recent set having been obtained
by Spink et al. [174].

3Note that T. Sjostrom only provided STLS data for & = 0 and & = 1, but not for intermediate polarizations.
For this reason, the STLS formalism was implemented for arbitrary spin-polarization together with S. Groth, in
equal parts.

4S. Groth, T. Dornheim, T. Sjostrom, F.D. Malone, W.M.C. Foulkes, and M. Bonitz, Phys. Rev. Lett. 119,
135001 (2017). Copyright by the American Physical Society (2017).
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Together with the unpolarized data from Sec. 5.1, this made it possible to construct a
complete parametrization of fx. in the following way: we first parametrized fxéc(rs, 0) for
the para- and ferromagnetic cases over the entire rs-0-plane and subsequently obtained a
spin-interpolation function that allows for an evaluation at continuous spin-polarizations,
Sxe(rs, 9,6) with 0 < & < 1, as required, e.g., for DFT calculations in the local spin density
approximation.

We note that this was the first time that said spin-interpolation has been obtained on the
basis of QMC data (in this case for & = 1/3 and & = 0.6) and that our new parametrization
has an unprecedented accuracy of 0.3%. Furthermore, we presented exhaustive comparisons
to previous results and provided a cross-check with independent new QMC data for the
exchange—correlation energy ex.. In particular, this demonstrates the consistency of our
functional with respect to exact thermodynamic relations, which are known to be violated
by the RPIMC data and the parametrizations that are based on it [107, 213]. Needless to
say, our new results (both the new QMC data and the parametrization of fx. itself) are freely
available online.

For completeness, I note that the STLS-temperature correction and the specifics regarding
the construction of the exchange—correlation functional, fx.(rs,0,&), as well as the imple-
mentation of the STLS algorithm for arbitrary spin-polarizations were worked out together

with Simon Groth, in equal parts.
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In a recent Letter [T. Dornheim et al., Phys. Rev. Lett. 117, 156403 (2016)], we presented the first
quantum Monte Carlo (QMC) results for the warm dense electron gas in the thermodynamic limit.
However, a complete parametrization of the exchange-correlation free energy with respect to density,
temperature, and spin polarization remained out of reach due to the absence of (i) accurate QMC results
below 0 = kzT/Er = 0.5 and (ii) QMC results for spin polarizations different from the paramagnetic
case. Here we overcome both remaining limitations. By closing the gap to the ground state and by
performing extensive QMC simulations for different spin polarizations, we are able to obtain the first
completely ab initio exchange-correlation free energy functional; the accuracy achieved is an unprec-
edented ~0.3%. This also allows us to quantify the accuracy and systematic errors of various previous

approximate functionals.

DOI: 10.1103/PhysRevLett.119.135001

The past decade has witnessed a rapid growth of interest
in matter under extreme excitation or compression, as in
laser-excited solids [1] and inertial confinement fusion
targets [2—5]. Astrophysical examples such as white dwarf
atmospheres and planet interiors [6,7] provide further
motivation. More down-to-earth examples appear in radi-
ation damage cascades in the walls of fission or fusion
reactors [8]. Plasmonic catalysts use hot electrons
created by the decay of plasmons in otherwise cold metallic
nanoparticles to accelerate chemical reactions [9,10].
Systems such as these, with thermal energies k37T compa-
rable to the Fermi energy Er and densities comparable to or
greater than those of ordinary solids, are said to be in the
“warm dense matter” (WDM) regime [11]. Because the
degeneracy parameter ® = kg7 /EF is of the order of unity,
neither the Pauli exclusion principle nor electronic excita-
tions can be ignored and there are no small parameters in
which to expand. This makes WDM challenging to under-
stand theoretically.

The density functional theory (DFT) is by far the most
important computational approach used to study molecules
and solids at low temperatures [12—14] but relies for its
success on the availability of good approximations to the
unknown exchange-correlation (XC) energy functional. The
development in the early 1980s of accurate parametrizations
[15,16] of the ground-state local density approximation to
this functional played a decisive role in the ensuing rise of
the DFT.

The DFT was generalized to finite temperatures [17] soon
after its invention, but applications to warm dense systems
are a recent development. In part, this is because the finite-
temperature equivalent of the local density approximation is

0031-9007/17/119(13)/135001(7)
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not known accurately. This Letter presents the first accurate
and fully ab initio calculation and parametrization of the XC
free energy per electron, f,., as a functional of the temper-
ature, density, and spin polarization, covering the entire
range of conditions of interest in applications. The result is
the natural generalization of Perdew and Zunger’s famous
zero-temperature functional [16]. It is key input not only to
the thermal DFT [17-19] but also for quantum hydro-
dynamics [20,21] and the construction of equations of state
for astrophysical objects [22-24].

The local density approximation is based on properties
of the uniform electron gas (UEG), one of the seminal
model systems in physics [25]. Studies of the UEG led to
key insights such as the Fermi liquid theory [26,27], the
quasiparticle picture of collective excitations [28,29], and
the theory of superconductivity [30]. Accurate parametri-
zations of its ground-state properties [15,16,31-34] based
on quantum Monte Carlo (QMC) simulations [35-39] have
sparked many applications [40—42] in addition to facilitat-
ing the remarkable successes of the DFT [12—14].

QMC methods for the warm dense electron gas are much
less developed, so the first parametrizations of f,. were
based instead on uncontrolled approximations such as
interpolations between known limits [43], semiempirical
quantum-classical mappings [41,44], and dielectric (linear
response) methods [45—49]. To overcome the severe limi-
tations imposed by the fermion sign problem [50,51], the
pioneering QMC simulations of the UEG by Brown et al.
[52] wused the approximate restricted path integral
Monte Carlo (RPIMC) approach, in which the nodal
structure of the density matrix is assumed. These data were
used as input for several parametrizations of f,. [46,53,54],

© 2017 American Physical Society
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FIG. 1. Temperature dependence of the XC free energy and potential energy—the top row shows f,. (dashed lines) from this work

(red), KSDT (blue [53]), IIT (black [48,49]), Tanaka (green [47]), and Perrot—-Dharma-wardana (yellow dashed line and triangles, PDW
[44]), as well as the corresponding interaction energy v (solid lines) from this work, KSDT, and the restricted PIMC results by Brown
et al. (blue dots [52]). The red rhombs correspond to ground-state QMC results plus a temperature correction function obtained from the
STLS theory. The inset corresponds to an enlargement of the gray box. The bottom row displays the relative deviations of the different

models of f,. with respect to our new parametrization.

the most sophisticated being that of Karasiev, Sjostrom,
Dufty, and Trickey (KSDT) [53], but were later shown to be
inaccurate [55]. The errors were ~10% near r; = 1, where
ry = 7/ag, 7is the radius of a sphere containing one electron
on average, and ap is the Bohr radius. Unsurprisingly, the
aforementioned models for f,. disagree substantially
(cf. Fig. 1) in the WDM regime [56].

This unsatisfactory situation has sparked much recent
work on finite-temperature fermionic QMC algorithms
[55,57-65]. By developing three complementary new
methods—configuration PIMC [55], permutation blocking
PIMC [62,63], and density matrix QMC [64,65]—we are
now able to overcome the sign problem in a broad
parameter range without relying on a fixed-node approxi-
mation [66,67]. In a recent Letter [61], we presented an
improved procedure to extrapolate the QMC results to
the thermodynamic limit and thereby obtained data for the
unpolarized UEG with an unprecedented accuracy of the
order of 0.1%. At that time, however, the construction of a
complete parametrization of f,. with respect to r,, 0, and
&= (NT"=NY)/(N" 4 NY), where Nt (NV) is the number
of spin-up (spin-down) electrons, was not possible. The
fermion sign problem prevented us from performing QMC
simulations for 0 < @ < 0.5. Further, we had no results for
spin polarizations other than & = 0. The polarization
dependence of f,. is used, for example, in DFT calcu-
lations in the local spin-density approximation, which
require the evaluation of f,. at arbitrary &

Here we solve these problems and present a new func-
tional. Inspired by Tanaka and Ichimaru [48,49] and the
impressive accuracy of the Singwi-Tosi-Land-Sjolander
(STLS) formalism [45,46] in the warm dense regime
[56], we bridge the gap between 8 = 0 and € = 0.25 by
adding the (small) temperature dependence of the STLS
interaction energy,

(1)

to the ground-state QMC interaction energy, which is
known very accurately [39]. Second, we carry out extensive
QMC simulations of the warm dense UEG for ¢ = 1/3, 0.6,
and 1 (179 data points in the ranges 0.1 < r, <20 and
0.5 <60 <8; see Table III in the Supplemental Material
[68]). In combination with the results from Ref. [61], this
allows us to construct the first complete ab initio para-
metrization of the XC free energy, f.(r,., 8, &), and to attain
an unprecedented accuracy of ~0.3%. The high quality of
our new results is verified by various cross-checks and
compared to the widely used parametrizations by KSDT
[53], Perrot and Dharma-wardana [44], Ichimaru, Iyetomi,
and Tanaka (IIT [48,49]), and the recent improved dielectric
approach by Tanaka [47].

Parametrization of f. for £ = 0 and £ = 1.—Following
Refs. [48,49], we obtain fﬁc from our QMC data for
the electron-electron interaction energy v¢(r,8) via the
coupling-constant integration formula

ASTUS (7,0, 8) i= 05T (ry, 0, &) — 15T (7, 0, 8),
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week ending

PRL 119, 135001 (2017) PHYSICAL REVIEW LETTERS 29 SEPTEMBER 2017
Fou(r0) = 1 (7. 0) ) R
e rs Jo Pl —02|060F .7 9
= —0.62 |-
Of .0 s 03 [ |
= v5(ry.0) = 2f%(ry. 0) + 1, Ofselrs.6) . (3 = —0.64- %/ S
ory |y % —04 L 7 e
g —0.66 |- l?"
We employ Padé representations of fL. and f9, = 05068 e
(see Supplemental Material [68], which includes —0.6
Refs. [69,70]) and fit the right-hand side of Eq. (3) to our o7 1

combined data for v'°. To ensure the correct ground-state
behavior, we note that limy_,, f° ic( re,0) = eic(rs, 0) and fit
the zero-temperature limit of our Padé formula to the recent
ground-state QMC results of Spink, Needs, and Drummond
[39]. In addition, the classical Debye-Hiickel limit for large
® and the Hartree-Fock limit fYF(r,,0) =a(0)/r, =
a®(0)/r, [71] for ry — 0 are exactly incorporated.

The new results for f5c(r,., 0) are depicted in Fig. 1 (red
dashed line) and compared to various approximations.
While all curves exhibit a qualitatively similar behavior
with respect to the temperature, there are deviations of 5%—
12% for intermediate € (bottom row). The IIT parametri-
zation exhibits the smallest errors when & = 0, whereas, for
£ =1, the Perrot-Dharma-wardana points are superior,
although the IIT curve is of a similar quality. The recent
parametrization by Tanaka (green) does not constitute an
improvement compared to IIT. Finally, the KSDT curves are
relatively accurate at low € but systematically deviate for
0 = 0.5, especially at a high density (r; <4 [68]). The
deviationof Af/f ~ 10% at its maximum can be traced to an
inappropriate finite-size correction of the QMC data by
Brown et al. [52]; see Ref. [61]. The deviations are even
more severe for £ = 1, in agreement with previous findings
about the systematic bias in the RPIMC input data [66,67]
and with recent investigations [47,49] of f,. itself. Also
notice the pronounced bump of f9. occurring for large r, and
a low temperature (see the inset in the middle panel), which
induces an unphysical negative total entropy [72] in the
KSDT fit.

Consider now our results for the interaction energy,
shown as red rhombs and crosses in Fig. 1. We observe a
smooth connection between our QMC data for € > 0.5
(crosses) and the temperature-corrected ground-state data
(rthombs) in all three parts of the figure. The connection is
equally smooth at all other densities investigated. The solid
red line depicts the fit to v¥ [Eq. (3)]. The Padé ansatz
proves an excellent fitting function, able to reproduce the
input data (v%) for £ = 0 (¢ = 1) with a mean and maximum
deviation of 0.12% and 0.68% (0.17% and 0.63%),
respectively [73].

To further illustrate the high quality of our XC functional
and to verify the accuracy of the applied temperature
correction at low 6, we carried out extensive new QMC
simulations for the XC internal energy per particle, e,., for
re =1 and £ =1, over the entire range of temperatures
down to € =0.0625 (see Ref. [68] for details). The

1072 10°
e

FIG. 2. Cross-check of our parametrization (( =1, r, = 1).
The XC energy per electron (red line), as calculated from our
Padé function for f,. (dashed line), is compared to new,
independent finite-size-corrected QMC data (red dots) [68].
While our functional has been constructed solely using the
interaction energy v [cf. Eq. (3)], the KSDT curve [53] (solid
blue) was fitted to the restricted PIMC data [52] for e,. (blue
circles, BCDC).

finite-size-corrected data are compared to e, reconstructed
from our parametrization of f.(r,6) via [53]

afic(r.w 9)

Ty

eic(rs9 9) = fic(r_w 9) -

This allows us to gauge not only the accuracy of f,, itself
but also its temperature derivative, which is directly linked
to the XC entropy. The results are presented in Fig. 2 and
demonstrate excellent agreement between our parametriza-
tion (red solid line) and the independent new QMC data
(red dots) over the entire range of 6. Since the new data for
e,. were not used for our fit, this constitutes a strong
confirmation of the accuracy of the low-temperature results
obtained by using the STLS theory to correct the 7 = 0 XC
energy and demonstrates the consistency of our paramet-
rization. Other functionals are much less consistent (see
blue symbols and line) [73,74].

Spin interpolation.—To obtain an accurate parametriza-
tion of f,. at arbitrary spin polarization 0 <& <1, we
employ the ansatz [44]

fxc(rss 0, f) = f()zc(rsvgo) + [f)l(c(rsvgo : 2_2/3)
_fgc(rwe())](b(rs’eo’é)’ (5)

with @° = 0(1 + £)?/3. The form and fitting procedure used
for the interpolation function ®(r,, #°, &) are described in
the Supplemental Material [68]. Interestingly, we find that a
single fitting parameter is sufficient to capture the full
temperature dependence of @ for all values of £, with a
mean and maximum deviation from the QMC data at
intermediate £ of 0.15% and 0.8%, respectively.

Note that this is the first time that ®(r, 8, £) has been
obtained accurately from ab initio data. A comparison of the

135001-3
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FIG. 3. Dependence of the XC free energy on spin polarization
at r, = 1. The ab initio functional derived here (red curve) is
compared to the parametrizations of KSDT (blue curve) [53], IIT
(black curve) [48,49], and Tanaka (green curve) [47].

£ dependence of f,. with various earlier parametrizations is
depicted in Fig. 3. The IIT and Tanaka curves, which utilize a
different functional form for the spin interpolation [75],
exhibit the largest deviations at intermediate temperatures.
Our spin-interpolation function has the same form [68] as
that employed in the KSDT parametrization. However, due
to the absence of restricted PIMC data for intermediate &,
KSDT used the classical mapping of Ref. [44] to determine
the coefficients of ®. Overall, the KSDT fit is closest to our
parametrization at low 6, while for 6 > 1 the IIT curve is
more accurate. Nevertheless, we conclude that no previous
model satisfactorily captures the £ dependence uncovered by
our data.

Summary and discussion.—In summary, we have pre-
sented the first accurate and fully ab initio XC free energy
functional for the UEG at WDM conditions, achieving an
unprecedented precision of Af,./fy. ~ 0.3%. To cover the
entire parameter range relevant to experiments, we carried
out extensive QMC simulations for multiple spin polar-
izations at 0.1 < r, <20 and 0.5 < 6 < 8. In addition, we
obtained accurate data for 0.0625 < 6 < 0.25 by combin-
ing ground-state QMC results with a small STLS-based
temperature correction. All of our results are tabulated in
the Supplemental Material [68] and provide benchmarks
for the development of new theories and simulation
schemes as well as for the improvement of existing models.

The first step in our construction of the complete XC
functional, f,.(r,, 0, &), was to parametrize the completely
polarized and unpolarized cases. This was achieved by
fitting the right-hand side of Eq. (3) to our new data for the
interaction energy, v*, for £ = 0 and & = 1. The resulting
parametrization reproduces the input data with a mean
deviation of 0.17%, better by at least an order of magnitude
than the KSDT fit. As an additional test of our parametriza-
tion, we performed independent QMC calculations of e,
(the XC energy per electron) for a wide range of values of 6

down to & = 0.0625 and compared the results with values of
e, calculated using our functional for f,.. The striking
agreement obtained constitutes strong evidence for the
accuracy of the STLS-based corrections used at a low
temperature and for the consistency of our work, in general.

Equipped with our new XC functional, we have also
investigated the systematic errors of previous parametri-
zations. Overall, the functional by Ichimaru, Iyetomi, and
Tanaka [48,49] deviates the least from our results, although
at £ =1 the classical mapping results by Perrot and
Dharma-wardana [44] are similarly accurate. The KSDT
parametrization exhibits large deviations exceeding 10% at
a high temperature and density. At low temperatures,
however, it performs surprisingly well, in part because it
does not reproduce the systematic biases in the restricted
PIMC data on which it was based.

The construction of the first ab initio spin-interpolation
function ®(r,0,&) at WDM conditions constitutes the
capstone of this work. Surprisingly, we find that a one-
parameter fit is sufficient to capture the whole temperature
dependence of the spin-interpolation function. Furthermore,
we show that no previously suggested spin interpolation
gives the correct £ dependence throughout the WDM regime.

We are confident that our extensive QMC data set and
accurate parametrization of the thermodynamic functions of
the warm dense electron gas will be useful in many
applications. Given recent developments in the thermal
Kohn-Sham DFT [76,77], time-dependent Kohn-Sham
DFT [78], and orbital-free DFT [79,80], our parametrization
of f. is directly applicable for calculations in the local spin-
density approximation. Furthermore, our functional can be
used as a basis for gradient expansions [81,82] or as a
benchmark for nonlocal functionals based on the fluctuation-
dissipation theorem [83]. In addition, it can be straightfor-
wardly incorporated into widely used approximations in
quantum hydrodynamics [20,21] or for the equations of state
of astrophysical objects [22—24]. Finally, our XC functional
should help resolve several exciting and controversial issues
in warm dense matter physics, such as the existence and
locations of the phase transitions in warm dense hydrogen
[84-86] or details of hydrogen-helium demixing [87].

Computational implementations of our XC functional (in
FORTRAN, C++, and PYTHON) are available online [88].
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A. Parametrization of the exchange correlation
free energy

To represent the XC free energy for the spin-polarized
and unpolarized case, fl.(rs,0) and fO.(rs,0), we use
Padé formulae as introduced in Ref. [1]

1 wea(f) +65(0) /15 + & (O)rs
rs  1+d8(0)rs +ef(@)rs
where 0 = kgT/Ep, rs = 7/ag, £ = (NT — N¥)/(NT +
Nt), wo =1 and w; = 2'/3, and a(f) denotes the Hartree-
Fock limit as parametrized in Ref. [2]

a(6) =0.610887 tanh (6~ *) x

0.75 + 3.0436362% — 0.092276% + 1.703564

1+ 8.3105162% + 5.110564

The coefficients b, c,d, e are again Padé formulae with
respect to temperature

fe(rs,0) = — (S.1)

E 5 2 f 4
\/5 1+ bjm + b§94

(0) = [(f +c§-exp (—9_1)} et (0)
d5 + d50% + d50*
ds(0) = tanh( )
) VO 14 d502 + d5ot

2 §pd
“(0) = tann () A+
1+ €502 + 659

For completeness, we note that in Ref. [1], the parametriza-
tion from Eq. (S.1) was used for the interaction energy v
instead of fic.

To parameterize fy. as a function of the spin polariza-
tion 0 < ¢ < 1, we employ the ansatz [3]

Feelre, 0,€) = fou(re,6%) + [ Flo(ry, 60 - 2721%)

—f (s 0] @(r,,0%,€)

with 8° = 0(1 + £€)?/3 and the interpolation function

(5.2)

(L0 4 (1o
cb(rsv 975) - 204(7“579) . 2 9 (83)
a(rs,0) =2 — h(?"s)efe)‘(rs’e)7
2/3 + hyr,
h(re) = 23EMTs )2t el 1/2

1+ horg

First, h; and hg are obtained by fitting fyc(rs, 0,£) to the
ground state data of Ref. [4] for £ = 0.34 and & = 0.66.
Subsequently, we use our extensive new QMC data set
for v&(rs,0) [107 data points for ¢ = 1/3 and ¢ = 0.6,
see Tab. ITI] to determine A; and Ag. Interestingly, we
find that the spin interpolation depends only very weakly
on 6, i.e., Ay vanishes within the accuracy of the fit and,
thus, we set Ay = 0.
All coefficients are listed in Tabs. I and II.

Table I: Parameters entering f&. [cf. Eq. (S.1)], for £ = 0 and
£=1.

| e=0

£=1

b1 0.3436902

ba 7.82159531356
bs 0.300483986662
ba 15.8443467125

bs |b3(3/2)2wo () % |b
a 0.8759442

() -0.230130843551
dr 0.72700876

do 2.38264734144
ds 0.30221237251
ds 4.39347718395
ds 0.729951339845
el 0.25388214

€2 0.815795138599
es| 0.0646844410481
e4 15.0984620477
es 0.230761357474

0.84987704
3.04033012073
0.0775730131248
7.57703592489
bs(3/2) 2w (o) "
0. 91126873
-0.0307957123308
1.48658718
4.92684905511
0.0849387225179
8.3269821188
0.218864952126
0.27454097
0.400994856555
2.88773194962
6.33499237092
24.823008753

Table II: Parameters entering the spin-interpolation function

D(rs,0,8) [cf. Eq. (S.3)].

hi|-3.18747258
ho | —=7.74662802
A1|—1.85909536

A2

0

B. STLS

The static structure factor (SF) is found by the

fluctuation-dissipation theorem as a sum over the Matsub-
ara frequencies for the polarizabilities of the interacting



system as

oo

—1 1 1
Sh) =gy 2 (1) 69

with the particle density n, the Matsubara frequencies
z; = 2mil /Bh, and the Fourier transform of the Coulomb
potential v, = 47 /k%. Following [7], the Singwi-Tosi-
Land-Sj6lander (STLS) SF is computed from the dielectric
function

. 'UkXO(kv w)
1+ G(k)vexo(k,w) ’
with x0(q,w) being the finite-temperature polarizability

of the non-interacting UEG and G the static local field
correction in STLS approximation

-1 dk/ k- K

ky=— | ———[S(k—-KkK)—-1].
Gl =+ [ 5 Ste—K) -1
The STLS SF is then obtained via a self-consistent solu-

tion of Eq. (S.4), (S.5), and (S.6), which straight-forwardly
allows to compute the corresponding interaction energy

psTs 1 /OO dk[S(k) —1] .

™ Jo

elk,w) =1 (S.5)

(S.6)

(S.7)

C. Finite-size correction of QMC data

Since QMC simulations are only feasible for a finite
particle number IV, it is necessary to extrapolate the
results to the thermodynamic limit (TDL), N — oco. This
is shown for the interaction energy in Fig. S1, where we
plot v versus N ! for the partially spin-polarized electron
gas with r; = 1, § = 4 and £ = 0.6. The green crosses
correspond to the original QMC data which, evidently, are
strongly dependent on N. Therefore, we require a finite-
size correction (FSC) AV that, in principle, should allow
for the exact TDL using only a single QMC simulation:

MY Avy
TN N

The first estimate for AVy at finite T was proposed
by Brown et al. [5] (BCDC). However, the results of
adding the BCDC correction to the QMC data (the yellow
asterisks in Fig. S1) are still not converged with N and,
therefore, an improved approach is needed. In a recent
Letter [6], we have shown that the main contribution to
AVy is a discretization error in the integration of the static
structure factor S(k) that can be accurately estimated
by invoking the Singwi-Tosi-Land-Sj6lander formalism [7]
(hereafter denoted FS-STLS). The thus corrected data
are depicted as the black squares. Evidently, simply
adding the new FSC onto the bare QMC interaction
energies immediately improves the accuracy by two orders
of magnitude. The small residual error is due to an
intrinsic N-dependence in the QMC results for S(k) itself
and can be removed by an additional extrapolation, the
results of which is given by the red rhomb (for additional
details see Refs. [6, §]).

(S.8)

0.24 pr T T T T
0.26 - .
028 @ " = = = .
©
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> w BCDC
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.0.36 W L L L L
0 0.005 0.01 0.015 0.02 0.025
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© 02756 | -
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Figure S1: Top: Finite-size correction of the interaction

energy for @ = 4, r; = 1, and £ = 0.6. The green crosses
correspond to the raw QMC data, the yellow asterisks are
obtained by adding the FSC by Brown et al. [5] (BCDC), and
the black squares by adding the recent FSC by Dornheim et
al. [6] (FS-STLS). The red rhomb depicts the final result for
the interaction energy obtained by an additional extrapolation
of all residual errors. Bottom: Magnified part of the top
panel.

D. QMC results for the XC energy

To calculate the finite-size correction for ey. used in
Fig. 2 of the main text, we first use the exact relationship
between the exchange-correlation free energy and the
potential energy:

1 s
fxe = 72/0 d7sTsv(Ts, 0).

S

(S.9)

This allows us to write the finite size correction for fy. as

1 ("
Afclrat) = 5 [ a0, (s0)

S

and, inserting this correction into Eq. (6) of the main
text, we find

OA frc(rs, 0)
ae)rs . (S.11)

Thus, we first evaluate A fy., before inserting this correc-
tion into Eq. (S.11), where the derivative term is evaluated
numerically. More details of this procedure will be pre-
sented in a separate publication. For completeness, we
mention that for 0.0625 < 6 < 0.5 we have performed an
additional twist-averaging of the QMC data as described
in Refs. [9, 10].

Aexe(rs,0) = Afxe(rs,0) — 0 <



E. Data tables

All interaction energies given in Table III have been
obtained by performing QMC simulations for different IV,
adding the FS-STLS correction, and removing any resid-
ual errors by an additional extrapolation. Furthermore,
Fig. S2 shows our entire data set and the resulting fit as
well as a comparison to the KSDT parametrization [11]
for both the potential energy v and the XC free energy

e



Table III: Finite-size corrected potential energy from finite

temperature QMC simulations.

13 0 Ts VT oV - T
0800 20.0 —0.604414  0.000094
0 4.00 20.0 —0.677788 0.000041
0200 20.0 —0.726928  0.000022
0 1.00 20.0 —0.752044  0.000020
00.75 20.0 —0.752948  0.000050
0 0.75 10.0 —0.710858  0.000052
0 0.75 4.0 —0.637 257 0.000 267
00.75 20 —0.570146  0.000821
0 0.75 1.0 —0.503977 0.002 348
00.75 0.5 —0.443621  0.000918
00.75 0.3 —0.403418  0.000537
00.75 0.1 —0.335412  0.000230
0 0.50 20.0 —0.756936  0.000184
1/3 8.00 20.0 —0.580376  0.000120
1/3 8.00 10.0 —0.484172  0.000294
1/3 8.00 6.0 —0.411857  0.000449
1/3 8.00 4.0 —0.357279  0.000398
1/3 8.00 2.0 —0.274 122 0.000 604
1/3 8.00 1.0 —0.209039  0.000126
1/3 8.00 0.5 —0.158207  0.000089
1/3 8.00 0.3 —0.129225  0.000092
1/3 8.00 0.1 —0.085583  0.000081
1/3 4.00 20.0 —0.659 796 0.000 055
1/3 4.00 10.0 —0.575249  0.000103
1/3 4.00 6.0 —0.506857  0.000226
1/3 4.00 4.0 —0.451411 0.000177
1/3 4.00 2.0 —0.362040  0.000303
1/3 4.00 1.0 —0.285290 0.000 262
1/3 4.00 0.5 —0.222982  0.000083
1/3 4.00 0.3 —0.186 455 0.000 060
1/3 4.00 0.1 —0.129779  0.000045
1/3 2.00 20.0 —0.716060  0.000022
1/3 2.00 10.0 —0.648594  0.000050
1/3 2.00 6.0 —0.589913  0.000100
1/3 2.00 4.0 —0.540310 0.000 082
1/3 2.00 2.0 —0.453908  0.000271
1/3 2.00 1.0 —0.373593  0.000539
1/3 2.00 0.5 —0.305016  0.000481
1/3 2.00 0.3 —0.262926  0.000177
1/3 2.00 0.1 —0.195 205 0.000 098
1/3 1.00 20.0 —0.746370  0.000016
1/3 1.00 10.0 —0.695351  0.000 060
1/3 1.00 6.0 —0.649843  0.000125
1/3 1.00 4.0 —0.609682  0.000275
1/3 1.00 2.0 —0.533920 0.000 330
1/3 1.00 1.0 —0.461622  0.000655
1/3 1.00 0.5 —0.395233 0.000 664
1/3 1.00 0.3 —0.353105  0.000245
1/3 1.00 0.1 —0.282035  0.000135
1/3 0.75  20.0 —0.752258  0.000024
1/3 0.75 10.0 —0.706095 0.000112
1/3 0.75 6.0 —0.665 854 0.000 305
1/3 0.75 4.0 —0.629244  0.000194
1/3 0.75 2.0 —0.561332  0.000627
1/3 0.75 1.0 —0.491727  0.001049
1/30.75 0.5 —0.430284  0.000834
1/3 0.75 0.3 —0.389 745 0.000 636

I3 0 Ts VT oV - T
1/3 0.75 0.1 —0.321438 0.000 135
1/3 0.50 20.0 —0.756208  0.000265
1/3 0.50 10.0 —0.717354 0.001175
1/3 0.50 6.0 —0.675084  0.001677
1/3 0.50 4.0 —0.647064  0.000515
1/3 0.50 2.0 —0.586 194 0.002 044
1/3 0.50 1.0 —0.525908  0.002428
1/3 0.50 0.5 —0.472038  0.001061
1/3 0.50 0.3 —0.436211  0.000508
1/3 0.50 0.1 —0.374860  0.000130
0.6 8.00 20.0 —0.564678  0.000130
0.6 8.00 10.0 —0.467239  0.000265
0.6 8.00 6.0 —0.396677  0.000580
0.6 8.00 4.0 —0.342476  0.000305
0.6 8.00 2.0 —0.262 646 0.000 269
0.6 8.00 1.0 —0.200652  0.000122
0.6 8.00 0.5 —0.152 350 0.000110
0.6 8.00 0.3 —0.124913  0.000116
0.6 8.00 0.1 —0.084291  0.000419
0.6 4.00 20.0 —0.647332  0.000054
0.6 4.00 10.0 —0.560424  0.000 094
0.6 4.00 6.0 —0.491 593 0.000175
0.6 4.00 4.0 —0.437054  0.000291
0.6 4.00 2.0 —0.349670  0.000316
0.6 4.00 1.0 —0.276 092  0.000232
0.6 4.00 0.5 —0.216875  0.000074
0.6 4.00 0.3 —0.182 187 0.000 253
0.6 4.00 0.1 —0.128691  0.000238
0.6 2.00 20.0 —0.708140  0.000025
0.6 2.00 10.0 —0.638071  0.000060
0.6 2.00 6.0 —0.578400  0.000092
0.6 2.00 4.0 —0.528 572 0.000173
0.6 200 2.0 —0.443764  0.000460
0.6 2.00 1.0 —0.365 352 0.000 547
0.6 2.00 0.5 —0.300452  0.000180
0.6 2.00 0.3 —0.260321  0.000110
0.6 2.00 0.1 —0.196527  0.000 285
0.6 1.00 20.0 —0.742986  0.000015
0.6 1.00 10.0 —0.690110 0.000 058
0.6 1.00 6.0 —0.643421  0.000551
0.6 1.00 4.0 —0.602959  0.000130
0.6 1.00 2.0 —0.529821  0.000309
0.6 1.00 1.0 —0.458146  0.000503
0.6 1.00 0.5 —0.395 825 0.001016
0.6 1.00 0.3 —0.354692  0.000300
0.6 1.00 0.1 —0.287919  0.000131
0.6 0.75 20.0 —0.750356  0.000017
0.6 0.75 10.0 —0.703143  0.000485
0.6 0.75 6.0 —0.661 680 0.000177
0.6 0.75 4.0 —0.624412  0.000407
0.6 0.75 2.0 —0.559 316 0.000421
0.6 0.75 1.0 —0.491014  0.002800
0.6 0.75 0.5 —0.433163  0.000603
0.6 0.75 0.3 —0.394409  0.000533
0.6 0.75 0.1 —0.329384  0.000093
0.6 0.50 20.0 —0.755 894 0.000 093
0.6 0.50 10.0 —0.714 236 0.001111
0.6 0.50 6.0 —0.678234  0.000645
0.6 0.50 2.0 —0.589876  0.000620



13 0 Ts VT oV -1
0.6 0.50 1.0 —0.531667 0.000 524
0.6 0.50 0.5 —0.480832  0.001670
0.6 0.50 0.3 —0.445028  0.000 740
0.6 0.50 0.1 —0.386802  0.000116

1 8.00 0.1 —0.086 133 0.000 027

18.00 0.3 —0.124165  0.000047

1800 0.5 —0.149504  0.000047

1800 1.0 —0.194203  0.000 066

1800 20 —0.252452  0.000 303

1 8.00 4.0 —0.327037 0.000 261

18.00 6.0 —0.378252  0.000426

18.00 8.0 —0.417303  0.000 404

1800 10.0 —0.448115 0.000486

1800 20.0 —0.544914 0.000177

1 4.00 0.1 —0.135554 0.000 036

14.00 0.3 —0.184652  0.000070

1 4.00 0.5 —0.216 525 0.000 082

1400 1.0 —0.270858  0.000615

14.00 20 —0.339262  0.000172

14.00 4.0 —0.421696  0.000232

14.00 6.0 —0.474381  0.000083

1 4.00 8.0 —0.512738 0.000 137

14.00 10.0 —0.542639 0.000076

14.00 20.0 —0.631370 0.000078

1200 0.1 —0.211965  0.000 104

1200 0.3 —0.269952  0.000 134

1 2.00 0.5 —0.306 107 0.000 140

1200 1.0 —0.365728  0.000374

1200 20 —0.436766  0.000 385

1200 4.0 —0.516652  0.000170

1200 6.0 —0.564960  0.000167

1 2.00 8.0 —0.599070 0.000 084

1200 10.0 —0.624687 0.000078

1 2.00 20.0 —0.697 464 0.000 038

11.00 0.1 —0.318360  0.000133

11.00 0.3 —0.376986  0.000 132

11.00 0.5 —0.412091  0.000 138

1100 1.0 —0.466 598  0.000999

1 1.00 2.0 —0.529651 0.000478

11.00 4.0 —0.597449  0.000123

11.00 6.0 —0.636542  0.000 086

11.00 8.0 —0.663264  0.000075

11.00 10.0 —0.683287 0.000074

1 1.00 20.0 —0.738 042 0.000 021

1075 0.1 —0.368039  0.000107

1075 0.3 —0.423521  0.000 149

1075 05 —0.456112  0.000261

1075 1.0 —0.506379  0.000 646

1 0.75 2.0 —0.564 127 0.000 187

1075 4.0 —0.624104  0.000 543

1 0.75 6.0 —0.658 458 0.000 136

10.75 10.0 —0.699291  0.000053

10.75 20.0 —0.747552 0.000012

1050 0.1 —0.436852  0.000 150

1050 0.3 —0.484687  0.000114

1 0.50 0.5 —0.512677 0.000 305

1050 1.0 —0.553536  0.001915

1050 2.0 —0.600776  0.002929

1050 4.0 —0.651476  0.000679

I3 0 Ts VT oV - T

1 0.50 6.0 —0.680010 0.001 349
1050 8.0 —0.699106  0.000564
1050 10.0 —0.713698  0.000201
1050 20.0 —0.755328  0.000037
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Figure S2: Top row: Upper panel: Density dependence of the potential energy for different temperatures (top to bottom:
0 =8,4,2,1,0.75,0.5). Crosses: new QMC data of this work for £ = 1/3,0.6, and 1. For £ = 0, the data from Ref. [6] are
plotted (indicated by the * in the legend) in addition to the new data points for # = 0.75 and also for rs = 20. Solid line: Our
parametrization (rs — 6 — &-fit to the QMC data). Dashed line: KSDT parametrization [11]. Lower panel: Deviation of the QMC
data (crosses) and the KSDT parametrization (dashed line) from our parametrization. Bottom row: Upper panel: Density
dependence of the exchange-correlation free energy for different temperatures (top to bottom: 6 = 8,4,2,1,0.75,0.5). Solid line:
Our parametrization. Dashed line: KSDT prametrization. Lower panel: Deviation of KSDT from our parametrization.



Chapter 7
The Inhomogeneous Electron Gas

Another interesting topic regarding the uniform electron gas is its response to an external
perturbation, which, within linear response theory [131], is described by the density—density
response function Y (q,®), with q and ® denoting the wave vector and frequency of the
perturbation, respectively. The response function is the central quantity of the dielectric
formalism, for example in the random-phase approximation (RPA), which, however, does
not incorporate correlations regarding the description of the density response beyond the
mean field level. Correlation effects are usually incorporated via the so-called local-field
correction [214] (LFC) G(q, ®). While formally exact, the latter is, in practice, not known
and one has to rely on approximations (such as STLS).

Hitherto, we treated the dielectric methods merely as a means to end, i.e., to exploit
the fluctuation—dissipation theorem and use the linear response function to compute static
properties of the UEG like the static structure factor (for the finite-size correction, see
Sec. 5.1) or a temperature correction to the interaction energy (see Sec. 6.2). However, it is
important to note that accurate knowledge of x(q,®) (and therefore of G(q, ®@)) constitutes
an important end in itself. For example, the local-field correction can directly be used as
input for density functional theory calculations within the adiabatic-connection fluctuation—
dissipation formulation [215-217]. In contrast to the simple local density approximation or
the ubiquitous generalized gradient approximations [114, 200], this approach is based on
the construction of a truly nonlocal exchange—correlation functional. Despite the increased
computational cost, this idea constitutes a promising route towards an improved predictive
capability of DFT, in particular at warm dense matter conditions [79]. A concise overview of
further applications of the local-field correction can be found in the following two papers,
Refs. [167] and [168], as well as in the review [161], Chpt. 2.

In principle, the density response function for a specific combination of q and ® can be

directly obtained from the simulation of an electron gas that is subject to an external harmonic
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perturbation with the corresponding frequency and wave vector. More specifically, for weak
perturbations, linear response theory is accurate and the modified density is proportional to the
perturbation amplitude with x(q, @) being the slope. Unfortunately, time-dependent QMC
simulations' are prohibited by an additional dynamical sign problem, see, e.g., Refs. [218—
220]. For this reason, here we limit ourselves to the static limit of y and G (i.e., @ — 0 [131]).

In the ground state, extensive results for the static density response were computed
by Ceperley and co-workers [221, 222] and Alder and co-workers [223, 224], and later
used as input for a parametrization by Corradini et al. [225]. The following two papers,
Refs. [167] and [168], constitute proofs of principle regarding the extension of this idea
to finite temperature both in the PB-PIMC and CPIMC formalism. In particular, in the
following paper?, Ref. [167], I extended the PB-PIMC formalism to the simulation of an
inhomogeneous electron gas and considered the possibility to compute x(q) for several wave
vectors within a single simulation.

The extension of these simulations to obtain exhaustive data for the static density response
function and a subsequent construction of a parametrization of the local-field correction at
warm dense matter conditions remains an important task for the future.

For completeness, I mention that I was not involved in the extension of the CPIMC method
to the inhomogeneous case as described in Ref. [168], but worked on the computation of
the finite-size correction for x(q,0) that is described therein together with S. Groth in equal
parts. In additions, I provided the PB-PIMC benchmark data.

Note that, in principle, the dynamic structure factor S(q,®) and, thus, the dynamic density response
function x(q,®) can be reconstructed from thermodynamic QMC data for an imaginary-time correlation
function, see Sec. 9.2.3.

’T. Dornheim, S. Groth, J. Vorberger, and M. Bonitz, Phys. Rev. E 96, 023203 (2017). Copyright by the
American Physical Society (2017).
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Permutation-blocking path-integral Monte Carlo approach to the static density
response of the warm dense electron gas
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The static density response of the uniform electron gas is of fundamental importance for numerous applications.
Here we employ the recently developed ab initio permutation blocking path integral Monte Carlo (PB-PIMC)
technique [T. Dornheim et al., New J. Phys. 17, 073017 (2015)] to carry out extensive simulations of the
harmonically perturbed electron gas at warm dense matter conditions. In particular, we investigate in detail the
validity of linear response theory and demonstrate that PB-PIMC allows us to obtain highly accurate results
for the static density response function and, thus, the static local field correction. A comparison with dielectric
approximations to our new ab initio data reveals the need for an exact treatment of correlations. Finally, we
consider a superposition of multiple perturbations and discuss the implications for the calculation of the static

response function.
DOI: 10.1103/PhysRevE.96.023203

I. INTRODUCTION

The uniform electron gas (UEG), which is composed of
Coulomb interacting electrons in a homogeneous neutralizing
background, is one of the most seminal model system in
quantum many-body physics and chemistry [1]. In addition
to the UEG’s importance for, e.g., the formulation of Fermi
liquid theory [2,3] and the quasiparticle picture of collective
excitations [4,5], accurate parametrizations of its ground-
state properties [6—-10] based on ab initio quantum Monte
Carlo calculations [11-15] have been pivotal for the arguably
unrivaled success of density-functional-theory simulations of
real materials [16—18].

The density response of the UEG to a small external
perturbation as described by the density response function is
of high importance for many applications [2]. The well-known
random-phase approximation (RPA) [5] provides a qualitative
description for weak coupling strength (high density),

xo(q, )
- %Xo(q,w)’

Xrea(q, @) = (D

where xo(q,w) denotes the density response function of the
ideal (i.e., noninteracting) system. However, since Eq. (1) does
not incorporate correlations beyond the mean-field level, RPA
breaks down even for moderate coupling. This shortcoming is
usually corrected in the form of a local field correction (LFC)
G(q,w) [19], modifying Eq. (1) to

XO(q’a))
1= Z1 - Gqo)lx(g.0)

Hence, by definition, the exact LFC contains all exchange-
correlation effects beyond RPA. Common approximations
for G include the approaches by Singwi-Tosi-Land-Sjolander
(STLS) [20] and Vashishta and Singwi (VS) [21]. It is
important to note that the accurate determination of G(q,w)
is an important end in itself as it can be straightforwardly

XLrc(q,w) = 2
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utilized as input for other calculations. For example, it is
directly related to the XC kernel

4
Kxc(qvw) = _FG(q’a)) (3)

of density functional theory in the adiabatic-connection
fluctuation-dissipation formulation [22-24]. This allows for
the construction of a true nonlocal XC functional, which is
a promising approach to go beyond the ubiquitous gradient
approximations [18,25] and thereby increase the predictive
capabilities of DFT. Further applications of the LFCs for
current warm dense matter (WDM, see below) research include
the calculation of the dynamic structure factor [26-29] as it
can be obtained with x-ray Thomson scattering from a variety
of systems, energy transfer rates [30,31], the electrical and
optical conductivity [32,33], and equation of state models of
ionized plasmas [34-36]. Finally, we mention the construction
of effective potentials both for WDM [37,38] and beyond
[39,40].

In the ground state, Moroni ef al. [41] obtained accurate
QMC results for the static response function [i.e., w — 0,
see Eq. (27)]—and thereby the static LFC—by simulating
an electron gas with a weak external harmonic perturbation
[42—45]. This has allowed for a systematic assessment of the
accuracy of previous approximations. Further, the ab initio
data for the LFC have subsequently been parametrized by
Corradini ef al. [46], and the zero temperature limit of the
static density response is well understood.

However, recently there has emerged a growing interest
in matter under extreme conditions, i.e., at high density
and temperature, which occurs in astrophysical objects such
as brown dwarfs and planet interiors [47,48]. Furthermore,
similar conditions are now routinely realized in experiments
with laser excited solids [49] or inertial confinement fusion
targets [50-53]. This “warm dense matter” (WDM) regime is
characterized by two parameters being of the order of unity
[54]: (i) the Wigner-Seitz radius ry = 7/ap and (ii) the reduced
temperature 0 = kgT/EF, where 7, ag and Ep denote the
mean interparticle distance, Bohr radius, and Fermi energy
[55], respectively. Naturally, accurate data for the static LFC

©2017 American Physical Society
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at such extreme conditions are highly desirable. In fact, in lieu
of thermodynamic data often ground-state results are used at
WDM conditions, which might not be appropriate [54].

Yet, a theoretical description of warm dense electrons
is notoriously hard since it must account for the nontrivial
interplay of (a) the strong quantum Coulomb collisions, (b)
excitation effects due to the high temperature, and (c) quantum
degeneracy effects (e.g. fermionic exchange). In particular,
conditions (a) and (b) rule out perturbation expansions and
ground-state methods, respectively, leaving thermodynamic
quantum Monte Carlo methods as the most promising option.
Unfortunately, QMC simulations of degenerate electrons
suffer from the fermion sign problem (FSP) [56,57] so that
the widespread path integral Monte Carlo (PIMC) approach
[58] is limited to small system sizes and high temperatures,
preventing simulations under WDM conditions [59]. Despite
its remarkable success in the ground state, at finite temperature,
the fixed node approximation [60,61] (which avoids the FSP)
can lead to systematic errors exceeding 10% [62]. This unsat-
isfactory situation has sparked remarkable progress in the field
of fermionic QMC simulations. In particular, the joint usage of
two novel complementary approaches (in combination with an
improved finite-size correction [63]) has recently allowed us to
obtain the first complete ab initio description of the warm dense
electron gas [63,64]: (i) At high density and weak to moderate
coupling, the configuration PIMC (CPIMC) approach [65-67],
which is formulated in Fock space and can be understood as a
Monte Carlo calculation of the (exact) perturbation expansion
around the ideal system, is capable to deliver exact results
over a broad temperature range. (ii) The permutation blocking
PIMC (PB-PIMC) approach [68—70] extends standard PIMC
towards higher density and lower temperature and allows for
accurate results in large parts of the WDM regime. In this
work, we use the latter method to carry out simulations of the
harmonically perturbed electron gas under warm dense matter
conditions.

A brief introduction of the UEG model (Sec. ITA) is
followed by a comprehensive introduction to fermionic QMC
simulations at finite temperature. In particular, we explain
how the antisymmetry of the density operator leads to the
fermion sign problem in standard PIMC (Sec. IIB 1) and
how this is addressed by the idea of permutation blocking
(Sec. II B 2). Further, we give a concise overview of linear
response theory and how the static density response can be
obtained by simulating the harmonically perturbed system
(Sec. IIC). In Sec. III, we show extensive PB-PIMC results
to investigate the dependence on the perturbation strength
(Sec. IITA), the convergence with the number of imaginary
time propagators (Sec. III B), and the wave-vector dependence
(Sec. III C), which also allows to address possible finite-size
effects. Finally, in Sec. IIlE we consider the response to a
superposition of multiple perturbations with different wave
vectors and the resulting implications for the calculation of .

II. THEORY

A. Uniform electron gas

The uniform electron gas is a model system of N electrons
in a positive homogeneous background that ensures charge

PHYSICAL REVIEW E 96, 023203 (2017)

neutrality. Throughout this work, we assume an unpolarized

(paramagnetic) system, i.e., NT = N¥ = N/2 [with 1 (])

denoting the number of spin-up (-down) electrons] and, thus,
N'— NV

f= =0 )

To alleviate the differences between a finite model system
and the thermodynamic limit (finite-size effects), we employ
Ewald summation for the repulsive pair interaction. Therefore,
the Hamiltonian (in Hartree atomic units) is given by

1< 1 & N

y —_— 2 . . —

A= _EZV" + EZZ“’E(“’”” b, )
i=1 i=1 j#i

where W (r,s) and &), denote the Ewald pair potential and the

well-known Madelung constant, see, e.g., Ref. [71].

B. Quantum Monte Carlo
1. Path-integral Monte Carlo

Throughout the entire work, we consider the canonical
ensemble where the volume V = L? (with L being the box
length), particle number N, and inverse temperature S =
1/kpT are fixed. To derive the path integral Monte Carlo
formalism [58], we consider the partition function

Z =Trp, (©)

which is defined as the trace over the canonical density
operator 0

p=ePH, (7)

Let us temporarily restrict ourselves to distinguishable parti-
cles and rewrite Eq. (6) in coordinate representation:

Z= /dR (Rle 1 R, 8)

where R = {ry, ... ,ry} contains the all 3N particle coordi-
nates. Since the matrix elements of § are not readily known,
we use the group property

P-1
e—ﬂH — 1_[ e—EH’ (9)

a=0

with € = B/P and « labeling the P identical factors. Fur-
thermore, we insert P — 1 unity operators of the form 1 =
[ dR, |Ry) (R,| into Eq. (8) and obtain

7 = /dX (Ro| e~ |R}) (R] ...

IRp_1) (Rp_1|e " [Ry), (10)

and the integration is carried out over P sets of particle
coordinates, dX = dRy ...dRp_;. We stress that Eq. (10) is
still exact. The main benefit of this recasting is that the new
expression involves P density matrix elements, butata P times
higher temperature. Each of these high temperature factors can
now be substituted using some suitable high-T approximation,
e.g., the simple primitive factorization

761:1 %efévefék, (11)

023203-2
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with V and K being the operators for the potential and kinetic
contribution to the Hamiltonian, respectively, and which
becomes exact in the limit P — oo [72]. The resulting high-
dimensional integral is then evaluated using the Metropolis
algorithm [73] (we employ a simulation scheme based on the
worm algorithm [74,75]).

However, to simulate fermions we must extend the partition
function from Eq. (8) by the sum over all particle permutations,
which, for an unpolarized system, gives

1
Z:W Z Z sgn(cﬁ)sgn(al)

oteSyr oveSy,
x /dR (Rl e P |2, 7,.R), (12)

with ¢ ™% denoting particular elements from the permutation
groups SIT,’¢ and 7,+. being the corresponding permutation
operators. In practice, this leads to the occurrence of so-called
exchange cycles within the PIMC simulations, which are paths
incorporating more than a single particle, see Fig. 1. The
problem is that the sign of each configuration depends on the
parity of the permutations involved which can be both positive
and negative. Let {X} denote the set of all possible paths in
the QMC simulation. The partition function, Eq. (12), is then
given by

zzfdxmm, (13)
(X}

where the so-called configuration weight W(X) can be neg-
ative. However, since a probability must be strictly positive,
we sample the paths according to the absolute values | W (X)|,
where the normalization of this modified configuration space
is given by

7 = / dX |[W(X)|. (14)
x)

The correct fermionic expectation value of an arbitrary
observable A is then computed as
(A 8
(A) = ; 15)
(S)

where (...) denotes the expectation value corresponding to
Z',and S(X) = W(X)/|W(X)| is the sign of the configuration
X. In particular, the denomininator in Eq. (15) is the so-called
average sign,
' = [ axweoisco. (16)
X}
Note that the abbreviation § = (S‘ )/ is used henceforth through-
out this work.

At low temperature and high density, permutation cycles
with both positive and negative signs appear with a similar
frequency and, thus, both the enumerator and the denominator
in Eq. (15) vanish simultaneously. In this case, the signal-to-
noise ratio of the fermionic expactation value vanishes, leading
to an exponentially increasing statistical uncertainty [59]. This
is the notorious fermion sign problem [56,57], which limits
standard PIMC to weak degeneracy where fermionic exchange

PHYSICAL REVIEW E 96, 023203 (2017)

z[ag]

z[ag]

z[ag]

FIG. 1. Screen shots of standard path integral Monte Carlo
simulations of the warm dense UEG for N = 19 spin-polarized
electrons, ry =1, and P =32, with 6 =8 (a), 6 =1 (b), and
0 =0.3(c).

plays only a minor role and, therefore, precludes its application
to warm dense matter [59]. This is illustrated in Fig. 1,
where we show random configurations from standard PIMC
simulations of the UEG with N = 19 spin-polarized electrons
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at a density parameter r; = 1 and three different temperatures.
Each particle is represented by P = 32 so-called beads, which
are connected by the (red) kinetic density matrix elements and
thus form the eponymous paths. At high temperature, 6 = 8
[Fig. 1(a)], each particle is represented by a distinct, separate
path and exchange cycles occur only infrequently. Therefore,
the FSP is not severe and PIMC simulations are feasible. At
moderate, WDM temperatures [0 = 1, Fig. 1(b)], fermionic
exchange is influencing the system significantly, and multiple
exchange cycles are visible in the screenshot. Since each pair
exchange causes a sign change in the Monte Carlo simulation,
a standard PIMC simulation is no longer feasible. Finally, at
low temperature [0 = 0.3, Fig. 1(c)] nearly all particles are
involved in exchange cycles, and the system is dominated by
the antisymmetric nature of the electrons (i.e., Pauli blocking).

2. Permutation blocking

The fermion sign problem is N P-hard [57] and a general
solution is, at the time of this writing, not in sight. Therefore,
there does not exist a single QMC method that is applicable
for all parameters. Nonetheless, it is possible to go beyond
standard PIMC by employing the recently introduced permuta-
tion blocking PIMC approach [68,69]. The first key ingredient
is the usage of antisymmetric imaginary time propagators,
i.e., determinants, which allows for a combination of positive
and negative terms into a single configuration weight [76-78].
However, while this “permutation blocking” can indeed lead
to a significant reduction of the fermion sign problem, with
an increasing number of propagators P this advantage quickly
vanishes. For this reason, as the second key ingredient, we
utilize a higher-order factorization of the density matrix
[79,80]

—€H o ,—vieW, —tleKe—vgeWI,z,,l

e e

Xeff]GKefl)]SW,,] e*2lo€K’ (17)

which allows for sufficient accuracy even for a small number
of imaginary time slices, for the definitions of the coefficients
v1, h, v, a;, and fy, see Refs. [68,69]. The W operators
correspond to modified potential terms combining the standard
potential contribution V with double commutator terms of the
form [80]

le

[[V,K1,V]

g
— Y P,
m i=1

F; = -ViV(R), (18)

where F; denotes the total force on a particle “i”. Finally, this
allows one to obtain the PB-PIMC partition function [70]

1
z= —/dx
(NN, 3P

P—1
% l_[ (676\7&6*53110%;} DDlyTDOIyi) , (19)
a=0

with V, and F, containing all contributions of the potential
energy and the forces, respectively, and the exchange-diffusion
functions

Da,T = det(pot,T)det(potA,T)det(paB,T) P

Dy, | = det(pq,,)det(paa, | )det(pas, ) - (20)
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FIG. 2. Screen shot of a permutation blocking path integral Monte
Carlo simulation of the UEG with N =9 spin-polarized electrons
with r;, =1, 6 =1, and P =2 imaginary time propagators. The
green, blue, and purple points correspond to the three different kinds
of time slices, see Refs. [68—70].

Here p, 4+ denotes the diffusion matrix of a single time slice

— 3 (a,t,j—Tan,1,i+0L)?

o . -3 2

Pt ) =22 e e .o
n

with A, = +/ 2meth?/m being the corresponding thermal
wavelength. Observe that Eq. (17) implies that there are three

imaginary time slices for each propagator « =0, ...,P — 1,
with Ry, Ry, and R, denoting the corresponding sets of
particle coordinates.

In a nutshell, in the PB-PIMC approach, we do not have to
explicitly sample each positive or negative permutation cycle.
Instead, we combine configuration weights with different
signs in the determinants, which results in an analytical
cancellation of terms and, thus, a significantly alleviated sign
problem. This is illustrated in Fig. 2, where we show a random
configuration from a PB-PIMC simulation of the warm dense
UEG with N =9 spin-polarized electrons, r; = 1 and 0 = 1
for P = 2. The green, blue, and purple beads correspond to
the three different kinds of imaginary time slices due to the
higher-order factorization of the density operator, cf. Eq. (17).
In contrast to the standard PIMC configurations from Fig. 1,
every bead can be involved in multiple connections here.
In fact, each bead is connected to all N beads on the next
and previous slices although the weight of the connection
exponentially decreases with spatial difference, which is
expressed by the different line widths of the (red) connections.
Evidently, many beads of the depicted screen shot exhibit
multiple visible connections, which means that a significant
amount of analytical cancellation is accomplished within the
determinants and, unlike standard PIMC, simulations are still
feasible [59].
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This permutation blocking is most effective when A, is
comparable (or larger) than the mean interparticle distance.
However, for P — oo the beneficial effect vanishes and the
original sign problem from standard PIMC is recovered. This
plainly illustrates the paramount importance of a sophisticated
higher-order factorization scheme such as Eq. (17).

C. Linear response theory

In linear response theory (LRT), we consider the effect of
a small external perturbation on the density of the system of
interest
H = Hy + Hexl(t)- (22)
Note that, in general, I-Alem(t) is time dependent. Throughout
this work, the unperturbed Hamiltonian H, corresponds to the
UEG as introduced in Eq. (5) and the perturbation is given by
a sinusoidal external charge density of wave vector q,

N
Hew(1) = 2A ) " cos(r; - q — 1), (23)
i=1
which corresponds to the potential
Gext(r,1) = 2A cos(r - q — Q 1). (24)

The standard definition of the density response function is
given by

7(q.T) = _7’ ([p(q, D), p(—q,0)])o O(T), (25

where the expectation value is with respect to the unperturbed
system. Note that Eq. (25) only depends on the time difference
T =1t —1t and, due to the homogeneity of the unperturbed
system, x only depends on the modulus of the wave vector.
The corresponding Fourier transform is given by

o0
x(w,q) = lim f dt "7 5(q, 7). (26)
n—0 —00
Throughout this work, we restrict ourselves to the static
limit [81] that is defined as
lim x(@.9) = x(@), 27)

i.e., the response of the electron gas to a time-independent
external perturbation

Pexi(r) = 2A cos(r - q), (28)

and, henceforth, the @ dependence is simply dropped. More
precisely, the physical interpretation of x(q) is the description
of the density response [i.e., the induced charge density pina(q)]
due to the external charge density pex:(q)

47
Pind(q) = pext(‘l)?X(q) (29)
The external density follows from the Poisson equation as
1 oo
Pext(T) = _4_V Dext(T)
o4
q’ q’
= = ¢exi(r) = ~—2A cos(r- q) (30)
47 4
2 iqr —iqr
q- A _ixrf €Y+
W Q=——14d - -
= Pext(q) 27 27y / re ( 5
q’A
= E(Sk,q + 0k, —q); (31)
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and the induced density is the difference between the perturbed
and unperturbed systems:

N
A . 1 —iqr;
Pina(@) = (fg) 4 — (Padg = 7<Ze e > . (32
j=1 A
where we made use of the fact that (9q), = 0. Thus, it holds

1
x(@) =~ (Pq)y - (33)

In order to obtain the desired static density response func-
tion, we carry out multiple QMC simulations for each wave
vector q =27 L~ '(a,b,c)" (with a,b,c € Z) for different
values of A and compute the expectation value from Eq. (32).
For sufficiently small A, {dq) , is linear with respect to A with
x (q) being the slope.

Another way to obtain the response function from the QMC
simulation of the perturbed system is via the perturbed density
profile in coordinate space:

(n(r))4 = no + 2A cos(q - r)x(q). (34)

In practice, we compute the left-hand side of Eq. (34) using
QMC and perform a fit of the right-hand side with x(q) being
the only free parameter. Naturally, in the linear response regime
both ways to obtain y (q) are equal.

For completeness, we mention that the dynamic response
can be obtained in a similar fashion by considering explic-
itly time-dependent perturbations, e.g., using nonequilibrium
Green function techniques [82,83] for quantum systems or
molecular dynamics [84,85] in the classical case.

A second strategy to compute the density response from
thermodynamic QMC simulations in LRT is by considering
imaginary-time correlation functions (ITCF) of the unper-
turbed system. In particular, the static response function can
be obtained from the fluctuation dissipation theorem [43],

1 B
x@ =1 fo dv (p(@Dp(-q.0%.  (35)

as an integral over the imaginary time 7. If one is solely
interested in the linear response of the system, then invoking
Eq. (35) constitutes the superior strategy since all q vectors
can be computed from a single simulation. However, this
requires a QMC estimation of the ITCF on a sufficient 7 grid,
which is straightforward in standard PIMC where P > 100 is
not an obstacle. For PB-PIMC, simulations are only possible
for a small number of imaginary-time propagators (typically
P < 4), see Sec. IIB2, which precludes the evaluation of
Eq. (35). Nevertheless, we stress that it is only the permutation
blocking idea that allows us to carry out simulations at warm
dense matter conditions in the first place, since standard PIMC
simulations are not feasible due to the FSP. In addition, the
application of an external perturbation allows us to go beyond
LRT and to consider arbitrarily strong perturbation strengths.

III. RESULTS
A. Dependence on perturbation strength

Let us start our investigation of the harmonically perturbed
electron gas by considering the dependence on the perturbation
amplitude A. In Fig. 3, we show PB-PIMC results for the
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FIG. 3. Density profiles along the x direction for N = 54,
ry = 10, and 6 = 1. Shown are PB-PIMC results for P = 4 with
q=27L""2,0,0)" and weak (a), medium (b), and strong (c)
perturbations. The black lines correspond to fits according to Eq. (34).

density profile along the x direction for N = 54 unpolarized
electrons atry = 10 and @ = 1 for the perturbation wave vector
q =27L7'(2,0,0)7. In Fig. 3(a), the depicted A values are
relatively small. The black lines correspond to fits according

PHYSICAL REVIEW E 96, 023203 (2017)

to Eq. (34). Evidently, for A = 0.001 and A = 0.005, those
curves are in perfect agreement with the QMC results, which
indicates that here the linear response theory is accurate. In
contrast, for A = 0.01 significant (although small, AA/A ~
1%) deviations appear, which are most pronounced around the
minima and maxima. In Fig. 3(a), we systematically increase
A up to a factor two. Clearly, with increasing perturbation
amplitude, the deviations between the exact QMC results
and the cosine fit predicted by LRT become more severe,
as is expected. Finally, in Fig. 3(c) we show the density
profiles for even larger perturbations. Eventually, the external
potential becomes the dominating feature, resulting in a
strongly inhomogeneous electron gas. For the largest depicted
perturbation, A = 0.1, there appear two distinct shells with a
vanishing density in between.

To systematically investigate the effect of the perturbation
amplitude on our QMC estimation of the static response
function x(q), we show results in Fig. 4 for the induced
density pinq(q) for the same system and two different wave
vectors, q = 2w L~'(g,,0,0)7 with g, =2 [Fig. 4(a)] and
g = 1 [Fig. 4(b)]. The black squares correspond to the direct
QMC results, cf. Eq. (32), and the green crosses have been
obtained by performing a cosine fit to the density profiles
according to Eq. (34). The red lines depict a linear fit to the
black squares for A < 0.01. First and foremost, we observe
a perfect agreement between the direct QMC results and the
cosine fits for small A as predicted by the linear response
theory. Even for A = 0.01, where the cosine fit exhibits
significant deviations to the density profile from QMC, we
find perfect agreement between the black and green points and
also to the fit. With increasing A, however, the assumptions of
linear response theory are no longer valid. Interestingly, the p
values obtained from the cosine fit exhibit significantly larger
deviations to the linear response prediction (red line) than the
direct QMC results. For example, at A = 0.05 the deviation of
the green points is twice as large as for the black squares.

In Fig. 4(b), the same information is shown for a smaller
wave vector, g, = 1. First, we observe a significantly smaller
density response (cf. Fig. 8). This, in turn, means that linear
response theory is accurate up to much larger A values as the
system only weakly reacts to such an external perturbation.

To further illustrate this point, in Fig. 5(a) we show the
corresponding average signs from the QMC simulations for
both wave vectors investigated in Fig. 4. For small perturba-
tions, S is equal for both q and approaches the result for the
unperturbed system. With increasing A, the system becomes
more inhomogeneous, i.e., there appear regions of increased
(and also decreased) density, see Fig. 5(b), where we show
the corresponding density profiles for strong perturbations,
A = 0.1. This, in turn, leads to increased fermionic exchange,
resulting in a significantly decreased average sign in our
PB-PIMC simulations. Since the density response is more
pronounced for g, =2, here § exhibits a faster decrease
in dependence of A. We conclude that PB-PIMC (and also
standard PIMC) simulations of the inhomogeneous electron
gas are significantly more computationally demanding than
simulations of the UEG at equal conditions. Nevertheless,
this is of no consequence for the determination of the static
response function as this is only possible for A values that are
sufficiently small for the linear response theory to deliver an
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FIG. 4. Induced density modulation for N =54, r, =10,
and 6 = 1. Shown are PB-PIMC results for P =4 with q =
27 L7 (g,,0,0)" [¢, = 2 (a) and g, = 1 (b)] directly computed from
QMC, cf. Eq. (32), and from fits according to Eq. (34).

accurate description, i.e., systems that are close to the uniform
case.

B. Convergence with propagators

As discussed in Sec. II B 2, PB-PIMC crucially relies on the
higher-order factorization of the density operator, Eq. (17),
to allow for sufficient accuracy with only few imaginary
time propagators. In the following section, this situation is
investigated in detail.

In Fig. 6(a), we plot direct QMC results for the induced
density for the unpolarized UEG with r, = 10, 6 = 1, and
N = 34 electrons versus the inverse number of propagators
P~!. The perturbation is given by the wave vector q =
27 L~1(1,0,0)T and amplitude A = 0.01, which is well within
the linear response regime. Evidently, only the result for p with
P = 2 propagators significantly deviates from the rest and,
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FIG. 5. Average sign for N = 54, r; = 10, and 8 = 1 (a). Shown
are PB-PIMC results for P = 4 with q = 27 L~'(g,,0,0)”. Corre-
sponding density profiles along the x direction for A = 0.1 (b).

for the P = 4 propagators used above, the PB-PIMC results
are converged within the statistical uncertainty. Figure 6(b)
shows the corresponding density profiles along the x direction.
Here, even the results for only P = 2 propagators exhibits no
significant deviations to the other curves.

As asecond example, in Fig. 7 we consider the same system
as in Fig. 6 but with N = 54 electrons and a larger wave
vector for the perturbation, q = 27 L~!(5,0,0). In Fig. 7(a),
we again show direct QMC results for p in dependence of the
inverse number of propagators. However, in contrast to the data
depicted in Fig. 6, here we see significant differences for differ-
ent P. The black line corresponds to a parabolic fit of the form

p(PH=a+ 2, (36)
P2

which reproduces all QMC results within error bars.
Nevertheless, we stress that the functional form in Eq. (36)
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FIG. 6. Convergence with number of propagators P for N =
34, ry, =10, and 6 = 1 with a perturbation of wave vector q =
27 L~'(1,0,0)" and amplitude A = 0.01. Shown are QMC results for
the density matrix (a) and the density profile along the x direction (b).

has been empirically chosen and does merely serve as a guide
to the eye since, for large P, the propagator error is expected to
exhibit a fourth-order decay, see Ref. [80] for a comprehensive
discussion. Evidently, for P = 4 there occurs a systematic bias
of Ap/p ~ 2% at such a large wave vector. This is reflected
in the increasing error bars towards large q in the wave-vector
dependence plot, i.e., Fig. 8, and can be understood as
follows: The propagator error is a direct consequence of the
noncommuting of the kinetic (K) and potential (V)
contributions of the Hamiltonian. The larger the wave vector
q, the faster the spatial variations of the external potential and,
because K o« V2, the larger the error terms, which involve
nested commutators of K and V.

Figure 7(b) shows the corresponding results for the total
potential energy, i.e., the sum of the Ewald interaction and
the external perturbation. Evidently, no deviations can be
resolved within the given statistical uncertainty, even for
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FIG. 7. Convergence with number of propagators P for N = 54,
re =10, and 6 =1 with the perturbation of wave vector q =
27 L~'(5,0,0)” and amplitude A = 0.01. Shown are QMC results
for the density matrix (a) and the potential energy, i.e., the sum of
Ewald interaction and external field (b).

P =2 propagators. This is similar to previous findings for
the unperturbed UEG [69,70] and reflects the circumstance
that for V the particle interaction dominates. In stark contrast,
the induced density p is particularly sensitive to the small
external perturbation which, as explained above, requires a
larger number of propagators to be sufficiently incorporated.

C. Wave-vector dependence of x(q) and finite-size effects

Due to the momentum quantization in a finite simulation
box, QMC calculations are only possible at an N-dependent
discrete q grid. Therefore, the investigation of finite-size
effects in the static response function requires us to obtain
results over a broad wave-vector range, as shown in Fig. 8.
The gray and red curves correspond to the predictions due
to the RPA, cf. Eq. (1), and with a LFC from the (finite-7")
STLS formalism [86,87], respectively. For small ¢, both
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FIG. 8. Wave-vector dependence of the static response function
for the unpolarized UEG at r;, = 10 and 6 = 1. Shown are QMC
results according to Eq. (33) for different particle numbers (symbols)
and the predictions from RPA (gray) and STLS (red). The black arrow
indicates the Fermi wave vector, kr = (97 /4)'/3/r,. Panel (b) shows
a magnified segment.

approximations exhibit the same exact parabolic behavior [88].
With increasing q, however, there appear significant systematic
deviations with amaximum of Ay /x ~ 50% around ¢ =~ 0.35
[i.e., around twice the Fermi vector kr = (97 /4)'/3/r,]. The
symbols correspond to our QMC results obtained according to
Eq. (33) and the colors distinguish different particle numbers,
in particular N = 54 (blue crosses), N = 34 (light blue
circles), N = 20 (yellow squares), N = 14 (black triangles),
and N = 8 (green diamonds). First and foremost, we note
that the main effect of different system size is the q grid,
while the functional form itself is remarkably well converged,
even for as few as N = 8 particles, cf. Fig. 8(b) showing a
magnified segment. This is similar to the analogous behavior of
the static structure factor S(q) of the warm dense UEG found in
Refs. [59,63]. Evidently, momentum shell effects as observed
atT = OinRefs. [41,44] do not appear above & = 0.5. Second,
we find that the static local field correction due to the STLS
closure relation leads to a significant improvement compared
to RPA due to the improved treatment of correlations.

We thus conclude that our QMC approach allows us, for
the first time, to unambiguously assess the accuracy of the
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FIG. 9. Wave-vector dependence of the static response function
for the unpolarized UEG at r, = 10 and 6 = 4. Shown are QMC
results according to Eq. (33) for N = 8 electrons obtained from PB-
PIMC with P = 4 (black squares) and standard PIMC with P = 100
(green crosses). As a reference, we also show the predictions from
RPA (gray) and STLS (red).

multitude of existing and widely used dielectric approxima-
tions and, in addition, to provide highly accurate data, which
can subsequently be used as input for other theories. However,
a comprehensive study over a broad parameter range is beyond
the scope of this work and will be provided in a future
publication.

D. Comparison of PB-PIMC to standard PIMC

As an additional benchmark for the static response obtained
with PB-PIMC, in Fig. 9 we show x(q) for the unpolarized
UEG with N =8, r, =10, and 0 = 4. Since for such a
temperature fermionic exchange plays only a minor role, in
addition to PB-PIMC (green crosses) also standard PIMC
(black squares) calculations are feasible. Evidently, both
independent data sets are in excellent agreement over the
entire q range, as expected. In addition, we again show
results from RPA (gray) and STLS (red) and find qualitatively
similar behavior to Fig. 8. However, due to the 4 times higher
temperature correlations play a less important role, which
means that (i) RPA and STLS exhibit less deviations towards
each other and (ii) the density response from STLS is in
much better agreement with the QMC data. For completeness,
we note that a more meaningful assessment of the systemic
error due to the STLS approximation requires to eliminate the
possibility of finite-size effects in the QMC data (as done in
Fig. 8 at lower temperature, & = 1) and, thus, to consider larger
particle numbers N.

E. Multiple q vectors from a single simulation

When we have to perform at least a single (or even
a few for different A) QMC simulation for each q value,
the investigation of the wave-vector dependence as depicted
in Fig. 8 is computationally quite involved. However, by
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FIG. 10. Density profile along x direction for N = 54, r, = 10,
and € = 1 with a perturbation amplitude of A = 0.005. The green
squares correspond to a QMC simulation with a superposition of two
q vectors (¢, = 1 and g, = 2), see Eq. (37), whereas the yellow and
red points have been obtained using two separate QMC simulations
each with a single perturbation. The black crosses correspond to a
superposition of the latter two. The blue lines have been reconstructed
from a fit to the green squares according to Eq. (38), i.e., by obtaining
both x(q;) and x(q) from the density response of the system with
two simultaneous perturbations.

definition in linear response theory the response of a system to
multiple perturbations is described by a superposition of the
responses to each perturbation. Therefore, it should be possible
to obtain the response function for multiple q values from a
single QMC simulation where we apply a superposition of N4
harmonic perturbations,

Na N
Ao =2 [Ak > cos(r; - qk)]. 37)
k=1 i=1

The induced density is then calculated for each wave vector
qr according to Eq. (32). Furthermore, the density profile in
coordinate space is given by

Na

(n(0)4 =no+2) [Ascos(r-qo)x(qo)l,  (38)
k=1

which means that we have to perform a fit where the free
parameters are given by the N, values of x(qy).

In Fig. 10, we show QMC results for the density profile
in the x direction for N = 54, r; = 10, and 8 = 1. The green
squares have been obtained from a simulation with a superpo-
sition of N4 = 2 perturbations with q; = 27 L~1(1,0,0)” and
q =27L7'(2,0,00" and A| = A, = 0.005, i.e., an amplitude
that is expected to be well within the linear response regime.
As a comparison, the yellow and red points correspond to the
QMC results with a single perturbation with g, = 1 (yellow)
and g, = 2 (red). Further, the black crosses have been obtained
as a superposition of the latter and are in perfect agreement
with the green squares. This is a strong indication that the
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FIG. 11. Induced density for N = 54, r;, = 10, and 6 = 1 for a
perturbation of wave vector q = 27 L~'(g,,0,0)”. The blue crosses
have been obtained from a QMC simulation with a single perturbation,
whereas the green squares and red circles correspond to the direct
and cosine-fit results from the simulation with a double perturbation.
Finally, the black lines has been obtained by a linear fit to the green
squares.

linear response is still valid for multiple perturbations under the
present conditions. In addition, we have fitted the right-hand
side of Eq. (38) to the green squares and in this way obtained
x (qz) for both q; values. This, in turn, allows us to reconstruct
the density response of the system to a perturbation with only
a single q; value, i.e., the blue curves. Again, we find excellent
agreement to the corresponding QMC simulations.

To further pursue this point, in Fig. 11 we show the induced
density matrix for different amplitudes A. The green squares
and red circles have been obtained from a simulation with
two qk vectors and correspond to the direct QMC estimate
and the cosine fit according to Eq. (38), respectively. The blue
crosses have been obtained from the QMC simulation with
only a single harmonic perturbation and the red line depicts a
linear fit. Evidently, all points are in excellent agreement for
all A values both for g, = 1 (panel a) and ¢, = 2 [Fig. 11(b)].
Therefore, we conclude that it is indeed possible to obtain
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FIG. 12. Perturbation strength dependence for a combination of
three wave vectors q; = 2w L™'(g,;,0,0) with g, =1, g.» = 2,
and g, 3 = 3. The black squares correspond to direct QMC results
according to Eq. (32), the green crosses to direct QMC results from
a simulation with a single perturbation, and the red line to a fit in the
linear response regime.

multiple values of the static density response function y(q)
simultaneously.

Finally, to investigate the perturbation strength dependence
for a QMC simulation with a superposition of multiple q vec-
tors in more detail, we consider a combination of N4 = 3 per-
turbations with q; = 27 L~'(1,0,0)7, q» = 27 L~1(0,2,0)7,
and q3 = 27 L7'(0,0,3)” and equal amplitude, A; = A, =
Az, over a broad A range. The results are shown in Fig. 12
where direct QMC results for the induced density matrix are
shown both from the simulation with the superposition (black
squares) and, as a reference, from a simulation with only
a single perturbation (green crosses). As usual, the red line
corresponds to a linear fit within the linear response regime.
For both g, =1 [Fig. 12(a)] and ¢, =2 [Fig. 12(b)] we
observe that the linear response is accurate up to larger A.
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This is expected, since the more perturbations we apply at the
same time, the more inhomogeneous the system becomes and,
thus, the stronger the total perturbation will be. Further, we
note that this effect is more pronounced for g, = 2. This is
again a consequence of the larger x(q) value which implies
that the density response is even larger in this case.

In a nutshell, we find that, while it is possible to obtain
multiple q values of the response function within a single QMC
simulation, this comes at the cost that the linear response is
valid only up to smaller perturbation amplitudes A. However,
the smaller A, the larger the relative statistical uncertainty
of the induced density, which means that there is a trade-
off between more Monte Carlo steps for a simulation with
multiple q vectors or multiple QMC simulations with only a
single perturbation and fewer MC steps. In practice, applying
a superposition of N4 & 3 perturbations is reasonable.

IV. SUMMARY AND DISCUSSION

In summary, we have carried out extensive permutation
blocking PIMC simulations of a harmonically perturbed
electron gas to investigate the static density response at warm
dense matter conditions. To investigate the dependence of the
response on the perturbation strength, we varied the amplitude
A over three orders of magnitude. For small A, linear response
theory is accurate and both ways to obtain the response
function x (q) [i.e., Egs. (33) and (34)] give equal results. With
increasing A, the system becomes strongly inhomogeneous,
which leads to a significantly increased sign problem due
to the regions with increased density. The second important
issue investigated in this work is the convergence of the
PB-PIMC results for x(q) with the number of propagators
P. For small to medium q, we find that P = 4 propagators
are sufficient at WDM conditions, which agrees with previous
findings for the uniform system [69,70]. However, for large
q, the external potential exhibits fast spatial variations, which
lead to increased commutator errors and thus require a larger
number of propagators to achieve the same level of accuracy.
For the largest considered wave vector, q = 27 L~'(5,0,0)7,
atd = 1,r, =10, and N = 54, we find a propagator error of
Ax/x ~ 2%. The main effect of system size on the QMC
results for the static response function is given by the different
q grid (which is a consequence of momentum quantization in a
finite box), whereas the functional form of x(q) is remarkably
well converged even for small particle numbers. This is in stark
contrast to previous findings at zero temperature [41,44] and
can be ascribed to the absence of momentum shell effects at
WDM conditions.

Our first brief comparison of the wave-vector dependence
of x(q) computed from QMC to the approximate results
from RPA and STLS for r;, =10 and 6 = 1 reveals the
stark breakdown of the former when coupling effects are
non-negligible. The LFC from the STLS closure relation,
on the other hand, constitutes a significant improvement,
although there remain significant deviations at intermediate
q values. Finally, we have investigated the possibility to
obtain the static response function at multiple wave vectors
from a single QMC simulation. As predicted by the linear
response theory, we found that the density response of the
electron gas to a superposition of N, external harmonic
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perturbations is given by a linear combination of the responses
to each of the perturbations. Unfortunately, however, this
means that the linear response is valid only up to smaller
perturbation amplitudes A as the system becomes increasingly
inhomogeneous for multiple N4. Thus, there is a trade-off
between N4 and A, and applying a superposition of Ny = 3
perturbations is a reasonable strategy.

As mentioned in the Introduction, accurate QMC results
for the static density response function—and, thus, for the
static local field correction—are of high importance for
contemporary warm dense matter research. Based on the
findings of this work, the construction of a comprehensive
set of QMC results for y(q) over the entire relevant ry range
and temperatures 6 > 0.5 appears to be within reach. First
and foremost, this will allow one to systematically benchmark
previous approximate results for the warm dense UEG, such
as STLS [86,87] (and “dynamic STLS” [89,90]), VS [87,91],
or the recent improved LFC by Tanaka [92] that is based on the
hypernetted chain equation, as well as semiempirical quantum

PHYSICAL REVIEW E 96, 023203 (2017)

classical mappings [93,94]. Furthermore, the construction of
an accurate parametrization of G(q;r,0) with respect to r;
and 6 at WDM conditions [95-97] is highly desirable due to
its utility for, e.g., new DFT exchange-correlations functionals
[22-24], the description of Thomson scattering experiments
[26,27], and the construction of pseudopotentials [37-39].
Finally, accurate QMC results for the (weakly and strongly)
inhomogeneous electron gas can be used as a highly needed
benchmark for different exchange-correlation functionals that
are used at WDM conditions [25,64,98-102].
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Precise knowledge of the static density response function (SDRF) of the uniform electron gas serves
as key input for numerous applications, most importantly for density functional theory beyond gener-
alized gradient approximations. Here we extend the configuration path integral Monte Carlo (CPIMC)
formalism that was previously applied to the spatially uniform electron gas to the case of an inhomo-
geneous electron gas by adding a spatially periodic external potential. This procedure has recently
been successfully used in permutation blocking path integral Monte Carlo simulations (PB-PIMC) of
the warm dense electron gas [T. Dornheim et al., Phys. Rev. E 96, 023203 (2017)], but this method is
restricted to low and moderate densities. Implementing this procedure into CPIMC allows us to obtain
highly accurate finite temperature results for the SDRF of the electron gas at high to moderate den-
sities closing the gap left open by the PB-PIMC data. In this paper, we demonstrate how the CPIMC
formalism can be efficiently extended to the spatially inhomogeneous electron gas and present the
first data points. Finally, we discuss finite size errors involved in the quantum Monte Carlo results for
the SDREF in detail and present a solution how to remove them that is based on a generalization of

ground state techniques. Published by AIP Publishing. https://doi.org/10.1063/1.4999907

l. INTRODUCTION

The uniform electron gas (UEG) is one of the most impor-
tant model systems of quantum physics and chemistry.!? It
is composed of electrons embedded in a uniform positive
background—to ensure charge neutrality. Thus, the UEG is
well suited for thorough studies of physical effects induced
by the long range Coulomb interaction of electrons in infi-
nite quantum systems, such as collective excitations>* or the
emergence of superconductivity.’ The equilibrium state of the
UEG is commonly determined by three parameters: (1) the
density (Brueckner) parameter r; = [3/(47n)]'/3/ag, with ap
being the Bohr radius and #n, the total density of spin-up and
spin-down electrons, n = n' + n!; (2) the degeneracy param-
eter 0 = kgT/Ep, with the Fermi energy6 Eg; and (3) the
spin-polarization, & = (n' — n')/n, where, in this work, we
focus on the most relevant case & = 0, i.e., the unpolarized
(paramagnetic) electron gas. Of particular current importance
is the so-called “warm dense matter” regime’ where the ther-
mal energy is of the order of the Fermi energy (6 ~ 1) while
the densities are of the order of those found in solids (ry ~ 1)
or higher. Prominent examples for such extreme conditions are
astrophysical applications,”!” dense quantum plasmas,'!~!3
inertial confinement fusion experiments,'*!7 or laser or ion
beam excited solids. '

The static density response function (SDRF), y (q), gov-
erns the density response to an external harmonic excitation
of low amplitude A and wave vector q, ¢q(r) = 2A cos(r - q),
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(A(r))a = (Ar))o = x(q) ¢q(r) .

The SDREF (or longitudinal polarization function'!) is closely
related to the static limit of the dielectric function and contains
a wealth of information on the correlations and collective prop-
erties. Therefore, the SDRF is a key property of any correlated
many-body system, for details, see Sec. IT A.

In particular, the SDRF of the UEG at warm dense matter
conditions constitutes a key ingredient for finite temperature
density functional theory”® (FTDFT) simulations within the
adiabatic-connection fluctuation-dissipation formulation, >’
the currently most promising way to improve DFT beyond
the wide-spread generalized gradient approximation®>>* and
thereby enhance its predictive capabilities. In addition, the
SDREF of the UEG can be used to directly compute the dynamic
structure factor within the Born-Mermin-approach,? 2% which
is nowadays routinely measured for systems at warm dense
matter conditions via X-ray Thomson scattering experiments.
Moreover, knowledge of the exact SDRF of the UEG is highly
useful for the computation of energy transfer rates,””-* electri-
cal conductivity,31 as well as for the construction of effective
potentials.3?-3>

In the ground state, ab initio results for the SDRF,3-40
including a subsequent parametrization over a wide range of
densities,*! have been obtained long ago via diffusion Monte
Carlo simulations of the UEG subject to a weak periodic pertur-
bation. However, even though the UEG effectively represents
a one-component system, its simulation at warm dense mat-
ter conditions is highly challenging due to the fermion sign
problem**** (FSP), which is particularly severe at finite tem-
perature (cf. Sec. II B for a detailed discussion of the FSP).

Published by AIP Publishing.
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Within the last years, significant progress in this field could be
achieved® via the introduction of two novel quantum Monte
Carlo (QMC) methods, which excel at complementary param-
eter regimes: permutation blocking path integral Monte Carlo
(PB-PIMC)’*? is most efficient at low densities and strong
coupling, whereas the configuration path integral Monte Carlo
(CPIMCOC) approach53‘56 has no FSP at high densities, i.e., at
weak coupling. Only recently, the PB-PIMC approach has been
used to compute the first ab initio results for the SDRF of the
strongly coupled UEG at finite temperature.>’” However, these
results are limited to density parameters of the order of ry = 1
and larger and cannot access the important regime of higher
densities.

Therefore, in this work, we turn to the complementary
CPIMC approach’? to compute the SDRF of the high den-
sity warm electron gas. This means, we extend the CPIMC
formalism from the homogeneous to the inhomogeneous elec-
tron gas such that it allows for the exact inclusion of a (in
principle arbitrarily strong) periodic external potential. This
allows us to obtain the first ab initio data for the SDRF in the
high-density regime (r; = 0.5; 1, 0.0625 < ® < 1) and opens
the way for systematic studies in the near future.

Moreover, since the simulations are restricted to finite
systems with a few tens of electrons in a finite simulation
volume V, we provide a detailed discussion of and a highly
efficient solution to the problem of finite size errors involved
in the SDRF. This is crucial because one is actually inter-
ested in the thermodynamic limit (TDL) properties, N — oo
at N/V = const. Finally, we compare our exact result
for the SDRF in the TDL with dielectric approaches such
as the random phase approximation and the self-consistent
scheme proposed by Singwi, Tosi, Land, and Sjolander
(STLS).>8?

This paper is structured as follows: in Sec. IT A, we briefly
discuss the model Hamiltonian of the inhomogeneous electron
gas and the basic linear response equations that are utilized for
the computation of the SDRF. Thereafter, Sec. II B continues
with a detailed introduction to the general quantum Monte
Carlo approach including the origin and consequences of the
FSP, followed by the generalization of the CPIMC formalism
to the inhomogeneous electron gas in Secs. II C and I D. We
proceed with a discussion of the CPIMC results for the SDRF
of the ideal and non-ideal electron gas in Secs. III A and III B.
In Sec. III C, finite size errors are investigated in detail, and
an effective solution is presented to obtain the exact SDRF in
the TDL from CPIMC simulations.

Il. THEORETICAL BASIS OF THE CPIMC APPROACH
TO THE INHOMOGENEOUS ELECTRON GAS

A. Linear response theory of the uniform electron gas

The model system of the unperturbed UEG consists of N
electrons in a finite volume V = L? subject to periodic bound-
ary conditions, where a positive homogeneous background is
assumed to ensure charge neutrality. The Hamiltonian of this
system in Hartree atomic units reads

1 N 1 N N N
2 = -3 2 - . . —
Hy = 2;V,-+2ZZ\PE(r,,rJ)+2§M, (1)

i=1 j#i
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with Wg(r,s) being the Ewald pair potential and &y the
Madelung constant, see, e.g., Ref. 60. For the purpose of
computing the SDRF of the UEG, we apply a weak periodic
external potential of the form3%—°

N
Hexi(A) = )" 2A cos (& - @), @)
i=1

withq = 2T”m, m € Z? so that the (total) perturbed Hamiltonian
is given by
Hp = Ho + Hexi(A). 3)

In the linear response regime, i.e., for sufficiently small ampli-
tudes A, the induced density modulation is entirely determined
by the SDRF? y,

(Ar)a = ((r))o = x(q) 2A cos(r - q), “

where (7i(r))g = ng = % is the electron density of the unper-
turbed UEG. Hence, one may obtain y(q) by computing the
expectation value of the density operator 7i(r) = Zfi L O(r—1)
in the perturbed system and then fit the RHS of Eq. (4) to the
LHS (see, e.g., Ref. 57). However, it turns out to be more con-
venient to compute y directly from the Fourier transform of
the density operator pq = %Zfi | €' via the well-known
relation?3

1
x(q) = Z<ﬁq>A- )

In practice, we carry out several simulations for different
amplitudes A of the external field and then perform a lin-
ear fit to (pq)a in dependence of A where the resulting slope

is y.

B. Path integral Monte Carlo and the fermion
sign problem

Throughout this work, we are interested in the compu-
tation of thermodynamic expectation values in the canoni-
cal ensemble, i.e., at fixed electron number N, volume V,
and temperature 7. For this task, path integral Monte Carlo
(PIMC) methods have proven to be a very powerful tool.
The general idea of all existing PIMC approaches is to
find a suitable expansion of the partition function of the
form

Z=Tre P = 3 W(0), ©)
C

where 8= 1/kpgT and C denotes some high-dimensional multi-
variable with an associated weight W(C) € R that is readily
evaluated. In the context of QMC, we commonly refer to C as
being a configuration. Given some concrete expansion of Z,
thermodynamic expectation values of an arbitrary observable
O are written as

A 1
O == ZC: 0(CYW(C), (N

with O(C) being the so-called estimator. If the weight func-
tion is strictly positive for all configurations, W(C) > 0V C,
such expressions can be efficiently computed via the Metropo-
lis algorithm.®! The strength of this algorithm is that it allows
us to randomly sample configurations {Cy, C1, ..., Cy.} with
the correct probability P(C) = %W(C) without knowing the
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normalization constant Z. Starting from some initial configu-
ration Cy this is achieved by proposing a transition from C;
to some randomly chosen C’ and accepting this change, i.e.,
setting C;;; = C’, with the probability

w(C) }

9 8
W(C) ()
Having properly sampled the configurations in the described
way, an asymptotically exact estimator of the expectation value
Eq. (7) is immediately given by the average

A(C—-C)H= min{l

R 1
(0)y = lim N—ZO(C,-). )

In practice, we are of course restricted to a finite number of
sampled configurations C; so that the results are generally
afflicted with a statistical uncertainty that can, in principle, be
made arbitrarily small by increasing the computation time [see
Eq. (14)]. Therefore, one may refer to Monte Carlo methods
as being “quasi-exact.”

However, to this day, there exists no exact expansion of
the form Eq. (6) for generic fermionic quantum systems with a
strictly positive weight function, and hence, it cannot be inter-
preted as a probability. To nevertheless utilize the Metropolis
algorithm, one can circumvent this issue by defining a modified
(artificial) partition function

7' = W)l (10)

C

and rewrite the expectation values as

(Os)’
0) = s 11
0y =5 (11
where s = sign(W) so that
1 . Z
= ;mgn(vvnwwn == (12)

is simply the average sign of all sampled configurations in the
modified configuration space. It is easy to see that the relative
statistical uncertainty of expectation values computed in this
way is inversely proportional to the average sign. Further, with
Z = e BN | where f is the free energy per particle, it is

(s) = e PN (13)

Consequently, the relative statistical error of observables
grows exponentially with the particle number N and the
inverse temperature 3, while it can only be reduced with the
square root of the number of generated samples N¢ (see, e.g.,
Ref. 43),
A0 1 pvgry (14)
0y  +Nc
This is the manifestation of the well-known fermion sign prob-
lem, which causes the simulation of fermions to be a highly
demanding task even in thermodynamic equilibrium. More-
over, the sign problem may even be NP-hard.** However, this
has only been shown for a small subclass of Hamiltonians not
subject to this paper.
In the standard PIMC approach,®’ the utilized expansion
of the partition function is obtained by evaluating the trace in
Eq. (6) in coordinate representation, leading to configurations

J. Chem. Phys. 147, 164108 (2017)

C that can be interpreted as paths or trajectories of all N parti-
cles in imaginary time. In this formulation, the required anti-
symmetrization of the density operator to correctly account
for the Fermi statistics is the source of the sign changes in the
weight function, and hence, of the FSP itself. Fortunately, the
permutation blocking PIMC (PB-PIMC) method,**? devel-
oped by one of us, significantly reduces the FSP through a
sophisticated rewriting of the partition function whereby paths
with a different sign are combined into a single configuration.
However, due to the formulation in coordinate representa-
tion, the PB-PIMC approach excels at strong coupling but
still suffers from an increasing FSP towards lower tempera-
ture, preventing simulations of the UEG below half the Fermi
temperature.

An alternative strategy, which is pursued in this paper, is
given by the configuration path integral Monte Carlo (CPIMC)
approach.’*% In contrast to standard PIMC, this method is
formulated in Fock-space, which leads to a FSP that is comple-
mentary to that of PB-PIMC: there is no sign problem at all for
the ideal fermi gas but the FSP increases with coupling. For this
reason, CPIMC has been highly valuable regarding the simula-
tion of the (unperturbed) UEG at densities r; < 1, practically
across the entire relevant temperature range.” In Sec. II C,
the CPIMC formalism will be generalized to the perturbed
(inhomogeneous) electron gas described by the Hamiltonian

Eq. (3).

C. CPIMC approach to the inhomogeneous
electron gas

For the CPIMC formulation of the electron gas, we switch
to second quantization with respect to plane wave spin orbitals
({ro |k;o;) = #e’ki'ré(,,o—i with k = ZT”m, m € 73, and
o; € {1,l}. The N-particle states are then given by Slater

determinants in Fock space
l{n}) = In1,na,..), (15)

with the fermionic occupation number n; € {0, 1} of the ith
plane wave spin-orbital naturally satisfying > ; n; = N. In this
representation, the Hamiltonian is expressed in terms of the
creation (&j) and annihilation (&;) operators, which, when act-
ing on the states [Eq. (15)], create or annihilate a particle in
the spin-orbital i. These operators satisfy the usual fermionic
anti-commutation relations, thereby automatically incorporat-
ing the correct Fermi statistics. The UEG Hamiltonian Eq. (1)
takes the explicit form?
Hy = %Zk?&jai + Z Wi @) i +N%M, (16)
i i<jk<l
itk j#l
with the antisymmetrized two-electron integrals Wiy = Wik
— wjjik, Where

4re?
wijkl = m6k;+kj,kk+k/60';,0'k50'j,0'[- (17)
Likewise, for the external potential Eq. (2), we have
Ao = ) ayalay, (18)
i#]

with the corresponding one-electron integrals

ajj = Aé‘o’,‘(rj(é‘k]‘—k,‘,q + 5kj—k,',—q)‘ (19)



164108-4 Groth, Dornheim, and Bonitz

The main idea of CPIMC is to split the total Hamiltonian
into an off-diagonal (¥) and dlagonal part (D) with respect
to the Fock states, Eq. (15), so that HA Ho + Hext D+7.
The matrix elements of these operators are readily computed
according to the well-known Slater-Condon rules™?

{(n} 2 Z kzl’ll + = ) Z wlklk”l”k’ (20)

I<k
v aij(_l)“(nlm’
{n}.{n}) = - A
wpqrs(— 1 )Q(”)vﬁqﬂl(n),rs s

with the fermionic phase factor

max(p,q)—1
Tnpg = Y, M 1)
[=min(p,q)+1

The notation {n}Z describes an excitation from an occupied
orbital g to a free orbital p in the state |{n}). Hence, we observe
that there are only two possibilities for non-vanishing off-
diagonal elements: the states |{n}) and |{71}) can differ in either
exactly two (pq) or four orbitals (pgrs). This is a direct conse-
quence of the fact that the Hamiltonian only contains strings
of two or four creation and annihilation operators. For com-
pleteness, we mention that for the general case of an arbitrary
system Hamiltonian, there is an additional contribution to the
off-diagonal elements where {n} = {n }S s

Y, ) wawlwm (22)
zip q

For the electron gas, this contribution vanishes since here the
two-particle integrals with only two equal indices are always
zero due to the Kronecker delta in Eq. (17), which ensures that
the total momentum of the two particles before and after the
excitation is conserved.

After having split the Hamiltonian into its diagonal
and off-diagonal part, we switch to the interaction picture
in imaginary time with respect to D and make use of the
identity,

¢ PH — o PBDF o~ i Fyr

. S 4 23
Y(1r) = e™PYe ™D, 23)

with 7 being the time-ordering operator. Plugging this iden-
tity into Eq. (6) and computing the trace using the Slater
determinants, Eq. (15), finally yields>

B B
Z = ZZ Z /dTl/de.../dTK
KO {n} s1...5k-1 7 .

K-1

- Z D, (i), (Ti+1—=Ti) K
x (=DKe = " X l_[ Y00}, -0y (8i)- 24)

i=1
Here, we have introduced the multi-index s; which defines the
two or four orbitals in which the states [{n®}) and |{n~D})
differ, i.e., s; = (pq) or s; = (pgrs). Further, all non-vanishing
contributions in Eq. (24) obey the condition {n} = {n®}
={n®)}. This way we have transformed the partition function,
Eq. (6), into an exact infinite perturbation expansion with

respect to the off-diagonal part of the Hamiltonian.

J. Chem. Phys. 147, 164108 (2017)

Comparing Eq. (24) with Eq. (6), we straightforwardly
identify the multi-variable C of each configuration contribut-
ing to the partition function,

C=(K,{n},s1,....5k-1,T15...,TK) (25)

with the corresponding weight function

K
nli (Tir1=7i)
W(e) = (DK e Ty ens) . (26)

i=1

Each configuration C can be visualized as a S—periodic
“path in imaginary time.” But in contrast to standard PIMC
which is formulated in coordinate space, here the path pro-
ceeds in Fock space and can be understood as follows: starting
from an initial set of occupation numbers {n} at 7o = 0, one
subsequently applies one- or two-particle excitations at times
7;, where the involved orbitals are defined by the multi-index
s;. An example of a typical path for a system of N = 3 particles
is shown in Fig. 1.

According to the number of involved orbitals, we refer
to one- and two-particle excitations as “kinks” of type 2 and
4, respectively. Hence, in CPIMC, one randomly samples all
possible closed paths with their associated weight, i.e., the
modulus of Eq. (26), and computes observables via Eq. (11).
This is achieved by a highly complex set of Monte Carlo steps
in which one proposes to add, remove, and change a single
kink or pairs of kinks and accept or reject those changes with
the Metropolis acceptance probability Eq. (8). Starting from
an initial path without kinks, one can propose three changes:
(1) one can simply excite a whole occupied orbital (from
7 =0to 7 = ), which is illustrated in Fig. 2. (2) One can pro-
pose to add a pair of type 2 kinks or (3) a pair of type 4 kinks
via a one- or two-particle excitation (see Fig. 3). Adding a sin-
gle kink is not possible since this would violate the condition
of B-periodicity, {n @} = {n)}.

Once one has successfully added a pair of kinks, one can
also add a single kink by changing another. A careful analysis
reveals that there are in total 14 elementary diagrams for adding

S1 = (3,57 1,4) S5 = (15)

orbital 7
=N W Ut

0 TIT2 | T3, . T4 5B
maginary time 7

FIG. 1. Typical “path” in a CPIMC simulation of N = 3 particles: the start-
ing Slater determinant at time 7( = 0 with the set of occupation numbers

{n} = {110010. . .} undergoes five different one- or two-particle excitations
of type s; attimes 7;,i = 1...5.
| | | |
] [EEEEEEEEEEEREE | J —
- | | |
7 . @ q oy s
| |

FIG. 2. Diagram for exciting a whole occupied orbital i (from 7 = 0 to
7 = f3) to an unoccupied orbital j.
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FIG. 3. Diagrams for adding a pair of type 2 (top) or type 4 kinks (bottom)
via a one- or two-particle excitation, respectively.

a single kink via a one- or two-particle excitation, which are all
depicted in Fig. 13 in the Appendix. Naturally, to maximize
the efficiency of the CPIMC simulation, one only proposes
to add such kinks that are associated with a non-vanishing
off-diagonal matrix element, Eq. (20), i.e., which have a non-
vanishing one- or two-electron integral. For example, when
randomly choosing the two orbitals ¢ and p for a one-particle
excitation, one ensures that [k, — k| =Iql with q being the wave
vector of the periodic external potential, Eq. (18). Likewise,
whenever proposing to add a type 4 kink one makes sure that
momentum conservation is fulfilled.

Finally, we point out that the major difference between the
previous CPIMC formulation for the (unperturbed) UEG* and
the present extension to the inhomogeneous electron gas lies
in the occurrence of type 2 kinks (one-particle excitations),
which are solely induced by the one-particle matrix elements
a;j of the external potential in Eq. (20). In the case of the UEG,
a;; =0, and hence, there are only momentum conserving type 4
kinks. This causes a large simplification of the algorithm since
the 14 elementary diagrams of adding a single kink (see Fig.
13) reduce to only three, i.e., those containing solely type 4
kinks.

D. CPIMC estimator for the static response function

To compute the SDRF with CPIMC via Eq. (5), we need
to derive an estimator for the Fourier transform of the density
operator, pq, in correspondence to the CPIMC expansion of the
partition function Eq. (24), i.e., we have to write its expectation
value in the form of Eq. (7). Taking into account that (p_q)
= (pq), its second quantization representation is given by

N i
(Pa) = 577 D, OOk + Ohmkma)@f ). 27)
i#]

and we immediately see that it can be computed directly from
the off-diagonal elements of the one-particle density matrix
(&;&q). An estimator for these elements is readily obtained by
using the relation
A 1 At —BH 11 0z

(a;aq) = ZTr {a;aqe ﬁH} =279 (28)
and carrying out the derivative with the CPIMC expansion of
the partition function, Eq. (24). This yields

1 1S 1
ata,) = = -—— ) —6,, W(O), 29
( paq> 7 ;( B L ay ‘:,(Pq)) (&) (29)

1
where the abbreviation

Zzziz Z /Oﬁdn/ﬂdrz.../ﬁ dix  (30)

C . {n} S1-..5k-1
K#1
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has been used. By inserting Eqgs. (29) and (19) into (27), the
estimator reduces to

o1 1 51
ba) =7 ; (_ﬂ 21 25) W), (31

where d;, s, ensures that only those kinks contribute which
are of type 2. Simply speaking, we just have to average over
the number of type 2 kinks in all sampled paths and divide by
-2V BA.

lll. CPIMC SIMULATION RESULTS
A. Ideal electron gas

Besides being highly valuable for the finite size correction
of the SDRF discussed in Sec. III C, the ideal Fermi sys-
tem constitutes the natural first test case for CPIMC due to
its formulation as an exact perturbation expansion in second
quantization. Itis realized by setting all two-particle matrix ele-
ments Eq. (17) to zero. In the case of the (unperturbed) UEG
there are, consequently, no kinks at all so that the weight func-
tion [Eq. (26)] is always positive, meaning that the average sign
is always one. However, in simulations of the perturbed ideal
electron gas, the sampled paths contain type 2 kinks induced
by the external field, where each of them may cause up to
two sign changes in the weight function Eq. (26) through:
(1) the factor (=1)¥ and (2) the phase factor Eq. (21) occur-
ring in its matrix element Eq. (20). Yet, the average sign still
remains unity. This is because in the absence of type 4 kinks,
type 2 kinks can only be added and removed in symmetric
pairs as shown in Fig. 3—this is a simple consequence of the
fact that all type 2 kinks s = (pq) must fulfill |k, — k,I = Iql.
The induced sign changes of such pairs exactly compensate
each other so that the strict positive definiteness of the weight
function remains preserved, and hence, the FSP remains
absent, in striking contrast to standard PIMC in coordinate
space.

As a first demonstration, we perform CPIMC simulations
of the unpolarized ideal electron gas at r¢ = 1 with N = 4
particles for different amplitudes A of the external field with
a wave vector q = 2T”(I,O, 0)T. Figure 4 shows the results
for the induced density (pq) (top) and the average number of
type 2 kinks (bottom) in dependence of the amplitude for two
different temperatures 6 = 0.0625 (left) and 6 = 1 (right). As
a cross-check, the dotted black line has been computed from
the unperturbed ideal UEG according to Eq. (40) as discussed
in Sec. III C. In the linear response regime, both results must
coincide, which is observed forA < 0.2 at 8 =0.0625, while at
6 = 1 the linear response regime remains valid for much larger
amplitudes, i.e., up to A ~ 0.5. This behaviour is also reflected
in the average number of type 2 kinks for the same amplitude
which is reduced by about two orders of magnitude at 6 = 1
compared to # = 0.0625. Interestingly, in both cases, the linear
regime is reached where (Kt7) < 1. In addition, since the next
order beyond the linear regime is given by the cubic response
function’” x®, we also perform a cubic fit (blue line) of the
form

(Pa) = x(@A+ xD(@A° (32)
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to the CPIMC data up to A = 0.25, for 8 =0.0625 and A = 0.5,
for 6 = 1, respectively. Clearly, also the cubic regime remains
valid for much larger amplitudes at higher temperatures.

B. Interacting electron gas

Next, we perform the same CPIMC simulations for the
interacting system (identical system parameters) as for the
ideal case discussed in Sec. III A. The results are shown in
Fig. 5 where a linear fit (dotted black) and a cubic fit (solid
blue) to the CPIMC data are depicted. For these parameters, we
observe that the range of amplitudes for which the linear and
cubic response regimes are valid is similar to that found for the
ideal system. This is because the response of N = 4 particles
at rg = 1 is comparable to that of the ideal system (grey line).
In addition, in the bottom panels, the average number of type
4 kinks (green curve) is depicted, which are induced solely
by the Coulomb interaction and which cause the average sign
(orange curve) to deviate from one. In the linear regime, the
dependence of the number of type 4 kinks on the amplitude is
negligible.

However, for larger values of A not only the average num-
ber of type 2 kinks becomes very large but also the number
of type 4 kinks increases significantly. The main reason for
this behavior is the substantial increase of the configuration
space with increasing amplitude. In particular, at 8 = 0.0625
(left graphic) the average sign drops below 1073 at A > 1 and,

according to Eq. (14), the statistical error of the corresponding
CPIMC results is clearly enhanced. As a further cross-check
of the correctness of the presented algorithm, at 8 = 1 we also
compare with the PB-PIMC method (green diamonds), which
are in perfect agreement with CPIMC, as expected.

In Fig. 6, a similar investigation is carried out for a larger
system containing N = 14 electrons at r¢ = 0.5 and 6 = 0.5.
For these system parameters, the average sign (orange curve in
the bottom panel) does not drop below 0.1, even up to values
of the amplitude A ~ 1.5. Thus, very precise CPIMC results
for the induced density can be obtained. In comparison to the
smaller system of N =4 electrons in Fig. 5, the linear response
regime is valid up to about twice as large amplitudes so that
the SDRF y, given by the slope of the linear fit (dotted black
line), can be obtained with a relative accuracy of up to 0.02%.
Further, we observe that the average number of type 2 kinks
(K12) (red curve in the bottom panel) is significantly larger
than one for amplitudes A > 1.5, and still, the deviation from
the LR behaviour is only minor. Recalling that, for the smaller
N =4 system in Fig. 5, the LR regime is valid for (Kt;) < 1,
we conclude that the average number of type 2 kinks alone is
not a reliable indicator for the validity of the linear response
regime.

When further increasing the system size to N = 20, while
keeping the density and degeneracy parameters unchanged
at r¢ = 0.5 and 6 = 0.5, the CPIMC simulations become
significantly more demanding. This is demonstrated in Fig. 7,

Linear fit
—— Cubic fit
—— Ideal LR
X crPiMC

PB-PIMC

A FIG. 5. Top panels: Dependence of the induced density
(Og) for q = 27”( 1,0,0)T on the amplitude of the exter-
A nal field. Shown are CPIMC results (red crosses) for the
interacting electron gas with N = 4 electrons at r; = 1 for
. two different temperatures: (a) 6 = 0.0625 and (b) 6 = 1.
The blue (black dotted) curve represents a cubic (linear)
B fit [cf. Eq. (32)] to the CPIMC data. The grey solid line
shows the ideal LR behavior computed from Eq. (40).

For comparison, at & = 1, we also plot the PB-PIMC

results (green diamonds). Bottom panels: Dependence of
the average number of type 2 kinks (red), type 4 kinks
(green), and the average sign (orange) on the amplitude
of the external field.
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FIG. 6. Top panel: Dependence of the induced density (pq) for q
= 2T”(I,O, O)T on the amplitude of the external field. Shown are CPIMC
results (red crosses) for N = 14 electrons at ry = 0.5 and 6 = 0.5. The dotted
black line corresponds to a linear fit. For comparison, we also plot the ideal LR
behaviour (grey solid line). Bottom panel: Dependence of the average number
of type 2 kinks (red), type 4 kinks (green), and the average sign (orange) on
the amplitude of the external field.

where we artificially restricted the simulation to those con-
figurations containing a maximum of 40 (blue), 60 (red), or
arbitrarily many (green) kinks. More precisely, once a path
with K = Kpax kinks is realized, we do not propose to add
any further kinks. First, for the result obtained without any
restrictions (green), we see that these data are afflicted with a
clearly visible statistical noise, which is due to an average sign
(bottom panel, dashed-dotted) that is smaller than 0.1 even in
the homogeneous case (A = 0). Naturally, the resulting value
for the SDRF from a linear fit to these data (not depicted)
would only be of very poor quality. However, by restricting
the total maximum number of kinks (blue and red curves),
the average number of kinks (bottom panel, solid and dotted
lines) is reduced by an order of magnitude, whereby the aver-
age sign is increased by an order of magnitude (dashed-dotted
lines).

Normally, one would expect this procedure to bias the
result for the density response since by imposing these restric-
tions, one only samples paths from a small region of the total
configuration space. Instead, one observes that, within statis-
tical error bars, all three simulations are in perfect agreement,
both for large and small amplitudes A (see inset in the upper
panel). This very favourable behaviour is explained by a com-
plete cancellation of all contributions from paths with anumber
of kinks larger than the maximum. In other words, due to
the sign changes in the weight function Eq. (26), the expan-
sion of the physical partition function Eq. (24) converges for
much smaller values of K than the simulated primed partition
function Eq. (10).

A similar observation has already been reported for the
total energy of the homogeneous (unperturbed) electron gas in
Ref. 56. There, a systematic extrapolation over the maximum
number of kinks (to the exact result) was conveniently realized
by the use of an auxiliary kink potential,
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FIG.7. Top panel: Dependence of the induced density (oq) for q
= ZT”(I,O, O)T on the amplitude of the external field. Shown are CPIMC
results for N = 20 electrons at ¢ = 0.5 and 6 = 0.5, where the maximum
total number of kinks in the sampled paths has been restricted to Kmax = 40
(blue), Kmax = 60 (red), and Kmax = o0, i.e., no restriction (green). The solid
blue line corresponds to a linear fit to the data for Kpax = 40. The black
dotted line shows the ideal LR behaviour. Bottom panel: Dependence of the
average number of type 2 kinks (solid lines), type 4 kinks (dotted lines), and
the average sign (dashed-dotted lines) on the amplitude of the external field.
The colors correspond to the restrictions on the maximum number of kinks as
labeled in the top panel.

1

VelK) = ks 1 1

(33)
that depends on the number of kinks K of a configuration and
the maximum number k. The procedure works as follows: the
weight function W(C), Eq. (26), is replaced by

Wi(C) = W(C) - Vi(K), (34)

and one performs simulations for fixed values of «. Since it is
limy o Vi (K) = 1, the exact partition function (and hence the
exact result) is recovered by an extrapolation to k — co. This
is demonstrated in Fig. 8, where we have increased the system
size to N = 38 electrons (again at § = 0.5 and r, = 0.5). First,
we focus on the blue data points, which have been obtained
from a complete CPIMC simulation with a fixed value of the
parameter « in the artificially modified weight function W, (C).
Here, the kink potential acts as a smooth but exponentially
increasing penalty for all paths that contain a total number
of kinks larger than «. As expected, the results for the SDRF
[Fig. 8(a)] converge for sufficiently large «, in this case at about
k 2 10. And since the average number of kinks [panels (b) and
(d)] and, consequently, the average sign [panel (c)] are clearly
not converged for « ~ 10, we can indeed conclude that all
contributions from paths containing more than some critical
number of kinks seem to completely cancel.



164108-8 Groth, Dornheim, and Bonitz J. Chem. Phys. 147, 164108 (2017)
—0.12 T T T T T T T T T T T

o4l 0226 F ‘ VAR ] 262.05 ‘ " FIG. 8. Kink potential extrapolation of (a) the SDRF and

—0.228 / - 263.0 - 262 A i (e) the total energy to the exact limit, k — co. Shown are

—016 - _0.230 - v B b 261.95F ;,f,,,_ the results from CPIMC simulations of the inhomoge-

= —0.18 | —0.232 i B - neous electron gas containing N = 38 electrons at 6 = 0.5

020 (a) 0 2‘05 0.1 015 il = 2%62.5 | and rg = 0.5. The amplitude of the external field has been

o2l *,-x-' set to A = 0.2 with a wave-vector q = ZT"(L 1, l)T. Each

S e e — data point has been obtained from a complete simulation

*0'2§ r : 1 1 1 — ) with a fixed value for the parameter « in the kink potential

? ir % oo v (] 2(’2;0 ] Eq. (33). Red points: the kink potential is applied solely

S L (b) ‘ —— Extrapolafed | 208 to the type 4 kinks (no restriction on the number of type 2

04 (C) i i i ! I ] Q 20? 7 kinks) in the sampled paths. Blue crosses: the kink poten-

@ 33r /.“/./a—/“”"“ ] 266 7 tial has been applied to the total number of type 2 and 4

o . . . . L 265 kinks. Green line: linear fit to the last red data points.

—~ o010k ‘ ‘ ‘ ‘ T —4 4 In addition, for both potentials, the dependence on the

S 0.06 L ( dW i =~ s 4 parameter « is plotted for the average number of type 4

T ook L L ey X 6 kinks (b), average sign (c), type 2 kinks (d), diagonal (f),

7700 0.1 0.2 0.3 0.4 0.5

We again stress that the difference between CPIMC sim-
ulations of the homogeneous and perturbed electron gas lies
in the existence of type 2 kinks in the latter. In particular, the
SDREF is solely computed from the type 2 kinks [cf. its estima-
tor, Eq. (31)]. In the LR regime, the average number of type
2 kinks, (Kt7), is significantly smaller than (Kt4) meaning
that its practical influence on the sign is negligible. Therefore,
it is reasonable to apply the kink potential only to the type
4 kinks and impose no restriction on the number of type 2
kinks. Recalling that the type 4 kinks are solely due to the
Coulomb correlations, this procedure is equivalent to extrap-
olating the true static response with respect to the correlations
in the system—this procedure converges to the exact result
with increasing «. The result is shown by the red dots in Fig.
8. Evidently, the convergence with « is greatly accelerated.
Even at « = 2, the result for the response function has only a
small bias of a few percent. In contrast, when also restricting
the type 2 kinks (blue crosses), the result is off by roughly a
factor 2.

We now analyze the total energy of the inhomogeneous
electron gas. Here the convergence behaviour with respect to
the kink parameter « is different [see Fig. 8(e)]. Here, imposing
no restrictions on the type 2 kinks (red points) seemingly slows
down the convergence with «. This is due to a coincidental
error cancellation of the diagonal [panel (f)] and off-diagonal
contributions [panel (g)] to the total energy, E = D + Y. Both
contributions, at fixed «, are closer to the exact result when
leaving the number of type 2 kinks unrestricted. Moreover,
even in the case where one is particularly interested in the total
energy, the potential V* (red dots) should still be used since
only this potential ensures a monotonic convergence of the
energy with . Naturally, a monotonic convergence is preferred
when performing a reliable extrapolation to k — co.

From the investigations in this section we conclude that
the general concept of an auxiliary kink potential to enhance
the performance of CPIMC simulations that has been previ-
ously introduced for the unperturbed UEG>-° can be used in
a similar way for the inhomogeneous electron gas. At fixed
temperature and density, this allows us to obtain the SDRF for
twice as large systems. This is an impressive efficiency gain
when considering that the FSP increases exponentially with
the system size, cf. Eq. (14). For the presented example with

and off-diagonal contribution to the energy (g).

6 = 0.5 and r; = 0.5, CPIMC simulations without the kink
potential are feasible for up to N ~ 20 electrons whereas, with
the kink potential, simulations of N = 38 particles pose no
problem. On the other hand, for fixed temperature and elec-
tron number, the use of the kink potential roughly doubles the
accessible rg-range, which corresponds to a factor 8 in the den-
sity. Most importantly, it turns out that, in the LR regime, the
number of type 2 kinks is small compared to the number of
type 4 kinks so that their practical influence on the average
sign is negligible. For this reason, the accessible parameter
range regarding the particle number, temperature, and density
for which the SDRF can be computed by means of CPIMC
simulations of the inhomogeneous electron gas is almost iden-
tical to the range of applicability of CPIMC to the unperturbed
spatially homogeneous electron gas.

C. Finite size correction of the static density
response function

1. Theory

In this section, the issue of finite size errors in the compu-
tation of the SDRF y and ways to correct them are discussed
in detail. These errors are a direct consequence of the fact that
Monte Carlo simulations can only be performed for a finite
particle number N in a finite simulation box with volume V.
This often causes the resulting functional form of yy(q) to
differ significantly from its thermodynamic limit

x(@=lim  yy(q). (35)
N—o00
N /V=const.

In particular, when simulating fermionic systems with Monte
Carlo methods, one is usually limited to rather small systems,
due to the FSP, so that finite size errors are not negligible.
In addition, q-dependent quantities can only be computed for
q-vectors that satisfy the natural condition of momentum quan-
tization in the simulation box, q = ZT”m with m € Z3. Thus,
standard techniques to reduce finite size errors, e.g., those for
the total energy,*> which are all based on an extrapolation of
the finite— NV results to N — oo (at constant density) cannot be

used for the correction of y.
In the ground state, the most sophisticated approach to
tackle finite size errors is based on the assumption that the so-
called static local field correction (LFC) G(q) is only weakly
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dependent on the system size.’” The LFC is commonly defined
by the equation%%%4

x°(q)
1= v,[1 = G(@Ix°(q)’

where x* denotes the ideal response function and Vg = 4nlq®.
The random phase approximation (RPA) yRPA is obtained by
setting G = 0 in Eq. (36). Hence, the LFC contains all infor-
mation beyond the RPA and should thus be dominated by
short-range correlations, which are expected to be captured
sufficiently well in a finite simulation cell. Naturally, instead
of computing the LFC from the ideal response function in the
TDL, x%(q)?, i.e., via

x(q) = (36)

1 1 1
Gy = — [—— - ——
v = (mq) @

it is important to obtain it consistently from the corresponding
finite-N ideal response function /\{%(q),

1 1
-— |+ 1L 38
xn(q) X?V(q)) * %)

Assuming that the finite size errors in this consistent LFC
are negligible, i.e., Ggsc(q) =~ G(q), the finite size corrected
response function is given by

) +1, (37)

1
Gy (@) = —(
Uq

X(@)
L __1L ].0
L+ [XN(q) X,?,(q)] X°(@)
Therefore, in addition to the response function of the inter-
acting finite-N system, yn(q), we also need precise data for
the corresponding ideal response function X%(q). In princi-
ple, these can be obtained from a complete CPIMC simulation
of the ideal perturbed electron gas for each q-vector and par-
ticle number N, as was demonstrated in Sec. III A. A more
convenient way to achieve this is given by making use of the

spectral representation of the ideal response function, which,
in the case of the UEG, takes the form?

1 ne(p+q) — ns(p)
0 o

Q== ,
Xnvd V; pra — €

X5 = (39)

(40)

where €, = p*12, and n,(p) = (fip,o-) is the momentum dis-
tribution of the unperturbed ideal UEG, which converges to
the Fermi distribution, in the TDL, and constitutes a natu-
ral observable that is straightforwardly computed observable
within the CPIMC formalism. Thus, Eq. (40) in principle
enables us to gain access to all g-vectors of the ideal response
function from a single CPIMC simulation of the unperturbed
UEG.

However, the concrete evaluation of Eq. (40) has to be
done carefully because there are terms in which both the
numerator and denominator vanish, i.e., where |p + q| = |p|. In
the ground state, it is correct to simply set those terms to zero
and to rewrite

1 no’(p + q) - no‘(p)
0
N 4 pza' €ptq ~ €p

[p+ql#Ipl

(41)

However, at finite temperature® this leads to completely

wrong results, which is illustrated in Fig. 9, where the ideal
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FIG. 9. Comparison of different ways to compute the ideal response function
for the UEG with N = 4 electrons at § = 1 and rg = 1. The orange squares
correspond to the evaluation of Eq. (41). The blue diamonds show the result
from Eq. (44) for a small twist-angle t = 0.01 - (1/e, /7, l/\/@)T. The red
dots correspond to Eq. (46). For comparison, the result obtained from CPIMC
simulations of the perturbed ideal electron gas, as discussed in Sec. IIT A, is
depicted by the green crosses. The bottom panel shows the relative deviation
to these exact data. The black solid line corresponds to the ideal response
function in the TDL.

response function of N =4 electrons at@ =1 and r;=11is shown.
The green crosses correspond to the exact result obtained from
simulations of the perturbed ideal electron gas as discussed in
Sec. IIT A. The orange squares, which correspond to the evalu-
ation of Eq. (41), exhibit a large bias for every second q-vector,
while every other is in perfect agreement with the result from
the unperturbed system (see deviation in the bottom panel of
Fig. 9). This is due to the fact that the condition |p + q| = |p|
can only be fulfilled if 3> = g>L?/(27)? is an even number (in
what follows the tilde denotes dimensionless g-vectors with
the components §; € Z). The proof is obvious when rewriting
said condition as

PP =p+3 +2p§ (42)
& 3 =-2pq . (43)

Since the factor 2 ensures that the RHS is always an even
number, the equality can only be fulfilled if ° is also even.
Thus, there are no critical (diverging) terms in the evaluation
of Eq. (40) for odd §°.

To determine the proper contribution of the critical terms
for even 3%, we may write Eq. (40) for the UEG Hamiltonian,
Eq. (1), subject to generalized periodic boundary conditions.
Following Refs. 66 and 67, this is realized by shifting the
entire q-grid of our simulation box by a so-called twist-angle
t € R? so that the modified momentum quantization reads
q= zf”m +t, withm € 73. For the ideal response function,
we then have

1 +t+q) - +t
XgN(q) _ V Z nge(p q) — ns(p ), (44)
o €p+t+q — Ep+t

where, in this notation, the sum still runs over all p-vectors
with p = ZT”m, where m € 7. Obviously, the condition for a
vanishing denominator now reads

[p+t+q|=[p+t|, 45)

which cannot be fulfilled if the components of the twist-angle
t; are irrational and linearly independent, e.g., for the choice
t = (1/e,1/m, I/N/E)T. In addition, for a sufficiently small
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modulus of the twist-angle, we can expect the induced bias
to be negligible. The blue diamonds in Fig. 9 clearly show that
this is indeed the case since they perfectly agree with the exact
result (see the bottom panel).

Finally, we determine the contribution of the critical terms
in Eq. (40) by performing the limit [t — 0] of those terms in
Eq. (44) with the aid of L’Hospitals’s rule yielding

K@= @-5 3 ew-ne]. @

p.o
[p+ql=Ipl

The corresponding result is depicted by the red dots in Fig. 9.
Evidently, compared to simply omitting the contribution of the
critical terms (orange squares) the improvement is substantial.
Yet, the relative deviation to the exact result is still of the order
of a few percent (bottom panel).

The residual bias is explained as follows: mathematically
it is only valid to use L’Hospital’s rule if the functional form
of the momentum distribution does not change with the twist-
angle. This condition only holds in good approximation for
large particle numbers but is increasingly violated for smaller
system sizes. Since a systematic error of a few percent in the
ideal response function is not sufficient for a reliable finite
size correction, we conclude that Eq. (46) cannot be used to
achieve this. Nevertheless, we can instead use Eq. (44), which
has been demonstrated to be asymptotically correct for small
twist-angles, to efficiently compute the finite-N ideal response
function of the UEG with high accuracy. For completeness, we
mention that L’Hospital terms vanish in the ground state, and
the functional form of the momentum distribution is indepen-
dent of the twist-angle here since it is always given by a step
function at the Fermi vector kr. Hence, Eq. (41) is indeed
correct in the ground state.

2. CPIMC results

At high densities, we expect the finite size errors involved
in the response function of the interacting system to be com-
parable to those of the ideal system. Therefore, Fig. 10 shows
the dependence of the ideal response function on the particle
number at three different temperatures. At 6 = 0.0625 [panel
(a)], which is close to the ground state, the finite size errors
are extremely large even for N = 54 electrons (blue) and are
most pronounced for small q-vectors, which correspond to
large distances in real space that are not sufficiently described
in small simulation cells. It is only at a few hundred electrons
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FIG. 11. Finite size correction of the density response function of the UEG
at @ =0.5 and rg = 0.5. Top panel: Shown are the uncorrected CPIMC results
for different electron numbers in the simulation box: 4 (purple crosses), 14
(orange squares), 20 (blue diamonds), and 38 (red dots). The black symbols
correspond to the finite size corrected results computed via Eq. (39), and the
green curve shows a smooth spline fit through these data with N > 4. For
comparison, the ideal (solid black), RPA (dotted black), and STLS (brown)
results are plotted. Bottom panel: Zoom into the minimum regime of the
response function.

(red) where the convergence of the functional form eventu-
ally becomes visible. With increasing temperature, these finite
size errors are significantly reduced; yet the relative bias of,
e.g., N = 14 electrons at § = 0.5 [green dots in panel (c)] is
still substantial. This reduction of finite size errors is due to
the fact that shell effects, which also cause quantities like the
total energy to converge non-monotonically towards the TDL,
vanish with increasing temperature.

Finally, in Fig. 11 the wave-vector dependence of the inter-
acting response function of the UEG is depicted for 6 =0.5 and
ry = 0.5. The colored symbols show the uncorrected CPIMC
results for N = 4, 14, 20, and 38 electrons, which have been
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FIG. 10. Dependence of the ideal response function on
the particle number at rg = 1 and three different temper-
atures: 6 = 0.0625 (a), @ = 0.25 (b), and 6 = 0.5 (¢). The
results for finite particle numbers have been computed
via Eq. (44) from the CPIMC result of the corresponding
finite — N momentum distribution. For comparison, black
dotted curves show the TDL result of the ideal response
function.
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obtained as discussed in Sec. III B. For N = 38, the extrapola-
tion technique with the kink potential has been used. First, we
clearly see that the uncorrected results do not lie on a smooth
curve. In particular for N =4 and N = 14 electrons, the finite
size errors are of the order of a few percent when zooming into
the minimum region of the response function (bottom panel).
Before applying the presented finite size correction to y, we
check if the underlying assumption regarding the weak finite
size dependence of the LFC is actually valid. For this pur-
pose, in Fig. 12 we plot the LFC of the UEG for the same
parameters. Evidently, using the ideal response function in
the TDL to compute the LFC according to Eq. (37) leads to
substantial finite size errors in its functional form. However,
when consistently using our computed CPIMC result for the
finite — N ideal response function [cf. Eq. (38)], the functional
form of the LFC is indeed indistinguishable for all three par-
ticle numbers so that a smooth spline can be fitted through
these data (green line). For comparison, we also plot the
LFC obtained from the Singwi-Tosi-Land-Sj6lander (STLS)
scheme, which is of good quality for g/kr < 1 but deviates by
up to a factor of two from the exact CPIMC result, for larger
g-vectors.

Now we use the consistent LFC to correct the SDRF
according to Eq. (39). The result is shown by the black symbols
in Fig. 11. Clearly, for N > 4 all results lie on a smooth curve,
which is demonstrated by a smooth spline fit through these
data (green curve). Even though for N = 4 (black crosses), the
correction is not quite sufficient to describe the TDL behav-
ior, the reduction of the bias is still impressive (cf. purple
crosses). In addition, we plot the response function in RPA
(dotted black) and STLS (solid brown) approximation. While
the RPA exhibits systematic errors of a few percent, the STLS
approximation is accurate up to about one percent. In particu-
lar, STLS exhibits no resolvable bias for g/kp < 1, which is in
agreement with its accuracy regarding the LFC (cf. Fig. 12) in
this regime. However, even though at g/kp > 2 the systematic
error of the STLS result for the LFC is nearly a factor two,
the influence of the LFC on the total response function is sup-
pressed by the factor v, = 4n/g? in Eq. (36) so that for g — oo
the response function becomes equal to the ideal case.
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FIG. 12. Local field correction of the UEG at @ = 0.5 and r = 0.5 for different
particle numbers indicated in the legend (subscripts). Colored filled symbols:
LFC computed from the ideal response function in the TDL, Eq. (37). Black
symbols: LFC obtained from the finite — N ideal response function according
to Eq. (38). Green curve: spline fit to the finite size corrected LFC. Brown
curve: STLS local field correction.
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We conclude that the ground state finite size correction
of the LFC and the SDRF can be generalized to finite tem-
peratures, as presented in this section. The benefit of this
correction is dramatic: it allows one to obtain accurate results
for the thermodynamic limit from CPIMC simulations for sys-
tems as small as N = 14 electrons. The price one has to pay
is to compute highly accurate results of the finite-N ideal
response function. This can be efficiently achieved via CPIMC
simulations of the unperturbed UEG by using its spectral repre-
sentation. However, in contrast to the ground state, the correct
evaluation of the spectral representation is only possible when
switching to a system subject to generalized boundary condi-
tions, which has been verified by cross-checks to the exact
result obtained from simulations of the perturbed electron
gas. Finally, we mention that the presented finite size correc-
tion is not only highly valuable for CPIMC but can be used
for finite—N data obtained with any other finite temperature
method.

IV. SUMMARY AND DISCUSSION

In summary, we have successfully generalized the CPIMC
formalism from the homogeneous electron gas to the general
inhomogeneous case. We have shown that the applied external
periodic potential results in the occurrence of type 2 kinks that
correspond to one-particle excitations in the simulated imagi-
nary time paths. This leads to numerous additional diagrams,
which have to be taken into account, so that the complex-
ity of the algorithm is significantly increased. Next, we have
demonstrated that the technique of an artificial kink-potential,
which had been introduced in Refs. 55 and 56 to mitigate the
FSP regarding the computation of the energy of the UEG,
is similarly effective for the computation of the SDRF. This
concept may even be improved when being applied solely to
the type 4 kinks while imposing no restrictions on the type
2 kinks. Interestingly, we observed that the induced type 2
kinks only influence the fermion sign problem of CPIMC
for large amplitudes of the external potential. For amplitudes
that are sufficiently small for the linear response theory to
be valid their influence is negligible. Therefore, the presented
CPIMC algorithm can be used to compute the SDRF for the
same parameters (density, temperature, and electron number)
that are accessible for the simulation of the UEG without the
external potential.

A further achievement of this work consists in the exten-
sion of ground state finite size corrections for the SDRF to finite
temperature. We have demonstrated that the SDRF obtained
from quantum Monte Carlo simulations of finite systems, i.e.,
a finite number of electrons in a finite simulation box, may
differ substantially from the TDL result. For the investigated
example of intermediate temperature (6 = 0.5) and rather high
density (r; = 0.5), the finite size errors are of the order of
several percent. Similarly to previous findings in the ground
state, the finite size effects are almost exclusively ascribed
to the ideal part of the SDRF, whereas the LFC is remark-
ably well converged with system size even for small N, i.e.,
G5C(g) ~ G(g).

To compute GR>¢ from the QMC data for the SDRF, we
found that it is crucial to use the ideal SDRF for the same finite
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number of electrons (instead of using the macroscopic result),
which turns out to be surprisingly difficult. While the finite —
N ideal SDREF is linked to the momentum distribution func-
tion via its spectral representation, at finite temperature, the
corresponding expression can only be evaluated when intro-
ducing generalized boundary conditions by means of a finite
but small twist-angle. Thereby, unbiased results for the finite —
N ideal SDREF for all wave-vectors can be obtained from a sin-
gle CPIMC simulation of the unperturbed UEG. This has been
confirmed by cross-checks with the exact results from simu-
lations of the perturbed UEG. In this way, the SDRF can be
computed in the TDL with an accuracy of ~0.1%. Finally, our
ab initio results for the SDRF allow us to benchmark stan-
dard approximations. In particular, the RPA SDRF reveals
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systematic errors of a few percent, while the STLS approx-
imation>®>? exhibits deviations of up to one percent, even at
rs=0.5.

We expect the presented results to be of high impor-
tance for future warm dense matter research, in particular in
the context of advanced truly non-local exchange-correlation
functionals for DFT or as valuable input for the computa-
tion of the dynamic structure factor, e.g., within the extended
Born-Mermin approach.?® Furthermore, a more detailed inves-
tigation of the LFC will certainly help in determining the
large k-vector behavior of the LFC, which, in particular at
finite temperature, is an open question. In addition, a possible
maximum in the LFC is known to indicate the possibility for
charge-density waves.”

FIG. 13. All 14 elementary diagrams for adding a type
2 or 4 kink via a one- or two-particle excitation, respec-
tively, and thereby changing another kink left of the added
one.
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APPENDIX: ALGORTHM DETAILS

In this appendix, we present additional information on the
CPIMC procedure for the harmonically modulated electron
gas. Figure 13 shows all possible 14 elementary diagrams for
adding a type 2 or 4 kink via a one- or two-particle excitation,
and thereby changing another kink left of the added one.
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Chapter 8

Other Works

In this section, I briefly mention two other publications to which I contributed during this
thesis, but which do not fit into the previous sections. However, due to my small contribution
(see Sec. 1.3.1), they are not included as full-text documents in this work.

In Ref. [169], results for the static density response function (from RPA, STLS and the
ground-state QMC based parametrization by Corradini et al. [225]) were used to compute the
ion—ion potential in a correlated dense quantum plasma. Such a screened effective potential
can then be plugged into a molecular dynamics or classical Monte Carlo simulation, or into
the hypernetted chain scheme [226, 227]. This work constitutes a proof of principle study
and outlines the possibility to use our finite-temperature QMC results for the static local-field
correction (cf. Chpt. 7) in order to derive further improved pair-potentials.

Further, Ref. [98] constitutes a brief review of some aspects of the recent research
initiative SFB-TR24, of which I was a part. In particular, it contrasts the properties and key
parameters of classical and quantum plasmas, and, in addition, contains PB-PIMC results
for the center-two particle correlation function (see Sec. 3.2) and for the pair distribution

function of the unpolarized electron gas (see Sec. 5.2.1).






Chapter 9

Summary and Outlook

9.1 Summary and Discussion

9.1.1 Development of PB-PIMC

The accurate description of correlated degenerate fermions at finite temperature is one of
the most fundamental and important topics in statistical physics and quantum chemistry.
The main challenge in this context is the notorious fermion sign problem, which causes an
exponential increase in computation time with respect to system size and inverse temperature,
and, usually, prevents QMC simulations for the most interesting parameters such as the warm
dense matter regime.

The main goal of this thesis has been the development of a new, improved path integral
Monte Carlo method that is capable to provide accurate results at moderate to high quantum
degeneracy where standard PIMC is no longer feasible. The result of these efforts is the new
permutation blocking path integral Monte Carlo approach, which is based on the combination

of three different ingredients:

1. The introduction of antisymmetric imaginary-time propagators, i.e., determinants. This
allows one to combine a large number of positive and negative terms into a single
configuration weight, hence the term blocking. Thereby, a substantial part of the
cancellation is carried out beforehand, which, in turn leads to a significant reduction of

the fermion sign problem within Metropolis Monte Carlo simulations.

2. The usage of a fourth-order factorization of the density matrix. The beneficial cancel-
lation only occurs when the mean inter-particle distance is comparable to the thermal
wavelength of a single imaginary time slice, and, thus, vanishes with an increasing

number of propagators. Yet, these are particularly necessary at low temperature, which
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is precisely where the sign problem is most severe. This dilemma is solved via the
introduction of fourth-order propagators, which allow for sufficient accuracy with only
few imaginary time slices, thereby maximizing the benefits due to the determinants
(ingredient 1) for a degree of quantum degeneracy that is beyond the capabilities of
standard PIMC.

3. The development of a new Metropolis Monte Carlo update scheme. This has been
necessary to ensure an efficient sampling of all configurations in the modified config-
uration space. Strictly speaking, there are no fixed paths in a permutation blocking
path integral Monte Carlo simulation as all possible connections between beads on
adjacent imaginary time slices are evaluated simultaneously within the determinants.
Nevertheless, there can occur situations where only one or two such connections carry
a non-negligible weight, and changing these links is analogous to the generation or
modification of exchange-cycles within the standard PIMC algorithm. For this reason,
I have developed an update scheme that is based on the worm algorithm paradigm from
standard PIMC [36, 35], which has proven to be highly efficient especially regarding
the sampling of exchange effects. To work around the absence of real paths within the
PB-PIMC configuration space, I temporarily construct artificial trajectories, which can

then be updated in the spirit of the worm algorithm in standard PIMC.

As a first test system for the new PB-PIMC method, I have considered electrons in a 2D
harmonic confinement for which highly accurate data were available both at strong coupling
(using the standard PIMC implementation that I wrote during my Master thesis [43]) and
weak coupling (using the CPIMC method). Although this system had initially been thought
of as little more than a test bed for method development and benchmarks, PB-PIMC has
proven to be capable to provide accurate results over the entire transition from the strong
coupling regime, where fermionic exchange is negligible, to the ideal limit—an interesting
feature in its own right.

Furthermore, due to its formulation in coordinate space, PB-PIMC is perfectly suited
for the investigation of spatial correlation functions, one of which—the so-called center-
two particle correlation function—I have implemented and applied to the investigation of

exchange and correlation effects of charged particles in traps (Sec. 3.2).

9.1.2 Towards a Complete Description of the Uniform Electron Gas

Due to its high current relevance for warm dense matter research, shortly after having
published the original PB-PIMC method, I extended it to the simulation of the uniform
electron gas (as described in Sec. 3.3). In a nutshell, I found (1) that accurate PB-PIMC
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simulations are feasible over a broad range of parameters, thereby being significantly superior
to standard PIMC, (ii) that the RPIMC results by Brown et al. [157] are surprisingly inaccurate
even at moderate temperature and coupling, and (iii) that PB-PIMC is complementary to
the CPIMC method. The last point means that a combination of the two allows for accurate
QMC simulations of the UEG over significant parts of the warm dense matter regime—a
theme that has permeated the remainder of this thesis.

Shortly thereafter, said combination was explored in detail (Chpt. 4) both for the spin-
polarized (ferromagnetic) and unpolarized (paramagnetic) case. For the latter, I, with the
help of the Daad—Rise student Connor Hann, extended the implementation of PB-PIMC to
the simulation of multiple particle species, which, in this case, are given by spin-up and
-down electrons. Overall, we were able to obtain extensive, accurate QMC data covering
the entire relevant density range down to half the Fermi temperature. All these results were
made freely available (e.g., for the further development of other methods), and a detailed
comparison to the RPIMC data by Brown et al. [157] allowed us to quantify the nodal error
for different quantities over a broad range of parameters.

A significant milestone on our quest for a complete ab initio thermodynamic description
of the UEG was the development of a new finite-size correction that makes it possible to
extrapolate the QMC results for N electrons in a finite simulation cell to the thermodynamic
limit (Sec. 5.1). The problem that one encounters here is the fact that QMC methods, while
properly taking into account all short-range exchange—correlation effects, cannot access long-
range effects due to the finite simulation box. It was demonstrated that previous attempts
to overcome this issue are not appropriate over substantial parts of the warm dense matter
regime. To solve this problem, in Ref. [164] we proposed to combine our QMC data with
those of dielectric approximations (such as the STLS scheme), which are known to provide
the exact long-range behavior. In this way, we were able to devise a dramatically improved
finite-size correction that works for all density—temperature combinations. Subsequently, we
obtained an exhaustive data set for the interaction energy of the paramagnetic electron gas
in the thermodynamic limit with an unprecedented accuracy of 0.3%, covering the entire
r¢-range down to half the Fermi temperature. In addition, from these data we computed the
exchange—correlation free energy, f9.(r), at fixed temperature, and compared it to previous
parametrizations (see also Sec. 6.1). The large deviations to our ab initio results clearly
demonstrated that an improved description of the warm dense UEG was highly needed.

As a side product of the combination of QMC data with the STLS formalism for the
extrapolation to the thermodynamic limit, we produced accurate data for the static structure
factor S(k), see Sec. 5.2. The SSF contains the complete information about two-particle

correlations and can be used as input for the computation of other quantities, see, e.g.,
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Refs. [199, 198]. Moreover, it is connected to the pair correlation function via Fourier
transform, which was explored in some detail in Sec. 5.2.1.

At this point, the realization of the final goal—the construction of a parametrization of the
exchange—correlation free energy with respect to temperature, density, and spin-polarization,
fxe(rs,0,&)—required us to solve two remaining problems: (i) the QMC simulation of
arbitrary spin-polarizations in the thermodynamic limit and (ii) the lack of QMC data for
0<6<0.5.

9.1.3 Complete Description of the Warm Dense Uniform Electron Gas

The construction of the first ab initio parametrization of the thermodynamic properties of
the warm dense electron gas presented in Sec. 6.2 constitutes the capstone of this thesis.
In particular, the two remaining problems mentioned at the bottom of the previous section
were overcome in the following way: (i) we carried out extensive new QMC simulations for
different spin-polarizations 0 < £ < 1 (using CPIMC at strong degeneracy and PB-PIMC
at moderate to strong coupling) and carefully extrapolated these data to the thermodynamic
limit.! Further, to accurately bridge the gap to the zero temperature limit, we added onto
the available ground-state QMC data [174] a small temperature correction computed in the
STLS formalism for temperatures 0 < 6 < 0.25. In combination with our thermodynamic
QMC data for 8 > 0.5, we thereby produced a vast set of accurate results for the interaction
energy spanning the entire warm dense matter regime.

In particular, these data are fully sufficient to compute fx. via the well-known coupling
constant integration, which we exploited to construct our parametrization in the following
way: we obtained parametrizations for the ferro- and paramagnetic cases, f,.(rs,6) and
19 (rs,0), over the entire rs—8-plane, and subsequently used our QMC data for intermediate
polarizations to construct a spin-interpolation function. Together, all these ingredients were
combined into the final result: the parametrization of the exchange—correlation energy with
respect to all three relevant parameters, i.e., fxc(rs,0,&).

This complete thermodynamic description of the UEG put us into the unprecedented
position to gauge the accuracy of previous results, regarding many different quantities like
fxc itself, different energies, or the static structure factor S(k). Very detailed comparisons
to the dielectric approximations (RPA, STLS, Vashista—Singwi, quantum STLS?, and the
recent scheme by Tanaka [125]), RPIMC data [157], finite-temperature Green functions [59,

'For this purpose, we implemented the STLS formalism for arbitrary spin-polarization.
’Le., the STLS closure relation for the local-field correction, but with the latter depending on frequency, see
Refs. [158, 228, 229].
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155, 159], and various exchange—correlation functions [107, 121-123, 125, 126, 207] can be

found in our recent review [161], see Chpt. 2.

9.1.4 The Inhomogeneous Electron Gas

The final topic that I explored during this thesis is the computation of the static density—
density response function from QMC simulations, see Chpt. 7. For this purpose, I extended
the PB-PIMC method to the simulation of the inhomogeneous electron gas by applying a
(static) harmonic perturbation of wave vector (. Of course, QMC simulations allow for an
accurate description of this system for arbitrarily strong perturbations. The point is that, for
small perturbation amplitudes, linear response theory is valid. Therefore, in this regime, the
modified density grows linearly with the perturbation, where the slope is given by the desired
static density response function x(q). Nevertheless, it should be noted that this procedure is
quite involved, since it is required to carry out multiple simulations for different perturbation
amplitudes to obtain x(q) for a single wave vector q. A more efficient, alternative strategy is
presented in the outlook of Ref. [167].

The first results at moderate coupling and temperature revealed significant systematic
errors both of the RPA and STLS schemes, thereby highlighting the impact of correlations
on the static density response of the UEG. Overall, Chpt. 7 can be understood as a proof of

concept regarding an interesting topic for future research, see also Sec 9.2.3.

9.2 OQOutlook

9.2.1 Further Applications of PB-PIMC

Throughout the bulk of this thesis, I applied the permutation blocking PIMC method to the
simulation of the uniform electron gas in 3D. However, it should be noted that the ab initio
simulation of correlated fermions at finite temperature is of high importance within many
fields of many-body physics and quantum chemistry. In the following, I will give a brief

overview of interesting future applications of PB-PIMC:

* The 2D electron gas has been extensively investigated in the ground state [151, 230—
232], but, at finite temperature, results remain sparse. In addition, I note that the
reduced dimensionality will lead to a less severe manifestation of the fermion sign
problem, making the application of PB-PIMC (possibly again in combination with
CPIMC) very promising.
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* Electrons in quantum dots, which are often modeled by a harmonic confinement [175,

233-236, 72], exhibit various interesting phenomena such as Wigner crystalliza-
tion [183, 185] and Fermi-liquid like behavior [237]. Of particular use can be the
application of many-particle correlation functions and the following computation of
reduced entropies to spatially resolve crossovers and correlation effects [181, 179, 38].
An additional topic of interest might be the comparison between 2D and 3D systems,
see, e.g., Ref. [28].

Possibly the most challenging, yet highly intriguing, future application of the PB-
PIMC method is the ab initio simulation of electron—ion plasmas at warm dense matter
conditions, such as hydrogen, deuterium, or helium. A first step towards this goal
would be the implementation of a quantum pair potential [238-240] that removes the
Coulomb divergence between electrons and ions, or of the incorporation of the exact
solution to the two-particle problem, often denoted as pair approximation [241, 242].
The latter could potentially be combined with a fourth-order factorization of the density
matrix [243], thereby enhancing the effect of the permutation blocking. If successful,
the new PB-PIMC data can be used to benchmark previous results such as the RPIMC
data by Militzer et al. [53, 55, 58, 54], the direct PIMC data by Filinov et al. [64-66, 68]
or thermal Kohn—Sham [244, 245] and orbital-free DFT results [246-250, 244].

Spatially separated electron-hole bilayers [251] constitute a more exotic, yet neverthe-
less potentially useful application for PB-PIMC. Particularly interesting phenomena
include the transition from Coulomb to dipolar interaction [252] and the superfluid

crossover [253].

Finally, I mention the possibility to simulate ultracold Fermi gases [254, 255] (such as
6Li [256] or 3He [49]), which constitute a topic of high current interest, among other
things due to the exciting possibility of a BCS-BEC crossover [257, 258].

9.2.2 Utility of the Electron Gas Results

We expect our complete thermodynamic description of the warm dense electron gas to be of

high importance for various future applications.

Firstly, the jellium model has always been an important test bed for the development

of theories and algorithms, see, e.g., Refs. [147-152, 139]. Therefore, we expect our new

accurate data—both in the thermodynamic limit and for a finite number of electrons—to be

highly useful for the future development of simulation methods, and it was already used in
Refs. [125, 126, 204, 158].
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More importantly, our parametrization of the exchange—correlation free energy can easily
be incorporated into density functional theory simulations at finite temperature [104, 115,
116, 101], either directly within the local density approximation, or as the basis for more
sophisticated generalized gradient expansions [114, 200]. Another use of our parametrization
in the context of thermal DFT would be the benchmarking of a novel kind of functional based
on the adiabatic-connection fluctuation—dissipation formulation [217].

Further direct applications include its incorporation into quantum hydrodynamic simula-
tions [141, 142], various astrophysical models, see, e.g., Refs. [259, 260, 80, 144, 145], and
the further development of Fermi-liquid theory [146].

Another important point is our data set of accurate static structure factors [165], that is
currently being used as input for the calculation of the dynamic structure factor of the UEG
via the method of frequency moments, see, e.g., Ref. [199].

Our proof of principle investigation of the inhomogeneous electron gas has laid the
foundations for the future QMC investigation (using, in principle, standard PIMC, PB-PIMC,
or CPIMC, see also Sec. 9.2.3) of the static density response of the UEG, which could finally
result in the construction of a parametrization of the static local-field correction, as it already
exists for the ground state [225, 261].

9.2.3 Reconstruction of Dynamic Quantities from Imaginary-Time Cor-

relation Functions

Throughout this thesis, I performed QMC simulations to compute static properties like the
interaction energy v or static structure factor S(q). Arguably, accurate results for dynamic
quantities such as the single particle spectrum A(q, @) or the dynamic structure factor S(q, ®)
are of even higher importance, but, unfortunately, cannot be directly obtained by means of
QMC simulations due to an additional dynamical sign problem [218-220]. However, there is
a way to circumvent this obstacle, as it shall be briefly outlined in the following.

A particularly interesting quantity in this context is the imaginary-time density—density
correlation function, which is defined as

1

Gﬂ(qv T) = N <p<q, T)p(_q70)> ’ (91)

with p(q, 7) corresponding to the Fourier transform of the density operator evaluated at a
specific imaginary time 7. Obviously, such a quantity is straightforwardly evaluated in a
path integral Monte Carlo simulation [262]. For example, in the left panel of Fig. 9.1 I show
PIMC results for Eq. (9.1) for the unpolarized electron gas with N =34, r;, = 10, and 6 = 1.

Firstly, I note that the number of imaginary time slices P determines the number of data
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Fig. 9.1 Standard PIMC investigation of the density—density correlation function of the
uniform electron gas at 6 = 1 and r; = 10 for N = 34 unpolarized electrons with P = 50 time
slices. Left: PIMC results for G,(q, T) (blue squares) for three g-values and corresponding
spline fits (red lines). Right: Static density response function computed via integration
of G,(gq,7) (Eq. (9.2), blue squares), PB-PIMC estimations from the simulation of the
harmonically perturbed electron gas for N = 34 (red diamonds) and N = 54 (green crosses)
taken from Dornheim et al. [167], and dielectric results from RPA (solid black) and STLS
(dotted yellow).
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points for each wave vector (in this case, we have P = 50). Secondly, G,(q, 7) is symmetric
with respect to T = 3/2, so that only half of the points contain real information.

One of the useful features of the density correlation function is its direct connection to
the static density response function (see Chpt. 7),

N B
x@)=-7 /0 dt G,(q,7) 9.2)

To evaluate Eq. (9.2), | interpolate the discrete G,, data with a spline (the red curves in the left
panel of Fig. 9.1), which can then be integrated numerically. The results of this procedure (for
each g-value) are depicted in the right panel of Fig. 9.1 and correspond to the blue squares.
For completeness, I again show the corresponding static density response functions from
RPA and STLS and the PB-PIMC results from the simulation of the harmonically perturbed
system (see Chpt. 7, and Ref. [167]) for two different particle numbers. Evidently, the new
results are in excellent agreement with the previous PB-PIMC data, as it is expected. The
main advantage of the present strategy is that the entire wave vector dependence of } can be
obtained within a single simulation of the unperturbed system, whereas the procedure from
Chpt. 7 requires multiple simulations of the perturbed system for each g-value. Unfortunately,
this only works when standard PIMC simulations are not prevented by the fermion sign
problem, which means that significant parts of the warm dense matter regime cannot be
accessed, leaving the PB-PIMC simulation of the harmonically perturbed system as the only
viable option in that case’.

The most important application of G,(q,7) is its connection to the dynamic structure
factor S(q, w),

Gu(q,7) — /Zda)e_mS(q,a)) 9.3)

- / Tdo (e 4o FI9)5(q ) (9.4)
0

where the second equality follows from the well-known symmetry relation S(q, —®) =
S(q, ®)eB®. Obviously, the task at hand is to solve Eq. (9.3) for S(q, ®), i.e., to perform
an inverse Laplace transform [263]. This can be interpreted as follows: the standard PIMC
simulations allow for the computation of a limited amount of information about the dynamic
structure factor, i.e., the P/2+ 1 independent values of the imaginary-time density correlation
function G, for different 7 values. In practice, this makes possible a reconstruction of S(q, ®)

by finding a model structure factor that, when plugged into Eq. (9.3), correctly reproduces

3Note that a PB-PIMC evaluation of Eq. (9.2) is not possible due to the small number of imaginary time
slices.
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all known G,(7) values within the given Monte Carlo error bars. This is a notoriously
difficult problem, in particular, since said statistical uncertainty implies that the solution
is, in general, not unique [263], and unphysically sharp peaks in S(q, ®) may arise. The
most common approach to prevent this issue is the maximum entropy method [264, 265],
which is based on Bayes theorem and requires some prior knowledge about the spectrum of
interest. For example, one might demand the absence of very sharp peaks and thereby receive
a smooth result for S, although this can potentially lead to the suppression of unexpected,
interesting features. A different strategy is the computation of a large number, K, of random
functions S;(q, ), where the final result is then given as the average. Examples for this
paradigm include the stochastic optimization method by Mishchenko et al. [32, 266, 267] or
the genetic inversion by falsification of theories (GIFT) proposed by Vitali ez al. [268]. In
the present work, I use a GIFT implementation that I wrote during my Master thesis [43] to
reconstruct the dynamic structure factor of the uniform electron gas for the same parameters
as in Fig. 9.1.

In Fig. 9.2, I show GIFT results for the smallest wave vector that is available in the PIMC
simulation, g ~ 0.12. As each individual solution, S;, can be almost arbitrarily noisy, the
average over K = 38 spectra (dashed green) is still heavily fluctuating, although we can
clearly resolve a pronounced peak around the plasma frequency @,. For K = 380 (dotted
red), we already have a sufficiently smooth curve, which is further improved for K = 3800
(solid black).

Of particular importance is the dispersion relation, i.e., the behavior of the dynamic
structure factor both with respect to frequency and wave vector. This information is shown
for the present example in Fig. 9.3. First, let us consider the dotted red curves corresponding
to ideal fermions at the same parameters. In this case, the dynamic structure factor follows the
ideal dispersion relation @ = ¢ /2, and is broadened towards large g. Second, the dashed blue
curves have been computed within the random-phase approximation (RPA, see Ref. [131] for
all necessary details) and exhibit a substantially modified behavior. For small to intermediate
g-values, Srpa 1s significantly sharper than the ideal curve and roughly follows a parabolic
dispersion relation that is shifted by the plasma frequency, cf. the solid blue curve. Finally,
the solid black curves correspond to the new ab initio results for the dynamic structure factor
that were obtained via the reconstruction from the PIMC data for G,(q, 7). Overall, the
agreement to the random-phase approximation is only qualitative both with respect to the
peak position and the particular width and shape, as it is expected at rg = 10, see Sec. 5.2
for a comparison of the corresponding static structure factors. Nevertheless, to allow for
quantitative judgments, one should carefully investigate possible finite-size effects (which

are absent in the static structure factor S(k), but could potentially lead to a broadening of the
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Fig. 9.3 Ab initio data for the dynamic structure factor of the unpolarized UEG at r; = 10
and 6 = 1. Shown are the results from a reconstruction using PIMC data for G,(g, ) (solid
black), the corresponding results for the ideal system (dotted red) and the random-phase
approximation (dashed blue). The solid red and blue curves correspond to the ideal and
shifted ideal dispersion relations, respectively. The wave vector is given in units of the Fermi
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peaks) and check if the known frequency moments (sum-rules [269]) are fulfilled (see, e.g.,
the Appendix of Ref. [33] for a detailed discussion).

In a nutshell, the reconstruction of the dynamic structure factor S(q, ®) that has been
presented in this outlook provides the unique possibility to study the collective dynamics of
moderately to strongly correlated electrons (or weakly coupled electrons at moderate to large
temperature) from first principles. This is particularly interesting with respect to the recent
prediction of previously unexpected collective modes at sparse density, see Refs. [270, 271].
Although a direct investigation at warm dense matter conditions will probably remain
unfeasible due to the fermion sign problem, the combination of standard PIMC and GIFT
can provide potentially valuable benchmark data at high density and moderate temperature,
which can then be used to gauge the accuracy of other approximate schemes such as the
method of frequency moments [199], nonequilibrium Green functions [160, 155, 272-274],
or the interpolation of the dynamic local-field correction between known limits [275].






Appendix A
List of Acronyms

* BCS : Bardeen—Cooper—Schrieffer

* BEC : Bose-FEinstein-Condensation

* CPIMC : configuration path integral Monte Carlo

* DFT : density functional theory

* DMQMC : density matrix quantum Monte Carlo

e FSP : fermion sign problem

* GIFT : genetic inversion by falsification of theories
* LDA : local density approximation

* LFC : local field correction

* MD : molecular dynamics

* PB-PIMC : permutation blocking path integral Monte Carlo
* PIMC : path integral Monte Carlo

* QMC : quantum Monte Carlo

* RPA : random phase approximation

* RPIMC : restricted path integral Monte Carlo

» SSF : static structure factor

* STLS : Singwi-Tosi—Land-Sj6lander

* UEG : uniform electron gas

* WDM : warm dense matter

* XC : exchange—correlation
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Resolving phase transitions in finite dust clusters and quantum dots
— Tobias Dornheim, Hauke Thomsen, Patrick Ludwig, and Michael Bonitz

2017

» Hirschegg, Austria, 37th International Workshop on High Energy Density Physics
with Intense Ion and Laser Beams (contributed talk):
Ab Initio Quantum Monte Carlo Simulation of the Warm Dense Electron Gas
— Tobias Dornheim, Simon Groth, Travis Sjostrom, Fionn D. Malone, W.M.C. Foulkes,
and Michael Bonitz
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Ab Initio Quantum Monte Carlo Simulation of the Warm Dense Electron Gas

— Tobias Dornheim, Simon Groth, Travis Sjostrom, and Michael Bonitz
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Ab initio Quantum Monte Carlo simulation of the warm dense electron gas
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Belfast, United Kingdom, EPS meeting: 44th Conference on Plasma Physics (con-
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Ab initio Thermodynamic Description of the Uniform Electron Gas at Warm Dense
Matter Conditions
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* Kiel, Germany, Strongly Coupled Coulomb Systems 2017 (invited talk):
Ab initio Quantum Monte Carlo results for the Warm Dense Electron Gas
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and Michael Bonitz
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