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Abstract

One of the greatest achievements in computational many-body physics is the possibility to
understand and describe correlation effects. Long time it was difficult to calculate correlation
because of the high demand in computational power, but with the progress of technology
and more modern theoretical methods the calculations are finally possible. These quantum
properties on a microscopic level can be investigated and used to understand macroscopic
effects. Thus, a large number of interacting particles, such as in solids, liquids and plasmas,
can be explained and predicted. Finally, these predictions can be verified in an experiment.
In fact, condensed matter physics is one of the most active fields of physics, because of it’s
industrial applications. In this thesis, the newly developed quantum kinetic equations in the
framework of non-equilibrium Green’s function (NEGF), the G1–G2 scheme [1][2], will be
used, which is based on the Generalized Kadanoff-Baym Ansatz (GKBA).
The G1–G2 scheme achieves linear time scaling, because in contrast to the GKBA, which
incorporates the correlation effects through the memory integral, the G1–G2 scheme elimi-
nates the memory effect by introducing the equation of motion (EOM) for the two-particle
non-equilibrium Green’s function (2pNEGF) that leads to a time local description. In this
thesis, the correlation effects will be taken into account with second order approximation
(SOA) for the self-energy. Further, the aim of this thesis is to study under which criteri-
a/criterion collisions between particles in an, one-dimensional fermionic quantum plasma for
the given approximation emerge. It can be shown for SOA that the velocity difference is the
key quantity that needs to be considered, which will be derived in section 4.2. It was found
that if the velocity difference between colliding particles goes to zero, then the scattering
probability is maximal. Finally, different plasma configurations will be tested and discussed
to further verify the criterion that are made.
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Zusammenfassung

Eine der größten Errungenschaften der computergestützten Vielteilchenphysik ist die Möglich-
keit, Korrelationseffekte zu verstehen und zu beschreiben. Es ist schwer Korrelation zu
berechnen, weil es rechentechnisch anspruchsvoll ist. Mit dem Fortschritt der Technologie
und neuen modernen theoretischen Methoden sind die Berechnungen möglich. Mit diesen
lassen sich Quanteneigenschaften auf mikroskopischer Ebene untersuchen und können be-
nutzt werden, um makroskopische Effekte zu verstehen. Eine große Anzahl an wechsel-
wirkenden Teilchen, wie man sie in Festkörpern, Flüssigkeit und Plasmen auffindet, können
erklärt und vorhergesagt werden. Diese Vorhersagen können anschließend experimentell
bestätigt werden. Aufgrund des industriellen Nutzens, ist die Physik der kondensierten Ma-
terie, eins der größten aktiven physikalischen Bereiche die es gibt. In dieser Arbeit werden
die neu entwickelten quantenkinetischen Gleichungen, im Rahmen der Nichtgleichgewichts-
Green Funktion (NEGF), das G1–G2 Schema angewendet, welches auf dem generalisierten
Kadanoff-Baym Ansatz (GKBA) basiert. Das G1–G2 Schema [1][2] erreicht lineare Zeit-
skalierung, da im Gegensatz zum GKBA, welches Korrelationseffekte in dem Gedächt-
nisintegral berücksichtigt, der Gedächtniseffekt beseitigt wird, in dem eine Bewegungsgle-
ichung (EOM) für die zwei-Teilchen Nichtgleichgewichts-Green Funktion (2pNEGF) einge-
führt wird. Dies führt zu einer zeitlokalen Beschreibung. Korrelationseffeke werden in dieser
Arbeit mit der Selbstenergie in zweiter Bornschen Näherung berücksichtigt. Desweiteren
ist das Ziel zu untersuchen unter welcher Bedingung Stöße zwischen Teilchen in einem
eindimensionalen fermionischen Quantenplasma in gegebener Näherung entstehen. Es kon-
nte gezeigt werden, dass in zweiter Bornscher Näherung die Geschwindigkeitsdifferenz die
wichtigste Größe ist, welche in Sektion 4.2 hergeleitet wird. Es wurde erkannt, dass wenn die
Geschwindigkeitsdifferenz zwischen streuenden Teilchen gegen Null geht, die Streuwahrschein-
lichkeit maximal ist. Abschließend werden verschiedene Plasmakonfigurationen getestet und
diskutiert, um das Stoßkriterium zu verifizieren.
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1 Introduction

A plasma becomes degenerate when the thermal De Broglie wavelength is large compared
to the average interparticle distance. In this case, quantum effects become relevant, because
their wave functions overlap. These quantum plasmas can be found naturally inside some as-
tronomical objects such as neutron stars and brown dwarfs. Furthermore, a quantum plasma
can be produced on Earth in laboratories with laser beams of high intensity, which compress
the charged particles. Additionally, these kinds of plasmas can be found in solids, like the
electron gas in conductors (like in metals) or electron-hole plasma in semi-conductors. To
understand solids it is important to understand plasmas. Therefore, an active research field
exists. Furthermore, most gaslike plasmas contain more than one charged particle species,
nevertheless in laboratory the multi-component plasma can be motivated for inertial confine-
ment fusion, which could generate new possibilities in green energy. Finally, it is believed that
the universe right after the Big Bang was in an exotic state of quantum plasma, containing
only elementary particles, like photons, quarks and gluons. These particles are produced for
fundamental research in particle accelerator for example at CERN, inside the Large Hadron
Collider[3].
To describe non-equilibrium quantum plasmas theoretically several formalisms are available,
for example the time-dependent Schrödinger equation (TDSE), the time-dependent density
functional theory (TDDFT) or quantum kinetic approaches [4] such as the non-equilibrium
Green’s function Theory (NEGF). The Schrödinger equation scales exponentially with the
number of particles, which only enables solutions for a small number of particles. In compar-
ison, the NEGF also scales exponentially with the particle number when N-body collisions
need to be considered. Yet we will use NEGF theory due to the fact that the equation of
motion, consisting of a hierarchy of coupled equations, enables the possibility to truncate the
hierarchy. Suitable approximations can be generated with many-body perturbation theory,
such as the diagrammatic techniques and as a result the computing effort can be reduced.
Originally, the investigation of stopping power in an one-dimensional two-component plasma
was the objective of this thesis, where different particles collide with the bulk and the en-
ergy loss of the projectile is investigated. These processes are relevant for many areas of
physics such as condensed matter physics and astrophysics, it allows to analyze electronic
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2 Chapter 1. Introduction

properties of matter. Recent progresses concerning the creation of doublons in small hexag-
onal graphene-type clusters caused by ion impact was made [5][6]. It is a different physical
situation with different symmetries in comparison to the system presented in this thesis, but
the stopping process stays the same. Though, similar homogeneous setups were also con-
sidered, such as for example stopping power of an electron bulk and electron particle beam
to investigate the influence of dynamical screening [7] in three dimensions. Non-kinetic ap-
proaches to stopping power, with the quantum Monte Carlo method are also investigated
extensively [8]. Returning to the setup investigated in this thesis: Unfortunately, the first
calculations showed no relaxation towards equilibrium. So instead, the collision properties
of an one-dimensional two-component gas will be examined to understand the processes of
scattering in momentum space. Thus, eventually the opportunity to generate a stopping
curve is possible.

1.1 Outline

� Chapter 1 – Introduction

� Chapter 2 – Many-Body Theory
First, the transition from first quantization to second quantization is made, a short
derivation of the Keldysh-Kadanoff-Baym equation is shown, to further simplify the
computational effort, the Generalized Keldysh-Kadanoff-Baym Ansatz is introduced.
Finally, the G1–G2 scheme, that scales linear in time is derived and the transition to
momentum representation is made.

� Chapter 2 – Many-Body Theory
First, the transition from first quantization to second quantization is made, a short
derivation of the Keldysh-Kadanoff-Baym equation is shown, to further simplify the
computational effort, the Generalized Keldysh-Kadanoff-Baym Ansatz is introduced.
Then the G1–G2 scheme, that scales linear in time is derived. Finally, an brief in-
troduction to jellium is presented and the transition to momentum representation is
made.

� Chapter 3 – Setup
In this section some simulation related aspects will be presented. The interaction
potential and initial conditions are shown, further some relevant parameters of the
simulation and convergence criteria are discussed.



Chapter 1. Introduction 3

� Chapter 4 – Results
First, a general collision criterion is derived, then the collision criterion is expanded in
a power series for free GKBA, for small transfer momentum. Finally, the condition is
verified with numerical results.

� Chapter 5 – Conclusion & Outlook



2 Many-Body Theory

In this section, the most important mathematical tools to describe many-body theory in
the framework of the G1–G2 scheme will be presented. We begin with the formalism of
second quantization, where many-body quantum states in occupation numbers representa-
tion are key quantities. Further, the two time one-particle non-equilibrium Green’s function
(1pNEGF) is defined and the equation of motion is formulated. Additionally, the Generalized
Kadanoff-baym Ansatz (GKBA) is introduced, which is easier to handle in computational
aspects. Then, the G1–G2 scheme will be derived and an introduction to jellium is presented.
Then finally, the generalization to multi-component and the transition of the G1–G2 scheme
to momentum representation is performed.

2.1 Second Quantization

The complete dynamical information of N-particles is incorporated in the N-particle quantum
state | ΨN〉[9][10], as the solution of the time-dependent N-particle Schrödinger equation[9]

ĤN | ΨN〉(t) = i~
d

dt
| ΨN〉(t). (2.1)

these states are elements of the N-particle Hilbert space

HN = H1 ⊗H1 ⊗ ...⊗H1︸ ︷︷ ︸
N-times

, (2.2)

which is the direct product of one-particle Hilbert spaces.
Indistinguishable particles are described by (anti-)symmetric states. These states need to

behave (anti-)symmetrically under permutation, thus new physical properties arise. A sym-
metrized state can be identified with bosons and an anti-symmetrized state with fermions,
which implies Pauli blocking. We denote by Λ±NH the Hilbert space of these (anti-)symmetric
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Chapter 2. Many-Body Theory 5

states. In second quantization we define creation and annihilation operators, which changes
the particle numbers. The space that supports this is called the Fock space:

F± =
∞⊕
N=0

Λ±NH⊗N1 = C⊕H1 ⊕ Λ±2 (H1 ⊗H1)⊕ Λ±3 (H1 ⊗H1 ⊗H1)... , (2.3)

which is the direct sum over (anti-)symmetrized N-particle Hilbert spaces for all particle
numbers. The basis states can be constructed with Slater determinants for fermions or
permanents for bosons. The Slater determinant and the permanent take indistinguishability
into account automatically and the states are fully characterized by the information of the
involved single-particle orbitals. In the next step the occupation number representation
is introduced, where we expand the Fock state in terms of occupation numbers using the
completeness relation

∑
{n}
|{n}〉 〈{n}| = 1. (2.4)

The Fock state takes the following form

| Ψ〉± =
∑
{n}

c{n} |{n}〉± , (2.5)

which is the superposition of Slater determinants (-) or permanents (+). Where {n} =
n1, n2, n3, ... represents the total set of occupation numbers of all single-particle states and
c{n} is the expansion coefficient.

Non-Hermitian operators with the following properties are defined: The annihilation
operator âi reduces the total particle number by one, by removing a particle in state i. On
a simple product state it acts as

âi |n1, n2, ..., ni, ...〉 = √ni |n1, n2, ..., ni − 1, ...〉 ·

1 for bosons

(−1)αδni,1 for fermions
. (2.6)

The creation operator â†i adds a particle in state i to the total number of particles

â†i |n1, n2, ..., ni, ...〉 =
√
ni + 1 |n1, n2, ..., ni + 1, ...〉 ·

1 for bosons

(−1)αδni,0 for fermions
, (2.7)

with α = ∑i−1
l=1 nl, that incorporated the properties of (anti-)symmetric states. The Kro-

necker delta in the fermionic expression leads to occupation numbers of each one-particle
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state between 0 and 1.
The properties can be written in a condensed form:

[âi, âj]∓ = [â†i , â
†
j]∓ = 0, (2.8)

where a distinction must be made, between bosonic and fermionic annihilation and creation
operators. The upper sign on the commutator represents standard commutation relation for
bosonic ladder operators and the lower sign represents the anti-commutator for fermionic
operators. The third commutator relation is

[âi, â†j]∓ = δi,j, (2.9)

with all these mathematical tools defined one can create any arbitrary product state out of
vacuum.

|n1, n2, ...〉 =
1

√
n1!n2!...

(â†1)n1(â†2)n2 ... |0〉 . (2.10)

Further, the N-particle operator can be defined in second quantization representation as

ÔN = 1
N !

∞∑
i1...iN j1...jN=1

oi1...iN j1...jN â
†
i1 ...â

†
iN
âjN ...âj1 , (2.11)

with the matrix elements oi1...iN j1...jN = 〈i1...iN | Ô |j1...jN〉. For example, the Hamiltonian in
second quantization that accounts for one- and two-body contributions becomes

Ĥ(t) =
∑
ij

h
(0)
ij (t)â†i âj +

1
2
∑
ijkl

wijkl(t)â†i â
†
j âlâk, (2.12)

with h
(0)
ij (t) = hkin

ij + uij(t). The first term tij is the kinetic energy matrix element and
the second term uij is the matrix element that accounts for interaction with external fields.
The second term on the right-hand side accounts for interaction between particles. The
interaction energy can be time-dependent. for example when one start in an uncorrelated
state and use adiabatic switching to raise the interaction with time. It needs to be indicated
that the Heisenberg picture will be used in the following until otherwise stated. The equation
of motion for operators can be found using the Heisenberg equation.

i~
d

dt
Â = [Â, Ĥ] + i~

∂

∂t
Â, (2.13)
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with Â being an arbitrary operator and the second term on the right-hand side accounts,
for explicit time dependence, thus the equation of motion for the annihilation and creation
operator can be formulated.

i~
d

dt
âi = [âi, Ĥ] =

∑
k

hikâk +
∑
mkl

wimklâ
†
mâlâk (2.14)

i~
d

dt
â†i = [â†i , Ĥ] = −

∑
k

hkiâ
†
k −

∑
mkl

wklimâ
†
kâ
†
l âm (2.15)

It can be seen that âi and â†i obeys a non-linear Schrödinger type equation.

2.2 Non-equilibrium Green’s Functions

In this section a more advanced technique for many-body description will be presented, the
non-equilibrium Green’s Functions (NEGF) Theory[11][12]. For this, the second quantization
formalism will be used. The key quantity of this approach is the two time contour ordered
ensemble averaged one-particle Green’s function (1pNEGF)

Gij(z, z′) := −
i

~
〈
TC
{
âi(z)â†j(z′)

}〉
= θC(z − z′)G>

ij(z, z′) + θC(z′ − z)G<
ij(z, z′). (2.16)

The time ordering operator TC ensures the correct time ordering of bosonic and fermionic
strings of operators on the complex time contour z, which is defined on the Keldysh contour.
Two new quantities arise, the greater component

G>
ij(z, z′) := −

i

~
〈
âi(z)â†j(z′)

〉
, (2.17)

which first creates a new particle in state j to the time z′ and at last annihilates a particle
in state i to the time z, the corresponding physical situation could be the propagation of an
electron-hole.
The lesser component is

G<
ij(z, z′) := ∓

i

~
〈
â†j(z′)âi(z)

〉
, (2.18)



8 Chapter 2. Many-Body Theory

which first annihilates a particle in state i to the time z and at last creates a new particle
in state j to the time z′, the corresponding physical interpretation could be the propagation
of a particle. These quantities for example describe the probability that certain states occur
to the time z, after it was created to the time z′.

Figure 2.1: Schematic illustration of the Keldysh contour C. It consist of a casual, an anti-casual branch
and an imaginary branch which allows thermodynamic equilibrium correlations.[2][13]

2.2.1 Keldysh-Kadanoff-Baym Equation

To find the equation of motion for the 1pNEGF one needs to take the contour time derivative
[14].

i~
∂

∂z
Gij(z, z′) =i~δC(z − z′)

{
G>
ij(z, z′)−G<

ij(z, z′)
}

+ θC(z − z′)i~
∂

∂z
G>
ij(z, z′) + θC(z′ − z)i~ ∂

∂z
G<
ij(z, z′)

(2.19)

= δC(z − z′)δij − θC(z − z′)
〈∂âi(z)

∂z
â†j(z′)

〉
∓ θC(z′ − z)

〈
â†j(z′)

∂âi(z)
∂z

〉
(2.20)

The first term on the right-hand side of (2.19) is the contour time derivative of the contour
theta function, which produces the contour delta function. The second and third term in
(2.20) is the derivative of the annihilation operator with respect to contour time z, the
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expression has already been found (2.14), we just need to substitute t→ z.
Thereby, the derivation results in:

i~
∂

∂z
Gij(z, z′) =δC(z − z′)δij +

i

~
∑
k

hik(z)
{
− θC(z − z′)

〈
âk(z)â†j(z′)

〉
∓ θC(z′ − z)

〈
â†j(z′)âk(z)

〉}
− i

~
∑
mkl

∫
C
dz̄ wimkl(z − z′)

×
{
θC(z − z′)

〈
â†m(z̄)âl(z̄)âk(z)â†j(z′)

〉
± θC(z′ − z)

〈
â†j(z′)â†m(z̄)âl(z̄)âk(z)

〉}
(2.21)

=δC(z − z′)δij +
∑
k

hikGkj(z, z′)−
i

~
∑
mkl

∫
C
dz̄ wimkl(z − z′)

×
{
θC(z − z′)

〈
â†m(z̄)âl(z̄)âk(z)â†j(z′)

〉
± θC(z′ − z)

〈
â†j(z′)â†m(z̄)âl(z̄)âk(z)

〉}
(2.22)

with the equal time case G>
ij(z, z)−G<

ij(z, z) = − i
~δij and the second term of (2.22) Gij(z, z′)

being re-substituted. Further in (2.21) the two-time but instantaneous two particle interac-
tion is defined w(z − z′) = δC(z − z′)w.
If the two-particle Green’s function is identified

G
(2)
ijkl(z, z′; z̄, z̄′) =

(
− i

~

)2〈
TC
{
âi(z)âj(z′)â†l (z̄′)â

†
k(z̄)

}〉
(2.23)

in the expression above, we can write the simpler equation

∑
k

{
i~
∂

∂z
δik − hik(z)

}
Gkj(z, z′) = δC(z − z′)δij (2.24)

±i~
∑
mkl

∫
C
dz̄ wimkl(z − z′)G(2)

lkjm(z, z̄; z′, z̄+). (2.25)

Analogously, the adjoint KBE is derived, where the derivative was taken with respect to z′

and (2.15) was used with t→ z′

∑
k

Gik(z, z′)
{
− i~

∂

∂z′
δkj − hkj(z′)

}
= δC(z − z′)δij (2.26)

±i~
∑
mkl

∫
C
dz̄ G

(2)
likm(z, z̄; z′, z̄+)wkmjl(z − z′) (2.27)

The 1pNEGF obeys an equation of motion, the Keldysh-Kadanoff-Baym equation (KBE)
that is coupled to the higher order two-particle Green’s function (2pNEGF). Further, the
2pNEGF obeys an own equation of motion and couples to the third particle Green’s function
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and so on. Thus, to solve the complete many-body problem the solution of the complete set
of differential equations is needed, which scales exponentially with the number of particles
like the TDSE. The whole set of equations is called the Martin-Schwinger Hierarchy[15].
Luckily, many-body perturbation theory allows to truncate the hierarchy and adequate ap-
proximations can be found. The collision term in the Keldysh-Kadanoff-Baym equation can
be written with the self-energy Σij(z, z̄) = Σij[G,w](z, z̄), which is a functional of the one
particle Green’s function and the two particle interaction. Further, the way one wants to
truncate the hierarchy defines the self-energy.

Iij(z, z′) = ±i~
∑
mkl

∫
C
dz̄ wimkl(z − z′)G(2)

lkjm(z, z̄; z′, z̄+) =
∑
k

∫
C
dz̄Σik(z, z̄)Gkj(z̄, z′) (2.28)

and for the adjoint expression

Ĩij(z, z′) = ±i~
∑
mkl

∫
C
dz̄ G

(2)
likm(z, z̄; z′, z̄+)wkmjl(z − z′) =

∑
k

∫
C
dz̄ Gik(z, z̄)Σkl(z̄, z′) (2.29)

The self-energy is an exact functional, which can not be computed. There are, however,
systematic methods to construct good approximations[16].

2.2.2 Generalized Kadanoff-Baym Ansatz

To further reduce the computational effort the KBE the time diagonal limit of the 1pNEGF
lim
z,z′→t

G<
ij(z, z′) = G<

ij(t, t) =: G<
ij(t) for t ∈ R is considered. One obtains the EOM with the

derivative of the 1pNEGF with respect to time using (2.14) and (2.15):

i~
d

dt
G<
ij(t)− [hHF, G<]ij(t) = [I + I†]ij(t) (2.30)

with

hHF
ij (t) = h

(0)
ij (t)± i~

∑
kl

w±ikjl(t)G<
lk(t). (2.31)

Which is the effective one-body Hartree-Fock Hamiltonian as a sum of the non-interacting
part h(0)

ij (t) and the Hartree-Fock mean-field contributions. We get these new terms when
one substitutes

G
(2),<
ijkl (t) = G

(2),H,<
ijkl (t)±G(2),F,<

ijkl (t) +G
(2),corr
ijkl (t) = G<

ik(t)G<
jl(t)±G<

il (t)G<
jk(t) + Gijkl(t)

(2.32)
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into the collision term.
The 2pNEGF can be written as a sum of Hartree and Fock Green’s function and a corre-
lation function, the Hartree-Fock terms are put into the commutator and the correlation
Green’s function is left in the collision term. The first two terms on the left accounts for
uncorrelated joint probabilities for two bodies to be in certain states. The second term also
takes into account the indistinguishability of particles with permuted indices, then the final
term G

(2),corr
ijkl (t) =: Gijkl(t) accounts for correlation between two-particle states.

The collision term has the following structure:

Iij(t) = ±i~
∑
klm

wiklm(t)Glmjk(t) =
∑
k

∫ t

t0
dt̄
[
Σ>
ik(t, t̄)G<

kj(t̄, t)− Σ<
ik(t, t̄)G>

kj(t̄, t)
]

(2.33)

The off-diagonal elements of G≷
ij(t, t′) will be reconstructed with diagonal ones. In the exact

case this yields a sum of integral and non integral terms. In practice, we neglect the integral
term and approximate G≷

ij(t, t′) with the non integral ones. This procedure is called the
Generalized Kadanoff-Baym Ansatz[17].

G≷
ij(t, t′) ≈ ±

∑
k

[
GR
ik(t, t′)n

≷
kj(t′)− n

≷
ik(t)GA

kj(t, t′)
]

= i~
∑
k

[
GR
ik(t, t′)G

≷
kj(t′)−G

≷
ik(t)GA

kj(t, t′)
]

(2.34)

The one-particle reduced density matrix element n≷
ij(t) can be identified and written as

one particle Green’s function. The retarded GR
ij(t, t′) and the advanced GA

ij(t, t′) Green’s
functions also obeys an similar complex EOM. To save computation time, the Hartree-Fock
propagators are used.

G
R/A
ij (t, t′) = ∓ i

~
Θ
(
± [t− t′]

)
exp

− i
~

∫ t

t′
dt̄ hHF(t̄)

∣∣∣∣∣∣
ij

(2.35)

The structure of the right-hand side of equation (2.33) ensures non-linear time scaling,
because of the memory integral, which means for every time step into the future, the collision
term needs to integrate over all past times, thus all past events need to be considered.
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2.3 G1–G2 Scheme

In this section a method to get linear time scaling will be presented, the G1–G2 scheme[1][2].
For this the GKBA needs to be reformulated by finding an own EOM for the correlation
function Gijkl(t), where two coupled differential equations for G≷(t) and G(t) must be solved
simultaneously. This reformulation gets rid of the memory integral and the result is an EOM
that is local in time.
Therefore, with (2.34) we define for t ≥ t′

G≷
ij(t′ ≤ t) = i~

∑
k

G≷
ik(t′)Ukj(t′, t) (2.36)

and for t ≤ t′

G≷
ij(t ≥ t′) = i~

∑
k

Uik(t, t′)G≷
kj(t′) (2.37)

in which the propagator Uij(t, t′) possesses properties of a time evolution operator for HF-
GKBA

Uij(t, t′) = GR
ij(t, t′)−GA

ij(t, t′). (2.38)

In order to find the coupled EOM the structure of the correlation function needs to be
determined. For this reason, we introduce the self-energy used in all calculations in this
thesis that accounts for correlated many-body effects up to second order:

ΣSOA,≷
ij (t, t′) = ±(i~)2 ∑

klpqrs

wiklp(t)w±qrjs(t′)G
≷
lq(t, t′)G≷

pr(t, t′)G
≶
sk(t′, t), (2.39)

with wijkl(t) := wijkl(t) ± wijlk(t) and plug it into (2.33). It will be used to determine the
correlation function in terms of 1pNEGF. Hence, the comparison of the middle expression
of (2.33) and the right-hand side of the same equation with plugged in ΣSOA,≷

ij (t, t′) yields

Gijkl(t) = (i~)3 ∑
pqrs

∫ t

t0
dt̄U (2)

ijpq(t, t̄)Ψ±pqrs(t̄)U
(2)
rskl(t̄, t). (2.40)

The two-particle propagator is

U (2)
ijkl(t, t′) = Uik(t, t′)Ujl(t, t′) (2.41)
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where in the time-diagonal case

U (2)
ijkl(t, t) =

1
(i~)2δikδjl, (2.42)

which is the product of two time-diagonal one-particle propagators.

Uij(t, t) =
1
i~
δij. (2.43)

The two-particle source term

Ψ±ijkl(t) = 1
(i~)2

∑
pqrs

w±pqrs(t)Φ
ijrs
pqkl(t) (2.44)

=
(
i~)2 ∑

pqrs

(wpqrs(t)± wpqsr(t)
)(
G>
ip(t)G>

jq(t)G<
rk(t)G<

sl(t)−G<
ip(t)G<

jq(t)G>
rk(t)G>

sl(t)
)

(2.45)

that accounts for pair correlation produced by two-particle scattering.
The next step is to differentiate the correlation function with respect to time in (2.40) using
Leibniz integral rule.

d

dt
Gijkl(t) =

[
d

dt
Gijkl(t)

]∫ +
[
d

dt
Gijkl(t)

]
U(2)

(2.46)

The derivatives will be divided up.
First, the derivative of the time-dependent two-particle propagator

[
d

dt
Gijkl(t)

]
U(2)

= (i~)3 ∑
pqrs

∫ t

t0
dt̄Ψ±pqrs(t̄)

{[
∂

∂t
U (2)
ijpq(t, t̄)

]
U (2)
rskl(t̄, t) + U (2)

ijpq(t, t̄)
[
∂

∂t
U (2)
rskl(t̄, t)

]}
(2.47)

with

∂

∂t
U (2)
ijkl(t, t′) =

1
i~
∑
pq

h
(2),HF
ijpq (t)U (2)

pqkl(t, t′) (2.48)

and

∂

∂t
U (2)
ijkl(t′, t) = −

1
i~
∑
pq

U (2)
ijpq(t′, t)h

(2),HF
pqkl (t), (2.49)
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where the two-particle Hartree-Fock Hamiltonian is defined as:

h
(2),HF
ijkl (t) = δjlh

HF
ik (t) + δikh

HF
jl (t). (2.50)

With this equation (2.47) becomes
[
d

dt
Gijkl(t)

]
U(2)

=(i~)3 ∑
pqrs

∫ t

t0
dt̄Ψ±pqrs(t̄)

×
{[ 1
i~
∑
uv

h
(2),HF
ijuv (t)U (2)

uvpq(t, t̄)
]
U (2)
rskl(t̄, t)

+ U (2)
ijpq(t, t̄)

[
−

1
i~
∑
uv

U (2)
rsuv(t̄, t)h

(2),HF
uvkl (t)

]}
(2.51)

, where the correlation function can be identified

[
d

dt
Gijkl(t)

]
U(2)

=
1
i~
∑
pq

h
(2),HF
ijpq (t)Gpqkl(t)−

1
i~
∑
pq

Gijpq(t)h(2),HF
pqkl (t) (2.52)

and the second derivative, where the time dependence is in the limits.

[
d

dt
Gijkl(t)

]∫ = (i~)3 ∑
pqrs

U (2)
ijpq(t, t)Ψ±pqrs(t)U

(2)
rskl(t, t) =

1
i~

Ψ±ijkl(t). (2.53)

Finally, the sum of all time derivative contributions of Gijkl(t) yields

i~
d

dt
Gijkl(t)− [h(2),HF,G]ijkl(t) = Ψ±ijkl(t), (2.54)

which couples to

i~
d

dt
G<
ij(t)− [hHF, G<]ij(t) = [I + I†]ij(t) (2.55)

through the collision term

Iij(t) = ±i~
∑
klp

wiklp(t)Glpjk(t). (2.56)
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2.4 Introduction to Homogeneous Electron Gas

This subsection serves as a brief introduction to homogeneous electron gas (HEG) also known
as Jellium. This model describes a system of electrons which are placed within a uniform
background of positive charges. This means the ions are not localized on sites, instead on
the contrary, they seem smeared out. If the lattice constant a of the ions is small in relation
to the Fermi wavelength λF of the electrons, that means λF � a, then to set a = 0 can be
a good approximation. Thus, the uniform ion background can be justified and no lattice
needs to be described. The Hamiltonian describing such a system will be presented in the
following in first quantization. The Hamiltonian consists of electron-electron, the uniform
background and the electron-background contributions.

Ĥ = Ĥee + Ĥbackg + Ĥe-backg (2.57)

First, the electron-electron Hamiltonian

Ĥee =
∑
i

p̂2
i

2m + 1
2e

2∑
i 6=j

e−κ|ri−rj |

|ri − rj|
(2.58)

where the first term on the right-hand side is the kinetic energy. In the second term, the
Yukawa potential was defined with κ being the inverse screening length.

The background contribution

Ĥbackg =1
2e

2
∫
d3r′

∫
d3r′′ ρ(r′)ρ(r′′)e

−κ|r′−r′′|

|r′ − r′′|
(2.59)

=1
2e

2
(
N

V

)2 ∫
d3r′

∫
d3r

e−κ|r|
|r|

= 1
2e

2N
2

V

4π
κ2 , (2.60)

with ρ(r) = N
V

being the particle density and r := r′ − r′′.
Finally, the electron-background contribute as follows:

Ĥe-backg =− e2∑
i

∫
d3r ρ(r)e

−κ|r−ri|

|r− ri|
(2.61)

=− e2N

V

3∑
i

r
e−κ|r−ri|

|r− ri|
= −e2N

2

V

4π
κ2 . (2.62)

Therefore, the Hamiltonian in first quantization becomes

Ĥ =
∑
i

p̂2
i

2m + 1
2e

2∑
i 6=j

e−κ|ri−rj |

|ri − rj|
− 1

2e
2N

2

V

4π
κ2 . (2.63)
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The jellium model is symmetric to translations, thus the appropriate basis is the plane-
wave basis. Therefore, the transition for the Hamiltonian from the position representation
to the momentum representation will be derived in the following. The formalism of second
quantization is used [18]. First, the kinetic energy in the plane-wave basis takes a particularly
simple form with the momentum eigenvalues 〈k1σ1|p |k2σ2〉 = ~kδk1,k2δσ1,σ2 .

Ĥkin =
∑
i

p̂2
i

2m =
∑
k1σ1

~2k2
1

2m â†k1σ1
âk1σ1 (2.64)

The interaction energy is

V̂ = 1
2

∑
k1k2k3k4
σ1σ2σ3σ4

〈k1σ1k2σ2| V̂ |k3σ3k4σ4〉 â†k1σ1
â†k2σ2

âk4σ4 âk3σ3 , (2.65)

with

〈k1σ1k2σ2| V̂ |k3σ3k4σ4〉 =
∫
d3r′

∫
d3r′′ V (r′, r′′) 〈k1σ1|r′〉 〈r′|k3σ3〉 〈k2σ2|r′′〉 〈r′′|k4σ4〉

(2.66)

= e2

V 2

∫
d3r′

∫
d3r′′

e−κ|r′−r′′|

|r′ − r′′|
e−ik1·r′eik3·r′e−ik2·r′′eik4·r′′δσ1,σ3δσ12,σ4

(2.67)

= e2

V 2 δσ1,σ3δσ2,σ4

∫
d3r e−i(k1+k2−k3−k4)·r

∫
d3y

e−κy
y

e−i(k1−k3)·y

(2.68)

=e
2

V
δσ1,σ3δσ2,σ4δk1+k2,k3+k4

∫
d3y

e−κy
y

e−i(k1−k3)·y (2.69)

=e
2

V
δσ1,σ3δσ12,σ4δk1+k2,k3+k4

4π
q2 + κ2 (2.70)

and 〈k|r〉 = e−ik·r√
V

. That leads to the Hamilitonian in second quantization for the jellium
model in momentum representation with κ→ 0.

Ĥ =
∑
k1σ1

~2k2
1

2m â†k1σ1
âk1σ1 + e2

2V
∑

k1k2q
σ1σ2

4π
q2 â

†
k1+qσ1

â†k2−qσ2
âk2σ1 âk1σ1 , (2.71)

where the interaction matrix element is defined as 4πe2

|q|2 = v|q|. A system that correspond to
Jellium can be a conductor like a metal, in which the electrons are delocalized around the
ions.
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To extend HEG to the two-component case the Hamiltonian needs to be modified. Such
that the second particle species, the ions are propagated on the same level as the electrons.
The Hamiltonian can be split up into three parts.

Ĥ = Ĥee + Ĥii + Ĥei (2.72)

First, the Hamiltonian takes the electrons into account, it has the same structure as equation
2.71

Ĥee =
∑
k,σ

~2k2

2me
â†kσâkσ + 1

2V
∑

kk′σσ′q
vee|q|(t)â†k+qσâ

†
k′−qσ′ âk′σ′ âkσ. (2.73)

Then, the Hamiltonian that counts in ions is

Ĥii =
∑
k,σ

~2k2

2mi
b̂†kσ b̂kσ + 1

2V
∑

kk′σσ′q
vii,|q|(t)b̂†k+qσ b̂

†
k′−qσ′ b̂k′σ′ b̂kσ, (2.74)

where the matrix element for ion-ion interaction is vii,|q| = Z2
i 4πe2

|q|2 , with the charge number
Zi for arbitrary ion charge. At this point it should be noted that the charge number for
electrons is Ze = 1. Therefore, no charge number is explicitly presented on the right-hand
side of equation 2.73.
Finally, the Hamiltonian that accounts for electron-ion interaction

Ĥei = 1
V

∑
kk′σσ′q

vei,|q|(t)â†k+qσ b̂
†
k′−qσ′ b̂k′σ′ âkσ, (2.75)

with the same modification for the matrix element as before vei,|q| = −Zi4πe2

|q|2 . The only
difference is the charge number of the electron Ze = 1 is not explicitly written. Further, in
equation 2.75, there is no factor one half, because no double-counting is considered. The
negative sign emerge due to the fact that particles of different charges are taken into account.
In general, ions can be fermions or bosons, it depends on the total spin number. To account
for this fact creation and annihilation operators need to be defined for fermions and bosons
differently, see section 2.1. Therefore, â (â†) shall represent fermionic annihilation (creation)
operator and b̂ (b̂†) for ions depending on the total spin number are either fermionic or bosonic
annihilation (creation) operator. The generalization to a N-particle multi-component plasma
is analogously. However, a simpler way to generalize multi-component plasma is to define
a additional quantum number [4]. The particle species quantum number λ. Thus, the
Hamiltonian becomes

Ĥ =
∑
kσλ

~2k2

2mλ

â†,λkσ â
λ
kσ + 1

2V
∑

kk′σσ′qλλ′
vλλ

′

|q| (t)â
†,λ
k+qσâ

†,λ′
k′−qσ′ â

λ′

k′σ′ â
λ
kσ, (2.76)
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with λ = 1, 2, 3...N for N-particle species.
All properties of different particles are taken into account, with the particle species quantum
number such as different masses, interaction potentials or if the creation and annihilation
operators are fermionic or bosonic.

2.4.1 G1–G2: Transition into Momentum Representation

The plane momentum representation will be used, that leads for spatial homogenous systems
to diagonality in the momentum, spin and species indices.
The transition from a general basis to the momentum basis for the G1–G2 scheme will be
executed in the following paragraphs.
We begin with the 1pNEGF

Gij(t)→ Gλλ′

k1k′1
αα′

(t) = Gλ
k1
α

(t)δk1,k′1δα,α′δλ,λ′ . (2.77)

The indices k1, α and λ represent the momentum, spin and species respectively.
The δ’s ensure that the 1pNEGF becomes diagonal because there is no one-particle process
that changes the momentum, spin or species of a particle.
The interaction energy matrix element is

wijkl(t)→ wλµξηk1k2k3k4
αβγδ

(t) = vλµλµk1,k2,k1−q,k2+q
αβαβ

(t)δk1+k2,k3+k4δα,γδβ,δδλ,ξδµ,η (2.78)

=: vλµ|k1−k3|(t)δk1+k2,k3+k4δα,γδβ,δδλ,ξδµ,η, (2.79)

where δk1+k2,k3+k4 accounts for momentum conservation as expected from a translational
invariant system and as before the diagonal nature of the interaction potential will be taken
care of, with the remaining δ’s to ensure no change in spin or particle species after collisions.
There is just some transfer in momentum k1 − k3 := q.
To the transition of the correlation function to the momentum basis, the structure of the
1pNEGF and the interaction matrix element leads to

Gijkl(t)→ Gξηλµk3k4k1k2
γδαβ

(t) = Gλµλµk1−q,k2+q,k1,k2
αβαβ

(t)δk3+k4,k1+k2δα,γδβ,δδλ,ξδµ,η (2.80)

=: Gλµk1k2q
αβ

(t)δk3+k4,k1+k2δα,γδβ,δδλ,ξδµ,η, (2.81)

where δk1+k2,k3+k4 = δq+k2,k4 is used and the same considerations as before are made. Fur-
thermore, equation (2.79) and (2.81) represent the reduced indices notation of the underlying
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quantities that has the advantage of clearer representation and is easier to implement nu-
merically. Then the EOM for Gλ

k1
α

is

i~
d

dt
G<λ

k1
α

(t) = [I + I†]λk1
α

(t) + [hHF, G<]λk1
α

(t)︸ ︷︷ ︸
=0

(2.82)

= [I + I†]λk1
α

(t). (2.83)

The one particle commutator vanishes because of the diagonal structure of the Hamiltonian
and the 1pNEGF.
The reason will be shown in the following, first the Hartree-Fock Hamiltonian is evaluated

hλλ
′,HF

k1k′1
αα′

(t) = hλλ
′,kin

k1k′1
αα′

(t) + hλλ
′,Hartree

k1k′1
αα′

(t) + hλλ
′,Fock

k1k′1
αα′

(t). (2.84)

The kinetic energy is

hλλ
′,kin

k1k′1
αα′

(t) =
~2k2

1

2mλ

δk1,k′1δα,α′δλ,λ′ , (2.85)

which is the most trivial energy contribution in momentum space.
Then the Hartree energy

hλλ
′,Hartree

k1k′1
αα′

(t) = ±i~
∑
k3k4
γδ
ξη

wλξλ
′η

k1k3k′1k4
αγα′δ

(t)Gηξ,<
k4k3
δγ

(t) (2.86)

= ±i~
∑
k4
δ
η

vλη|0| (t)G
η,<
k4
δ

(t)δk1k′1δα,α′δλ,λ′ , (2.87)

where one needs to substitute the right-hand side of (2.77) and (2.79) into the first term of
the Hartree Hamiltonian.
It is important to mention that the Hartree energy is divergent in a uniform system, but
because a two-component system is considered, the divergent term will be compensated by
the Hartree energy of oppositely charged particles. Still, the Hartree contribution will be
neglected in the simulations because it is independent of momentum, therefore it provides



20 Chapter 2. Many-Body Theory

just a constant energy contribution and eventually does not contribute to any dynamics.
The Fock energy is

hλλ
′,Fock

k1k′1
αα′

(t) = i~
∑
k3k4
γδ
ξη

wλξηλ
′

k1k3k4k′1
αγδα′

(t)Gηξ,<
k4k3
δγ

(t) (2.88)

= i~
∑
k4

vλ|k1−k4|(t)G
λ,<
k4
α

(t)δk1k′1δλ,λ′δα,α′ (2.89)

the same argumentation as before holds concerning the substitution of (2.77) and (2.79) into
the first term of the Fock Hamiltonian.
Then the one-particle commutator vanishes

[hHF, G<]λk1
α

(t) =
∑
k

hλ,HF
k1k
α

(t)Gλ,<
kk1
α

(t)−Gλ,<
k1k
α

(t)hλ,HF
kk1
α

(t) (2.90)

=
(
hλ,HF

k1
α

(t)Gλ,<
k1
α

(t)−Gλ,<
k1
α

(t)hλ,HF
k1
α

(t)
)
δk1k′1δλ,λ′δα,α′ = 0. (2.91)

The dummy indices k = (k′, α′, λ′) contain the momentum spin and species indices, respec-
tively.
Next, the collision integral will be evaluated with the help of (2.79) and (2.81).

Iλλ
′

k1k′1
αα′

(t) = ±i~
∑

k2k3k4
βγδ
µξη

wλµξηk1k2k3k4
αβγδ

(t)Gξηλ
′µ

k3k4k′1k2
γδα′β

(t) (2.92)

= ±i~
∑
k2q
β
µ

vλµ|q|(t)G
λµ
k1k2q
αβ

(t)δk1,k′1δα,α′δλ,λ′ (2.93)

and so the diagonal EOM for 1pNEGF is derived.
Next, the transition to the momentum representation of the EOM of the correlation function
will be formulated.

i~
d

dt
Gλµk1k2q
αβ

(t)− [h(2),HF,G]λµk1k2q
αβ

(t) = Ψλµ,±
k1k2q
αβ

(t). (2.94)

For the two-particle commutator the full indices notation will be used to better understand
the roles of the δ’s.

[h(2),HF,G]λµλµk1−q,k2+q,k1,k2
αβαβ

(t) =
∑
mn

{
h
λµ,(2),HF
k1−q,k2+q,m,n
αβ

(t)Gλµm,n,k1,k2
αβ

(t)− Gλµk1−q,k2+q,m,n
αβ

(t)hλµ,(2),HF
m,n,k1,k2
αβ

(t)
}

(2.95)
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The dummy indices m = (k′, α′, λ′) and n = (k′′, α′′, λ′′) contain the momentum, spin and
species indices, respectively.
The two-particle Hamiltonian in the two-particle commutator will be evaluated separately
and takes the following form.

h
λµ,(2),HF
k1−q,k2+q,m,n
αβ

(t) = δk2+q,nh
λ,HF
k1−q,m
α

(t) + δk1−q,mh
µ,HF
k2+q,n
β

(t) (2.96)

(2.97)

and

h
λµ,(2),HF
m,n,k1,k2
αβ

(t) = δn,k2h
λ,HF
m,k1
α

(t) + δm,k1h
µ,HF
n,k2
β

(t). (2.98)

Then the commutator parts can be evaluated. The first term is∑
mn

h
λµ,(2),HF
k1−q,k2+q,m,n
αβ

(t)Gλµm,n,k1,k2
αβ

(t) =
∑
mn

{δk2+q,nh
λ,HF
k1−q,m
α

(t)Gλµm,n,k1,k2
αβ

(t) + δk1−q,mh
µ,HF
k2+q,n
β

(t)Gλµm,n,k1,k2
αβ

(t)}

(2.99)

=
∑
mn

{hλ,HFk1−q
α

(t)Gλµm,n,k1,k2
αβ

(t) + hµ,HFk2+q
β

(t)Gλµm,n,k1,k2
αβ

(t)}δk2+q,nδk1−q,m

(2.100)

= hλ,HFk1−q
α

(t)Gλµλµk1−q,k2+q,k1,k2
αβαβ

(t) + hµ,HFk2+q
β

(t)Gλµλµk1−q,k2+q,k1,k2
αβαβ

(t) (2.101)

and the second term is∑
mn

Gλµk1−q,k2+q,m,n
αβ

(t)hλµ,(2),HF
m,n,k1,k2
αβ

(t) =
∑
mn

{δn,k2G
λµ
k1−q,k2+q,m,n
αβ

(t)hλ,HFm,k1
α

(t) + δm,k1G
λµ
k1−q,k2+q,m,n
αβ

(t)hµ,HFn,k2
β

(t)}

(2.102)

=
∑
mn

{Gλµk1−q,k2+q,m,n
αβ

(t)hλ,HFk1
α

(t) + Gλµk1−q,k2+q,m,n
αβ

(t)hµ,HFk2
β

(t)}δn,k2δm,k1

(2.103)

= Gλµλµk1−q,k2+q,k1,k2
αβαβ

(t)hλ,HFk1
α

(t) + Gλµλµk1−q,k2+q,k1,k2
αβαβ

(t)hµ,HFk2
β

(t) (2.104)

It can be seen that because of the diagonality of the Hartree-Fock Hamiltonian shown before,
second δ’s arise and modify the terms.
So, equation (2.95) becomes in reduced indice notation

[h(2),HF ,G]λµk1k2q
αβ

(t) =
{
hλ,HFk1−q
α

(t) + hµ,HFk2+q
β

(t)− hλ,HFk1
α

(t)− hµ,HFk2
β

(t)
}
Gλµk1k2q
αβ

(t). (2.105)
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The next and final expression, so we can explicitly formulate the EOM of the correlation
function, is the two particle source term in full indices notation in momentum representation.

Ψλµλµ,±
k1−q,k2+q,k1,k2
αβαβ

(t) =
1

(i~)2

∑
pqrs

w±pqrs(t)Φ
k1−q,k2+q,r,s
p,q,k1,k2

(t) (2.106)

=
1

(i~)2

∑
pqrs

(wpqrs(t)± wpqsr(t))(i~)4(Gλ,>k1−q,p
α

(t)Gµ,>k2+q,q
β

(t)Gλ,<r,k1
α

(t)Gµ,<s,k2
β

(t)− (>↔<))

(2.107)

= (i~)2
∑
pqrs

(wpqrs(t)± wpqsr(t))(Gλ,>k1−q
α

(t)Gµ,>k2+q
β

(t)Gλ,<k1
α

(t)Gµ,<k2
β

(t)δk1−q,pδk2+q,qδr,k1δs,k2 − (>↔<))

(2.108)

= (i~)2(wλµλµk1−q,k2+q,k1,k2
αβαβ

(t)± wλµµλk1−q,k2+q,k2,k1
αββα

(t))(Gλ,>k1−q
α

(t)Gµ,>k2+q
β

(t)Gλ,<k1
α

(t)Gµ,<k2
β

(t)− (>↔<))

(2.109)

= (i~)2(vλµ|q|(t)± v
λλ
|k1−q−k2|(t)δα,βδλµ)(Gλ,>k1−q

α

(t)Gµ,>k2+q
β

(t)Gλ,<k1
α

(t)Gµ,<k2
β

(t)− (>↔<)),

(2.110)

again with dummy indices p = (k′, α′, λ′), q = (k′′, α′′, λ′′), r = (k′′′, α′′′, λ′′′) and s =
(k′′′′, α′′′′, λ′′′′). It can be noticed on the fifth expression, on right-hand side that the SOA-
exchange term only shows up for identical particles. With this, the transition of the G1–G2
scheme from a general basis into momentum base is completed. It should be pointed out
that the quantities in this section are formulated for a discrete momentum basis, just like
the simulation can only sample a discrete momentum spectrum, but in fact the system is
considered continuous. That means, the following substitution must be made

∑
k
→
∫ dkn

(2π~)n (2.111)

and

G<,λ
k
α

(t) = ∓ i
~
〈â†,λk
α

(t)âλk
α
(t)〉 → G<,λ

α (k, t) = ∓ i
~
〈Ψ̂†,λα (k, t)Ψ̂λ

α(k, t)〉 (2.112)

The field operators Ψ̂†(k, t) and Ψ̂(k, t) are the continuous generalization of the creation
and annihilation operator, which obey the same commutator relation with the substitution
δi,j → δ(i− j).
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2.5 Observables in the G1–G2 scheme

In this section observables are presented, that can be obtained from the 1pNEGF in the
general as well as in the momentum representation.
The one-particle reduced density matrix (1pRDM) that gives the probability for certain
states to be occupied:

nij = 〈â†j(t)âi(t)〉 (2.113)

and the momentum representation

nλk1
α

(t) = 〈â†,λk1
α

(t)âλk1
α

(t)〉. (2.114)

Because of the diagonal structure of the NEGF the one particle density matrix takes a
particularly simple form. The relation from the 1pRDM to the lesser component of the
Green’s function is presented with the following relation

G<
ij(t) = ±

1
i~
nij(t) = G>

ij(t)−
1
i~
δij (2.115)

with the momentum representation

G<,λ
k1
α

(t) = ±
1
i~
nλk1
α

(t) = G>,λ
k1
α

(t)−
1
i~
. (2.116)

The kinetic energy matrix element is

hkin
ij =

p2
ij

2m (2.117)

in momentum representation the kinetic energy is

hλ,kin
k1
α

=
~2k2

1

2mλ

. (2.118)

The Hartree energy matrix element is

hHartree
ij (t) = ±i~

∑
kl

wikjl(t)G<
lk(t) (2.119)
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and the divergent momentum representation

hλ,Hartree
k1
α

(t) = ±i~
∑
k4
δ
η

vλη|0| (t)G
η,<
k4
δ

(t). (2.120)

The Fock energy is

hFock
ij (t) = i~

∑
kl

wiklj(t)G<
lk(t) (2.121)

and the Fock energy matrix element in momentum representation

hλ,Fock
k1
α

(t) = i~
∑
k4

vλ|k1−k4|(t)G
λ,<
k4
α

(t) (2.122)

further is noted, because of the diagonal nature of the momentum representation, the one-
particle energy matrix elements are energy eigenvalues.
The time-dependent expectation values of the Hamiltonian can be formulated.

〈Ĥ〉(t) = 〈Ĥkin〉(t) + 〈ĤHF〉(t) + 〈Ĥcorr〉(t), (2.123)

with 〈Ĥ int〉(t) = 〈ĤHF〉(t) + 〈Ĥcorr〉(t).
The expectation value of the kinetic energy is

〈Ĥkin〉(t) = Tr
(
Hkinn(t)

)
, (2.124)

where the expectation value is just the trace over the product of the kinetic energy and the
1pRDM. The same is valid for the other terms. The expectation value of the interaction
energy can be split in a mean-field part

〈ĤHF〉(t) =
1
2Tr

(
HHF(t)n(t)

)
(2.125)

and the correlated part

〈Ĥcorr〉(t) =
1
2Im

{
Tr
(
I(t)

)}
, (2.126)
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with the imaginary part of the trace over the collision integral. Furthermore, since the mo-
mentum also is a important quantity in the plasma, the expectation value of the momentum
operator is expressed.

〈p̂〉(t) = Tr
(
pn(t)

)
(2.127)

It should be noted that the abstract operator notation is independent of representations.



3 Setup

In this section some simulation related aspects will be presented.
The simulation was written by Christopher Makait for a one-dimensional quantum wire with
spatially homogeneously distributed electrons, a jellium plasma described with the G1–G2
scheme. I expanded the jellium program by a second particle species, the positive charged
ions of arbitrary mass. Additionally, a particle beam was implemented belonging to one
of the two mentioned species respectively. The system described is spin symmetrical, that
means there is no different behavior between particles with spin up or spin down.
The properties of the confined particles in the wire are as follows, in longitudinal direction
the particles behave free and in radial direction the particles are confined in the harmonic
potential

v(r⊥) =
1
2mω

2r2
⊥. (3.1)

Figure 3.1: Illustration of the one-dimensional quantum wire, with radius a.[19][13]

26
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The excited states are not strongly occupied for large ω, thus all excited states are
neglected.
The wave function in ground state is of the form

φ0(r⊥) =
( 2
πa2

) 1
2

e−
r2
⊥/a

2
, (3.2)

this can be used to calculate the Yukawa matrix elements 〈k′1α′λ′,k′2β′µ′ | e2 e
−κr

r
| k1αλ,k2βµ〉,

with 〈rσ′λ′ | kσλ〉 ≡ φ0(r⊥) e
ik·r‖√
L
δσ′σδλ′λ.

Which yield

v(q‖) = −e2 exp
(
(q2
‖ + κ2)a2

)
Ei(−(q2

‖ + κ2)a2), (3.3)

with k1,‖−k2,‖ := q‖, the wire radius a, the inverse screening length κ, the elementary charge
e and finally the exponential integral Ei. The detailed derivation can be found in [19].
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Figure 3.2: Interaction energy

Another important aspect is to select the initial state of the 1pNEGFG<
0 (t0) = ±

1
i~
n0(t0),

which represents the occupation number at the beginning of the propagation at time t0. For
this, the simulation has three different initialisation modes. The first one consist of two
shifted gaussian type distributions, the second one is the Fermi-Dirac distribution, which
just takes the kinetic energy into account. The third one initializes with a Fermi distribution
but on Hartree-Fock level, which in contrast to the ordinary Fermi-distribution also includes
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the Hartree-Fock energy self-consistently at the beginning.
Throughout this thesis all calculations are initialized on the third initialization mode.

G<,λ
k
α

(t0) = ± 1
i~

1

exp
(
hHF,λ
k

(t0)−µ
kBTλ

)
+ 1

(3.4)

The particle beam is added with a Gaussian distribution at time t0 to a specific particle
momentum distribution.

G̃<,λ
0 (t0) := G<,λ

0 (t0) +G<
beam(t0), (3.5)

with the matrix elements for the beam distribution

G<,λ
beam,k
α

(t0) = ±
1
i~
A exp

−1
2

(
k − k0

σ

)2
, (3.6)

where A is the amplitude, k0 is the peak position and σ is the width of the beam.
The charge neutrality of the two species in the bulk system is ensured with the constraint

∑
kσλ

qλG<,λ
k
α

(t0) = 0. (3.7)

However, the interaction of the two bulks are not investigated in this thesis, just interaction
between bulk and beam. In this setup there is no charge neutrality, nevertheless it is a
feature of the program.

In the following a resume of the most important parameters of the simulations is pre-
sented.

� NKR: The number of grid points that are sampled on the momentum axis.

� CUTOFFMOMENTUM: The region that is sampled, everything outside the interval is not
computed.

� DT: Witdh of time steps.

� KAPPAFACTOR: The inverse screening length of the potential.

� PROPT: Maximum number of time steps.

� RADIUS: Radius of the wire in Bohr radii.

� DENSITY: Particle number per Bohr radius.

� BETA: Is the thermodynamic beta of electrons.
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� THETA: The ratio of the thermal energy and the Fermi energy (alternative to BETA)

� BETA_ION_1: Is the thermodynamic beta of ions.

� MU: Is the chemical potential of electrons.

� MU_ION_1: Is the chemical potential of ions.

� MASSE_ION_1: Mass of ions.

It is worth mentioning, that parameters for adiabatic switching exist, that are not used
throughout this thesis, because the initial distribution needs too much time to thermalize.
Furthermore, the SOA exchange term in the two-particle source term was neglected because
there were barely any differences seen in the simulation. The simulation was parallelized
with OpenMP, but because of the rapid saturation with the core number and the high serial
ratio with Eigen operations, barely any acceleration was observed, see figure 3.3.
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Figure 3.3: Computation time for NKR = 200 for every time step for different thread numbers.

Further Hartree atomic units were used where we set the reduced Planck constant to
~ = 1, the elementary charge to e = 1, the Bohr radius to a0 = 1 and finally the electron
mass tome = 1. To better interpret the magnitude of the most important physical quantities
used in this thesis, the conversion from atomic units to SI will be presented:

� Energy:

ESI = ~2

mea2
0
× Ea.u. ≈ 4.36× 10−18 J× Ea.u. (3.8)
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� Time:

tSI = mea
2
0

~
× ta.u. ≈ 2.42× 10−17 s× ta.u. (3.9)

� Momentum:

pSI = ~
a0
× pa.u. ≈ 1.99× 10−24 kg m s−1 × pa.u. (3.10)

� Temperature:

TSI = ~2

mea2
0kB
× β−1

a.u. ≈ 3.16× 105 K× β−1
a.u. (3.11)

� Density:

nSI = 1
a0
× na.u. ≈ 1.89× 1010 m−1 × na.u. (3.12)

� Radius:

rSI = a0 × ra.u. ≈ 5.29× 1011 m× ra.u. (3.13)

The time propagation of all relevant quantities is made with the fourth-order Runge-Kutta
stepper and the code is written with the programming language C++. All results presented
in this thesis are computed with a High Performance Computer at the Linux-Cluster of the
University Computing Centre at Christian-Albrechts-Universität zu Kiel.

3.1 Convergence

The momentum spectrum that is discretized in the simulation needs a finite set of basis
states. The size of the momentum basis is defined in the parameter list. Further, the
equation of motion in the momentum representation for the self-energy in second order
approximation scales with O(N3

bN
1
t ). This means the computation time scales linear with

the number of time steps, but cubic with the number of momentum states. It should be
noted that the larger the basis dimension is the more it converges to the true continuous
spectrum. An adequate basis size needs to be found, so that the computation effort is
still reasonable without giving up relevant precision. A simple method to investigate if the
system converges is to let the same calculation run, with different basis sizes. The next
step could be to look at the conserved quantities of each calculation and compare it. The
conserved quantities are energy, particle number and particularly for translational invariant
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systems, the momentum. If the conserving quantities do not change within the relevant
precision, then the simulation converged. If the simulation does not converge, then this is
an indication that the parameters are not chosen correctly, see figure 3.4. Additionally, one
must decide which part of the momentum spectrum is relevant in the simulation and what
part can be neglected, because of the computational limitation due to the finite basis size
and the cubic basis scaling. That means, the part of the spectrum is chosen such that the
particles do not propagate outside of the grid that is sampled. Also, the inverse screening
length should not get smaller than the spacing between the sampled grid points, because
that leads to more incorrect interaction effects, further, the energy does not converge the
smaller the inverse screening length gets. The solution can be found when the basis size
is increased or when GW self-energy is used, which has dynamical screening instead of the
second Born approximation. If one makes the sampling grid wider, but does not adjust the
basis dimension then the system is more vulnerable to numerical errors up to the point where
it does not converge at all. It was observed that the error got too large so that the program
crashed. That means caution is advised when parameters are chosen. Additionally, it was
observed that when the thermodynamic beta is chosen too large then non-physical behaviors
arise, like negative occupation numbers. It was observed that a larger basis, don’t solve this
problem. Since the equations scales cubic with the basis size, it is possible that the basis
number was not increased sufficiently, to understand the difference.

Figure 3.4: Convergence test for different Basis sizes NB . For an ion bulk – ion beam configuration, see the
blue curve of figure 4.3. On the left the energy, on the middle the density and on the right the momentum.
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To verify some aspects of the convergence section, some conserved quantities are inves-
tigated for different basis sizes, see figure 3.4. It can be observed the conserved quantities
converge, with increasing basis size. In comparison the red curve is constant over time for all
figures. The yellow curve deviates, in the middle and right figure for large times. Whereas, in
the left figure an energy offset is visible and the energy is also not constant for larger times.
The same trend can be observed for the violet curve, the curve is just constant for the half
period of time, and the energy offset in relation to the red curve is even larger. The green
curve is not constant for any figure. Further, the energy is more sensitive to convergence,
in contrast to density and momentum. That means, while in the middle and right figure all
curves are on top of each other within the relevant precision, even though for a limited time
span. The curves in the left figure have strongly visible offsets.



4 Results

At first, the aim of this thesis was the investigation of stopping power, in which a particle
beam collides with an interacting system consisting of two different particle species, and then
studying the energy loss of the beam. Unfortunately, the first calculations showed hardly any
thermalization between the electrons of the beam and the electrons of the bulk, see figure
4.1. The green peak of the beam stays symmetric with time, no influence of the bulk can be
observed. The red line of the beam, on the other hand, has an asymmetrical time evolution,
the bulk seems to have an influence, scattering is observed. To explain the observed effects
and in general the condition when the particles tend to collide became the primary objective
of this thesis.

Figure 4.1: Momentum distribution of a one-dimensional one-component quantum wire. The three most
right peaks are particle beams, interacting with the same color bulk of the system, the peak in the middle.
The bulk and particle beam consist of electrons. The particle beam is set on different positions from the
bulk. Solid line at initial time ti = 0 a.u. and dashed line at final time tf = 60 a.u.

33
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4.1 Hypothesis

To study the dynamics of interacting multi-component system brought out of equilibrium
through a particle beam, it is of the uttermost importance to know the condition in which
collisions happen. The collision criterion will be derived in this section. We start with a
hypothesis, followed by a proof in the form of a semi-analytical mathematical approach.
Finally, the numerical results will be presented and discussed, to further support the hy-
pothesis.
The hypothesis is the following:
“Particles with similar velocities are more likely to collide”

4.2 Derivation

To derive the collision criterion the GKBA for second Born self-energy is used.
We start with the equation of 1pNEGF, then the collision term take the following form

i~
d

dt
G<,λ
α (k1, t) = [I + I†]λα(k1, t) =: Iλα(k1, t) (4.1)

= 2Re
{
Iλα(k1, t)

}
(4.2)

= 2Re
{ ∫ t

t0
dt̄
[
Σ>(k1, t, t̄)G<,λ

α (k1, t̄, t)− Σ<(k1, t, t̄)G>,λ
α (k1, t̄, t)

]}
, (4.3)

Then, equation (4.3) is evaluated for the case of fermionic species

Iλα(k1, t) =− 2(i~)2Re

{∫ t

t0

dt̄
∑
β
µ

∫
dk2

(2π)n

∫ dq
(2π)n v

λµ(q, t)
(
vλµ(q, t′)− vλλ(k1 − q− k2, t

′)δα,βδλ,µ
)

×
(
G>,λ
α

(k1 − q, t, t̄)G>,µ
β

(k2 + q, t, t̄)G<,µ
β

(k2, t̄, t)G<,λα
(k1, t̄, t)− (>↔<)

)}
,

(4.4)

where the SOA self-energy was plugged in

Σ≷(k1, t, t
′) =± (i~)2

∑
β
µ

∫
dk2

(2π)n

∫ dq
(2π)n v

λµ(q, t)

×
(
vλµ(q, t′)± vλλ(k1 − q− k2, t

′)δα,βδλ,µ
)

×G≷,λ
α

(k1 − q, t, t′)G≷,µ
β

(k2 + q, t, t′)G≶,µ
β

(k2, t
′, t).

(4.5)
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Then we reconstruct the off-diagonal 1pNEGF from diagonal ones with Hartree-Fock propagators.
The following expression will be obtained.

Iλα(k1, t) =− 2(i~)2Re

{∫ t

t0

dt̄
∑
β
µ

∫
dk2

(2π)n

∫ dq
(2π)n v

λµ(q, t)
(
vλµ(q, t′)− vλλ(k1 − q− k2, t

′)δα,βδλ,µ
)

×
(
G>,λ
α

(k1 − q, t̄, t̄)G>,µ
β

(k2 + q, t̄, t̄)G<,µ
β

(k2, t̄, t̄)G<,λα
(k1, t̄, t̄)− (>↔<)

)
× exp

(
−
∫ t

t̄

dt̃ ωHF(t̃)
)}

(4.6)

= −2(i~)2
∫ t

t0

dt̄
∑
β
µ

∫
dk2

(2π)n

∫ dq
(2π)n v

λµ(q, t)
(
vλµ(q, t′)− vλλ(k1 − q− k2, t

′)δα,βδλ,µ
)

×
(
G>,λ
α

(k1 − q, t̄, t̄)G>,µ
β

(k2 + q, t̄, t̄)G<,µ
β

(k2, t̄, t̄)G<,λα
(k1, t̄, t̄)− (>↔<)

)
× cos

(
−
∫ t

t̄

dt̃ ωHF(t̃)
)

(4.7)

and ~ωHF(t) = hHF,λ
α

(k1 − q)(t) + hHF,µ
β

(k2 + q)(t)− hHF,µ
β

(k2)(t)− hHF,λ
α

(k1)(t).
From equation (4.6) to (4.7) the real part of the exponential is evaluated. Further, the two
times quantities are reconstructed with equation 2.34 and 2.35. In the following, to simplify
the collision term of the non-Markovian quantum Landau equation some assumptions need
to be made [4].
For short time scales the Fock energy is time-independent, which follows from the assumption
that the 1pNEGF is nearly constant. Thus, the time integral as the argument of cosine can
be evaluated

Iλα(k1, t) =2~2
∫ t

t0
dt̄
∑
β
µ

∫ dk2

(2π)n
∫ dq

(2π)n v
λµ(q, t)

(
vλµ(q, t̄)− vλλ(k1 − q− k2, t̄)δα,βδλ,µ

)

×
(
G>,λ
α

(k1 − q, t̄)G>,µ
β

(k2 + q, t̄)G<,µ
β

(k2, t̄)G<,λ
α

(k1, t̄)− (>↔<)
)

× cos
(
− ωHF(t− t̄)

)
.

(4.8)

If the correlation Green’s function relaxes much faster than the 1pNEGF, τcorr � trelax then
taking the Markov limit[4] is justified. Thus, during the time evolution of the correlation
Green’s function, the 1pNEGF can be assumed time independent.
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Further, the interaction matrix element is time-independent in this case, thus the time
integral can be evaluated.

∫ 0

t0−t
dτ cos

(
ωHF τ

)
=

sin
(
ωHF (t− t0)

)
ωHF

, (4.9)

with τ = t̄− t.
Further, since t− t0 � τcorr, one can take the limit t0 → −∞

lim
t0→−∞

sin
(
ωHF (t− t0)

)
ωHF

= πδ(ωHF ), (4.10)

where the property of the sinc function in relation to the Dirac delta function was exploited.
Thus, the time-local quantum Landau integral is

Iλα(k1, t) =2~2∑
β
µ

∫ dk2

(2π)n
∫ dq

(2π)n v
λµ(q)

(
vλµ(q)− vλλ(k1 − q− k2)δα,βδλ,µ

)

×
(
G>,λ
α

(k1 − q, t)G>,µ
β

(k2 + q, t)G<,µ
β

(k2, t)G<,λ
α

(k1, t)− (>↔<)
)
πδ
(
ωHF

)
.

(4.11)

The change of rate of the 1pNEGF is a measure for dynamical behavior and scales, with
the scattering probability, which is among other things, dependent on the argument of the
delta function. Thus, the condition for which the delta function is 6= 0 must be looked into.
The G1–G2 equation could have been used as well, to investigate the collision properties,
but to evaluate the expression in a given approximation one has to deal with two equations
of motions simultaneously. Analyzing just the EOM of correlation function is also possible
but the interpretation of the solution is less obvious.
The general condition for ωHF → 0 can be investigated with a Taylor series and expanded
in powers of transfer momentum

∂hHF,µ
β

(k2)
∂p2

=
∂hHF,λ

α
(k1)

∂p1
, (4.12)

which expresses that the slope of the Hartree-Fock energies of the colliding particles need to
compensate. When the kinetic energy dominates the dynamic of the system, which means
hkin,λ
α

(k1)� hFock,λ
α

(k1) then ωHF → 0 with hFock → 0 yields

~ωHF ≈ q
(~2k2

mµ

−
~2k1

mλ

)
= pq

( p2

mµ

−
p1

mλ

)
≡ pq(v

µ
2 − vλ1) =: ~ωkin

∆v, (4.13)
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with pq = ~q, pn = ~kn in which n = 1, 2 and all non-linear contributions were neglected.
This implies the condition that particles, with the same velocity contribute to the dynamic
of the system, when vµ2 = vλ1 , then ωkin

∆v → 0 for q → 0. However, the derivation is
formulated for the general case of three-dimensional space, nonetheless it is also valid for
the two and one-dimensional space, but the conclusion is different concerning the collision
criterion. In three- and two-dimensions the dot product of the transfer momentum pq, with
the velocity difference plays a crucial role. A direction, in which the vectors are orthogonal
to each other, always exists, which results in ωkin

∆v → 0 without vµ2 − vλ1 → 0. Therefore,
it is expected that in three- and two-dimensions the collision criterion is not important. In
one dimension, on the other hand the transfer momentum always has the same direction as
the velocity difference. Thus, scattering can only be observed, when vµ − vλ1 → 0. It was
already recognized in the investigation of optically excited semiconductors, that velocity is an
important quantity to understand dynamical properties [20]. In this way plasmon damping
can be better understood. Furthermore, this result is also known from classical plasma
physics. When the relative velocity of colliding particles goes to zero, then the particle have
more time to influence each other via field interaction. At this point, it should be noted that
other factors can also influence the dynamics. In two or three dimensions the particles have
more possibilities to evade each other, while in one dimension only one degree of freedom
exists. Additional, it could be that the system was initialized close to stationary states,
this could also slow down dynamics. Additionally, the inverse screening length also affects
dynamics, the smaller this quantity gets the more scattering can be observed. Nonetheless,
the velocity criterion is essential in this setup, it has the most influence, to the dynamic of
the particles.

For further statements, lightweight particles are assumed, thus the Fock energy does not
contribute to dynamics in comparison with the dominating kinetic energy. It is also assumed
that particles in the bulk have a smaller momentum as particles in the beam. Because the
velocity difference is a criterion, one needs to make a transition from momentum to velocity
with v = p

mλ
. With this, the axis scales differently, for each different particle mass, which

means the momentum distribution compresses with increasing mass. Thereby, colliding
particles are closer to each other in velocity space, which means the relative speed of the
colliding particles is small. Based on ωkin

∆v → 0 qualitative statements can be made.

� It is expected that for electron bulk electron beam interaction, the behavior will be
comparative static, which is observed in figure 4.1.

� For ion bulk and ion beam interaction with increasing mass leads to a more dynamical
behavior, because the bulk and beam is compressed.
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� In case of ion bulk and electron beam there would not be any collisions, because just
the ion bulk re-scales.

� For electron bulk and ion beam, some collisions will be observed between bulk and
beam, again because the ion distribution re-scales.

4.3 Numerical Results

In this part of the thesis the collision criterion will be verified with numerical insight. Since
the occupation number is an important quantity given by the solution of the G1–G2 scheme,
it is reasonable to investigate it. Different bulk and beam configurations will be presented
and their collision behavior will be discussed.

4.3.1 Electron Bulk – Electron Beam

We start with a series of one-component simulation, in figure 4.1, the momentum distribution
of electrons is pictured for different beam peak positions. The solid same colored lines are
at initial times ti = 0 a.u. and the dashed same color lines are at the final time tf = 60 a.u. of
the simulation. Further, the radius of the wire is r = 1 a.u., the density is n = 1

2 a.u. and the
inverse temperature is βelectron = 1

2 a.u. We are particularly interested in the region between
bulk- and beam peaks, because eventually in that interval collisions are most likely to be
expected. It can be observed that the bulk for different line colors stays static in this setup,
when one compares the initial and final time. The beam changes peak height with time. The
particles in that region do not propagate significantly outside their respective original peak
position, but the probability increases slightly for example between bulk and the beams.
That means in that momentum interval, the particles collide. Further, beams that are closer
to the bulk collide more with each other in contrast to the beam that is further away, but
overall there is not much change. The particles of the bulk and the beam do not scatter a
lot.

The explanation can be found in section 4.2. The momentum is proportional to the
velocity of the particles, that means that not much dynamics are seen in the figure, because
most particles collides with the immediate surroundings in velocity space. The bulk collide
with particles in the bulk and the same happens for the particles in the beam, they collide
with the particles in the beam. Except when the beam is close enough to the bulk, then
the transfer momentum is small and the velocity difference between bulk and beam goes to
zero and interaction happens, demonstrated with the increase in occupation number in that
region.
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Figure 4.2: Velocity distribution of a one-dimensional one-component quantum wire. The three most right
peaks are particle beams, interacting with the same color bulk of the system, the peak in the middle. The
bulk and particle beam consist of electrons. The particle beam is set on different positions from the bulk.
Solid line at initial time ti = 0 a.u. and dashed line at final time tf = 60 a.u.

4.3.2 Ion Bulk – Ion Beam

The second series of one-component calculations, figure 4.3, the momentum distribution for
ions of arbitrary mass is pictured for the same beam peak position. The same time span as
before is investigated. Further, the particles are initialized with the same wire radius and
density as before. The ions possess an inverse temperature of βion = 1 a.u.. It can be seen
that the bulk for different solid line color changes the form with increasing mass due to the
decreasing dispersion that influences the Fermi Hartree-Fock initialization. The same trend
can be seen for the particle beam. The beam height changes and the distribution spreads
more the heavier the particle species is. For the red line, it behaves like in figure 4.1, it stays
static. The blue line on the other hand decreases with time for the bulk and beam. Thus,
the occupation number propagates outside of their initial peak position, especially to the
valley between bulk and beam and populates other momentum states.
The green line follows the trend of the blue distribution, but decreases further in height
in time and spreads further, as far as at final time there is no second local maximum. So
the particles in the green line distribution scatter the most and the particles in the red line
distribution scatter the least.
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Figure 4.3: Momentum distribution of a one-dimensional one-component quantum wire. The peak on the
right is the particle beam, interacting with the same color bulk of the system, the peak in the middle. The
bulk and particle beam consist of ions. The particle beam is set on one fixed position and the mass is varied
to study the strength of the dynamics. Solid line at initial time ti = 0 a.u. and dashed line at final time
tf = 60 a.u.

The previous explanation holds. The occupation number compresses proportional to the
mass of the particle type, see figure 4.4. Therefore, the green line the bulk interaction range
is wider than the other lines, because in the transition from momentum to velocity the bulk
beam occupation number is closer to each other in velocity space. That means for particles
with a mass of 10 a.u. the occupation numbers are 10 times closer to each other in velocity
space in comparison to momentum space. If we observe the transition from momentum to
velocity for the red line, the bulk still seems far away from the beam in velocity space.

Figure 4.4: Same as 4.3, just against velocity instead of momentum.
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4.3.3 Electron Bulk – Ion Beam

The third series of calculations will be a two-component case, see figure 4.5. The momentum
distribution consisting of an electron bulk and ion beam for fixed beam position but with
varied ion mass. The same time span as before is investigated. The wire radius and density
stays the same as before. The inverse temperature of the particles are as follows βelectron =
1
2 a.u. and βion = 1 a.u.. The occupation number of the beam spreads more around the peak,
the higher the mass of the particle is, like in figure 4.3. Further, the electron bulk scattering
with the ion beam increases, with larger ion mass. The red line behaves similarly to figure
4.1, it stays static, the same trend is seen in the red lined beam. The blue line electron
bulk shows some disturbance. The occupation number warps to the right in the direction
of the ion beam. The ion beam spreads to the outside with tendency in direction to the
electron bulk, like in figure 4.1. The occupation number of the same color bulk and beam
cross, because they can populate the same momentum and spin quantum states. The green
line follows the trend of the blue distribution, again with tendency to the ion beam. The ion
beam behaves in a similar manner as the blue beam curve with a tendency to the left in the
direction of the electron bulk. The same argument for Pauli blocking holds.

Figure 4.5: Momentum distribution of a one-dimensional two-component quantum wire. The peak on the
right is the particle beam, interacting with the same color bulk of the system, the peak in the middle. The
bulk consists of electrons and particle beam consists of ions. The particle beam is set on one fixed position
and the mass is varied to study the strength of the dynamics. Solid line at initial time ti = 0 a.u. and dashed
line at final time tf = 60 a.u.

The velocity is proportional to the momentum and inverse proportional to the mass of
the particle, v = p

mλ
. As before the compression is proportional to the mass of the particles,

see figure 4.6. Therefore the red curve behaves similar to the electron beam electron bulk
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calculations. Whereas the blue and green curve of the beam are close to the electron bulk in
velocity space. That explains the deformation of the electron bulk to the right. In velocity
space the shape of the bulk does not change. In contrast to the blue and green beam
distribution in velocity space, the respective beams are exactly below the disturbance of the
electron bulk, that means vµ − vλ1 → 0, thus collision can be observed.

Figure 4.6: Same as 4.5, just against velocity instead of momentum.

4.3.4 Ion Bulk – Electron Beam

The fourth and last series of calculations will be examined. The two-components system
consists of an ion bulk and electron beam, see figure 4.7 for fixed beam position but different
particle bulk masses. The same time span, wire radius, density and inverse temperature as
before is investigated. The beam and bulk relaxate slightly when one compares the solid
lines with the dashed line. The particles of the bulk just scatter with other particles in the
bulk and the beam just scatter with other particles in the beam. Overall no collision between
bulk and beam can be observed.
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Figure 4.7: Momentum distribution of a one-dimensional two-component quantum wire. The peak on the
right is the particle beam, interacting with the same color bulk of the system, the peak in the middle. The
bulk consists of ions and particle beam consists of electrons. The particle beam is set on one fixed position.
The mass of the bulk is varied to study the strength of the dynamic. Solid line at initial time ti = 0 a.u. and
dashed line at final time tf = 60 a.u.

The reason for this behavior can be found again with the same argument as before see
figure 4.8. The velocity difference does not approach zero between bulk and beam. In
velocity space the red lined bulk is closest to the bulk, but the occupation number of the
bulk and beam do not cross. With increasing mass the tendency for collisions to happen get
worse because the blue and green bulk line is even further away in velocity space, from the
electron beam this way the criterion for collisions is not fulfilled.

Figure 4.8: Same as 4.7, just against velocity instead of momentum.



5 Conclusion & Outlook

In this thesis the collision criterion for a one-dimensional two-component quantum plasma
described with the kinetic equations of the G1–G2 scheme in second Born approximation
was investigated. The simulation consisted of two bulks associated with two particle species
and a particle beam. Different bulk beam plasma configurations were investigated and it
could be shown that the behavior of the simulations is in agreement with the condition
ωkin

∆v → 0, which implies that the velocity difference plays a crucial role when it comes down
to dynamical behavior. Further, it could be shown that the G1–G2 scheme works well enough
for a continuous basis set in one dimension.

Outlook

The next step could be to test higher order self-energies and investigate if the condition
ωkin

∆v → 0 breaks, the reason behind the possibility lies in the different mathematical structure
of the different self-energies. Further, because of the multi-component structure of the
equations, the modification to a multi-band system is a small step. One needs to replace the
diagonal species indices with non-diagonal band indices. The transition to two-dimensions or
even three dimensions could be more reasonable, because in one-dimension the practical use
is more limited. Then more realistic stopping simulations can be made, such as investigations
of α-particles at low projectile velocities near the Bragg peak, to better understand inertial
confinement fusion and the energy transfer of the ions to the hydrogen pellet. Returning to
the one-dimensional system in this thesis: Because the condition for which particles collide
is better understood, the original reason of this thesis, stopping power calculations, can
also be investigated. In fact, following the investigation in this thesis, first stopping power
calculations were analyzed [21].
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