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Abstract

The worm algorithm path integral Monte Carlo technique (WA-PIMC), which delivers quasi-
exact ab initio results in thermodynamic equilibrium, is applied to the simulation of mutually
repelling quantum particles in traps. The investigated aspects of bosons include superfluidity,
i.e., the change of the moment of inertia due to quantum effects (NCRI), spatial correlations
and the quantum breathing mode, which, despite being a dynamic quantity, can be estimated
from equilibrium data with a sum-rule formalism and the reconstruction of the spectrum from
an imaginary time correlation function. Finally, the PIMC simulation of fermions is discussed
and the notorious fermion sign problem compared to a conceptually different approach, namely
CPIMC.

Kurzfassung

Die Wurm-Algorithmus Pfadintegral Monte Carlo Methode (WA-PIMC), welche die Berech-
nung quasi exakter ab-initio Ergebnisse im thermodynamischen Gleichgewicht erlaubt, wird
verwendet, um repulsiv wechselwirkende Quantenteilchen in Fallen zu simulieren. Die un-
tersuchten Eigenschaften von Bosonen beinhalten Superfluidität, genauer die Änderung des
Trägheitsmoments durch Quanteneffekte, räumliche Korrelationen und die Quanten-Breathing-
mode, welche, obwohl es sich um eine dynamische Größe handelt, aus Gleichgewichtsdaten
sowohl mit einem Summenregelformalismus als auch durch die Rekonstruktion eines Spektrums
aus einer imaginärzeitigen Korrelationsfunktion betrachtet werden kann. Schließlich werden
PIMC Simulationen von Fermionen diskutiert und das berüchtigte fermionische Vorzeichen-
problem wird mit dem konzeptuell verschiedenen CPIMC Zugang verglichen.
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Anyone who attempts to generate ran-
dom numbers by deterministic means
is, of course, living in a state of sin.

– John von Neumann, 1951

1 Introduction

1.1 Motivation

Monte Carlo (MC) simulations, i.e., the application of random numbers for numerical cal-
culations, are widespread among various fields, including sociology and economics, e.g. [1]1,
biology and medicine, e.g. [2], and quantum physics and chemistry, e.g. [3]. The latter cate-
gory comprises ground state methods such as Variational and Diffusion MC [4] and approaches
for finite temperature like the widely used Path Integral Monte Carlo (PIMC) technique, for
a review see [5]. PIMC is based on the Metropolis algorithm [6] and allows for the ab initio
calculation of quasi-exact ensemble averages of quantum particles at, in principle, arbitrary cou-
pling strength and temperature and is arguably the most successful tool for the investigation of
strongly correlated Bose and Boltzmannon (i.e., particles without exchange) systems. However,
the application of Quantum Monte Carlo methods to Fermi systems is a notoriously difficult
task due to the well known fermion sign problem, see e.g. [7], which might render even small
systems unfeasible.

In this work, the Worm Algorithm (WA) path integral Monte Carlo technique [8], which
is a particularly advantageous realization of PIMC, is implemented for the numerical treatment
of correlated bosons and fermions in harmonic traps. Spatially confined quantum systems are a
contemporary research field and exhibit many interesting features like Bose Einstein condensa-
tion, e.g. [9], and collective oscillations, e.g. [10]. However, many questions remain unsufficiently
addressed and it is the goal of this thesis to provide an overview about different research as-
pects of trapped quantum particles. New results include the investigation of superfluidity in
2D and 3D systems, the characterization of spatial correlations via the consideration of a novel
center-two particle correlation function [11], which has been successfully applied to classical sys-
tems, and the computation of the quantum breathing mode for Bose systems from equilibrium
expectation values using an improved sum-rule approach [12]. In addition, the possibility to
reconstruct the spectral function from an imaginary time correlation function, which is a well
known approach to other non-equilibrium quantities like the dynamic structure factor and the
single particle spectrum [13], is investigated. Special attention is paid to fermions and the afore-
mentioned sign problem from PIMC is compared to a conceptually different approach, namely
CPIMC [14].

Experimental realizations include ultracold gases in traps [15, 16], electrons in quantum dots
[17] and electron-hole bilayers, e.g. [18] and references therein. In addition, charged bosons
are predicted to exist within the core of neutron stars, where both protons and neutrons form
Cooper pairs (BCS-BEC crossover) [19, 20] and the core of helium white dwarfs [21, 22].

1The blue numbers indicate hyperlinks to references, equations, figures and footnotes.
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1 INTRODUCTION

1.2 Outline

• 1: Introduction

• 2: Path integral Monte Carlo
All theoretical aspects of PIMC are described in detail, starting with a brief introduction of
ensemble averages and the connection to imaginary time path integrals. The Metropolis al-
gorithm allows for the generation of random configurations according to a distribution with
an unknown normalization and provides the basis for all updates of the Worm Algorithm,
which are elaborately derived. The chapter finishes with the discussion of the calculation
of observables and the corresponding error analysis, including the binning analysis for the
treatment of autocorrelation effects.

• 3: Implementation of PIMC
Several practical aspects concerning the implementation of PIMC in C++ are discussed
and the validity of the developed code is checked by comparisons to analytical results
and another code. Afterwards, the usual WA-PIMC method is extended with some im-
provements and special attention paid to the inhomogeneity of trapped quantum particles.
Finally, a brief summary of the capabilities of the presented PIMC implementation is given.

• 4: General properties of confined bosons
The chapter starts with a short discussion of three different phases of mutually repelling
bosons, namely solid, fluid and superfluid behaviour. The latter topic is elaborated with
the investigation of superfluidity in 3D and 2D Coulomb-systems and the influence of the
additional dimension on the former is analyzed. In addition, a local superfluid density es-
timator provides insight into the inhomogeneity of the superfluid phase transition. Finally,
spatial correlations are discussed and a novel center two-particle correlation function [11]
is applied to quantum systems.

• 5: The quantum breathing mode
The quantum breathing mode, i.e., the system’s response to a monopole perturbation,
serves as an example for the calculation of dynamic properties from PIMC data. A compact
revision of the linear response formalism is followed by the introduction of the sum-rules
which allow for the expression of an upper bound to the frequency of interest solely in
terms of equilibrium expectation values. The chapter finishes with a discussion of the
reconstruction of spectral functions from imaginary time correlation functions.

• 6: Simulation of fermions
The ab initio simulation of fermions is a particularly challenging topic since quantum Monte
Carlo methods suffer from the notorious fermion sign problem. The brief presentation of
results for Coulomb- and dipole-interacting fermions and comparisons to bosonic properties
is followed by the comparison of PIMC to other methods. Special attention is paid to a
recently developed Configuration Path Integral Monte Carlo (CPIMC) technique [14] and
the sign problem is investigated with both PIMC and CPIMC.

• 7: Conclusion

2



2 Path integral Monte Carlo

In this section, all theoretical aspects of the Path Integral Monte Carlo method are covered
in detail, starting with a problem statement (2.1) and a short introduction to the imaginary
time path integral picture. After a brief discussion of particle exchange (2.2), the Metropolis
algorithm, which allows for the generation of random configurations according to a distribution
with an unknown normalization, is explained in detail (2.3). The latter provides the basis of
the worm algorithm (2.4), which is used to efficiently generate configurations of particles in the
canonical, grandcanonical and an even more extended ensemble. Finally, a short introduction
to the calculation of physical observables (2.5) is complemented by the explanation of the error
analysis of Monte Carlo data (2.6), including autocorrelation effects.

2.1 The path integral picture

In the following subsection, some principles of statistical physics and the connection between
expectation values and imaginary time path integrals are introduced based on the textbooks by
Nolting [23] and Bonitz and Semkat [24].

The system of interest is given by N particles in a volume V at temperature T , where all three
quantities are fixed, hence, a canonical ensemble. The particles are assumed to be distinguish-
able, and the otherwise needed (anti-)symmetrization with respect to particle exchange will be
introduced later. Of fundamental interest are the expectation values of (arbitrary) observables
Â in thermodynamic equilibrium, which are given by

〈Â〉 =
1

Z
Tr
(
ρ̂Â
)

,

with the partition function

Z = Tr (ρ̂) , (1)

the density operator

ρ̂ = e−βĤ , (2)

and the inverse temperature β = 1/kBT . The trace in Eq. (1) is defined as the sum (or integral
in the continuum case) over the diagonal elements of ρ̂, i.e.,

Z =
∑
k

〈k| ρ̂ |k〉 =

∫
dR 〈R| ρ̂ |R〉 =

∫
dR ρ(R,R, β) . (3)

The first equality assumes a discrete set of basis functions |k〉 while the second one applies to the
continuous spatial representation, where the variable R includes the coordinates of all N parti-
cles: R = (r1, . . . , rN )T . The definition of the density operator’s matrix elements ρ(R1,R2, β)
directly follows from the third equality. The Hamiltonian Ĥ can be expressed as the sum of the
kinetic and potential energy contributions, respectively:

Ĥ = T̂ + V̂ .

The main obstacle is the fact that the density operator from Eq. (2) cannot be factorized since
T̂ and V̂ do not commute:

ρ̂ = e−β(T̂+V̂ ) = e−βT̂ e−βV̂ e−βĈ .

3



2 PATH INTEGRAL MONTE CARLO

The operator Ĉ can be deduced from the Baker-Campbell-Hausdorff formula [25] as the infinite
series

Ĉ =
β

2
[V̂ , T̂ ]− β2

(
1

6
[V̂ , [V̂ , T̂ ]]− 1

3
[[V̂ , T̂ ], T̂ ]

)
+ . . . . (4)

It directly follows from Eq. (4) that the primitive approximation,

ρ̂ ≈ e−βT̂ e−βV̂ , (5)

becomes more inaccurate for decreasing temperature T , i.e., in the regime where quantum
mechanical effects are no longer negligible.

A widely used solution to this problem has been proposed by Feynman and makes use of the
group property of the density operator [26]:

ρ̂ = e−βĤ =

P−1∏
i=0

e−εĤ ,

with the definition ε = β/P . Inserting this identity into the spatial representation of the partition
function Z from Eq. (3) yields

Z =

∫
dR 〈R|

P−1∏
i=0

e−εĤ |R〉 (6)

=

∫
dRdR1 . . . dRP−1 〈R| e−εĤ |R1〉 〈R1| e−εĤ |R2〉 . . . 〈RP−1| e−εĤ |R〉 , (7)

where, for the second equality, P − 1 unities of the form

1̂ =

∫
dRi |Ri〉 〈Ri| (8)

have been inserted between the factors in Eq. (6). This means that the partition function, which
was originally given as the trace over low T matrix elements of ρ̂, can instead be expressed as
the trace over the product of P matrix elements ρ(R1,R2, ε) at P times the temperature:

Z =

∫ P−1∏
i=0

dRi ρ(Ri,Ri+1, ε) , (9)

with RP = R0. It is important to note that the matrix elements in Eq. (9), which is still exact,
are yet unknown. The desired improvement compared to Eq. (3) is that the high T elements,
ρ(R1,R2, ε), can be reasonably approximated by analytical expressions, justified by the Trotter
formula [27]:

e−(Â+B̂) = lim
P→∞

(
e−

Â
P e−

B̂
P

)P
. (10)

Eq. (10) implies that the primitive approximation from Eq. (5) becomes exact for the limit
of infinitely many factors or, in other words, that the resulting error can be made arbitrarily
small. The following subsection 2.1.1 elaborates the connection to the path integral picture in
the imaginary time.

4



2.1 The path integral picture
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Figure 1: Illustration of the path integral picture: The imaginary time τ in units of
discretization steps ε is plotted over the spatial coordinate x. The red, blue and green curve
correspond to the paths of three different particles.

2.1.1 Imaginary time path integrals

In thermodynamic equilibrium, where the Hamiltonian is, by definition, time-independent, the
time evolution operator is given by

Û(t2, t1) = exp

(
− i
h̄
Ĥ(t2 − t1)

)
,

which only depends on the time difference t = t2 − t1:

Û(t) = exp

(
− i
h̄
Ĥt

)
.

The definition τ := −ih̄β yields that the calculation of ensemble averages using the canonical
density operator ρ̂ is equivalent to a propagation in the imaginary time τ :

Û(τ) = exp

(
− i
h̄
Ĥτ

)
= exp

(
− i
h̄
Ĥ(−ih̄β)

)
= exp

(
−βĤ

)
.

Therefore, the expression for the partition function Z from Eq. (9) corresponds to the integral

over all closed paths in the imaginary time from τ = 0 to τ = −ih̄β, and each factor e−εĤ to
the propagator of one discretized (imaginary-) time step. For convenience, in the following the
modified imaginary time τ → τ/(−ih̄) will be used. This means that the paths simply range from
τ = 0 to τ = β. The imaginary time path integral picture of the ensemble averaging is illustrated
in Fig. 1, where the imaginary time τ is plotted in units of the discretization steps ε over some
spatial coordinate2 x. The red, blue and green curve symbolize the paths of three different
particles. The number of factors is chosen as P = 10, which means that ten time slices appear
in the path integral visualization and the particle coordinates for τ = 0 and τ = 10ε = β are
equal. Hence, the paths are closed or, equivalently, periodic in imaginary time. The integration

2The definition of the system of units is given in section 3.1.

5



2 PATH INTEGRAL MONTE CARLO

over the Ri in Eq. (9) yields that all possible configurations {X} = {R0,R1, . . . ,RP−1} on all
P time slices are included in Z, according to their corresponding weight W (X). The generation
of such configurations with a probability distribution with an unknown normalization (i.e., Z
itself) can be achieved with the Metropolis algorithm [6], which will be explained in section 2.3.
However, first one needs to derive an appropriate analytical expression for the matrix element
ρ(R1,R2, ε). This will be the topic of the following subsection.

2.1.2 The primitive approximation

The high temperature matrix element in the primitive approximation is given by

ρ(R1,R2, ε) = 〈R1| e−εT̂ e−εV̂ |R2〉 . (11)

However, this expression is still not useful to sample correctly distributed configurations {X}.
The first step towards an analytical expression is the insertion of the unity operator from Eq.
(8) into (11):

ρ(R1,R2, ε) =

∫
dR̃ 〈R1| e−εT̂ |R̃〉 〈R̃| e−εV̂ |R2〉 , (12)

which is nothing else than the integration over the kinetic and potential matrix element:

ρ(R1,R2, ε) =

∫
dR̃ ρkin(R1, R̃, ε)ρpot(R̃,R2, ε) . (13)

The first term corresponds to the free particle density matrix (i.e., V̂ = 0), which is known as
[28]

ρkin(R1,R2, ε) =

(
m

2πεh̄2

)Nd/2
exp

(
− m

2εh̄2 (R1 −R2)2

)
, (14)

with d being the dimensionality of the system. The prefactor in Eq. (14) can be identified with
the thermal de Broglie wavelength [29] at the inverse temperature ε which is a measure for the
quantum mechanical extension of a particle and given by

λε =
2πh̄√

2πmkBTε
. (15)

The expression (15) implies that a particle’s extension increases with decreasing temperature T
as it is expected. Inserting λε into the free particle density matrix gives

ρkin(R1,R2, ε) =
1

λNdε
exp

(
− π

λ2
ε

(R1 −R2)2

)
. (16)

The reconsideration of the definition of Ri as the coordinate vector of all N particles finally
gives

ρkin(R1,R2, ε) =
1

λNdε
exp

(
− π

λ2
ε

N∑
k=1

(rk,1 − rk,2)2

)
, (17)

which is the product of N single particle kinetic density matrices:

ρkin(R1,R2, ε) =

N∏
k=1

ρkin(rk,1, rk,2, ε) . (18)

6



2.1 The path integral picture

Figure 2: Illustration of the classical isomorphism: Two particles are expressed in the
path integral picture on P = 8 imaginary time slices, symbolized by the turquoise circles. The
springs correspond to the kinetic and the orange connections to the potential matrix elements.
The figure has been obtained from Sakkos et al. [32].

The potential matrix element, i.e., the second term in Eq. (13), is given by

ρpot(R1,R2, ε) = 〈R1| e−εV̂ |R2〉 . (19)

The potential energy operator V̂ is assumed to be diagonal in coordinate representation, which
makes Eq. (19) to

ρpot(R1,R2, ε) = δ(R1 −R2) 〈R1| e−εV̂ |R2〉 , (20)

with the Dirac distribution δ(R1 − R2), see e.g. [30]. Inserting this expression into Eq. (13)
yields

ρ(R1,R2, ε) =

∫
dR̃ ρkin(R1, R̃, ε)δ(R̃−R2)ρpot(R̃,R2, ε)

= ρkin(R1,R2, ε)ρpot(R2,R2, ε) .

The resulting diagonal potential matrix element corresponds to the evaluation of the potential
energy on a single time slice:

ρpot(R2,R2, ε) = exp (−εV (R2)) . (21)

The final expression for the density matrix element ρ(R1,R2, ε) in the primitive approximation
is often illustrated as an isomorphism to classical ringpolymers [31]. This is illustrated in Fig. 2,
where a configuration of two particles in the path integral picture is shown for P = 8 imaginary
time slices. The particle position for each τ is illustrated by turquoise circles which are denoted
as beads. Beads of the same particle on adjacent time slices effectively interact via the gaussian
from Eq. (17), as illustrated by the springs. The cheapest configuration corresponds to classical
particles, which means that all beads are on the same position and the particles form a straight
line in the τ -x-plane. Beads from different particles on the same time slice interact via the pair

7



2 PATH INTEGRAL MONTE CARLO

interaction Vint(r1,k, r2,k). This is illustrated by the orangely dotted connections. Finally, it
should be noted that these polymers are closed, which is due to the periodicity in imaginary
time. Hence, particles in the path integral picture can be mapped onto a classical system of
interacting ringpolymers.

The main result of this subsection is an analytical expression for the density matrix elements
in the partition function from Eq. (9). The latter reads

Z =

∫
dR0 . . . dRP−1

1

λdNβ

P−1∏
i=0

exp

(
− π

λ2
ε

N∑
k=1

(rk,i − rk,i+1)2 − εV (Ri)

)
. (22)

Eq. (22) is simply the integral over the weights W (X)

Z =

∫
dX W (X) , (23)

with the meta variable X = {R0, . . . ,RP−1} containing the coordinates of all N particles on P
time slices. It should be noted that W (X) ≥ 0 applies for all possible configurations X, which
makes them directly accessible to being sampled with the Monte Carlo Metropolis algorithm.
The consideration of particle exchange, however, can destroy this desireable property. For
completeness, it is reported that there exist higher order factorization schemes of the density
operator which require less time slices for the same magnitude of the error [33]. Sakkos et al. [34]
have implemented such an approach into their path integral Monte Carlo code and have been
able to achieve an effective sixth order scaling by the empirical choice of some free parameters.
However, this seemingly great advantage comes at a high price since the explicit evaluation of
all forces and the introduction of ancilla time slices is needed. This significantly increases the
computational effort of the higher order schemes and restricts them to very low temperatures,
where their more favourable scaling compensates for the former.

2.2 Particle exchange in the path integral picture

In the preceding sections, all N particles have been assumed to be distinguishable, which means
that particle exchange is strictly forbidden. For N indistinguishable particles, however, the
wavefunction or, equivalently, all operators must be symmetric or antisymmetric under exchange
for bosons and fermions, respectively. Thus, the partition function reads [28]

Z =
1

N !

∑
{π}

(±1)πl
∫

dR0, . . . ,dRP−1

P−1∏
i=0

ρ(Ri, π̂Ri+1, ε) , (24)

with the exchange operator π̂, the set of all possible permutations {π} and the permutation
length πl, which is given by the number of pair permutations. The plus and minus sign in Eq.
(24) refer to bosons and fermions, respectively. This means that, for fermionic particles, the
weights from Eq. (23) can be both positive and negative which leads to the infamous fermion
sign problem, see e.g. [7]. The latter makes the PIMC simulation of fermions much harder since
positive and negative contributions might nearly cancel, which causes extremely large relative
errors. Simulation results for fermions and a discussion of the sign problem can be found in
section 6. For bosons, all weights in Eq. (24) remain positive which makes them perfectly
accessible to the Metropolis algorithm.

The depiction of particle exchange in the path integral picture is illustrated in the figures 3
and 4. The left image of Fig. 3 shows a configuration of two particles with their paths plotted in
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Figure 3: Two particles without exchange: In the left image, the paths of two particles are
plotted in the x-y-plane. The right image shows the same configuration for the imaginary time
τ in units of ε, plotted over y.
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Figure 4: Two particles with exchange: In the left image, the paths of two particles which
form an exchange cycle are plotted in the x-y-plane. The right image shows the same configu-
ration for the imaginary time τ in units of ε, plotted over y.
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2 PATH INTEGRAL MONTE CARLO

the x-y-plane. The paths of the two particles are not connected with each other, which means
that they do not form an exchange cycle. In the right image, the same configuration is shown
and the imaginary time τ in units of ε is plotted over the spatial coordinate y. Again, the two
paths are not connected. Fig. 4 shows the same plots as Fig. 3 with the only difference being
that the two particles form an exchange cycle. This means that the paths of the two particles
are connected with each other and, therefore, form a single trajectory. In the imaginary time
plot, the exchange is nicely illustrated at τ ≈ 65ε where the two paths intersect each other.

Finally, it should be noted that, for highly degenerate systems, macroscopic trajectories
involving a large number of particles can occur. These are directly connected to the esitmation
of superfluidity in the path integral picture [35] and a more detailed discussion of superfluidity
can be found in section 4.2.

2.3 Metropolis algorithm

The Metropolis algorithm [6] is the heart of the path integral Monte Carlo method and allows
to sample configurations X according to a probability distribution P (X) with an unknown
normalization Z. This exactly corresponds to the problem statement of PIMC which is to sample
all possible closed paths and exchange cycles in the imaginary time according to the density
matrix ρ(R1,R2, β), where the normalization is given by the (unknown) partition function:∫

dR
ρ(R,R, β)

Z
= 1 .

To achieve this goal, the detailed balance equation is imposed:

P (X→ X̃) = P (X̃→ X) . (25)

Equation (25) states that the number of transitions P between every two configurations, X and
X̃, is the same in both directions. This certainly is an unnecessary rigorous restriction, but there
exists a simple solution. For the generalized Metropolis algorithm, see e.g. [28], the quantity P
is divided into three steps

P (X→ X̃) = W (X)T (X→ X̃)A(X→ X̃) , (26)

where W (X) denotes the probability to occupy a particular state X, T (X→ X̃) the transition
probability, i.e., the probability to generate the configuration X̃ starting from X, and A(X→ X̃)
the probability to accept the proposed new configuration X̃. Inserting Eq. (26) into (25) yields
the generalized detailed balance equation

W (X)T (X→ X̃)A(X→ X̃) = W (X̃)T (X̃→ X)A(X̃→ X) , (27)

which is the starting point for the derivation of all updates of the PIMC worm algorithm [8], as
described in detail in section 2.4. The famous solution by Metropolis et al. [6] to Eq. (27) for
the acceptance probability of a proposed update is given by

A(X→ X̃) = min

(
1,
W (X̃)T (X̃→ X)

W (X)T (X→ X̃)

)
, (28)

which can be easily verified by inserting the expression for A(X → X̃) into the generalized
detailed balance equation and considering the two cases W (X̃)T (X̃ → X) > W (X)T (X → X̃)
and vice versa. Since the normalization Z is the same for both W (X) and W (X̃), it cancels in
Eq. (28) and, thus, is not needed.

A practical implementation of the Metropolis algorithm can be formulated as follows:

10



2.4 Worm algorithm

1. Start with an (arbitrary) initial configuration X0.

2. Generate a new configuration X̃ according to T (Xi → X̃).

3. Calculate the acceptance probability A(Xi → X̃) using Eq. (28). Draw a random number
α ∈ [0, 1). If α ≤ A(Xi → X̃), then the configuration is updated to Xi+1 = X̃, otherwise
the update is rejected, and the new configuration is equal to the old one: Xi+1 = Xi.

4. Repeat steps 2 and 3 until you have generated the desired number of configurations.

Given an ergodic set of updates {ci(X → X̃)}, the algorithm will generate a Markov chain of
configurations {X} which are distributed according to W (X). Ergodicity means that (i) the
probability to go from X to X̃ may only depend on X itself and (ii) all configurations must be
reachable in a finite number of updates. A segment of such a Markov chain may look like

X0 = A→ X1 = B→ X2 = B→ X3 = B→ X4 = C→ . . . .

After starting with the initial configuration X0 = A, a new one B is sampled and the update
is accepted. However, the next two updates are rejected and, hence, X1 = X2 = X3 because
the configuration is not changed. The fourth update is accepted again, and the configuration is
changed to X4 = C. It is very important to understand that, although for a rejected update
X → X̃ the configuration is not changed, X is still counted as a member of the Markov chain.
Including only configurations after successful updates will result in completely wrong results.

2.4 Worm algorithm

The Worm Algorithm (WA) by Boninsegni et al. [8] is a very advantageous realization of the
Metropolis algorithm applied to the problem of generating correctly distributed paths in the
imaginary time. However, instead of operating in the canonical ensemble like usual PIMC
implementations, see e.g. [5] and [36], it works in an extended configuration space, allowing the
particle number N to fluctuate and even the possibility of one open trajectory, the so called
worm. The change of N corresponds to the grand canonical ensemble, where, instead of the
particle number, the chemical potential µ serves as the third fixed input parameter. The grand
canonical partition function ZGC(µ, V, T ) is related to its canonical counterpart ZC(N,V, T ) by
[23]

ZGC(µ, V, T ) =
∞∑
N=1

exp (βµN)ZC(N,V, T ) .

Hence, the worm algorithm allows for the calculation of additional quantities like the compress-
ibility κ, which is linked to the particle number fluctuation [37], and, in addition, also of the
Matsubara Green function (MGF) G(r1, r2, τ) as explained below.

Nevertheless, the main benefits of the WA are the prevention of critical slowing down phe-
nomena that occur near phase transitions and can cause extremely large autocorrelation times
(see section 2.6) and, therefore, large statistical errors [38] and the significantly enhanced per-
formance of the sampling of particle exchange. The idea of the extended configuration space is
illustrated in Fig. 5. The left picture shows an open path in the x-y-plane and the symbols Ψ†

and Ψ correspond to the creation and annihilation field operator, respectively, which are defined
as

Ψ†(r, τ) =
∑
j

â†j(τ)φ∗j (r) and Ψ(r, τ) =
∑
j

âj(τ)φj(r) .

11



2 PATH INTEGRAL MONTE CARLO

Figure 5: Illustration of the worm trajectories: In the left picture, an open trajectory of
a single particle is plotted in the x-y-plane. The symbols Ψ† and Ψ correspond to the creation
and annihilation field operator, respectively. The right picture shows the same configuration for
the imaginary time τ in units of ε plotted over y.

Here, â†j and âj denote the usual creation and annihilation operator from second quantization,
see e.g. [39], corresponding to an orbital |j〉 and it hold φ∗j (r) = 〈j|r〉 and φj(r) = 〈r|j〉.
Therefore, the field operators create or destroy a particle at the position r and time slice τ . The
right picture from Fig. 5 shows the same configuration in the τ -y-plane and yields the following
interpretation: At τ = 77ε, a particle is created by Ψ† and propagates in the imaginary time
until τ = 53ε, where it is annihilated by Ψ. The former time slice is often denoted as the worm’s
tail, or Masha, and the latter as its head, or Ira. The sampling of such open path trajectories is
directly connected to the Matsubara Green function,

G(r1, r2, τ) = 〈T̂Ψ(r2, τ)Ψ†(r1, 0)〉 , (29)

where T̂ denotes the usual time ordering operator. In thermodynamic equilibrium, Eq. (29) only
depends on the time difference between the application of Ψ† and Ψ, and, for the computation
of the average, all configurations with one open path are taken into account. For completeness,
it is mentioned that the MGF is connected to a system’s single particle excitation spectrum
by a Laplace transform, which means that dynamical information can be reconstructed from
equilibrium expectation values, as explained e.g. in [13].

The extension of the configuration space makes it necessary to consider a generalized partition
function

Ztot(µ, V, T ) = ZGC(µ, V, T ) + Z̃(µ, V, T ) ,

given by the sum of the closed path (i.e., grand canonical) and open path normalization. The
latter might be expressed as

Z̃ = CZGC(µ, V, T )
∑
τ
Ψ†

∑
τΨ

∫
drΨ†drΨ G(rΨ, rΨ† , τΨ − τΨ†) . (30)

Here, C is an, in principle, arbitrary constant that determines the ratio of diagonal (closed path)
and off-diagonal (open path) configurations and can be used to enhance the performance of the
algorithm.
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2.4 Worm algorithm

The next step is to find a suitable update scheme for the Metropolis algorithm to generate
all possible configurations of the extended ensemble. In section 2.4.1, an efficient path sampling
technique which is the main ingredient for most updates of the WA is introduced. Afterwards,
all used updates are derived in section 2.4.2 from the detailed balance equation. Finally, it is
shown in section 2.5.1 how canonical data can be extracted from simulations in the extended
ensemble.

2.4.1 Path sampling schemes

Consider an open path configuration as pictured in Fig. 5. In order to switch between the
off-diagonal and diagonal sector, it is necessary to sample a connecting path between the time
slices τΨ and τΨ† . For simplicity, it is assumed that new path segments are sampled beginning
from the worm’s head, i.e., forward in the imaginary time, although one is, in principle, free to
move the tail as well. The trivial approach is to generate one new bead at a time at a random
position inside some volume V . The inverse move from the new configuration X̃ back to X will
be the removal of that particular bead. This gives the transition probabilities

T (X→ X̃) =
1

V
and T (X̃→ X) = 1 ,

since there is no free parameter for the annihilation of the last bead. The ratio of the configura-
tion weights can only be affected on the particular time slice because the rest of the configuration
remains unchanged:

W (X̃)

W (X)
= eεµeε∆V (X→X̃)ρkin(rk,i, rk,i+1, ε) , (31)

where rk,i and rk,i+1 denote the old and new position of the head, respectively, and ∆V (X→ X̃)
the change in the potential energy. The acceptance ratio for this simple advance update directly
follows from Eq. (28) as

A(X→ X̃) = min
(

1, eεµeε∆V (X→X̃)ρkin(rk,i, rk,i+1, ε)V
)

. (32)

However, the mean acceptance probability will be very low since the gaussian from ρkin(...) will
quickly approach zero for large distances between rk,i and rk,i+1. Therefore, it is much better
to make use of the free choice of T (X → X̃) and try to eliminate as much of the ratio (31) as
possible to achieve acceptance probabilities A close to unity for both the update and the inverse
move. This idea is called importance sampling. A simple enhancement of Eq. (32) is to sample
the new position from the kinetic density matrix itself, i.e., gaussian distributed around the old
position:

T (X→ X̃) = ρkin(rk,i, rk,i+1, ε) .

This gives an acceptance probability of

A(X→ X̃) = min
(

1, eεµeε∆V (X→X̃)
)

. (33)

The remaining factor due to the change in V (X) cannot be removed in general because the
required normalization is not known in advance. The next obstacle to be considered is the
inefficiency of single slice moves in large systems. This means that adjacent configurations in
the generated Markov chain will be very correlated with each other since they are nearly the
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Figure 6: Illustration of path sampling schemes: An off-diagonal configuration is plotted
in the y-τ -plane. The red configuration corresponds to X before the update and the blue
trajectory is the new path. The green gaussians symbolize the probability distribution of the
new coordinates. The left picture illustrates the naive sampling directly from ρkin and the right
one the more sophisticated approach.

same. However, this problem can be easily overcome by the introduction of multislice moves.
The starting point is again an open configuration like in Fig. 5, but the new update will generate
M new beads in a single step. All new coordinates will be sampled according to the kinetic
density matrix:

T (X→ X̃) =
M−1∏
i=0

ρkin(rk,i, rk,i+1, ε) . (34)

The acceptance ratio is, in analogy to Eq. (33), given by

A(X→ X̃) = eε∆V (X→X̃)eMεµ . (35)

The sampling procedure is illustrated in the left picture of Fig. 6, where the y-τ -plane is
visualized. The red trajectory corresponds to the configuration X before the update. The blue
points are the new coordinates which have been sampled according to Eq. (34). The green
gaussians symbolize the probability distribution for each new coordinate, centered around the
position of the bead on the previous time slice, i.e., the black squares. The problem with this
kind of sampling scheme is due to the fact that the creation of the M missing beads, based
on the Eqs. (34) and (35), is not sufficient to account for a change between diagonal and off-
diagonal sector. The missing contribution (for further details see the WA update Close) is the
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2.4 Worm algorithm

kinetic density matrix which connects the last new bead with the worm’s tail, i.e., the time slices
τ = 14ε and τ = 15ε in Fig. 6. The sampling of the new path is completely independent from
rΨ† . This means that the last sampled bead might be very far away from the tail’s position, as
it is indeed the case in the pictured example. However, such a large spatial difference between
adjacent beads is severely punished by ρkin, and a transition to the diagonal sector will not be
possible in this case.

A much better alternative to Eq. (34) is the widely used bisection method. The kinetic part
of the ratio of the weights is given by

Wkin(X̃)

Wkin(X)
=

M∏
i=0

ρkin(rk,i, rk,i+1, ε) . (36)

For a better sampling scheme, each of the factors in Eq. (36) is complemented with additional
terms [40]:

T (X→ X̃) =
ρkin(r0, r1, ε)ρkin(r1, rM+1,Mε)

ρkin (r0, rM+1, (M + 1)ε)
× (37)

ρkin(r1, r2, ε)ρkin(r2, rM+1, (M − 1)ε)

ρkin (r1, rM+1,Mε)
× . . .

· · · × ρkin(rM−1, rM , ε)ρkin(rM , rM+1, ε)

ρkin (rM−1, rM+1, 2ε)
.

The difference between Eqs. (36) and (37) is the denominator of the first factor since all other
new terms cancel. To recognize the important advantage of the latter, one might consider a single
one of the fractions which give the probability distribution for the sampling of an intermediate
coordinate xi, i ∈ [1,M ]:

P (xi) =
1√

2πσi
exp

(
−(xi − ξi)2

2σ2
i

)
. (38)

Equation (38) is a gaussian distribution with the variance

σi =

√
αi
2π
λε, , αi =

M + 1− i
M + 2− i

around the position

ξi = αixi−1 + (1− αi)xM+1 ,

which is the intersection of the time slice τi with the line connecting xi−1 with xM+1. This more
sophisticated sampling scheme is illustrated in the right image of Fig. 6. The red and blue paths
again represent the old and new trajectory, respectively, and the green gaussians the probability
distribution P (xi) of the new coordinates. This time, however, the P (xi) are centered around
the straigt black lines which connect the last bead with the tail. The great advantage of this
bisection technique is that the end point of the new trajectory which, in the case of a closing
update, is the worm’s tail is explicitly taken into account, so that no large gaps like in the
left image of the figure might appear. Therefore, Eqs. (37) and (38) provide the basis of most
updates of the worm algorithm as explained in the following section.
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Figure 7: Illustration of Insert/Remove and Open/Close: Two configurations are plot-
ted in the x-τ -plane. The left picture visualizes the updates Insert/Remove. The red path
corresponds to some unaffected pre-existing particle and the blue piece of trajectory is the in-
serted or removed worm. The right picture shows the Open/Close update and the blue segment
corresponds to the new (→ close) or removed (→ open) beads.

2.4.2 Updates of the worm algorithm

A working path integral Monte Carlo algorithm must provide an ergodic set of updates fulfilling
the detailed balance Eq. (27). However, in order to have a more flexible scheme, the update
set from Boninsegni et al. [8] is complemented by two additional updates, namely Move and
Bisection.

1. Insert and Remove : The update Insert causes the insertion of a new worm into a
formerly closed configuration, as it is pictured in the left image of Fig. 7, in the following
steps:

• Select a time slice τΨ† ∈ [0, P − 1] at random.

• Sample the position of the tail rΨ† uniformly inside some predefined volume V .

• Randomly select the length M̃ ∈ [1,M ] of the new worm. The maximum number of
changed beads, M , is a free algorithmic parameter.

• Sample the position of the worm’s head rΨ from ρkin(rΨ† , rΨ, M̃ε).

• Connect the head and the tail with M̃ − 1 new beads according to the bisection
method from Eq. (37).

These five steps lead to the transition probability

TInsert(X→ X̃) =
ρkin(rΨ† , rΨ, M̃ε)

PVM

∏M̃
i=1 ρkin(ri, ri+1, ε)

ρkin(rΨ† , rΨ, M̃ε)
, (39)

with r1 = rΨ† and rM̃+1 = rΨ. The random selection of the head’s position causes the

matrix elements ρkin(rΨ† , rΨ, M̃ε) to cancel. The ratio of the new and old configuration
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2.4 Worm algorithm

weights is given by

W (X̃)

W (X)
= eM̃εµeε∆V (X→X̃)

M̃∏
i=1

ρ(ri, ri+1, ε) . (40)

The transition probability for the inverse update, i.e., the removal of an existing worm, is
simpy given by TRemove(X̃ → X) = 1, since there is no degree of freedom. Inserting Eqs.
(39) and (40) into the Metropolis solution (28) yields the acceptance probabilities

AInsert(X→ X̃) = min
(

1, CV PMeM̃εµeε∆V (X→X̃)
)

and

ARemove(X̃→ X) = min

(
1,

1

CV PM
e−M̃εµe−ε∆V (X→X̃)

)
,

where the constant C controls the ratio of the diagonal and off-diagonal sector and can
be optimized to enhance the performance. Finally, it should be noted that Insert is only
possible in a diagonal configuration and Remove requires the presence of a worm with less
than M + 1 beads and a tail which is located within V . The removal of l > M + 1 beads
or rΨ† not being within the volume in which a particle can be inserted would violate the
detailed balance equation since the reverse move is not possible.

2. Close and Open : The update Close samples the missing connection between the head and
tail and, hence, causes a transition from the off- to the diagonal sector. This is illustrated
in the right image of Fig. 7, where the red paths symbolize the pre-existing configuration
and the blue piece of trajectory corresponds to the new connection between head and tail.

• Sample the M̃ − 1 missing beads according to the bisection scheme from Eq. (37).

This gives the transition probability

TClose(X→ X̃) =

∏M̃
i=1 ρ(ri, ri+1, ε)

ρ(rΨ† , rΨ, M̃ε)
,

with r1 = rΨ and rM̃+1 = rΨ† . The ratio of the configuration weights is given by

W (X̃)

W (X)
= eM̃εµeε∆V (X→X̃)

M̃∏
i=1

ρ(ri, ri+1, ε) .

The Open update erases existing connections from a closed configuration and involves the
following steps

• Choose the new head at random from all Nbeads existing beads.

• Select the number of beads to be erased uniformly as M̃ ∈ [0,M − 1].

The resulting transition probability is given by

TOpen(X̃→ X) =
1

NbeadsM
.

Thus, the solution of the detailed balance equation is given by

AClose(X→ X̃) = min

(
1,
ρ(rΨ† , rΨ, M̃ε)eM̃εµeε∆V (X→X̃)

CMNbeads

)

AOpen(X̃→ X) = min

(
1,
CMNbeadse

−M̃εµe−ε∆V (X→X̃)

ρ(rΨ† , rΨ, M̃ε)

)
,
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Figure 8: Illustration of Advance/Recede and Bisection: Two configurations are plotted
in the x-τ -plane. The left picture corresponds to the Advance/Recede update where the red
paths symbolize the pre-existing configuration and the blue beads the new/deleted piece of
trajectory. The right image shows the Bisection update where a part of one pre-existing red
path is replaced by the new blue beads.

with the same constant C as in the Insert and Remove update. Configurations with
l > M − 1 missing links cannot be closed due to the lack of an inverse update.

3. Advance and Recede : The Advance update moves the worm’s head forward in imaginary
time by generating M̃ new beads. This is illustrated in the left image of Fig. 8 by the blue
piece of trajectory and implemented as follows:

• Select the number of new beads M̃ ∈ [1,M ].

• Sample the position of the new head, rM̃ , from ρ(rΨ, rM̃ , M̃ε).

• Connect the old and new head according to the usual bisection scheme from Eq. (37).

The transition probability is given by

TAdvance(X→ X̃) =
ρ(rΨ, rM̃ , M̃ε)

M

∏M̃−1
i=0 ρ(ri, ri+1, ε)

ρ(rΨ, rM̃ , M̃ε)
,

with r0 = rΨ. The ratio of the old and new configuration weights is calculated as

W (X̃)

W (X)
= eM̃εµeε∆V (X→X̃)

M̃−1∏
i=0

ρ(ri, ri+1, ε) .

The inverse update Recede moves the head backwards in τ by deleting M̃ existing beads:

• Select the number of beads to be deleted as M̃ ∈ [1,M ].

• Erase the last M̃ beads, starting from the head.
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2.4 Worm algorithm

This results in the transition probability

TRecede(X̃→ X) =
1

M
.

Hence, the Metropolis solution for the acceptance probability is given by

AAdvance(X→ X̃) = min
(

1, eM̃εµeε∆V (X→X̃)
)

and

ARecede(X̃→ X) = min
(

1, e−M̃εµe−ε∆V (X→X̃)
)

.

Both updates are only applicable to off-diagonal configurations since an existing worm is
needed.

4. Bisection : This update is both applicable to diagonal and off-diagonal configurations
and is in detailed balance with itself. The idea is to change the position of M̃ beads by
erasing them and closing the trajectory immediately afterwards, as it is illustrated in the
right image of Fig. 8. Thus, it can be viewed as a combination of the updates Open and
Close, but without any restrictions on the present configuration.

• Select the number of beads to be changed as M̃ ∈ [1,M ].

• Select the first bead of this set randomly from all existing ones in the present config-
uration.

• Erase the beads and resample them according to the usual bisection scheme from Eq.
(37).

The parameter M does not have to be equal to M and can be optimized to enhance the
performance. Since the update is self-balanced and conserves the number of variables, the
acceptance probability is simply given by the ratio of the configuration weights:

ABisection(X→ X̃) = min
(

1, eε∆V (X→X̃)
)

.

Although, in principle, not needed, the Bisection update is expected to considerably de-
crease the autocorrelation time since all parts of the trajectories are updated regardless of
the worm itself.

5. Move : Like the Bisection update, the single particle move is, in principle, applicable to
both diagonal and off-diagonal configurations and self-balanced as well. The only require-
ment is a closed piece of trajectory consisting of exactly P beads, i.e., a single particle
which is not involved in any exchange cycles. The proposal to move more than one particle
at once would be much less efficient and, therefore, is not included.

• Select a single particle from the existing configuration. If there is not one, the update
is rejected.

• Calculate the particle’s displacement randomly as d ∈ [−dmax,dmax].

• Move the particle by adding d to the position of all P beads.

As for the Bisection update, the acceptance probability is simply given by

AMove(X→ X̃) = min
(

1, eε∆V (X→X̃)
)

.

The single particle move is especially useful in quasi-classical systems with no or only small
exchange effects.
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Figure 9: Illustration of the Swap update: Two configurations are plotted in the x-τ -plane.
The left and right picture show the paths before and after the Swap update, respectively.

6. Swap: Without the Swap update, the only possibility to sample particle exchange with
the other introduced moves would be to advance a worm for several β in imaginary time,
which is, obviously, very inefficient. The following update is self-balanced and requires
an off-diagonal configuration with more than P beads, i.e., more than one particle. The
particle exchange is a local and completely ordinary move in the worm picture. The basic
idea is illustrated in Fig. 9, where two configurations are plotted in the x-τ -plane. The
left image shows the configuration before the update, consisting of a single, closed particle
and an eleven beads long worm. The right image is a snapshot taken after the update.
M = 3 beads have been erased from the closed path, starting one time slice ahead of the
old head τΨ. The worm’s head has been connected to the formerly closed particle instead.
The result is a worm with a length l > P which, when getting closed, becomes an exchange
cycle of two particles. The exact update scheme is executed as follows:

• Consider the time slice τM = τΨ +M . Create a list χ1(k) which contains the kinetic
density matrix elements ρ(rΨ, rk,M ,Mε) for all k = 1, . . . , N particles on the target
slice τM .

• Draw one bead from the list at random according to the probability P (k) = χ1(k)/Σ1,
with the normalization Σ1 =

∑N
k=1 χ1(k).

• Find the bead which will be the new head after the update by moving M steps
backwards from the target bead k. Erase all the beads in between.

• Connect the old head to the target bead according to the usual bisection scheme from
Eq. (37).

• Finally, calculate a second list χ2(k) which contains the ρ(rnew
Ψ , rk,M ,Mε) between the

position of the new head rnew
Ψ and all the beads on the target slice. The normalization

is given by Σ2 =
∑N

k=1 χ2(k).
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The transition probability for such a move can be written as

TSwap(X→ X̃) =
ρ(rΨ, rk,M ,Mε)

Σ1

∏M−1
i=0 ρ(rnew

i , rnew
i+1 , ε)

ρ(rΨ, rk,M ,Mε)
, (41)

with rnew
M = rk,M . The ratio of the new and old configuration weight is given by

W (X̃)

W (X)
=

∏M−1
i=0 ρ(rnew

i , rnew
i+1 , ε)∏M−1

i=0 ρ(ri, ri+1, ε)
eεV (X→X̃) .

The transition probability for the inverse move corresponds to Eq. (41) with the old coor-
dinates in the kinetic density matrix elements and the normalization from the second list
Σ2. Hence, the Metropolis solution of the detailed balance equation reads

ASwap(X→ X̃) =
Σ1

Σ2
eε∆V (X→X̃) ,

since all the ρkin cancel. The great advantage of the Swap update compared to other
exchange mechanisms, as e.g. described by Ceperley [5], is the local nature of the move
which makes it, in principle, not less probable than Advance or Close if exchange is wanted
by the system. This is due to the fact that only a single connection is sampled at a time
and the trajectories can be deformed many times until the configuration is closed.

The PIMC worm algorithm scheme consists of a relatively small set of local updates, which are
able to efficiently generate every possible configuration X. The significantly enhanced sampling
of particle exchange makes the WA superior to the usual techniques.

2.5 Calculation of Observables

In the following subsection, the general approach to calculate observables from PIMC simula-
tions is discussed. The canonical expectation value of an arbitrary observable Â in the spatial
representation is given by

〈Â〉 =
1

Zc

∫
dR 〈R| Âe−βĤ |R〉 ≈ 1

NMC

NMC∑
j=1

A(Xj) ,

with the canonical partition function Zc and the Markov chain of canonical configurations {Xj}
created by the Monte Carlo procedure. However, the worm algorithm operates in an extended
configuration space. Therefore, one needs a scheme to extract canonical data for a fixed particle
number N from such a Markov chain3.

2.5.1 Measurements of canonical observables

The most widely used canonical measurement scheme consists of the following steps:

• Count all configurations of the Markov chain, including open paths and all particle numbers
N .

• Check every M steps, if the configuration is diagonal. If this is the case, then measure
all canonical observables (e.g. energies, densities, etc.) and determine N . Include the
data into the canonical set {A(Xj(N,V, T ))}. One is allowed to measure the MGF if the
configuration is off-diagonal.
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Figure 10: Extraction of canonical data: The extended Markov chain, which consists of both
diagonal (green) and off-diagonal (red) configurations, is visualized. The dark arrows symbolize
attempted canonical measurements.

• Repeat the first two steps until enough data is collected.

This approach is illustrated in Fig. 10. The image shows the extended Markov chain consisting
of both diagonal (green) and off-diagonal (red) configurations. The dark blue arrows symbolize
the attempted measurements every M = 3 steps. Canonical observables may only be measured
at the first and the last one. The measurement frequency M should be chosen of the order of
the autocorrelation time τAC (see section 2.6) to reduce correlations in the dataset. In order
to prove that the described process does indeed generate a dataset of canonically distributed
configurations (and, thus, measurements), one must show that the result 〈A〉C can be written
as the expectation value of some modified observable in the extended configuration space. This
can be accomplished in two similar steps. First, consider the grandcanonical expectation value
of Â,

〈A〉GC =
1

ZGC

∫
dRGC 〈RGC| Â |RGC〉

=
1

Zext

∫
dRext 〈Rext| B̂ |Rext〉 , (42)

where the equality holds for the modified observable

B̂ = Â
Zext

ZGC
δGC (Rext) ,

with the definition

δGC (Rext) =

1, if Rext ∈ {RGC}

0, otherwise.

Equation (42) implies that, by performing a Monte Carlo average of B̂ in the extended config-
uration space, one effectively generates a grandcanonical dataset of the observable Â:

〈B〉ext ≈
1

NMC

NMC∑
j=1

Bj =
1

NMC

NMC∑
j=1

Aj
Zext

ZGC
δGC (Rj) . (43)

The ratio of the two normalizations Zext/ZGC → NMC/NGC approaches the ratio of the numbers
of all and only closed configurations for NMC →∞, and Eq. (43) reduces to

〈B〉ext ≈
1

NGC

NGC∑
j=1

Aj = 〈A〉GC .

3The proofs of the extraction schemes have been worked out together with S. Groth and T. Schoof.
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2.5 Calculation of Observables

Figure 11: Illustration of the canonical cycles scheme: The presented Markov chain is
identical to the one from Fig. 10. The consideration of canonical configurations only results in
different measurements.

The same consideration can be repeated to extract canonical data from the grandcanonical set
and the proof is completed.

Another useful possibility is the implementation of canonical cycles. The idea is to only
count canonical configurations with a specific N and consider all steps in between, which means
both off-diagonal and diagonal paths with another particle number, as one combined Monte
Carlo update. The latter, obviously, fulfills the detailed balance condition since this is true for
all the WA updates as well and, in the ratio of the new and old weights W (X̃)/W (X), all terms
that include µ cancel. The measurement algorithm can be implemented as follows:

• Check if the configuration is diagonal. If this is true, then determine the particle number
N . Increase the canonical counter c(N)→ c(N) + 1.

• If c(N) = M , then all diagonal observables are measured, added to the canonical dataset
and the counter is set back to zero: c(N)→ c(N) = 0.

• Repeat the first two steps until enough data is collected.

The canonical cycles scheme is illustrated in Fig. 11, where the same Markov chain as in Fig. 10
is shown. For simplicity, it is assumed that all diagonal (green) configurations exhibit the same
particle number, N . The off-diagonal (red) configurations are neglected and measurements are
performed every M = 3 steps.

There is no general answer to which one of the two extraction schemes is more efficient. In
this work, the first presented approach is used.

2.5.2 Examples

A well known approach to calculate an observable by PIMC is to use an explicit connection to
the partition function Z, e.g. the system’s total energy

E = − ∂

∂β
Z .

Using the expression for Z in the path integral picture from Eq. (22) and inserting the thermal
de Broglie wavelength leads to

E = −
∫

dR0 . . . dRP−1
∂

∂β

(
1

λdNβ

)
exp

(
− mP

h̄22β

P−1∑
i=0

N∑
k=1

(rk,i − rk,i+1)2 − (44)

− β
P

P−1∑
i=0

V (Ri)

)

−
∫

dR0 . . . dRP−1
1

λdNβ

∂

∂β
exp

(
− mP

h̄22β

P−1∑
i=0

N∑
k=1

(rk,i − rk,i+1)2 − β

P

P−1∑
i=0

V (Ri)

)
.
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The evaluation of all the derivatives gives the usual expression for the energy as the sum of the
three contributions [28]

E =
dNP

2β
− mP

2h̄2β2
〈
P−1∑
i=0

N∑
k=1

(rk,i − rk,i+1)2〉+
1

P
〈
P−1∑
i=0

V (Ri)〉 . (45)

The last term can, obviously, be identified with the total potential energy, while the first two
correspond to the thermodynamic estimator of the kinetic energy. The very first term is similar
to the classical value, i.e., Ecl,kin = 3NkBT/2 for a 3D system and the second term can be
interpreted as a purely quantum mechanical correction. In the classical limit, i.e., a single
imaginary time slice P = 1, the double sum vanishes and the kinetic energy becomes Ecl,kin. It
is very interesting to note that particles which propagate over a long distance in the imaginary
time in the path integral picture actually have a small kinetic energy since this is related to the
quantum mechanical extension of the particles and absolutely not to any real time propagation.
A well known shortcoming of the estimator from Eq. (45) is that the kinetic energy suffers from
a very high variance and, thus, a big statistical uncertainty. One possibility to overcome this
issue is based on the virial theorem. However, there exist pros and cons for both the virial and
thermodynamic estimator and the optimal way to estimate the kinetic energy is discussed e.g.
in [41].

Diagonal observables can be calculated in an even more straightforward way, that is, by
making direct use of the definition of the expectation value

〈A〉 =
1

Z

∫
dR 〈R| e−βĤÂ |R〉 ,

and translating it into the path integral picture in precisely the same way as the partition
function Z in section 2.1.2, i.e., by factorizing ρ̂ and inserting again the P − 1 unities:

〈A〉 =
1

Z

∫
dR0 . . . dRP−1 〈R0| e−εĤ |R1〉 . . . 〈RP−1| e−εĤÂ |R0〉 .

The Metropolis algorithm generates the configurations {X} according to the correct configu-
ration weights, and if Â is diagonal, it can be evaluated on e.g. the last time slice in every
configuration of the Markov chain. In addition, there is nothing special about any particular
time slice, and, hence, it makes sense to average Â over all imaginary time slices to obtain better
statistics. An obvious example is the density

〈ρ(rα)〉 ≈ 1

NMC

NMC∑
i=1

1

PVα

P−1∑
j=0

N∑
k=1

δ(rj,k, rα) ,

calculated on some discrete spatial positions rα in the center of bins with the volume Vα and
the definition

δ(rj,k, rα) =

1, if rj,k ∈ Vα

0, otherwise.

The calculation of other observables like superfluid properties or estimators for the quantum
breathing mode are discussed in the corresponding sections.
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2.6 Error analysis of Monte Carlo data

2.6 Error analysis of Monte Carlo data

A very important point for every simulation method is the availability of reasonable errorbars to
evaluate the quality of any obtained result. This is a non-trivial task in the case of PIMC data
since correlation effects between configurations in the Markov chain must be taken into account.
The following introduction applies to every Metropolis Monte Carlo simulation technique and
is mainly based on the overview by Janke [42].

The expectation value of an observable Â is approximated by the MC average

〈A〉 ≈ A =
1

NMC

NMC∑
j=1

Aj (46)

over all NMC elements of the generated Markov chain. According to the Central Limiting
Theorem (CLT), which becomes valid for a sufficiently large number of single measurements Aj ,
A is normally distributed around the exact expectation value 〈A〉. For uncorrelated measure-
ments the variance of the mean value is given by

σ2
A

=
〈A2

j 〉 − 〈Aj〉
2

NMC
=

σ2
Aj

NMC
, (47)

with the variance of individual measurements σ2
Aj

. Equation (47) implies that the error scales

as σMC ∝ 1/
√
NMC. This means that one needs one hundred times the computation time to

gain an additional digit of accuracy.

2.6.1 Autocorrelation time

However, Eq. (47) neglects correlation effects. This can be shown by inserting Eq. (46) into the
former and, after some conversions, one obtains:

σ2
A

= 〈A2〉 − 〈A〉2 =
1

N2
MC

NMC∑
i,j=1

〈AiAj〉 −
1

N2
MC

NMC∑
i,j=1

〈Ai〉 〈Aj〉 . (48)

By decomposing Eq. (48) into diagonal and off-diagonal elements and doing some algebra, one
arrives at

σ2
A

=
σ2
Aj

N
2τint ,

with the integrated autocorrelation time

τint =
1

2
+

NMC∑
k=1

A(k)

(
1− k

NMC

)
, (49)

and the normalized autocorrelation function

A(k) =
〈AjAj+k〉 − 〈Aj〉 〈Aj〉
〈A2

j 〉 − 〈Aj〉 〈Aj〉
.

Equation (49) is a measure for the distance between two independent configurations in the
Markov chain. Hence, the Monte Carlo error can be written as

σA =
σAj√
Neff

,

25



2 PATH INTEGRAL MONTE CARLO

 0

 0.025

 0.05

 0.075

 0.1

 0  1000  2000  3000  4000  5000

σ
L

L

Figure 12: Binning analysis of MC data: The error σL of the binned data sets is plotted
over the blocklength L for the potential energy of N = 10 Coulomb interacting particles in 2D.

with the number of effective (independent) measurements Neff = NMC/2τint < NMC. This
means that correlation effects of the samples increase the statistical error of the MC averages.
This is also quite intuitive since correlated configurations cannot contain the same amount of
information as uncorrelated ones.

2.6.2 Binning analysis

The remaining question for this subsection is how to numerically estimate τint from the Monte
Carlo data. It turns out that a straightforward calculation of Eq. (49) is both time consuming and
afflicted with large statistical noise. An alternative approach is the binning analysis procedure,
which can be implemented as follows:

• Bin the dataset {Aj} into M = NMC/L blocks of L measurements. Create a new dataset
{Ak(L)} with

Ak(L) =
1

L

L∑
j=1

AkL+j .

• Consider the Ak(L) as the new measurement values and calculate the uncorrelated error
σL according to Eq. (47).

• Repeat the first two steps for different blocklengths L.

The result of this procedure for NMC = 4.5·105 measurements of the potential energy for N = 10
Coulomb-interacting particles in a 2D harmonic trap is shown in Fig. 12, where σL is plotted
over L and measurements have been performed in every diagonal configuration. For small L,
the error increases with L until, for L ∼ 500, the curve saturates. For small blocklengths,
the blockaverages are still correlated with each other and the error is underestimated. With
increasing L correlations are reduced until, finally, all values are independent and the error
fluctuates around σL ≈ 0.07. Hence, the plot in Fig. 12 reveals both the autocorrelation time
τint and the correct correlated error. The binning analysis is used to calculate every errorbar in
this work.
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3 Implementation of PIMC

In this section, all practical aspects concerning the implementation of the worm algorithm path
integral Monte Carlo scheme are discussed. The code is written in C++, which is a modern
object oriented language and widely used for scientific calculations [43]. The section begins with
a brief introduction of the system of units and some practical details, followed by a presentation
of different checks of the implementation, including the comparison with analyical solutions and
results from another code. Afterwards, some improvements to the usual worm algorithm are
motivated and discussed and the section is completed by a short summary of the possible and
missing capabilities of the presented PIMC implementation.

3.1 System of units

The systems of interest in this work are given by N harmonically confined particles and can be
described by a Hamiltonian of the form

Ĥ =
−h̄2

2m

N∑
k=1

∇2
k +

1

2
mΩ2

N∑
k=1

r2
k +

N∑
j<k

w(j, k) , (50)

with the pair interaction

w(j, k) =


q2

4πε0|rk−rj | , Coulomb,

D
4π|rk−rj |3

, polarized dipoles.
(51)

For a more convenient numerical handling, it is useful to transform Eqs. (50) and (51) into a
dimensionless form. Lengths are expressed in units of the characteristic oscillator length,

l0 =

√
h̄

mΩ
,

and energies in units of h̄Ω. This gives the modified Hamiltonian

Ĥ =
1

2

N∑
k=1

(
−∇2

k + r2
k

)
+ λ

∑
j<k

1

|rk − rj |α
, (52)

with α = 1, 3 for Coulomb- and dipole-interaction, respectively, and the definition of the coupling
parameter λ as the ratio of the characteristic energies

E0 = h̄Ω ,

EClmb =
q2

4πε0l0
and

Edip =
D

4πl30
,

⇒ λ =


q2

4πε0l0h̄Ω , Coulomb,

D
4πl30h̄Ω

polarized dipoles.
(53)

Equation (53) implies that the coupling strength λ can be tuned experimentally by the modifi-
cation of the trap frequency Ω. All simulation parameters and results in this work are given in
these characteristic oscillator units.
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3.2 Practical details

The first functioning implementation of WA-PIMC consists of the following steps:

1. Read the input parameters like the chemical potential µ, inverse temperature β, number
of time slices P , etc. and initialize all the data structures.

2. Start with an empty system and let the worm algorithm adjust the particle number ac-
cording to µ.

3. Optimize the free parameters like the maximum number of displaced beads, M , and the
control variable C for the ratio of off- and diagonal sector.

4. Spend Neq Monte Carlo steps without measuring any observables to let the system equi-
librate.

5. Check every Nm steps wether the system is diagonal or not and measure the corresponding
observables.

6. Write all obtained observables on the disk, e.g. every ∼ 104 measurements.

7. Stop the program after collecting the desired number of measurements.

One possibility to perform the adjustment of C in step 3 is to pre-define some ratio κinput of steps
in the diagonal and off-diagonal sector and choose C in a way that the real ratio κ is within some
interval around the desired value. Although one might, in principle, argue that high quality data
of diagonal observables requires a lot of diagonal measurements and, hence, a lot of time in the
closed path sector, this is not necessarily true. The sampling of particle exchange only happens
in off-diagonal configurations. Thus, spending only little time in this sector will result in very
high correlations of quantities that are sensitive to exchange like e.g. the superfluid fraction,
and the larger number of measurements will hardly reduce the statistical error. Empirically, it
turns out to be reasonable to spend approximately three times as much steps in the off-diagonal
than in the diagonal sector. Step 6 is needed to get the measured observables out of the random
access memory (RAM) and, in addition, allows to check the quality of the observables before
the PIMC simulation is finished.

The presented algorithm is already complete in the sense that it - if implemented correctly
- will calculate correct observables. In the following section, the correctness of the code will be
validated before some improvements are introduced in section 3.4.

3.3 Checks of the implementation

There exist several powerful criteria that can be implemented into the code to verify its validity.
Each time an update is proposed, one might immediately consider the inverse update and check
if the acceptance probability for the two moves satisfies Eq. (28) from section 2.3. If this is
not the case, then the particular updates are not in detailed balance and the algorithm does
not work. Another good check is to introduce some variable Eupdate and add the change in
the potential energy ∆V (X → X̃) onto it every time an update is accepted. In the diagonal
sector, Eupdate must coincide with the total potential energy calculated by hand. In this case,
the bookkeeping of V (X) in the updates is correct. The connections between different beads
might be checked by considering their next and previous IDs and the latter’s time slices as well.
Only the head and tail of the worm do not have a next and previous neighbour, respectively.
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Figure 13: Convergence with P : The potential energy EHO is plotted over the number of
time slices P for a single particle in 1D at β = 5. The PIMC results are visualized as red points
and the analytical value corresponds to the green line.

3.3.1 One particle harmonic oscillator

If all the above checks are fulfilled, one might calculate some observables of a test system to
compare them to analytically known values. Such an example is provided by a single particle in a
1D harmonic oscillator potential. The parameters for the simulation are chosen as λ = 10, µ = 2
and β = 5 and the convergence of the potential energy EHO with respect to the number of time
slices P is investigated. The results are visualized in Fig. 13 where EHO is plotted with errorbars
over P . The horizontal green line corresponds to the analytical value Eexact = 0.25339.... For
small P , the red points strongly deviate from the green line since the commutator terms missing
in the primitive approximation are not negligible. With an increasing number of time slices,
this difference decreases until, for P ∼ 80, the curve saturates. This means that the error terms
have become smaller than the statistical errors and the results are quasi-exact. The convergence
behaviour is in complete agreement with data published by Sakkos et al. [34] and a simulation
with P = 512 and NMC > 7 · 108 measurements gave a potential energy with a statistical error
on the sixth digit and the exact value within single errorbars.

Another quantity to be investigated for the convergence is the density n, which is plotted
in the left image of Fig. 14 over the spatial coordinate x. All four curves exhibit a similar
gaussian-like form. The result for P = 4 time slices (red) significantly deviates from the other
three curves. The green dataset corresponds to P = 10 and nearly equals the density for P = 60
(blue) and P = 110 (purple) and the latter cannot be distinguished with the naked eye. The
radial density can be compared to the ground state function

n0(x) =
1√
π

exp
(
−x2

)
.

The deviation ∆n(x) = n(x) − n0(x) between the simulation results and n0 is shown in the
right image with errorbars. The red curve corresponds to β = 5 and exhibits a non-monotonous
behaviour. The PIMC results are below the ground state density for x < 0.7 and above otherwise.
This implies that higher states significantly contribute to n. The green curve corresponds to
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Figure 14: Comparison of the densities: The left image shows the density n plotted over x
for P = 4 (red), P = 10 (green), P = 60 (blue) and P = 110 (purple) time slices. In the right
image, the difference ∆n to the ground state density n0 is plotted for the inverse temperatures
β = 5 (red) and β = 10 (green).

Insert Remove Open Close Advance Recede Bisection Swap Move
0.75559 0.2548 0.15232 0.37201 0.46981 0.46970 0.59833 0.11174 0.82572

Table 1: Acceptance ratios of the PIMC simulation from Fig. 13 with P = 200.

β = 10 and the difference ∆n vanishes within the errorbars. Evidently, the probability to occupy
higher states is so small that their contribution to n can hardly be resolved with the accuracy
of the presented PIMC results. Finally, table 1 lists the acceptance ratios from the simulation
with β = 5 and P = 200. It is a common misconception that there should be some optimum
acceptance ratio which is valid for all systems, as it is demonstrated in more detail in section
3.4.2. Still, one can conclude that all updates enjoy medium to high probabilities which indicates
that there is no ergodicity problem and small autocorrelations in the Markov chain.

3.3.2 Comparison to another PIMC code

At this point, one may conclude that the PIMC code works correctly for a single particle or,
equivalently, ideal systems. Unfortunately, there is no analytical benchmark for correlated many-
body systems. The best possible check in those cases is the comparison with already existing
code, in this case a WA-PIMC implementation by A. Filinov, see e.g. [13], over a wide parameter
range. A selected test case to be presented in this section is a 2D Coulomb system with λ = 10,
β = 5, P = 80 and N = 7. The resulting radial density n is plotted in Fig. 15 over the distance
to the center of the trap, r. The red curve corresponds to the implementation by Filinov and the
blue points to the author’s code. The outcome of the two independent calculations for n are in
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Figure 15: Comparison of the radial density: The radial density n is plotted over the
distance to the center of the trap r for a 2D Coulomb system with N = 7, λ = 10, β = 5 and
P = 80. The red curve has been obtained with a PIMC implementation by A. Filinov and the
blue points with the author’s code.

perfect agreement, that is, within the errorbars. The same is true for the energies. This means
that both codes seem to be able to correctly produce results in the canonical ensemble. To verify
grandcanonical results, one may consider the probability distribution P (N) of configurations
with a specific particle number N . Such a comparison is shown in Fig. 16 where P is plotted
over N for a 2D Coulomb system with λ = 0.25, µ = 4.6, β = 5 and P = 80. The color
assignment is the same as in Fig. 15 and, again, the two data sets coincide.

3.3.3 The virial theorem

The virial theorem provides a connection between a system’s kinetic, confinement and interaction
energy. For a Hamiltonian like Eq. (52), it states

Ekin = EHO −
α

2
Eint . (54)

It is immediately clear from Eq. (54) that only two of the three energies are needed to know
all of them. On the other hand, one can calculate all energies from the PIMC simulation and
check the validity of the virial theorem, i.e., if the left and right hand side of Eq. (54) are
within each others errorbars. The result for such a check is shown in Fig. 17, where the kinetic
energy - normalized to the result from the thermodynamic estimator - is plotted over the particle
number N for a 2D Coulomb system with λ = 3 and β = 5. The red points correspond to the
thermodynamic estimator itself and the green points to the virial theorem. All points are within
each others single or double errorbars and the results from Eq. (54) fluctuate around unity. This
means that no systematic deviation occurs and the virial theorem is indeed fulfilled.

3.3.4 Effect of bad random numbers

In section 2, it has been concluded that the path integral Monte Carlo method delivers quasi-
exact results if a sufficient number of time slices P is used. However, this is, strictly speaking,
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particle number N is plotted over the latter for a 2D Coulomb system with λ = 0.25, β = 5,
P = 80 and µ = 4.6. The red curve has been obtained with the code by A. Filinov and the blue
points with the author’s.
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Figure 17: Check of the virial theorem: The kinetic energy - normalized to the result of
the thermodynamic estimator - is plotted over the particle number N for a 2D Coulomb system
with λ = 3 and β = 5. The red points have been obtained with the thermodynamic estimator
and the green points with the virial theorem.
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Figure 18: Effect of bad random numbers: The kinetic energy Ekin is plotted over the
number of time slices P for a 2D Coulomb system with N = 7, β = 5 and λ = 5. The red
curve has been obtained using the thermodynamic estimator and the green curve with the virial
theorem.

not true. Any Monte Carlo algorithm assumes the availability of perfect random numbers which
are not only correctly distributed but also completely uncorrelated. This would require the
conduction of quantum mechanical measurements, like a double slit setup, for example. Such an
approach is, however, not feasible for practical purposes. The solution is given by the develop-
ment of pseudo random number generators, see e.g. [44]. These generate a deterministic chain
of uniformly distributed numbers which are uncorrelated enough to be used in MC simulations.
The quality of pseudo random numbers might be checked with the Kendall tests, as described
in the textbook [24]. It is important for any developer of Monte Carlo code to be aware of this
problem since it might drastically effect the quality of the simulation results. An example of
the effect of bad random numbers is shown in Fig. 18, where the kinetic energy Ekin is plotted
over the number of time slices P for a 2D Coulomb system with β = 5, N = 7 and λ = 10. The
red points have been obtained using the thermodynamic estimator and the green points with
the virial theorem. For P < 50, the virial results are systematically higher but for an increasing
number of time slices the red curve seems to diverge. The discrepancy between the two kinetic
energy datasets exceeds the magnitude of the errorbars, which means that the outcome of the
simulation must be incorrect. The explanation for the wrong data is the application of the C++
default random number function rand(). The latter is based on a very simple algorithm with a
short period and a high degree of correlation and is absolutely inappropriate for Monte Carlo
simulations [45]. A suitable alternative is given by the Mersenne Twister [46], as implemented
in the C++11 library 〈rand〉.
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Figure 19: Example for artefacts: Two PIMC snapshots of N = 84 particles are plotted
in the x-y-plane. The left and right image have been obtained without and with additional
Boltzmannon equilibration steps, respectively. The simulation parameters are λ = 300, β = 4
and P = 100.

3.4 Improvements

In computational physics, there usually is no such thing as the perfect algorithm and some useful
improvements to the standard worm algorithm are discussed in the following section.

3.4.1 Boltzmannon equilibration steps

One possible and relatively simple improvement is to start the simulation with an equilibration
procedure without any particle exchange. In the implemented scheme, the particles are inserted
as closed trajectories on all P time slices. The other possible updates in this phase are the
single particle Move, Bisection and a modified Remove, which deletes an entire particle. This
means that no off-diagonal configurations and macroscopic paths occur. Hence, the generated
configurations correspond to a grandcanonical ensemble of Boltzmannons. The Boltzmannon
equilibration is an indenspensible tool for the simulation of very strongly correlated systems.
This is demonstrated in Fig. 19 where two snapshots from PIMC simulations with N = 84
particles are plotted in the x-y-plane for a 2D Coulomb system with λ = 300, β = 4 and
P = 100. The left image has been obtained without the Boltzmannon equilibration and five
exchange cycles occur. However, these are not physical effects but rather undesireable artefacts.
In the beginning of the simulation, a first worm is inserted into the empy system. Since there are
no other particles to interact with, there is a very high probability that it will advance several
times P long in the imaginary time because the chemical potential µ is dominating. Similar
update cycles might happen a few times until, finally, a balance between µ and the potential
energy is achieved and all the new particles will behave classically. The problem is that in
order to remove the long exchange cycles from the first few updates, the trajectory must be
openend and a Swap or several Recedes have to be accepted. The strong coupling will, with
a high probability, prevent the Swap and the chemical potential the Recede since the latter
corresponds to the removal of a particle. The right image of the figure shows a snapshot of
the same system but with the Boltzmannon equilibration procedure. In this case, the artefacts,
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Figure 20: PIMC snapshot of a strongly degenerate system: A random configuration is
shown for a 2D dipole system with λ = 2.5, β = 4, P = 80 and N ≈ 88.

obviously, cannot be created in the beginning and the resulting configurations can be used to
perform measurements.

It is also noteworthy that this equilibration does not cause any errors or artefacts for very
degenerate systems, where macroscopic exchange cycles are expected. This is because, in such
cases, the usual worm algorithm will sample the exchange starting from Boltzmannons as well.
The only slight disadvantage is that the total equilibration of the system might take a little
longer since all the exchange has to be sampled after the creation of the particles and is not
generated in the beginning. Nevertheless, starting with Boltzmannons is always the safe thing
to do.

3.4.2 Artificial potential between head and tail

Another difficulty for the WA-PIMC algorithm occurs in strongly degenerate systems. A PIMC
snapshot from such an example is shown in Fig. 20 for a 2D dipole system with λ = 2.5, β = 4,
P = 80 and N ≈ 88. Nearly all particles are involved in exchange cycles and, thus, form
macroscopic trajectories over the entire system. This means that the Swap update enjoys a
high probability since the mean interparticle distance is smaller than the thermal de Broglie
wavelength. The bottleneck of this feature is that the worm’s head might be swapped several
times until there appears a large difference between rΨ and rΨ† . When the two are spatially
separated too much, the trajectory cannot be closed any more. In such a case, one has to
wait until head and tail are swapped together closely enough by chance and hope that, in this
particular configuration, Close is proposed and accepted. This means that changes between the
off-diagonal and diagonal sector will only seldomly occur, which causes higher autocorrelation
times. A possible solution to this problem is the introduction of an additional artifical potential
term U(rΨ, rΨ†) which influences the relative distribution of head and tail [47]. A natural choice
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Figure 21: Autocorrelation effects with and without the artifical potential: The outcome
of a binning analysis is shown for the system from Fig. 20 for the potential energy due to the
confinement EHO (left) and the superfluid fraction γsf (right). The color assignment distinguishes
different artifical potentials.

is

U(rΨ, rΨ†) =
1

Ω
exp

(
−(rΨ − rΨ†)

2

2ηλ2
dB

)
, (55)

with the unimportant normalization Ω and a control factor η which can be used to tune the
effects. With η = 1, Eq. (55) is simply a gaussian distribution of rΨ around rΨ† with the
thermal de Broglie wavelength as the variance. This choice is well suited to the problem since
it is ensured that the head and tail will be most probably in a range towards each other where
the closing of the trajectory is at least possible. Decreasing η will narrow the gaussian and,
therefore, head and tail will be located even more closely together. However, a too small choice
of the control parameter can prevent exchange in cases where it is actually wanted by the system
and, thus, create ergodicity problems or at least drastically increase the autocorrelation time.
Hence, the implementation and tuning of the artifical potential needs to be considered carefully.

The effect of the artifical potential is illustrated in Fig. 21, where the results of a binning
analysis for the system from Fig. 20 are presented for the potential energy due to the harmonic
trap EHO (left) and the superfluid fraction γsf (right). As usual, the error σL is plotted over the
corresponding blocklength L and for all five simulations the same number of measurements have
been obtained. The left picture reveals that the lowest error and, thus, autocorrelation time
occurs for an activated potential between head and tail with the control parameters η = 1.0
(turquoise), η = 0.4 (red) and η = 0.1 (green). A too strict potential indeed dramatically in-
creases correlation effects and the corresponding dark blue curve indicates even more correlation
effects than in the simulation without the additional term (purple). The right picture shows the
same analysis for the superfluid fraction, but with a different outcome. Here, the choice η = 0.4
only slightly reduces the autocorrelation time, while η = 0.1 and η = 0.02 both dramatically
increase the correlated error. The blue curve has not even converged yet, which means that
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Figure 22: Local acceptance ratios for a small system: The radial density n and the local
acceptance ratios of the updates are plotted over the distance to the center of the trap r for a
2D system of N ≈ 19 dipole-interacting particles with λ = 0.5, P = 300, β = 5 and µ = 7.4.

the corresponding Markov chain is not a representative selection from the entire configuration
space since some region with a characteristic feature for the superfluid fraction is not sufficiently
included. Only the natural choice of η = 1.0 leads to a significant improvement. The potential
energy EHO is only sensitive to the spatial distribution of the single beads which are updated
in both the off- and diagonal sector nearly equally. Hence, it does not strongly matter for this
quantity how often the interparticle exchange in the system is updated. The superfluid fraction,
on the other hand, strongly depends on the quality of the exchange cycles since the latter are
essential for the area which is enclosed by the paths, see section 4.2 for a detailed discussion. A
too strict artifical potential between head and tail only allows for a sampling of exchange in a
close circle around rΨ† and, thus, significantly reduces the ergodicity of macroscopic trajectories.
It is also very interesting to note that the critical update pair Open/Close enjoys the highest
acceptance ratios for η = 0.02. This means that high acceptance ratios do not guarantee an
efficient algorithm.

3.4.3 Local acceptance ratios

The last extension of the PIMC implementation to be presented in this work does not enhance
the performance but provides a better insight into some difficulties that appear for the simulation
of strongly inhomogenous systems. The probability to accept a particular update from the worm
algorithm scheme depends on the spatial location of the worm’s head or the entire particle of
interest. This implies that, at some positions in the trap, the configurations are less efficiently
updated than elsewhere. The first testcase is a 2D system of N ≈ 19 dipole-interacting particles
with λ = 0.5, β = 5 and P = 300. The system is in the superfluid phase and the density is shown
as the red curve in Fig. 22. The other datasets correspond to the spatially resolved acceptance
ratios of several updates. The radial density exhibits a parabola-like form and vanishes around
r ≈ 4. The highest probability to insert a new piece of trajectory (green) is at the boundary
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Figure 23: Local acceptance ratios for a medium system: The radial density n and the
local acceptance ratios of the updates are plotted over the distance to the center of the trap r for
a 2D system of N ≈ 59 dipole-interacting particles with λ = 0.5, P = 300, β = 5 and µ = 14.4.

of the system, where the density is already significantly decreased, while the confinement is not
too high. In the center of the trap, the acceptance ratio is still quite high, while it vanishes for
increasing r. The local acceptance ratio for the Close (turquoise) update has a similar shape for
the same reasons. The updates Remove (blue) and Open (purple), however, exhibit the opposite
behaviour since here already existing pieces of trajectory are attempted to be removed. This is
most probable for large r, where the external confinement causes large punishments, and both
ratios decrease with the distance to the center of the trap. The Recede update (blue) is very
similar to the purple and blue curve in the left image and Swap (turquoise) and Advance (green)
to the green one. Only the Bisection move behaves a little differently since it is nothing else
than a combination of opening and closing a path and, therefore, combines the behaviour of
those two updates.

The inhomogeneity of the acceptance ratios increases for larger systems, as it is illustrated by
Fig. 23, where the same information is shown for a similar system as Fig. 22 but with µ = 14.4
and N ≈ 59 particles. The most worrysome changes are the decreased acceptance ratios of
Open, Close and Insert and the reduced probability for Swap in the center of the trap. It is, in
principle, possible to adjust the free algorithmic parameter M in a way to achieve any desired
total acceptance ratio for the latter update. However, the inhomogeneity of the spatially resolved
quantity remains and the system’s inner core is more correlated than the boundaries. Finally,
Fig. 24 shows two random PIMC snapshots for the small (left) and medium (right) system. It is
not hard to imagine that a path in the dense center of the right image is much harder to deform
than in the left one.

The most trivial solution to overcome this bottleneck is the implementation of two different
update lists (i.e., Swap1 and Swap2, etc.) with differently chosen free algorithmic parameters
Mi and Ci. The first list can be optimized to deliver good acceptance ratio at the center of the
trap and the second one at the boundaries. In this way, all parts of the system will be efficiently
updated. The inefficiency of the second list for small r is not a serious problem since, in the
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Figure 24: PIMC snapshots of the two test systems: Two random configurations are
shown for the systems from Fig. 22 (left) and 23 (right).

worst case, the required number of Monte Carlo steps has to be doubled (assuming that updates
from both lists have the same probability to be selected and that updates from list two will
always be rejected), which is feasible in every case.

3.5 Capability of the implementation

The presented implementation of the worm algorithm path integral Monte Carlo scheme is able
to simulate particles at arbitrary temperature T , pair-interaction and coupling parameter λ
and in any confinement potential. Although all results in this work are obtained for harmonic
confinements, even highly irregular systems require no additional effort. Only recently, Bhat-
tacharya and Ghosal [48] have used PIMC to investigate the melting of Coulomb-interacting
Boltzmannons in a 2D confinement of the form

Vtrap =

(
x4

b
+ by4 − 2ηx2y2 + γ(x− y)xy

√
(x2 + y2)

)
. (56)

The outcome of the simulation of such a system with the author’s code and Eq. (56) replacing
VHO in the Hamiltonian is presented in Fig. 25 for N = 75 particles with β = 1, P = 80 and
λ = 10 and the potential parameters b = π/4, γ = 0.15 and η = 0.6. The left picture shows
the density profile n(x, y) and nicely demonstrates the system’s irregularity. There appear four
pronounced maxima in the corners and a local minimum in the center of the trap. The right
image shows a random snapshot from the PIMC simulation and one can easily recognize that
the extension of the particle’s paths are of the same order as the mean interparticle distance.
This means that exchange effects play a dominant role and the system behaves differently than
the corresponding Boltzmannon pendant. The superfluid fraction (see section 4.2) is calculated
as γ = 0.415± 0.005 and the fermionic sign (see section 6) fluctuates around zero.

A missing feature in the code is the implementation of periodic boundary conditions to sim-
ulate homogenous systems. However, this feature is not needed for the systems of interest in this
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Figure 25: Simulation of a highly irregular trap: The density n(x, y) (left) and a PIMC
snapshot (right) with the confinement from Eq. (56) are shown for a 2D Coulomb system with
N = 75, λ = 10, β = 1, P = 80 and the parameters b = π/4, γ = 0.15 and η = 0.6.

work and for e.g. Coulomb-interacting particles additional, nontrivial effort is required, namely
the Ewald summation for the repression of boundary effects. Therefore, a further discussion
of this matter is beyond the scope of this thesis and the interested reader is referred to [49].
The difficulties of simulating strongly coupled systems at low temperature are discussed in the
appendix A.
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Ensembles of mutually repelling bosonic particles in a harmonic confinement potential are
strongly inhomogenous systems and exhibit many interesting features like e.g. Bose Einstein
condensation [9]. For small systems, some properties like energies and superfluidity explicitly
depend on the exact number of particles and, hence, the symmetry [18, 50, 51]. The following
section starts with some brief examples of different phases of Coulomb-interacting particles in
2D. Afterwards, the purely quantum mechanical phenomenon of superfluidity [52, 53, 54, 55]
which manifests by the reduction of the system’s moment of inertia due to exchange effects
is introduced and investigated for both 2D and 3D systems. The analysis is extended by the
consideration of a spatially resolved superfluid density [56] which provides a good insight to
the inhomogeneity of the superfluid phase transition. Finally, spatial correlations are discussed
considering the example of a strongly coupled Coulomb system which exhibits solid shells and
superfluidity at the same time.

4.1 Radial density and shell structures

The shape of any trapped system is the result of the competition between the mutual repulsion
between the particles and the confinement potential. The combination of different coupling
parameters and temperatures yields several interesting regimes. In Fig. 26, three 2D systems
of N = 15 Coulomb-interacting particles are presented in a solid, liquid and superfluid phase.
The left column corresponds to the radial density n and, in the right one, random snapshots
from the PIMC simulations are shown. The top row shows results for the inverse temperature
β = 10, coupling parameter λ = 100 and number of time slices P = 300. The density exhibits
two very clearly pronounced peaks with almost no overlap and, in the corresponding random
configuration, two shells with five and ten particles appear. The solidity of the system is caused
by the strong inter-particle interaction which makes disordered movements of individual particles
improbable and separates different particles at a larger distance than their spatial extension,
hence, exchange effects are suppressed. For completeness, it should be noted that the information
presented in Fig. 26 is not sufficient to decide wether the system is completely solid or not, since
rotations of the two shells with respect to each other might still occur. However, the application
of more sophisticated spatial correlation functions is discussed in section 4.3. The central row
corresponds to a system with β = 0.75, λ = 10 and P = 100. Here, the density profile is
more or less flat and no distinct shell structure emerges. The random configuration in the right
image directly reveals the lack of order in the system and the particle’s extensions are, again,
much smaller than their spatial separations. Hence, a system with such parameters might be
categorized as a liquid. Finally, the bottom row shows the results for a system with λ = 0.3,
β = 5 and P = 300. The density profile exhibits a parabola like shape with a smooth decay at
the boundaries and a high density at the center of the trap. In this case, the repulsion between
the particles is too weak to separate them and the random configuration in the right image
reveals that all particles overlap. This implies that particle exchange plays a dominant role and
indeed long exchange cycles involving several particles occur. The system is in the superfluid
phase, as will be explained in section 4.2.

4.2 Superfluidity

Superfluidity, see e.g. [52, 53, 54, 57], is a purely quantum mechanical phenomenon. As early as
1937, the independent groups of Kapitsa and Misener discovered that liquid Helium below some
critical temperature Tc partly behaves as if it had zero viscosity. Hence, the resulting frictionless
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Figure 26: Comparison of different phases of N = 15 Coulomb-interacting particles
in 2D: In the left column, the radial density n is plotted over the distance to the center of
the trap r and, in the right column, random PIMC configurations are shown. The top row
corresponds to a solid with β = 10, λ = 100 and P = 300, the center row to a liquid with
β = 0.75, λ = 10 and P = 100 and the bottom row to a superfluid with β = 5, λ = 0.3 and
P = 300.
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4.2 Superfluidity

flow of this superfluid component is the eponym of this peculiar phenomenon. Today, after more
than seventy years of time to find a satisfying theoretical description, it has been shown that
superfluidity in bulk systems is closely related (but not equal) to Bose Einstein condensation,
i.e., the macroscopic occupation of the ground state due to Bose statistics [58], and a direct
consequence of Off-Diagonal Long Range Order (ODLRO) of the density matrix throughout
the entire system [55]. ODLRO, however, cannot directly apply to finite and, in particular, very
small systems and the cause, consequences and even definition of superfluidity for few particles
in a trap might be different, see e.g. [59] for an overview. In this work, the term is defined to
describe the reduction of the system’s moment of inertia due to quantum mechanical effects,
regardless of any collective behaviour caused by the bosonic nature of the particles.

To investigate the predicted Non Classical Rotational Inertia (NCRI) one usually considers
an experimental setup by Andronikashvili where the entire system is placed in a rod and rotated
with an infinitesimally small angular frequency ω around the z-axis. The moment of inertia I,
which explicitly depends on the temperature T , is directly accessible by measurements of the
cycle duration Tp. For high T , the system behaves classically and Icl is simply given by the
usual expression

Icl = m
N∑
k=1

(
r⊥k

)2
,

with r⊥k being the rk-component in the x-y-plane. In the quantum mechanical regime, below
some critical value Tc, however, not all particles participate in the rotation and the moment of
inertia is reduced, i.e., NCRI. In the classical regime, the cycle duration

Tp =
2π

ω
∝
√
Icl ∝

√
n

is proportional to the squareroot of the moment of inertia and, therefore, to the total density,
n. Below Tc, in the superfluid phase, the rotation is only sensitive to those particles which
participate in the angular motion:

Tp ∝
√
I(T ) ∝

√
nn =

√
n− nsf ,

with the normal and superfluid density nn and nsf, respectively. The quantity of interest is the
superfluid fraction γsf which is defined as the ratio of the superfluid and total density

γsf =
nsf

n
= 1− I(T )

Icl
. (57)

The open task to investigate superfluidity with PIMC is the derivation of a connection between
Eq. (57) and the path integral picture which has been achieved by Sindzingre et al. [35]. The
basic idea is the consideration of the definition of the moment of inertia as the derivative of the
angular momentum, Lz, at the limit of zero angular motion

I(T ) =
d 〈Lz〉

dω

∣∣∣∣
ω→0

. (58)

The expectation value in Eq. (58) is then written in the path integral picture via the usual
decomposition of ρ̂ and the insertion of the P − 1 unities and, after applying some algebra, one
finally arrives at the desired expression

γsf =
4m2 〈A2

z〉
h̄2βIcl

. (59)
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Figure 27: Superfluid phase transition of a 3D Coulomb system: The superfluid fraction
γsf is plotted over the inverse temperature β for a 3D Coulomb system with λ = 10 and N = 150
(red), N = 25 (green) and N = 5 (blue) particles. The data for N = 150 is published in [60].

Here, Az denotes the area which is enclosed by the paths of all particles in the x-y-plane and
the total area vector is given by

A =
1

2

N∑
k=1

P−1∑
i=0

(rk,i × rk,i+1) .

Equation (59) implies that the transition to the superfluid phase is directly connected to the
formation of macroscopic exchange cycles between multiple particles since this dramatically
increases A. In the classical phase, however, the particles are point-like and no exchange occurs.
Therefore, the area vanishes and the superfluid fraction becomes zero.

The superfluid phase transition of a 3D Coulomb system with relatively strong coupling,
λ = 10, is illustrated in Fig. 27, where γsf is plotted over the inverse temperature β for N = 5
(blue), N = 25 (green) and N = 150 (red) particles. All three curves start from a very low
superfluid fraction at β = 1 and monotonically increase until they converge towards γsf = 1,
i.e., a completely superfluid system. The red curve exhibits a much sharper transition than the
other two datasets. This is expected since, for small particle numbers, finite size effects play an
important role and the transition is broadened, see e.g. [61]. Above β = 5, the largest system
has the largest superfluid fraction because the density in the center of the trap is higher than
for fewer particles, which leads to more particle exchange. For small β, the blue curve clearly
exceeds the other two since here, even without particle exchange throughout the entire system,
the finite extension of the trajectories in the path integral picture significantly contributes to
Az, while, for N = 150, the classical moment of inertia in Eq. (59) dominates, if not (almost) all
particles are involved in macroscopic exchange cycles. The aforementioned manifestations of the
onset of superfluidity are nicely illustrated by the comparison of random PIMC snapshots for
different β. In Fig. 28, such random configurations for the transition of N = 150 particles are
plotted, namely for β = 1 (top left), β = 3 (top right), β = 5 (bottom left) and β = 7 (bottom
right). For β = 1, the particle extension is much smaller than the mean interparticle distance
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Figure 28: PIMC snapshots at different temperatures: Random PIMC snapshots from
the simulations of 3D Coulomb systems with N = 150 particles and λ = 10 are shown for β = 1,
β = 3, β = 5 and β = 7.

and the system behaves almost classically. The snapshot at β = 3 exhibits clearly extended
particle paths but the mean interparticle distance is still slightly larger and almost no exchange
is visible. Hence, the superfluid fraction nearly equals zero, again. For β = 5, a lot of exchange
cycles occur and the system is in the middle of the superfluid phase transition with γsf > 0.5.
Finally, at β = 7, the system is almost completely superfluid and the snapshot clearly reveals
macroscopic exchange cycles with multiple particles involved.

A related topic is the investigation of possible connections of other static properties to the
phase transition. In Fig. 29, the radial density n is plotted over the distance to the center of the
trap r for the same system and β = 1 (turquoise), β = 2 (purple), β = 3 (blue), β = 5 (green)
and β = 10 (red). All shown curves exhibit a quite similar behaviour, that is, a flat structure at
the center of the trap and a shell-like oscillation at the boundary. The latter feature becomes
more pronounced for smaller temperatures due to increased correlation effects. For β = 10, the
system is completely superfluid and n does approximately represent the ground state density.
At β = 5, in the middle of the phase transition, the radial density is still nearly equal to the red
curve. This is a very interesting result since it implies that, in this case, the system’s spatial
properties are not drastically affected by superfluidity. This notion becomes even clearer by
considering the curve for β = 3, i.e., the density of a system without any superfluidity. The blue
curve only slightly deviates from the red and green ones as well, despite the phase transition.
Finally, for β = 1, the density changes more significantly and the shell-like oscillations near the
center of the trap are lost, only the outermost maximum is still pronounced, although decreased.
Another interesting research topic is the comparison of the superfluid phase transition between
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Figure 29: Temperature dependence of the radial density: The radial density n is plotted
over the distance to the center of the trap r for a 3D Coulomb system with N = 150, λ = 10
and different β.

2D and 3D systems. In Fig. 30, the superfluid fraction γsf is plotted for the system with N = 150
particles from Fig. 27 (red) and the 2D pendant (green) with the same parameters. Both curves
exhibit a similar behaviour, that is, a γsf which runs between zero and unity with roughly the
same slope. The 2D system, however, enters the phase transition much earlier and, hence,
becomes a complete superfluid for lower inverse temperatures. This interesting feature could
be caused by different effects. The most intuitive explanation is a lower density in the 3D case
which results in less exchange and, therefore, a smaller total area in every direction. The later
onset of superfluidity would then simply be a degeneracy effect. Another possible explanation
is the explicit three dimensional nature of the particle exchange. The superfluid fraction is
sensitive only to the component of the total area vector in the plane perpendicular to the axis
of rotation, e.g. the x-y-plane. However, if a particle is already involved in an exchange cycle
which mainly contributes to the A-component in another plane, the probability to include the
former into another cycle might be reduced. This implies that the availability of an additional
dimension effectively reduces the area in a particular plane and, hence, the superfluid fraction.
To answer which (if any) of the two proposed explanations is correct, one might consider a
degeneracy parameter of the form

χ0 = n0λ
d
β , (60)

with the dimensionality d. Equation (60) provides a measure for the number of particles within
the approximate extension of a single particle wavefunction, with the density at the center of
the trap n0 = n(r = 0) serving as a reference. Fig. 31 shows χ0 as a function of the inverse
temperature for the system of interest and reveals that the characteristic value of γsf = 0.5,
which might be used to define the critical temperature of the phase transition and is illustrated
by the blue triangles, requires an even slightly higher degeneracy parameter in the 2D system.
Although this result should not be overinterpreted, since the densities in both systems are not
constant and, thus, making the choice of χ0 arbitrary to some degree, it nevertheless rules out
the second explanation for the later phase transition in 3D. For the latter, the same value of the
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Figure 30: Superfluid phase transition in 2D and 3D: The superfluid fraction γsf is plotted
over the inverse temperature β for a Coulomb system with N = 150 and λ = 10. The red and
green curve correspond to three and two dimensions, respectively. This data is published in [60].

total superfluid fraction would have required a clearly higher degeneracy parameter in the 3D
system. Fig. 32 shows another degeneracy parameter χ where the density n0 from Eq. (60) has
been replaced by an average over the approximate extension of the system. Here, the correlation
between the superfluid fraction and the degeneracy is even more clear and both the 2D and 3D
system exhibit roughly the same χ for the phase transition at γsf = 0.5. In conclusion, the later
onset of superfluidity in the three dimensional system has been revealed as a degeneracy effect
and is not caused by the availability of an additional direction for the particle exchange. These
results are published in [60], and the additional analysis of the sampling frequency of exchange
cycles confirms this explanation.

4.2.1 The local superfluid density

Trapped quantum particles, even in the case of a purely harmonic oscillator confinement, are
strongly inhomogenous systems. Therefore, it is highly desireable to obtain spatially resolved
information about the system of interest. In the case of superfluidity, such a tool is given by the
local superfluid density estimator by Kwon et al. [56]. Filinov et al. [50] have used this quantity
to investigate the ground state radial distribution of superfluidity in small clusters of strongly
coupled Coulomb-interacting bosons in a 2D harmonic confinement. It was found that the
superfluid density nsf is decreased and pushed to the outer shell if the system size corresponds
to a magic number N = 12, 19, . . . with strong hexagonal symmetry in the center of the trap.
For other particle numbers, like e.g. N = 21, the maximum of nsf is located in the inner shells.
Khairallah et al. [62] have analyzed the influence of these magic numbers on parahydrogen
clusters, although here the reduction of superfluidity mainly occured for larger systems with
N ≥ 23. Mezzacapo and Boninsegni [63] and Idowu and Boninsegni [64] have applied the
superfluid density estimator to the investigation of parahydrogen clusters and found that, at
low temperature, the superfluidity is distributed almost uniformly among the pronounced shell
structure of the system, due to the formation of exchange cycles involving all the molecules. Only
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Figure 31: The degeneracy parameter in 2D and 3D: The degeneracy parameter χ0

is plotted over the inverse temperature β for the system from Fig. 30. The green and red
curve correspond to 2D and 3D, respectively, and the blue triangles mark the critical inverse
temperature.
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Figure 32: The averaged degeneracy parameter in 2D and 3D: The averaged degeneracy
parameter χ is plotted over the inverse temperature β for the system from Fig. 30. The green and
red curve correspond to 2D and 3D, and the blue triangles mark the critical inverse temperature.
This data is published in [60].
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recently, Kulchytskyy et al. [65] have simulated 4HE in a nanopore and it has been revealed that
the finite superfluid fraction, even at low temperature, is due to a suppression of superfluidity
near the pore walls. In this work, the superfluid density is investigated for larger particle numbers
of Coulomb-interacting bosons in a 2D harmonic confinement at finite temperature.

The basic idea behind the estimator is to make use of the Landau two fluid model, where
the total density is decomposed into the normal and superfluid contribution [57]:

n = nn + nsf .

Hence, the moment of inertia might be written as

I(T ) = m

∫
dr (n(r)− nsf(r)) r2

⊥ . (61)

The first term can be identified with the classical moment of inertia

Icl = m

∫
dr n(r)r2

⊥ .

A combination of the Eqs. (57) and (59) with (61) implies

m

∫
dr nsf(r)r2

⊥
!

=
4m2

βh̄2 〈Az〉
2 ,

which yields the following expression for the superfluid density

nsf(r) =
4m

βh̄2Icl(r)
〈AzAz,loc(r)〉 , (62)

with the local area

Aloc(r) =
1

2

N∑
k=1

P−1∑
i=0

(rk,i × rk,i+1) δ(r− rk,i) .

For completeness, it is reported that the estimator from Eq. (62) integrates to the correct moment
of inertia I(T ), whereas other suggested quantities are inconsistent and, therefore, neglected in
this work. The superfluid density has, in general, six spatial dependencies, namely the three
coordinates for the position of the evaluation, r, and the rotational axis, ez. In a harmonic
confinement, however, the situation simplifies and for a 2D system it is sufficient to consider ez
always as perpendicular to the trap and to average the other spatial dependence over the angle,
like for the usual radial density distribution n.

Fig. 33 shows the total and superfluid density of a 2D Coulomb system with N = 16 and
λ = 10 for different inverse temperatures. The top left graph corresponds to β = 12 and the
total density, n, (red) exhibits a more or less pronounced shell structure with two minima. The
superfluid fraction has been calculated as γsf = 0.993 ± 0.002, which means that the system is
completely superfluid. Thus, the red and green datapoints are nearly identical. The superfluid
density is afflicted with a much larger statistical uncertainty than n since the local area has both
positive and negative contributions and, hence, nsf suffers from a sign problem. For β = 5 (top
right), n nearly coincides with the β = 12 result but the superfluid fraction γsf = 0.544± 0.002
is considerably smaller. The superfluid density exhibits a shell structure as well but the ratio
of nsf and n is larger for small r. This is expected since particles which are not located in
the outermost shell have more neighbours available for an exchange. This increases the local
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Figure 33: Local superfluid density of a 2D Coulomb system: The total and superfluid
density n and nsf, respectively, are plotted over the distance to the center of the trap r for a
system with λ = 10 and N = 16. The four graphs correspond to the inverse temperatures
β = 12, β = 5, β = 4 and β = 3.

area and, therefore, the superfluid density as well. At β = 4 (bottom left), the picture looks
very similar. The superfluid fraction is now decreased to γsf = 0.305 ± 0.001 but the spatial
distribution is almost the same. The last picture (bottom right) corresponds to β = 3 and
γsf = 0.119±0.0005. Despite the total decrease of the superfluidity, it is interesting to note that
the two outermost maxima in nsf appear at slightly larger r than in n. A possible explanation
for this feature is a competition between shell configurations with different occupation numbers.
The local area in a particular shell is increased if the number of particles and, thus, the density
within it is higher. An additional particle, however, makes the shell a little more extended
than the average density, which manifests in the superfluid density as described. Finally, Fig.
34 shows two random configurations from the simulations at β = 12 (left) and β = 3 (right).
The particle distribution looks very similar in both pictures but the particle extension is much
larger for β = 12 and long exchange cycles are present. In the right image, more than half of
the particles are not involved in exchange. It again seems that the transition to the superfluid
phase and the connected formation of macroscopic trajectories does not directly affect the total
density distribution of the system.
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Figure 34: PIMC snapshots of a 2D Coulomb system: Two random configurations are
shown from the simulation of the system in Fig. 33 for the inverse temperatures β = 12 (left)
and β = 3 (right).

An even more interesting application of the superfluid density estimator is given by the
locally resolved investigation of the superfluid phase transition of a larger system. The system
of interest is again given by the N = 150 Coulomb-interacting particles with λ = 10 in 2D
from Fig. 27 and, in Fig. 35, the corresponding densities are plotted over the distance to the
center of the trap, r. The red curve corresponds to the total density n at β = 9 and the other
datasets to nsf at different inverse temperatures. For β = 9, the system is completely superfluid
and the green curve is identical to the red one within the errorbars. At β = 4, however, the
total superfluid fraction is calculated as γsf = 0.86 ± 0.01 and the superfluid density (blue) is
significantly decreased in the outermost region, while it seems to be unaffected near the center
of the trap. A similar effect appears at β = 3 with γsf = 0.62±0.01 and the purple curve is even
more reduced for large r. Finally, at β = 2, the superfluid fraction equals γsf = 0.129 ± 0.002
and nearly no superfluidity (turquoise) is located in the outermost region of the system.

Before attempting to explain the aforementioned behaviour, it is useful to take a look at the
system in the path integral picture. Fig. 36 shows two random PIMC snapshots of the system for
β = 4 (left) and β = 2 (right). In the left image, most of the particles are involved in exchange
cycles, while only in the outer shell many particles form single trajectories. In the right image,
almost all exchange cycles are located at r < 5. The spatially resolved behaviour of the superfluid
phase transition can be explained by the static properties of the system, in particular the total
density in Fig. 35. For small r, the density profile stays nearly flat, while near the boundary
a shell-like oscillation appears. In this region, the particles are more localized and, hence, the
formation of exchange cycles becomes less probable. In other words, the individual particles
have to be more extended to overcome their spatial separation. The effect is enhanced for the
particles at the outermost part of the boundary since here, in radial direction, no neighbours are
available which again reduces the local area and the superfluid density. The stronger coupling
in the outermost region is typical for Coulomb systems because, in mean field approximation,
the particles at the center of the trap do not experience interactions from other particles with a
larger r. This ”Faraday cage” effect is observed in classical Coulomb systems, as well [66], and
the new results are published in [60]. In conclusion, the total density distribution n is nearly
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Figure 35: Local superfluid density of a 2D Coulomb system: The total and superfluid
density n and nsf, respectively, are plotted over the distance to the center of the trap r. The
red curve corresponds to n at β = 9 and approximately equals the ground state density. The
other four datasets symbolize nsf for β = 9 (green), β = 4 (blue), β = 3 (purple) and β = 2
(turquoise).
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Figure 36: PIMC snapshots of a 2D Coulomb system: Two random configurations are
shown of a 2D Coulomb system with N = 150, λ = 10 and P = 110. The left image corresponds
to an inverse temperature β = 4 and the right one to β = 2.
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Figure 37: Strongly correlated 2D Coulomb system: The left image shows the radial density
n plotted over the distance to the center of the trap r for a system with N = 25, β = 5, λ = 30
and P = 110. The right picture features a random PIMC snapshot.

invariant to the superfluid phase transition but its shape can have a strong influence on the
probability for the formation of exchange cycles and, hence, the distribution of superfluidity and
the critical temperature of the phase transition itself.

4.3 Spatial correlation functions

Another interesting topic for the investigation of trapped systems is the consideration of spatial
correlations. The left image of Fig. 37 shows the radial density n of a 2D Coulomb system with
β = 5, λ = 30, N = 25 and P = 110. There appear three very clearly pronounced shells with
a relatively small overlap. The right image of the figure shows a random PIMC snapshot from
the corresponding simulation and one does indeed spot a shell structure, although especially
the top region seems a little disordered. It is highly desireable to gain further insight into the
stability of such a system, i.e., if the relative distances between multiple particles are fixed and
if different shells can be rotated with respect to each other. The most trivial quantity providing
information about a system’s spatial properties is the density profile n(x, y), which is shown in
the left image of Fig. 38. However, the Hamiltonian from Eq. (52) is invariant under a rotation
of all particles and the averaged density profile contains exactly the same information as the
radial density n. This means that any knowledge about intra-shell and inter-shell correlations is
lost. To preserve the spatial correlations, one might try to identify some symmetry axis in each
random configuration from the Markov chain and rotate the system with respect to it. A trivial
choice is a fragmentation into angular segments and to define the symmetry axis as the center of
the segment with the highest density in the particular configuration. The result of this quantity
for the system of interest is shown in the right image of Fig. 38. One immediately recognizes the
symmetry breaking and the appearance of individual particles within a single shell. At the top
of the image, the density maxima are very sharp and pronounced since this part corresponds to
the special segment with the highest density in each configuration. With an increasing angular
distance towards it, the correlations become weaker and the density profile smeers out. This
appears especially clear in the central shell and implies that particles at opposite positions within
a shell are much weaker correlated than next neighbours, as it is expected. Hence, the applied

53



4 GENERAL PROPERTIES OF CONFINED BOSONS

-15

-10

-5

 0

 5

 10

 15

-15 -10 -5  0  5  10  15

y

x

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

-15

-10

-5

 0

 5

 10

 15

-15 -10 -5  0  5  10  15

y

x

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

Figure 38: Averaged density profiles of a 2D Coulomb system in a harmonic trap: The
system of interest is the same as in Fig. 37 and the left image shows the averaged density profile
n(x, y). For the right picture, the density is binned into angular segments in each measured
configuration. Afterwards, the entire system is rotated with respect to the bin containing the
most beads. This achieves the depicted symmetry break.

symmetry breaking has worked at least to some degree for the system of interest and spatial
correlations are visible. Difficulties appear when there are several configurations with a similar
energy but differently occupied shells. In such a case, this quantity will always give pronounced
maxima in all shells in the top sector and the rest of the profile will be smeered out. This implies
that again all real spatial correlations in the system are lost and the resulting profile is just an
average over completely different configurations.

A natural approach for the investigation of correlations is the consideration of spatial corre-
lation functions, like the two particle quantity

g2(R, r) =
1

2NP

P−1∑
i=0

N∑
j=1

N∑
k=1

δ

(
R−

rj,i + rk,i
2

)
δ (r− (rj,i − rk,i)) ,

which gives the probability for two particles to be located at R and r. Here, R denotes the center
of mass of two particles and r the relative difference. Due to the symmetry of the harmonic
trap, the angular dependence of R can be dropped and the correlation function g2 depends on
three spatial coordinates. Such a quantity seems to be impractical and one usually integrates
over the modulus of the center of mass and the angular orientation of r as well, hence, tayloring
a correlation function which depends on the modulus of the difference between the positions of
two particles only:

g2(rh) =
1

2NP∆r

P−1∑
i=0

N∑
j=1

N∑
k=1

δ(rh, |rj,i − rk,i|) . (63)

In practice, it is, obviously, unfeasible to obtain g2 as a continuous function and in Eq. (63) a
uniform grid of width ∆r is used. This quantity is shown in Fig. 39 for the system of interest and
exhibits a smooth progression with several relatively pronounced peaks. The latter mark some
characteristic differences in the most probable shell configurations. For a completely disordered
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Figure 39: The two-particle correlation function: The averaged two-particle correlation
function g2 is plotted over the distance between two particles r for the system from Fig. 37.

system, on the other hand, the function g2 would be flat. Another interesting feature is that the
two-particle correlation function equals zero for r < 1.5, which implies that the particles cannot
directly collide due to the Coulomb repulsion. The averaged two-particle correlation function
still does not directly provide information about inter-shell correlations, for example.

A better quantity has recently been suggested by Thomsen et al. [11]. In principle, it in-
corporates three spatial coordinates and, therefore, the complete information about all spatial
two-particle correlations. The idea behind this center two-particle correlation function is illus-
trated in Fig. 40, where the same configuration as in Fig. 37 is shown. The calculation of the
new correlation function requires the consideration of all pairs of particles (which are on the
same time slice) and the creation of a histogram according to their distances to the center of
the trap r1 and r2 and angular differences α. Such a quantity can be defined as

g̃2(r1, r2, α) =
1

2P∆r2∆α

P−1∑
i=0

N∑
j=1

N∑
k=1

δ(r1 − ri,j)δ(r2 − ri,k)δ(αi,jk − α) , (64)

with the angular difference αi,jk. Equation (64) gives the probability to have a pair of two
particles with some specific r1, r2 and α. However, it is even more interesting to investigate
the relative correlation. This is achieved via a division by the uncorrelated density, i.e., a two
particle quantity without correlations beyond the single particle density profile [11]:

n2(r1, r2, α̃) =

∫
|ra|=r1

dra

∫
|rb|=r2,α(ra,rb)=α̃

drb n(ra)n(rb)

= 4πn(r1)r1n(r2)r2

⇒ T (r1, r2, α) =
g̃2(r1, r2, α)

n2(r1, r2, α)
. (65)

The quantity from Eq. (65) is still hard to handle. Thus, it is useful to integrate both the
numerator and denominator over one of the distances r1 and r2, e.g. over one of the shells.
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Figure 40: Illustration of the center-two particle correlation function: Knowledge about
all spatial two-particle correlations requires the consideration of three coordinates, e.g. the
distances to the center of the trap r1 and r2 and the angular difference α.

This means that one of the two considered particles is definetly located within the selected shell
and the correlation with respect to the angular difference and the second coordinate, which still
ranges over the entire system, is analyzed.

The results for this integrated center two-particle correlation function for the system of
interest are presented in Fig. 41. The left panels show the radial density n and the two blue
lines mark the integrated interval of one spatial coordinate. The right panels correspond to the
integrated center two-particle correlation function for the innermost (top), center (center) and
outermost (bottom) shell. All plots of this quantity are symmetric with respect to α = 180, as
it is, of course, expected. In the top image, two clear maxima appear near the center of the
trap since the shell usually contains three particles. However, there also appear correlations to
the other shells and the minima between them. Of particular interest is the minimum between
the innermost and the center shell, where the two bottom maxima have split into three. This
indicates that there is a competition between different shell configurations and four instead of
three particles inside the inner shell are also possible. In this case, the shell is a little more
extended. The center image exhibits eight distinct maxima in the middle shell, corresponding
to the nine particles which are usually located within it. There do appear some correlations
to the other two shells but they are much weaker. This indicates that the center shell can be
rotated with respect to the other ones. Finally, the bottom image shows the quantity for the
outermost shell, in which twelve maxima appear which again correspond to the thirteen particles
witihin it. There are almost no correlations to the center shell and the correlations for angles
around α = 180 are blurred, as it is expected.

Another interesting application for the center-two particle correlation function is the inves-
tigation of the system’s temperature dependence. This is shown in Fig. 42, where the center
shell is considered for β = 0.75 (top), β = 5 (center) and β = 20 (bottom). For β = 0.75,
the system is in the liquid phase and no shell structure appears in both the density (left panel)
and the correlation function. The latter is almost constant apart from the minimum at α = 0
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Figure 41: The center-two particle correlation function: The integrated center two-
particle correlation function T (r2, α) is plotted with respect to the inner (top), middle (center)
and outer (bottom) shell for the system from Fig. 37. The left panel shows the radial density n
and the two blue lines represent the integrated intervall of the second spatial coordinate r1.
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Figure 42: The center-two particle correlation function: The integrated center two-
particle correlation function T (r2, α) is plotted with respect to the middle shell for the system
from Fig. 37 with β = 0.75 (top), β = 5 (center) and β = 20 (bottom). The left panel shows the
radial density n and the two blue lines represent the integrated intervall of the second spatial
coordinate r1.
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Figure 43: Density profiles for low temperature: The density n is plotted over the distance
to the center of the trap r for the system of interest at β = 17 and P = 410. The red and green
curve correspond to the total and superfluid density, respectively, and the blue, purple and black
datasets show the fraction of n which is involved in exchange cycles of the lenghts l = 1, l = 3
and l = 9.

and the weak maximum structure around it. The center image corresponds to β = 5 and is
the same as in Fig. 41 and just shown as a reference. The bottom image has been obtained
for β = 20 and the density is almost equivalent to the β = 5 result. The main differences in
the integrated center two-particle correlation function are the much more pronounced maxima
within the center shell, indicating that the particles within it behave as a solid. Nevertheless,
there still appear no clear correlations to the other two shells which implies that the total system
is not crystallized and rotations of the shells with respect to each other do occur. This is a quite
interesting feature and one might ask, wether such a system exhibits superfluidity and how the
latter is realized in the path integral picture. To answer this question the system is simulated
with the usual parameters and β = 17 and P = 410. The total superfluid fraction is calculated
as γsf = 0.34±0.02 and the density profiles are shown in Fig. 43. The total density (red) exhibits
the same shape as in Fig. 37 and the superfluid density (green) decreases with increasing dis-
tance to the center of the trap. This behaviour can be explained by considering those fractions
nl of n which are due to particles being involved in exchange cycles of a particular length l. The
blue curve corresponds to l = 1, i.e., single particles which are not involved in any exchange at
all. In the outermost shell, the blue and red datasets nearly coincide since exchange is much
less propable at the boundary as discussed in section 4.2.1. However, for decreasing r, particle
exchange becomes more likely and there appears a significant difference between n and n1. The
purple curve corresponds to n3 and exhibits a distinct global maximum in the innermost shell
since the latter usually contains three particles. However, exchange cycles consisting of three
particles occur in the center shell as well, although with highly reduced probability. Finally, the
black curve corresponds to n9. Here, the global maximum is clearly located in the center shell.

The analysis of the densities in Fig. 43 has revealed that n1 and nsf show a complementary
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Figure 44: The classical moment of inertia: The classical moment of inertia Icl is plotted
over the number of bins Nbin for the system from Fig. 43. Each bin corresponds to the average
over one hundred Monte Carlo samples.
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Figure 45: The total area: The total area Az in the x-y-plane is plotted over the number of
bins Nbin for the system from Fig. 43. Each bin corresponds to the average over one hundred
Monte Carlo samples and the blue line to the average value Az = 1810± 10.
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Figure 46: The total area of the Boltzmannon system: The total area in the x-y-plane Az
is plotted over the number of Monte Carlo bins Nbin for the system from Fig. 45, but simulated
with Boltzmannons. The blue line corresponds to the average value Az = 71.4± 0.5.

behaviour, which is a strong hint that the superfluidity in this system is caused by particle
exchange and not any finite size effects due to the larger extension of individual particles at
low temperature. This conclusion is confirmed by the consideration of the two quantities which
determine the total superfluid fraction γsf, namely the total area in the x-y-plane Az and the
classical moment of inertia Icl. The latter is plotted in Fig. 44 over the number of bins Nbin,
where each bin corresponds to the average over one hundred Monte Carlo samples. The plot
exhibits a rather smooth behaviour with relatively small deviations from the mean value because
the system’s static properties do not drastically change. An entirely different picture occurs for
the total area Az, which is shown in Fig. 45. It turns out that this quantity heavily fluctuates
and a number of sharp peaks exceed the average value Az = 1810 ± 10, which is visualized as
the blue line, by orders of magnitude. This behaviour of the area is accounted to the occurence
of larger exchange cycles. The most probable configurations consist of single particles or small
exchange cycles in the center of the trap. However, in the improbable case of an exchange cycle
which involves all the particles in the center or outermost shell, the enclosed area becomes much
larger and causes the maxima in Fig. 45. In comparison, Fig. 46 shows the area for the same
system of boltzmannons, i.e., distinguishable particles without any exchange. Here, no large
peaks appear and the average value is calculated as Az = 71.4±0.5, leading to a total superfluid
fraction γsf = 0.0135± 0.0002. The moment of inertia is roughly the same as in Fig. 44. Thus,
it has been demonstrated that the superfluidity in the bosonic system, at β = 17, is caused by
macroscopic exchange cycles and, therefore, a collective response of the system. Finally, Fig.
47 shows a comparison of the total densities for boltzmannons (blue) and bosons (red). The
two curves nearly coincide but the bosonic density exhibits a slightly larger overlap between the
shells, as it is expected. In conclusion, the center-two particle correlation function has revealed
the appearance of solid-like intra-shell behaviour at low temperature, but different shells are
still free to be rotated with respect to each other. The latter degree of freedom allows for a
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4 GENERAL PROPERTIES OF CONFINED BOSONS

 0

 0.04

 0.08

 0.12

 0.16

 0  2  4  6  8  10  12

n

r

boltzmannons
bosons

Figure 47: Comparison of the densities: The density n is plotted over the distance to the
center of the trap r for the system from Fig. 43 for bosons (red) and boltzmannons (blue).

finite superfluid response, which is consistent with the findings by Filinov et al. [50] and also
Khairallah et al. [62] in the case of parahydrogen clusters. However, the classification of such a
system as a supersolid, i.e., a combination of density order and superfluidity [67], does not seem
to be appropriate since there is no real order throughout the entire system, as it is observed e.g.
for a parahydrogen cluster of the same size by Idowu and Boninsegni [64].

Another useful application of the center-two particle correlation function is the investiga-
tion of the melting process of a finite sized trapped system, which is a notoriously hard task,
especially for small systems, see e.g. [61]. A relatively robust melting criterion, which is based
on the variance of the block averaged interparticle distance fluctuations, has been proposed by
Böning et al. [68]. The idea is to perform averages over L Monte Carlo steps of the changes
of interparticle distances. In the transition region between the liquid and solid phase, the vari-
ance of this quantity should increase because both solidlike intervals with few and liquidlike
intervals with many fluctuations occur and, hence, the phase transition is detected. However,
the shortcoming of such an approach is the dependence of the results on the particular update
scheme of the applied Monte Carlo method. The pseudo-dynamics created by the MC updates
are, in general, not related to the real-time dynamics of the physical system of interest and
an estimator should be independent of the implementation or choice of the update scheme. A
better alternative, which has been suggested by Thomsen and Bonitz [69] for the investigation
of classical systems, is the calculation of the information entropy [70] from the center-two par-
ticle correlation function. Being a physical quantity, it can be equivalently evaluated with any
simulation method. In addition, it is expected that the latter approach provides more detailed
and spatially resolved information about phase transitions in or between different shells of the
system. Therefore, the application of this melting criterion to quantum mechanical systems is
of major interest for future research and might provide even more insight into the connection
between superfluidity and static properties of harmonically confined particles.
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5 The quantum breathing mode

The central theme of the following section is the calculation of dynamic properties of trapped
bosons from Quantum Monte Carlo data. The problem of interest is given by the quantum
Beathing Mode (BM), i.e., the system’s response to a monopole perturbation. The latter
can be excited by a short lowering of the confinement potential which causes the particles to
oscillate. The BM is of fundamental interest for the investigation of trapped systems in the
quantum mechanical regime since it allows to obtain all characteristic energies [71] and, hence,
might serve as a tool of diagnostics.

Bauch et al. [72] have shown that the breathing mode behaves differently for quantum sys-
tems and is composed of two independent oscillations, namely of the system’s center of mass
and a relative oscillation between the particles. The former has a constant value while the latter
undergoes a transition between a classical and an ideal limit. The presented results of a numer-
ical integration of the time dependent Schrödinger equation have confirmed those predictions.
However, such an exact approach is limited to small particle numbers, i.e., a two particle system
in this case. The application of time dependent Multi-configuration-Hartree-Fock methods has
allowed Bauch et al. [73] to obtain results for up to six particles for both Coulomb and polarized
dipole interaction, but this does still not qualify as a real many body system. Abraham et al.
[74] presented results for up to N = 20 Coulomb interacting fermions in a 1D trap, using a
time dependent Hartree Fock approach. The latter is numerically much less costly, but at the
expense of an only approximate treatment of correlation effects, thus limiting the method to
weakly coupled systems. It has been found that the breathing mode of the 1D system exhibits a
minimum around N ≈ 6 particles which might seem like a rather peculiar result. However, the
presented analysis has revealed that the trend of ωBM directly corresponds to several non-ideality
parameters which characterize the deviation from the non-interacting system. Schmitz et al. [75]
have used a recently published multilayer multiconfiguration time-dependent Hartree method
for bosons to investigate the breathing mode in a 1D trap with contact-interacting particles.

A very interesting approach to the calculation of dynamic properties in the context of this
thesis are the sum-rules, which have already been successfully applied to the investigation of
collective modes in nuclei, see e.g. [76] and references therein. The idea is to express an accurate
upper bound for the frequency of interest solely in terms of equilibrium properties of the system.
The numerical treatment of the stationary problem is, obviously, much less involved, which
allows for the investigation of larger systems. Abraham et al. [12] have used this approach
to obtain results for the quantum breathing mode for both Coulomb- and dipole-interacting
fermions in 1D and 2D traps. The equilibrium properties have been calculated with Hartree-
Fock and Thomas-Fermi methods for small and large particle numbers, respectively. Finally,
the last noteworthy approach to the breathing mode is the reconstruction of the spectrum from
imaginary time correlation functions. The latter are easily accessible with PIMC and an ill-posed
inverse problem has to be solved, as it has already been very successfully conducted for other
dynamic properties like the dynamic structure factor and the single particle spectrum, see e.g.
[13]. A review of the quantum breathing mode, including detailed sum-rule results for fermions,
can be found in [10].

The following section 5.1 starts with a brief revision of the pictures of quantum mechanics and
the linear response formalism. The latter includes the introduction of response and correlation
functions which provide the basis for both the sum-rules and the reconstruction of the spectral
function and the necessary theoretical background for both approaches will be provided. Being
equipped with these tools, numerical results for the quantum breathing mode from the sum-rules
are presented in section 5.2 and the dependencies on the system parameters (i.e., N , λ and β)
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5 THE QUANTUM BREATHING MODE

are analyzed in detail for both Coulomb- and dipole-interacting particles. Finally, in section 5.3,
the reconstruction of the entire spectrum is discussed.

5.1 Linear Response Theory

In the following section, some fundamentals about the linear response formalism are introduced
based on [77, 78, 79]. The system of interest is decribed by a Hamiltonian of the form

Ĥ(t) = Ĥ0 + V̂ (t) ,

where Ĥ0 corresponds to the unperturbed system at t→ −∞ and V̂ (t) = −f(t)B̂ is an explicitly
time dependent perturbation, coupling to the scalar function f(t). In case of the breathing mode,
B̂ is given by the monopole operator

B̂ =

N∑
k=1

r2
k . (66)

It is the goal of the linear response formalism to derive an expression for the effect of V̂ (t) on
some not explicitly t-dependent observable Â which, in case of the breathing mode, is given by
the monopole operator B̂ itself. The choice B̂ = Â is used because it provides a measure of
the mean extension of the system which fluctuates when the BM is excited. However, first it is
necessary to repeat some basics about the three pictures of quantum mechanics.

5.1.1 Pictures of quantum mechanics

The expectation value of an observable 〈Â〉 must, by definition, be equal in all formulations
since it can be experimentally measured. In the Schrödinger picture, the states |ΨS(t)〉 carry
the entire time dependence and the expectation value is written as

〈Â(t)〉 = 〈ΨS(t)| ÂS |ΨS(t)〉
= 〈ΨS(t0)| Û †(t, t0)ÂSÛ(t, t0) |ΨS(t0)〉 , (67)

with the time evolution operator

Û(t, t0) = T̂ exp

(
− i
h̄

∫ t

t0

dt ĤS

)
, (68)

and the time ordering operator T̂ . The operators ÂS are constant in time and the equation of
motion for the states is given by the Schrödinger equation:

ih̄
∂

∂t
|ΨS(t)〉 = ĤS |ΨS(t)〉 .

Special attention must be paid to the density matrix which might be written in the eigenstate
respresentation as

ρ̂S(t) =
∑
i

pi |Ψi
S(t)〉 〈Ψi

S(t)| , (69)

and, thus, is time dependent. The equation of motion for Eq. (69) is given by the von Neumann
equation

dρ̂S(t)

dt
=

1

ih̄

[
ĤS, ρ̂S

]
(t) .
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5.1 Linear Response Theory

The second well known picture of quantum mechanics is the Heisenberg picture. Here, the
product of the three operators in Eq. (67) is combined into a single operator ÂH(t)

〈Â(t)〉 = 〈ΨS(t0)| ÂH(t) |ΨS(t0)〉 . (70)

Equation (70) implies that the entire t-dependence is carried by the operator, while the states
remain unchanged and coincide with the initial ones from the Schrödinger picture. The density
matrix ρ̂H is constant as well and the equation of motion for the operators is given by the
Heisenberg equation

dÂH(t)

dt
=
i

h̄

[
ĤS, ÂH(t)

]
+
∂ÂH(t)

∂t
.

It should be noted that the brackets (t) indicate the time dependence due to the Heisenberg
(and later also Dirac) picture, while ĤS might implicitly depend on t as well. A third useful
representation is given by the Dirac picture, which is also denoted as interaction picture in the
literature. The idea is to distribute the time evolution to both the states and operators by
splitting Û(t, t0) from Eq. (68) into two parts:

Û(t, t0) = Û0(t, t0)ÛV (t, t0).

Here, Û0(t, t0) = Û0(t − t0) corresponds to the time evolution of the unperturbed system and,
hence, only depends on the t-difference and ÛV (t, t0) is governed by the perturbation itself. The
operators in the Dirac picture are defined as

ÂD(t) = Û †0(t, t0)ÂSÛ0(t, t0) ,

which means that they coincide with the Heisenberg picture if there is no perturbation. The
equation of motion is given by the modified Heisenberg equation

dÂD(t)

dt
=
i

h̄

[
Ĥ0, ÂD(t)

]
+
∂ÂD(t)

∂t
.

The states can be expressed as

|ΨD(t)〉 = ÛV (t, t0) |ΨS(t0)〉 ,

and ÛV (t, t0) fulfills a Schrödinger equation of the form

ih̄
dÛV (t, t0)

dt
= V̂D(t)ÛV (t, t0) . (71)

Finally, it should be noted that a formal solution of Eq. (71) is given by

ÛV (t, t0) = T̂ exp

(
− i
h̄

∫ t

t0

dt V̂D(t)

)
. (72)

5.1.2 Response functions

The basic idea of linear response theory is to consider a perturbation V̂ (t) which is small enough
to be negligible beyond linear terms in Eq. (72). This gives

ÛV (t, t0) = 1̂− i

h̄

∫ t

t0

dt V̂D(t) +O(V̂ 2
D) , (73)
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where all terms in O(V̂ 2
D) will be dropped. The goal of this subsection is the derivation of an

expression for the change in an observable Â due to the external field:

δ 〈Â(t)〉 = 〈Â(t)〉 − 〈Â(t)〉0 .

The non-equilibrium expectation value can be written in the Heisenberg picture as

〈Â(t)〉 = Tr
(
ρ̂HÂH(t)

)
. (74)

Inserting the identity4

ÂH(t) = exp

(
i

h̄

∫ t

t0

dt V̂D(t)

)
ÂD(t) exp

(
− i
h̄

∫ t

t0

dt V̂D(t)

)
into Eq. (74) and simultaneously considering only linear terms in Eq. (73) leads to the expression

〈A(t)〉 ≈ Tr

(
ρ̂H

[
1 +

i

h̄

∫ t

t0

dt V̂D(t)

]
ÂD(t)

[
1− i

h̄

∫ t

t0

dt V̂D(t)

])
= Tr

(
ρ̂HÂD(t)

)
− i

h̄
Tr

(
ρ̂H

∫ t

t0

dt
[
ÂD(t), V̂D(t)

])
+O(V̂ 2

D) . (75)

The first term in Eq. (75) is identified with the unperturbed expectation value 〈Â(t)〉0. Inserting

the explicit expression for V̂D and again neglecting all O(V̂ 2
D) contributions leads to

〈Â(t)〉 ≈ 〈Â(t)〉0 +
i

h̄

∫ t

t0

dt
〈[
ÂD(t), B̂D(t)

]〉
0
f(t) .

Hence, the desired expression for the effect of the perturbation on an observable Â is given by

δ 〈Â(t)〉 =
i

h̄

∫ t

t0

dt
〈[
ÂD(t), B̂D(t)

]〉
0
f(t) , (76)

and the index 〈. . .〉0 indicates the expectation value of the unperturbed system. It should be
noted that Eq. (76) depends on equilibrium averages only, which is already a great simplification.
This implies that the reaction to the external field depends on system properties (i.e., material
constants) only. The latter are often introduced as response functions of the form

χ′′AB(t1, t2) =
1

2h̄

〈[
ÂD(t1), B̂D(t2)

]〉
0

,

thus, reducing (76) to

δ 〈Â(t)〉 = 2i

∫ t

t0

dt χ′′AB(t, t)f(t) . (77)

There exist a number of useful relations and properties of χ′′AB(t1, t2) which, however, can be
found in any textbook about advanced statistical mechanics. The most important one in the
context of this work is that the response function only depends on the time difference θ = t1−t2:

χ′′AB(t1, t2) = χ′′AB(t1 − t2) = χ′′AB(θ) . (78)

4For simplicity, the time ordering operator T̂ is neglected.
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A change from the real time θ to the frequency ω domain is achieved by a Fourier Transformation
(FT)

χ̃′′AB(ω) =

∫ ∞
−∞

dθ χ′′AB(θ) exp (iωθ) ,

and the other way around with the inverse FT

χ′′AB(θ) =
1

2π

∫ ∞
−∞

dω X̃ ′′AB(ω) exp (−iωθ) .

Another useful quantity is the dynamic susceptibility

χAB(θ) = 2iθH(θ)χ′′AB(θ) , (79)

where the Heaviside stepfunction

θH(x) =

1, if x ≥ 0

0, otherwise

is not to be confused with the relative time difference θ = t1−t2. Equation (79) allows to replace
the lower integration boundary in (77) to minus infinity:

δ 〈Â(t)〉 =

∫ t

−∞
dt χAB(t− t)f(t) .

5.1.3 Correlation functions

Another important class of quantities from the linear response theory are correlation functions
CAB(t1, t2) with the definition

CAB(t1, t2) = 〈ÂD(t1)B̂D(t2)〉0 . (80)

They are connected to the response function χ′′AB(t1, t2) from the last section by

χ′′AB(t1, t2) =
1

2h̄
(CAB(t1, t2)− CBA(t2, t1)) . (81)

Equation (81) directly implies that an observable Â must be correlated to the perturbation
operator B̂ for the latter to cause a nonzero effect δ 〈Â(t)〉. The correlation functions only
depend on the relative time difference between the two arguments as well

CAB(θ) = CAB(t1 − t2) = CAB(t1, t2) ,

and the representation in the frequency space is given by

C̃AB(ω) =

∫ ∞
−∞

dθ CAB(θ) exp (iωθ) .

The complementary step back to the time domain is again given by the inverse FT. Of major
importance is the correlation function’s spectral representation [77]

C̃AB(ω) = 2π
∑
m 6=n

pm 〈m| ÂS |n〉 〈n| B̂S |m〉 δ (ω − ωnm) , (82)
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with the Hamiltonian’s eigenstates {|n〉}, the probability to occupy a specific |m〉, pm, and the
frequency difference ωnm = ωn − ωm. Thus, this spectral function consists of a superposition
of sharp peaks located at the allowed transitions. In addition, it is important to note that the
double sum in Eq. (82) does not include the diagonal elements m = n. For the case of a single
Hermitean operator Â = B̂, as it is the case for the breathing mode, the spectral representation
simplifies to

C̃A(ω) = 2π
∑
m6=n

pm| 〈m| ÂS |n〉 |2δ(ω − ωnm) , (83)

which might be interpreted as follows: Equation (83) is the sum over all initial states |m〉,
weighted with their corresponding occupation probability pm. The matrix element’s squares
give the transition probability to get from |m〉 to |n〉, induced by the operator Â and the delta
distribution ensures the energy conservation. Until this point, all considerations have dealt
with the real time (or the inverse, i.e., real time frequency) dynamics of slightly perturbed
systems. However, real time response and correlation functions cannot be obtained with path
integral Monte Carlo since the latter is restricted to the calculation of ensemble averages in the
TD equilibrium, i.e., in the imaginary time. For completeness, it is reported that the PIMC
calculation in the real time is possible in theory but its applicability to interesting systems is
heavily reduced by a dynamical sign problem, see e.g. [80]. Therefore, it is the task for the
remainder of this subsection to derive a connection between the real time dynamical quantity
C̃A(ω) and a correlation function which can be obtained in the imaginary time.

The correlation function from Eq. (80) can be written in the canonical ensemble with pm =
exp(−βEm)/Z as

CAB(θ) = 〈ÂD(θ)B̂D(0)〉0 (84)

=
1

Z

∑
m

e−βEm 〈m| e
i
h̄
Ĥ0θÂSe

− i
h̄
Ĥ0θB̂S |m〉

=
1

Z

∑
m,n

e−βEm 〈m| e
i
h̄
Ĥ0θÂSe

− i
h̄
Ĥ0θ |n〉 〈n| B̂S |m〉

=
1

Z

∑
m,n

e−βEm 〈m| e
i
h̄
EmθÂSe

− i
h̄
Enθ |n〉 〈n| B̂S |m〉

=
1

Z

∑
m,n

e−βEme
i
h̄

(Em−En)θ 〈m| ÂS |n〉 〈n| B̂S |m〉 .

For the quantum breathing mode, it holds Â = B̂ = Â† and, hence,

CA(θ) =
1

Z

∑
m,n

e−βEme
i
h̄

(Em−En)θ
∣∣∣〈m| ÂS |n〉

∣∣∣2 .

To make a transition to the imaginary time, the argument is chosen as θ = −iτ , which leads to

CA(τ) =
1

Z

∑
m,n

e−βEme
i
h̄

(Em−En)(−iτ)
∣∣∣〈m| ÂS |n〉

∣∣∣2
=

1

Z

∑
m,n

e−βEme
Em−En

h̄
τ
∣∣∣〈m| ÂS |n〉

∣∣∣2
=

1

Z

∑
m,n

e−βEme−ωnmτ
∣∣∣〈m| ÂS |n〉

∣∣∣2 , (85)
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where the sloppy, but commonly used, notation CA(θ = −iτ) = CA(τ) is applied. Most terms
in Eq. (85) can be identified with parts from the spectral representation (83). The connection
between the two is given by

CA(τ)− 1

Z

∑
m

e−βEm

∣∣∣〈m| ÂS |m〉
∣∣∣2 =

1

2π

∫ ∞
−∞

dω e−ωτ C̃A(ω) , (86)

as can be easily verified by inserting Eq. (83) into (86):

CA(τ) =
1

Z

∑
m

e−βEm

∣∣∣〈m| ÂS |m〉
∣∣∣2 +

+
1

2π

∫ ∞
−∞

dω e−ωτ2π
1

Z

∑
m 6=n

e−βEm | 〈m| ÂS |n〉 |2δ(ω − ωnm)

=
1

Z

∑
m

e−βEm

∣∣∣〈m| ÂS |m〉
∣∣∣2 +

+
1

Z

∑
m6=n

∫ ∞
−∞

dω δ(ω − ωnm)e−βEme−ωτ | 〈m| ÂS |n〉 |2

=
1

Z

∑
m,n

e−βEme−ωnmτ | 〈m| ÂS |n〉 |2 .

Eq. (86) is of major importance since it provides a direct connection between desireable dynamic
information and an imaginary time function which can be easily obtained with a suitable QMC
method, e.g. PIMC for finite temperature. The remaining task is to reconstruct a function
C̃A(ω) which, when being inserted into (86), results in a correlation function within the errorbars
of the Monte Carlo result, i.e., the left hand side. This turns out to be an ill-posed problem
and is discussed in detail in section 5.3. Finally, it should be noted that it does not matter
if one reconstructs the response or correlation function because the two are connected by the
fluctuation dissipation theorem [81]

χ̃′′A(ω) =
1

2h̄

[
C̃A(ω)− C̃A(−ω)

]
.

In this work, C̃A(ω) is reconstructed from Eq. (86) but one is free to choose otherwise.

5.1.4 The sum-rule formalism

Another possibility to obtain spectral information from quantities calculated in thermodynamic
equilibrium are the sum-rules, see e.g. [12, 79] and the references therein. Here, one considers
the energy weighted moments from the spectral function which are defined as

mk =
1

2π

∫ ∞
−∞

dω (h̄ω)kC̃A(ω)

=
1

Z

∑
n6=m

e−βEm(h̄ωnm)k
∣∣∣〈m| Â |n〉∣∣∣2 . (87)

The breathing mode at low temperature is nothing else but the lowest excitation from the
ground state due to the monopole operator. Hence, one can use different moments to calculate
an estimated excitation energy as

h̄ω(k, k − l) = Ek,l =

(
mk

mk−l

) 1
l

, l > 0 . (88)
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For completeness, it is mentioned that the different estimates from Eq. (88) fulfill the relation

· · · ≥ Ek+2,1 ≥ Ek+2,2 ≥ Ek+1,1 ≥ Ek+1,2 ≥ . . . , (89)

which is useful to check the quality of the obtained results. If one assumes the system to be
in the ground state, i.e., by choosing a sufficiently high β in the path integral Monte Carlo
simulation, Eq. (88) provides an accurate upper bound for the lowest excitation energy, which
corresponds to the breathing mode:

h̄ωBM ≤ Ek,l . (90)

For too high temperature, however, the lowest energy excitation will probably occur between
some higher states and (90) is not valid anymore. This is discussed in detail in section 5.2. The
great advantage of the sum-rule formalism is that one does not have to explicitly evaluate the
entire sum in Eq. (87), which is not feasible indeed. Instead, there exist expressions for several
mk in terms of equilibrium expectation values which can be easily obtained with PIMC.

In this work, the following four energy weighted moments are used:

• m3 = 8Ekin + 8EHO + 2α2Eint

• m1 = 4EHO

• m0 = CA(0)− 1
β

(∫ β
0 dτ CA(τ)− 2m−1

)
• m−1 = β

2

(
〈Â2〉 − 〈Â〉2

)
.

A detailed derivation of these expressions is presented in the appendix B.

5.1.5 Relative and center of mass mode

The breathing mode is dominated by two independent frequencies [72], as will be shown in the
following. The starting point of this consideration is the decoupling of the system’s wavefunction
into relative and center-of-mass (COM) coordinates, respectively:

rij = ri − rj ,

R =
1

N

N∑
k=1

ri ,

|ΨS(t)〉 = |ΨS,com(t)〉 ⊗ |ΨS,rel(t)〉 . (91)

Splitting the monopole operator Â into relative and center of mass contributions as well yields
independent excitations in the two subsystems from Eq. (91) and the expectation value of the
energies at an arbitrary time t can be written as

〈V̂HO〉 (t) = 〈ΨS,com(t)| V̂HO,com |ΨS,com(t)〉+ 〈ΨS,rel(t)| V̂HO,rel |ΨS,rel(t)〉 ,

〈T̂ 〉 (t) = 〈ΨS,com(t)| T̂com |ΨS,com(t)〉+ 〈ΨS,rel(t)| T̂rel |ΨS,rel(t)〉 ,

〈V̂int〉 (t) = 〈ΨS,rel(t)| V̂int,rel |ΨS,rel(t)〉 .

The interaction energy is independent from the COM system and, hence, the latter is simply
an ideal harmonic oscillator system with an analytical solution. It directly follows from the
monopole operator’s selection rules that the COM contribution to the breathing mode spectrum
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has a constant frequency, namely ωcom = 2 in oscillator units. This means that the frequency
estimate from Eq. (90) is an upper bound to the lowest transition in the combined spectrum
from relative and COM oscillations. However, since one is only interested to get an as accurate
as possible value for ωrel, it is highly desireable to get rid of all com contributions. This is indeed
possible since the latter are known explicitly and one finally arrives at the following expression
for the relative part of the energy weighted moment [12]:

m∗k = mk − 2k−1d , (92)

with d being the dimensionality. Equation (92) yields the improved estimate for the relative
oscillation frequency:

h̄ωrel ≤ h̄ω∗(k, k − l) =

(
m∗k
m∗k−l

)1/l

. (93)

There exist different limits of ωrel for ideal and strongly coupled systems. For λ = 0, it holds

• ωideal = 2.

For λ → ∞, on the other hand, the classical limit of the breathing mode frequency explicitly
depends on the type of interaction:

• Coulomb: ωclassical =
√

3

• polarized dipoles: ωclassical =
√

5.

The transition between the two will be investigated in the following subsections.
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Figure 48: Temperature dependence of the sum-rule estimators: On the left ordinate,
the three sum-rule estimators ω(3, 1) (red), ω(1, 0) (green) and ω(0,−1) (blue) are plotted over
the inverse temperature β. The right ordinate corresponds to the superfluid fraction γsf which
is visualized as the purple curve. The results have been obtained for a 2D Coulomb system with
N = 16 and λ = 3.

5.2 Sum-rule results

In this section, several dependencies of the sum-rule estimators are analyzed in detail.

5.2.1 2D Coulomb systems

The first interesting question to be addressed is the temperature dependence of the estimators
ω∗(k, k− l) from Eq. (93). It is important to understand that the T (β) dependent behaviour of
those quantities does not directly correspond to the real physical behaviour of the breathing mode
spectrum. The estimators provide an upper bound to the lowest excitation in the spectrum.
For the ground state, i.e., T = 0 (β → ∞), that transition is equal to the quantum breathing
mode. For finite T , however, some higher states are populated with a non zero probability
and transitions between them might have a lower energy difference. In that case, the sum-
rule estimators provide an upper bound to those transitions and not to ωrel. Therefore, one
needs to check, if the inverse temperature β is chosen high enough to ensure the validity of the
considered estimator. In Fig. 48, the BM estimators ω(3, 1) (red), ω(1, 0) (green) and ω(0,−1)
(blue) are plotted on the left ordinate over the inverse temperature β for a system of N = 16
particles with λ = 3. The right ordinate corresponds to the superfluid fraction γsf (purple).
All three frequency estimates exhibit a convergence to very similar values for increasing β, as
it is expected. At high temperature, however, they behave quite differently. The blue and
green curve start at ω > 2.4 and ω < 1.2, respectively, which are clearly out of the possible
interval of the breathing mode, ωrel ∈ [

√
3, 2]. In contrast, the red curve only slightly changes

with the inverse temperature. Hence, the ω(3, 1) sum-rule provides the most stable estimation
of the breathing mode frequency with respect to the temperature and, in addition, is afflicted
with the smallest statistical errors. All three ω(i, j) approach their final value around β = 4.
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Figure 49: Temperature dependence of the radial density: The radial density n is plotted
over the distance to the center of the trap r for a 2D Coulomb system with λ = 3 and N =
16. The color assignment distinguishes the inverse temperature and the right image shows a
magnified segment from the left one.

For completeness, it is reported that for the converged frequencies the relation from Eq. (89)
is fulfilled, i.e., ω(3, 1) > ω(1, 0) > ω(0,−1). The superfluid fraction exhibits the usual phase
transition and approaches unity around β = 6. This implies that the onset of superfluidity
does not seem to be directly connected to the convergence of the sum-rule estimators. In Fig.
49, the radial density n of the same system is shown for several inverse temperatures. In the
left image, only the curves for β = 1 (green) and β = 2 (red) can easily be distinguished from
the other curves, which look very similar. The right image shows a magnified segment of the
density profile and, here, most differences can be resolved. The two curves which correspond
to β = 15 (turquoise) and β = 5 (grey), however, appear to be equal, which means that they
are approximately equal to the ground state density of the system. The purple and blue curves,
which correspond to β = 3 and β = 2.5, respectively, slightly deviate. This is interesting because
the sum-rule estimators from Fig. 48 also exhibit a deviation from the converged values of a
similar magnitude around this inverse temperature. The red curve (β = 2) deviates a little
stronger than the aforementioned datasets but clearly the largest difference to the ground state
density appears for β = 1, i.e., the green curve. This, again, fits to the behaviour of the ω(i, j)
from Fig. 48. To find a more systematical connection between the convergence of the breathing
mode estimators and the density n one might define an integrated density difference as

∆n(β) = 2π∆r

Nbin∑
i=1

ri|ni(β)− ni(β = 15)| , (94)

where n(β = 15) is assumed to be equal to the ground state distribution. The results for the
quantity from Eq. (94) for the system from Fig. 48 are shown in Fig. 50, where, in the left and
right image, the sum-rule estimator ω(1, 0) and integrated density difference ∆n, respectively,
are plotted over the inverse temperature. The red points visualize the corresponding datasets
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Figure 50: Convergence of the BM estimators compared to the density: In the left and
right image, the breathing mode estimator ω(1, 0) and the integrated density difference ∆n are
plotted over the inverse temperature β for the same simulation parameters as in Fig. 48. The
red points correspond to the PIMC results and the green curves to fitted exponential functions
according to Eq. (95).

and both curves seem to exhibit an exponential decay towards the ground state result. This
suggests an exponential fit of the form

f(x) = a+ be−x/c ,

with the characteristic decay inverse temperature c. The results of such a fit are given by the
green curves in both images and the agreement with the datasets appears to be excellent. The
c parameters have been calculated as

• ω(3, 1): c = 0.70± 0.01

• ∆n: c = 0.723± 0.004

and are in each others double errorbars. Hence, it can be concluded that the convergence of
some of the breathing mode estimators is directly connected to the convergence of the density
of the system. However, this does not hold for e.g. ω(0,−1) which exhibits a non-monotonous
behaviour as explained in the discussion of Fig. 56. Finally, in Fig. 51, four random configurations
from the PIMC simulation are shown. For β = 1 (top left), the system exhibits a liquidlike
disorder and the extension of the particles is clearly smaller than their average distance towards
each other. This means that exchange only seldomly occurs and, therefore, the system exhibits
almost no superfluidity. In the β = 2 configuration (top right), there does appear significant
particle exchange, in particular around the center of the trap, and the system is in the middle
of the phase transition. For β = 3 (bottom left), nearly all the particles seem to be involved
in exchange cycles and the superfluid fraction has almost approached γsf = 0.8. A similar
behaviour, but with even more extended particle trajectories, appears for β = 5 (bottom right)
and this system is almost a complete superfluid. However, the behaviour of the densities from
Fig. 49 and the connected convergence of the sum-rule estimators from Fig. 48 is not obvious
from the four presented random configurations.
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Figure 51: PIMC snapshots at different temperatures: Four random snapshots from
PIMC simulations of 2D Coulomb systems with N = 16, λ = 3 and P = 110 are plotted for the
inverse temperatures β = 1, β = 2, β = 3 and β = 5.

To verify that the correct convergence of the sum-rule estimators is a general feature and
not just a coincidence for the selected system, one might investigate the temperature behaviour
of ω(i, j) for different coupling parameters. This is shown in the left image of Fig. 52, where the
breathing mode estimator ω(3, 0) is plotted over the inverse temperature for N = 16 particles
with λ = 0.3 (red), λ = 1 (green), λ = 3 (blue) and λ = 10 (purple). Again, all curves exhibit a
convergence towards their final value around β = 4.5. It is also interesting to note that, for large
β, the four curves are ordered with decreasing λ, that is, the smaller the coupling parameter, the
larger the breathing mode frequency. This is expected since for Coulomb-interacting particles
the ideal limit ω = 2 is larger than the classical pendant ω =

√
3, which is attained at strong

coupling. For high temperature, however, the order of the four curves is reversed and one cannot
extract information about the true beathing mode frequency from the sum-rule estimators.
In the right image of Fig. 52, the corresponding superfluid fractions γsf are plotted over the
inverse temperature with the same color assignment. All curves exhibit the expected superfluid
phase transition but with quite different slopes and critical temperatures. For the smallest
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Figure 52: Estimator convergence for different coupling: The breathing mode estimator
ω(3, 0) (left image) and superfluid fraction γsf (right image) are plotted over the inverse tem-
perature β for a 2D Coulomb system with N = 16 particles for different coupling parameters,
namely λ = 0.3 (red), λ = 1 (green), λ = 3 (blue) and λ = 10 (purple).

coupling parameter, λ = 0.3 (red curve), the system enters the superfluid phase for the highest
temperature because the average interparticle distances are smaller and, hence, the degeneracy
for a particular β higher than for the other values of λ. For λ = 10, on the other hand, the system
is not completely superfluid even for β = 10. Therefore, the results presented in Fig. 52 nicely
demonstrate that the superfluid phase transition is in no way connected to the convergence of
the sum-rule estimators for the breathing mode.

Another important check for the sum-rule formalism is the investigation of the convergence
behaviour for different particle numbers. The results of such a comparison are shown in Fig.
53, where the breathing mode estimator ω(3, 0) is plotted over the inverse temperature β for
N = 3 (red), N = 16 (green) and N = 60 (blue) particles and the coupling parameter λ = 3. All
three curves exhibit a similar behaviour, that is, a convergence towards some final value with
increasing β, as it is expected. The red curve, however, converges slightly later than the other
two. This implies that, for fewer particles in the system, less temperature is needed to populate
states with a higher energy than the ground state. This is a nice feature since it means that, for
systems with more particles, it is sufficient to obtain sum-rule results for smaller β and, hence,
less time slices P are needed.

In the first part of this subsection, the convergence behaviour of the sum-rule estimators
and the connection to other properties of the system has been analyzed. Another benchmark
for the correctness of the applied formalism is the comparison to exact results, which is possible
for N = 2 particles where it is feasible to directly diagonalize the Hamiltonian. In Fig. 54, the
breathing mode frequency ω is plotted over the coupling parameter λ for two particles. The
turquoise curve corresponds to the exact solution which has been calculated by Abraham and
Bonitz [10] and exhibits a smooth transition between the quantum and classical limits, which
are illustrated by the two straight lines. The other four curves correspond to the sum-rule
estimators ω(3, 1) (green), ω(3, 0) (blue), ω(3,−1) (purple) and ω(1, 0) and have been obtained
with PIMC for β = 15 and P = 410. Again, the order of the different sum-rules fulfills Eq. (89),
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Figure 53: Estimator convergence for different particle numbers: The breathing mode
estimator ω(3, 0) is plotted over the inverse temperature β for a 2D Coulomb system with λ = 3
and the particle numbers N = 3 (red), N = 16 (green) and N = 60 (blue).
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Figure 54: Coupling dependence of the unimproved breathing mode estimators for
two Coulomb particles in 2D: Four breathing mode estimators and the exact solution by
Abraham and Bonitz [10] are plotted over the coupling parameter λ for N = 2 Coulomb-
interacting particles in 2D for β = 15.
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Figure 55: Coupling dependence of the un- and improved breathing mode estima-
tors for two Coulomb particles in 2D: Two unimproved breathing mode estimators, their
improved pendants and the exact solution by Abraham and Bonitz [10] are plotted over the
coupling parameter λ for the system from Fig. 54.

as it is expected. However, there appears a large gap between between the turquoise and the
other curves in the middle of the transition. Hence, the presented sum-rule results only provide
information about the qualitative behaviour of the breathing mode but the difference to the
exact value is significant. The explanation for this seemingly unfortunate feature is given by the
center of mass contribution to the monopole spectrum at ω = 2.0. This additional peak enters
the usual sum-rules, as explained in section 5.1.5, and shifts the estimates to higher frequencies.
Therefore, it is inevitable to consider the improved sum-rule estimators from Eq. (93) which are
no longer afflicted with the center of mass contribution.

The results are shown in Fig. 55, where, again, the breathing mode frequency is plotted
over the coupling parameter for the same system. This time, however, the four sum-rule results
provide a comparison between the standard and the improved frequency moments. The green
and blue curve correspond to ω(3, 1) and ω∗(3, 1), respectively, and the latter is much closer to
the exact solution than the unimproved pendant. The purple and red curve exhibit the same
behaviour for ω(1, 0) and ω∗(1, 0) and the latter almost perfectly coincides with the turquoise
dataset. Hence, getting rid of the center of mass contribution is an indenspensible tool to obtain
the correct breathing mode for two particles. Thus, it can be concluded that the improved sum-
rule estimators provide an accurate upper bound to the relative oscillations in the monopole
spectrum. For completeness, it is reported that the improved estimator ω∗(0,−1) exhibits a
slightly non-monotonous behaviour and, for the parameters from Fig. 55, it is not always an
upper bound to the exact values. This, however, is not an error of the sum-rule formalism
or the implementation, but can be explained with the temperature dependence. In Fig. 56,
the breathing mode frequency is plotted over the inverse temperature for two particles with
λ = 30. The red and green curves correspond to the improved estimators ω∗(0,−1) and ω∗(1, 0),
respectively. Both datasets seem to exhibit the expected convergence for increasing β. The right

78



5.2 Sum-rule results

 1

 1.25

 1.5

 1.75

 2

 2.25

 2.5

 0  5  10  15  20  25

ω

β

ω*(0,-1)
ω*(1,0)

 1.7

 1.72

 1.74

 1.76

 1.78

 1.8

 0  5  10  15  20  25

ω

β

ω*(0,-1)
ω*(1,0)

Figure 56: Temperature dependence of two improved breathing mode estimators: The
improved breathing mode estimators ω∗(0,−1) and ω∗(1, 0) are plotted over the inverse temper-
ature β for N = 2 Coulomb-interacting particles in 2D with λ = 30. The right image shows a
magnified segment from the left one.

image from the figure shows a magnified segment and it becomes clear that, even for β = 25,
the two particle system has not fully reached the ground state, yet. The green curve only
slightly increases from β = 15, which corresponds to the results from Fig. 55, to β = 25. This
is consistent with the interpretation of the improved sum-rules as an accurate upper bound.
The red curve, however, clearly increases in the same interval and, hence, it is obvious that
the peculiar results at β = 15 do not correspond to the correct estimates of the breathing
mode frequency. In conclusion, the comparison of the sum-rules with the exact solution has
nicely illustrated the necessity of the improved estimators and the obtained PIMC results are
in excellent agreement with the true breathing mode frequency.

A very interesting topic to be investigated with the sum-rule formalism is the dependence
of the breathing mode frequency on the particle number N . This is shown in Fig. 57, where
the improved estimator ω∗(3, 1) is plotted over N for the coupling parameters λ = 10 (red),
λ = 3 (green), λ = 1 (blue) and λ = 0.3 (purple). All results have been obtained for β = 5
and P = 110. The four curves exhibit a decay towards the classical limit with an increasing
particle number. This implies that the adding of particles to an otherwise unchanged system
leads to more collective behaviour, which is in excellent agreement with the results for fermions
by Abraham and Bonitz [10]. A natural quantity to confirm this interpretation are degeneracy
and non-ideality parameters, which are analyzed in subsection 5.2.4 for 2D and 3D Coulomb and
2D dipole systems. For completeness, it is reported that the four curves in Fig. 57 are ordered
with increasing λ, as it is expected. Only for N = 1000, this order is marginally violated.
This could be caused by either a small temperature effect, i.e., a not completely converged
estimator ω∗(3, 1), or the upper bound nature of the sum-rules themselves. However, the latter
do not provide the exact breathing mode anyway and this minor peculiarity is clearly below
the expected accuracy of the formalism. Finally, the red curve exhibits some slightly unsmooth
features for small N because the properties of few-particle systems explicitly depend on the shell
configurations. This effect, obviously, increases with the coupling parameter λ.
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Figure 57: Particle number dependence of the breathing mode for 2D Coulomb sys-
tems: The improved breathing mode estimator ω∗BM(3, 1) is plotted over the particle number
N for a 2D Coulomb system at β = 5. The red, green, blue and purple curve correspond to
λ = 10, λ = 3, λ = 1 and λ = 0.3, respectively.

5.2.2 Comparison of Coulomb systems in 2D and 3D

Like in the 2D case, it is a useful check to compare the convergence of different sum-rule
estimators and verify their order. This is shown in Fig. 58, where the breathing mode frequency
is plotted over the inverse temperature for N = 16 Coulomb-interacting particles in 3D with
the coupling parameter λ = 10. The red curve corresponds to the estimator ω(3, 1) and exhibits
a monotonous decay towards its final value and the slightest deviations of all three curves from
the latter at high temperature. The green curve belongs to ω(1, 0) and, again, a monotonous
convergence appears, although with a positive slope and much larger deviations at small β. The
blue curve corresponds to ω(0,−1) and exhibits a rather peculiar, non-monotonous behaviour.
For small inverse temperatures, it declines until around β ≈ 5 a minimum appears and the
estimator approaches its final value from below. The same behaviour has been observed for
2D systems, as shown in Fig. 56. The ordering of the three presented estimators fulfills the
theoretical prediction from Eq. (89) and the correctness of the applied sum-rule formalism seems
to be confirmed for 3D systems, as well.

Another interesting question is the impact of an additional dimension on the coupling
strength dependence of the breathing mode. To provide an answer, N = 2 particles are simu-
lated at β = 15 and, in Fig. 59, the improved sum-rule estimator ω∗(1, 0) is plotted over λ. The
green curve corresponds to the 2D and the red one to the 3D system. Both curves exhibit a
similar transition between the quantum and classical limit, where they are equal. For interme-
diate coupling, however, the results significantly deviate and the red curve clearly exceeds the
green one. This implies that in this regime the three dimensional system exhibits less collective
behaviour than the two dimensional pendant. This is expected since, due to the additional
available dimension, the particles can avoid each other more effectively. For completeness, it is
also reported that the chosen small system which consists of two particles only is probably the
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Figure 58: Comparison of different BM estimators of a 3D system: Three breathing
mode estimators are plotted over the inverse temperature β for a 3D Coulomb system with
λ = 10 and N = 16.
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Figure 60: Sum-rule convergence of 2D dipole systems: The estimated BM frequency ω
is plotted over the inverse temperature β for a 2D dipole system with N = 16. In the left image,
results for the estimator ω(3, 0) are shown for λ = 100, λ = 10 and λ = 1. The right image
solely corresponds to λ = 100 and the color assignment distinguishes three different estimators.

optimal example to illustrate the difference between the breathing mode of 2D and 3D systems.
The reason for this claim is the decrease of ωBM with an increasing particle number N , which
could prevent the reported difference between the two curves in Fig. 59 from being detected.
The sum-rules do provide an (accurate) upper bound for the true transition frequency. If the
real difference between the frequencies for the selected 2D and 3D system is smaller than the
inaccurateness due to the upper bound nature of the sum-rule formalism, the correct behaviour
cannot be resolved any more and even the opposite trend could appear. This has been observed
for both N = 16 and N = 150 particles with λ = 10. This, however, is an exclusive feature
of the estimator ω(3, 1), which has the largest systematic error of all ω(i, j). The other sum-
rule results suffer from a significantly larger statistical error and fluctuate within each others
errorbars. The dependence of the quantum breathing mode on the particle number N of a 3D
system is discussed in subsection 5.2.4.

5.2.3 2D dipole systems

The last class of systems to be considered for the investigation of the quantum breathing mode
in this work are dipole-interacting particles in 2D. An example is presented in Fig. 60 and the
left image shows the convergence of the sum-rule estimator ω(3, 0) for N = 16 particles and the
coupling parameters λ = 100 (red), λ = 10 (green) and λ = 1 (blue). All curves approach a
final value which is located within the correct interval ω ∈ [2,

√
5] around β = 5 from below.

The estimated breathing mode frequency increases for stronger coupling, as it is expected for
dipole-interacting particles. In the right image of Fig. 60, PIMC results from the breathing
mode estimators ω(3, 1) (red), ω(3, 0) (green) and ω(1, 0) (blue) are plotted over the inverse
temperature for N = 16 strongly coupled particles with λ = 100. As usual, all three curves
converge with increasing β and, again, approach their final value from below around β = 5.
The order of the three estimators fulfills Eq. (89). In Fig. 61, the corresponding densities n
for the same parameters and β = 15 (red), β = 4 (green), β = 3 (blue), β = 2 (purple) and
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Figure 61: Comparison of densities for different temperatures: The radial density n is
plotted over the distance to the center of the trap r for a 2D dipole system with N = 16 and
λ = 100. The color assignment distinguishes the different inverse temperatures β.

β = 1 (turquoise) are shown. All except the latter curve exhibit a clearly pronounced shell
structure with relatively small overlap. The red curve approximately equals the ground state
density and, with increasing temperature, the shells become flatened. The deviations to the
β = 15 result at different inverse temperatures do reasonably coincide with the behaviour of
the sum-rule estimators from Fig. 60, as it has already been discussed for Coulomb interaction.
The turquoise curve exhibits a rather smooth progression and, for β = 1, the spatial order of
the system seems to be almost entirely lost. Further results for the quantum breathing mode
of 2D dipole systems are presented in subsections 5.2.4 and 6.3.3, where the particle number
dependence and a comparison between bosons and fermions, respectively, are discussed.

5.2.4 Transition towards collective behaviour

The last sum-rule results to be discussed in this work concern the dependence of the quantum
breathing mode on the system size, i.e., the particle number N . Abraham and Bonitz [10] have
found that weakly coupled Fermi systems in two dimensions exhibit a transition towards the
classical limit of ωrel. In this section, a similar analysis is conducted for bosons with both dipole
and Coulomb interaction and in 2D and 3D for the latter. In the left image of Fig. 62, the
PIMC results for the improved estimator ω∗(3, 1) are plotted over the particle number N for
λ = 10. The red and blue curves correspond to Coulomb- and dipole-interacting particles in
2D, respectively, and have been obtained for the inverse temperature β = 5. The green curve
corresponds to 3D Coulomb systems and β = 10. For completeness, it is again mentioned
that, for few particles (i.e., N < 10), the BM estimators are not fully converged. However, the
selected ω∗(3, 1) exhibits a rather small temperature dependence and the behaviour for larger
N is expected to be accurate and the uncertainty due to the upper bound nature of the sum-
rules themselves is distinctly larger. The blue curve starts at ω ≈ 2.162 for two particles and
monotonically increases with N . Hence, the quantum breathing mode for two dimensional dipole
systems seems to converge towards the classical limit ω =

√
5. The red and green curve exhibit

a similar behaviour, that is, a monotonical decreasing from ω ≈ 1.79 at N = 2 towards the
classical limit for Coulomb-interaction ω =

√
3. Both datasets appear to be nearly equal but the
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Figure 62: Particle number dependence of the quantum breathing mode: In the left
image, the improved breathing mode estimator ω∗(3, 1) is plotted over the particle number N
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Figure 63: Comparison of degeneracy and non-ideality parameters: In the left and right
image, the averaged degeneracy parameter χ and non-ideality parameter χσ, respectively, are
plotted over the particle number for the system from Fig. 62 with the same color assignment.
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5.2 Sum-rule results

2D results always exceed the 3D pendants. However, this is not a physical effect, but can safely
be accounted to the upper bound nature of the sum-rules as it has already been pointed out in
section 5.2.2. This explanation is confirmed by the right image of Fig. 62, where the improved
estimator ω∗(1, 0) is plotted over N for up to twenty particles for both dimensionalities. Indeed,
the more accurate upper bounds reveal that the breathing mode adopts higher values in 3D
and, in addition, provide a better insight into the non-monotonous behaviour due to finite size
effects, i.e., shell configurations. The latter effect is clearly more pronounced in two dimensions.
In summary, all three systems exhibit a transition towards their respective classical limit of the
relative frequency. To explain this trend, one might investigate degeneracy and non-ideality
parameters. In the left image of Fig. 63, the averaged degeneracy parameter χ, see also section
4.2 and Fig. 32 in particular, is plotted for the same systems as in Fig. 62. All three curves
exhibit a seemingly irregular behaviour for small N , which is again due to the aforementioned
finite size effects. The degeneracy of the dipole systems almost monotonically increases with the
particle number. The same is true for the 2D Coulomb systems, but with a reduced slope. The
3D Coulomb system, on the other hand, seems to converge towards a constant value and the
higher χ for few particles are due to the increased inverse temperature compared to the other
curves. Therefore, the observed behaviour of the breathing mode is not directly connected to the
degeneracy of the system. Abraham and Bonitz [10] have suggested a non-ideality parameter
χσ which can be defined as

χσ =
σ0

σ
, with (95)

σ =
√

2EHO and

σ0 =


√
N, for 2D√
3N
2 , for 3D .

Here, σ can be interpreted as the mean extension of the correlated system and σ0 as the ideal
pendant. Hence, the non-ideality parameter from Eq. (95) equals unity for ideal systems and
eventually vanishes with increasing coupling strength λ. The results for the simulations from Fig.
62 are plotted in the right image of Fig. 63, where χσ is plotted over N . All three curves start
at relatively high values around χσ = 0.65 and monotonically decrease with N . The modulus
of the slope decreases with N as well, which is similar to the behaviour of the breathing mode.
Thus, the findings by Abraham and Bonitz [10] for fermions, that the transition of ωrel towards
the classical limit for large systems is a consequence of the increasing non-ideality, are confirmed
for bosons in all three presented cases. However, to what extend the explicit choice of χσ can be
exploited for diagnostic purposes, is unclear. The dipole curve always exceeds the 2D Coulomb
pendant, which fits the fact that the breathing mode for the former converges slowlier. The
3D Coulomb data, on the other hand, exhibits even larger values for N < 100 particles than
the blue curve, although the BM frequency in the former case is probably already closer to the
classical limit. The non-ideality parameter is, similar to the degeneracy parameter χ, arbitrary
to some degree and the definition from Eq. (95) might not have the same significance for 2D
and 3D systems.
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Figure 64: PIMC result for the imaginary time correlation function: The monopole
operator’s CF CA is plotted over the imaginary time τ for a 2D Coulomb system with N = 30,
λ = 0.3, β = 5 and P = 110.

5.3 Reconstruction of the spectral function

The sum-rules provide an accurate upper bound for the lowest transition in the spectrum of
interest. However, the investigation of temperature effects requires knowledge about the entire
spectrum, because new peaks will emerge and existing ones might be broadened and their spec-
tral weight changed. The only known approach to obtain such detailed dynamic information
from equilibrium simulations is the reconstruction of the spectral function from the correspond-
ing imaginary time autocorrelation function. The latter might be easily obtained with PIMC
with the estimator

CA(τ = mε) ≈ 1

PNMC

NMC∑
k=1

P−1∑
j=0

Ak,jAk,j+m ,

and an example for N = 30 Coulomb-interacting particles in 2D with β = 5, λ = 0.3 and
P = 110 is shown in Fig. 64. The remaining task to be discussed in the following section is
the solution of the inverse problem given by Eq. (86). The reconstruction is a well known tool
not only for the investigation of the quantum breathing mode, but has already been successfully
applied to calculate e.g. the dynamic structure factor and the single particle spectrum. The
corresponding correlation functions in these cases are the density-density CF and the Matsubara
Green function, respectively, and a detailed analysis for both examples can be found in [13].

5.3.1 Problem statement

The general problem which has to be solved is of the form

G(τi) =

∫ ∞
−∞

dω S(ω)K(ω, τi) . (96)
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5.3 Reconstruction of the spectral function

The input data is given by the PIMC result for an imaginary time correlation function G(τi)
which is calculated on the discrete time slices τi with i = 1, . . . ,M . However, these results are
not exact, but afflicted with the corresponding statistical errors δG(τi). The right hand side of
Eq. (96) is given by the integral over the desired spectral function S(ω) times an integration
kernel K(ω, τi), depending on both the frequency and the imaginary time. A comparison of Eqs.
(96) and (86) reveals the particular form of K for the quantum breathing mode:

K(ω, τi) = e−ωτi .

The connection between S(ω) and C̃A(ω) is given by a constant factor which can be neglected.
The task to be solved is the calculation of a model spectral function S̃(ω) which, when being
inserted into (96), results in a correlation function G̃(τi) which is within the errorbars of the
Monte Carlo results. The quality of the reconstructed quantity can be characterized with a
deviation measure of the form

χ2 =
1

M

M∑
i=1

(
G(τi)− G̃(τi)

)2

δG2(τi)
, (97)

which should be of the order of unity. The trivial approach would be to implement some
suiting gradient method and simply minimize Eq. (97). However, the ill-posed nature of the
reconstruction causes the existence of an infinite number of reconstructed correlation functions
within the errorbars of the PIMC data, which means that there is no unique solution. The
difficulty is that most functions fulfilling the deviation measure are afflicted with unphysical
sawtooth noise which is caused by an overfitting to the input data. Therefore, it is a challenge
to minimize χ2 and get rid of any unphysical noise at the same time, which is a hard problem,
indeed.

In order to test any reconstruction method, one can simply create a suiting testcase by hand
and use, in principle, any positive function as a trial spectrum S(ω). A convenient choice is a
superposition of η gaussians:

S(ω) =

η∑
l=1

Al√
2πσl

exp

(
−(ω − Pl)2

2σ2
l

)
.

The corresponding correlation function G(τ) can be trivially calculated using Eq. (96). However,
a realistic input for the reconstruction is afflicted with statistical errors, which have to be
artifically generated for the testcase. It is sufficient to choose the same variance for every point
τi:

Gtest(τi) = G(τi) + ασG(0) , (98)

with a normally distributed random number α. Fig. 65 shows the result of the primitive recon-
struction, i.e., only the minimization of χ2, for such a testcase, and the spectrum is plotted over
ω. The input function consists of two broad gaussians, while the reconstructed curve exhibits
two very sharp peaks, centered at different positions. The reconstruction has, obviously, failed
to reproduce the test spectrum. In the left image of Fig. 66, the correlation function G is plotted
over τ . The red points again correspond to the perturbed input dataset according to Eq. (98)
and the green curve has been reconstructed. Both datasets seem to coincide and exhibit the
same exponential decay. The right image shows a magnified segment and the reconstructed
correlation function nicely extrapolates between the fluctuating input. The deviation measure
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Figure 65: Example for the sawtooth noise: The spectral function S is plotted over the
frequency ω. The red curve corresponds to the exact model spectrum and the green curve has
been reconstructed.
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Figure 66: Example for the sawtooth noise: The correlation function G is plotted over the
imaginary time τ . The red curve corresponds to the perturbed input data and the green curve
has been reconstructed. The right image shows a magnified segment from the left one.
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5.3 Reconstruction of the spectral function

has been calculated as χ2 ≈ 0.98. Hence, it must be concluded that a deviation measure below
unity and a smooth extrapolation between the input data is insufficient. The solution of this
ill-posed problem requires additional effort and three different approaches will be introduced in
the following subsections.

5.3.2 The Maximum Entropy Method

The Maximum Entropy Method (MEM) is a widely used regularization method [82]. The basic
idea is to make use of any information about the spectrum of interest which is available in
advance. This is justified by the Bayes theorem [83]

P [S|G]P [G] = P [G|S]P [S] ,

with P [x] being the a-priory probability for a specific x and the likelihood function P [y|x],
i.e., the probability to obtain y under the condition of an already given x. The problem of
reconstruction as stated in Eq. (96) is nothing else than the task to find the most probable
spectrum S(ω) for a given correlation function G, described by P [S|G]. This rather difficult
problem can be transformed into the more trivial task to find G for a given S, if a-priory
knowledge about the spectrum is available:

P [S|G] ∝ P [G|S]P [S] .

The reality, however, is not just as nice since this simplification comes at a high price. The inclu-
sion of assumed knowledge about the spectrum leads to a biased outcome of the reconstruction
because an expected absence of sharp peaks might lead to a suppression of the latter, although
they could be physically motivated and, hence, be an exciting new discovery. The likelihood
function is typically defined as

P [G|S] ∝ exp

(
−χ

2

2

)
,

with the usual deviation measure χ2 given by Eq. (97). The crucial function in the Maximum
Entropy Method is the prior knowledge about the spectrum

P [S] ∝ exp (αE[S]) ,

with the free control parameter α and the entropy functional

E[S] =

∫
dω S(ω)log

(
S(ω)

T (ω)

)
.

Any preknown information about the spectrum is put into the target function T (ω). The
definitions of P [S] and E[S] yield that the prior knowledge function for a particular spectrum
S(ω) is maximized for S(ω) = T (ω). Therefore, the amount of new information which is revealed
by the reconstruction crucially depends on the choice of the control parameter α since, for α = 0,
the regularization has no effect and the result is again afflicted with sawtooth noise and, for
α → ∞, one just receives T and the reconstruction is futile. There exist several possibilities,
like e.g. a weighted averaging over several α.

The Maximum Entropy Method is well suited to get smooth spectra without any sawtooth
noise if enough prior knowledge about S(ω) is provided in advance. However, the regularization
comes at a high cost because the outcome is always biased and, therefore, the amount of new
information limited. A practical application of the method is presented in [84], where the
dynamic structure factor is reconstructed from PIMC results for a system of liquid 4He at finite
T . The analysis revealed new information beyond the scope of variational ground state methods
which had been used before. State of the art enhancements to MEM might be found in [85].
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5 THE QUANTUM BREATHING MODE

Figure 67: Illustration of the composition of the final spectrum: In graph (a), the
spectral function S - here denoted as A - is plotted over the frequency ω. The three red curves
correspond to different numbers of included trial solutions Sk(ω) and the dotted blue ones to
the exact spectrum. Graph (b) shows the logarithmic probability for a ratio of the deviation
measure D and the minimum Dmin, plotted over the latter. The shaded area marks all trial
functions which are included in the final average. The figure has been obtained from [87].

5.3.3 The Stochastic Optimization Method

The Stochastic Optimization Method (SOM) has been introduced by Mishchenko et al. [86]
and requires no prior knowledge about the spectral function of interest. Since no regularization
is used, the SOM guarantees unbiased results. The main idea is to randomly generate a large
set of independent trial spectra Sk(ω), with the only criterion being the minimization of the χ2

measure. Every single solution Sk will be afflicted with the sawtooth noise. However, the final
result of the SOM is given by an average over all trial spectra below a specific deviation measure,
which means that all unphysical noise should be averaged out if enough functions are included.
The big advantage of this method is that even extremely sharp peaks can be recovered, while
the outcome will be at least relatively smooth.

Another difference compared to other reconstruction methods is that the spectrum S(ω)
is not represented by a set of discrete values Si at frequencies ωi but is instead given by the
superposition of B continuous rectangular basis functions:

Sk(ω) =

B∑
y=1

ηy(ω) .

The rectangles ηy(ω) can be parametrized by their height hy, width wy and position of the center
of mass cy:

ηy(ω) =

hy, if ω ∈ [cy − wy

2 , cy +
wy

2 ]

0, otherwise.

To obtain a reconstructed spectrum which fulfills the deviation measure and, thus, fits the
PIMC errorbars, one needs to implement an update scheme which is able to reach all possible
configurations, i.e., by deforming, moving and deleting existing basis functions and inserting new
ones. In addition, it is very important to have some kind of annealing procedure which allows a
temporary increase of χ2 to escape local minima. However, the particular choice of the updates
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5.3 Reconstruction of the spectral function

is not of major interest for this work and the interested reader is referred to the overview by
Mishchenko [87]. Fig. 67 illustrates the composition of the final result and in image (a) the
exact spectral function (blue) is compared to the SOM result (red) for three different numbers
of included individual solutions Ns. Four functions are clearly not sufficient to get rid of the
sawtooth noise and the spectrum fluctuates heavily. For Ns = 30, the curve looks much smoother
already but there still appear clear fluctuations. Finally, for Ns = 500, the reconstructed spectral
function almost perfectly coincides with the exact curve and the fluctuations are relatively small.
In image (b), the logarithmic probability for a particular ratio of the deviation measure D and
the minimum Dmin is plotted over the latter. The shaded area marks all trial functions which
are included into the final average.

In conclusion, the Stochastic Optimization Method is able to deliver relatively smooth spec-
tral functions without heavy sawtooth noise. The great advantage in comparison to regulariza-
tion methods, like the aforementioned MEM, is that, in principle, no prior knowledge about S is
required and, hence, no bias is introduced. Nevertheless, it is possible to include any knowledge
about the spectrum, like e.g. sum-rule results for some frequency moments, into the recon-
struction to improve the performance. The original application of the Stochastic Optimization
Method has been the investigation of the Fröhlich polaron by Mishchenko et al. [86]. The sys-
tem of interest is an electron, coupled to nondispersive phonons of a dielectric medium via its
polarization, and the reconstruction has revealed a nontrivial spectrum with pronounced peaks,
which are associated with unstable excited states of the polaron. Another interesting example
for the usage of the SOM is the investigation of both the single particle spectrum and the dy-
namic structure factor of ultracold dipole-interacting bosons by Filinov and Bonitz [13]. Here,
the influence of Bose-Einstein-Condensation on both quantities has been analyzed in detail.

5.3.4 The Method of Consistent Constraints

Until recently, there has been a trade-off between having a maximum smooth spectral function,
as provided by regularization methods, or obtaining a completely unbiased solution with e.g.
the Stochastic Optimization Method which, on the other hand, might still be afflicted with
fluctuations. The Method of Consistent Constraints (MCC) by Prokof’ev and Svistunov [88]
promises to solve this dilemma and allows for the calculation of the smoothest possible spectral
function which is in agreement with the deviation measure. The basic idea of this new approach
is to minimize an objective function O[S(ω)] which consists of the usual χ2 measure from Eq. (97)
and, in addition, several regularization terms which artifically smoothen the spectral function.
However, the smoothening does not introduce any bias because the regularization terms are
adjusted by an additional iteration loop. Artificial punishments for e.g. sharp peaks are only
possible if they do not compromise the deviation measure.

The spectral function is represented by a set of values Sk at discrete frequency values ωk =
k∆ω and k = 1, . . . , N . The original objective function by Prokof’ev and Svistunov [88] consists
of four terms:

O[S(ω)] =

4∑
j=1

Oj [S(ω)] .

The first term is simply given by the usual deviation measure

O1[S(ω)] =
1

M

M∑
i=1

(
G(τi)− G̃(τi)

)2

δG2(τi)
, (99)

91



5 THE QUANTUM BREATHING MODE

and is the only physically motivated influence on the reconstructed spectral function. The second
term is a punishment for sharp peaks and, therefore, high first derivatives

O2[S(ω)] =

N−1∑
k=1

D2
kd

2
k ,

with the trivial approximation

dk =
Sk+1 − Sk

∆ω

for the derivatives and explicitly k-dependent coefficients Dk. The last point is very important
since it allows to decrease the punishment at positions in the spectrum, where sharp peaks are
necessary to decrease Eq. (99) and increase it elsewhere to enforce a smooth curve. The third
term of the objective function is a punishment for high amplitudes in the spectral function:

O3[S(ω)] =
N∑
k=1

A2
jS

2
k .

Finally, the last term in O[S(ω)] is related to the maximum entropy idea and punishes the
deviations from some target spectral function ST(ωk) = ST

k :

O4[S(ω)] =
N−1∑
k=2

T 2
k

(
ST
k − Sk

)2
.

The last missing ingridient of the MCC scheme is some procedure to minimize the objective
function. Possible approaches include gradient methods [89], genetic algorithms [90] or Monte
Carlo procedures as described in section 5.3.5.

The basic idea behind the iteration loop is to analyze the punishments in the objective
function and adust them in a way that the deviation measure is minimized with as much reg-

ularization as possible. The trial solution is denoted as S
(j)
k , with (j) being the number of

iterations. A possible target solution is just an average of two adjacent frequency points from
the last iteration:

S
T(j+1)
k =

S
(j)
k+1 + S

(j)
k

2
.

This choice will prevent too rapid changes of the trial spectrum S
(j+1)
k in a single iteration. The

initial coefficients D
(0)
k should be chosen large enough to ensure a smooth trial spectrum after the

first iteration. Prokof’ev and Svistunov [88] find it sufficient to always set D
(j)
k = T

(j)
k , although

this is a degree of freedom which might be exploited for optimization. The initial coefficients

for the punishments of large amplitudes A
(0)
k are set to zero. The iteration is implemented as

follows:

1. Start with an arbitrary (or sophisticated) initial guess for the spectral function S
(0)
k .

2. Minimize the objective function O(j)[S(j)(ω)] and increase the iteration counter by one,
j → j + 1.
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5.3 Reconstruction of the spectral function

3. Adjust all constraints in the last three terms of O(j)[S(j)(ω)] which compromise the devia-
tion measure. If the minimization of the objective functions suffers from a large punishment
D2
kd

2
k, then it is likely that a physically motivated sharp peak is located at ωk or at least

nearby. In this case, the constraint must be reduced. Otherwise, a flat spectrum does
not compromise the χ2 measure and, therefore, the punishment is too weak and might be
increased:

D
(j+1)
k =


C

d
(j)
k

if d
(j)
k > C

D
(j)
k

2D
(j)
k , otherwise.

Here, C ∼ 0.1 denotes a free algorithmic parameter. To prevent a divergence of the

coefficients D
(j)
k , one should implement an additional cutoff condition:

D
(j+1)
k =

rDmin if D
(j+1)
k > rDmin

D
(j+1)
k , otherwise,

with some large number r ∼ 104.

4. Adjust the third term to prevent negative values in the spectral function:

A
(j+1)
k =

Amax ∼ 108 if S
(j)
k < 0

A
(j)
k

10 , otherwise.

If the trial spectral function exhibits a negative value at some frequency ωk, then every
deviation from zero at this point will be severely punished. Otherwise, the punishment
will be decreased in every step until it approaches zero.

5. Update the target function to

S
T(j+1)
k =

S
(j)
k+1 + S

(j)
k

2
,

and return to step 2.

The iteration is completed when the spectral function has converged.
In conclusion, the Method of Consistent Constraints starts with a strict regularization to

suppress all sawtooth noise. However, in order not to introduce any bias, all regularization
coefficients are adjusted in a self consistent iteration loop. This means that the final result for
the spectral function will both deliver a deviation measure of the order of unity and exhibit no
unphysical fluctuations, hence, being the smoothest possible solution within the PIMC errorbars
of the autocorrelation function.

5.3.5 Implementation

The implementation of the spectral analysis to be presented in this section is a Monte Carlo
scheme which is, in principle, suited to minimize any objective function, as e.g. required for the
Method of Consistent Constraints. However, for sufficiently low temperatures, the monopole
spectrum should consist solely of the two peaks due to the relative and COM motion of the
particles. Therefore, it is not appropriate to apply any regularization since sharp peaks are
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Figure 68: Switching between local minima in the configuration space: The deviation
measure - here denoted as D - is plotted over some arbitrary variable of the configuration space.
The dotted red arrows symbolize the movement between several local minima. The figure has
been obtained from [87].

explicitly expected. The spectral function S(ω) is represented by a set of values {Sk} at the
discrete frequency grid ωk = k∆ω with k = 1, . . . , N . To minimize the deviation measure, a set
of updates is needed which is able to reach any possible trial spectrum. This is achieved by the
following list:

1. Exchange: Choose a random frequency point ωk with k ∈ [1, N − 2] and exchange the
spectral function values Sk and Sk±1. The update allows delta-like peaks, which always
appear in the beginning of the minimization, to move very efficiently in the frequency
space.

2. Single Slot : Choose a random frequency point ωk with k ∈ [0, N − 1] and calculate the
proposed change in the spectrum as

∆S = αSkcmax , (100)

with the uniformly distributed random number α ∈ [0, 1) and the free algorithmic param-
eter cmax ∼ 1, which determines the maximum change in a single update. The change
from Eq. (100) is substracted from Sk and added to one of the adjacent values Sk±1. The
update allows extended peaks of any shape to be arbitrarily deformed.

3. Double Slot : Procede as for the Single Slot update, but add the change to an arbitrary
point j ∈ [0, N − 1], j 6= k. This update allows for a redistribution of the spectral weight
between different peaks which are separated from each other in the frequency domain.

For the MCC, one would need additional updates to ensure that smooth spectra can be manu-
factured in a relatively small amout of Monte Carlo steps. However, for the sole minimization
of the χ2 measure, the three presented updates are already sufficient.

The last missing ingredient for the spectral analysis procedure is some criterion to decide
wether to accept or reject a proposed update. The most trivial approach would be to accept
only those moves which result in a decreased deviation measure. However, such a realization
will be very inefficient since one might easily get stuck is a local minimum in the configuration
space. This is illustrated in Fig. 68, where the deviation measure, which is denoted as D, is
plotted over an arbitrary variable of the configuration space. The curve exhibits numerous local
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Figure 69: The imaginary time autocorrelation function for two dipoles: The correla-
tion function CA is plotted over the imaginary time τ for a 2D system of N = 2 dipole-interacting
particles with P = 310, λ = 30 and β = 10. The red curve corresponds to the PIMC results and
the green one has been reconstructed. In the right image, a magnified segment is shown.

minima. It is, obviously, very improbable to escape from a very deep one with just a single
update of the spectrum because multiple peaks might have to be changed. Therefore, the red,
dashed arrows represent combinations of more than one update, where the deviation measure
is temporarily increased. There exist several schemes to take this into account. In this work,
an annealing procedure similar to the one described in [87] in the context of SOM is used. The
acceptance ratio for an update with the change in the deviation measure

∆χ2 = χ2
new − χ2

old

is given by

A(∆χ2) =

1, if ∆χ2 ≤ 0(
χ2

old
χ2

new

)x
, otherwise.

(101)

Equation (101) implies that every decrease of χ2 is accepted but increases are included with a
finite probability as well. The exponent x should be chosen small in the beginning to ensure an
efficient hopping between local minima and can be increased in the end to find the best spectrum
within a single one of them.

5.3.6 Results

A suitable testcase for the spectral analysis is a 2D system of N = 2 dipole-interacting particles
with β = 10, λ = 30 and P = 310. For this system, the exact value of the breathing mode is
known to be ωexact ≈ 2.1866 and, thus, is clearly separated from the COM peak at ωcom = 2.0,
which is still expected to exhibit a relatively high spectral weight since the un- and improved
BM estimators significantly deviate. The autocorrelation function CA is plotted in Fig. 69,
where the red points correspond to the PIMC result with errorbars and the green curve has
been reconstructed. It is sufficient to consider the interval τ ∈ [0, β/2] due to the function’s
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Figure 70: Reconstructed BM spectrum: The reconstructed spectral function S is plotted
over the frequency ω for the system from Fig. 69. The BM peak appears at ω ≈ 2.14651.

symmetry, see also Fig. 64. The right image shows a magnified segment from the left one and
the two datasets seem to be in perfect agreement, that is, within a tenth of the errorbars. The
deviation measure is calculated as χ2 ≈ 0.007 and, hence, much smaller than unity. Fig. 70
shows the corresponding spectral function which is plotted logarithmically in the right image.
There appears a single delta-like peak in the expected interval ωBM ∈ [2,

√
5] at ω ≈ 2.1465 but

the expected splitting into two separate maxima does not occur. The logarithmic plot reveals
another pronounced peak at ω = 1.0, which corresponds to the thermally excited slothing mode,
see e.g. [10]. The third visible peak at ω = 0 has no physical meaning, as will be explained
below. The reconstructed peak position of the breathing mode, however, is in agreement with the
unimproved sum-rule results, like ω(1, 0) ≈ 2.1455, for example. This implies that the accuracy
of CA is not sufficient to resolve the two different monopole excitations and the obtained spectrum
exhibits a single peak between both. The right image of Fig. 69 reveals that the reconstruction
has overfitted the statistical errorbars from the PIMC simulation. This is due to the fact that the
path integral Monte Carlo simulation allows only for the direct calculation of the imaginary time
correlation function which includes both diagonal and off-diagonal contributions. The problem
of reconstruction as stated in Eq. (86), however, requires access to the off-diagonal contributions
only. This is, in principle, no problem because the diagonal contribution to the ACF can be
calculated separately with PIMC as well, see appendix B. Therefore, the resulting input for the
reconstruction is given by the difference between two large quantities. This, obviously, results
in a higher uncertainty of the off-diagonal correlation function and the errorbars in Fig. 69 are
reasonable and correspond rather to the uncertainty of the entire ACF than to the fluctuations of
adjacent data points. The reconstructed peak at ω = 0 is simply a constant offset in CA, which
is caused by the statistical uncertainty of the diagonal contribution to the latter. A resolution
of the two breathing mode peaks would require orders of magnitude smaller errorbars, which is
unfeasible even for small systems. Hence, the calculation of the spectral function is a too difficult
task for the monopole operator since the spectrum consists of two very narrow peaks and the
input of the reconstruction is given by the difference between two large numbers which increases
the uncertainty. For completeness, it is reported that the slothing mode at ω = 1 does not
appear for all considered systems and, in some cases, sawtooth instabilities with a comparable
weight occur at seemingly random positions.
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6 Simulation of fermions

Another challenging topic is the investigation of the thermodynamic properties of fermions.
These exhibit many interesting features like Wigner crystallization [61] or the formation of
particle pairs which act like bosons and allow for Bose Einstein condensation and superfluidity
[15]. Quantum Monte Carlo methods suffer from the notorious fermion sign problem [7] which
might render even small systems unfeasible and, therefore, drastically limits the applicability of
PIMC. Troyer and Wiese [91] have shown that the former is a NP hard problem, i.e., that no
deterministic polynomial time algorithm exists for its solution. However, there do exist several
approaches with different benefits and shortcomings as will be discussed in the following section.

6.1 Theoretical background

The central quantity for the derivation of the path integral Monte Carlo scheme is the partition
function Z, which, according to section 2, can be written as the integral

Z =

∫
dX W (X)

over the weights W (X) of all configurations X. However, Eq. (24) states that for fermionic
particles both negative and positive weights W occur. This seems to be a serious problem
since the Metropolis algorithm requires strictly positive weights. To overcome this obstacle, one
usually uses the standard PIMC procedure to generate configurations distributed according to
the moduli |W (X)|, which are nothing else than the correct configuration weights of bosons.
The thermodynamic expectation values for fermions are calculated as

〈Â〉f =

∫
dX S(X)|W (X)|A(X)∫

dX S(X)|W (X)|
=
〈ÂŜ〉b
〈Ŝ〉b

, (102)

with the indices f and b referring to Fermi- and Bose-statistics, respectively, and the definition
of the sign,

S(X) =
W (X)

|W (X)|
,

as the ratio of fermionic and bosonic weights. It is a well known fact that the expectation value
of the sign behaves as

〈Ŝ〉b =
Zf

Zb
= e−Nβ∆f , (103)

with the difference between the free energies ∆f = ff − fb. Equation (103) directly implies
that the denominator in Eq. (102) exponentially decreases with both the particle number and
the inverse temperature, which is highly problematic since a small sign results in large relative
statistical errors of the quantity of interest. An optimal Monte Carlo method should sample
configurations in the fermionic configuration space with the partition function Zf. However, the
Metropolis algorithm generates a Markov chain which corresponds to Zb. Hence, a vanishing
ratio (103) indicates that the fermionic space is unsufficiently sampled because most of the
data from the bosonic space cancels. For completeness, it is reported that the Monte Carlo
error corresponding to the expectation value from Eq. (102) cannot be trivially calculated by
error propagation of the two expectation values. Hatano [92] has shown that cross-correlations
between the sign and the observable of interest lead to an effective reduction of the true error
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Figure 71: Radial density distribution of two fermions: The density n is plotted over
the distance to the center of the trap r for two Coulomb-interacting fermions at β = 3 with
λ = 1 (left) and λ = 3 (right). The blue curve has been calculated with CI and the red datasets
corresponds to the PIMC results.

for small 〈Ŝ〉b. However, the consideration of cross-correlations cannot be trivially combined
with the binning analysis from section 2.6 and, therefore, is neglected in this work.

The only additional feature which is required to extend the presented implementation of the
worm algorithm path integral Monte Carlo scheme to fermions is the calculation of the sign.
The most straightforward approach is the evaluation of all permutation lengths as stated in
Eq. (24). This is, however, unnecessary since the sign of the current configuration might also
be obtained by the application of some bookkeeping during the updates. Every time, when
exchange is created or annihilated, some variable is multiplied by minus unity which is the case
for the update Swap and also Advance and Recede, when the head surpasses the tail. With
this new extension, the implemented code is able to obtain results for both bosons and fermions
within the same simulation with negligible additional computational effort.

6.2 Checks of the implementation

The simulation of fermions is not only a highly interesting topic for research but, in addition,
provides a very powerful benchmark for the path integral Monte Carlo code. For small systems
(e.g. N = 2 particles), the results can be compared to exact Configuration Interaction (CI)
data, see e.g. [93], and the calculation of fermionic densities is not only sensitive to the spatial
distribution of the beads but also to the formation of exchange cycles in the system. Therefore,
a correct radial density is much more unlikely for fermions if the implementation is afflicted with
some error. The result of such a comparison is plotted in Fig. 71, where the radial density n
is plotted for N = 2 Coulomb-interacting particles in 2D for β = 3, P = 300 and the coupling
parameters λ = 1 (left) and λ = 3 (right). The blue curves have been obtained with a CI
implementation by Hochstuhl [94] and the red points correspond to the PIMC results. In both
curves, the two datasets cannot be distinguished with the naked eye. The errorbars in the left
picture are significantly larger than in the right one due to the sign problem and the average signs
have been calculated as S(λ = 3) ≈ 0.685 and S(λ = 1) ≈ 0.326. Table 2 provides a comparison
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Figure 72: Radial density distribution of bosons and fermions: The density n is plotted
over the distance to the center of the trap r for two Coulomb-interacting particles at β = 3
with λ = 1 (left) and λ = 3 (right). The blue curve corresponds to bosons and the red one to
fermions.

λ 3 2 1

CI 4.776319739 4.266088657 3.715753739
PIMC 4.776± 0.008 4.265± 0.008 3.72± 0.02

Table 2: The total energy E is listed for N = 2 fermions with β = 3 (see Fig. 71) for three
coupling parameters. The results have been obtained with CI and PIMC.

of the total energies from both CI and PIMC and the deviations are within the errorbars. Fig. 72
shows results for the same system as Fig. 71 but here the blue curve corresponds to the bosonic
density. For both coupling parameters, the bosonic density exceeds its fermionic pendant at the
center of the trap since the Pauli blocking effectively separates fermions. The difference between
the two curves is larger for small λ because here exchange effects are more important.

6.3 Results

In the following section, a few selected simulation results are presented to illustrate the differences
between bosons and fermions and the difficulties which are imposed by the sign problem.

6.3.1 The sign problem for dipole and Coulomb interaction

In Fig. 73, the average sign S is plotted logarithmically over the inverse temperature β for a
2D system with N = 2 and λ = 3. The red and green curve correspond to Coulomb and dipole
interaction, respectively. Both curves exhibit a nearly linear decay as it is expected according
to Eq. (103). For dipolar interaction, however, the average sign always exceeds its Coulomb
pendant, which makes fermionic dipole systems better suited to be investigated with PIMC.
The reason for this feature is illustrated in Fig. 74, where, in the left image, the bosonic density
is shown for the simulation from Fig. 73 with β = 8. The red curve, which again corresponds
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Figure 73: Investigation of the sign problem: The average sign S is plotted logarithmically
over the inverse temperature β for a 2D system with N = 2, λ = 3 and P = 300 for β ≤ 10 and
P = 400 otherwise. The red and green curve correspond to Coulomb and dipole interaction,
respectively.
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Figure 74: Comparison of Coulomb and dipole interaction: In the left image, the bosonic
density n is plotted over the distance to the center of the trap r for a 2D system with N = 2,
β = 8, λ = 3 and P = 300. The red and green curve correspond to Coulomb and dipole
interaction, respectively. In the right image, the averaged pair correlation function g2 is plotted
over the relative particle distance for the same system.
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Figure 75: Radial densities for a 2D Coulomb system of bosons and fermions: The
density n is plotted over the distance to the center of the trap r for a 2D system of N = 15
Coulomb-interacting particles with λ = 10, β = 5 and P = 210. The red and blue curve
correspond to the total density of fermions and bosons, respectively, the green curve to the
bosonic density of particles not involved in any exchange cycles n1 and the purple points to the
superfluid density nsf.

to Coulomb interaction, exhibits a significantly larger overlap at the center of the trap than the
green one. This can be explained by the different exponents of the interaction power laws, i.e.,
α = 1 and α = 3 for Coulomb and dipoles, respectively. For relative distances r < 1 between
two particles, the Coulomb interaction is weaker than for dipoles. This makes it more unlikely
for two dipoles to come much closer together than this threshold and, thus, the exchange is
suppressed. The influence of the two exponents is directly visible in the density profile since
both curves intersect almost exactly at r = 1. The right image of the same figure shows the
averaged pair distribution g2 and the two dipoles are indeed more clearly separated than two
Coulomb-interacting particles.

6.3.2 2D Coulomb system

A suitable system to analyze the different impact of Bose- and Fermi-statistics is a 2D system
of N = 15 Coulomb-interacting particles with λ = 10, β = 5 and P = 210. Even such a
small system with a relatively strong coupling turns out to be very difficult to simulate and
the average sign has been calculated as S = 0.069 ± 0.001. The radial density is shown in
Fig. 75 and the red and blue curve correspond to fermions and bosons, respectively. Both
datasets exhibit a shell structure with two minima, which is more pronounced for fermions.
This is again a direct consequence of the Pauli blocking. However, the difference between the
two curves increases towards the center of the trap, thus, indicating that exchange effects are
more important here. This is expected and can be easily verified by the consideration of the
bosonic density of particles which are not involved in any exchange cycles, n1 (green). Indeed,
the green curve is much closer to the total density in the outermost shell. The purple curve
corresponds to the superfluid density nsf and exhibits the opposite behaviour than n1, for the
same reasons. For completeness, it is reported that the total superfluid fraction is calculated as
γsf = 0.525 ± 0.002. Finally, Fig. 76 shows the averaged pair distribution function g2 and it is
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Figure 76: Pair distributions for a 2D Coulomb system of bosons and fermions:
The averaged pair distribution function g2 is plotted over the relative distance r between two
particles for the system from Fig. 75. The red and blue curve correspond to fermions and bosons,
respectively.

again revealed that fermions are more spatially separated than bosons, which manifests in the
more pronounced peaks at r ≈ 3 and r ≈ 5.5.

6.3.3 The breathing mode

One obvious application of fermionic PIMC in the context of this work is the investigation of the
breathing mode of fermions. However, the sign problem prohibits the simulation of large systems
and low temperatures, which makes path integral Monte Carlo not the best suited method for
this task. This is demonstrated in Fig. 77, where, in the left image, the breathing mode frequency
ω is plotted over the coupling parameter λ for N = 2 Coulomb-interacting particles in 2D. The
blue and purple curve correspond to the exact solution for bosons and fermions, respectively,
and both curves exhibit a transition from the ideal limit, ω = 2, to the classical one, ω =

√
3.

Only in the middle of the transition the two curves deviate and the fermionic breathing mode
frequency clearly exceeds its bosonic pendant. This is a consequence of the Pauli blocking
which effectively causes fermions to exhibit less collective behaviour. The red and green curve
correspond to the improved breathing mode sum-rule estimates ω∗(3, 1) and have been obtained
with PIMC for the inverse temperature β = 5. Both datasets clearly reproduce the behaviour of
the exact curves, that is, the splitting for intermediate coupling parameters. However, it should
be noted that, for β = 5, two particles are not fully in the ground state, as explained in section
5.2.1 and Fig. 56 in particular. The right image of Fig. 77 shows the average sign which has been
obtained within the same simulations. For λ < 0.5, S drops below 0.05 and the fermionic results
are afflicted with large statistical errors. Fig. 78 shows similar results, but for dipole-interacting
particles. The blue and purple curve again correspond to the exact results for bosons and
fermions, respectively, and exhibit a transition between the ideal and classical limits. This time,
however, the bosonic breathing mode frequency exceeds its fermionic pendant for intermediate
λ, but for the same reasons as discussed above. The red and green curve correspond to the
improved sum-rule estimates ω∗(3, 0) for β = 5 and qualitatively reproduce the behaviour of the
exact datasets. Again, the inverse temperature is too low to reach the ground state and, hence,
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Figure 77: Breathing mode for bosons and fermions in a 2D Coulomb system: In
the left image, the breathing mode frequency ω is plotted over the coupling paramter λ for
N = 2 Coulomb-interacting particles in 2D. The blue and purple curve correspond to the exact
solution by Abraham and Bonitz [10] for bosons and fermions, respectively, and the red and
green curve to the improved sum-rule results ω∗(3, 1) for β = 5 and P = 110. In the right
image, the corresponding expectation values of the sign S are shown.
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Figure 78: Breathing mode for bosons and fermions in a 2D dipole system: In the
left image, the breathing mode frequency ω is plotted over the coupling paramter λ for N = 2
dipole-interacting particles in 2D. The blue and purple curve correspond to the exact solution
by Abraham and Bonitz [10] for bosons and fermions, respectively, and the red and green curve
to the improved sum-rule results ω∗(3, 0) for β = 5 and P ∈ [110, 210]. In the right image, the
corresponding expectation values of the sign S are shown.
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6 SIMULATION OF FERMIONS

the sum-rules do not provide an upper bound. The corresponding average sign is shown in the
right image and it is again revealed that the simulation of dipole-interacting particles is feasible
for smaller λ compared to their Coulomb-interacting pendants.

6.4 Comparison to other methods

There exist several approaches to overcome or at least relieve the fermion sign problem. The
probably most ambitious proposal has been announced by Feynman [95], namely the develop-
ment of a quantum computer, where the elementary units of information, i.e., qubits (quantum
bits), are represented by quantum mechanical two-level systems, for an introduction see e.g.
[96]. Only recently, Temme et al. [97] have suggested a Quantum Metropolis algorithm which
has to be executed on such a device and is completely free of any sign problem since it allows for
a direct sampling from the eigenstates of the Hamiltonian. However, the most advanced realiza-
tion of quantum computation to the author’s knowledge consists of 14 qubits [98] and it remains
unclear, when sufficiently large devices might be available. A widely used method to overcome
the sign problem in the usual spatial representation of PIMC is the fixed node approximation,
which is also known as Restricted PIMC (RPIMC), see e.g. [99]. Here, the configuration space
is divided into regions with positive and negative contributions to the wavefunction which are
seperated by the nodal surfaces on which the latter vanishes. However, the obtained results
are only claimed to be correct if the exact nodes of the system of interest are known, which
is a difficult requirement, indeed. In practice, one has to rely on approximations and the ab
initio character of the QMC method is lost. In addition, it has been shown analytically that the
fixed node restriction does not reproduce the exact fermionic density matrix for ideal systems
[100, 101] and it is concluded that systematic errors appear for increasing degeneracy. About
thirty years ago, Takahashi and Imada [102] suggested another PIMC technique in the spatial
representation, known as Direct Path Integral Monte Carlo (DPIMC). Instead of explicitly
sampling the exchange cycles, as it is done in standard PIMC, only single particle paths appear
and the antisymmetry is taken into account by the inclusion of determinants into the configura-
tion weights. A similar approach for bosons would require the calculation of permanents instead,
which is not useful because the worm algorithm allows for a very efficient sampling of particle
exchange and without a sign problem there is no need to avoid that. For fermions, however,
it was found to be profitable to use this approach. There still appears a sign problem because
the determinants can be both positive and negative as well but the average sign for degenerate
systems can be significantly increased. This might be understood more intuitively by comparing
the magnitude of the total configuration space of PIMC and DPIMC, which is reduced for the
latter since exchange cycles are not included. Hence, DPIMC allows for a sampling which is
closer to the true fermionic distribution than standard PIMC, which relieves the sign problem.
Filinov et al. [103] have presented a similar method with further improvements and DPIMC
might in fact be considered as a promising candidate for the future investigation of hitherto
unfeasible systems. The final approach to be mentioned in this work is the recently developed
Configuration Path Integral Monte Carlo (CPIMC) technique [14, 104]. Here, one makes use
of the second quantization (i.e., annihilation and creation operators, see e.g. [39]) and evaluates
the partition function in the occupation number representation. It is very interesting to note
that the CPIMC method is afflicted with a sign problem as well, which, however, manifests in
an entirely different way. Actually, there appear even three different sources for sign changes
which have to be taken into account. The advantage of this method lies in the simulation of
highly degenerate fermionic systems (i.e., small coupling), where the usual PIMC is no longer
applicable. Therefore, the two ab initio approaches are complementary to some degree as will
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Figure 79: Sign problem for PIMC and CPIMC: The average sign is plotted over the
coupling parameter λ for a 2D Coulomb system with the inverse temperature β = 2. The color
assignment distinguishes the particle numbers N = 3, N = 6 and N = 9 and the two applied
methods, namely PIMC with P = 300 time slices and CPIMC by Groth [104].

be discussed in the following.

6.4.1 Comparison to CPIMC

In this section, the sign problem is investigated for 2D Coulomb systems with PIMC and com-
pared to CPIMC data by Groth [104]. In Fig. 79, the average sign is plotted over the coupling
parameter λ for the inverse temperature β = 2 and three different particle numbers. The red,
green and blue curve correspond to the PIMC results for N = 3, N = 6 and N = 9, respectively,
and all three curves are decreasing for small λ as it is expected. For N = 6 and N = 9, the
average sign approaches zero or even negative values within the statistical uncertainty and those
points are neglected in the chosen double logarithmic scale of the plot. The smallest shown sys-
tem, however, exhibits a finite sign (that is, within the error, the exact sign is always larger than
zero) even for vanishing coupling. The CPIMC results are visualized by the purple (N = 3),
turquoise (N = 6) and grey (N = 9) curve and exhibit a behaviour which might be denoted as
complementary to the PIMC data. Here, the average sign decreases with increasing coupling
strength and converges to unity for ideal and weakly interacting systems. For both methods,
the sign problem becomes worse for larger particle numbers N . The only overlap, that is, the
parameter region where reasonable results can be obtained with both approaches, appears for
N = 3 and intermediate coupling around λ = 2. Even a small system with N = 9 particles at
the relatively small inverse temperature β = 2 turns out to be a unfeasible for the two Quantum
Monte Carlo techniques since, for λ ≈ 1.5, both signs vanish. Fig. 80 shows another comparison
of the sign problem between the two methods. The system of interest is given by N = 3 particles
and the color assignment distinguishes the inverse temperature β. The red, grey and blue curve
have been obtained with PIMC for β = 2, β = 5 and β = 10, respectively. Again, the average
sign decreases for small λ and it is noteworthy (although, of course, expected) that for lower
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Figure 80: Sign problem for PIMC and CPIMC: The average sign is plotted over the
coupling parameter λ for a 2D Coulomb system with N = 3 particles. The color assignment
distinguishes the inverse temperatures β = 2, β = 5 and β = 10 and the two applied methods,
namely PIMC with P = 300 time slices and CPIMC by Groth [104].
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Figure 81: Sign problem for PIMC and CPIMC: The average sign is plotted over the
coupling parameter λ for a 2D Coulomb system with N = 9 particles. The color assignment
distinguishes the inverse temperatures β = 2, β = 5 and β = 10 and the two applied methods,
namely PIMC for P = 300 time slices and CPIMC by Groth [104].

106



6.4 Comparison to other methods

temperature the curves exhibit a sharper decay at higher coupling parameters. The CPIMC
results are plotted as the purple (β = 2), turquoise (β = 5) and green (β = 10) curve and look
very similar. For all three inverse temperatures, the average sign decreases for increasing λ and
both the slope and location of the decay are very close. The interesting feature is the seemingly
peculiar order. The lowest temperature curve exhibits the smallest sign, as it is the case for
PIMC as well. The β = 5 data, however, exceeds the β = 2 pendant, which seems to contradict
the exponential decay from Eq. (103). To understand this behaviour, one must reconsider the
different representation of the partition function Z in the CPIMC method. The occupation num-
ber representation requires a (in general infinite) set of basis functions as an input. For practical
purposes, however, only a finite number of basis functions Nb is included. To preserve the ab
initio character of the method, one must make sure to choose Nb large enough that only orbitals
with a too high energy to be significantly populated are neglected. This means that the tem-
perature behaviour of the CPIMC method is the result of a competition between two opposite
effects. On the one hand, for a fixed number of basis functions Nb, the sign does exponentially
decay with β according to Eq. (103). On the other hand, with increasing temperature, more
basis functions have to be included, which increases the magnitude of the configuration space
and, therefore, reduces the sign as well. In conclusion, CPIMC is best suited for intermediate
inverse temperatures, in this case around β = 5. Finally, Fig. 81 shows the same information as
Fig. 80, for N = 9 particles instead. The CPIMC data again exhibits a very sharp decay, which
is very similar for all three inverse temperatures. The average sign from the PIMC simulations
does significantly differ for the three curves and again the situation is worst for β = 10. There
appears no overlap region between the two sign problems, as it has already been concluded for
Fig. 79.

The comparison of the fermion sign problem of the standard path integral Monte Carlo
(PIMC) and the conceptually completely different configuration path integral Monte Carlo
(CPIMC) method has revealed the complementary coupling parameter dependence of their ap-
plicability. CPIMC excells at highly degenerate (especially ideal) systems where, to the author’s
knowledge, no other ab initio results for finite temperature are available. The PIMC approach
in the usual spatial representation, which has been presented and used in this work, on the other
hand, is efficient for strong coupling, where exchange effects do not yet play a dominant role.
Unfortunately, the applicability of both methods overlaps for very small systems only, which
means that there still exists a large region at indermediate coupling, where no reliable results
are available. It is, of course, highly desireable to fill this gap and a systematic comparison
between DPIMC and CPIMC is of major interest for future research.
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7 Conclusion

7.1 Summary

The guiding theme of this thesis is the ab initio simulation of correlated, trapped quantum
systems at finite temperature. The method of choice is given by the path integral Monte Carlo
technique, which allows for the calculation of quasi-exact results in thermodynamic equilibrium.
The basic idea of this approach is to perform a Trotter decomposition of the density matrix in the
spatial representation and express the partition function as the integral over all possible paths in
the imaginary time. The remaining task is the generation of correctly distributed configurations
which is achieved by the Metropolis algorithm. A particularly advantageous realization of the
latter applied to PIMC is the worm algorithm, which operates in an extended configuration
space including both particle number changes and a single open trajectory. The WA is superior
to other update schemes since it allows for a highly efficient sampling of particle exchange and
does not suffer from critical slowing down problems at phase transitions. A detailed derivation
of the acceptance probabilities for the updates from the worm algorithm has been followed by
a discussion about the calculation of observables with PIMC, including two methods for the
extraction of canonical data from the extended Markov chain. The theoretical background has
been completed by the error analysis of Monte Carlo data and the introduction of a method
which takes autocorrelation effects into account, namely the binning analysis.

In the third chapter, some practical aspects concerning the implementation of the WA-PIMC
method in C++ have been discussed. The validity of the developed code has been verified by
the consideration of several checks, i.e., a screening of the data structure and comparisons of
observables to other results, including a single particle in the harmonic trap and the virial
theorem, as well as CI data for fermions in a later section. This rather technical section has
been extended with the presentation of several improvements to the standard worm algorithm.
All simulations should be started with a boltzmannon equilibration period to prevent artefacts
in strongly correlated systems. Special attention has been paid to the inhomogeneity of the
systems of interest. The introduction of an artifical potential term between the worm’s head
and tail can significantly reduce autocorrelation effects and the discussion of spatially resolved
acceptance ratios of the Monte Carlo updates has revealed that different regions of a system are
updated less efficiently than others. Nevertheless, the section has finished with the conclusion
that the presented PIMC implementation is capable to simulate particles in any confinement
potential.

The investigation of general properties of confined bosons has started with a brief presen-
tation of three different phases, i.e., solid, liquid and superfluid behaviour. The latter deserves
special attention and, in the context of this thesis, the term superfluidity is defined to describe
any reduction of the moment of inertia (NCRI) due to quantum effects. The first example to
be considered has been a 3D Coulomb system at relatively strong coupling and it has been
found that larger systems exhibit a sharper phase transition, as it is expected. An even more
interesting topic is the comparison of the latter between 2D and 3D systems and the later onset
of superfluidity in three dimensions has been revealed solely as a degeneracy effect, which is
independent from the availability of an additional dimension for particle exchange. The strong
inhomogeneity yields for the consideration of spatially resolved information about the phase
transition which has been provided by a local superfluid density estimator. The application of
the latter to N = 150 particles with λ = 10 in 2D has revealed that, with decreasing inverse
temperature β, the center of the trap tends to stay superfluid, while the boundary sooner starts
to behave classically. This has been explained by the stronger localization of the particles in
this regions, which makes exchange less likely and, hence, surpresses superfluidity. The final
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topic of the section has been the investigation of spatial correlations, which is a nontrivial task.
Several presented quantities have failed to reveal the system’s inter- and intra-shell correla-
tions. A better alternative is given by the center-two particle correlation function which, in
principle, incorporates the complete information. It has, however, turned out to be useful to
integrate over one spatial coordinate and the resulting quantity provides information about the
correlations between one particle in a particular shell to the rest of the system. Therefore, this
integrated center two-particle correlation function provides the desired information, that is, a
solid intra-shell behaviour and the lack of correlation between different shells for the system of
interest.

The arguably most important section (that is, apart from the theory part, of course) is the
investigation of the quantum breathing mode of trapped bosons. It has been shown how dy-
namical information can be obtained from equilibrium data, using the linear response formalism.
The sum-rules allow for the calculation of an accurate upper bound to the frequency of interest
solely in terms of equilibrium expectation values which are directly accessible with PIMC. Several
dependencies of the sum-rule estimators have been analyzed in detail for Coulomb-interacting
particles in 2D and 3D and dipole systems in 2D. One of the main results is the increasingly
collective behaviour for larger particle numbers in all three aforementioned systems. A second
and potentially even more powerful approach is the reconstruction of a spectral function from
imaginary time correlation functions. The latter allows not only for the investigation of a single
transition between two states, but provides access to the entire spectrum. The spectrum of
the quantum breathing mode, however, has turned out to be too difficult. The reconstruction
has revealed only a single peak and the predicted splitting into a center of mass and relative
contribution has not been resolved. The input for the reconstruction is given by the difference
between two large numbers, which results in a relatively high statistical uncertainty. In addition,
the spectrum is very narrow and the required accuracy of the PIMC data is unfeasible even for
small systems.

The last section of this thesis is devoted to the simulation of harmonically confined fermions,
which is a very difficult task due to the notorious sign problem. The latter is caused by the
appearance of both positive and negative contributions to the partition function, which might
almost cancel each other. This means that only a fraction of the simulation is spent in the
remaining configuration space which, hence, is not sufficiently sampled and large statistical
uncertainties occur. The aforementioned comparison of PIMC results with CI data has been fol-
lowed by the investigation of the temperature dependence of the average sign for both Coulomb-
and dipole-interacting particles. The latter are better accessible with PIMC, which has been
explained by the different interaction power laws. Two dipoles are more spatially separated and,
thus, exchange is less probable. However, both systems suffer from an exponentially decreasing
sign with increasing inverse temperature β. The brief comparison of the density profiles for
N = 15 and coupling dependence of the quantum breathing mode for N = 2 particles between
bosons and fermions has been followed by an overview over other Monte Carlo methods for
the simulation of fermions at finite temperature in thermodynamic equilibrium. Special atten-
tion has been paid to the recently developed CPIMC technique, which expresses the partition
function in the occupation number representation and exhibits a different sign problem with
a complementary behaviour compared to standard PIMC. A direct comparison between the
two conceptually different methods has revealed that CPIMC excells at weakly coupled and,
in particular, ideal systems, while PIMC is better suited for strong coupling, where exchange
effects are not yet dominating. However, even for small systems with N = 9 particles at a
relatively small inverse temperature β = 2, there exists a coupling parameter region for which
both methods fail to provide reasonable results.
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7.2 Central results

7.2 Central results

In the following, the central results of this thesis are briefly listed:

• The worm algorithm path integral Monte Carlo method is well suited for the simulation
of trapped quantum particles. However, special attention has to be paid to the strong
inhomogeneity of such systems.

• At intermediate Coupling, a 2D Coulomb system exhibits superfluidity at higher temper-
atures than a 3D system with the same parameters. This is solely a degeneracy effect and
not caused by the availability of an additional dimension for particle exchange [60].

• The local superfluid density is well suited to spatially resolve the phase transition, during
which the considered 2D Coulomb system has exhibited significantly decreased superflu-
idity at the boundary. This can be explained by a stronger localization of the particles in
this region [60].

• The center-two particle correlation function which has been suggested by Thomsen et al.
[11] in the context of classical systems is well suited for the investigation of inter- and
intra-shell correlations in quantum systems as well.

• Path integral Monte Carlo allows for the indirect calculation of dynamic properties, as
it has been demonstrated for the quantum breathing mode. The sum-rules provide an
accurate upper bound for the frequency of interest solely in terms of equilibrium expec-
tation values and have been successfully applied in this thesis. In addition, a spectral
function can be reconstructed from imaginary time correlation functions. This, however,
is in practice unfeasible for the breathing mode.

• PIMC and CPIMC exhibit a complementary coupling behaviour of the fermion sign prob-
lem for confined 2D Coulomb systems, which is in agreement with results by Schoof et al.
[14] in 1D. Nevertheless, there do exist parameter regions where both methods are not
applicable and no reliable ab initio results exist.

7.3 Outlook

This thesis has merely attempted to provide an overview about different aspects and research
topics concerning the simulation of trapped quantum particles and there remain multiple chal-
lenging topics for future research:

• It is highly desireable to gain further insight to superfluidity in traps. A substantial
analysis of superfluidity in 2D and 3D, which includes parameter scans over the particle
number, temperature and coupling strength, could be complemented by the consideration
of anisotropic confinement potentials, like pancake and cigar-shaped geometries. In those
cases, the superfluid fraction will explicitly depend on the orientation of the rotational
axis and interesting behaviour might occur.

• The aforementioned center two-particle correlation function could be used to systemati-
cally investigate correlations in quantum systems. Possible extensions of this topic include
the consideration of supersolidity, i.e., the appearance of both spatial order and a finite
superfluid fraction, and the calculation of the information entropy to describe phase tran-
sitions and melting phenomena.
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7 CONCLUSION

• Path integral Monte Carlo allows for the calculation of multiple imaginary time correlation
functions, which could be used to investigate other dynamic properties of traps. An obvious
possibility is given by the reconstruction of the single particle spectrum from the Matsubara
Green function but possible connections to other transport properties might be derived as
well. Another promising tool for the reconstruction itself is given by the Genetic Inversion
by Falsification of Theories (GIFT) [105], which is introduced in the appendix C.

• The ab initio simulation of fermions at finite temperature remains impossible even for
small systems in certain parameter regions. To overcome this extremely unsatisfactory
shortcoming, other methods than PIMC or CPIMC have to be applied to the investigation
of (not only trapped) fermions. A promising candidate to at least partly fill the gap is the
Direct path integral Monte Carlo (DPIMC) technique.
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Figure 82: Density of the 2D Coulomb system: The density is plotted over the distance
to the center of the trap r for a 2D system with N = 19 Coulomb-interacting particles with
λ = 28, β = 100 and P = 500. The red and green curves correspond to the total and superfluid
density, respectively.

Appendices

A Problems for strong coupling at low temperature

The worm algorithm PIMC scheme which has been used for all the simulations in this work
has proven to be a very efficient tool and has allowed for the calculation of ab initio results for
N ∼ 1000 particles. Nevertheless, there exist disadvantages of the method as well, which will
be explained in this section. The system of interest is given by N = 19 Coulomb-interacting
bosons in 2D with λ = 28, β = 100 and P = 500, which is very similar to an example from
[50]. Fig. 82 shows the PIMC result for the total and superfluid density as the red and green
curve, respectively. The former exhibits a pronounced shell structure with two deep minima.
The superfluid density nsf loosely follows n, indicating that the system is in the superfluid
phase. The global superfluid fraction is calculated as γsf = 0.87± 0.21, which is afflicted with a
surprisingly high statistical error for NMC > 4 · 106 Monte Carlo samples.

To explain this behaviour, one might consider the quantities entering γsf, that is, the classical
moment of inertia I and the total area A. The former is plotted in Fig. 83 over the number
of bins NMC. The curve is nearly constant and only minor fluctuations around the expectation
value occur. Fig. 84 shows the same plot for the total area A and the behaviour is completely
different. There appear three long periods with a large area enclosed by the paths and two
minima in between, where A is only slightly above zero. This means that the particle exchange
in the system is very correlated. It is apparently very improbable to generate macroscopic
exchange cycles but, once they are accepted, it is just as improbable to remove them. Fig. 85
shows two random snapshots form the PIMC simulation. The left image shows a configuration
with little exchange and a small area and the right one an exchange cycle in the outer shell,
which gives a large contribution to A. The large autocorrelation time of the superfluid fraction is
consistent with the acceptance ratios of the standard worm algorithm updates, which are listed
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Figure 83: Monte Carlo samples of the classical moment of inertia: The classical
moment of inertia I is plotted over the number of Monte Carlo bins NMC which correspond to
the average over one hundred measurements. The simulation parameters are the same as in Fig.
82.
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Figure 84: Monte Carlo samples of the total area: The total area A is plotted over the
number of Monte Carlo bins NMC which correspond to the average over one hundred measure-
ments. The simulation parameters are the same as in Fig. 82.
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Figure 85: PIMC snapshots of the system of interest: Two random configurations from
the PIMC simulation from Fig. 82 are plotted in the x-y-plane. The left and right images exhibit
a small and large total area, respectively.

Insert Remove Open Close Advance Recede Swap
0.0244756 0.00965485 0.03947 0.102744 0.0211126 0.0211332 0.000349175

Table 3: Acceptance ratios of the standard worm algorithm updates from the PIMC simulation
from Fig. 82.

in table 3. All values are quite low and the Swap move, which is essential for an efficient sampling
of particle exchange, is the worst by far. The difficulty of simulating the presented system of
interest comes from the combination of strong coupling and low temperature. The thermal de
Broglie wavelength is calculated as λβ ≈ 25.1, which is clearly larger than the extension of the
entire system. The coordinates of the new beads for any update are sampled from the free
particle density matrix and, thus, the displacement of the path sampling scheme is proportional
to λβ. The real paths of single particles, however, are pinned by the Coulomb interaction and
much less extended than the latter. This means that during most of the Monte Carlo moves it
is suggested to create a new bead which belongs to a specific particle at the opposite direction
or completely out of the system. Such proposals are, obviously, rejected, which explains the low
acceptance ratios and the large correlations of the total area and the superfluid fraction. One
possible solution to this problem is the implementation of a new update set which samples the
positions of new beads according to some more suiting distribution function. This would result
in more complicated solutions of the detailed balance equation since the ratios of the kinetic
terms would have to be taken into account explicitly, but it might just be necessary to allow for
an efficient simulation of systems at high coupling and low temperature.
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B DERIVATION OF THE SUM-RULES

B Derivation of the Sum-Rules

In this section, the sum-rule estimators for the different energy weighted moments are derived
following [10, 79] and oscillator units are assumed for all considerations. The first moment m1

only requires knowledge of the potential energy due to the harmonic oscillator confinement, as
will be derived in the following. By assuming to always start from the ground state |0〉, Eq. (87)
simplifies for k = 1 to

m1 =
∑
i 6=0

h̄ωi0 〈0| Â |i〉 〈0| Â |i〉∗

=
∑
i 6=0

h̄ωi0 〈0| Â |i〉 〈i| Â |0〉

=
∑
i 6=0

(Ei − E0) 〈0| Â |i〉 〈i| Â |0〉

=

∞∑
i=0

(
〈0| ÂEi |i〉 − 〈0|E0Â |i〉

)
〈i| Â |0〉

=

∞∑
i=0

(
〈0| ÂĤ0 |i〉 − 〈0| Ĥ0Â |i〉

)
〈i| Â |0〉

=

∞∑
i=0

〈0| [Â, Ĥ0] |i〉 〈i| Â |0〉

= 〈0| [Â, Ĥ0]Â |0〉 . (104)

For the second equality, it is assumed that Â = Â†, which is, of course, valid for the monopole
operator. The last step makes use of the identity 1̂ =

∑
i |i〉 〈i|. A series of very similar steps

results in the second expression

m1 = −〈0| Â[Â, Ĥ0] |0〉 . (105)

The combination of Eqs. (104) and (105) gives

m1 =
1

2

(
〈0| [Â, Ĥ0]Â |0〉 − 〈0| Â[Â, Ĥ0] |0〉

)
=

1

2
〈0| [[Â, Ĥ0], Â] |0〉

=
1

2
〈0| [Â, [Ĥ0, Â]] |0〉 . (106)

A further simplification of Eq. (106) requires explicit knowledge about the equilibrium Hamilto-
nian Ĥ0 and the excitation operator Â. The monopole operator from Eq. (66) is a single particle
quantity and the potential energy from Ĥ0 = T̂ + V̂ has a spatial dependence only. This means

[V̂ , Â] = 0⇒ [Ĥ0, Â] = [T̂ , Â] .

The kinetic energy operator can be expressed as

T̂ =
1

2

N∑
k=1

p̂2
k ,
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which has to be inserted into the commutator:

[T̂ , Â] =
1

2

 N∑
k=1

p̂2
k,

N∑
j=1

r̂2
j

 . (107)

The operators p̂k and r̂j commute for different particles j 6= k, which simplifies Eq. (107) to

[T̂ , Â] =
1

2

N∑
k=1

[
p̂2
k, r̂

2
k

]
.

This can be rearranged to

[T̂ , Â] =
1

2

N∑
k=1

(
p̂kp̂kr̂

2
k − r̂2

kp̂kp̂k
)

=
1

2

N∑
k=1

(
p̂kp̂kr̂

2
k − r̂2

kp̂kp̂k + p̂kr̂
2
kp̂k − p̂kr̂

2
kp̂k
)

=
1

2

N∑
k=1

(
[p̂k, r̂

2
k]p̂k + p̂k[p̂k, r̂

2
k]
)

. (108)

The operators are now expressed in spatial representation as p̂k = −i∇k and r̂k = rk. The
commutators in Eq. (108) can be evaluated with the identity

[p̂k, r̂
2
k] = −i∇kr2

k + ir2
k∇k

= −i(∇kr2
k)− ir2

k∇k + ir2
k∇k

= −i(∇kr2
k) .

This leads to

[T̂ , Â] =
1

2

N∑
k=1

(
−i(∇kr2

k)(−i∇k)− i∇k(−i(∇kr2
k))
)

= −1

2

N∑
k=1

(
(∇kr2

k)∇k + (∇2
kr

2
k) + (∇kr2

k)∇k
)

= −1

2

N∑
k=1

(
2(∇kr2

k)∇k + (∇2
kr

2
k)
)

= −1

2

N∑
k=1

(
2i(∇kr2

k)p̂k + (∇2
kr

2
k)
)

.

This result can now be inserted into the double commutator from Eq. (106)

[Â, [T̂ , Â]] = −1

2

N∑
k=1

(
r2
k2i(∇kr2

k)p̂k − 2i(∇kr2
k)p̂kr

2
k

)
= −i

N∑
k=1

(
r2
k(∇kr2

k)p̂k − (∇kr2
k)(−i∇kr2

k)− (∇kr2
k)r

2
kp̂k
)

=

N∑
k=1

(
∇kr2

k

)2
. (109)
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B DERIVATION OF THE SUM-RULES

The spatial derivative in Eq. (109) is simply given by

∂

∂xk
r2
k =

∂

∂xk
(x2
k + y2

k + z2
k) = 2xk

⇒ ∇kr2
k = 2rk ,

and, hence, the first energy weighted moment can be written as

m1 =
1

2
〈0| [Â, [T̂ , Â]] |0〉

=
1

2
〈0|

N∑
k=1

4r2
k |0〉

= 2 〈0| R̂2 |0〉
= 4EHO .

Thus, it has been demonstrated that m1 is simply given by four times the potential energy due to
the harmonic confinement. This quantity is automatically calculated in every PIMC simulation
anyway and, therefore, requires no additional computational effort.

The third moment is given by

m3 =
∑
i 6=0

(h̄ωi0)3
∣∣∣〈0| Â |i〉∣∣∣2 ,

and can be expressed via nested commutators as well. However, since the derivation of the
relation reveals no physical insight and is merely an algebraic task, the interested reader is
referred to [79] while here only the final result is presented:

m3 =
1

2
〈0| [[[Â, Ĥ0], Ĥ0], [Ĥ0, Â]] |0〉 . (110)

The evaluation of Eq. (110) depends on the explicit form of the particle interaction, i.e., the
exponent α from the power law:

m3 = 8Ekin + 8EHO + 2α2Eint .

Therefore, the third energy weighted moment can be expressed in terms of the different energies
of the system as well.

Another interesting quantity is the inverse frequency moment, which, at finite temperature,
is given by

m−1 =
1

Zc

∑
i

∑
k 6=i

e−βEi
1

Ek − Ei

∣∣∣〈i| Â |k〉∣∣∣2 . (111)

To find a suitable sum-rule, one usually considers stationary perturbation theory. The perturbed
Hamiltonian is given by

Ĥ = Ĥ0 + ηÂ ,

with η � 1, meaning that the effect of the perturbation is small. Let {|k(0)〉} denote the

eigenstates of Ĥ0 with the corresponding eigenvalues E
(0)
k . The first order correction to the

states in perturbation theory is calculated as [106]

|i(1)〉 =
∑
k 6=i

〈k(0)| Â |i(0)〉
E

(0)
i − E

(0)
k

|k(0)〉 . (112)
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The first order eigenstates of Ĥ are given by

|iη〉 = |i(0)〉+ η |i(1)〉 . (113)

It is now the goal to connect the Eqs. (112) and (113) with the inverse moment. For this purpose,
one considers the diagonal matrix elements of Â with respect to the states from Eq. (113), which
can be expressed as

〈iη| Â |iη〉 =

〈i(0)|+ η
∑
k 6=i

(
〈k(0)| Â |i(0)〉

)†
E

(0)
i − E

(0)
k

〈k(0)|

 Â

|i(0)〉+ η
∑
k 6=i

〈k(0)| Â |i(0)〉
E

(0)
i − E

(0)
k

|k(0)〉



= 〈i(0)| Â |i(0)〉+ η
∑
k 6=i

(
〈k(0)| Â |i(0)〉

)†
〈k(0)| Â |i(0)〉+ 〈k(0)| Â |i(0)〉 〈i(0)| Â |k(0)〉

E
(0)
i − E

(0)
k

= 〈i(0)| Â |i(0)〉+ η
∑
k 6=i

2
∣∣∣〈k(0)| Â |i(0)〉

∣∣∣2
E

(0)
i − E

(0)
k

, (114)

where again all O(η2) contributions have been neglected. The final expression from Eq. (114)
can be identified with a single addend (m−1)i from (111):

Zc(m−1)i
e−βEi

=
1

2η

(
〈i(0)| Â |i(0)〉 − 〈iη| Â |iη〉

)
.

The insertion of this connection into the inverse moment leads to

m−1 =
∑
i

(m−1)i

=
1

2ηZ0

∑
i

e−βE
(0)
i

(
〈i(0)| Â |i(0)〉 − 〈iη| Â |iη〉

)
. (115)

It is important to understand that the inverse moment is calculated for the unperturbed Hamil-
tonian Ĥ0. This means that in Eq. (115) one has to use the corresponding partition function

and configuration weight Z0 and exp
(
−βE(0)

i

)
, respectively. The next step is the identification

of two terms in (115) with canonical expectation values, namely

〈Â〉0 =
1

Z0

∑
i

e−βE
(0)
i 〈i(0)| Â |i(0)〉 ,

〈Â〉η ≈
1

Z0

∑
i

e−βE
(0)
i 〈iη| Â |iη〉 . (116)

The approximality in Eq. (116) becomes exact if one assumes to start from the ground state,
which is valid for the breathing mode:

〈Â〉η = 〈0η| Â |0η〉 .

This finally allows one to write the inverse energy weighted moment as

m−1 = −1

2

(
〈Â〉η − 〈Â〉0

η

)
. (117)
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In the limiting case of an infinitely small perturbation, all approximations, i.e., including only
linear terms in η, become exact and Equation (117) can be written as the derivative

m−1 = −1

2

∂

∂η
〈Â〉η

∣∣∣∣
η=0

. (118)

Equation (118) allows for a straightforward evaluation:

〈Â〉η =
1

Zη

∑
α

〈α| Âe−β(Ĥ0+ηÂ) |α〉 , with

Zη =
∑
α

〈α| e−β(Ĥ0+ηÂ) |α〉

∂

∂η

(
1

Zη

)
=
−1

Z2
η

∂

∂η
Zη =

1

Z2
η

∑
α

〈α|βÂe−βĤ |α〉

⇒ ∂

∂η
〈Â〉η

∣∣∣∣
η=0

=
1

Z2
0

(∑
α

〈α|βÂe−βĤ0 |α〉

)(∑
γ

〈γ| Âe−βĤ0 |γ〉

)
−

− 1

Z0

∑
α

〈α|βÂ2e−βĤ0 |α〉

= β 〈Â〉2 − β 〈Â2〉 . (119)

Inserting Eq. (119) into (118) gives the final result for the inverse energy weighted moment:

m−1 =
β

2

(
〈Â2〉 − 〈Â〉2

)
.

This means that m−1 is simply proportional to the monopole operator’s variance.
The last moment to be considered in this work is the zero energy weighted moment, which,

at finite T , is given by

m0 =
1

Z

∑
i 6=k

e−βEi

∣∣∣〈i| Â |k〉∣∣∣2 .

To find the corresponding sum-rule, one can consider the monopole operator’s imaginary time
correlation function, which is also needed for the reconstruction:

CA(τ) = 〈ÂD(τ)ÂD(0)〉 (120)

=
1

Z

∑
i,k

e−βEi 〈i| e
i
h̄
Ĥ0(−ih̄τ)Âe−

i
h̄
Ĥ0(−ih̄τ) |k〉 〈k| Â |i〉

=
1

Z

∑
i,k

e−βEie−τ(Ek−Ei)
∣∣∣〈i| Â |k〉∣∣∣2

=
1

Z

∑
i

e−βEi

∣∣∣〈i| Â |i〉∣∣∣2 +
1

Z

∑
i 6=k

e−βEie−τ(Ek−Ei)
∣∣∣〈i| Â |k〉∣∣∣2 .

The evaluation of Eq. (120) at τ = 0 gives

CA(0) =
1

Z

∑
i,k

e−βEi

∣∣∣〈i| Â |k〉∣∣∣2
= m0 +

1

Z

∑
i

e−βEi

∣∣∣〈i| Â |i〉∣∣∣2 . (121)
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Thus, it is the remaining task to express the diagonal part of CA(0) in terms of equilibrium
expectation values which are accessible with PIMC. The connection can be found by integrating
CA(τ):∫ β

0
dτ CA(τ) =

β

Z

∑
i

e−βEi

∣∣∣〈i| Â |i〉∣∣∣2 +
1

Z

∑
i 6=k

e−βEi

∣∣∣〈i| Â |k〉∣∣∣2 ∫ β

0
dτ e−τ(Ek−Ei) . (122)

The integral in the second term can be evaluated as∫ β

0
dτ e−τ(Ek−Ei) =

1− e−β(Ek−Ei)

Ek − Ei
,

and the entire integral over the correlation function becomes∫ β

0
dτ 〈ÂD(τ)ÂD(0)〉 =

β

Z

∑
i

e−βEi

∣∣∣〈i| Â |i〉∣∣∣2 +

+
1

Z

∑
i 6=k

e−βEi
1− e−β(Ek−Ei)

Ek − Ei

∣∣∣〈i| Â |k〉∣∣∣2 . (123)

The second addend in Eq. (123) is twice the inverse moment

1

Z

∑
i 6=k

e−βEi
1− e−β(Ek−Ei)

Ek − Ei

∣∣∣〈i| Â |k〉∣∣∣2 =
1

Z

∑
i 6=k

e−βEi

∣∣∣〈i| Â |k〉∣∣∣2
Ek − Ei

− 1

Z

∑
i 6=k

e−βEk

∣∣∣〈i| Â |k〉∣∣∣2
Ek − Ei

= 2m−1 ,

and, hence, the final result is given by∫ β

0
dτ 〈ÂD(τ)ÂD(0)〉 =

β

Z

∑
i

e−βEi

∣∣∣〈i| Â |i〉∣∣∣2 + 2m−1 .

Thus, the diagonal part in Eq. (121) is the difference between the integral over the monopole
operator’s correlation function and twice the inverse energy weighted moment, devided by the
inverse temperature β. The desired sum-rule is given by

m0 = CA(0)− 1

β

(∫ β

0
dτ CA(τ)− 2m−1

)
.
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C GENETIC INVERSION BY FALSIFICATION OF THEORIES

C Genetic Inversion by Falsification of Theories

In section 5.3, three quite different methods for the reconstruction of a spectral function have
been introduced, namely maximum entropy (MEM), stochastic optimization (SOM) and the
method of consistent constraints (MCC). Another powerful approach for this problem has been
suggested by Vitali et al. [105]: Genetic Inversion by Falsification of Theories (GIFT). Like for
SOM, the sawtooth instabilitiy is overcome by composing the final spectrum as an average over
individual, noisy solutions, Sk(ω). The new idea is that the Sk(ω) are not obtained by fitting
the Monte Carlo correlation function GMC(τ), but a perturbed CF G̃k(τ) where all points can
be displaced within the order of the statistical error. Hence, the individual solutions try to
overfit differently fluctuating CFs which results in nearly independent sawtooth peaks for each
trial spectrum Sk(ω). It is the aim to include all forms of spectral functions that fit the input
CF into the final solution, whereas all other functions are falsified. To find an appropriate trial
spectrum for each perturbed CF, Gk(τ), a genetic algorithm (GA) is used, see e.g. [90]. The
latter is well suited to treat a high dimensional optimization problem and, due to the non-local
nature of the ”reproduction”, local minima can efficiently be avoided. In addition, gradient
methods tend to find very similar results in each run, whereas GAs are highly probabilistic
and likely to deliver different trial spectral functions even for the same input CF. However, a
detailed introduction to GAs and the GIFT method itself is beyond the scope of this work and
the interested reader is referred to the apendix of [105].

To demonstrate the capabilities of this method the dynamic structure factor S(q, ω) is con-
sidered for a dipole interacting bilayer system. Here, q denotes the momentum of a density
fluctuation and the response within a single layer is investigated. To reconstruct this quantity
one must compute the density-density CF, see [13] for a detailed introduction. In addition,
it is useful to also include additional information about the shape of the spectra, namely all
frequency moments 〈ωk〉 that are known from the sum-rule formalism.

In Fig. 86, results for S(q, ω) are shown for q = 0.69813172 both from a SOM implementation
by A. Filinov, see the appendix of [13], and the author’s GIFT code. Evidently, the reconstructed
structure factors are very similar and consist of two pronounced peaks, which are located around
the same position and have approximately the same spectral weights. Both solutions are very
smooth and do not exhibit any sawtooth noise. However, the exact shape of the peaks does not
coincide. Since the exact solution S(q, ω) is not known, it is not trivial to decide which of the
two results is preferable and one must consider the agreement with the given constraints. Both
methods fulfill the frequency moments and Fig. 87 shows the difference between the Monte Carlo
CF, GMC(τ), and the reconstructed data G(τ) corresponding to the spectra from Fig. 86. The
black curves at the top and bottom of the image represent the statistical uncertainty from the
PIMC simulation. However, both reconstructed correlation functions match GMC much better
than the latter, which means that the errors are overestimated and the true errorbars are not
known. The red and blue curve exhibit a qualitatively similar behaviour, but the total deviation
measure from the GIFT solution is significantly smaller than the SOM pendant. In particular,
there occurs a very large deviation around τ = 0.08 for the latter, whereas the GIFT data
deviates from the Monte Carlo CF within the same order everywhere. This lack of systematic
deviations in the red curve makes it preferable to the SOM results. However, it should be noted
that both presented results for S(q, ω) and even reconstructed spectra without the inclusion of
the frequency moments deliver two peaks around the same position, only the particular shape of
the peaks, especially the second one, varies. This means that dispersion relations, which contain
the peak positions as a function of q, can be obtained with high accuracy and from ab initio.

In conclusion, the GIFT algorithm is a powerful approach to reconstruct dynamic information
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Figure 86: Dynamic structure factor of a bilayer system: The intra-layer dynamic struc-
ture factor S(q, ω) is plotted over the frequency ω for a bilayer system with dipole interaction.
The red curve corresponds to the author’s GIFT implementation and the blue curve has been
obtained with SOM by A. Filinov.
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Figure 87: Deviation from the Monte-Carlo correlation function: The difference be-
tween the MC and reconstructed CF, GMC − G, is plotted over the imaginary time τ for the
structure factor from Fig. 86. The Monte Carlo data for the density CF has been provided by
A. Filinov.
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solely from equilibrium information. Contemporary applications include the investigation of the
excitation spectrum of a supersolid [107] and the coupling dependence of a many-body system of
hard-sphere bosons [108]. However, the reconstruction of the breathing mode spectrum remains
out of reach.
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[40] A. Filinov, J. Böning, and M. Bonitz. In H. Fehske, R. Schneider, and A. Weiße, editors,
Computational Many-Particle Physics, volume 739 of Lecture Notes in Physics, Berlin
Springer Verlag, page 397, 2008. 15

126

http://simcon.upc.edu/topics/qm/activities/chinfest/boronat.pdf
http://simcon.upc.edu/topics/qm/activities/chinfest/boronat.pdf


REFERENCES

[41] W. Janke and T. Sauer. J. Chem. Phys., 107:5821–5839, 1997. 24

[42] W. Janke. Quantum simulations of Complex Many-Body Systems: From Theory to Algo-
rithms. John von Neumann Institute for Computing, FZ Jülich, 2002. ISBN 3000090576.
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