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Abstract

The understanding of electronic correlation effects in materials is crucial for the
determination of their electronic properties, and thus, experimental applications. One
example for such a correlation effect is the formation of doublons – bound correlated
pairs of electrons with opposite spins. In this bachelors thesis, the controlled creation of
doublons in a strongly correlated system, induced by ionic radiation [1] is investigated.
A Hubbard-type lattice description of finite two-dimensional honeycomb clusters is
used to model correlated graphene fragments. Furthermore, to compute the system’s
dynamics, the recently developed G1-G2 scheme [2] is employed. This numerical
method is based on nonequilibrium Green’s functions (NEGF) within the generalized
Kadanoff-Baym ansatz (GKBA), but in contrast to GKBA it scales linearly in time.
In addition, the second-order Born approximation (SOA) is applied in this work to
account for electronic correlations in the system.
With that theoretical framework, the controlled formation of doublons by multiple
external excitations through ion impacts is investigated and confirmed. Previous re-
sults by Balzer et al. (see Ref. [1]) are extended to more realistic conditions by con-
sidering larger finite clusters, more consecutive excitations, and a better approximation
of the charged projectiles’ dynamics. In this context, different potentials to mimic the
incident ions are compared and discussed. Additionally, the frequency of the effective
projectiles’ impact on the lattice is varied and a wave-like propagation of the site-
resolved double occupation is proposed. Finally, it is analyzed how the creation of
doublons is affected by uniformly distributed impact points within the lattice.
Overall, the presented mechanism for doublon production is confirmed under
generalized conditions. These results may serve as a guide for future experimental
applications.





Kurzfassung

Das Verständnis von Korrelationseffekten in Festkörpern ist zentral, um deren
elektronische Eigenschaften und die daraus folgende praktische Anwendbarkeit zu
ermitteln. Zu solchen Korrelationseffekten gehört unter anderem die Bildung von
"doublons". Als "doublons" werden Paare aus gebundenen, korrelierten Elektronen
mit entgegengesetztem Spin bezeichnet. In dieser Bachelorarbeit wird die durch
ionische Bestrahlung eines stark korrelierten Systems induzierte Bildung dieser
"doublons" [1] untersucht. Angelehnt an die Struktur von Graphen-Fragmenten wird
ein zweidimensionales, wabenförmiges, endliches Gitter für die Untersuchungen ge-
nutzt und dabei mathematisch mit dem Hubbard-Modell beschrieben. Des Weiteren
wird das kürzlich entwickelte G1-G2 Schema [2] für die Beschreibung der Dynamik
des gesamten Systems verwendet. Dieses Schema basiert auf den Nichtgleichgewichts-
Greenfunktionen (NEGF) unter Verwendung des generalisierten Kadanoff-Baym
Ansatzes (GKBA), hebt sich jedoch von diesem ab, indem es eine lineare numerische
Skalierung mit der Zeit erreicht. Zusätzlich wird die zweite Bornsche Näherung (SOA)
angewendet, um Korrelationseffekte zu berücksichtigen.
Anhand dieser theoretischen Rahmenbedingungen kann im Verlauf der Arbeit die
Erzeugung von "doublons" durch vielfache externe Anregung des Systems mit Hilfe
von Ionenkollisionen untersucht und bestätigt werden. Dabei werden vorangegangene
Ergebnisse von Balzer et al. (vgl. Ref. [1]) auf eine realistischere Systembeschreibung
erweitert, indem größere Gitter, mehr Anregungen und eine verbesserte Näherung
der geladenen Projektile berücksichtigt wird. In diesem Kontext werden verschiedene
Potentiale zur Nachahmung der Wirkung des Ions verglichen und diskutiert. Zum
Schluss wird außerdem geprüft, welchen Einfluss sowohl eine Gleichverteilung der
Einschlagspunkte im Gitter als auch die Variation der Kollisionsfrequenz auf die
Doppelbesetzung haben. In diesem Zusammenhang wird zusätzlich eine wellenför-
mige Ausbreitung der ortsaufgelösten Doppelbesetzung postuliert.
Der präsentierte Mechanismus zur kontrollierten Erzeugung von "doublons" unter
generalisierten Bedingungen ist insgesamt erfolgreich bestätigt worden. Letztlich
können diese Ergebnisse als Leitfaden für zukünftige experimentelle Anwendungen
genutzt werden.
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1 Introduction

1 Introduction

The interaction between charged plasma particles and solid surfaces is a huge research
area throughout plasma, warm dense matter and condensed matter physics (cf. Ref. [3]
and citations within). Especially for low-temperature plasmas (LTP) this interaction is
still lacking in research since electronic correlations and non-adiabatic processes cannot
be neglected. Furthermore, the different properties that these opposed states of matter
exhibit – such as huge variations in length and time scales, electron densities and
classical (plasma) versus quantum mechanical (solid) behavior – hamper numerical
simulations of the interface. Apart from that, LTP cover a wide range of pressures from
less than 1 Pa up to atmospheric pressure. In addition, they feature electrons and ions
that may be far from thermal equilibrium and vary significantly in temperature [3]. The
latter characteristic yields the existence of highly energetic ions close to the surface that
get accelerated by strong electric fields.
A possibility to find out more about the interaction at the plasma-solid interface is
by simulating the impact of such a charged plasma particle on the strongly correlated
solid’s surface. During this collision process, several interesting effects on both the
solid and the ion occur. For instance, there is the projectiles’ stopping power – the
energy that is transferred onto the solid during the impact dynamics. The under-
standing of the stopping process is crucial for any kind of mechanical modification
of the solids surface such as sputtering or can even be used to elucidate its electronic
structure [4]. Hence, it is the aim of this thesis to contribute to this understanding
by further exploring specific stopping-dynamics scenarios such as the formation of
doublons, which will be the main focus.
In general, the term doublon can be used for either bosons and fermions, but within
this research doublons are reffered to as bound, correlated pairs of electrons with
opposite spins [5]. They can build up largely delocalized states, which in turn yield
exciting electronic properties. In the past, several approaches to externally control
doublons were proposed, e.g. by optical excitation [6], an interaction quench [7] and
external electric fields [8–10]. In the present thesis, another approach is used to induce
and control the creation of doublons. It is motivated by the results that K. Balzer et
al. presented in Ref. [1], which use multiple ion impacts to induce a stable double
occupation in the system.
The overall goal is to further investigate this method and extend it to more realistic
setups. One issue with simulations that take into account time-dependent pertur-
bations, inhomogeneity effects and strong electronic correlations, is the high com-
putational cost. In addition, the computational effort grows with the size of the
simulated system as well as the simulated time-span – both must be increased to obtain
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1 Introduction

more realistic results.
This is where the recently developed G1-G2 scheme [2, 11] comes into play, which
is based on nonequilibrium Green’s functions (NEGF). The equations of motion of
the NEGF – also called Keldysh-Kadanoff-Baym equations (KBE) – contain a time-
dependent self-energy that accounts for electron-electron correlations in the system. As
aconsequence, NEGF theory can be applied to strongly correlated many-body
systems [12]. Unfortunately, NEGF can only be used to simulate small systems for
short durations due to their unfavorable time scaling. One approach to reduce that
time scaling is by applying the generalized Kadanoff-Baym ansatz (GKBA) to the time-
diagonal solution of the KBE, to reconstruct the time off-diagonal values. The
G1-G2 scheme uses that by reformulating the GKBA via differentiation with respect
to the time (see Ref. [2]). Consequently, it drastically reduces the time scaling of such
simulations by at least one order of magnitude [11], and thus – even for two- and three-
dimensional setups – a linear time scaling can be achieved. Accordingly, it enables the
performance of real-time calculations for larger systems, longer propagation times and
thereby come closer to actual experimental setups. Nevertheless, the G1-G2 scheme
does not enhance the numerical scaling with the basis dimension [11]. This is one
reason for why a two-dimensional (2D) lattice setup as shown in fig. 1.1 was chosen
for the following calculations. Besides, finite 2D materials like graphene nanoribbons

x

y

Figure 1.1: Exemplary symmetrical lattice consisting of circular honeycomb clusters. The
figure shows the impact point of the incident ion (green point), while the beige
points denote the respective lattice sites.

attracted increasing attention over the past years regarding their extraordinary elec-
tronic properties, which result from their finite band gap. Such properties include
semiconductivity, making it applicable in optics and electronics [4] but also super-
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1 Introduction

conductivity if the cluster’s width is sufficently small [13]. According to that,
interesting electronic correlation effects emerge in such finite size clusters [1]. Hence, a
honeycomb cluster was chosen as an appropriate lattice (see fig. 1.1) to investigate the
doublon formation.
The approach pursued in the following is to trigger the creation of doublons by an
external perturbation – an ion passing through the lattice. This has been found out
to be a succesful and promising method as shown in Ref. [1]. However, to apply that
approach it is necessary to understand the overall stopping dynamics of an ion. When
a positively charged ion approaches a lattice it interacts with the net charges. In case
of a half-filled lattice with one valence electron per site these electrons are attracted
by the nearing ion, which results in a movement towards the impact point of the ion.
As a result of that build-up of negative net charges, the ion gets attracted. This is
not only affecting the projectiles’ trajectory but particularly leads to an acceleration of
it towards the lattice. After passing through the lattice plane, the attraction draws the
ion back in the direction of the still accumulating negative net charges. In consequence,
a deceleration of the projectile takes place, which is larger than the initial acceleration.
This stopping process is illustrated in fig. 1.2. First, approaching the lattice, the pro-

timpact

Ekin(t→ ∞)

Ekin(t = 0)

Se

Figure 1.2: Exemplary stopping dynamics of a projectile with an initial kinetic energy of
Ekin(t = 0). timpact denotes the time when the projectile passes the lattice’s plane
and the resulting energy loss is illustrated by the stopping power Se.

jectile accelerates and therefore gains kinetic energy Ekin until it passes the lattice
at t = timpact. Then it loses more kinetic energy, since the lattice electrons are still
accumulating near the impact point, which leads to a total energy loss of the projectile
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1 Introduction

called the stopping power Se. This yields the following relation:

Se = Ekin(t = 0)− Ekin(t→ ∞) . (1.1)

Depending on the initial velocity of the projectile, the stopping power differs as illus-
trated in fig. 1.3.(a) (originally fig. 7 from Ref. [14]). The figure shows how the stopping

0
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GKBA: (B)

Figure 1.3.(a): Stopping power evolution of
projectiles impacting a lattice
with L = 54 sites (see fig. 1.1).

Figure 1.3.(b): Comparison of GKBA and
G1-G2 scheme stopping
computations for a lattice
containing L = 24 sites.

Figure 1.3: Stopping power Se for projectiles with different initial kinetic energies. The
computations were performed on a strongly correlated honeycomb cluster with
an on-site interaction of U = 4 J. The curves denote different approximations
within the nonequilibrium Green’s function formalism: Hartree, second-order
Born approximation (2B or also SOA), generalized Kadanoff-Baym ansatz
(GKBA) and the new G1-G2 scheme (G1-G2). Relevant quantities and theoretical
approximations are further introduced in the theory (chapter 2).

power evolves with the ions initial kinetic energy (abscissa) for various approximations
within the nonequilibrium Green’s functions (NEGF) formalism. (A) and (B) denote
different methods to build up the correlations in the system. The latter denotes the
adiabatic switch-on method (cf. section 3.1), which is used for the following results.
The associated lattice is shown in fig. 1.1, where the green dot corresponds to the
impact point of the ions. For this thesis, the blue curve of fig. 1.3.(a) is the most relevant,
since the G1-G2 scheme is a direct reformulation of the GKBA as stated above.
Very good agreement of both computational methods has already been proven and is
shown in fig. 1.3.(b) for the smaller honeycombcluster with L = 24 sites. This figure has
been created beforehand of this thesis together with F. Reiser in the context of a poster
session [15]. For the present thesis, the numerical implementation was improved to
eliminate the minor deviations of the two curves.
Regardless of the cluster size, fig. 1.3.(a) and (b) both depict the same dynamic. For
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1 Introduction

very fast projectiles (right hand side (r.h.s.) of figures) the interaction time of lattice
electrons and ion is extremely short. Therefore, the reaction of the electrons to this
perturbation is relatively small, which leads to only a slight difference in initial and
final kinetic energy. Towards the center of the figure, the interaction time becomes
longer, and thus, gives the net charges more time to accumulate, which yields a larger
stopping power. At the left hand side (l.h.s.) of the figure another decrease of Se can
be observed, caused by the increasing adiabatic response of the lattice. For very small
projectile velocities this process can be seen as quasi static, since the system has enough
time to equilibriate.
In general, for the two kinetic energy limits, there are good theoretical treatments
available. Rather challenging is the description in between, due to the increasing
computation time needed, especially when electronic correlations in the system are
included. These requirements let even well established numerical ab initio methods like
time-dependent density functional theory (TDDFT) or density-matrix-renormalization-
group (DMRG) encounter their limitations. The former method can include a certain
amount of electron-electron correlations by applying exchange-correlation potentials
to the local density approximation [16], but fails upon strongly correlated materials.
In contrast, DMRG is generally restricted to one-dimensional (1D) setups [17]. In
consequence, there is currently no ab initio method other than NEGF that can describe
the stopping dynamics of the system introduced above for initial kinetic energies as
shown in fig. 1.3.1 At the same time, this is the area of prime interest for the doublon
creation in the lattice. Basically, the loss in kinetic energy of the projectile during this
stopping dynamics results in an increase of the total energy in the lattice, which is a
necessary condition for the creation of doublons. Accordingly, initial kinetic energies
of about 10 keV seem to be a plausible choice.
With this short summary of the stopping-power mechanism, the fundamental frame-
work is given to describe the systematic and controlled creation of doublons in a
cluster. It is the goal of the present work to extend previous results within this domain
to more realistic setups by means of the G1-G2 scheme. This is achieved by considering
larger lattices, more excitations, variations in the incident projectiles description as well
as by investigating the effect of randomized impact points and the relevance of the
impact frequency.

1However, there are non-ab initio methods as the SRIM code, which can be applied to such a system
within that energy range [18].
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1 Introduction

1.1 Outline

In the following, an outline of the remainder of this thesis will be given. The theory will
be introduced in chapter 2, starting with a short summary of the second quantization
that is followed by an introduction of the Hubbard model to devise the systems
Hamiltonian. Beginning in section 2.3, the nonequilibrium Green’s functions and their
equations of motions will be derived. At last, the G1-G2 scheme used to perform the
computations is presented.
In chapter 3, the implementation of the used code is summarized.
Chapter 4 contains the main results that were obtained throughout this thesis. It starts
by assessing the different potentials used to mimic the projectile and continues by
comparing previous results to the current ones that were computed using the new
G1-G2 scheme and then extend those results to more realistic setups. Eventually,
further expansions are made by varying frequencies and randomizing impact points.
The thesis finishes off with the conclusion and outlook in chapter 5 that provides
an overview of possible future enhancements to the model itself as well as ideas for
additional computations to create even more precise outcomes.
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2 Theory

In this chapter, the theory underlying the computational method used will be intro-
duced. It has to be pointed out that mathematical quantities like operators etc. denoted
below are given in the Heisenberg picture.

2.1 Second Quantization

Throughout this thesis, the second quantization is used to describe the many-body
quantum system. This formalism acknowledges the indistinguishability of quantum
particles, and thus, (anti-)symmetrical wave functions of fermions and bosons. Further-
more, it obtains the full information of a many-particle state by using the occupation
numbers ni of the corresponding single-particle orbitals i. Mathematically, this de-
scription is located in the Fock space F , which can be derived from the Hilbert spaceH
(cf. Ref. [19, 20]). Moreover, the canonical creation (ĉ†

i ) and annihilation (ĉi) operators
form the basis of the second quantization. For fermions those canonical operators
behave as the following:

ĉ†
i |n1, n2, ..., ni, ...〉 = δni,0(−1)

∑j<i nj
√

ni + 1 |n1, n2, ..., ni + 1, ...〉 ,

ĉi |n1, n2, ..., ni, ...〉 = δni,1(−1)
∑j<i nj√ni |n1, n2, ..., ni − 1, ...〉 .

(2.1)

Here, the Pauli-principle is fulfilled through the Kronecker delta δ, as ni ∈ {0, 1} holds
for fermions. The potential negativity of those operators can be attributed to the anti-
symmetry of the fermionic wave functions. To summarize, ĉi (ĉ†

i ) annihilates (creates)
a fermion in state |i〉, if that state is (not) occupied. Consequently, by composing both
operators, the fermion density of state |i〉

n̂i |{n}〉 = ĉ†
i ĉi |{n}〉 = δni,1(−1)

∑j<i nj√ni ĉ†
i |..., ni − 1, ...〉

= δni,1δni−1,0(−1)
2 ∑j<i nj√ni

2 |..., ni, ...〉
= ni |{n}〉 ,

(2.2)

can be identified. As a result, the density can indeed be expressed by ensemble
averaging over the number operator

ni =
〈

n̂i

〉
=
〈

ĉ†
i ĉi

〉
. (2.3)

By including off-diagonal elements, the one-particle reduced density matrix can be
obtained:

ρ
(1)
ij (t) =

〈
ĉ†

j (t)ĉi(t)
〉

. (2.4)
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2 Theory

Finally, the anticommutation relations that are needed to derive the G1-G2 scheme
translate to[

ĉi, ĉ†
j

]
+
= ĉi ĉ

†
j + ĉ†

j ĉi = δij , and
[
ĉi, ĉj

]
+
=
[
ĉ†

i , ĉ†
j

]
+
= 0 . (2.5)

2.2 Hubbard Model

To properly describe the lattice setup shown in fig. 2.1, one needs to account for
correlation effects in the solid. A rather simple model satisfying this basic criterion
is the Hubbard model. It was initially introduced by J. Hubbard in 1963 and aims

L=96

(0,0)

Wi

L=54

L=24

a0

U

J

x

y

Figure 2.1: Symmetrical lattice consisting of circular honeycomb clusters. Three different sizes
are depicted – the smallest consisting of L = 24 (black), the medium of L = 54
(blue) and the largest of L = 96 (purple) sites. The figure shows the impact point
of the incident ion (green point) and its interaction Wi with the lattice electrons.
Additionally, U denotes the on-site interaction, J the nearest-neighbor hopping
and a0 the distance between to bound atoms.

to describe the behavior of electrons in transition metals where electronic correlations
can be of great importance [21]. In this model, the existence of all but one band – the
conduction band – is neglected. As a result, only the valence electrons can move in
between the lattice’s atom positions. This approximation is based on the assumption
that the radii of inner shells are small compared to the distance between two adjacent
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2 Theory

atoms. In consequence, only the outermost orbitals of neighboring atoms overlap –
creating that single band.
Throughout this thesis, the generally considered lattice is supposed to be a symmetri-
cal honeycomb cluster consisting of L atoms with fixed positions (see grey points
in fig. 2.1). Furthermore, the lattice is half-filled, which means that there are L/2 spin-
up (^) and spin-down (_) valence electrons, so that the system as a whole is electrically
neutral. For the maximum of two electrons with opposite spin that occupy the same
orbital, the on-site interaction strength is described by the quantity U. For electrons
on different sites, this interaction is neglected within the Hubbard model. Moreover,
the process of one electron hopping to a neighboring atom can be described by the
hopping amplitude J. It can be physically interpreted as the probability of an electron
tunneling to an adjacent orbital. In the Hubbard model all tunneling processes that
go beyond the nearest-neighbor are neglected [21]. The relation of the two quantities
U/J is a measure for the degree of electronic correlations in the system. With that
information the Hubbard Hamiltonian Ĥe(t) in second quantization follows as

Ĥe(t) = −J ∑
〈i,j〉

∑
σ

ĉ†
iσ ĉjσ + U ∑

i
n̂↑i n̂↓i + ∑

i,σ
Wi(t)ĉ

†
iσ ĉiσ , (2.6)

where σ ∈ {↑, ↓} denotes the two possible spin directions for the lattice electrons.
Moreover, ĉ†

iσ (ĉiσ) creates (annihilates) a particle in state |iσ〉 (i.e. with spin σ and
on site i). For the hopping part of this Hamiltonian, the sum over 〈i, j〉 assures that
only the nearest-neighbor sites i of j are taken into account for tunneling processes. In
addition, the composition of the canonical operators ensures the Pauli principle, since
an electron with spin σ on site j can only hop onto site i, if i is not already occupied by
an electron with the same spin.
The center term only yields contributions to the Hamiltonian for doubly occupied
sites. Here, the quantity U is denoted as time-independent. However, for the purpose
of generating the initial correlated ground state of the system, a method is used to
gradually turn on the correlations within. During this adiabatic switch-on, the on-site
interaction will in fact be time-dependent (see section 3.1).
Lastly, the final term in eq. (2.6) accounts for the interaction of the lattice electrons and
the incoming projectile with charge Zpe , following the classical trajectory~rp(t). This
interaction is independent of the electrons’ spin and can be described by a general
Coulomb potential:

Wi(t) = −W0
1∣∣~rp(t)−~ri

∣∣ , W0 =
Zpe2

4πε0a0
. (2.7)
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2 Theory

Here, a0 denotes the distance of adjacent sites (see fig. 2.1), ε0 is the vacuum permittivity
and~ri is the spatial location of site i. The trajectory of the projectile is perpendicular to
the lattice plane; hence, only the z-coordinate evolves in time. For most computations,
the x- and y-coordinates of the initial position of the projectile correspond to those of
the impact point (green point in fig. 2.1)2

rimp =

(
−1

6
a0, −

√
3

3
a0, 0 a0

)
. (2.8)

By means of TDDFT, this point has been found out to yield similar results for the
stopping power as when one averages over several different collision sites [22].

For the coming sections, a time-dependent effective single-particle Hamiltonian will
be of use to calculate the system’s dynamics. With the general Hubbard Hamiltonian
above, this quantity translates into

hHF, σ
ij (t) = −Jδ〈i,j〉 −

{
Wi(t) + U

〈
n̂ σ̄

i

〉
(t)
}

δij , (2.9)

where σ̄ denotes the opposite spin direction of σ. The notation HF stands for
Hartree-Fock, which is a method used to determine a system’s wave function. Within
the nonequilibrium Green’s function (NEGF) formalism, HF is classified as the first-
order approximation, since it does not account for correlations in the system. All
Hartree and Fock contributions are included within eq. (2.9). Thereby, Hartree accounts
for the interaction of an electron with the mean-field, and thus, corresponds to the U-
part of the single-particle Hamiltonian. On the other hand, Fock-terms – which account
for exchange effects – are absent for the Hubbard model, because all interaction of
electrons with equal spin is neglected [23].

2.2.1 Description of the Projectile Dynamics

In section 2.2 the interaction between lattice electrons and projectile was established as
Wi(t). However, there are in general many different options available for the descrip-
tion of the projectile dynamics. Those options differ in exactness and computational
effort. In the following, three of those will be introduced.

2Throughout the thesis, this point will often be referred to as the "impact point". This is, however,
valid for the following computations, since the actual projectile is mimicked by a potential. For real
projectiles with finite masses, the initial position does not necessarily equal the impact point, as the
interaction with the lattice affects the trajectory.
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2 Theory

The most accurate choice would be a full quantum mechanical description that takes
into account processes such as:

• Excitation and ionization of the electrons on the projectile in a full orbital
description

• Charge transfer between projectile and lattice [3, 4, 24, 25]

Next, in the correspondence limit, which holds for large velocities, there is the
Ehrenfest theorem as a first approximation to the quantum mechanical behavior. This
theorem states that – in the correspondence limit – Newton’s equations can be applied
to the expectation values of operators [26]. For the projectile that yields:

mp
d2

dt2

〈
~̂rp(t)

〉
= −

〈
∇~̂rp(t)

V(~̂rp(t))
〉

, (2.10)

where mp denotes the projectile’s mass and the right hand side of the equation averages
over the effective forces. Hence, V(~̂rp(t)) accounts for the total potential, which in the
present case is given by:

V(~̂rp(t)) = ∑
i

Wi(t)Zi(t). (2.11)

Here, Zi refers to the total charge at site i. This approach has been used for the pre-
viously mentioned stopping power calculations (see section 1).
The third possible approach, which is the most simplified among those presented,
mimics the projectile by an external perturbation to the lattice. Consequently, all
necessary information are already included in the lattice’s Hamiltonian Ĥe(t). This
description corresponds to an infinite-mass point particle. Therefore, it only yields
comparable results, if finite-mass effects – e.g. changes of the approaching projectiles’
trajectory resulting from the lattice electrons’ response – are negligible. This is the
case for fast projectiles, due to their short interaction time with the lattice. Under
these circumstances, when recalling fig. 1.3.(a), kinetic energy values located on the
right hand side of the stopping power curve seem feasible for the incident ions. At
the same time, a large energy transfer to the lattice is desired in order to generate a
nonequilibrium state. Hence, to meet both requirements, an initial kinetic energy of
17 keV is chosen. For a proton that corresponds to a velocity of

vp =

√
2
u
· 17 keV ≈ 1.81× 106 m

s
= 3

a0

t0
, (2.12)

where u denotes the unified atomic mass unit and the time t0 is defined as t0 = h̄
J [14].
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With this velocity, the effective projectile’s trajectory can be derived as

~rp(t) =~rimp +

 0
0

z0 + vpt

 . (2.13)

Here, z0 < 0 denotes the projectiles’ initial distance to the lattice. When combining
eqs. (2.7) and (2.13), an ion’s dynamics is mimicked in terms of a Coulomb potential.
In some cases, it can be useful to simplify the general Coulomb potential (eq. (2.7)), e.g.
to investigate local effects induced by the excitation. For such applications, a short-
ranged localized potential that excites a specific lattice site is feasible. An additional
advantage is the shorter propagation time necessary, that result from the lesser
interaction range, since simulating the path of the projectile towards the lattice is no
longer required. Such a potential is well described by a Gaussian curve:

WGauss(t) = −WGauss,0 e
t2

2τ2 with WGauss,0 = 2U , (2.14)

where τ > 0 denotes the interaction duration with the effective projectile. Thus, τ

is inversely proportional to its velocity, while WGauss,0 is proportinal to its charge [4].
These two adjustable quantities WGauss,0 and τ are fixed to the same values used in
Ref. [1] for comparability reasons.
An alternative potential yielding similar results is the Yukawa potential for large
screening values (κ):

WYukawa,i(t) = −W0
e−κ|~rp(t)−~ri|∣∣~rp(t)−~ri

∣∣ . (2.15)

However, for the limit of no screening (κ = 0) this potential turns into the Coulomb
one introduced above in eq. (2.7).
In the results of this thesis (cf. chapter 4), all three introduced potentials were applied
to mimic the projectile.

2.2.2 Realistic Values for Graphene

Since there are many adjustable quantities introduced above, one has to find realistic
values to obtain applicable computational results. First of all, the on-site interaction
strength is set to U = 4 J. This is mainly motivated by being comparable to com-
putations for similar lattice setups (cf. Ref. [1]). Nevertheless, some finite 2D materials
exhibit larger values. The values for the remaining quantities are chosen based on
those typical for finite graphene clusters. The hopping amplitude can be determined
through corresponding density functional theory calculations, and therefore is set to
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J = 2.8 eV. For the interatomic spacing, a value of a0 = 1.42 Å was chosen3, as it
matches the carbon-carbon bond length in graphene [27].

2.3 Nonequilibrium Green’s Functions

Since nonequilibrium Green’s functions (NEGF) are the basis of the approach used
to describe the system’s many-particle dynamics, this chapter shall serve as a brief
introduction to NEGF theory. To keep the equations as clear as possible, indices like i
and j will from now on include the spin in addition to the particles’ position,
i.e. {iσ} → {i}. Moreover, the equations are denoted for fermionic particles.
First, the one-particle NEGF will be introduced, as it is the central quantity of this
approach:

Gij(z, z′) = − i
h̄

〈
T̂C ĉi(z)ĉ

†
j (z
′)
〉

= θC(z− z′)G>
ij (z, z′) + θC(z′ − z)G<

ij (z, z′),
(2.16)

where θC(z− z′) denotes the step function on the Keldysh time contour C, which equals
one if z is later than z′ and zero else. Furthermore, z is a contour-time argument, which
can generally contain a real and an imaginary part. Besides, T̂C is the time-ordering
operator on the Keldysh time contour, which is depicted in fig. 2.2. The application

(a)

−∞ ∞

t0 t

CAS

(b)

t0

∞

t0 − ih̄β

t

CM

Figure 2.2: Keldysh time contour with an imaginary branch to account for thermodynamic
equilibrium correlations. (Originally fig. 1.(b) from Ref. [2])

of that operator yields two quantities: the lesser component of the one-particle Green
function G<

ij (z, z′), which describes the propagation of a removed particle since z < z′

3These values do not correspond to the ones chosen for calculations that were performed using the
gaussian potential. Here, a0 and J were both set to a value of 1 Å or 1 eV respectively to match those
of Ref. [1].
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and the greater component for an added particle respectively:

G<
ij (z, z′) =

i
h̄

〈
ĉ†

j (z
′)ĉi(z)

〉
, (2.17)

G>
ij (z, z′) = − i

h̄

〈
ĉi(z)ĉ

†
j (z
′)
〉

. (2.18)

If the second time argument is infinitesimally larger than the first, the reduced one-
particle density matrix of the system (see eq. 2.4) can be directly expressed through the
lesser component (ε > 0):

ρ
(1)
ij (z) = −ih̄G<

ij (z, z) = −ih̄ lim
ε→0

Gij(z, z + ε). (2.19)

Next, the equation of motion (EOM) for the one-particle NEGF can be derived. With
eqs. (2.5), (2.17) and (2.18) the time derivative of eq. (2.16) can be expressed as

∂

∂z
Gij(z, z′) = δC(z− z′)

{
G>

ij (z, z′)− G<
ij (z, z′)

}
+ θC(z− z′)

∂

∂z
G>

ij (z, z′) + θC(z′ − z)
∂

∂z
G<

ij (z, z′)

= − i
h̄

{
δC(z− z′)δij + θC(z− z′)

〈
∂

∂z
ĉi(z) · ĉ†

j (z
′)
〉

−θC(z′ − z)
〈

ĉ†
j (z
′) · ∂

∂z
ĉi(z)

〉}
,

(2.20)

where the time derivative of the annihilation operator can be obtained through the
corresponding Heisenberg equation [28]. In the following, Ĥ denotes the generic
Hamiltonian with hik(z) being the corresponding single-particle contribution and
wipkl(z− z̄) accounts for the pair interaction in the system

ih̄
∂

∂z
ĉi(z) =

[
ĉi(z), Ĥ(z)

]
−

= ∑
k

hik(z)ĉk(z) + ∑
pkl

∫
C

dz̄ wipkl(z− z̄) ĉ†
p(z̄)ĉl(z̄)ĉk(z) . (2.21)

When evaluating this expression, one encounters that it consists of a single- (first term
on r.h.s.) and a two-body (last term) contribution.
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With that, the equation of motion for the one-particle NEGF becomes

ih̄
∂

∂z
Gij(z, z′)

= δC(z− z′)δij −
i
h̄ ∑

k
hik(z)

{
θC(z− z′)

〈
ĉk(z)ĉ

†
j (z
′)
〉
− θC(z′ − z)

〈
ĉ†

j (z
′)ĉk(z)

〉}
− i

h̄ ∑
pkl

∫
C

dz̄ wipkl(z− z̄)
{

θC(z− z′)
〈

ĉ†
p(z̄)ĉl(z̄)ĉk(z)ĉ

†
j (z
′)
〉

− θC(z′ − z)
〈

ĉ†
j (z
′)ĉ†

p(z̄)ĉl(z̄)ĉk(z)
〉}

= δC(z− z′)δij + ∑
k

hik(z)Gkj(z, z′)− ih̄ ∑
pkl

∫
C

dz̄ wipkl(z− z̄)G(2)
lkjp(z, z̄; z′, z̄+).

(2.22)
In the last row, the two-particle NEGF G(2) is introduced. The order of ĉ†

p(z) and

ĉl(z) indicates z̄+ being infinitesimally larger than z̄. In general, G(2) is defined as
follows:

G(2)
ijkl(z, z̄; z′, z̄′) =

(
− i

h̄

)2 〈
T̂C ĉi(z)ĉj(z̄)ĉ

†
l (z̄
′)ĉ†

k(z
′)
〉

. (2.23)

It averages over twice as many operators as the one-particle NEGF does, and therefore
describes the "particle-hole" dynamics. Furthermore, it can be expressed through a
Hartee-Fock and a correlation part:

G(2)
ijkl(z, z̄; z′, z̄′) = G(2),H

ijkl (z, z̄; z′, z̄′) − G(2),F
ijkl (z, z̄; z′, z̄′) + G(2),corr

ijkl (z, z̄; z′, z̄′)

= Gik(z, z′)Gjl(z̄, z̄′) − Gil(z, z̄′)Gjk(z̄, z′) + G(2),corr
ij,kl (z, z̄; z′, z̄′).

(2.24)
Unlike the Hartree (H) and Fock (F) terms, the correlation part cannot be expressed
through one-particle NEGF. However, this notation enables one to further simplify the
equation of motion. The combination of the mean-field and exchange contributions
with h(z) yields an effective single-particle Hamiltonian. For the present Hubbard
model, that quantity was denoted above in eq. (2.9).
Equations (2.22) and (2.24) can be transformed into the Keldysh-Kadanoff-Baym
equations (KBE), where the second equation results from differentiation of Gij(z, z′)
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with respect to z′,

∑
k

{
ih̄

∂

∂z
δik − hHF

ik (z)
}

Gkj(z, z′)

= δC(z− z′)δij − ih̄ ∑
pkl

∫
C

dz̄ wipkl(z− z̄)G(2),corr
lkjp (z, z̄; z′, z̄+),

∑
k

Gik(z, z′)
{
−ih̄

∂

∂z′
δkj − hHF

kj (z′)
}

= δC(z− z′)δij − ih̄ ∑
pkl

∫
C

dz̄ G(2),corr
likp (z, z̄; z′, z̄+)wkpjl(z

′ − z̄).

(2.25)

These equations are exact if w(2) and G(2),corr are. Unfortunately, this is rarely the case,
since the EOM of G(2) will couple to another new quantity – the three-particle NEGF
G(3) and so on. To avoid this so called Martin-Schwinger hierarchy, one can try to
express the two-particle NEGF through one-particle NEGF [28]. In the presence of
correletions, this is however only an approximation to the real value of G(2). When
using this approach, the integral part of the equation turns into

−ih̄ ∑
pkl

∫
C

dz̄ G(2),corr
likp (z, z̄; z′, z̄+)wkpjl(z

′ − z̄) = ∑
k

∫
C

dz̄ Σik(z, z̄)Gkj(z̄, z′), (2.26)

with the correlation self-energy Σ. There are several different self-energy approxima-
tions available that vary in exactness and computational effort [29]. For the com-
putations performed within this thesis, the second-order Born approximation (SOA) is
used for the self-energy, as it introduces the leading order of two-particle correlations

Σ≷
ij (z, z′) = −(ih̄)2 ∑

klpqrs
wiklp(z)

(
wqrjs(z

′)− wqrsj(z
′)
)

G≷
lq(z, z′)G≷

pr(z, z′)G≶
sk(z

′, z).

(2.27)

2.4 Generalized Kadanoff-Baym Ansatz

The generalized Kadanoff-Baym ansatz (GKBA) is applied to the NEGF theory to
significantly accelerate computations. This is achieved by restricting the propagation
to the time-diagonal and recreating the time off-diagonal values from the density
matrix [30]. Starting from here, it will be focused on the real-time components of
the NEGF and in particular on the time-diagonal G≷

ij (t) = G≷
ij (t, t). For the real-time

components of the two-particle Green function the notation G≷ijkl(t, t′) is introduced,
where the Hartree and Fock components can be derived from eq. (2.24) by removing
the bars of the respective times (e.g. z̄′ → t′). Through combination of both KBE for the
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lesser component of the one-particle NEGF, the KBE on the time-diagonal simplifies
to [2]:

ih̄
d
dt

G<
ij (t)−

[
hHF, G<

]
ij
(t) =

[
I + I†

]
ij
(t). (2.28)

Here, the collision integral I(t) is introduced, which essentially accounts for the
correlations in the system. It can be separated into two time-dependent additive terms,
where one part considers the initial correlations in the system [2], which in this thesis
are obtained via an adiabatic switch-on method (see section 3.1). The other part – the
dynamical collision integral – is defined by

Iij(t) = −ih̄ ∑
klp

wiklp(t)Glpjk(t) = ∑
k

∫ t

t0

dt̄
[
Σ>

ik(t, t̄)G<
kj(t̄, t)− Σ<

ik(t, t̄)G>
kj(t̄, t)

]
,

(2.29)
and describes the time-dependent build-up of dynamical correlations in the system.
This corresponds to eq. (2.26). The GKBA can be applied to the solution of the time-
diagonal KBE (2.28) to reconstruct its off-diagonal values by introducing a retarded
GR

ij(t, t′) and advanced GA
ij (t, t′) Green’s function

G≷
ij (t, t′) = ih̄ ∑

k

[
GR

ik(t, t′)G≷
kj(t
′)− G≷

ik (t)G
A
kj(t, t′)

]
. (2.30)

This equation is the definition of the generalized Kadanoff-Baym ansatz. Furthermore,
the difference of the retarded and advanced NEGF yields the propagator Uij(t, t′),
which has the properties of a time-evolution operator:

Uij(t, t′) = GR
ij(t, t′) − GA

ij (t, t′)

= Θ(t− t′)
[

G>
ij (t, t′)− G<

ij (t, t′)
]

+ Θ(t′ − t)
[

G>
ij (t, t′)− G<

ij (t, t′)
]

.
(2.31)

Now, the GKBA can be reformulated as [2]

G≷
ij (t
′ 6 t) = ih̄ ∑

k
G≷

ik (t
′)Ukj(t

′, t) ,

G≷
ij (t > t′) = ih̄ ∑

k
Uik(t, t′)G≷

kj(t
′) .

(2.32)

In consequence, G (t) of eq. (2.29) translates to

Gijkl(t) = (ih̄)3 ∑
pqrs

∫ t

t0

dt̄ U (2)
ijpq(t, t̄)ΨpqrsU

(2)
rskl(t̄, t) , (2.33)

Ψpqrs(t) = (ih̄)2 ∑
uvxy

(
wuvxy(t)− wuvyx(t)

) {
GH,>

pquv(t)G
H,<
rsxy (t) − >↔<

}
. (2.34)
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Here, Ψ(t) denotes the two-particle source term and U (2)
ijkl(t, t′) = Uik(t, t′)Ujl(t, t′),

where the order of the propagators is irrelevant. As of now, all necessary equations
have been motivated to move on to the description of the G1-G2 scheme.

2.5 G1-G2 Scheme

The goal of the G1-G2 scheme is to achieve linear time scaling within the GKBA. Thus,
the integral in the two-particle Green’s function must be eliminated. Therefore, the
time-derivative of Gijkl(t) is calculated:

d
dt
Gijkl(t) =

[
d
dt
Gijkl(t)

]
∫ +

[
d
dt
Gijkl(t)

]
U (2)

. (2.35)

With the first component[
d
dt
Gijkl(t)

]
∫ = (ih̄)3 ∑

pqrs
U (2)

ijpq(t, t)Ψpqrs(t)U
(2)
rskl(t, t) =

1
ih̄

Ψijkl(t), (2.36)

as for equal times, Uij(t, t) = 1
ih̄ δij holds, which is easier to comprehend, when one

expresses U(t, t) (eq. (2.31)) by means of G≷(t).
Moreover, the second contribution of eq. (2.35) follows as[

d
dt
Gijkl(t)

]
U (2)

= (ih̄)3 ∑
pqrs

∫ t

t0

dt̄
{[

d
dt
U (2)

ijpq(t, t̄)
]

Ψpqrs(t̄)U
(2)
rskl(t̄, t)

+ U (2)
ijpq(t, t̄)Ψpqrs(t̄)

[
d
dt
U (2)

rskl(t̄, t)
]}

,

(2.37)

The time-derivative of U (2)
ijkl(t̄, t) can be expressed through the derivative of the retarded

and advanced NEGF, which in turn can be derived by means of the KBE introduced
in eq. (2.25). For the case of HF-propagators, this rather long calculation eventually
yields:

d
dt
U (2)

ijkl(t, t′) =
1
ih̄ ∑

pq

(
δjqhHF

ip (t) + δiphHF
jq (t)

)
U (2)

pqkl(t, t′), (2.38)

d
dt
U (2)

ijkl(t
′, t) = − 1

ih̄ ∑
pq
U (2)

ijpq(t, t′)
(

δqlh
HF
pk (t) + δpkhHF

ql (t)
)

. (2.39)

For the GKBA that uses HF-propagators, the notation HF-GKBA is common. It occurs,
when the EOM for the propagators GR and GA are calculated with the self-energy in
Hartree-Fock approximation.
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To continue, by adding up both time-derivatives, eq. (2.37) translates to

[
d
dt
Gijkl(t)

]
U (2)

= (ih̄) ∑
pqrs

∫ t

t0

dt̄

{[
∑
uv

h(2),HF
ijuv (t)U (2)

uvpq(t, t̄)

]
Ψpqrs(t̄)U

(2)
rskl(t̄, t)

+ U (2)
ijpq(t, t̄)Ψpqrs(t̄)

[
−∑

uv
U (2)

rsuv(t, t′)h(2),HF
uvkl (t)

]}
.

(2.40)

Here, both single-particle Hamiltonians were combined into one quantity
h(2),HF

ijkl =
(

δjlh
HF
ik (t) + δikhHF

jl (t)
)

. Furthermore, when investigating eq. (2.40) in detail,
it appears to consist of the two-particle NEGF again. Hence, the right hand side of the
equation can be summarized as[

d
dt
Gijkl(t)

]
U (2)

=
1
ih̄ ∑

pq
h(2),HF

ijpq (t)Gpqkl(t)−
1
ih̄ ∑

pq
Gijpq(t)h

(2),HF
pqkl (t). (2.41)

Finally, the EOM for the two-particle Green function can be expressed completely
without an integral:

ih̄
d
dt
Gijkl(t)−

[
h(2),HF,G

]
ijkl

(t) = Ψijkl(t). (2.42)

In consequence, the linear time scaling is achieved without any further approximations
to the HF-GKBA.
In the remainder of this chapter, the application of this scheme to the Hubbard model,
which is used for the coming computations in this thesis, shall be analyzed. To denote
the system-specific EOM, the spin is again decoupled from the location ({i} → {iσ}).
As a result, the equations of motion for the respective one- (eq. (2.28)) and two-particle
NEGF (eq. (2.42)) become (the respective second component can be obtained by ↑↔↓)

ih̄
d
dt

G<,↑
ij (t)−

[
hHF,↑, G<,↑

]
ij
(t) =

[
I + I†

]↑
ij
(t), (2.43)

ih̄
d
dt
G↑↓↑↓ijkl (t)−

[
h(2),HF
↑↓ ,G↑↓↑↓

]
ijkl

(t) = Ψ↑↓↑↓ijkl (t), (2.44)

with the collision integral, HF-Hamiltonian and the source term denoted below:

I↑ij(t) = −ih̄U(t)G↑↓↑↓iiji (t), (2.45)

h(2),HF
ijkl,↑↓ = δjlh

HF, ↑
ik (t) + δikhHF, ↓

jl (t), (2.46)

Ψ↑↓↑↓ijkl (t) = (ih̄)2U(t)∑
p

{
G>, ↑

ip (t)G>, ↓
jp (t)G<, ↑

pk (t)G<, ↓
pl (t) − >↔<

}
. (2.47)
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Those equations are rather simple compared to the general ones introduced above.
This can be attributed to the simplicity of the pair interaction in the Hubbard model [2]:

wαβγδ
ijkl (t) = U(t)δijδikδilδαγδβδ(1− δαβ), (2.48)

where the greek-letter indices label the spin projection. The last term on the r.h.s.
accounts for the opposite spin direction that electrons on the same site must fulfill.
Finally it should be noted that both equations of motion can be seen as generalized
Heisenberg equations with an additional inhomogeneity denoted by either the collision
integral or the source term of the respective equation.
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3 Numerical Implementation

With the beginning of this bachelors thesis studies, means of computing were changed
from central processing units (CPUs) to graphic processing units (GPUs). That was
necessary to reduce the processing time once more, since GPUs drastically speed up the
simulations and enable the study of larger systems. Therefore, a new implementation
of the G1-G2 scheme was required, which was mostly done by N. Schlünzen and
J.-P. Joost. The numeric propagation of the equations of motion (2.43) and (2.44) was
performed by means of the fourth-order Runge-Kutta method [31]. Besides, the
implementation is spin-restricted, meaning that the results for spin-up components
always equal those of the respective spin-down one. This is a property of the exact
solution caused by the spin symmetry of the Hubbard Hamiltonian (see eq. (2.6)).
The author added the time-dependent potentials that were introduced in section 2.2.1
and implemented further adjustable quantities such as the frequency between two
consecutive impacts, the overall number of excitations and a "switch" for setting the
desired potential to mimic the projectile. Furthermore, for the randomization of the
impact point, two additional adjustable input values were added to the program next
to the implementation of the uniform distribution itself. The first value is a switch for
the randomized impact, which initiated the output of the respective impact points and
times in the lattice. The second is the radius of the area in which the projectiles were
supposed to randomly hit the lattice plane. Since the lattice is highly symmetrical,
the center point is the origin of the input radius. Random values within that input
were generated and weighted to account for the growing area within the circle for
larger radii. In addition, a random angle was generated to get definite points in the
lattice. Then, those values were converted into spatial coordinates and forwarded to
the respective potential as the new impact points.
Everything was implemented using the C++ as programming language and all cal-
culations have been performed on Kepler – the Kiel physics departments own
computer cluster.
In the following, the adiabatic switch-on of the initial correlations will be described as
well as the accessible observables needed to later evaluate the results.

3.1 Adiabatic Switch-on Method

The computations shall be performed starting from the correlated ground state of the
system. This can be achieved e.g. by gradually turning on the electronic correlations
prior to the calculation of the systems dynamics, by multiplying a function fAS(t) to
the interaction contribution of the Hubbard Hamiltonian. Thus, this function has to
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fulfill certain criteria:

UAS(t) = U fAS(t) with lim
t→−∞

fAS(t) = 0 and fAS(t ≥ t0) = 1. (3.1)

Hence, the Keldysh time contour changes to what is depicted in fig. 3.1. There, the
real-time branch is extended to the distant past to include the build-up of correlations.
Of course, for the actual computation a finite value has to be chosen as the starting

(a)

−∞ ∞

t0 t

CAS

(b)

t0

∞

t0 − ih̄β

t

CM

Figure 3.1: Keldysh time contour with the real-time branch ranging back into the remote past
to account for the adiabatic switch-on (AS) of the correlations prior to t0.

time of the adiabatic switch-on. Furthermore, a smooth build-up of correlations that
blends well into the subsequent dynamics is desired. This is fulfilled by the following
choice for the AS function [29]:

fAS(t) = exp
(
− A

t1/(2tH)
exp

(
B

t1/(2tH)− 1

))
,

B =
tH

τ ln 2
− 1

2
, A =

ln 2
2

exp (2B),
(3.2)

where tH denotes the halftime of the AS duration and is set to a value of tH = 12.5 t0

throughout the following computations. Besides, τ controls the steepness of the AS
and is fixed to τ = 9.5 t0.
Finally, to apply this adiabatic switch-on method, some additional requirements have
to be met, which are elucidated together with the general theoretical foundation in
Ref. [32].

3.2 Observables

In the results chapter, the focus will be on two main time-dependent quantities: the
lattice’s total energy and its double occupation. For both, the density is of prime
relevance and can be ascribed to the lesser or greater component of the
one-particle NEGF as shown in eq. (2.19). In consequence, the density of electrons
on site i with spin σ can be expressed through

nσ
i (t) =

〈
n̂σ

i (t)
〉
= ρ

(1), σ
ii (t) = −ih̄G<, σ

ii (t, t) , (3.3)
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and n↑i (t) = n↓i (t) = ni(t), since the computations are spin-restricted.
In the following, the focus is on the total energy of the lattice Etot(t). First, the energy
can be separated into three additive terms,

Etot(t) = Ekin(t) + Epot(t) + Eint(t) . (3.4)

• The kinetic energy contribution corresponds to the lattice electrons’ single-particle
hamiltonian h(0), which in case of the introduced Hubbard model is only the
nearest-neighbor hopping J:

Ekin(t) = Re
{

Tr
(

h(0)n(t)
)}

with h(0),σij = −Jδ〈i,j〉 . (3.5)

Here and below, Re{} denotes the real-part of the trace Tr.

• Next, the potential energy, that contains the excitation part Wi(t) of the Hubbard
Hamiltonian can be expressed through

Epot(t) = Re {Tr (W(t)n(t))} with Wσ
ij (t) = Wi(t)δij . (3.6)

• Lastly, there is the interaction energy containing a mean-field part as well as a
correlation part:

Eint = EHF(t) + Ecorr(t)

=
1
2

Re
{

Tr
(

ΣHF(t)n(t)
)}

+
1
2

Im
{

Tr
(

I<(t, t)
)}

.
(3.7)

with the HF self-energy ΣHF, σ
ij (t) = 2U δij

〈
nσ̄

ij(t)
〉

accounting for the on-site

interaction. The time-diagonal collision integral I(t, t) has been introduced in
eq. (2.29) and can be expressed in the Hubbard model through the two-particle
Green’s function as denoted in eq. (2.45).

Additionally, the quantities used in the interaction energy are also relevant to the
second observable – the double occupation. First, the site-resolved double occupation
follows as [23]:

di(t) =
〈

n̂↑i (t)n̂
↓
i (t)

〉
=

1
2U(t)

(
Re
{

ΣHF
i (t)ni(t)

}
+ Im

{
I<ii (t, t)

})
. (3.8)
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From this quantity, both the time-dependent cluster averaged double occupation dav

and its long-time limit d∞
av can be derived [1]:

dav(t) =
1
L

L

∑
i=1

di(t) (3.9)

d∞
av = lim

t→∞

1
∆t

∫ t+∆t

t
dt̄ dav(t̄) (3.10)

To get an impression of these observables, the case of no correlations – corresponding
to a Hartree-Fock self-energy in the two-particle NEGF – is investigated below. For a
half-filled system of any size L in the ground state, an average double occupation of

dHF
av =

1
L

L

∑
i=1

〈
n̂HF, ↑

i n̂HF, ↓
i

〉
=

1
L

L

∑
i=1

0.5 · 0.5 = 0.25 , (3.11)

is expected. This value can of course vary, for example when the system is externally
excited. In general, it can take values ranging from dav = 0 – if each site i contains
exactly one electron – up to dav = 0.5 , when each site either contains two or no
electrons at all. Furthermore, the case of dav = 0 corresponds to an anti-ferromagnetic
state. For strongly correlated materials, the average double occupation is far below
the HF-ground state level, as correlations prevent the build-up of charge clusters in the
system. The goal of this thesis – to induce the formation of doublons – can consequently
be interpreted as a reduction of the correlations in the system by multiple external exci-
tations. This process will be further investigated in the following chapter.
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4 Results

This part of the thesis consists of presentation and analysis of the obtained results. To
begin with, the potentials used to mimic the projectile are discussed (cf. section 2.2.1).
Then, the agreement of previous results obtained within the HF-GKBA and current
ones using the G1-G2 scheme will be investigated and extended to larger system sizes
as well as more excitations. Finally, computational results for more realistic setups are
presented, which include the variation of impact frequencies of the incident ions and
the randomization of their impact points. For the following part it is important to point
out that the terms "projectile" and "ion" refer to the respective potential that mimics the
impact.

4.1 Multiple Impact Dynamics for Different Potentials

When an ion approaches the lattice, it is accelerated by the accumulating net charges
near the impact point. This increase in kinetic energy of the ion leads to a decrease
in the total energy of the lattice. After the impact, the same attracting force entails a
deceleration of the incident projectile4, but as the net charges keep accumulating near
the impact point, this "pull-back" effect is stronger. In consequence, a general total
energy gain in the lattice can be observed as shown in fig. 4.1, which depicts the total
energy dynamics of the smallest lattice introduced in fig. 2.1 containing L = 24 sites. In
total, this lattice was excited 20 times for each different potential. Thereby, every peak
corresponds to a projectile impact as described above, while the different depths of the
peaks are mainly due to the varying input parameters to the potential. The Coulomb
and Yukawa curve describe a one-time positively charged ion with an initial distance
and velocity of

~rp(t = 0) = −


1
6√
3

3

300

 a0, ~vp(t = 0) =

 0
0
3

 a0

t0
≈

 0
0

1.81× 106

 m
s

, (4.1)

with t0 denoting the time step used for all computations presented in this chapter,
which is measured in units of h̄

J . a0 and J were introduced in section 2.2.2.

4This only goes for projectiles with finite masses. For an infinite-mass projectile, which corresponds to
a description via a potential, there will not be a change in velocity.
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Moreover, the green point in fig. 2.1 was chosen as the impact point for the Coulomb
and Yukawa potential, whereas the Gaussian potential operates on one of the inner-
most lattice sites:

~rp, G(t = 0) =

 0
1
−200

 a0,G, ~vp, G(t = 0) =

 0
0
2

 a0,G

t0
, (4.2)

with a0,G = 1 Å. These input parameters were set to match those of Ref. [1]. Hence,
the comparability of these potentials is limited, regarding the margins of their initial
values. Nevertheless, all three potentials exhibit similar trends that shows even more
clearly when discussing fig. 4.1 in detail.
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Figure 4.1: Total energy increase of the lattice containing L = 24 sites (cf. fig. 2.1) induced by
20 projectile impacts with charge Zpe = e mimicked by three different potentials
as introduced in section 2.2.1: Gaussian (red), Yukawa (golden) with a screening of
κ = 0.01 (cf. eq. (2.15)) and Coulomb (green). For the green and golden curve, the
initial location of the effective projectiles is rp =

(
−1/6 a0,−

√
3/3 a0,−300 a0

)
,

while its initial velocity corresponds to vp = 3 a0/t0 and is directed perpendicular
to the lattice plane. The initial values for the Gaussian curve (a0,G = 1 Å) are set to
τ = 1/2 t0 =̂ vp, G = 2 a0,G/t0 and rp, G = (0 a0,G , 1 a0,G , −200 a0,G).

First of all, the initial increase of the total energy until t = 25 t0 is due to the adiabatic
switch-on (AS) of electronic correlations in the solid [29] (see section 3.1). After the AS,
the respective potential is turned on and mimics the projectiles’ approach to the lattice.
The fact, that the kink at t = 25 t0 is only visible for the Coulomb potential proves
that it is caused by the superposition of the 20 long-range Coulomb potentials of all
projectiles. Obviously, even for the Yukawa potential with a small screening value κ
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this effect is not visible anymore (see golden curve in fig. 4.1).
Next, the analysis will be extended to the corresponding average double occupation
and how it evolves in time (see fig. 4.2). In general, this figure depicts the dynamics of
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Figure 4.2: Cluster averaged doublon creation in the L = 24 lattice, caused by 20 projectile
impacts that were mimicked by three different potentials as introduced in
section 2.2.1: Gaussian (red), Yukawa (golden) with a screening of κ = 0.01 (cf.
eq. (2.15)) and Coulomb (green). In addition Nx denotes the number of excitation.
Initial parameters for velocity and location of the respective projectiles are the
same as in fig. 4.1.

the site-averaged double occupation plotted for each of the different potentials. Every
second excitation is numbered and when dav reaches a local peak, the ion already
passed through the lattice’s plane. In between two consecutive excitations a strong
noise is observed, which will be analyzed in section 4.2. The reason for the distinctness
of the double occupation dynamics induced by the Gaussian potential is based on
the difference in input parameters, shape of the potential and range (which is shorter
in both time and space). Therefore, it cannot be directly compared to the other two
potentials as already noted above. Nevertheless, what all three potentials have in
common is that through multiple periodical excitations the overall double occupation
in this two-dimensional finite cluster can be significantly increased. However, judging
by the perfect agreement of the golden and green curve, it can be concluded that
the superposition of the long-tails of each Coulomb excitations has no effect on the
doublon creation. This identical double occupation dynamics once more proves that
the kink shown in the total energy (green curve in fig. 4.1) has no effect on the present
results. Moreover, the shape of these curves closely resembles a logarithmic increase,
and thus, the curves are expected to eventually reach dav = 0.25 if the lattice will be
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further excited. This concurs with the statements made in section 4.2, regarding the
gradual decrease of correlations with increasing numbers of excitations. The electronic
correlations in the system reduce the initial average double occupation below the
HF-value of dav = 0.25. However, the correlation energy’s contribution to the total
energy shrinks with every excitation, leading to a growing double occupation, as can
be observed in fig. 4.2. As a result, the expectation of reaching at least the dav value of
an uncorrelated system can be confirmed.
After having analyzed the smallest lattice size with few excitations, the lattice can be
set to resemble more realistic values. In the following figure (fig. 4.3), the same results
are shown for a lattice with L = 96 sites and Nx = 40 excitations in total. Once more,
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Figure 4.3: Total energy (a) and corresponding double occupation increase (b) of the L = 96
lattice induced by 40 projectile impacts mimicked by a Gaussian potential (red) as
well as a slightly screened (golden) and a normal (green) Coulomb potential. The
grey dotted lines in (a) traverse the local maximum after the first excitation of the
respective graph. The input parameters match those of fig. 4.1.

even a slight screening is enough for the initial kink to vanish, despite twice as much
projectile impacts that superpose each other compared to the previously investigated
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Nx = 20. Instead, a novel observation is the decrease in total energy during the first
few excitations for the Coulomb potential. But then again, this behavior cannot be
confirmed for the Yukawa potential, which suggests this to be a superposition effect
as well. Also the perfect agreement that the Yukawa and Coulomb potential yield
for the average double occupation plotted in fig. 4.3 (b) supports the explanations
above. Figure 4.3 (b) clearly shows that the Gaussian potential yields different dav

dynamics. On the one hand, this is due to the potentials’ different properties again
as stated above. On the other hand, the Gaussian potential does not affect electrons
on sites other than the one it is directly applied to. Thus, larger lattices and more
excitations lead to a growing inaccuracy of this approximation to imitate an incident
ions behavior. Nevertheless, 4.3 (b) depicts some very interesting features. Probably
the most surprising is the decrease in cluster averaged double occupation during the
first few ion impacts even though the total energy clearly grows. The reason for this
behavior is presently unknown, but a possible yet vague explanation will be presented
in chapter 5. To elucidate the other interesting effects, it might be useful to compare
the dynamics of dav for all three different lattice sizes introduced in fig. 2.1.

4.2 Doublon Creation for Different Lattice Sizes

In the following, the effects of the system’s size on the double occupation dynamics
will be investigated. First of all, the most striking observation one perceives when
taking a look at fig. 4.4 is the enhancement of the doublon formation through multiple
ion impacts for any lattice size. The larger the lattice, the more excitations are needed
to reach a specific value for dav due to the smaller relative impact. These observations
match those of Balzer et al. [1]. The differently pronounced excitation peaks can also
be attributed to finite size effects. Generally, this corresponds to larger lattices being
able to better cope with an external perturbation, since there are much more sites to
redistribute the induced energy. It can be compared to the wave dynamics initiated
by dropping the same stone in a bucket of water or in a pool. Furthermore, the noise
between two consecutive excitations significantly decreases with growing honeycomb
clusters, which can also be justified through boundary effects. In addition, the decrease
of dav immediately prior to each impact might originate from the energy loss of the
lattice resulting from the acceleration of the projectile5. On the other hand, this could
also be attributed to a characteristic frequency of the respective system, which will be
further analyzed for the largest lattice in section 4.4. Another interesting observation is

5This is hypothetically speaking, since for the case of an infinite-mass projectile – corresponding to the
projectile description via potentials – the velocity remains unchanged.
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Figure 4.4: Cluster averaged double occupation increase through Nx = 40 Coulomb
excitations for three honeycomb lattice sizes: L = 24 (green), L = 54 (blue) and
L = 96 (purple). The input values stay consistent with those of fig. 4.1.

that the broad global minimum mentioned in the previous section seems to
widen for growing cluster sizes. Thus, more excitations are needed to escape that
minimum.

4.3 Extension of Previous Results

In this section, the previous results by Balzer et al. [1] mentioned in the introduction
are compared to current ones (see fig. 4.5). In contrast to the new results that were
obtained using the G1-G2 scheme (cf. fig. 4.5 left panels) the old figure was produced
by means of NEGF within HF-GKBA (right panels). Hence, only smaller systems (up
to L = 54 sites) and less excitations were possible due to the inferior time scaling of
HF-GKBA.
For comparability reasons, the Gaussian potential has been applied in these compu-
tations. Furthermore, the quantity d∞

av is needed for these simulations (cf. eq. (3.10)).

31



4 Results

Since obtaining the long-time limit of the doublon creation is computationally very
expensive and would exceed the frame of this thesis, it was instead averaged over the
noise in between two consecutive excitations (cf. fig. 4.2). This yields the two figures on
the left hand side below (fig. 4.5). The current computations have not been performed
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Figure 4.5: Figure 4 from Ref. [1] is depicted on the right hand side. Those results were
obtained using NEGF within the HF-GKBA, whereas the left hand side shows
the corresponding results of G1-G2 scheme calculations. All panels display the
increase of d∞

av through multiple excitations (Nx) for different lattice sizes L, with
every second excitation corresponding to one curve. In the top panels, 1D chains
were periodically excited, whereas in the bottom panels different 2D honeycomb
cluster sizes were investigated (shown below abscissa). The two subplots in the
right panels show the dynamics of the cluster averaged double occupation for a
one- (top) and a two- (bottom) dimensional setup with L = 24 sites each. Initial
velocity and location for either panel equal those denoted below fig. 4.1 for the
Gaussian potential.

for the reduced honeycomb lattices (e.g. L = 12 or L = 36 sites). Due to the extended
bond lengths of the edge electrons, those clusters show slightly different behaviors and
can therefore not simply be compared to lattices with consistent bond lengths. The
input parameters are chosen to match those used for generating the data underlying
the right panels. However, the time span in between two excitations over which is
averaged to obtain the long-time limit of the doublon creation probably differs for the
current and old data. Regarding the fluctuations of the average double occupation in
between excitations (see fig. 4.4), the impact of differently chosen time spans should
not be underestimated. This explains the local deviations of the left and right panels,
which are especially visible for small one-dimensional chains. As a consequence, good
agreement of HF-GKBA and G1-G2 scheme calculations can be inferred from the equal
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trend of each corresponding plot. Herein, "trend" refers to the decreasing double
occupation for growing sizes L at a fixed number of excitations Nx, which concurs
with the observations made in context with fig. 4.4.
To fulfill the goal of this thesis, the results shown on the previous page are now
extended to more realistic setups. Hence, fig. 4.6 depicts twice as much excitations
of nearly twice as large systems. Again, for either setup the long-time limit of the
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Figure 4.6: Extension of results shown in fig. 4.5 to 1D chains consisting of up to L = 100 sites
(top panel) and 2D honeycomb clusters with a maximum of L = 96 sites (bottom
panel). Furthermore, all systems are excited 40 times (lightest orange) and every
third excitation is plotted as a curve. Again the Gaussian potential is applied and
the initial values were chosen the same as in the previous calculations.

average double occupation evolves as expected. It needs to be emphasized that the
Gaussian potential was applied for these computations. When recalling the bottom
panel of fig. 4.3, it emerges that a different and more realistic potential – the Coulomb
one – for slightly different input parameters would yield a significantly larger d∞

av for
the largest lattice (L = 96). To be more specific, after 20 excitations the average double
occupation of the Coulomb potential is larger by approximately 13% than the Gaussian
one. In contrast, for the lattice containing L = 24 sites the margin between those two
potentials is less distinct, as it only amounts to 4% (see fig. 4.2). Thus, on the one hand,
the visible decrease in d∞

av with growing lattices at a fixed number of excitations will
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not be that drastic for corresponding Coulomb potential calculations. On the other
hand, the overall double occupation will exhibit larger values with growing numbers
of excitations.
Moreover, the previously addressed broad global minimum is indisputably observable
in the bottom panel at L = 96, as the curve of the first excitation yields a higher
averaged double occupation than the following, corresponding to Nx = 4. Interestingly,
this minimum is not visible for the one-dimensional setup. Also striking is that the
2D setup features a much greater basic level of the averaged double occupation than
the 1D one. These aspects are even more salient when comparing both dimensions
by taking a closer look at the cluster averaged double occupation for a fixed number
of sites (see fig. 4.7). The figure clearly shows no sign of a broad global minimum
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Figure 4.7: Cluster averaged double occupation dynamics for the 2D honeycomb lattice
(purple) and the 1D chain (green). Both systems contain L = 96 sites and are
excited 40 times. The Gaussian potential was used to mimic the projectile and the
input parameters match those of fig. 4.1.

for the chain (green curve), making that global minimum a phenomenon limited to
more-dimensional finite system setups. Furthermore, the initial double occupation of
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the honeycomb lattice is way above the corresponding value of the chain setup. This
can be ascribed to the overall number of nearest neighbors to a site in the respective
system. Each site in the chain has two neighbors except for the first and final site,
whereas in the honeycomb lattice every site has a minimum of two neighbors, while
the majority has three. Hence, for the electrons at the sites the latter system has in
average more neighbors to interact, and thus, build-up correlations with. As a result,
the two-dimensional cluster exhibits a larger double occupation.

4.4 Frequency Variations

From now on, all calculations are performed using the Coulomb potential – the most
realistic approximation of the projectile’s dynamics. In addition, only the largest
honeycomb cluster (L = 96) is investigated.
The idea of varying the frequency of the ions’ impacts is mainly due to excluding
the broad global minimum to be caused through interference of the impact frequency
with the systems’ own characteristic frequency. The results are shown in fig. 4.8. The
upper panel illustrates how the total energy evolves with the number of excitations for
the respective impact frequencies. It has to be mentioned that all calculations were
performed for the same total length of time tmax = 650 t0. This is the reason for
why the total energy is much lower for high impact frequencies (green), since there
are up to twenty times as many excitations whose potentials superpose each other.
The flattening of the ion impact peaks in the energy can also be attributed to that
superposition, since the interim energy loss of the system directly induced through
an impact becomes less relevant with every additional long-range Coulomb potential
applied to the lattice electrons. In conclusion, the total energy behaves exactly as
expected given the previous results.
In contrary, the corresponding doublon creation is more sensitive to frequency varia-
tions. It can be inferred from the similar behavior of the purple, pink and blue curves
in the bottom panel that the system more or less equilibrates, if the time in between two
consecutive excitations is long enough. Presumably, the minimum of this equilibration
time teq is around teq ≈ 8 t0 for the honeycomb cluster with 96 sites. It might seem
like that for the golden curve, ∆timp has already fallen short of the equilibration time,
but as a matter of fact the slightly lower dav can be indeed attributed to an interference
of the impact frequency with one of the systems characteristic frequencies. This effect
will be further explained in context of fig. 4.9.
Moreover, at first sight the broad global minimum vanishes for very high frequencies.
This is caused by the system to be hit in a highly dynamical state. When observing
the double occupation peak induced by the first ion it can easily be seen that the peak
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Figure 4.8: This figure shows how the total energy E and average double occupation dav
evolve depending on the number of excitations Nx for a 96 sites large honeycomb
cluster. The six different colors denote different time intervals in between two
consecutive excitations. The golden graph corresponds to the frequency used in
all previous calculations, which means that an impact happens every 10 t0 = 10 h̄

J .
The largest interval depicted (purple) is four times as long, whereas the smallest
refers to one excitation every 2 t0 (dark green). The initial position and velocities of
the projectiles concurs with those introduced in section 4.1.

itself broadens with smaller ∆timp. For values as small as 2 t0 (dark green) the second
ion hits, while the first is still very close to the lattice. Thus, the lattice electrons always
interact strongly with the projectile that just passed through the lattice and the new
incoming one. In consequence, the system has no time to relax in between consecutive
hits. The formation of doublons happens on time scales of about 1 to 10 fs [1]. To
demonstrate the meaning of ∆timp = 2t0 in terms of seconds:

2 t0 = 2
h̄
J
≈ 2

6.582× 10−16

2.8
eV s
eV
≈ 2 · 2.35× 10−16 s = 0.47 fs . (4.3)
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So approximately every half femtosecond the lattice is excited, which lies below the
given timescale for doublon formation. That confirms the statement above, about the
system being hit during a highly dynamical state. In conclusion, the results shown in
the bottom panel of fig. 4.8 prove the independence of the broad global minimum in
the doublon creation of the impact frequency.

Next, the focus shifts to the noise in between two excitations and the vibration of dav.
In the following fig. 4.9, the average double occupation is again shown dependent on
the number of excitations Nx. The only difference to fig. 4.8 is the additional frequency
of one impact every 8 t0 (orange curve). As one quickly perceives, its dav value lies
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Figure 4.9: The cluster averaged double occupation as shown in fig. 4.8 was extended by one
additional curve (orange) for the case of ∆timp = 8 t0 in the top panel. Below
that, a sequence of the corresponding time-dependent evolution for the first
few excitations is depicted. For clarity reasons, the two highest frequencies are
not shown. On the right, another sequence of the time evolution is displayed,
illustrating the dynamics of dav shortly prior to and after the last excitation.

in between the time intervals 10 t0 (golden) and 15 t0 (blue) for the 20th excitation. At
first, this might seem odd, since at that number of excitation all other frequencies are
in order, meaning the lowest impact frequency corresponding to the highest double
occupation and vice versa. But when taking a look at the right panel of fig. 4.9, which
is designed to show the time resolved dynamics of the double occupation especially
after the last excitation, a possible reason for the unexpected order is revealed. For
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all depicted impact frequencies, a small peak directed downwards approximately 10 t0

after the last (or in case of ∆timp > 10 t0: each) projectile impact can be observed. This
peak looks similar for all ∆timp > 10 t0, but for 10 t0 (golden) it is particularly distinct.
These two observations indicate that for the case of the golden curve, there is an
interference with the systems’ characteristic frequency. The explanation for that might
be the following: Due to the external perturbation, which makes the lattice electrons
accumulate around the impact point, the double occupation increases mainly on sites
near the impact point. When the projectile is far enough, so that Coulomb interaction
does not significantly effect the net charges anymore, the correlations in the system
yield the dissolve of those built-up charge clusters. This means that one electron of a
doubly occupied site hops onto a neighboring site with a maximum of one electron,
if that electron has an opposite spin. As a result, a dynamics evolves, which induces
a "drift" of electrons towards the system’s borders. This has no immediate effect on
the cluster averaged double occupation, but on the site resolved double occupation.
In consequence, this cannot be seen in one of the presented figures. The electrons’
drift can be imagined as a circular wave moving towards the lattice’s borders. Near
the edges, it will reach a state, where even the average double occupation decreases.
That effect is caused by an electron from a doubly occupied site to have more choices
to tunnel onto unoccupied sites with increasing distance from the impact point of the
projectile. Hence, the decrease in dav after ≈ 10 t0 can be attributed to this oscillation
induced by the ion impacting the lattice.
Another supporting evidence is shown in the bottom panel of fig. 4.9. Here, the
dynamics of the cluster averaged double occupation after the first excitation at
t = 160 t0 for the same five impact intervals are shown. In contrast to the observations
made for the right panel, here the peak after 10 t0 is directed upwards. This might be
due to the observed broad global minimum. Nevertheless, when comparing the peaks
of the orange and golden curve induced by the second excitation at around t = 170 t0 it
is obvious that the golden peak is higher. By taking the purple curve into account one
realizes the slight increase in double occupation directly below the peak of the golden
curve. This implies a constructive interference of the induced oscillation by the first
projectile impact at t = 160 t0 and the second excitation. Also the "shoulder" shown in
the orange curves’ second excitation peak suggests such an interference. Of course, all
these assumptions have to be confirmed in future investigations.
However, the time evolution of the site-resolved double occupation for a 1D chain
in Ref. [4], strongly suggests a wave-like propagation of the double occupation. In
fig. 4.10, the site-resolved double occupation dynamics is depicted for the first ten
excitations of a one-dimensional chain at a central site using the Gaussian potential.
It clearly shows the first excitation inducing a wave like dynamics propagating along
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Figure 4.10: This figure originates from Ref. [4] (fig. 7). It shows the site resolved double
occupation dynamics for a 1D chain with 24 sites, that gets excited every 10 t0
on one of the central sites by a guassian potential (see eq. (2.14)). The input
parameters match those chosen in Ref. [1].

the chains away from the initially excited site. Of course, this system cannot be directly
compared with the honeycomb lattice above. This is not only due to the varying input
parameters, but also because L = 24 sites exceeds the width of the 2D 96-sites setup
by far. Nevertheless, this figure offers valuable information regarding the time scales
on which the propagation of the waves takes place. This pace is definitely in the same
range of the one observed above and approximately corresponds to around one site
per t0.
To summarize the observations of this section, the double occupation can be increased
for smaller and larger frequencies than ∆timp = 10 t0, which, in turn, corresponds to
the frequency generally chosen for the presented computations. Furthermore, there is
in fact an oscillation in the systems’ double occupation induced by the incident ion,
which negatively impacts the overall doublon creation in the system for an impact
frequency of around 1

10 t0
. However, this does not affect the existence of the broad

global minimum.
As another approach to eliminate or understand that minimum, the impact points of
the projectiles are varied in the following section.
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4.5 Randomized Impact Points

In this section, a further step is made towards a more realistic setup by varying the
impact points of the incident ions in the lattice. Until now, all calculations were per-
formed using the same impact point for each projectile (see eq. (2.8)). For the following
results, a uniform distribution was implemented as mentioned in section 3. The only
adjustable parameter was the radius of the circle in which the projectiles should ran-
domly hit the lattice. It was measured in units of a0 = 1.42 Å and set to one for
the figure below, which corresponds to the distance of each site to the central point.
The grey hexagon shown in the right panel refers to the innermost hexagon of the
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Figure 4.11: The left panels illustrate how the total energy E and average double occupation
dav evolve in time for two different theoretical setups. The golden curves
correspond to a fixed impact point for each projectile, while the purple one
follows a uniform distribution within a preset radius of 1 a0. The corresponding
impact points shown in the right panel are numbered in chronological order
regarding the excitation. The grey object denotes to the innermost hexagon of the
honeycomb cluster introduced in fig. 2.1. Both calculations have been performed
on the 96 sites lattice with 50 excitations in total, every second one numbered in
the top left panel. The projectiles’ initial velocity concurs the introduced value in
fig. 4.1.

honeycomb lattice introduced in fig. 2.1. The lines connecting the sites are for pictorial
purposes.
In fig. 4.11 the total energy (top), cluster averaged double occupation (bottom) and
impact points (r.h.s.) are depicted for a randomized impact point distribution (purple)
as described above and for a fixed point (golden), as reference. Both curves correspond
to a 96 sites setup with in total Nx = 50 excitations numbered in the energy plot. In
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the top panel it is shown that a randomized impact point reduces the total energy
gain of the lattice. The different peak depths result from net charges that accumulate
near the impact point. Depending on the induced oscillation of the net charges by the
earlier excitations, a charge cluster might already exist near the impact point, leading
to a greater amount of net charges accumulated by the time the next ion passes the
lattice plane. This would first yield a greater acceleration but then also decelerate the
projectile, resulting in a deeper peak in the total energy.
As for the energy, the time evolution of dav yields a smaller increase with the number of
excitations for the randomized impact point. Yet, it is apparent that the overall double
occupation can still be increased through multiple periodic excitations of the lattice.
These are very promising results for experimental applications. Nevertheless, the
broad global minimum can still not be explained and stays present even for
randomized impact points.
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5 Conclusions & Outlook

In this thesis, the controlled creation of doublons in a finite one- and two-dimensional
strongly correlated system through multiple periodic ion impacts was investigated.
Furthermore, the aim was to expand previous results within this area (see Ref. [1]) to
more realistic system setups, regarding the overall experimental applicability of the
obtained results. This was achieved on the one hand by utilizing a recently developed
numeric method based on nonequilibrium Green’s functions (NEGF) – the G1-G2
scheme [2]. The scheme considers electronic correlations in the system, and in addition,
enhances the time scaling of the performed computations compared to other methods
within NEGF theory, e.g. GKBA. Hence, the double occupation and energy dynamics
in the system could be accurately described in real-time even for a strongly correlated
material. A very good agreement of previous results within the HF-GKBA [1] and
current ones using the G1-G2 scheme has been proven. Due to the superior numerical
scaling of the latter method, the sizes of the analyzed systems were nearly doubled
to L = 96 sites for the honeycomb cluster. Likewise, the number of excitations of the
system was significantly increased. This enhances and underlines the direct
applicability of the presented results to finite correlated solid state systems such as
graphene nanoribbons [33].
On the other hand, the computed scenarios themselves were expanded in several ways,
starting with an enhancement of the incident projectiles’ description, by considering
long-ranged Coulomb interactions with all lattice electrons. Moreover, frequency
variations for the incident ions have been investigated and also a randomization of the
projectiles’ impact points has been presented. For both scenarios, it has been confirmed
that the average double occupation can be increased significantly by multiple ion
impacts. In consequence, these results should be of high interest for future
experimental application.
Furthermore, in the context of the impact frequency variation, a circular wave dy-
namics of the double occupation resulting from an ions impact has been proposed.
It is expected that this interesting effect will be confirmed by future investigations of
the time-dependent site-resolved double occupation.
In addition, during the evaluation of the numerical data another highly interesting
effect emerged – a broad global minimum at the beginning of the double occupation
dynamics for large lattices (cf. fig. 4.4). The explanation for that minimum is currently
unknown, but a possible yet vague interpretation shall be introduced in the outlook.
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Outlook

In the following, some suggestions are made on what possible further enhancements
of the current model exist. In addition, some approaches to find out more about the
broad global minimum observed in the double occupation dynamics of the presented
results are elucidated. To begin with the latter, it first has to be pointed out that the
double occupation is generally expected to be minimal for a system in the ground
state. Yet, in his masters thesis [34], J.-P. Joost has shown the existence of excited states
above the fermi level for the generated ground state using the adiabatic-switching
method. Those results were computed within the HF-GKBA, using the second order
Born approximation for the self-energy, and thus, are comparable with the computa-
tions presented in section 4. It is possible that this numerical artifact causes an increased
initial double occupation in the system. The subsequent reduction by ion impact
would show that adiabatic switch-on of the correlations and single-particle excitations
have conceptually different consequences on the two-particle level. This surmise,
however, is based on numerous speculations. The next step is to consider better self-
energy approximations, e.g. GW, particle particle T-Matrix (TPP) or third order
approximation (TOA). These self-energies are already implemented in the current code
and can therefore be applied straightaway. Also, an improvement of the AS method to
gradually turn on the electron-electron correlations could yield insights into the origin
of that broad minimum.

Regarding the general enhancement of the Hubbard model, an improved description
of the orbital overlap [35] and hopping J beyond the nearest neighbor sites could be
considered. Apart from that, there are several possible improvements conceivable to
the description of the incident projectiles. First of all, the potential can be replaced by
a classically treated ion, to account for finite-mass effects such as the changes of the
projectiles’ trajectory and velocity caused by the response of the lattice electrons. In
general, the aim is a full quantum mechanical description of the projectiles to be able
to include tunneling effects, charge transfer of the projectiles’ electrons to the lattice
and vice versa and to account for excitation and ionization of the projectiles’ electrons
in a full orbital description [3, 4, 24, 25].
Moreover, variations in the initial kinetic energy of the approaching ions would further
improve the computations significance for a realistic description of a plasma-solid
interface. This also goes for an implementation of varying time delays in between
consecutive impacts. All the above mentioned enhancements can be included in the
current nonequilibrium Green’s function description of the system.
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