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Abstract

In this thesis, the formation of metal–polymer nanocomposites is studied by means of kinetic

Monte Carlo (KMC) and molecular dynamics (MD) simulations.

The KMC simulations, which are considered �rst, are used to investigate the growth of

metallic nanocolumns in a polymer host matrix during co-deposition of metal and polymer.

The employed simulation model is an extended version of a previous model presented by

Rosenthal et al. (Journal of Applied Physics 114, 044305 (2013)) to make a similar study of

nanocolumnar growth. The modi�cations of the model presented in this work are twofold:

�rstly, a process has been implemented to account for the creation of defects in the surface of

the polymer, which is an important side e�ect of the sputter deposition technique. In doing

so, the simulations are intended to answer the question if the growth of nanocolumns is also

possible if sputter deposition is used instead of thermal evaporation. The primary e�ect of the

occurrence of surface defects is an increased amount of trapped metal atoms and clusters; it is

not known in advance how this a�ects the more complex formation of nanocolumns, which

requires that initially spherical clusters—the “seeds” of the columns—reach a critical size. The

results discussed in this work cover a broad regime of simulation parameters and thus provide

a comprehensive answer to the question regarding the in�uence of defects. In addition to

this, the second modi�cation that has been made is the implementation of a process which

describes the di�usion of metal atoms and clusters in the polymer bulk. As the in�uence of

bulk di�usion has not been considered in the above mentioned work by Rosenthal et al., it is

now investigated for di�erent ratios of surface and bulk di�usion coe�cients.

The experimental scenario considered in the other part of this work is the formation of a

nanogranular metal �lm on a polymer substrate during sputter deposition. In order to inves-

tigate such a process, a Langevin-based atomistic MD simulation model is developed, which

allows one to reproduce the behavior on experimentally relevant time scales by performing

the simulations with very large values of the deposition rate and the di�usion coe�cients of

metal atoms. Unlike conventional MD simulations of processes on a surface, which usually

include an atomistic treatment of all involved particles, the atomistic description in this model

is restricted to the deposited metal atoms; the polymer substrate, however, is modeled as a

continuous medium on which and in which the metal atoms may perform random walks. In a

�rst study, the time evolution of the morphology of a gold �lm is studied for various di�erent

simulation parameters. The employed method is extensively tested and a comprehensive

comparison with experimental reference data is made. As the comparison displays good

agreement over wide ranges of �lm thicknesses, another study is performed for the deposition

of silver and copper instead of gold. The goal of that investigation is to assess to what degree
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the tendency of both materials to occur in separated phases in the bulk also plays a role in

the formation of nano�lms.
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Kurzbeschreibung

In dieser Arbeit wird die Entstehung von Metall-Polymer-Nanokompositen mithilfe der Simu-

lationsmethoden “kinetic Monte Carlo” (KMC) und “molecular dynamics” (MD) untersucht.

Zuerst werden die Ergebnisse von KMC-Simulationen betrachtet, um das Wachstum metal-

lischer Nanosäulen in einer Polymermatrix während der Co-Deposition von einemMetall und

einem Polymer zu untersuchen. Das verwendete Simulationsmodell stellt eine Erweiterung

eines früheren Modells dar, welches von Rosenthal et al. entwickelt und bereits in einer ähnli-

chen Untersuchung des Wachstums von Nanosäulen angewendet wurde (Journal of Applied

Physics 114, 044305 (2013)). Die Veränderungen am Modell sind von zweierlei Art: Zum einen

wurde ein Prozess implementiert, der eine wichtige Begleiterscheinung des Sputterdepositi-

onsverfahrens beschreibt, nämlich die Erzeugung von Defekten in der Polymerober�äche.

Auf diese Weise sollen die Simulationen Auskunft darüber geben können, ob Nanosäulen

ebenfalls wachsen können, wenn die Deposition mittels Sputtern anstelle von thermischer

Verdampfung geschieht. Die primäre Auswirkung der Defekte ist eine zunehmende Immobili-

sierung der Metallatome und -cluster. Dabei ist nicht im Voraus bekannt, wie sich dies auf

den komplexen Wachstumsprozess von Nanosäulen auswirkt. Jener verlangt, dass anfänglich

sphärische Cluster – die “Wachstumskeime” der Säulen – eine kritische Größe erlangen. Da

die Ergebnisse in dieser Arbeit einen breiten Bereich an Simulationsparametern abdecken,

kann eine umfassende Antwort auf die Frage nach dem Ein�uss der Defekte gegeben werden.

Zusätzlich dazu wird ein zweiter Prozess untersucht, der die Di�usion von Metallatomen und

-clustern im Innern des Polymers beschreibt. Da diese sogenannte Bulk-Di�usion noch nicht

in der oben genannten Arbeit von Rosenthal et al. berücksichtigt wurde, wird sie nun für

verschiedene Verhältnisse von Ober�ächen- und Bulk-Di�usionskoe�zienten untersucht.

Der andere Teil dieser Untersuchungen widmet sich der Entstehung einer nanostruktu-

rierten Metallschicht auf einem Polymersubstrat während der Sputterdeposition. Zu diesem

Zwecke wird ein atomistisches MD-Simulationsmodell auf Basis der Langevin-Dynamik

entwickelt, welches es ermöglicht, das Verhalten auf experimentell relevanten Zeitskalen auf

deutlich kürzere Simulationen abzubilden. Dafür ist es notwendig, dass besonders hohe De-

positionsraten und Di�usionskoe�zienten der Metallatome in den Simulationen verwendet

werden. Anders als in gewöhnlichen MD-Simulationen von Ober�ächenprozessen, welche

alle zugehörigen Teilchen atomistisch behandeln, beschränkt sich die atomistische Behand-

lung in diesem Modell auf die deponierten Metallatome; das Polymersubstrat hingegen wird

als kontinuierliches Medium beschrieben, in dem – und auf dem – die Metallatome einen

Random Walk durchführen. In einer ersten Untersuchung wird die Zeitentwicklung der

Morphologie einer dünnen Goldschicht für verschiendene Simulationsparameter untersucht.
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Die verwendete Methode wird ausführlich getestet, und ein umfangreicher Vergleich mit

experimentellen Referenzdaten wird durchgeführt. Da dieser Vergleich eine weitgehende

Übereinstimmung für viele Schichtdicken liefert, schließt sich eine weitere Untersuchung

an, in der die Deposition von Silber und Kupfer anstelle von Gold betrachtet wird. Dabei soll

herausgefunden werden, in welchem Maße die Tendenz beider Materialien, in voneinander

getrennten Phasen in Festkörpern aufzutreten, auch bei der Entstehung einer Nanoschicht

eine Rolle spielt.
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Chapter 1

Motivation and Outline

The research on complex materials on the nanoscale has rapidly advanced since the end of

the twentieth century [1–3]. At that, small particles with sizes between 1 nm and 100 nm

in at least one dimension [4]—so-called nanoparticles—have been of particular interest as

their large surface-to-volume ratio leads to several properties which are clearly di�erent

from the corresponding properties of the bulk material [5]. Already today, nanoparticles are

of enormous technological relevance [6, 7], but they are still in the focus of fundamental

research [8].

A speci�c usage of nanoparticles is their incorporation into multifunctional composite

materials, which �nds application in various �elds [9], for example, in electronics [10–15],

plasmonics [16–19], food packaging [20–22] and medicine [23–25]. In recent years, much

attention has been paid to a speci�c class of nanocomposites consisting of nanosized metal

particles which are dispersed in or on a polymer host material [2, 9, 26–28]. These so-called

metal–polymer nanocomposites o�er the potential to be fabricated at low cost and with

reproducible magnetic, electronic, optical and catalytic properties [2, 29–32]. Even though the

production of metal–polymer nanocomposites is already routinely carried out using physical,

chemical or physio-chemical methods [2], the highly complex formation mechanisms are still

subject to ongoing research. It is of particular interest how the sizes, shapes, compositions

and number densities of the metallic particles evolve during the formation process. Although

the experimental diagnostics are continuously improved—for example, Schwartzkopf et al.

presented the �rst real-time and in-situ results on the growth kinetics of gold nanostructures

during sputter deposition [32]—there is still the need for further investigations to get an

improved understanding of how the macroscopic details of the experimental set-up a�ect the

behavior of atoms and clusters on microscopic scales. In fact, there already exist experimental

methods to obtain three-dimensional pictures of single clusters at an atomic resolution [33],

but the available studies on the formation of metal–polymer nanocomposites are typically

lacking atomistic details.

Over the last few years, it turned out that the understanding of the nanocomposite formation

process can greatly bene�t from computer simulations [9, 34–39]. In the present thesis, we will

therefore continue along this path and explore new capabilities of modeling and simulation.

At that, we will concentrate on physical vapor deposition methods [40], in particular plasma-
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1. Motivation and Outline

based sputter deposition as this technique is frequently used in experiments and still o�ers

the potential for fundamental research on the physics of complex plasmas [41, 42]. While

nanomaterials and nanoparticles are widely associated with miniaturization or very small

objects, the required system sizes, often exceeding several ten thousands of atoms, still pose

a big challenge to modern particle-based simulation methods. Even more than that, the

relevant time scales of experiments, exceeding seconds or minutes, are far out of reach of

many simulation methods, in particular ab-initio methods such as time-dependent density

functional theory [43, 44] or approaches based on nonequilibrium Green functions [45–47].

One of the standard methods to overcome the limitations of length and time scales in

simulations is the kinetic Monte Carlo (KMC) method. It is a highly coarse-grained statistical

method which is frequently applied to simulate various problems occurring in surface and

materials science. Recently, it has been demonstrated that it also yields an adequate description

of the formation of metal–polymer nanocomposites [9, 34–36, 38]. The simulation model

presented by Rosenthal et al. [9, 36], which borrows some ideas from on older model by Thran

and Faupel [38], has not only been applied to study the growth of spherical metal clusters on

a polymer surface or in a polymer matrix, but also to explain the transition from a spherical

to a columnar growth mode of nanostructures [34, 48]. The latter observation has also been

made in preceding experiments described in Ref. [30]. The crucial technique of the mentioned

KMC simulations is the description of atoms and clusters in terms of simple geometric shapes,

and the polymer is treated as a continuous medium that provides the space for the di�usion of

atoms and clusters. While the deposition technique used for the experiments in Ref. [30] was

the simultaneous thermal evaporation of metal and polymer, it remained an open question

whether nanocolumns can also be produced using sputter deposition for at least one of the

components. In this work, we will pursue this question by using an extended version of

Rosenthal’s simulation model which accounts for the impact of highly energetic particles

ejected from the plasma. This will be accomplished by assuming that each impact creates a

defect in the polymer surface at which passing metal atoms or clusters are trapped. As this

process contributes to a strong reduction of the amount of di�using particles, one can expect

that it has an important e�ect on the growth kinetics. Beyond that, the KMC study in this work

contains two novelties: �rst, the simulations account for the di�usion of atoms and clusters

in the polymer bulk—for the previous investigation of columnar growth in Ref. [34], this

mechanism was neglected. Second, the results will be illustrated with 3D rendering images of

the simulated columns and clusters. These images—which were created with the software

Blender [49]—will provide an insightful supplement to the purely quantitative description

that always hides certain details.

Despite the merits of KMC—the ability to explore large length and time scales—we will

see that the method only works at the cost of rigid approximations and several uncertainties

introduced by the establishment of a simple simulation model. In some cases, it may therefore

be advantageous to resort to another well-established method, namely atomistic molecular

dynamics (MD) simulations [41, 50]. Describing atoms as classical pointlike particles inter-

acting via empirical force �elds, the MD method propagates the Newtonian equations of

motion to produce numerically exact trajectories of all involved particles. As conventional

MD simulations are often limited to time scales of nanoseconds [50], a variety of techniques

has been developed to extend the accessible time scales by many orders of magnitude [50,

2



51]. Although those so-called acceleration methods are always bound by certain restrictions,

they make MD a valuable tool for the study of nanomaterials. In particular, despite various

remaining challenges, the still emerging �eld that is concerned with the interaction of a

plasma and a surface has already greatly bene�ted from MD simulations and the presently

available acceleration techniques [50, 52, 53].

Due to the important advantages o�ered by atomistic simulations, another part of this work

is devoted to the application of MD simulations in the �eld of metal–polymer nanocomposites.

While MD simulations of composite systems often concentrate on processes on a metallic

surface [52–56], much less attention is paid to polymer substrates, see, e. g., Refs. [37, 57–59].

The reasons are that a particle-based treatment of polymer chains is computationally very

expensive and the established acceleration techniques work best for crystalline surfaces.

To overcome these di�culties, this work will introduce a new simulation scheme for the

growth of metal clusters on a polymer surface during sputter deposition. While the treatment

of the metal atoms is completely particle-based, the simulation scheme also adopts several

techniques from KMC simulations. For example, the polymer is modeled as a continuous

background medium, which is a strong simpli�cation as compared to the complex particle-

based polymer models. The computational resources saved by this technique can be spent on

incorporating a large amount of metal atoms; these are of particular interest with respect to

the resulting �lm morphology. In fact, the number of deposited metal particles used for the

results in this work exceeds several hundred thousand; that is much more than the numbers

in comparable studies, e. g., Refs. [37, 60]. As the modeling of the polymer substrate is realized

by performing Langevin dynamics for all metal atoms, it is possible to manually set the values

of all involved di�usion coe�cients describing the motion of metal atoms on the polymer

surface and in the polymer bulk. Thus, performing the simulations with very large values

of the deposition rate and the di�usion coe�cients, the method also permits an imitation of

the behavior on experimental time scales. Comparing with experimental data from Ref. [61],

we will see that a realistic description of the morphology of a thin �lm can be obtained if

the simulations maintain the ratio of the experimental values of the deposition rate and the

surface di�usion coe�cient. All simulations required for these comparisons were performed

for the deposition of gold (Au) atoms. This material was also kept for various additional

tests and applications, which will be in the primary focus of the MD studies in this work.

Nevertheless, since the comparison with experimental results was promising, the results

for gold were also extended by replacing the deposited material. As there is still just little

knowledge about the miscibility of silver (Ag) and copper (Cu) on the nanoscale [62, 63],

exactly these materials were chosen and studied for di�erent ratios of their deposition rates.

Hence, in another part of this work, we will consider the morphology of an Ag–Cu �lm and

focus on the separation of both phases in the clusters.

Thesis outline

• Chapter 2 is intended to give a rather general overview of metal–polymer nanocom-

posites. In order to motivate the establishment of the simulation models in this work,

several important physical properties and experimental techniques are explained.

3



1. Motivation and Outline

• Chapter 3 serves as an introduction to the KMC and the MD method. Several technical

aspects are already discussed, but most details referring to speci�c applications are

given in later chapters.

• Chapter 4 is devoted to KMC simulations of nanocolumnar growth. The chapter

contains a detailed description of the simulation model and a variety of results for

di�erent simulation parameters.

• In Chapter 5, the MD simulation scheme is developed and the rescaling method for

the deposition rate and the di�usion coe�cients is explained. The method is applied

to the growth of gold clusters on a polymer surface during sputter deposition. A

comprehensive comparison with experimental �lm morphology data is made.

• The entire Chapter 6 extends the discussion of the rescaling method presented in

Chapter 5. This involves a comparison with an alternative approach based on rate

equations.

• In Chapter 7, the MD simulation scheme is applied to study the morphology and phase

separation of Ag–Cu clusters growing during sputter deposition.

• A concluding discussion of the results is given in Chapter 8.
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Chapter 2

Metal–Polymer Nanocomposites

In this work, we use the term “metal–polymer nanocomposite” for two di�erent system types

[9, 26]: the �rst type consists of arbitrarily shaped metallic nanoparticles that are embedded

in a “three-dimensional” polymer host matrix. For the present investigations, the thickness of

those systems will remain below 100 nm. The other type refers to a thin nanogranular metal

�lm on a polymer substrate; it is typical of such systems that the involved metal clusters

are only partially embedded in the polymer. Sometimes, these systems are considered to be

“two-dimensional”, for example, to put the focus on the interfacial area of both components

[64]. Both types of metal–polymer nanocomposites are often prepared on wafers whose

side lengths are on the order of centimeters [61, 65]. Therefore, the characteristic nanoscale

can only be found in the dimensions of the metallic particles and the thickness of the whole

composite. From the theoretical perspective, it will be reasonable to treat the systems as if

the two dimensions parallel to the wafer surface are in�nitely large.

In this chapter, we review several fundamental aspects of metal–polymer nanocomposites,

which will later help us to motivate the establishment of the simulation models. In Sec. 2.1,

we are concerned with several important experimental techniques, and in Sec. 2.2, we discuss

the behavior of the system during the deposition process.

2.1. Important experimental techniques

This section is intended to give a brief overview of the experimental techniques that are

important for the understanding of the simulation methods used in this work. In Sec. 2.1.1,

we will focus on the relevant physical vapor deposition methods. Then, in Sec. 2.1.2, we will

discuss the grazing-incidence small-angle X-ray scattering technique—a diagnostic tool for

the characterization of the �lm morphology.

2.1.1. Deposition methods

The investigations in this work are intended to extend the recent work by Rosenthal et

al. [9, 34, 36]. Therefore, we only consider metal–polymer nanocomposites produced by

physical vapor deposition methods at room temperature (or similarly low, but unspeci�ed
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2. Metal–Polymer Nanocomposites

temperatures). In particular, we assume that all metallic constituents are deposited in the

form of isolated atoms—the deposition of metal clusters on a polymer surface using, e. g., gas

aggregation sources is another typical experimental technique [35, 39, 66], but it is ignored in

this work to reduce the complexity of the problems. All aspects mentioned in the following

are of speci�c importance for later explanations of the simulation schemes. For a rather

general overview of deposition methods, it is referred to Refs. [2, 9, 26, 48].

Deposition of metal atoms

A widely used method to deposit metal atoms on a substrate is sputter deposition [67, 68].

The term “sputtering” labels the ejection of atoms from a target material caused by the

bombardment of the target with highly energetic particles. Such a process can be repeatedly

enforced by exposing the target to a plasma and applying an external electric �eld to accelerate

the ions towards the surface. In order to produce nanomaterials, one must arrange the target

and an arbitrary substrate in such a way that the ejected atoms can be collected on the

substrate. There, they may take part in highly complex and self-organized �lm formation

processes. The sputter deposition is very popular nowadays because one can achieve very

high deposition rates. A widely used technique to accomplish this draws upon a con�nement

of the charged plasma particles near the target with an additional magnetic �eld that is

provided by a magnetron [24, 69].

When the sputter deposition technique is applied, one has to take into account that the

employment of a plasma to bombard the target may lead to various side e�ects that result

from additional interactions of the plasma with the substrate. One of these e�ects are impacts

of plasma particles on the substrate. If the kinetic energy of the particles is high, they may

presumably be implanted in the �lm, lead to a resputtering of the deposited material or

create defects in the upper regime of the surface. The KMC model presented in Ref. [34]

to study the growth of metallic nanocolumns in a polymer host matrix included none of

these processes because it was designed to simulate the deposition by thermal evaporation

[30, 65]. As opposed to this, the models presented in this work are intended to represent

a sputter deposition process. It is already mentioned that only the last of the mentioned

e�ects—the creation of surface defects—is taken into account by the models described in this

work. However, as detailed experimental investigations of those e�ects are still lacking, those

models may already contribute to a better understanding of the plasma–surface interaction.

Treatment of the polymer

So far, we have only been concerned with the deposition of the metallic phase. Depending

on the aspired type of the composite, di�erent techniques are used to add the polymeric

components to the system. To embed the metal nanoparticles in a host matrix, one usually

deposits both metal and polymer at the same time, but from di�erent sources. This technique

is called co-deposition. Just like metals, polymers can be sputtered or evaporated, but there

also exist other frequently used methods, for example, plasma polymerization [9, 70]. As

opposed to co-deposition, a sequential deposition of metal and polymer is carried out if one

wants to produce a thin metal �lm on a polymer substrate. In such a case, spin coating
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2.1. Important experimental techniques

is another frequently used method to prepare the polymer substrate with high structural

uniformity [71].

As the simulation models in this work treat the polymer as a continuous medium, we do

not have to work out further details speci�c to any of those deposition methods. Primarily, it

is important that we can assume that the speci�c choice of the deposition method for the

polymer does not introduce additional e�ects to the simulation models. Hence, we will not

have to specify to which method the simulations correspond. We will see that the treatment

of surface defects remains on such a general level that it could also include the case that not

only the metal but also the polymer is sputter-deposited.

2.1.2. Grazing-incidence small-angle X-ray sca�ering

Grazing-incidence small-angle X-ray scattering (GISAXS) is a non-destructive in-situ tech-

nique to characterize the morphology of discontinuous thin �lm in reciprocal space [72]. The

method was introduced by Levine et al. for a study of evaporated gold �lms on glass substrates

[73]. In the �rst part of this section, we will brie�y explain the concept of the method and

point out some details that will be important for the discussion of the simulations results

shown in Chapter 5. At this, we will leave out most mathematical details of the theoretical

foundation of the method. After that, we will brie�y discuss a formula for the scattering

cross section which we will apply to MD simulation results in Sec. 5.5.5. For missing details

concerning the experimental procedure and the theoretical foundation of the method, it is

referred to the literature, e. g., Refs [72, 74, 75].

Set-up of a GISAXS experiment

In a typical GISAXS experiment, a beam of monochromatic X-rays with wavelength λ is sent

towards the surface of the sample under a shallow angle αi < 1◦. When the beam reaches the

surface, it changes its direction as a result of an elastic scattering process. By measuring the

intensity of the scattered X-rays behind the sample in a su�ciently broad range of angles in

horizontal and vertical direction, many morphological details of the sample can be inferred.

The central quantity for the characterization of the directional dependence of the scattering

process is the scattering vector q = (qx ,qy ,qz ). Assuming conservation of energy, q can be

expressed as the di�erence of the wavevectors of the scattered beam, kf , and the incident

beam, ki. If we de�ne the Cartesian reference frame and the relevant angles as shown in

Fig. 2.1, the components of q can be written as

q = kf − ki =
2π

λ

*..
,
cos(αf ) cos(2θf ) − cos(αi) cos(2θi)
cos(αf ) sin(2θf ) − cos(αi) sin(2θi)

sin(αf ) + sin(αi)

+//
-
. (2.1)

In the following, we will assume that the vector ki points in x-direction, i. e., 2θi = 0. This

allows us to simplify the expression for q to

q =
2π

λ

*..
,
cos(αf ) cos(2θf ) − cos(αi)

cos(αf ) sin(2θf )

sin(αf ) + sin(αi)

+//
-
. (2.2)
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Figure 2.1.: Geometry of a GISAXS experiment according to Ref. [74]. The �rst row is a

rendered image showing a simpli�ed representation of the set-up. In the second

and third rows, the angles of the incident wave vector ki and the scattered wave

vector kf are de�ned.

If only small angles are considered—which is su�cient in typical GISAXS experiments—the

trigonometric functions in Eq. (2.2) can be replaced by their respective �rst-order approx-

imations, and one can assume that qx ≪ qy and qx ≪ qz holds [72]. Consequently, one

may neglect the forward direction qx and simply cover all relevant scattering vectors with a

two-dimensional detector.

In order obtain a quantitative description of the �lm morphology from the measured

intensity distribution I (qx ,qy ), one can make use of the fact that, for many systems with
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2.1. Important experimental techniques

a simple geometry, there exist reliable theoretical to make accurate predictions about the

scattering cross section that one would measure in a GISAXS experiment. An important

step of the procedure is the construction of a hypothetical model system whose associated

scattering cross section reproduces the measured scattering cross section as accurately as

possible. One usually starts by guessing a simple geometrical shape or a mixture of di�erent

shapes that are expected to resemble the shapes of the scattering objects on the surface.

Then, one adjusts the dimensions of these objects and their arrangement on the surface

until best agreement between the hypothetical and the measured scattering cross section

is achieved. This can be done in a fully automatized �t procedure, e. g., with the software

programs IsGISAXS [74] or BornAgain [76]. If good agreement is achieved, one may assume

that the geometry of the model system constitutes an accurate approximation of the actual

�lm morphology. Typically, one then takes the sizes, shapes and spatial distributions of the

model particles to quantify the experimental results.

Concerning the accuracy of the method, the estimation of the errors may be simpli�ed

if real-space images of the investigated samples are available in addition to the GISAXS

data. However, in some cases, e. g., when GISAXS is performed during sputter deposition as

reported in Refs. [32, 61], one has to interrupt the deposition process to obtain this kind of

additional data, e. g., using electron microscopes. Furthermore, even if the scattering cross

section of the model system is similar to the measured one, one cannot rule out that there

exist other geometrical shapes and arrangements that would yield better agreement. For that

reason, experimentalists often use a trial-and-error approach to �nd the best out of various

di�erent shapes. For example, in a comparison of hemispheres, full spheres, cylinders and

parallelepipeds in Ref. [32], it turned out that hemispheres are the best representation of gold

clusters grown by sputter deposition on a silicon oxide layer.

Calculation of the sca�ering cross section

In Ref. [74], the expression

dσ

dΩ
(q) =

1

Ns

Ns
∑

i=1

Ns
∑

j=1

Fi (q)F
∗
j (q) exp

[
−iq ·

(

Ri − Rj

)]
(2.3)

has been derived in kinematic approximation for the di�erential scattering cross section of Ns

scatterers with the spatial coordinates R1, . . . ,RNs . In the simplest approximation1, the Born

approximation, the factors Fi can be written as the Fourier transform of the shape function Si
of the i-th particle,

Fi (q) =

∫

Si (r) exp(−iq · r) d3r . (2.4)

The shape function Si (r) is de�ned such that it yields 1 if r is inside the boundaries of the

particle and zero otherwise. The quantity Fi is usually called the form factor of a particle; for

many simple particle shapes, e. g., spheres, cones and prisms, it can be calculated analytically.

Nevertheless, further assumptions about the �lm morphology are often needed to simplify

1For many practical applications, a more complex expression obtained with the distorted-wave Born approxima-
tion is used. This approximation incorporates re�ection-refraction e�ects at the surface of the substrate [74].
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2. Metal–Polymer Nanocomposites

Eq. (2.3). For the evaluation of experimental results, one usually makes guesses about the

distributions of particle sizes, shapes and arrangements. With such a statistical description,

the discrete expression in Eq. (2.3) turns into a continuous integral for which many further

approximations exist [74].

On comparisons with simulations of film formation

The idea of the above discussed GISAXS method is to reconstruct real-space quantities from

quantities that are exclusively measured in reciprocal space. If one wants to make a compar-

ison between GISAXS results and simulations results obtained in real space, two di�erent

approaches are conceivable: one may not only compare the real-space data, e. g., cluster

shapes and sizes, but also try to calculate the scattering cross section from the simulation

results which allows for a comparison in reciprocal space. The latter approach is often di�cult

because the relatively small sizes of the simulated systems do not allow one to obtain the

required quantities with reliable statistics. The molecular dynamics results shown in this

work thus draw upon a comparison with GISAXS data in real space. Nevertheless, in Sec. 5.5.5,

we will also brie�y discuss how the form factor—the central quantity for the calculation of

the scattering cross section—can be calculated for the simulated clusters.

2.2. Behavior of metal atoms and clusters

In order to simulate the formation of metal–polymer nanocomposites, one �rst has to de-

scribe the system at the basis of a model with reduced complexity. The way metal–polymer

nanocomposite are described in this work is largely adopted from the aforementioned work

by Rosenthal [9, 48]. Perhaps the strongest simpli�cation in this picture is the treatment

of the polymer: this treatment neither takes into account that a multitude of di�erent poly-

mers is deployed for common applications, nor that even one speci�c polymer may display

manifold physical and chemical properties which are strongly sensitive to the conditions of

the experimental environment. Instead, the in�uence of polymers is reduced to setting the

conditions for the di�usion of metal atoms and clusters in a continuous medium. Concerning

the underlying physical properties of metal–polymer nanocomposites, we will therefore

put the focus on the behavior of the metallic components in the system. The following

explanations are intended to give an overview of the relevant physical aspects. For additional

explanations, it is referred to Refs. [9] and [48], in which a big portion of the simpli�ed picture

of metal–polymer nanocomposites has �rst been developed.

Nucleation and growth of metal clusters

It is a characteristic property of many metal–polymer nanocomposites that the bonding of

metal atoms is much stronger than the interaction between metal atoms and the polymer. If

this is the case, the metallization of a polymer surface leads to the formation of a discontinuous

metal �lm. The properties of the whole growth process are often subsumed under the term

“Volmer–Weber growth” [77].
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2.2. Behavior of metal atoms and clusters

Initially, the formation of such a �lm is characterized by a multitude of cluster nucleation

events all over the surface. In many cases, clusters consisting of only two metal atoms—so-

called dimers—form the smallest stable aggregate [9, 78]. If the interaction with the polymer

is su�ciently weak, metal clusters often attain a nearly spherical shape—the energetically

favorable con�guration. This happens particularly quickly for small clusters because even at

room temperature, they are often in the liquid state—a result from a well-known phenomenon

known as the melting point depression of metals [39, 79]. To estimate the size of a spherical

clusters, the so-called liquid drop model gives su�ciently accurate results for many applica-

tions [9, 39, 80]. According to that model, the radius of a cluster containing N atoms of the

same species is given by

rLD (N , rWS) = rWSN
1/3 , (2.5)

where rWS is the Wigner–Seitz radius of the material. This formula is based on the assumption

that the cluster has a uniform density of atoms which is the same as the density in the bulk.

Hence, each atom in the cluster makes a contribution of 4/3πr 3WS to the total volume of the

cluster.

When clusters become larger, they solidify. Even then, they may relax into con�gurations

with a high symmetry, but the process may take a very long time as it is driven by the di�usion

of atoms on the cluster surface. Therefore, it is often the case that the complexity of themetallic

nanostructures increases with the amount of deposited metal. Two examples of composites

with nonspherical metal particles are relevant for this work: the �rst example is given by the

aforementioned work of Schwartzkopf et al. [61]. It provides experimental evidence of several

di�erent growth modes of gold on polystyrene—starting with the nucleation of small islands

and ending with the formation of a percolated network. The growth of metallic nanocolumns

observed by Greve et al. during co-deposition of Fe–Ni–Co and Te�on AF [30] constitutes

the other example. Rosenthal et al. have already explained that initially spherical clusters

may continue to grow perpendicularly to the polymer surface if their radius exceeds a critical

value that marks the transition from a liquid to a solid state [9, 34].

Di�usion of atoms and clusters

The di�usion of metal atoms and clusters during the deposition process greatly a�ects the

microstructure of the resulting composite, in particular at the early stage of the growth [38].

However, while it is already challenging to obtain a correct theoretical description of the

di�usion of adatoms on crystalline surfaces [81], the complex di�usive behavior of metal

atoms and clusters in the highly complex environment of a polymer may be even more

di�cult to describe. A particular challenge of experimental investigations is the fact that it

is hardly possible to make isolated observations of di�using particles. For example, during

the metallization of a polymer, the di�usion of atoms and clusters is frequently interrupted

by aggregation processes; these processes change the sizes of the particles and thus also

the speed of the di�usion. The behavior becomes even more complicated if the chemical

interaction between the metal and the polymer is strong, but this can mostly be avoided using

noble metals.

The di�culty of obtaining appropriate descriptions for simulations lies in the fact that

experimental studies of the di�usion in metal–polymer nanocomposites draw upon obser-
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2. Metal–Polymer Nanocomposites

vations of macroscopic quantities such as metal concentration pro�les [82, 83] or critical

island radii [61, 84]; many microscopic details of the involved mechanisms, however, remain

unknown [38]. In this work, we thus keep the simple picture established in Refs. [9, 35, 36,

38]: all atoms and clusters in the system perform random walks unless they are trapped

at certain points on the surface or in the bulk. The speed of the di�usion depends on the

employed materials and two other factors: the size of the di�using particle and whether

it is in the polymer bulk or on the surface. While the di�usion coe�cients of individual

atoms are often unknown, the laws describing the size dependence of di�usion coe�cients

are more certain—at least in some cases. For the surface di�usion of clusters containing N

atoms, Rosenthal has estimated that the di�usion coe�cient scales with N −1 [36]. At the
same time, a scaling with 2−N , derived from the free volume theory [85–89] has been found

appropriate for the bulk di�usion in systems below the glass transition temperature [9, 48].

The di�erence of these scalings already shows that the di�usion in the bulk is much slower

than on the surface. However, the ratio of the surface and the bulk di�usion coe�cient of

atoms can only be roughly estimated. For example, the simulations presented in Ref. [38]

were performed with ratios of 7.5 and 60, but the authors have guessed that the actual ratio

should be even higher than 60. As opposed to this, a slightly di�erent ratio of 40 has been

proposed in Ref. [9] to describe the occurrence of bimodal cluster size distributions. It is thus

clear that the exact ratio remains uncertain in many cases. Here, we will roughly estimate

that realistic values are between 10 and 100.

Re-evaporation of metal atoms

When a polymer surface is metallized, only a certain fraction of the arriving metal atoms is

actually adsorbed. This fraction, denoted by the condensation coe�cient, strongly depends

on the employed materials and the temperature [9]. For example, the condensation for silver

on Te�on AF at room temperature is only 0.002, but the value for silver on PMDA-ODA

polyimide is at least 0.95 [90]. For the modeling of the associated re-evaporation process,

it is important that adatoms typically perform a di�usive motion on the polymer surface

before they are desorbed [9]. The actual re-emission of the atom happens when the atom is

exposed to randomly occurring strong kick of the vibrating polymer chains. According to

Ref. [9], re-evaporation primarily a�ects isolated metal atoms on the surface. Furthermore, it

is unlikely that larger clusters do not stick to the surface, and it is almost certain that metal

atoms will not be re-emitted if they are deposited on top of an existing cluster.

Defects in the polymer surface

It has already pointed out by others that “point-like” defects in the polymer surface have

a big in�uence on the resulting microstructure of metal–polymer nanocomposites [9, 64].

In some cases, defects are created intentionally, e. g., by a predeposition of a reactive metal

or the bombardment with ions [83]. In other cases, however, the defects may result as a

side e�ect of the deposition method; for example, if the composite is prepared by sputter

deposition, highly energetic plasma particles may impinge on the surface during the whole

deposition process. The rate at which this happens and the energy distribution of impacting
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2.2. Behavior of metal atoms and clusters

particles are expected to be very sensitive to the plasma parameters and the placement of

the substrate with respect to the plasma. To this day, both aspects are largely unknown

in the context of metal–polymer nanocomposites. Similarly to what has been mentioned

about the di�usion of metal atoms, it is also the case for defects that typical experimental

investigations remain on a macroscopic level: it is known that defects in the surface primarily

lead to the trapping of metal atoms and clusters [9, 64], but microscopic details are hardly

ever described. The treatment of the defects in this work will therefore remain on the level of

a simple model: for the KMC simulations, the trapping mechanism described in Refs. [9, 48]

is used, see Chapter 4; in the MD simulations, a very similar behavior can be achieved, but

the nature of the simulations requires a di�erent implementation, see Chapter 5. The novelty

of the approach in this work is that not only preexisting surface defects are studied, but also

additional defects that are created during the deposition process. In doing so, an important

feature of sputter deposition can be studied—even though many details of the defect creation

are still unknown.
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Chapter 3

Simulation Methods

The two computational methods used in this work are molecular dynamics (MD) and kinetic

Monte Carlo (KMC) simulations. Both methods are known to be suitable for problems on

the length and time scales relevant for the formation of metal–polymer nanocomposites (see

Fig. 4.1 for an overview), but they have di�erent strengths and weaknesses. As a strongly

coarse-grained method, KMC usually provides access to the largest systems and the longest

simulation times; however, the method relies on a statistical treatment, which cannot describe

certain phenomena, and it often requires rigid approximations. In contrast, MD simulations

are considered deterministic (although statistical e�ects can be incorporated), and their

accuracy is usually higher than the accuracy of KMC simulations. For many applications, the

biggest drawback of MD simulations is the fact that many processes can only be investigated

on time scales which remain far below the experimentally relevant scales. While the bene�ts

from parallel computing are mostly restricted to making large system sizes accessible, there

is no such simple and general technique to overcome the time scale issue. Nevertheless,

there exists a variety of speci�c methods to extend the accessible time scales of at least some

selected problems.

It is the aim of this chapter to an introduction to both KMC and MD (in particular atomistic

MD and acceleration techniques). To give an overview, the following aspects remain on a

rather general level. Speci�c details concerning applications of the methods in this work are

postponed to later chapters.

3.1. Kinetic Monte Carlo simulations

Since the 1990s, the importance of the KMC method as a tool for coarse-grained simulations

in surface science and adjacent �elds has rapidly grown [91]. For that reason, there already

exist various detailed derivations and reviews of the method, see e. g., Refs. [9, 43, 91–94]. In

the following, we will therefore restrict ourselves to recapitulating the idea of the method

and skip derivations. In particular, we will describe the algorithm used for the results in this

work, make a few remarks on the application of KMC in this work and point out some critical

aspects of the methods.
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Figure 3.1.: Sketch of typical length and time scales accessible to density functional theory

(DFT), molecular dynamics (MD) and kinetic Monte Carlo (KMC) simulation. Of

course, the boundaries of the three boxes do not represent hard limits: depending

on the employed hardware and the complexity of the considered problem, the

scope of the methods may strongly di�er from this rough illustration. The two

arrows connected to the blue box represent the methods to extend the applicability

of MD simulations: parallel computing and speci�c acceleration methods. The

�gure has been adapted from a similar �gure (without arrows) in Ref. [43].

3.1.1. Idea of the method

To begin with, we make a few restrictions on the systems for which a description with KMC

is appropriate. First, we demand that the properties of the system allow us to make the

simplifying assumption that there exists only a �nite number of system states with indices

1, 2, . . . ,N 1. At any point in time, the systemmay only be in one of these states. All transitions

appear instantaneously, and no more than one transition happens at a time. Furthermore, we

demand that the dynamics of the system can be described as a Markovian, i. e., “memoryless”,

stochastic process. That means that the occurrence of transitions between any states can be

characterized in terms of probabilities which only depend on the current system state and

not on any previous state. For example, a typical application of KMC is the description of

surface di�usion in terms of instantaneous hops from one energy basin into another. Such

a description may be very useful if the costly calculation of vibrational trajectories around

local energy minima do not yield relevant physical information. To illustrate this, a typical

trajectory of an atom on a surface—or a similar “energy-barrier-limited infrequent-event

1We demand this to simplify the notation. In principle, the method can also be applied to an in�nite number of
states as long as the states and the corresponding transitions are well-de�ned.
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saddle point

equipotential lines

trajectory

Figure 3.2.: Exemplary trajectory of a particle in an infrequent event system. Before a transi-

tion occurs, the particle spends most of the time vibrating around a local energy

minimum. The �gure is an adaption of a similar �gure in Ref. [94].

system” [94]—is sketched in Fig. 3.2.

In mathematical terms, we demand that the system under consideration can be described

by a set of N master equations

dPa (t )

dt
=

∑

b

(WabPb (t ) −WbaPa (t )) (3.1)

which govern the time evolution of the probabilities to �nd the system in one of the states

1, 2, . . . ,N . At that, Pa denotes the probability that the system is in state a at time t ,Wab the

transition probability per unit time from state b to state a—which will also be referred to as a

rate in the context of KMC simulations, andWaa = 0 is de�ned for all a. For many practical

applications, analytical solutions of the master equations cannot be obtained. Beyond that, it

is often even impossible to obtain solutions with numerical integration techniques because

the number of system states is too large or the system states cannot be explicitly speci�ed in

advance. For those cases, the KMC method presents an alternative description of the system

dynamics: instead of explicitly solving the master equations, an explicit realization of the

underlying stochastic process is produced by means of a state-to-state trajectory. In many

cases, such a trajectory already reveals important details of the system properties; in other

cases, however, it is necessary to obtain a few or more trajectories and then average over all

results.

In fact, there exist several equivalent algorithms to generate state-to-state trajectories for a

given set of system states and transition rates. One widely used algorithm is the Bortz-Kalos-

Lebowitz (BKL) algorithm [95], which is also frequently referred to as the n-fold way or the

variable step size method [91]. In each Monte Carlo step of this algorithm, one separately

determines from the sampling of two random numbers when the next transition happens

and which transition actually occurs. A comprehensive derivation of the method based on a
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conversion of the di�erential master equation into an integral equation is given by Jansen in

Ref. [91]. Another algorithm also derived by Jansen (and others, e. g., Ref. [9]) is the so-called

�rst reaction method, which was invented by Gillespie [96–98]. The behavior produced by

this method is equivalent to the behavior produced by the BKL algorithm, but the procedure

during one Monte Carlo step is di�erent: if the system is in a state from whichM transitions

to other states with ratesW1, . . . ,WM are possible, one �rst samples a waiting time ∆tk for

each process k from the exponential distribution

f (∆tk ) =Wk exp(−Wk∆tk ) , (3.2)

and then carries out the process with the shortest waiting time. As the results presented in

Chapter 4 were obtained with the �rst reaction method, a more detailed presentation of the

algorithm is given in the next section.

3.1.2. First reaction method

In the following, we will write down the algorithm of the �rst reaction method. At that, we

keep the algorithm in a general form, which can also be found in the literature, for example,

in Refs. [9, 43, 91]. All details speci�c to the model used for the simulation of the formation

of metal–polymer nanocomposites will be given later in Chapter 4.

Initialization

The following steps are required to prepare the simulation.

1. Set the simulation time t to an arbitrary initial value, typically t = 0.

2. Set up an initial system state that is in accordance with the initial conditions of the

underlying master equation.

3. Prepare a list L in which all possible transitions including their prospective execution

times are stored. This list will be updated in each Monte Carlo step.

4. De�ne a stopping criterion for the simulation.

Monte Carlo step

The following tasks are repeated until the stopping criterion is ful�lled.

1. Find all transitions which are allowed at the current simulation time t and which do

not yet exist in the list L.

2. For each found transition, sample a waiting time ∆t from the distribution

f (∆t ) =W exp(−W∆t ) , (3.3)

whereW is the rate of the transition. Then, insert both the transition and the associated

execution time t + ∆t into L. (For the sake of performance, L should remain in a

time-ordered state after each insertion.)
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3.1. Kinetic Monte Carlo simulations

3. Execute the transition with the earliest execution time t ′ in L and advance the time to

t ′.

4. Remove all transitions from L which have become obsolete due to the execution of the

last transition.

3.1.3. Application of kinetic Monte Carlo simulations in this work

While the standard KMC algorithms are relatively simple to describe, the computational

implementation of speci�c simulation models may be rather elaborate. For many standard

models such as atomistic on- and o�-lattice models, there exists versatile and freely available

software, for example, SPPARKS2 [99] or KMCLib3 [100]. For the problem investigated in

this work, however, a code written by Rosenthal was used as it is specialized to simulations

of metal–polymer nanocomposite formation and thus required only small modi�cations.

For recent results obtained with that code, it is referred to Refs. [34–36]. A comprehensive

description of all details of the implementation can be found in Ref. [9]—in Chapter 4 of this

work, only the most important aspects and the modi�cations made to include the generation

of surface defects will be explained.

3.1.4. Critical aspects of the KMC method

The signi�cance of KMC simulations crucially depends on the quality of the underlying model

and the accuracy of the transition rates. In the following, we brie�y discuss both aspects.

Concerning the transition rates, it is often possible to obtain them from separate calculations

on a microscopic level. For example, if the migration pathways are known, one can often

calculate the transition rates in the framework of the so-called transition state theory [101,

102] using the formula

W =W0 exp

(

− ∆E

kBT

)

. (3.4)

Here, kB is the Boltzmann constant and T is the temperature of the system; hence, only ∆E,

the energy barrier of the process, and the prefactorW0 have to be determined, e. g., from DFT

calculations. A typical case where this formalism is applied is the treatment of the di�usive

motions of adatoms on a metal surface, for example, see the DFT study on the self-di�usion

on Au(100) in Ref. [103]. However, there are also cases where the process rates cannot be

determined with standard methods—this also applies to many rates that are required for the

above mentioned simulation model by Rosenthal. While it is sometimes possible to extract

the required rates directly from experimental data, e. g., in the case of deposition rates, in

other cases, one has to draw upon guessed values. Nonetheless, even if the values are guessed,

one can still obtain reasonable results if the unknown quantities are varied until a speci�c

set of reference data can be reproduced. Such a procedure can be thought of as a best �t: it

may yield a correct quantitative description of observed phenomena in a �xed parameter

2http://spparks.sandia.gov/index.html
3https://github.com/leetmaa/KMCLib
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regime, but the extension to other parameter regimes may give rise to an incorrect behavior.

Comprehensive tests are therefore necessary to assess the quality of the simulations.

While systematic improvements of the process rates are often possible, the establishment

of an adequate simulation model may be the more critical aspect of the KMC method. Even

if the rates of all implemented processes are known exactly, it is often di�cult to rule out

that the underlying model is too coarse or that the model still lacks important processes.

For example, in Ref. [94], Voter mentions that the exchange mechanism of an adatom on an

fcc(100) surface has been unknown for a long time although it may be crucial to describe the

surface di�usion of certain materials. Nevertheless, many KMC models are based on heuristic

descriptions of highly complex systems. Although there exist microscopic methods that help

to discover initially unknown processes and their reaction paths, see e. g., Refs. [55, 104], it

often remains impossible to examine the quality of the simulation model without extensive

testing against experimental reference data.

3.2. Molecular dynamics simulations

Since its invention by Alder and Wainwright in the 1950s [105, 106], the MD method has

become an extensively used tool to study the time evolution of many-body systems in various

areas of computational research. In this section, we recapitulate the basics of atomistic MD

including common approaches to accelerate the dynamics, andwe focus on the details required

for this work. Further aspects of the methodology that are skipped in this presentation can

be found in Refs. [41, 107, 108]. For another recent overview, including the speci�c aspect of

plasma–surface interaction, it is also referred to Ref. [50].

3.2.1. Introduction

The general aim of the MD method is to provide numerical solutions {ri (t ) | i = 1, . . . ,N } of
the Newtonian equations of motion

mi
d2ri (t )

dt2
= Fi (i = 1, . . . ,N ) (3.5)

for N pointlike particles with massesmi . The terms Fi represent the forces that characterize

the system under consideration; they may be obtained from a classical force �eld—as in

classical MD—or from electronic structure calculations—as in ab inito MD [50]. Furthermore,

if it is necessary to describe the system, Fi may also contain arbitrary other external forces.

In this work, we are concerned with MD simulations of entire atoms, i. e., each particle

represents both the nucleus and the electrons. This level of description allows us to simulate

su�ciently large systems and achieve su�ciently long simulation times. Performing atomistic

MD, interatomic interactions resulting from the interplay of electrons (and nuclei) are usually

treated on the basis of coarse-grained models which yield classical force �elds for the problem

of interest. The development of force �elds for various kinds of problems is a large �eld of

research in itself. In fact, as the forces are of crucial importance to MD simulations, there

exist force �elds for numerous materials and their combinations in all kinds of scenarios;

furthermore, it is even possible to model chemical reactions even though electrons are not
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explicitly taken into account. For an overview of di�erent force �elds and their applications,

it is referred to the literature, for example Refs. [109–113]. Here, in Sec. 3.2.3, we will only

discuss one type of force �eld that was used for the treatment of metal atoms in the simulations

for this work: the underlying formalism is the so-called embedded-atom method.

3.2.2. Langevin dynamics

For many applications, it is required to control the system temperature T in order to approx-

imate a canonical ensemble. For this task, there exist several standard algorithms—called

thermostats [41]—for example, the Nosé–Hoover thermostat [114, 115], the Berendsen ther-

mostat [116] and Langevin dynamics [117]. The simulations for this work were performed

with Langevin dynamics because the underlying model, the interaction of the particles with

an implicit solvent, is useful to describe the motion of metal atoms in and on a polymeric

background medium. Details of the speci�c implementation of the thermostat can be found

in Refs. [118] and [119].

The Langevin equation of motion for the i-th particle reads

mi
d2ri (t )

dt2
= Fi −

mi

τ
ṙi +

√

2mikBT

τ
Ri , (3.6)

where τ is a damping parameter and Ri is an uncorrelated Gaussian process with zero-mean

[41, 120]. This equation is essentially a reproduction of Eq. (3.5), but with two additional

terms on the right-hand side; these terms represent a friction force and a stochastic force

resulting from collisions with the background medium. The damping parameter τ should be

adjusted to material-speci�c conditions; it roughly indicates the time it takes for the system

temperature to relax to the value T .

In the absence of interparticle forces, the Langevin equation describes a random walk. For

one particle with massm and a d-dimensional position vector r, the Langevin equation reads

mr̈ = −m
τ
ṙ +

√

2mkBT

τ
R . (3.7)

The resulting motion can be characterized by the mean squared displacement

[r(t ) − r(0)]2 = 2dDt (3.8)

with the di�usion coe�cient [120]

D =
kBTτ

m
. (3.9)

In Secs. 5.2 and 5.3, we will need these relations to calculate the di�usion coe�cients of

isolated metal atoms.

3.2.3. Embedded-atom method

Ever since its invention by Daw and Baskes in the 1980s [121, 122], the embedded-atom

method (EAM) has become a widely used approach to describe the interaction of metals and
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alloys in MD simulations [110, 123]. The functional form of the total potential energyU of N

atoms reads

U =
1

2

N
∑

i=1

N
∑

j=1
j,i

ϕX (i )X (j ) (ri j ) +

N
∑

i=1

FX (i ) (ρi ) . (3.10)

Here, the subscript X (i ) denotes the atom species of the i-th atom, i. e., Eq. (3.10) can be used

for any mono- or multimetallic system. The �rst term on the right-hand side represents

electrostatic contributions associated to each pair of atoms i and j at the distance ri j = |ri −rj |.
The second term is a sum over the so-called embedding functions. These functions, labeled

FX (i ) (ρi ), denote the amount of energy it takes to place an atom belonging to X (i ) at the

position ri , where it is exposed to the local electronic density ρi resulting from the presence of

all surrounding atoms. One of the critical assumptions of the method is that each surrounding

atom j makes makes an independent contribution that solely depends on the distance ri j ; the

resulting density is thus calculated as the superposition

ρi =

N
∑

j=1
j,i

ρX (j ) (ri j ) . (3.11)

An improvement of this concept is, for example, provided by the modi�ed embedded-atom

method (MEAM), which introduces an additional angular dependence of the functions ρX (j )

[110, 124].

In order to represent speci�c materials, one �rst has to specify explicit expressions for the

embedding function, the electronic density function and the pairwise interaction function.

For a monometallic material, these are three functions in total; in contrast, seven functions

are required for a combination of two materials A and B, namely FA, FB, ρA, ρB, ϕAA, ϕBB

and ϕAB. To obtain the functions for speci�c materials, one usually makes an ansatz for the

functional form �rst, and then �xes the parameters such that selected reference data can

be reproduced. Typical reference quantities are characteristic properties of the bulk system,

for example, equilibrium lattice constants, elastic constants and vacancy-formation energies

[125].

The simulations for this work were carried out for a system containing only gold atoms

and another system containing both silver and copper atoms. All employed EAM potentials

are standard potentials which are widely used for the description of solids, surfaces and

clusters—their references will be given in the respective chapters. As most EAM potentials

are, per design, best suited for large systems, one should bear in mind that the description of

small clusters is often inaccurate. This becomes less problematic as clusters increase in size.

It is expected that the errors due to the limited accuracy of the EAM potentials used in this

work are far below other possible errors. Therefore, it was refrained from employing more

accurate, but computationally more expensive potentials. Nevertheless, the employment of

other force �elds is a straightforward task, which can be done without further modi�cations

of the simulation scheme.

Lastly, it is mentioned that most available EAM potentials are usually short-range. There-

fore, they are usually equipped with a cut-o� radius which puts a limit on the maximum
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interatomic distance for which a �nite contribution to the potential energy is made. The

employment of a cut-o� radius has an important e�ect on the time to calculate the forces:

as every atom typically has a limited amount of neighbors within the cut-o� radius, the

computation time scales with O (N ), as opposed to the quadratic scaling for systems with

long-range potentials such as Coulomb interaction [126].

3.2.4. Numerical integration and acceleration methods

There exists a variety of standard methods for the numerical integration of the equations of

motion. The method used in this work is the velocity version velocity version of the Verlet

integration [127, 128]; it is frequently used by others, too, because of its stability and its

performance with respect to conservation of energy [108]. The choice of the time step used for

the integration must be su�ciently small to capture the dynamics of the fastest processes in

the system. In many problems of surface science and materials science, these fastest processes

are the elementary vibrations of the atoms in the considered solid. Therefore, typical values

of the time step used for these problems are on the order of 0.1 fs to 2 fs [50, 54, 129]. In the

remainder of this section, we will not only see that such a small size of the time step is a

problem for many practical applications, we will also get an overview of common approaches

to solve this problem.

The time scale problem and the role of hardware

It has often been discussed in the literature that the time scales accessible to standard MD

simulations are insu�cient to describe many relevant phenomena in solids or on surfaces

[50, 55, 130]. This holds, in particular, for thin-�lm deposition processes as su�ciently

long studies should cover seconds or minutes observe successive deposition events and the

di�usion processes in the time between [34, 99]. As a rule of thumb, the authors of Ref. [50]

have pointed out that most MD simulations running on modern hardware do not exceed time

scales of nanoseconds—only for selected problems, it is also possible to reach microseconds.

Here, we merely illustrate the resulting time scale problem with a simple example.

In an MD simulation of a freely vibrating gold dimer—a very small system, an average

of 1.2 × 106 integration steps per second was achieved on one modern CPU core. As the

employed time step had a value of 1 fs, it would take a computation time of roughly 25 years

to obtain the trajectory for one second. It is not necessary to discuss further details of the

employed hardware and the computational procedure—we can already see that simulation

times on the order of seconds are far out of reach of typical atomistic simulations. Even

parallelization techniques could not help to achieve a signi�cant reduction of the computation

time because the amount of parallelizable computations is small in this example. Instead,

the bene�ts from parallelization are rather attributed to the possibility to study similar

but larger systems in nearly the same amount of time. Despite these limitations, several

approaches—often called “acceleration methods”—have been developed to overcome the time

scale problem in MD simulations. As the application of the MD simulation scheme presented

in Chapter 5 of this work may result in an e�ective acceleration of the simulation time, too,

we will proceed by discussing some of the most relevant acceleration techniques to put this
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work in a context.

Acceleration methods

We will concentrate on four methods which frequently occur in the literature. For the sake

of brevity, we will only mention their basic ideas; for a broader overview, it is referred to

Refs. [50, 51, 55, 130]. The �rst three methods presented hereinafter have been developed by

Voter and co-workers to make transitions in infrequent event system occur more frequently

while maintaining the correct statistical weights of all possible transitions [51, 55]. In a sense,

they are based on similar principles as the KMC method, but the knowledge of possible states

and transitions is not required in advance. The fourth presented method has recently been

reported by Filinov et al. This approach is based on a formulation of rate equations whose

parameters are extracted from MD simulations.

Hyperdynamics. The hyperdynamics approach, which was �rst presented in Ref. [131],

can be applied to systems whose transitions obey the previously mentioned transition state

theory (TST) [101, 102]. It works be employing a biased potential energy landscape

U ′(r) = U (r) + ∆U (r) (3.12)

to reduce the energy barriers associated to transitions between adjacent states. The bias

∆U (r) must be non-negative and su�ciently small to ensure that the biased system still obeys

TST. Furthermore, it must be chosen such that it vanishes at all dividing surfaces and such

that the ratios of the resulting transition rates are the same as in the unbiased system. In

doing so, the state-to-state dynamics of the system will be the same as in the unbiased system,

but the waiting times between transitions can be strongly reduced.

The main di�culty of the method lies in the construction of an appropriate bias potential

because this task already requires a certain knowledge of expected transitions. In the �rst

study of hyperdynamics in Ref. [131], ∆U was constructed from a Hessian matrix. Thereby,

the di�usion of an Ag10 cluster on an Ag(111) surface was accelerated by a factor of 8 × 10−3.
However, ever since then much higher boost factors have been achieved using other ap-

proaches. For example, Fichthorn et al. constructed ∆U from the nearest-neighbor bond

lengths in a solid and achieved boost factors of up to 106 for the di�usion of Cu atoms on a

Cu(001) surface [132]. For the same system, even higher boost factors of 109 were reached

with the collective-variable hyperdynamics (CVHD) method recently developed by Bal and

Neyts [54]. The CVHD method draws upon combining hyperdynamics with metadynamics

[133, 134] to incrementally build up a bias potential that only depends on one collective

variable. This rather general concept lends the method a high �exibility; for example, CVHD

has also been applied to the folding of a polymer chain model [54] and fuel combustion

mechanisms [135].

Temperature accelerated dynamics. Using temperature accelerated dynamics (TAD),

�rst introduced in Ref. [136], one tries to exploit that transitions occur more frequently if the

simulations are performed at an elevated temperature. However, as raising the temperature
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alone would lead to a corrupt state-to-state dynamics, an additional mechanism is applied to

revoke each transition from a local energy minimum until a su�ciently long list of escape

paths and times has been collected. The escape times in this list are extrapolated to lower

temperatures, and the event associated to the earliest escape time is actually carried out.

As opposed to hyperdynamics, TAD is more restrictive because it requires the system

to satisfy the harmonic version of TST. Nevertheless, it can be very e�ective: for example,

is has been reported in Ref. [55] that a simulation of the growth of a Cu(100) surface at a

temperature of 77 K was accelerated by a factor of 107.

Parallel replica dynamics. Wementioned above that parallelization techniques aremainly

used to increase the accessible system sizes. Nevertheless, for infrequent event system with

exponentially distributed �rst-escape times of all occurring processes, a method called parallel

replica dynamics (ParRep) also allows one to extend the accessible time scales [137, 138].

Using ParRep, the reduction of the computation time is realized as follows: �rst, one produces

dephased copies of the system on each available processor; then each system independently

evolves in time until a transition from the initial state A to another state B occurs on one

processor. Next, the system clock is set to the sum of the simulation times on all processors,

and the procedure is repeated starting from state B.

As the boost factors achievable with ParRep are limited by the number of parallel com-

puting devices, ParRep presently cannot surpass the e�ciency of TAD and hyperdynamics.

Nevertheless, it is a less restrictive and simple-to-implement method, and it is advantageous

that the e�ciency of the method can be improved without any theoretical e�ort. Furthermore,

under certain circumstances, it is possible to combine ParRep with other acceleration methods.

Coupling of MD and rate equations for atom adsorption. Another recently presented

approach builds on combining MD simulations with a rate equation model [52, 53]. This

method, named MD-RE by the inventors, was speci�cally developed to study the the adsorp-

tion and desorption of rare gas atoms on metal surfaces. The authors of Refs. [52, 53] showed

that these processes can be fully described in terms of rate equations for the populations

of three characteristic states: the projectile may be either trapped, quasi-trapped or in a

scattering state. Furthermore, the authors showed that the transition probabilities required

by the rate equations can be accurately determined from atomistic MD simulations. Hence,

MD-RE provides an acceleration in the sense that a solution of the rate equations may be

used to extend the MD results to macroscopic time scales.

3.2.5. Application of molecular dynamics in this work

In this section, we have introduced the basic concepts of the MD simulations used in this

work. However, the speci�c application to the growth of metal clusters on a polymer surface

requires us to elaborate many further details; as this section was intended to give an overview,

we will do this later in Chapter 5. In particular, we will also give a detailed explanation of the

method used in this work to reach long time scales.

Here, we conclude by mentioning that all MD simulations of this work were carried out

with the software LAMMPS, a publicly available MD program distributed by Sandia National
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Laboratories [139]. LAMMPS provides the basic functionality to carry out many standard

tasks in typical atomistic MD simulations. In fact, all steps described in Chapter 5 could be

realized with solely built-in features. For the evaluation and visualization of the atomistic

simulation data, both self-written scripts and the software OVITO [140] were used.
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Chapter 4

Growth of Metallic Nanocolumns in

a Polymer Matrix

In this chapter, we apply the KMC method to simulate the growth of metallic nanocolumns

during co-deposition of metal and polymer. As mentioned before, this investigation is an

extension of the previous work performed by Rosenthal et al. [9, 34]. We will use their

simulation model and modify it so that we can investigate how the columnar growth is

in�uenced by bulk di�usion and the creation of surface defects during deposition.

In Sec. 2.2, we have already explained that the onset of nanocolumnar growth is assumed to

be associated to the solidi�cation of initially spherical clusters, which sets in when the clusters

reach a critical size. Such a critical size can only be reached by the clusters if the ratio κ of the

metal and the polymer deposition rate is su�ciently large. In the simulations by Rosenthal

and the preceding experiments described in Ref. [30], it was shown that it only takes a small

increase of κ to modify the system such that it contains a large amount of columns instead of

only spherical clusters. It has been found that the onset of nanocolumnar growth leads to a

characteristic behavior of the volume �lling factor f , the ratio of the volume of the deposited

metal and the total volume of the composite, expressed as a function of κ: for small ratios κ,

the metal clusters remain spherical and the �lling factors are relatively small. However, once

κ reaches a critical value, many of the spherical clusters turn into columns, and the �lling

factor steeply increases. This happens in a relatively small regime of intermediate κ-values;

for larger values, the increase rapidly levels o�. Many of the results shown in this chapter

will display exactly this behavior. Yet, we will see that it is greatly a�ected by the occurrence

of surface defects as well as a variety of other conditions.

In Sec. 4.1, we start by explaining the underlying simulation model. The presentation

contains as many details as are believed to be required for the understanding of this work. A

more comprehensive explanation referring the original model is given in Refs. [9, 34, 48]. In

Sec. 4.2, we study the in�uence of defects by analyzing KMC simulation results which were

performed under various di�erent conditions.
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Figure 4.1.: Side-view illustration of the KMC simulation model: creation of an atom on the

polymer surface (a), removal of an atom due to re-evaporation (b), jumps of a

cluster (or an atom) on the surface (c) and in the bulk of the polymer (d), creation

of a surface defect (e), shift of the surface due to deposition (f), coalescence of

two clusters and attachment of a deposited atom to a cluster (g), attachment of a

cluster or a deposited atom to a column (h), and trapping of a cluster at a defect

site (i). Adapted from [141].

4.1. Description of the model system

In the following, we will recapitulate the most important details of the KMC simulation model

by Rosenthal et al. and explain all modi�cations that were made for the simulations in this

work. Concentrating on the model, we will skip any details on the speci�c implementation of

the �rst reaction method; these rather technical aspects can be found in Refs. [9, 48].

Before we proceed, it is referred Fig. 4.1 which provides a graphical illustration of the

processes discussed in the following. Furthermore, it is already remarked that in same

sentences in this chapter, the word “cluster” not only refers to actual clusters, but also to

atoms. In that sense, an atom can be understood as a cluster of size one.

4.1.1. Components of the model and growth

Simulation box and treatment of the polymer

The KMC simulations are performed with a rectangular simulation box which represents the

polymer matrix on which (and in which) the metal particles move and grow. The polymer is

hence treated implicitly: it provides a continuous and homogeneous space and the boundaries

for the metal atoms and clusters, but it does not directly a�ect their motion. Accordingly, we

can understand the plane at the top of the simulation box as the surface of the system and

the space in the box as the polymer bulk including metallic �ller particles. In the following,

we will use the set {
(x ,y, z) | 0 ≤ x ≤ Lx , 0 ≤ y ≤ Ly , 0 ≤ z ≤ Lz

}
(4.1)

to formally describe all points comprised by the simulation box. The dimensions Lx and Ly of

the box in x- andy-direction, i. e., parallel to the surface, cannot change while the simulation is

running. To reduce edge e�ects and thereby approximate a larger system, periodic boundary
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Figure 4.2.: Illustration of the distribution of spherical clusters (yellow) and nanocolumns

(green) in the polymer host matrix (gray) at three di�erent times during one

simulation. The upper part of the gray area represents the surface and marks the

upper boundaries of the simulation box.

conditions are applied to the x- and y-direction.evtl unten The height of the simulation box,

Lz , represents the thickness of the deposited �lm. Its value is time-dependent and starts with

Lz = 0 at the beginning of the simulation. The following two mechanisms lead to a shift of

the surface height:

• Whenever a Monte Carlo step is performed, it is assumed that the amount of the

polymer deposited during the time ∆t between the current step and the previous step

leads to the shift ∆Lz = Rp · ∆t , where Rp is the deposition rate of the polymer with

the dimension [length] · [time]−1.

• Whenever a metal atom is deposited, the surface height is shifted by an e�ective

thickness ∆Lz = δatom, which corresponds to the thickness of a thin layer with the

volume of one metal atom, Vatom. It can thus be calculated by δatom = Vatom/(LxLy ). In

the same way, Lz is reduced by the same amount δatom whenever an atom is removed

from the surface in the course of a re-evaporation event (see below).valueofV

As the KMC algorithm leads to randomly occurring deposition and re-evaporation events,

the surface height is a unique non-monotonic function of time in each simulation run. An

illustration of the expanding simulation box is given in Fig. 4.2.

Discrete components: atoms, clusters and columns

In contrast to the polymer, a discrete particle model is employed for the metallic component.

In this model, single metal atoms are represented by spheres whose radius is equal to the

Wigner-Seitz radius of the simulated material. However, atoms are only resolved as long

as they freely di�use in or on the polymer matrix. All agglomerates consisting of two or

more metal atoms are described as a single object with either a perfect spherical shape or a

columnar shape. The spherical cluster model is a realization of the liquid drop model which
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has already been presented in Sec. 2.2. Although the reference experiment by Greve et al. [30]

was performed with iron, nickel and cobalt, the model is based on a simpli�ed and generic

description with a monometallic material. The Wigner–Seitz radius used for the liquid drop

model of clusters and atoms (see Eq. (2.5)) is set to rWS = 0.145 nm. This roughly approximates

the values for iron, nickel and cobalt, which are in between 0.144 nm and 0.147 nm [142].

As we will see later, for the assignment of certain processes, it is necessary to distinguish

between particles on the surface and particles in the bulk. This is realized by calculating the

di�erence of the surface height Lz and the z-coordinate of the center of the particle under

consideration. The algorithm de�nes a particle to be on the surface if Lz − z is less than its

radius—otherwise, it is in the bulk.

Growth of spherical clusters and columns

All growth events appear as instantaneous updates of the system con�guration whenever pre-

de�ned criteria of their executions are met. Hence, unlike events such as jumps or depositions

of atoms, the growth is not controlled via reaction rates, but it happens when the system

is updated after Monte Carlo steps. In the following, the rules of two implemented growth

modes—spherical and columnar—are speci�ed.

If the distance between two spherical clusters of sizes N and M (atoms are included for

N ,M = 1) falls below a pre-de�ned interaction length, the clusters are merged into a new

single object. This process represents the coalescence of clusters. If the sum N +M is below a

critical size, the newly formed object is again a spherical cluster whose radius rLD (N +M, rWS)

is calculated according to Eq. (2.5). The center of mass of the new cluster is set to the center

of mass of the cluster which has moved in the last Monte Carlo step. When more than two

clusters agglomerate in one step, all pairs of interacting clusters are successively merged until

only one cluster remains.

If the radius of a spherical cluster becomes larger than a pre-de�ned critical radius rcrit,

the object will be treated as a nanocolumn in the remaining time of the simulation. That

means that it no longer maintains its spherical shape during growth, but instead expands in

the direction perpendicular to the surface. The nanocolumnar growth mechanism follows a

simple geometrical model based on the idea that the attachment of clusters or atoms to the

column only a�ects the part of the column above the surface (and not the whole object as is

the case of spherical clusters). While a comprehensive description of the columnar growth

model can be found in the original works by Rosenthal [9, 34], here, we restrict ourselves to

an explanation of the basic ideas. A graphical illustration of these aspects can be found in

Fig. 4.3.

When the columnar growth mode is initiated, the growing particle still has the shape of a

sphere. Its part over the surface is therefore a spherical cap. At the next growth event, this

spherical cap is replaced by a another spherical cap cut o� from a larger sphere. The atom

or cluster that has been attached during this Monte Carlo step is then removed from the

simulation. The size of the new spherical cap is determined according to the following rules.

• The volume of the new spherical cap is the sum of the volume of the previous spherical

cap and the volume of the attached atom or cluster. Assuming that no atoms are lost

during the process, that means that the density of the metallic material is conserved.

30



4.1. Description of the model system

resulting
columntimet0 t1 t2 t3

Figure 4.3.: Side-view illustration of the nanocolumnar growth model employing a stacking

of spherical caps. The seed of a column—an initially spherical cluster—is shown

at time t0. The respective changes induced by three growth events are shown at

times t1, t2 and t3. The horizontal lines indicate the surface height at the times

of the growth events. On the right, only the contour of the resulting column is

shown.

• The area of intersection between the spherical cap and the plane representing the

surface remains unchanged during the replacement of the spherical cap. That means

that the vertical position of the sphere from which the new spherical cap is cut o� must

be shifted from the position of the original spherical cluster.

As the top of the nanocolumn maintains the shape of a spherical cap, all subsequent growth

events can be handled in the same manner. As the surface height is permanently shifted, this

procedure creates a stack of many thin sphere segments with spherical caps at the top and at

the bottom. The morphological details of the column are hence determined by the di�erent

sizes and shapes of the sphere segments. In practice, a nanocolumn with a length of 100 nm

often consists of several hundreds or thousands of segments. The column radius becomes

nearly constant if there are only weak �uctuations of the particle �ux towards the column.

4.1.2. Processes

Having addressed the components of the model in the previous section, we now turn towards

the processes that drive the time-evolution of the system con�guration: deposition of particles,

jumps of atoms and clusters on the surface and in the bulk, creation of surface defects, and

re-evaporation of atoms. In the following, it is explained how these processes are incorporated

into the simulation model and how the corresponding rates are determined.

Deposition of atoms

The simulation model includes two processes which represent the deposition of metal and

polymer. As the treatment of the polymer has already been explained in Sec. 4.1.1, we now

address a process that represents the deposition of metal by successively adding particles to

the system. At each deposition event, one spherical particle is created at a random position at
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the surface, i. e., at the top of the simulation box. At this, the center of mass of the particle

is aligned with the current surface height. If the sampled position of the deposited particle

lies within the interaction range of any already existing particle, a growth event immediately

follows the deposition. Otherwise, the particle will perform a di�usive motion according to

the process described in the next section. In either case, the deposition of a metal atom is

always followed by a shift of the surface, as explained in Sec. 4.1.1, too.

As is typical of sputter deposition, only atoms are deposited in the simulations.1 In the

following, we assume that the deposition of the metallic components is intended to be carried

out with the constant rate Rm. Beyond that, we also assume that Rm denotes the e�ective �lm

thickness deposited per unit time, which is a typical way of expressing the deposition rate

in experimental works. For the simulations, however, it is required to obtain a rate for the

addition of atoms on a surface with the area LxLy . This rate, labeled νm, can be obtained from

the conversion

νm = RmLxLyρm , (4.2)

where ρm is the number density (number of atoms per volume) of the deposited material.

Instead of referring to νm, we will later consider an equivalent quantity, the �ux of atoms

towards the surface, Jm. It can be obtained by

Jm =
νm

LxLy
. (4.3)

Surface and bulk jumps

The di�usion of atoms and clusters is modeled by creating a sequence of jump events which

translate the position of a particle to a point at the distance ljump = 0.6 nm from the original

position. The value of ljump has been chosen such that it approximates the diameter of a

polycarbonate chain [9], but it can be understood as a free parameter. The direction of the jump

is sampled right before the jump event is carried out. To model the di�erent characteristics

of the di�usion of particles on the surface and particles in the bulk, two processes di�erent

processes have been implemented—we will call these “surface jumps” and “bulk jumps”. Both

processes di�er in their ranges of allowed jump directions and the way the associated rates

are calculated.

A bulk jumpmoves a particle to a randomly sampled point (x̃ , ỹ, z̃) on the three-dimensional

sphere with the radius ljump around the current position of the particle. All points on this

sphere have equal sampling probabilities. If the sampled point is above the surface, the third

coordinate of the new point is set to Lz . If the sampled point is below the bottom face of

the simulation box, i. e., z̃ < 0, the third coordinate is set to −z̃. In contrast to bulk jumps,

surface jumps leave the vertical coordinate of the particle unchanged. That means that the

new coordinates (x̃ , ỹ) are picked from a circle around the current position whose radius

vector with the length ljump is parallel to the surface. While bulk jumps may be performed by

both particles on the surface and particles in the bulk, surface jumps may only be performed

by particles on the surface.

1For other purposes, the functionality to employ any other size distribution for the deposited particles was
implemented to the simulation program by Nuttawut Kongsuwan during his RISE internship in summer 2014.
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Per de�nition, every particle is on the surface right after its deposition event. As surface

jump rates are usually higher than bulk jump rates, many particles on the surface perform

a relatively long two-dimensional random walk before a bulk jump or a shift of the surface

makes them enter the bulk for the �rst time. Once a particle is in the bulk, it does not have to

stay there forever: if it comes close enough to the surface, it will be considered as a surface

atom again.

Surface and bulk di�usion coe�icients

For random walks in a d-dimensional space with the jump length ljump, the relation between

the di�usion coe�cient D and the jump rate ν is known to be [9]

D =
l2jumpν

2d
. (4.4)

Hence, it is possible to adjust the rates of the surface and bulk jumps such that speci�c

systems with known di�usion coe�cients are represented. However, separate and accurate

measurements of the bulk and the surface di�usion coe�cient can hardly be found in the

literature on metal–polymer nanocomposites. This work therefore pursues the approach by

Rosenthal et al. which relies on estimated values of the di�usion coe�cients of atoms and

postulated laws for the size dependence of the di�usion coe�cients of clusters [9, 36].

For the calculation of the bulk di�usion coe�cient Db
N
of a cluster containing N atoms,

the formula

Db
N = 2−NDb

1 (4.5)

is used. At this, Db
1 is an estimated value of the bulk di�usion coe�cient of an atom. The

functional form of Eq. (4.5)—an exponential decay with the cluster size N—was proposed for

systems below the glass transition temperature. As mentioned before, the theoretical basis of

this can be found in the aforementioned free volume theory [85–89]. For the surface di�usion

coe�cient, Rosenthal et al. propose the size dependence

Ds
N = N −1Ds

1 , (4.6)

where Ds
1 is the surface di�usion coe�cient of an atom.

Re-evaporation of atoms

To represent incomplete condensation, the simulation scheme contains a process to remove

atoms from the system. This is only possible for atoms which are considered to be on the

surface (according to the de�nition above) and not trapped. A re-evaporation event is realized

by an instantaneous deletion of the particle at its current position. For each atom that comes

into question for a deletion, the corresponding process time is sampled with the rate νre.

As material-speci�c values of νre are not known, it is treated as a free parameter. However,

knowing that an atom typically makes several jumps before it is re-emitted [9, 143], it is

reasonable to assume that the re-evaporation rate is smaller than the surface jump rate of an

atom. In the following, we will therefore express νre as

νre = λreν
s
1 . (4.7)
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where λre is a scale factor that is typically less than one, and ν s1 is the surface jump rate of

atoms that be obtained from Eq. (4.4). If one wants to make a systematic study of the e�ects

resulting from an incomplete condensation, the simulations should be performed with many

di�erent values of λre.

Trapping at defects

A defect in the polymer structure is represented by a three-dimensional sphere whose radius

is a free parameter. The position of a defect cannot change during the simulation. Once a

defect and a metal particle intersect each other, the metal particle is considered as trapped

and it becomes immobile for the rest of the simulation run. That means that it cannot perform

surface or bulk jumps, but it can still coalesce with other particles. If the trapped particle is

an atom, the trapping has the additional e�ect that it prevents the atom from re-evaporating.

The old simulation model already o�ered the possibility to create an initial distribution

of defects in the plane at z = 0. This distribution could be de�ned by choosing the areal

number density of the defects, ρ, and a pattern for the arrangement of the defects, e. g.,

random or hexagonal. To account for the impingement of highly energetic particles during

sputter deposition, this functionality has been extended to allow for the creation of new

defects during the whole deposition process. For that purpose, a new random process has

been implemented which creates defects at random places in the plane at the height of the

current surface. At this, it is not checked whether this space is already covered by another

defect or metal particle. It is thus possible that the creation of a defect immediately leads to

the trapping of an existing particle.

Due to the simplicity of the model for the defects, it is di�cult to �nd a correspondence

between the speci�c values of the defect creation rate, labeled Jd, and the conditions of an

actual experiment (e. g., plasma parameters). We therefore introduce another free parameter,

γ =
Jd

Jm
, (4.8)

which must be varied to study the in�uence of the defects. Again, instead of making a direct

guess for the unknown parameter, it is related to another known parameter—in this case, it

is assumed that the amount of deposited atoms is much higher than the amount of created

defects, i. e., γ should be much less than one.

Trapping at columns

When both clusters and columns co-exist in the system, a cluster may not only encounter the

top of a column on the surface, but also any part of the column in the bulk. The previously

described columnar growth events are only carried out in the former case. In the latter case,

the concerned cluster becomes immobile for the rest of the simulation run. This behavior is

intended to re�ect the assumption that the structural relaxation of large objects is hampered

in the bulk.
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4.2. Simulation results

In this section, we study how the generation of surface defects in�uences the growth of

nanocolumns. For that purpose, we make a comprehensive analysis of simulation results

obtained with the present KMC model. In Sec. 4.2.1, we start with some general remarks on

the simulations. Then, we turn towards the in�uence of the defects in Secs. 4.2.2 and 4.2.3. In

Sec. 4.2.4, we conclude this investigation by analyzing the e�ects of bulk di�usion.

4.2.1. Preliminary remarks

Fixed simulation parameters

All simulations were carried out with the same surface size Lx = Ly = 300 nm, and the

simulations were always terminated when the value of the height Lz reached 100 nm. Apart

from that, the simulation model involves a considerable number of parameters, but not all of

them have been varied for this study. As it is the goal to show the e�ects of the extensions of

the simulation scheme developed by Rosenthal et al., many values of the parameters have

been taken over from previous investigations. For completeness, all �xed parameters are

summarized in the following list. For further details and thorough discussions, it is referred

to Refs. [9, 34, 36].

• The di�usion coe�cient of atoms on the surface, Ds
1, was set to the �xed value

1.7 × 10−11 cm2/s, which is close to the values which were used in Ref. [9].

• In Refs. [34] and [9], bulk di�usion was neglected, i. e., atoms and clusters in the

bulk were unable to move. In some cases, the neglect of bulk di�usion may indeed

correspond to the actual behavior of a real system. As far as only computational aspects

are considered, however, it is most important that the simulation times are much shorter

without bulk di�usion. For this analysis, we will �rst keep the assumption that bulk

di�usion can be neglected, in Secs. 4.2.2 and 4.2.3, and later, in Sec. 4.2.4, we will study

possible deviations caused by variations of the bulk di�usion coe�cient Db
1 .

• The interaction length was set to 0.3 nm.

• The critical radius for the onset of columnar growth was set to rcrit = 1.15 nm, which

corresponds to a cluster size of 500 atoms.

• The radius of the defects was set to 0.3 nm.

Deposition rates

All simulations have been performed with the same deposition rate of metal atoms, Rm =

0.8 nm/min, but di�erent deposition rates of the polymer, Rp. For the discussion of the results,

the ratio

κ :=
Rm

Rp
(4.9)
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will be used. Just as in Refs. [9, 34], the results in this work have been obtained for κ-values

between 0 and 5. We will see that this range covers the characteristic increase of the �lling

factor that is related to the onset of columnar growth.

Analyzed column properties

In this chapter, most quantitative statements concerning the growth of nanocolumns build

on three quantities extracted from the simulation data: the number of columns, the diameter

of the columns, and the volume �lling factor. As mentioned before, the �lling factor, labeled

f , denotes the ratio of the volume of the deposited metal, Vm and the total volume of the

composite,

f =
Vm

LxLyLz
. (4.10)

The diameter of a column, d0, is obtained by dividing the widths of the sphere segments by

the total number of sphere segments. However, if bulk di�usion is allowed, a correction to

this value is applied to account for clusters which are trapped at a column: if we let h be the

height of the column, the corrected diameter is de�ned as the diameter of a cylinder with

the height h whose volume is equal to the sum of the volume of the column, approximated

by π (d0/2)
2h, and the total volume of the trapped clusters. Hence, the correction of the

diameter describes the radial extension of the column if the total volume of all clusters is

homogeneously distributed on the side surface of the volume.

Computational aspects

Each simulation run was executed on one CPU core. So far, no parts of the code support

parallel running. The longest simulation times are required when many deposited atoms are

removed due to re-evaporation. This can be the case when the rate νre is high or when the

number of defects is very low. With the aforementioned settings for the simulation box, the

total number of all involved atoms may grow up to the order of 108. While the treatment of

such a high number of atoms would exceed the capabilities of most atomistic simulations, the

computation times with the present KMC model always remained below 10 hours.

4.2.2. Influence of defects on the substrate

Although the KMC program had already o�ered the possibility to study the in�uence of

defects existing on the surface before the deposition starts, such an analysis has not yet

been performed for nanocolumnar growth. For this reason, we will do this in this section by

considering variable defect densities ρ for hexagonal and random arrangements of defects.

The more complicated situation, the continuous creation of defects during the deposition

process, will be in the focus of Sec. 4.2.3.

Hexagonal pa�ern of defects

If a polymer substrate is pre-treated in a plasma environment to create defects in the surface,

a disordered arrangement of defects will appear. From a theoretical point of view, however,
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Figure 4.4.: Column properties as a function of the ratio of metal and polymer deposition rates

for di�erent defect densities ρ. The results have been obtained with a hexagonal

arrangement of defects and the re-evaporation rate νre = 0.9ν s1. Each point of the

curves represents an average value obtained from 5 simulations with the same

parameters, but di�erent seeds of the random number generator. The errorbars

indicate the standard deviation. Adapted from [141].

it is also of interest to study an idealized case where the defects are placed on a lattice. For

example, this has the advantage that one can easily check if the nanocolumns reproduce the

pattern of the defects by creating visualizations of the simulation results. Beyond that, one

can avoid di�erent distances between the defects, which allows for a further simpli�cation

of the analysis. Before we turn towards a random distribution of defects, we will therefore
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concentrate on the idealized case that the defects are arranged on a hexagonal lattice. For the

most part, the basis for our observations will be provided by Fig. 4.4, where the κ-dependence

of the number of columns, the mean diameter of the columns and the �lling factor is shown

for νre = 0.9ν s1 and four di�erent defect densities2 ρ. At �rst, we make a detailed analysis for

an intermediate value of ρ. Only then, we describe the e�ects that result from an alteration

of the defect density. Finally, we also make a brief analysis of the lengths of the columns.

Investigation for an intermediate defect density. We start by considering the data for

ρ = 1 × 10−2 nm−2, as it most obviously displays the behavior described in Refs. [9, 34]:

as shown by Fig. 4.4a, no columns are formed for small values of κ because the amount of

deposited metal is so small that the clusters radii do not exceed the critical value. This changes

when κ is between 2 and 3 as the number of columns steeply increases and the number of

spherical clusters decreases, cf. Fig. 4.5. In Fig. 4.4c, we �nd that the onset of columnar growth

is associated with a sharp increase of the �lling factor. This can be explained by the fact

that the top parts of the columns provide a large area of the surface at which subsequently

deposited atoms are captured. For κ > 3.5, the number of columns already reaches a saturated

state: in this regime, an increase of κ only leads to thicker columns, cf. Fig. 4.4b, but not more

columns—the �lling factor still increases as it re�ects the growing relative amount of metal in

the system. Unlike the number of columns and the �lling factor, the diameter of the columns

is a non-monotonic function of κ. It attains a maximum value of approximately 7 nm close to

κ = 2.5, where the curvatures of the other quantities change their sign. The occurrence of the

maximum can be explained by considering the competing growth events of di�erent columns:

for a critical value of κ, the number of columns is so high that a uniform distribution of the

deposited metal comes along with a reduction of the amount of metal per column. Only when

the number of columns does not change any more, the increase of the diameter becomes

monotonic.

Visualization of clusters and columns. Before we continue with the analysis of other

defect densities, we specify the observations for ρ = 1 × 10−2 nm−2 with the aid of the

visualizations in Fig. 4.6. The images in this �gure provide a top view and an auxiliary view of

the �nal system con�gurations of three simulations with di�erent values of κ. In the �rst row,

for κ = 0.5, no columns, but only spherical clusters are present. These clusters are uniformly

distributed over the whole polymer matrix—only at the bottom of the simulation box, most

clusters are very close to a defect, but this is hard to recognize in the images.

The second row of Fig. 4.6, representing κ = 2.5, displays some features that are character-

istic of the onset of columnar growth: both clusters and columns co-exist, but the number of

clusters is already strongly reduced. In addition to this, the arrangement of the defect already

plays a crucial role because all columns and almost all clusters are located at a defect site.

In the following, we explain the depicted con�guration in the �gure by tracing it back to

some important steps at the beginning of the growth process. When the deposition starts, it

2The listed values of ρ are the values that have been used as an input for the simulation program. The values
of ρ used in the actual simulations may be slightly altered to satisfy the requirement of a hexagonal lattice
structure. For the given surface size, the resulting deviations are negligible.
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Figure 4.5.: Dependence of the number of spherical clusters on the ratio of metal and polymer

deposition rates for di�erent defect densities ρ. The results have been obtained

with a hexagonal arrangement of defects and the re-evaporation rate νre = 0.9ν s1.

Each point of the curves represents an average value obtained from 5 simulations

with the same parameters, but di�erent seeds of the random number generator.

The errorbars indicate the standard deviation.

is unlikely that clusters nucleate at a position outside the vicinity of a defect because the re-

evaporation rate, νre = 0.9ν s1, is very high. As the amount of deposited metal su�ces to cover

almost all defects with a cluster—only one defect site remains free in this example—nearly

all deposited atoms are either absorbed by these immobile clusters or re-evaporate from the

surface. While the deposition process continues, the clusters grow at nearly the same rates

until some of them eventually turn into a column. It depends on just small �uctuations of the

growth rates which clusters become columns and which not. Once all columns have formed,

it becomes more and more unlikely that deposited atoms are attached to one of the clusters

instead of a column. Hence, the growth of clusters is disrupted and only the columnar growth

persists. From that point on, the growth is stationary, i. e., the characteristics of the resulting

composite will not change any more. Even if new clusters are formed by random nucleation

on the elevated surface, it is unlikely that they are buried before they di�use into an area

where they are absorbed by a column. Hence, the only essential e�ect of the deposition in

the remaining time is a vertical extension of the columns.

Based on the explanations for κ = 2.5, we can immediately understand the behavior for

κ = 4, depicted in the third row of Fig. 4.6: in this case, the amount of deposited metal is

large enough that all initially existing spherical clusters turn into columns. As these columns

absorb almost all atoms and clusters in the space between them, the number of columns
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remains equal to the number of defects. In accordance with the aforementioned observations

from Fig. 4.4, the images in the third row are exemplary for the behavior in the regime

where the number of columns cannot be further increased just by raising the ratio κ. If the

corresponding images for any other κ-value in that regime had been used, they would look

very similar: the number of columns would be the same, but the thickness of the columns

would be slightly di�erent.

To conclude, we can state that the graphical analysis has helped us to show that the

saturation of the number of columns occurs when each defect is the origin of one column.

Hence, the total number of columns can be calculated from the expression ρLxLy . The lower

one of the two horizontal lines in Fig. 4.4a represents exactly that value for the density

ρ = 1 × 10−2 nm−2; in fact, it accurately captures the simulation results for large values of κ.

Before we proceed, we use the images shown in Fig. 4.6 to make some additional remarks

concerning the shape of the columns. All the columns extend over the whole space of the

simulation box in vertical direction, i. e., their lengths are roughly 100 nm. Although the

columns consist of multitudinous stacked sphere segments, their widths exhibit only small

�uctuations. The bottom parts of the columns reveal some details of the initial phase of their

growth: once a spherical cluster becomes large enough that the columnar growth is initiated,

the thickness of the column steadily increases until a stable value is reached. This behavior

is in agreement with a similar observation made with a continuous model to describe the

growth of nanocolumns in Ref. [144]. Nevertheless, we may have some doubts about the

description of the very thin part of the column where the spherical part at the bottom merges

into the elongated part. It is plausible that this is just an artifact of the simulation model

which results from the discontinuous change from one growth mode to the other. However,

we cannot expand on this without further reference data.

E�ects of increased/reduced defect densities. Now that we have given a detailed ex-

planation for the behavior associated with ρ = 1 × 10−2 nm−2, we can turn towards other

values of the defect density and discuss the occurring deviations. To begin with, we consider

the value ρ = 3 × 10−2 nm−2 because the behavior is quite similar: again, the onset of colum-

nar growth is associated with a steep increase of the �lling factor and the occurrence of a

maximum column thickness, but the growth sets in for larger values of κ. The reason for this

is the following: when the number of defects is increased, the number of clusters nucleating

at the beginning of the deposition process becomes larger, too. As all clusters together contain

nearly the same amount of metal as the clusters occurring for ρ = 1 × 10−2 nm−2, the average
cluster size is smaller. At the same time, that means that more metal—and thus a larger value

of κ—is required for the columnar growth to set in. Just as for ρ = 1 × 10−2 nm−2, we could
again observe the tendency that each column grows at a defect site, but this is not explicitly

shown here. In the saturated state, the number of columns therefore becomes three times as

large as for ρ = 1 × 10−2 nm−2. However, as the columnar growth sets in for larger values of

κ, the occurrence of saturation is shifted to larger κ, too. In fact, Fig. 4.4a reveals that even

for κ = 5, the number of columns has not yet reached the expected maximum, i. e., the same

value as the number of defects. Considering the thickness of the columns and the �lling factor,

we �nd that the relation between these quantities and the number of columns is similar to
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Figure 4.6.: Illustration of the distribution of nanocolumns (green) and clusters (yellow) for

di�erent values of κ, as seen in a top view and in an auxiliary view. The empty

space between the columns and clusters represents the continuously modeled

polymer. The simulations have been performed with a hexagonal arrangements

of defects with the density ρ = 1 × 10−2 nm−2, and the re-evaporation rate νre =

0.9ν s1.

the case with ρ = 1 × 10−2 nm−2. In fact, it turns out that there is a close relation between

the thickness of the columns and the number of columns which is widely independent of the

defect density. For example, this becomes apparent for κ ≈ 3.5, where the number of columns

and the mean diameter are the same for ρ = 3 × 10−2 nm−2 and ρ = 1 × 10−2 nm−2. Beyond
that, even the curves of the �lling factor intersect with each other at that point. The reason

for this is that the total volume of the spherical clusters can be neglected in this regime. The

volume of the metal can thus be approximated by the product of the number of columns and

the mean diameter, which is the same for ρ = 3 × 10−2 nm−2 and ρ = 1 × 10−2 nm−2.
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Now we consider the defect density ρ = 5 × 10−2 nm−2. Compared to the two other

discussed values, the columnar growth is strongly suppressed: the considered range of κ-

values only covers the initial increase of the number of columns, and even for κ = 5, the

value is still far below the value 4500, which we obtain by using again the product ρLxLy to

estimate the number of columns in the saturated state. Apart from this, however, the system

behaves similarly to the previously discussed cases. For example, the mean diameter of the

columns attains a maximum value at κ ≈ 3.5, but the peak is much broader. We can therefore

expect that the mentioned trends persist also for ρ = 5 × 10−2 nm−2, but the saturation of the

number of columns sets in for a very large value of κ which is not covered by the present

data.

To conclude the investigation of the quantities shown in Fig. 4.4, we turn towards the

lowest of the four densities, ρ = 1 × 10−4 nm−2. Although the length of the vertical axis in

Fig. 4.4a makes it di�cult to recognize any details, we can �nd again that the number of

columns goes into saturation. However, in this case, the value is on the order of 70, which is

signi�cantly larger than the value 9 resulting from the product ρLxLy . We can thus deduce

that the considered defect density yields an example for the case when the number of defects

is so small that their in�uence can be neglected; in such a case, the columnar growth is

initiated by a sequence of random nucleation events rather than preferred nucleation events

at defect sites. This behavior also causes the occurrence of a disordered arrangement of the

columns instead of the previously observed hexagonal arrangement. Furthermore, it may

even happen that some of the columns are formed at elevated surface heights instead of the

bottom of the simulation box. An example for this behavior can be found in Fig. 4.7, where

the �nal con�guration of a simulation with the parameter κ = 5 is shown. Now, considering

the diameter of the columns shown in Fig. 4.4b, we �nd that the density ρ = 1 × 10−4 nm−2
yields the largest values for almost all employed values of κ. Again, this can be explained by

the small number of columns resulting in a reduced relevance of the competition between

growth events at di�erent columns. Nevertheless, the curve for the �lling factor reveals that

the increased thickness does not compensate for the low number of columns: the values

remain below the values of the other curves in almost all cases. In particular, these di�erences

become very large as κ is increased from 3.5 to 5.

Lengths of the columns. While we have so far concentrated on the diameter of the

columns and made some remarks on the shape of the columns, we now move to make a

brief analysis of the lengths of the columns. In most of the previously discussed examples,

almost all columns originate from a large cluster at the bottom of the simulation box, and

they continue to grow until the simulation is stopped. However, we have already seen by the

example of Fig. 4.7 that there are conditions under which there is a high chance that some

columns are formed far above the initial surface height. It has been found that this is the

main reason for the occurrence of columns whose lengths are below the �nal thickness of the

composite. In the following, we therefore complement the previous analysis by discussing

the distributions of the column lengths for di�erent defect densities ρ. In doing so, we refer

to data for the selected value κ = 5 shown in Fig. 4.8. For all values of ρ, the curves exhibit a

sharp maximum close to the �nal thickness of the composite, namely 100 nm. However, it is
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100 nm

side view top view auxiliary view

Figure 4.7.: Illustration of the �nal arrangement of the columns occurring in a simulation

with the parameters κ = 5, νre = 0.9ν s1, and the defect density ρ = 1 × 10−4 nm−2.
As a peculiarity of simulations with low values of ρ, columns are not only formed

at the bottom of the simulation box, but also at elevated heights. Beyond that, the

images give some examples for the intersection of two columns.

apparent that all peaks occur for values that are slightly larger than 100 nm. The reasons for

this that the routine to measure the length of a column computes the di�erence between the

highest point of the spherical cap at the top of a column and the lowest point of the spherical

part at the bottom. As explained in Sec. 4.1.1, the z-coordinate of the latter point may even

have a negative value. Hence, the length of a column may be slightly larger than the height

of the simulation box.

Looking at the data more closely, we �rst notice that there are small variations of the peak

positions which depend on the value of the defect density. Comparing with the mean diameter

of the columns for κ = 5 shown in Fig. 4.4b, we �nd that the position of the peaks re�ects the

thickness of the columns: the thicker a column is, the larger is the value of the peak position.

Again, this follows from the fact the top of the column is a spherical cap: the radius of the

corresponding sphere, which is approximately equal to the radius of the column, is also a

rough measure for the di�erence between the column length and the height of the surface.

While the distributions for all densities look very similar, the most apparent deviations from

the common trend are displayed by the curve for the defect density ρ = 1 × 10−4 nm−2: the
main peak after 100 nm is the �attest and broadest of all four peaks, and the �at branch below

100 nm displays a multitude of very small side peaks with strong �uctuations. In fact, these

peaks exactly re�ect the previously observed occurrence of columns with displaced origins.

Although this e�ect is clearly noticeable, the relative amount of such shortened columns is

still small. We will later see that the creation of defects during the deposition process may

lead to an enhancement of this trend.

Randomly distributed defects

In this section, we extend the analysis of the column properties to the case where the defects

are randomly distributed on the initial surface. The employed probability density is uniform,
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Figure 4.8.: Distribution of �nal column lengths occurring in simulations with the same

parameters κ = 5 and νre = 0.9ν s1, but di�erent values of the defect density ρ. The

arrangement of the defects was hexagonal. Each curve represents the average

values obtained from 5 simulations with the same parameters, but di�erent seeds

of the random number generator. The errorbars indicate the mean deviations

from the indicated values. Adapted from [141].

i. e., no regions of the surface are preferred, and the overlapping of defects is not forbidden. In

the following, we will study this case on the basis of the data shown in Fig. 4.9. These results

have been obtained in simulations with the same parameters as the results in Fig. 4.4, but a

disordered arrangement of defects was employed instead of a hexagonal one. Making use

of the �ndings for the idealized case discussed in the previous section, we can immediately

understand the main trends of the presented data. In particular, can �nd the same relation

between the number of columns, the diameter and the �lling factor. For this reason, we

will restrict ourselves to investigating the quantitative deviations of the number of columns

caused by the employment of a random distribution. On this view, one of the main features

we observe is that the number of columns in the saturated regime of κ-values is lower than

for the hexagonal arrangement. This can be explained by the fact that the random placing

of the defects may lead to two or more overlapping defects which e�ectively count as just

one defect as far as the formation of a nanocolumn is concerned. The relevance of this e�ect

particularly increased for high defect densities. In the following, we make an attempt to

convert the density ρ to an e�ective density ρe� that we can be used to predict the number of
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Figure 4.9.: Column properties as a function of the ratio of metal and polymer deposition rates

for di�erent defect densities ρ. The results have been obtained with a random

arrangement of defects and the re-evaporation rate νre = 0.9ν s1. Each point of the

curves represents an average value obtained from 13 simulations with the same

parameters, but di�erent seeds of the random number generator. The errorbars

indicate the standard deviation. Adapted from [141].

columns in the saturated state via

Ncolumns = ρe�LxLy . (4.11)

For the determination of ρe� , we �rst express it as a fraction of the actual density ρ,

ρe� = kρ , (4.12)
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Figure 4.10.: (a) Exemplary coverage of defects (red) with columns (green), as suggested

by the algorithm described in the text. The defect density for this example is

ρ = 1 × 103 nm−2. (b) Dependence of the factor k , introduced in Eq. (4.11), on

the defect density ρ. Adapted from [141].

where only the factor k ∈ [0, 1] remains to be determined. We can expect that k is not

constant, but an unknown function of the density ρe� . To determine this function, we �rst

assume that the factor (1−k ) denotes the fraction of defects which have at least one neighbor

that is so close that at most one column can be formed in their vicinity. In fact, we do not

know in advance how large the minimum distance between two defects must be such that

each of them may become the origin of a column. Yet, we can make a guess for the value of

this quantity and check if the number of columns can be predicted with that. In this spirit, a

separate Monte Carlo routine has been written to detect agglomerates of randomly placed

defects for arbitrary densities. The employed algorithm works as follows: First, the density ρ

and the dimensions of a su�ciently large surface are �xed. Then, a number of points that

represent the defects at the given density are created on the surface. Finally, the algorithm

searches for arrangements of equal-sized circles which cover all points on the surface. These

circles represent the columns; as their radius must be guessed, the value 1.15 nm—the critical

radius for the onset of columnar growth—has been used. Furthermore, a point is de�ned to be

covered by a circle if the distance between the point and the center of the circle is less than

the sum of the radius of the circle and half the defect radius. Again, this de�nition is rather

arbitrary, but it has been found to work out for this purpose. Among all found arrangements

of circles, only the one with the smallest number of circles is accepted. In order to obtain

good statistics for a given defect density ρ, this routine can be repeated many times. Last of

all, the factor k is extracted from the ratio of the average number of required circles and the

number of points. For a further illustration of the method, it is referred to Fig. 4.10b, which

shows an exemplary con�guration of circles and points that the algorithm has produced

for the density ρ = 3 × 10−2 nm−2. The results for the dependence of k on ρ, are shown in

Fig. 4.10a: in accordance with the above assumptions, the factor k smoothly transitions from

1, for low densities, to zero, for high densities.
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The two horizontal lines in Fig. 4.9a indicate the predicted values of the number of columns

using the formula Ncolumns = kρLxLy for the densities ρ = 1 × 10−2 nm−2 and 3 × 10−2 nm−2;
the corresponding values of k are 0.91 and 0.75. For ρ = 1 × 10−2 nm−2, the simulation results

are accurately captured in the regime κ ≥ 3.25. Also, for ρ = 3 × 10−2 nm−2, the prediction
seems to be accurate, but further data points for κ > 5 would be required to analyze this in

greater detail.

Comparing the curve for ρ = 5 × 10−2 nm−2 with the corresponding curve for the case of

hexagonally arranged defects, we notice that the curve for the random arrangement reaches

much higher values in the displayed range of κ-values. Again, we can explain this behavior

with the overlap of a certain amount of defects, which makes a characteristic di�erence in

this case: for the random arrangement, the e�ective density ρe� is so much smaller than ρ

that the tendency of the defects to shift the onset of columnar growth to larger values of

κ becomes much less relevant. In neither case, however, the presently considered range of

κ-values permits a check of predictions concerning the number of columns at saturation;

even for κ = 5, both curves are still far from leveling o�.

Lastly, we brie�y consider the value ρ = 1 × 10−4 nm−2. In this case, the density is so

low that the overlapping of two defects is very unlikely. Consequently, the data shown in

Figs. 4.9a–c for this value of ρ is nearly identical to the corresponding data for the hexagonal

arrangement shown in Figs. 4.4a–c. As it is again the case that the number of columns is

much higher than the number of defects, this means in particular that Eq. (4.11) cannot yield

correct predictions for low densities. Currently, it is therefore only possible to ascertain that

the concept of e�ective defect densities is appropriate for intermediate values of ρ.

4.2.3. Defect creation during deposition

In this section, we extend the previous analysis by considering the more complex case when

new surface defects may be formed at any point during the deposition process. In doing so, we

can expect that the description becomes more appropriate for the sputter deposition method,

as it is characterized by frequent impacts of highly energetic particles on the substrate. For

the most part, we will base this discussion on the the simulation results presented in Fig. 4.11.

The �gure shows the κ-dependence of the number of columns, the mean diameter of the

columns and the �lling factor for di�erent values of the parameter γ = Jd/Jm, which denotes

the ratio of the �uxes of defects and atoms towards the surface, see Eq. (4.8). As it very

di�cult to �nd a mapping between the conditions of an actual experiment, e. g., a set of

plasma parameters, and the required values of γ , the simulations have been performed with

di�erent values of γ which cover several orders of magnitude. As mentioned before, also the

re-evaporation rate remains a free parameter on this level of description. For this reason, both

columns of the �gure are intended to represent the cases of high and low re-evaporation rates,

namely νre = 0.9ν s1 and 0.2ν s1. Despite the creation of defects during the deposition, an initial

distribution of defects on the surface has also been employed in this case; the arrangement

was random, and the density was ρ = 1 × 10−2 nm−2. All other simulation parameters—which

are not explicitly listed here—do not di�er from the values used for the results of the previous

section.

Again, we start the discussion by �rst considering the number of columns. For the results
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Figure 4.11.: Column properties as a function of the ratio of metal and polymer deposition

rates for two di�erent re-evaporation rates νre and di�erent fractions of deposited

defects γ . Each point of the curves represents an average value obtained from 12

simulations with the same parameters, but di�erent seeds of the random number

generator. The errorbars indicate the standard deviation. Adapted from [141].
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Figure 4.12.: In�uence of the ratio γ on the distribution of heights at which the nanocolumns

are formed in the simulations. The results in (a) and (b) have been obtained

for two di�erent values of the re-evaporation rate νre. Each curve represents

the average values obtained from 7 simulations with the same parameters, but

di�erent seeds of the random number generator. The errorbars indicate the mean

deviations from the indicated values.

for the parameters γ = 1 × 10−6 and νre = 0.9ν s1, the e�ect of the additionally created defects is

still weak. Hence, the curve is nearly identical to the corresponding curve shown in Fig. 4.9a.

However, we �nd some deviations for νre = 0.2ν s1, which has not been considered in the

previous section: apparently, the use of a small re-evaporation rate shifts the steep increase

of the number of columns to smaller values of κ, and—instead of a branch with constant

values—the steep increase is followed by another increase, but the corresponding slope is

very slow. Such an additional increasing part for large values of κ is caused by the increased

probability for the formation of columns in the space between the majority of columns which

originates from defect sites. While this behavior can can be nearly completely suppressed for

the re-evaporation rate νre = 0.9ν s1, it obviously has a noticeable e�ect for νre = 0.2ν s1. Despite

these small di�erences, we will simplify the following discussion by referring to both values

of νre at the same time. In fact, all e�ects mentioned below are similar in both cases, only

they are more pronounced for the smaller re-evaporation rate, νre = 0.2ν s1.

When γ is raised, we notice three dominant e�ects: the number of columns is raised for all

considered values of κ, smaller values of κ are required to observe the growth of nanocolumns,
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Figure 4.13.: Rendered illustration of columns and spherical clusters for di�erent values

of the parameter γ , which is used to control the amount of defects created

during deposition. The images correspond to the �nal states of simulations

with νre = 0.9ν s1 and ρ = 1 × 10−2 nm−2. It can be noticed that several columns

shown in the �rst and second row have the same positions. The reason for this is

that the initial distribution of defects has been the same in all simulations—also

for γ = 1 × 10−4 and 1 × 10−3, but in these cases, the in�uence of the initially

existing defects is negligible.
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and the constant (or nearly constant) part for large κ-values gets replaced by a part that

displays an ongoing increase. With the same arguments as in the previous section, we can

immediately understand the �rst point: an increased amount of defects leads to more columns

because they preferably growth in the vicinity of a defect. Yet, the last two points are di�erent

from the corresponding behavior we observed in Figs. 4.4 and 4.9 for an increase of ρ. For

example, we found that an increase of ρ shifts the onset of columnar growth to larger κ-values,

but an increase of γ does the opposite. The reason for this contrary behavior is the placing

of the defects: the initially existing defects are all placed at the initial height z = 0. That

means that the formation of nanocolumns is most likely when the amount of deposited metal

su�ces to form them before these defects are buried due to the elevation of the surface. In

contrast, if the defects are permanently created during deposition, the situation is di�erent:

the ongoing addition of defects makes it much more likely that nanocolumns are also formed

at later stages of the deposition, i. e., also when the surface has reached a high position.

A con�rmation of this trend is also provided by Fig. 4.12, which shows the distribution of

column origins for all considered values of γ and νre. Yet, the data in the �gure reveals that the

di�erence occurring due to the growth of additional columns at elevated heights is still made

at the early stage of the deposition: the relative amount of columns whose origin is above a

height of 3 nm is in all cases very small. With the observation of the column formation at

higher position in the simulation box, we can explain both remaining trends of the number

of columns, the vanishing saturation and the shift of the increase to smaller κ-values. The

other two quantities shown in Fig. 4.11 are again closely related to the number of columns:

the thickness of the columns reaches the largest values for the smallest value of γ because of

the reduced amount of competing growth events for a small number of columns. The curves

for the �lling factor have the same order as the curves for the number of columns, i. e., the

largest �lling factors are associated with a large number of defects.

For additional insights on the in�uence of the parameterγ , we make again use of visualizing

the �nal system con�gurations. In Fig. 4.13, the �nal states are shown as seen in three di�erent

views for all considered values of γ between 1 × 10−6 and 1 × 10−3. The images con�rm all

above discussed trends—in addition to this, they show that an increase of γ is related to

a strong increase of the number of spherical clusters in the space between the columns.

These clusters are preferably formed at the additional defect sites, i. e., most of the clusters

are immobile and cannot be absorbed by the columns. The simultaneous presence of both

columns and clusters is a characteristic e�ect of the creation of defects during deposition—in

the preceding studies without the addition of defects, we have always found that either

columns or clusters prevail against the other ones.

4.2.4. Influence of bulk di�usion

All the previous �ndings are based on the assumption that the columnar growth is only

weakly in�uenced by cluster di�usion processes in the bulk. In this section, we seek to verify

this assumption by studying the column properties obtained from simulations that allow

atoms and clusters to perform bulk di�usion jumps3. As mentioned before in Sec. 2.2, we

3For the implementation of the bulk di�usion process, the author received assistance from Nuttawut Kongsuwan.
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Figure 4.14.: In�uence of the ratio of surface and bulk jump rates for atoms, rs/b = ν s1/ν
b
1 ,

on the growth of nanocolumns. The case rs/b = ∞ corresponds to simulations

without bulk di�usion. All simulations have been performed with the same

re-evaporation rate νre = 0.9ν s1, but two di�erent values of γ , 1 × 10−6 (left

column) and 1 × 10−6 (right column). Each point of the curves for rs/b = 1,

and 20 represents an average value obtained from 8 simulations with the same

parameters, but di�erent seeds of the random number generator. The errorbars

indicate the mean deviations from the indicated values. Adapted from [141].
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cannot do such an investigation without making rough estimations for the ratio between

surface and bulk di�usion coe�cients. In order to make a systematic study, we therefore

introduce the parameter

rs/b = ν
s
1/ν

b
1 , (4.13)

which denotes the ratio of the surface and bulk jump rates of atoms. Keeping the same value

of ν s1 as before, only ν
b
1 is varied by considering three di�erent values of rs/b: 1, 5 and 20. As

compared to the previously mentioned value of roughly 60, these values are relatively small.

The intention of this choice is to clearly demonstrate the trends resulting from the activation

of bulk di�usion.

In the following, we discuss the results shown in Fig. 4.14. They have been obtained for the

γ -values 1 × 10−6 and 1 × 10−3 in simulations with the �xed values of the re-evaporation rate,

νre = 0.9ν s1, and the density of randomly distributed defects, γ = 1 × 10−4. For comparison,

the �gure also shows the results for the case without bulk di�usion, which we loosely express

by rs/b = ∞. In general, we can expect that the e�ect of bulk di�usion is most apparent

when the in�uence from other circumstances that limit the di�usion of clusters is minimal.

Concerning the data shown in Fig. 4.14, this is the case for γ = 1 × 10−6, because the fraction
of trapped clusters is small, and for small values of κ, because the formation of large clusters

and columns, which move slowly or not at all, is limited. The curves for rs/b = 1 in the left

column of the �gure indeed con�rm this assumption. In the regime below κ = 3, all three

quantities display the largest deviations.

With the exception of the curves representing the number of columns for γ = 1 × 10−3 in
Fig. 4.14b—which are so close to each other that it is di�cult to make out any trend—we can

summarize the in�uence of bulk di�usion as follows: the ability of clusters to perform bulk

jumps not only increases the overall mobility of the clusters, it also enables atoms to jump

from the surface to the bulk and thus reduces the re-evaporation probability of atoms. Both

mechanisms are conducive to the rapid formation of large clusters and columns, which is in

agreement with the observation that a decrease of rs/b leads to a shift of the increasing branch

of the number of columns to smaller κ-values in Fig. 4.14a. In contrast to the many examples

discussed before, we �nd in this case that such an early increase of the number of columns

is not necessarily accompanied by a decrease of the mean diameter. Although it is again

the case—at least for γ = 1 × 10−6— that the diameter has a non-monotonic κ-dependence, a

decrease of ν s1 in all cases leads to thicker columns. The �lling factor follows exactly the same

trend because it re�ects the increased amount of metal in the system.

According to the above description, the incorporation of the bulk di�usion process may

indeed a�ect the columnar growth. Nevertheless, the data in Fig. 4.14 also reveals that

noticeable e�ects only appear in speci�c regions of κ-values and, in particular, for very large

bulk di�usion coe�cients. For example, the deviations from the case without bulk di�usion

that occur for ν s1 = 20 are very small. Even for the ratio ν s1 = 5, which is already far below

the aforementioned value of 60, a neglect of bulk di�usion may still be su�cient for many

practical applications. For ν s1 = 1, we see rather strong deviations, but it remains questionable

if this case provides a realistic representation of any relevant experimental combination of

materials.
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4.3. Summary

In this chapter, we used an extended version of the KMC model by Rosenthal et al. [9, 34]

to study the in�uence of surface defects on the growth of nanocolumns. The defects have

two opposing e�ects: they decrease the mobility of atoms and clusters whose di�usion is

important for the growth of columns, but they also provide sites for preferred nucleation

of clusters, which may eventually become large enough to form a column. The results in

this chapter show that the latter e�ect predominates for many combinations of simulation

parameters, i. e., the columnar growth can be enhanced by the addition of defects. This

statement largely holds concerning the initial distribution of defects as well as the additional

defects created during deposition. At this, it has been found that the thickness of the columns

not only depends on the ratio of the metal and polymer deposition rates, but, in many cases,

also on the number of columns. We can roughly summarize that the thickness of the columns

is often decreased when the number of columns is increased. The �lling factor indicates the

total relative amount of metal in the system. Hence, it re�ects both the number of columns

and their thickness. Furthermore, it may also indicate the presence of spherical clusters

existing alongside the columns, e. g., when defect creation rate is large.

As typical of KMC simulations, the present description of the metal–polymer nanocom-

posite formation involves a high degree of coarse graining. Still, many of the simulation

parameters had to be treated as free parameters due to the lack of accurate reference data.

However, since the old version of the simulation model has undergone extensive testing and

adequately described the growth processes in di�erent case scenarios [9, 34–36], we may

assume that the predictive power of the extended version is on a similar level. For a deeper

analysis of the accuracy, however, it would be bene�cial to make comparisons with new

experimental data.
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Chapter 5

Growth of Gold Clusters on a

Polymer Surface

Now that we have extensively studied the formation of metal–polymer nanocomposites by

means of KMC simulations, we will continue by exploring an alternative approach based on

atomistic MD simulations. The main advantage o�ered by MD simulations is that no prior

assumptions about possible cluster shapes have to be made. As all atoms arrange themselves

according to the energetic conditions imposed by the employed force �elds, MD simulations

can, in principle, produce all kinds of highly complex metallic structures. However, this only

works at the cost of a large computational e�ort. As opposed to the KMC simulations, we will

therefore concentrate on small “two-dimensional” systems in this chapter. Concerning the

limitations put on the accessible time scales, we will work out a speci�c procedure to imitate

the behavior on realistic experimental time scales.

In this chapter, we will investigate a new MD simulation scheme which was originally

designed to simulate the growth of thin gold (Au) �lms on a polymer substrate with similar

conditions as in the experiment conducted by Schwartzkopf et al. [61]. For this reason, we will

start by summarizing the procedure of that experiment in Sec. 5.1. A detailed explanation of

the simulation scheme and a discussion of the approach to reach long time scales will be given

in Secs. 5.2 and 5.3. In the remaining parts of the chapter, we will study the simulated �lm

morphology for various combinations of simulation parameters and make a comprehensive

comparison with the experimental reference data from Ref. [61].

5.1. Experimental reference data

In the experiments described in Ref. [61], radio frequency sputter deposition with an argon

plasma was performed to grow a nanostructured gold �lm on a thin polystyrene �lm at

room temperature. The morphological changes of the gold �lm were traced by carrying out

time-resolved in-situ GISAXS measurements during the deposition process. The patterns

of the scattered X-rays were used to calculate the number density of clusters, the heights

and radii of the clusters, and the distances between clusters. The concept of the method has

already been explained in Sec. 2.1.2, but the comparison between the experimental data and
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radius

d

perspective view top view

Figure 5.1.: Illustration of the geometrical model used in Refs. [32] and [61] for the �t to

experimentally measured GISAXS data. The clusters are assumed to have a

hemispherical shape and a hexagonal arrangement with distance d .

the simulation results in Sec. 5.4 will refer to speci�c details of the experiment; for clarity,

these are brie�y summarized in the following.

The deposition process of the thin gold layer took 1012 s, and the interval between sub-

sequent GISAXS measurements was 0.1 s. Directly after the deposition, a measurement of

the e�ective Au layer thickness yielded the value 8.31 nm. With this, an e�ective deposition

rate of 0.49 nm/min was determined. Each recorded frame of scattering patterns in the qy -qz -

plane (cf. Sec. 2.1.2) was separately evaluated to characterize the �lm morphology at speci�c

points in time. The interparticle distance d was deduced from the position qy,1,max of the �rst

side peak in qy -direction according to

d =
2π

qy,1,max
. (5.1)

Assuming a local hexagonal arrangement of hemispheres for the cluster geometry, the radius

of the clusters was calculated with the knowledge of d and the e�ective �lm thickness

corresponding to the data under consideration. At the same time, the number density of

clusters was extracted from size of the triangular unit cell. The heights of the clusters were

determined in an independent procedure by �tting the parameters of a model system to the

experimental data. For that purpose, the scattering patterns of hemispheres on a regular

one-dimensional lattice were simulated, and the heights of the hemispheres were adjusted

such that the minima in qz-direction could be reproduced.

5.2. Simulation scheme

In the following, a comprehensive explanation of the simulation method is given. To ease the

understanding, a graphical illustration of most aspects discussed throughout this section is

given in Fig. 5.2.
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lost atoms
Lz

zinit

zmax
surface

zmin
surface

PBC

(a) (b)

(d)

(c) (e)

(f) (g)

(h)

B (III)

B (II)

B (I)

Figure 5.2.: Illustration of the partitioning of the simulation box and the atomic processes

occurring in the simulations: deposition of an atom (a), deposition and implanta-

tion of an atom that represents a defect (b), di�usion in the bulk region B (I) (c),

di�usion in the surface region B (II) (d), re�ection of an atom at the bottom of the

simulation box (e), re�ection of a neighborless atom at the top of region B (II) (f),

removal of an atom from region B (II) due to re-evaporation (g), formation of a

cluster that extends over regions B (I) , B (II) and B (III) (h). The label “PBC” indicates

periodic boundary conditions for the lateral directions. When an atom crosses

the boundary at the vertical position Lz—a very rare event—, it is removed from

the simulation box. Adapted from [145].

Material constants of gold

As a preliminary remark, it is mentioned that the simulations require the atomic mass and the

density of gold as input quantities. The respective values used in this work aremAu = 196.97 u

and ϱAu = 19.30 g/cm3.

Partitioning of the simulation box

The motion of the atoms is restricted to a simulation box comprising all points in the set

B =
{
(x ,y, z) | 0 ≤ x ≤ Lx , 0 ≤ y ≤ Ly , 0 ≤ z ≤ Lz

}
. (5.2)

For the results in this work, Lx and Ly are always between 40 nm and 60 nm, and Lz always

has the value 8 nm. To represent the upper part of the polymer bulk, the surface of the

polymer and the area above the surface, the simulation box is partitioned into the three

57



5. Growth of Gold Clusters on a Polymer Surface

respective subsets

B (I) =

{
(x ,y, z) | 0 ≤ x ≤ Lx , 0 ≤ y ≤ Ly , 0 ≤ z < zmin

surface

}
,

B (II) =

{
(x ,y, z) | 0 ≤ x ≤ Lx , 0 ≤ y ≤ Ly , z

min
surface ≤ z < zmax

surface

}
,

B (III) =

{
(x ,y, z) | 0 ≤ x ≤ Lx , 0 ≤ y ≤ Ly , z

max
surface ≤ z ≤ Lz

}
.

(5.3)

The z-direction is thus de�ned to be perpendicular to the surface. By applying a di�erent

treatment of the atoms in each of the regions B (I) to B (III) , it is possible to emulate the behavior

of metal atoms at the polymer surface without the need of incorporating an explicit particle

model for the polymer. Further details will be explained below.

Creation of atoms

Initially, no atoms exist in the system. When the simulation starts, new atoms are successively

created at a random position in the plane at the height zinit = 7 nm. The choice of zinit has

no particular meaning—in fact, the simulation results will not be di�erent, if one sets zinit to

any other value which is less than Lz and much larger than the expected cluster heights at

the end of the simulation. The interval between successive creations of atoms is a constant

time whose value is calculated from the pre-de�ned �ux of atoms J simm . The initial velocity

of every created atom is set to vinit = (0, 0,−0.1 nm/ps), i. e., the atoms approach the surface

under an angle of 90◦.
Of course, this is a strongly simpli�ed description of a real deposition process, for which

one can expect di�erent (and in particular broader) distributions of velocities and impact

angles. However, these distributions are di�cult to obtain, and even if accurate data was

available for implementation, the following two points should be considered:

• A main assumption of the model is that most of the deposited atoms remain on the

surface or slightly below it. It may therefore be impossible to adequately simulate the

impact of very fast particles which are expected to penetrate into deeper regions of

the polymer bulk. In contrast, for the impact of fast particles on metal clusters, a more

appropriate description would be expected, but such a case would possibly require one

to perform the simulations with signi�cantly smaller time steps.

• As long as the distribution of impact angles remains relatively narrow and has a

maximum at 90◦, no signi�cant deviations from the current results with the �xed

angle of 90◦ are expected. Nevertheless, it is known that the deposition under oblique

angles may lead to interesting e�ects, e. g., due to the shadowing of certain areas on

the surface (for example, see Refs. [146, 147]). So far, it has not been checked whether

the simulation scheme has the ability to reproduce e�ects of that kind.

Equations of motion

The main idea for an implicit representation of the polymer surface is to perform Langevin

dynamics with anisotropic forces in regions B (I) and B (II) , and purely microscopic dynamics

(without external forces) in region B (III) . At the same time, the interatomic forces are governed
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by the same potentialU in all regions of the simulation box. In this case, the EAM potential

for gold atoms provided by Foiles et al. [125] is used. In the following, we look more closely at

the equations of motion, assuming that the system contains Nm atoms with the coordinates

r = (r1, r2, . . . , rN ) and the massesm1, m2, . . . mNm . In the case of simulations with gold

atoms, these masses are all set to the same value ofmAu.

In region B (III) , which corresponds to the area above the surface, the atoms may only be

in�uenced by other metal atoms; in particular, that means that the atoms remain una�ected

by the presence of the polymer surface. The equation of motion for the three-dimensional

spatial coordinate ri of the i-th particle thus takes the simple form

mi r̈i = Fi (r) , (5.4)

where Fi is the interatomic force acting on the i-th particle at the position ri . This force is the

derivative of the potentialU with respect to the coordinates of the i-th atoms at the position

ri ,

Fi = −
∂

∂ri
U (r) . (5.5)

In the other regions, the in�uence of the polymer is taken into account by generating a

di�usive motion using Langevin dynamics. According to the explanations in Sec. 3.2.2, this is

done by adding a friction term and a stochastic force to the equation of motion. In region

B (II) , the di�usion parallel to the surface, i. e., in x- and y-direction, should be faster than

the di�usion perpendicular to the surface. For that purpose, the damping parameter τ ‖
surface

is used for both the x- and y-components of the forces, and another damping parameter,

τ⊥
surface

< τ
‖
surface

, is used for the z-component. Using the componentwise notations

ri =
*..
,
xi
yi
zi

+//
-

and Fi (r) =
*..
,
F xi (r)

F
y
i (r)

F zi (r)

+//
-
, (5.6)

the equations of motion for the i-th particle in region B (II) thus take the form

mi ẍi = F xi −
mi

τ
‖
surface

ẋi +

√

2mikBT

τ
‖
surface

Rxi , (5.7)

miÿi = F
y
i −

mi

τ
‖
surface

ẏi +

√

2mikBT

τ
‖
surface

R
y
i , (5.8)

mi z̈i = F zi −
mi

τ⊥
surface

żi +

√

2mikBT

τ⊥
surface

Rzi . (5.9)

Here, Rxi , R
y
i and Rzi are independent uncorrelated Gaussian processes for each component.

According to Eq. (3.9), the choice of the di�erent damping parameters corresponds to two

di�erent di�usion coe�cients,

D
‖
surface

=

1

mi
kBTτ

‖
surface

and D⊥surface =
1

mi
kBTτ

⊥
surface , (5.10)
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for the motion of freely di�using atoms parallel to the surface and perpendicular to it.

In region B (I) , which represents the upper part of the polymer bulk, the di�usion is intended

to be isotropic, i. e., the damping parameter τbulk is the same for all directions. For the equation

of motion, we can therefore use the vector notation again:

mi r̈i = Fi −
mi

τbulk
ṙi +

√

2mikBT

τbulk
Ri . (5.11)

In the following, we will assume that it is su�cient to set τbulk = τ
⊥
surface

, and hence

Dbulk =
1

mi
kBTτbulk = D⊥surface . (5.12)

Further, we assume that a reasonable value of τ⊥
surface

has already been found (the choice of

τ⊥
surface

will be discussed in Sec. 5.3 on the acceleration of the dynamics). For the determination

of τbulk it is then practical to reintroduce the parameter rs/b �rst used in Eq. (4.13) and write

τbulk =
τ
‖
surface

rs/b
. (5.13)

While values of rs/b between 10 and 100 are estimated to fairly represent the previously

discussed di�erences between surface and bulk di�usion coe�cients, the simulations were

performed with the �xed value rs/b = 80. Nevertheless, just as is the case with KMC simula-

tions, rs/b is a free parameter which may have to be adjusted to match the conditions of a

speci�c experiment.

Detection of transitions between regions and neighborless atoms

For the application of the di�erent equations of motion, the algorithm periodically reassigns

all atoms to the regions. The time interval for this task, t
regions

detect
, should be so small that

delayed detections of transitions from one region into another have no signi�cant e�ect on

the simulation results.

Moreover, some of the mechanisms discussed below require the identi�cation of atoms

without neighbors. The condition for being neighborless is that no other atoms are located in

the sphere with the radius rcut around the center of the considered atom. For the results in

this work, rcut is set to the cut-o� distance of the interaction potential. To save computation

time, the neighbor analysis is not performed after each time step, but only after larger time

intervals t
neighbors

detect
which should provide a compromise between computational e�ciency and

accuracy.

For the results in this work, both t
regions

detect
and t

neighbors

detect
are set to 300 × ∆t , where ∆t is the

time step used for the integration. Hence, the check for transitions and the identi�cation of

neighborless atoms happen after every 300 steps.
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5.2. Simulation scheme

Boundary conditions

Just as in the KMC simulations, periodic boundary conditions are applied to the directions

parallel to the surface. As the interaction potential is cut o� at a distance which is much less

than Lx and Ly , the interaction with particles in a periodic image does not require any special

e�ort.

The bottom plane of the simulation box is treated as a hard wall which re�ects all incoming

atoms. This is not only a practical solution to prevent atoms from escaping the simulation

box, it also has the physical meaning that atoms cannot penetrate deeper into the polymer

bulk. It is hence possible to keep the atoms close to the surface by choosing a relatively small

value of zmin
surface

.

To prevent unbound atoms from escaping region B (II) in an uncontrolled way, another hard

wall is introduced at the top of region B (II) at the height z = zmax
surface

. This wall only has an

e�ect on atoms coming from below, i. e., starting at a position with z < zmax
surface

at the previous

time step—all atoms coming from above will pass through it. Furthermore, the wall only acts

on atoms which are neighborless according to the above de�nition. As the motion of atoms

belonging to a cluster remains una�ected, the formation of clusters which protrude beyond

the surface region B (II) is not restrained.

The necessity to implement such a mechanism that keeps the atoms in regions B (I) and

B (II) arises from the implicit treatment of the polymer using Langevin dynamics: Due to

the presence of stochastic forces, all metal atoms are permanently pushed in all directions;

without any additional bonding mechanism, neighborless atoms could easily pass through the

plane at zmax
surface

and then move in a straight line until they reach the top of the simulation box.

Even though the re-emission of atoms from the surface is a relevant process in real systems,

it is unlikely that such a description relying on atoms randomly passing through the top of

region B (II)— which is foremost an artifact of the partitioning of the simulation box—properly

re�ects the desorption behavior of a real system. The introduction of a hard wall e�ectively

suppresses most of these unphysical events, but—as only neighborless atoms are a�ected by

it—it is still possible that the stochastic forces push dimers or larger clusters away from the

surface. This, however, happens only very rarely. In such a case, the atoms will move straight

towards the top of the simulation box, and after crossing z = Lz , they are removed from the

system.

Finally, as we can assume that most atoms will not accidentally leave the surface, another

mechanism is required to model desorption. The solution used in this work will be explained

in the next section.

Re-evaporation of atoms

The re-evaporation of atoms is modeled by a random process which successively attempts to

remove every neighborless atoms from region B (II) with the probability pre. The process is

repeated at a pre-de�ned time interval tre. During each execution, a random number between

0 and 1 is drawn for each detected neighborless atom; if the number is below the probability

pre, the atom is immediately removed—otherwise, it remains at its current position. Hence,

pre is the average fraction of neighborless atoms that is removed each time the process is
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called.

The idea to model the re-evaporation with a simple stochastic process was inspired by the

similar procedure in KMC simulation model. Although the instantaneous removal of an atom

can hardly approximate the real dynamics of a dissociating atom, we can use the process to

model the in�uence of re-evaporating atoms on the net deposition rate: at the beginning of

the deposition process, the density of metal atoms on the surface is so low that many atoms

do not stick to it for a long time. Later, during the nucleation and growth of more and more

clusters, the amount of re-evaporating atoms is continuously reduced.

Again, the drawback of such a simpli�ed model is that it does not come without free

parameters. In this case, tre and pre have been introduced and require careful adjustment.

For the results in this work, a �xed value of tre = t
neighbors

detect
was used, but pre was varied over

several orders of magnitude.

Creation of defects

Due to the absence of explicitly modeled components of the polymer chains, it is clear that

surface defects cannot be described on an accurate atomistic level. Nevertheless, we can

again take up the idea of the KMC model that atoms and clusters are trapped when they

come close to a defect. Roughly speaking, this is realized by making sure that some atoms

become immobile when they reach the surface. As these atoms—which we simply call “defects”

from now on—still interact with other mobile atoms, there is a high chance that a cluster

is formed around them. More precisely, already during creation a pre-de�ned fraction of

atoms is marked as a defect, but these defects will be treated like normal atoms as long as

they approach the surface. However, they are always treated microscopically, i. e., without

Langevin dynamics, until they eventually reach the lowest region B (I) . Once a defect is

detected in B (I) , its position is �xed for the rest of the simulation.

Evidently, it is also possible that a defect never reaches the point where it becomes immobile,

for example, if it is deposited on the top of a large cluster. This corresponds to the situation in

an actual experiment when the metal �lm shelters the polymer from the impact of energetic

particles. However, in such a case, re-sputtering of metal atoms might be observed in the

experiment. In the simulations, this is very unlikely to happen because the energy of the

defect is too small.

For the quanti�cation of the in�uence of the defects, we will reuse the parameter γ from

Eq. (4.8) with a slightly di�erent meaning: here, γ denotes the fraction of deposited atoms

which is treated as a defect according to the above description.

5.3. Acceleration of the dynamics: the rescaling method

As mentioned before, the MD simulation scheme was designed with the goal to recreate

the conditions of the experiment by Schwartzkopf et al. [61] (or similar experiments) in

a simulation. The relevant parameters of this experiment are the deposition rate Rexp
=

0.49 nm/min, the di�usion coe�cient1 Dexp
= 7.33 × 10−18m2/s and the temperature T exp

=

1The di�usion coe�cient was obtained with the kinetic freezing model [84].
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t0: empty surface t1: deposition of t2: deposition of t3: deposition of

Figure 5.3.: Illustration of the idea used to accelerate the �lm growth dynamics. The surface

is shown from the top at four di�erent times. Starting with an empty surface at t0,

the green atom is deposited at t1, the red atom at t2 and the blue atom at t3. The

morphology of the resulting �lm will crucially depend on how far the particles

move away from their origin during the time between successive depositions.

296 K. In Sec. 5.3.1, we discuss in detail how these parameters can be carried over to the

simulations. We will see that this procedure leads to an e�ective acceleration of the growth

dynamics. Subsequently, in Sec. 5.3.2, we continue with some remarks on several crucial

aspects of the method.

5.3.1. Explanation of the method

In Sec. 3.2.4, it was already stated that the simulations must be performed with a su�ciently

small time step. For this reason, we start by setting the time step to ∆t = 1 fs to resolve the

vibrations of atoms in clusters. With that, we can assume that it is hardly possible to �nd a

larger time step which signi�cantly reduces of the computation time and, at the same time,

maintains the accuracy of the calculations. When we convert the deposition rate Rexp from

the experiment to the �ux of deposited atoms J
exp
m using the density of gold, the large gap

between the relevant time scales in experiments and the simulation times accessible with

standard MD once more becomes evident: the average time between sequential depositions of

atoms on an area of 1 nm2 is 2 s. Although such a long time is far out of reach of simulations

with a time step of 1 fs, we now make an attempt to map the slow dynamics of the experiment

onto much shorter times which are within the scope of the present simulation scheme. In

addition to the following explanations, an illustration of one of the central ideas is given in

Fig. 5.3.

The basic assumption of this approach is that the �lm growth is essentially determined

by how far the atoms travel on the surface during successive deposition events, but not how

long that takes. If this is the case, the simulations can provide a realistic representation of the

long-term behavior by setting the simulation parameters as follows: �rst, the temperature

used in all Langevin equations is set to T = T exp. Next, the damping parameter τ ‖
surface

is

set to an appropriate value—in this case, τ ‖
surface

= 1 ps—other values will be considered will

be discussed in Sec. 6.1. The other damping parameter for the bulk di�usion, τbulk, is then

calculated according to the ratio de�ned in Eq. (5.13). By �xing the temperature and the
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damping parameters, at the same time, the di�usion coe�cients D ‖
surface

, D⊥
surface

and Dbulk

are determined according to Eqs. (5.10) and (5.12). With the knowledge of the di�usion

coe�cients, we can use Eq. (3.8) to calculate the mean squared displacement of a freely

di�using atoms in the simulations. Furthermore, the distance l sim‖ an atom moves away from

its origin during a certain time t can be estimated by taking the square root of the mean

squared displacement for the directions parallel to the surface,

l sim‖ (t ) =

√

4D ‖
surface

t . (5.14)

In the following, we call the average time between successive depositions in the simulations

∆t sim
deposition

. This time is proportional to the inverse of the particle �ux,

∆t simdeposition ∝ 1/J simm . (5.15)

For the corresponding distance, we introduce the notation

l̃ sim := l sim‖
(

∆t simdeposition

)

. (5.16)

Now, we demand that this distance is the same as the distance l̃exp that the atoms travel during

the waiting time ∆t
exp

deposition
between successive depositions in the corresponding experiment.

At this, ∆t
exp

deposition
refers to a segment of the surface with the same area LxLx as the surface

area in the simulations. Assuming that we can express the mean traveled distance of an atom

in the experiment analogously to Eq. (5.14),

lexp (t ) =
√
4Dexpt , (5.17)

the claim

l̃ sim = l̃exp = lexp (∆t
exp

deposition
) (5.18)

yields
√

4D ‖
surface

∆t sim
deposition

=

√

4Dexp∆t
exp

deposition
. (5.19)

Converting the experimental deposition rate Rexp to a corresponding �ux of atoms J
exp
m , we

arrive at the condition
D
‖
surface

Dexp
=

J simm

J
exp
m

=: ξ , (5.20)

which allows us to determine the only missing parameter, the �ux of atoms in the simulations

J simm .

Finally, we can use Eq. (5.20) to summarize the procedure to map the experimental growth

dynamics tomuch shorter simulation times: After �xing the time step, the damping parameters

and the temperature, a value for the �ux J simm is chosen such that the simulations are performed

with proportionally rescaled values of the deposition rate and the di�usion coe�cient of the

experiment. Thereby, the growth dynamics are e�ectively accelerated by the boost factor

ξ which has been introduced in Eq. (5.20). In this case, the above de�ned values of the

parameters yield the scaling factor ξ = 1.7 × 109. This implies that the waiting time between
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successive depositions on an area with the size 1 nm2 is only 1.2 ns in the simulations. This

time di�ers from the above discussed experimental value of 2 s by 9 orders of magnitude. At

the same time, we �nd that it only takes 20 ps for the mean displacement l sim‖ to reach 1 nm

in the simulations, but 0.03 s for the experimental counterpart lexp de�ned in Eq. (5.17).

5.3.2. Remarks on the procedure

The acceleration by a factor of ∼109 certainly constitutes a drastic modi�cation of the dy-

namics that one would expect in an actual experiment. While clear criteria exist for the

applicability of the other acceleration methods mentioned in Sec. Sec. 3.2.4, there is no rigor-

ous mathematical proof for the correctness of the rescaling method presented above. Besides

the rough approximation made by the implicit treatment of the polymer, the derivation of the

acceleration method involves three critical points which we discuss in the following:

• For the di�usion, only unbound atoms are considered. However, it is known that

that clusters di�use more slowly than isolated atoms. It is unclear whether the size-

dependence of the di�usion coe�cients of clusters induced by the Langevin treatment

correctly re�ects the experimental behavior.

• While only the di�usion of atoms on the polymer surface is accelerated, all kinds of

relaxation processes of clusters concerning their shape and internal structure remain

una�ected by the acceleration. Hence, themethod requires that during the time between

sequential additions of atoms to a cluster, the relaxations make the same or at least a

similar progress in the simulations and in the experiment. This is likely true for very

small clusters, but not for larger clusters whose reordering involves many infrequent

events, e. g., hops of atoms on the cluster surface. We can therefore assume that the

acceleration method will generate artifacts in the �lm morphology whose signi�cance

will increase with the �lm thickness.

• In the derivation of the method, we ignored the fact the re-evaporation of atoms

from the surface is another process which must be adapted to the time scales in the

simulations. Assuming that one can properly describe the experimental behavior in

terms of a re-evaporation rate, it would be reasonable to rescale this rate by the factor

ξ as well. However, as no such quantity is available for the experiment discussed above,

we only rescale the experimental values of Dexp and J
exp
m , and treat the re-evaporation

probability as a free parameter.

Beyond that, another critical point may be that the resulting �ux J simm in the simulations must

be small enough that the agglomeration of atoms above the surface is very unlikely. It was

checked that this is always the case for the results in this work.

Due to the complexity of the simulations and the model character of some processes,

it is di�cult to guess in advance at what point the method will fail to give an adequate

representation of the dynamics one would observe in an actual experiment. For this reason,

the method should be extensively tested against experimental data. In Sec. 5.5, this will be

done by comparing with the experimental morphology data from Ref. [61]. In addition to

this, a complementary analysis of the main assumptions is given in Chapter 6.
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45 nm

Figure 5.4.: Exemplary decomposition of two con�gurations of atoms into clusters. The right

images demonstrate the results from performing the identi�cation of clusters in

the con�gurations shown on the left. All atoms belonging to the same cluster

have the same color. The data of these examples have been taken from actual

simulation results discussed in Sec. 5.5.

5.4. Evaluation of simulation results

During a simulation run, the positions of all atoms are periodically stored in an output �le. For

the comparison with experimental results, it is necessary to condense this data to a reduced

number of quantities with which one can characterize the morphology of the �lm. In the

following, the de�nitions of the quantities used in this work are given.

E�ective film thickness

For a comfortable comparison with experimental results, most of the MD simulation results

in this work will be shown as a function of the e�ective �lm thickness

δ =
Nm

LxLyρm
, (5.21)

where Nm is the total number of metal atoms in the �lm and ρm is the literature value of

the number density of the deposited material. According to this de�nition, the e�ective �lm

thickness denotes the height of a rectangular metal �lm on an area of LxLy containing Nm

atoms which are homogeneously distributed with the density ρm.
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Calculation of distances

For some of the subsequently explained routines, it is necessary to calculate the distance

between two atoms. In some of those cases, speci�c distance functions are used which slightly

di�er from the tree-dimensional Euclidean metric.

The reason not to use the Euclidean metric is the fact that the simulations are carried out

with periodic boundary conditions. Using the Euclidean metric, it might happen that a cluster

which has partially crossed the boundaries of the simulation box and reappeared on one or

more other sides of the box is not identi�ed as one cluster, but two or more. This problem

can be solved by introducing the distance d (a, b) between two points a = (a1,a2,a3) and

b = (b1,b2,b3) which is the minimum of the Euclidean distance between a and b and the

Euclidean distances associated to all combinations of a and the points corresponding to b

in the eight adjacent periodic images. Mathematically, this de�nition can be expressed as

follows:

d (a, b) = min

*
,

3
∑

i=1

(ai − (bi + βiLi ))
2+
-
−1/2 ��� β1, β2 ∈ {−1, 0, 1} , β3 = 0


, (5.22)

with L1/2/3 := Lx/y/z .

Another distance function is required if only the projection of the distance vector on a

plane parallel to the surface is of interest. For that purpose, we de�ne a similar function,

d ‖ (a, b) = min

*
,

2
∑

i=1

(ai − (bi + βiLi ))
2+
-
−1/2 ��� β1, β2 ∈ {−1, 0, 1}


, (5.23)

which only involves the �rst two components of the vectors a and b.

Number density of clusters

The number density of clusters, nc, which we will simply call “density of clusters” from now

on, is the total number Nc of clusters existing on a surface divided by the area of the surface

LxLy . In order to be able to count the clusters, they must �rst be identi�ed as such. For

that purpose, we de�ne a cluster as a set of particles which is disconnected from any other

clusters and cannot be decomposed into smaller clusters. Furthermore, the minimum number

of atoms in a cluster is de�ned to be two. An atom belongs to a cluster if the above de�ned

distance d between the atom and at least one atom in the cluster is below a critical distance

rcut. If an atom has no neighbors within the distance rcut, it is identi�ed as an isolated atom,

but it will not be counted as a cluster.

For the choice of rcut, it is reasonable to use a value between the nearest neighbor distance

and the next-nearest neighbor distance associated to the crystal lattice structure of employed

material in the solid state. For the results in this work, rcut = 0.32 nm is used. With this value,

a reliable identi�cation of clusters during all stages of the growth is possible. It has been

checked that one can slightly alter rcut by roughly ±0.05 nm without signi�cant modi�cation

of the results. Two examples of identi�ed cluster structures occurring in actual simulation

results are shown in Fig. 5.4.
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Cluster radius

The clusters occurring in the simulations exhibit a multitude of di�erent shapes, which may

strongly deviate from simple geometric bodies with a high a degree of symmetry. Nevertheless,

for the comparison with the experiment, it is useful characterize the spatial dimensions of the

cluster shapes with just a few quantities. Therefore, we de�ne a function Rcluster to measure

how much a cluster C extends over the surface:

Rcluster (C ) = max
{

d ‖
(

rcenter (C ), ri
) ��� atom i belongs to C

}

. (5.24)

This function picks the maximum of all planar distances d ‖ between cluster atoms with

coordinates ri and the geometric center of the cluster, rcenter (C ). For the calculation of

rcenter (C ), it is again necessary to take the periodic boundary conditions into account. For the

results in this work, this is accomplished with the method described in Ref. [148].

With the above de�nition, Rcluster only has a clear meaning if the area of the cluster shape

in the projection to a plane parallel to the surface is close to the area of a circle with the radius

Rcluster. If this is the case, Rcluster has the meaning of a cluster radius. However, for clusters

with highly asymmetric shapes, which occur, for example, as a result of the branching of a few

small islands, Rcluster is just a vague indicator of how much space on the surface is covered by

the cluster. Despite this restriction, Rcluster will be simply called “cluster radius” from now on.

Cluster height

In contrast to the cluster radii, the cluster heights are not calculated individually for each

cluster. Instead, a quantity labeled h is extracted from the distribution of the z-coordinates

o� all atoms in the �lm. Namely, h is de�ned to be the length for which the number of

cluster atoms with z-coordinates between zmin (the z-coordinate of the lowest atom in the

�lm) and zmin + h is equal to a fraction fh ≤ 1 of the total number of atoms in the �lm. As

even larger clusters usually have an uneven surface at the top, one might want to compensate

for protruding atoms by choosing a value of fh which is slightly below 1. In fact, the cluster

heights shown in this work are always calculated with fh = 0.99, but it has been checked

that the dependence of the cluster height on the e�ective �lm thickness is similar for any

value of fh & 0.9.

Distance between clusters

The cluster distances presented in Ref. [61] refer to the distance between the centers of

adjacent clusters. For the simulation results, a similar quantity can be estimated as follows:

assuming that the clusters are nearly uniformly distributed on the �lm and have nearly the

same sizes, the mean distance between the clusters can be calculated by

dc =

√

LxLy

Nc
= n−1/2c . (5.25)

Using this de�nition, the mean cluster distance is exclusively determined by the density of

clusters nc and hence does not contain any information which is independent of nc. Nev-
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x

y

Figure 5.5.: Illustration of themethod to calculate the surface coverage. Each square represents

a unique set of x- and y-coordinates on the surface. A square is de�ned to be

covered (indicated by the purple color) if the x- and y-coordinates of the center of

at least one atom are within it. In this example, the coverage is 23/121 ≈ 19.0 %.

ertheless, in order to characterize the �lm morphology and make comparisons with the

experiments, both nc and dc will be shown in the results sections.

Surface coverage

The surface coverage, i. e., the fraction of the polymer surface which is covered with metal

atoms, is calculated with the following binning procedure. An illustration of this method is

given in Fig. 5.5.

First, the surface is divided into equal-sized squares. Each of these squares is de�ned to

be covered with metal if the x- and y-coordinates of at least one metal atom belong to the

area enclosed by the square. Finally, the surface coverage is the number of covered squares

divided by the total number of squares.

The resulting number of this method is only meaningful if the edge length l� of the squares

has a reasonable value. If it is too big, the coveragewill be overestimated because the resolution

is too low; if it is too small, even a completely covered �lm will have a surface coverage below

one because not all squares are covered. As a solution to this problem, the edge length is set

half the value of the crystal lattice constant of gold, i. e., l� = aAu/2 = 0.204 nm.

5.5. Simulation results

In this section, we discuss the results that have been obtained with the present simulation

scheme. All of the results in this chapter were obtained with surface sizes of Lx = Ly = 45 nm.

For the comparison with experimental results, the temperature T , the damping parameters

τ
‖/⊥
surface

and the �ux of atoms to the surface J simm were set according to the rescaling method

introduced in Sec. 5.3. The fraction of defects γ and the re-evaporation probability pre were
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varied over several orders of magnitude; all other parameters were set to the previously

mentioned values.

In Secs. 5.5.1 and 5.5.2, we start with some general remarks and compare the results from a

selected simulation run with experimental data to justify the approach and work out some

key aspects of the �lm growth. After that, in Sec. 5.5.3, we investigate the in�uence of defects

and re-evaporation on the basis of a parameter study. In Sec. 5.5.4, we go beyond the �xed

combination of τ ‖/⊥
surface

and J simm by studying the e�ect of a variation of the deposition rate.

Finally, in Sec. 5.5.5, a method is proposed to calculate the intensity of X-rays which are

scattered on the simulated structures.

5.5.1. Preliminary remarks

Most of the simulation results cover �lm thicknesses up to roughly 1 nm. The range of

thicknesses between 0 and 1 nm is relatively small compared to the experimentally investigated

�lm thicknesses in Ref. [61] reaching 8.31 nm. Nevertheless, it already covers some of the

characteristic changes of the �lm morphology. Furthermore, several longer simulation runs

�lm thicknesses of roughly 3 nm were also performed to explore the limitations of the method.

The results of one of these long runs will be used in Sec. 5.5.2 to describe the typical changes

the �lm morphology undergoes during �lm growth, make a basic comparison with the

experimental results from Ref. [61], and make a �rst estimation when the simulation method

reaches its limit of applicability.

Remarks on Figs. 5.6 and 5.7. All quantities discussed in Sec. 5.5.2 are shown in Fig. 5.6. In

addition to this, a visualization of the �lm growth simulated with the mentioned parameters

is provided by Fig. 5.7, where the system con�gurations are shown from the top and in

an auxiliary view for �ve di�erent values of δ . A color gradient is used to indicate the z-

coordinates of all depicted atoms. Furthermore, to complement the quantitative comparison,

the left column of Fig. 5.7 also shows an illustration of the hexagonally arranged clusters

used for the �t of the GISAXS data. This illustration has the the same scale and the same

surface size as the simulated structures in the second column. As the clusters are shown from

the top, they appear as circles. The parameters used for the radii of the circles have been

taken from the data for the radius shown in Fig. 5.6b. The radial color gradients used to �ll

the circles represent an increase of the surface height from zero to the maximum which has

been extracted from the data for the cluster height shown in Fig. 5.6c.

Time dependence of the e�ective film thickness. The quantity δ , which we use to

characterize the evolution of the �lm morphology, roughly indicates how much time has

passed since the starting point of the deposition. However, even if the interval between

successive depositions of atoms is constant, δ will be a non-monotonous function of the

deposition time. The reason is that each re-evaporation of an atom leads to a reduction of δ .

As the amount of re-evaporated atoms per unit time changes with the coverage of the �lm, it

is di�cult to guess the time-dependence of δ in advance.

For example, in a simulations with the parameters γ = 1 × 10−2 and pre = 1 × 10−1, it takes
a direct MD simulation time of 78 ns to deposit the �rst 0.5 nanometers, but only 42 ns to
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deposit the second 0.5 nanometers. In contrast, with the same parameter γ = 1 × 10−2, but a
smaller re-evaporation probability, pre = 1 × 10−4, the deposition is much faster and it takes

nearly the same amount of time to deposit the �rst two 0.5 nanometers, namely, 36.5 ns and

36.0 ns.

Computation time. It has already been pointed out in Sec. 3.2.3, that the asymptotic

scaling of the computation time is O (Nm). Beyond that, it is impossible to make an exact

statement about the required computation time of the growth simulation because it depends

on the employed hardware and a multitude of simulation parameters. Furthermore, the

number of evaluations of interparticle forces will increase with the e�ective �lm thickness.

That means that, the more atoms are deposited, the more computation time is needed to

propagate the system in time. Nevertheless, to indicate the order of magnitude of typical

computation times, we note that the simulation run discussed in Sec. 5.5.2 took a couple of

days on approximately 1000 CPU cores. The hardware for this run was provided by HLRN.

5.5.2. General properties of the film morphology

In this section, we use the morphology data from a simulation run with the parameters

γ = 1 × 10−2 and pre = 1 × 10−4 as an example to describe the general behavior one observes

in the simulations of Au �lm growth. The values ofγ and pre were chosen because they exhibit

relatively close agreement with experimental results over broad ranges of �lm thickness. In

following sections, we will discuss the evolution of each quantity shown in Fig. 5.6 one after

another. For each quantity, we will �rst focus on the simulation results and then make a

separate discussion of deviations from the experimental results.

Number density of clusters

We start by considering the number density of clusters nc shown in Fig. 5.6a. When the

deposition starts, no clusters are present on the surface, i. e., , nc (δ = 0) = 0. After the

deposition of the �rst atoms, nc rapidly increases as dimers start to form. This mainly happens

as a result of both random nucleation and preferred nucleation at defects; only rarely, atoms

are deposited on top of another isolated atom on the surface.

As neighborless atoms do not contribute to nc, the formation of dimers is in fact the only

mechanism that leads to an increase of the number density of clusters; all other growth

events either leave it unchanged or lead to a reduction of nc. Of particular importance is

the coalescence of two clusters, which reduces the total number of clusters by one. As the

probability for the coalescence of two clusters increases with nc, it can be expected that the

growing �lm eventually reaches a point where there exist so many clusters on the surface

that the coalescence process outweighs the formation of new clusters—the number density of

clusters then starts to decrease. In the considered simulation, this point occurs when the �lm

reaches the thickness δ ≈ 0.05 nm; the corresponding density then attains a global maximum.

This maximum is followed by a monotonous decay re�ecting the progressing agglomeration

of clusters. Although new clusters can still be formed in the space between other clusters,

the chance that they are quickly attached to other existing clusters is already so high that no
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further increase of nc is observed except for small �uctuations. The slope of the decaying

part remains nearly constant until the thickness reaches the value δ ≈ 2 nm. As a logarithmic

scaling of the vertical axis is used, this shows that the decay can be approximated by an

exponential function with the exponent δ and a constant base.

In the regime between δ = 2 nm and 3 nm—maybe even earlier—noticeable �uctuations

build up in the number density. The reason is that the total number of clusters in the simulation

box, Nc, becomes so small that the formation of new clusters or coalescence of clusters lead

to relatively big changes of Nc. As both mentioned processes are driven by random events,

the �uctuations of nc can be considered as random, too.

Despite the onset of �uctuations, one can also observe that the density starts to level o�

after the steady decay. This behavior hardly noticeable, but it can be expected because of the

following two reasons. First, the agglomeration of clusters happens less frequently because

the clusters are already so big that their restricted mobility has an e�ect. Second, the chance

for the merging of two clusters is reduced because the total number of clusters is already

relatively small.

Besides these physical reasons, another technical aspect becomes relevant in the regime

δ > 2 nm, namely, the limitation of the simulation box. The larger a cluster becomes, the

more likely it is that it is broken up into several parts at the boundaries of the simulation box.

The algorithm explained in Sec. 5.4 consistently de�nes these parts as one cluster. When the

cluster is su�ciently large, it may happen that a second connection of these parts is formed

within the boundaries of the simulation box. Such an event, the formation of a cluster with

an “in�nite” size, is a pure artifact of the application of periodic boundary conditions. Even

though it may actually happen in real systems that di�erent branches of the same cluster join

each other, we can expect that such a process occurs with an increased probability in the

simulations—in particular, if the clusters size is on the order of Lx and Ly or slightly lower.

At the same time, it is therefore plausible that the system eventually reaches a point where

the probability for the coalescence of two di�erent clusters is lowered due to the limitations

of the simulation box.

Comparison with experimental results. Both the simulation results and the experimen-

tal data show the same trends: the density rapidly attains a maximum after the deposition has

started, then it slowly decays and, �nally, it goes into saturation. Although the two curves in

Fig. 5.6 show only small deviations over many values of δ , a few stronger deviations can be

observed. This will be discussed in the following.

Even though the experimental data contains strong noise for small values of δ , it is apparent

that both curves disagree about the position of the maximum cluster density. With the help of

the �t shown in Appendix A, one may roughly estimate that the maximum of the experimental

data occurs at δ ≈ 0.17 nm—in the simulations, however, it already occurs at δ ≈ 0.05 nm.

Beyond that, the values of the maximum density are di�erent, too, but the relative deviation

is smaller: the experimental value is nc ≈ 1.58 × 1013 cm−2, and the value in the simulations

is nc ≈ 1.2 × 1013 cm−2.
If we only make a direct quantitative comparison of the positions of the maxima, the

simulations might appear to be inaccurate. Nevertheless, one should take into account that
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Figure 5.6.: Evolution of the �lm morphology as a function of the e�ective �lm thickness δ .

The plots show the experimental data from Ref. [61] and the results from a selected

simulation run with the parameters γ = 1 × 10−2 for the fraction of defects and

pre = 1 × 10−4 for the re-evaporation probability probability. The inset in the �rst

row is a zoom into the graph shown in (a), but with a linearly scaled vertical axis.

Adapted from [145].
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Figure 5.7.: Evolution of the Au �lm according to the hemispherical cluster model used for the

experimental results in Ref. [61] (1st column) and a simulation with γ = 1 × 10−2
and pre = 1 × 10−4 (2nd and 3rd column). The radii and distances of the circles in

the 1st column represent the values given in Figs. 5.6b and d for the corresponding

values of δ . The colors of the circles represent the increase of the cluster heights

until they reach their maximum values shown in Fig. 5.6c. For the simulation

results, the colors indicate the z-coordinates of the atoms.
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the agreement is much better for the decaying part—in particular, between δ = 0.5 nm and

2 nm. While this part covers a large fraction of all simulated thicknesses, the maximum

already occurs after the �rst 1.7 % of simulated δ -values. Thus, if the behavior of both curves

is compared on a larger scale, the deviation of the maximum cluster densities is appears to

be less substantial. In Sec. 5.5.3, we will see that a better agreement of the maxima can be

achieved by varying the parameters δ and pre—however, this will lead to greater deviations

for other ranges of δ .

Cluster radii

In Fig. 5.6b, the δ -dependence of the cluster radius is shown. The curve represents the average

of the cluster radii which have been calculated for each cluster according to the de�nition in

Eq. (5.24).

For δ < 1 nm, the radius monotonously increases until it reaches approximately 2 nm. The

slope of the curve has its largest value in the early phase of the nucleation. It becomes smaller

and nearly constant around the δ -value of maximum cluster density. For δ & 1 nm, the values

exhibit increasingly strong �uctuations. These can be explained by the steadily decreasing

total number of clusters which are involved in the averaging procedure. Furthermore, the

simulation snapshots in Fig. 5.7 indicate that many clusters have already obtained a non-

spherical shape. We can therefore expect that, with increasing �lm thickness, the values

calculated with the present de�nition of the cluster radius can only be a rough indication

of the actual lateral dimensions of the cluster. For δ & 2 nm, it becomes particularly clear

that the quantity is no longer useful for practical investigation of the �lm morphology: the

value rapidly drops by roughly 2 nm, but the existing clusters do not become smaller. The

reason for this drop is that all previously existing large clusters have merged and are thus

counted as just one cluster. At the same time, however, various very small clusters are present

in the space between the branches of the big cluster; the radii of those clusters enter in the

averaging procedure with the same weight as the big cluster. Examples for the occurrence of

small clusters alongside a few or just one big cluster can be found in the fourth and in the

�fth row of Fig. 5.7.

It would certainly be possible to �nd another de�nition of the cluster radius that would

not exhibit this drop. Nevertheless, this has not been done because, in the regime of the drop,

which is characterized by the limitations of the simulation box and the existence of many

clusters without a radial symmetry, it is meaningless to speak of an average cluster radius

anyway. Instead, the drop of the cluster radius can be considered as an indicator that the

limitations of the simulation become relevant.

Comparison with experimental results. For δ . 0.7 nm, it is hardly possible to make

out any di�erences of both curves in Fig. 5.6b—merely at the beginning of the deposition, one

can recognize that the experimental values of the radius are slightly higher. Compensating

for the onset of �uctuations for larger values of δ , we may even assume that both systems

behave similarly until the thickness reaches 1.5 nm.

While the �uctuations and the drop of the simulation data have already been explained,

it remains to discuss why the experimentally obtained cluster radius continues to increase
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monotonously. Therefore, we recall that the hemispherical cluster model is used throughout

the whole range of thicknesses. That means that the experimental procedure cannot be

hampered by any di�culties related to di�erent particle shapes. Hence, the method always

yields a value of the cluster radius, and it can be expected that it permanently increases as a

consequence of the increasing amount of deposited atoms.

To conclude the analysis of the cluster radii, a �nal remark on the cluster size distribution

is made in the following. For that purpose, it is again referred to Fig. 5.7 as the comparison

between the monodisperse hemispherical model and the simulated structures with di�erent

shapes and sizes underlines the following reasoning.

The experimental �t relies on the assumption that the size distribution ismonodisperse—even

though it is not generally impossible to make a �t to GISAXS data with particles of di�erent

sizes. For this reason, the occurrence of branched structures can only be related to the point

when the hemispheres start to intersect each other. However, this point—which the authors

of Ref. [61] has identi�ed as the percolation threshold—occurs not before 5.2 nm and is thus

out of reach of the current scope of the simulations. Despite the agreement of the average

cluster radii, the incapability of the method used in Ref. [61] to describe the distributions

of cluster sizes and shapes makes it di�cult to judge the quality of the simulations in full

detail. With additional reference data for the evolution of cluster shapes, the assumptions

of the acceleration method could be checked more precisely. While the rescaling procedure

only a�ects the di�usion of atoms and clusters but no internal cluster relaxation processes,

it remains unclear to what degree the neglect of the latter processes has an e�ect on the

simulation results. In fact, one can expect that the relevance of relaxation processes increases

with the �lm thickness because larger clusters need more time to transform their shape,

e. g., by di�usion processes on the cluster surface. With the currently available reference

data, however, a quantitative comparison of the �lm morphology can only be made with the

averaged quantities shown in Fig. 5.6.

Cluster heights

The evolution of the cluster height is shown in Fig. 5.6c. The curve exhibits a monotonous

increase that is very similar to the behavior of the cluster radius, but it is almost free of

�uctuations. In fact, one can expect that—except for the space between the clusters—a

relatively even height pro�le of the �lm should evolve. This can be understood as follows: the

more parts of the surface are covered with gold, the more atoms are deposited on top of the

clusters. Once the clusters are su�ciently large, the most frequent growth event is the direct

deposition of atoms on top of existing clusters. As the �ux of deposited atoms is isotropic,

the roughness of the surface at the top of each cluster should be low compared to the total

height of the clusters. Indeed, the distribution of the colors in Fig. 5.7 con�rms this trend.

At the end of the simulation, the height reaches a value of 4.7 nm. The fact that this value

is much higher than the corresponding e�ective �lm thickness of 3 nm shows that the �lm

still exhibits a signi�cant amount of space between the clusters.

Comparison with experimental results. For very small values values of δ , the exper-

imentally obtained cluster heights are roughly two times as large as the simulated values.
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Concerning this discrepancy, we may assume that the experimental values are too large

because it is unlikely that the cluster height is 2 nm right after the beginning of the deposition

process. A reason for the occurrence of too large cluster heights might be the fact that all

depicted experimental values below δ < 0.38 nm stem from an extrapolation procedure, see

Ref. [61] for further details. At the same time, we also note that the simulation data is probably

also too large at the beginning because the employed quantity de�ned in Sec. 5.4 does not

compensate for �uctuations of the vertical cluster positions.

For larger values of δ , the di�erence between the curves steadily vanishes until the �lm

reaches a thickness of 2.5 nm. Then, however, the simulation results even become slightly

larger. If we just extrapolate the simulation data with the nearly constant slope in the range

between δ = 2 nm and δ = 3 nm, we may expect that the deviations between both curves

would increase if we performed longer simulations. However, we cannot resolve this with

the present data.

Distances between clusters

The δ -dependence of the particle distances is shown in Fig. 5.6d. While the quantitative values

of the distances may be of interest, we can refrain from discussing speci�c characteristics

of the curve because we have de�ned the considered quantity in Eq. (5.25) in a way that it

is equal to the inverse of the square root of the density of clusters. That is to say that all

discussed features and uncertainties of the density of clusters can be directly translated to

the distance between the clusters. For the experimental results, there also exists a similar

relation between the density and the distance. However, the authors of Ref. [61] �rst obtained

the distance from the scattering patterns, and then used it to calculate the density. As a

comprehensive comparison between the results for the density has already been made, we

skip a similar analysis for the distance.

Surface coverage

The surface coverage shown in Fig. 5.6e monotonously increases from zero to the �nal value

of 70 %. The curve has the shape of a concave function, which re�ects that the increase of

the coverage becomes smaller the more parts of the surface are already covered. As the

re-evaporation probability remains constant during the simulations, no deviations from the

monotonous behavior are expected.

Comparison with experimental results. For the surface coverage, no experimental data

is available in Ref. [61]. Nevertheless, we can at least �nd that the shape of the curve is similar

to the corresponding curve shown in Ref. [32], where the deposition of gold on a silicon oxide

layer was studied; in that work, the coverage increases to approximately 80 % at an e�ective

thickness of 3 nm, and then proceeds more slowly to 100 % at δ ≈ 9 nm.

5.5.3. Influence of defects and re-evaporation

In this section, we turn towards the in�uence of the fraction of deposited defects, γ , and

the re-evaporation probability, pre. While both parameters a�ect the sticking of atoms to
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Figure 5.8.: Evolution of the number density of clusters, the cluster radius, the cluster height,

the distance between adjacent clusters and the surface coverage as a function of

the e�ective �lm thickness δ . Each column shows the results of the calculations

with a �xed fraction of defects γ , but three di�erent re-evaporation probabilities

pre. For comparison, the experimental data from Ref. [61] is also shown. Adapted

from [145].
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the surface, γ also has an e�ect on the mobility of atoms and clusters on the surface. It

is thus reasonable to consider both parameters in a joint parameter study. The analysis is

limited to the range of e�ective thicknesses between zero and 1 nm. This range covers the

non-monotonic behavior of the cluster density and the �rst stage of its decay. Beyond that,

the �uctuations are still small enough to make reliable quantitative comparisons.

In the following, we refer to the simulation results shown in Fig. 5.8. This �gure shows the

same morphological quantities as Fig. 5.6, but three columns are used to represent di�erent

values of γ . For each γ , namely γ = 5 × 10−2, 1 × 10−2 and 1 × 10−3, the data for the re-

evaporation probabilities pre = 1 × 10−4, 1 × 10−2 and 1 × 10−1 is shown. Furthermore, the

experimental data from Ref. [61] is shown again to allow for additional comparisons. For

all employed combinations of γ and pre, the behavior of the morphological parameters is

qualitatively the same as discussed in the previous section. We may therefore skip a discussion

of the general trends and proceed by investigating the in�uence of γ and pre in detail.

To begin with, we only describe the in�uence of the defects, i. e., we �rst ignore any

additional e�ects caused by a variation of pre. Nevertheless, we remark that the following

aspects are particular noticeable for the largest re-evaporation probability pre = 1 × 10−1.
Considering the peak position of the density of clusters shown in the �rst row of Fig. 5.8, we

�nd that a reduction of γ leads to an increase of the maximum density and a shift of the peak

position to larger values of the e�ective �lm thickness. At the same time, the cluster radii and

cluster heights shown in the second and third row reveal that this trend comes along with an

increase of the cluster size. When we look at the coverage of the surface shown in the �fth

row, we �nd that the increased particle size does not compensate for the decreased density:

the reduction of γ leads to a decrease of the coverage. Finally, the just described trends can

also be observed in Fig. 5.9, where the �lm morphology of two simulation runs with di�erent

values of γ is shown for two selected values of the e�ective thickness.

The dependence on the fraction of deposited defects can be understood by recapitulating

that the defects not only impel the preferred nucleation of clusters, but also make clusters

adhere to the point where they have nucleated. That means that a large number of defects is

related to many small clusters whose coalescence is primarily caused by lateral attachments of

atoms. When a smaller amount of defects is present on the surface, clusters are mainly formed

by random nucleation. The increased mobility of the clusters promotes their agglomeration

as a result of their di�usion on the surface. Furthermore, when the number of defects is

low, there is a high chance that neighborless atoms re-evaporate before they are attached to

another cluster. Hence, a relatively large fraction of atoms in the system has been directly

deposited on top of already existing clusters. This explains the observation of larger cluster

heights.

Now we extend the analysis by taking the re-evaporation probabilities into account. First,

we concentrate on the density of clusters in the range of e�ective thicknesses in which

the maximum can be located. It turns out that the dependence on pre for γ = 1 × 10−3 is
reversed to the dependence for γ = 5 × 10−2. The reversal of these trends takes place around
γ = 1 × 10−2. To understand this behavior, let us �rst assume that both the number of defects

and the re-evaporation probability are large. In this case, many clusters nucleate in the

vicinity of a defect, but the formation of connections between these clusters is aggravated.

If we keep the same value of γ , but we decrease pre, connections between the clusters are
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formed more easily, and, thus, the maximum density of clusters becomes lower. This behavior

can be observed in Fig. 5.8a. For a much lower number of defects, we �nd the opposite: if pre
is high, only a small fraction of all deposited atoms sticks to the surface, and the formation of

clusters is strongly hampered. As a result of this, the density of clusters remains very low.

Yet, it can be increased by raising pre—this is the behavior that we �nd for γ = 1 × 10−3 in
Fig. 5.8c.

So far, we restricted the consideration of the pre-dependence to the regime around the

maximum density of clusters. In fact, the above described trends do not hold for larger

values of δ : despite the onset of weak �uctuations, we �nd intersections of the curves near

δ = 0.6 nm. The present results do not allow a detailed analysis, but we can roughly state

that the larger the maximum of the density of clusters is, the steeper is its subsequent decay.

Besides those trends of the density of clusters, we �nd again that the cluster sizes—described

by the radii and the heights—are closely related to the density of clusters: similarly to what

we stated about the dependence on γ , the clusters are large when the density of clusters is low,

and vice versa. However, this is not generally true as shown, for example, for δ & 0.6 nm in

the third columns of Fig. 5.8: not only the largest densities of clusters occur for pre = 1 × 10−1,
but also the largest values of the cluster heights; only the cluster radii are minimal in that

regime.

We conclude this analysis with a �nal remark on the comparison with the experimental

results. For the detailed comparison in the previous section, we used the simulation results

from a run with the parameters γ = 1 × 10−2 and pre = 1 × 10−4 because the deviations of the
results are relatively small. However, this statement mainly refers to the regime of e�ective

thicknesses that covers the decaying part of the density of clusters. For other values of δ ,

some of the results obtained with other parameters show better agreement, see, for example,

the maximum density of clusters for the parameters γ = 1 × 10−2 and pre = 1 × 10−1. So far,

no parameter set has been found that removes all discrepancies at once. With the currently

available data, we can neither rule out that the experimental data is inaccurate nor that the

simulation model is incomplete or �awed. However, the overall agreement is good enough to

make it plausible that the conditions of the growth process described by the simulations are

at least very similar to those in the experiment we compare with.

5.5.4. Influence of the deposition rate

We conclude the investigation of the morphology with a brief analysis the in�uence of the

deposition rate. That means that we allow the deposition rate to be di�erent from the value

of J simm that we obtained with the rescaling method described in Sec. 5.3. For that purpose, we

de�ne a new �ux of atoms to the surface J̃ simm which we express as a multiple of the �ux J simm ,

J̃ simm = β J simm . (5.26)

In Fig. 5.10 the �lm morphology data is shown that has been obtained in simulations with the

same parameters γ = 1 × 10−2 and pre = 1 × 10−4, but di�erent value of β , namely β = 0.5, 1

and 30. The experimental data from Ref. [61] also shown to allow once more for comparison.

The curves for β = 1 have already been discussed—we will thus concentrate on the changes

induced by using higher and lower deposition rates. For β = 30, the maximum density of
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Figure 5.9.: In�uence of the amount of defects on the �lmmorphology. Both columns represent

two di�erent simulation runs with the same re-evaporation probability pre =

1 × 10−1, but di�erent fractions of defects, γ = 5 × 10−2 and γ = 1 × 10−3. Both
con�gurations in each row correspond to the same e�ective �lm thickness δ .

clusters is more than three times larger than for β = 1, but the decaying part of the density

has nearly the same slope. Again, we can �nd that an increase of the density leads to a

decrease of the cluster size. This is clearly observable for the cluster radii—the cluster heights

are only weakly a�ected. The �uctuations of the cluster radii indicate again the limitations of

the simulation box between δ = 1 nm and δ = 2 nm. Nevertheless, the simulation run has

been continued until an e�ective thickness of 4.5 nm was reached. As the computation time

roughly scales with the inverse of the deposition rate, this run has only consumed a relatively

small amount of time.

For β = 0.5, only a short period has been simulated because the computation time is very

long. Since the deposition is slowed down, di�usion processes in the time between successive

depositions of atoms become more important. The clusters thus have more time to undergo

relaxation processes and agglomerate with other clusters. As a result of this, the density of

clusters is slightly lowered as compared to the case β = 1, and the radii are larger. However,

in contrast to some previously discussed cases, this does not come along with an elevation of

the cluster heights—instead, the heights are even below the heights for β = 30.

So far, the in�uence of the deposition rate has not been studied in more detail. An experi-

mental investigation has been carried out recently [149] for the sputter deposition of gold

on a polystyrene �lm [149]. This investigation, which is an extension of the work presented

in Ref. [61], con�rms that an increase of the deposition rate leads to smaller particles and
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Figure 5.10.: In�uence of the deposition rate on the �lm morphology. β = J̃ simm /J
sim
m is the

ratio of the �ux of atoms to the surface used in the �ux used for the results in

Secs. 5.5.2 and 5.5.3. The experimental data is again from Ref. [61]. Adapted

from [145].

higher densities. In the future, it might be of interest to extend the present simulation results

and make a quantitative comparison.

5.5.5. X-ray sca�ering on clusters

In this section, we consider the possibility to calculate X-ray scattering patterns for the

simulated �lm morphology. If we want use Eq. (2.3) to calculate the scattering cross section,

we need to calculate the form factors F for all clusters. Remaining on the level of the Born

approximation, the form factor of a cluster can be obtained from the Fourier transform of the

shape functions, S . This idea is based on the assumption that the particle can be approximated

by a continuous geometric shape that allows one to distinguish between the region inside the

particle and the region outside. Thus, in order to use Eq. (2.4) to calculate the form factor of

an atomistic cluster obtained in a simulations, it is necessary to construct a suitable geometric

shape from the positions of the atoms. The volume of such a shape is supposed to contain

all atoms of the corresponding cluster, and the surface of the shape must be aligned with

the surface of the cluster. Furthermore, the cluster should be big enough that such a coarse

and continuous description is justi�ed. In the following, we examine one way to express the

shape of a cluster in terms of adjacent rectangular cuboids. An illustration of the method is

provided by Fig. 5.11.

We start with a procedure that is similar to the method described in Sec. 5.4 to calculate the
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Figure 5.11.: Illustration of the binning procedure to represent the atoms of a cluster (yellow)

with rectangular cuboids (purple).

surface coverage: at �rst, we construct a two-dimensional grid of squares in the x-y-plane, i. e.,

parallel to the surface. This grid will enable us to obtain a coarsened description of the lateral

dimensions of the cluster. As a next step, we search for all grid cells which are covered by

atoms of the clusters. More precisely, that means that the ranges of x- and y-values associated

with the area of the cell contain the x- and y-coordinates of at least one atom of the cluster.

For each covered grid cell, we construct one rectangular cuboid which is supposed to

approximate a de�ned part of the cluster. The top and bottom faces of the cuboid shall be

parallely aligned with the grid cell, i. e., the other four faces shall be perpendicular to the

surface. If we let zlow be the z-coordinate of the atom which is the lowest of all atoms that

cover the cell under consideration, and we let zhigh be the z-coordinate of the highest atom,

we set the lower end of the cuboid to the height zlow − ratom and the upper end to zhigh + ratom.

The additional parameter ratom is supposed to account for the spatial extent of an atom. For

the example discussed below, ratom is set to 0.14 nm, which is on the order of a typical atomic

radius. Nevertheless, the quantity ratom does not have to be determined very accurately as

long as the aforementioned assumption of su�ciently large cluster holds.

Assuming that the total number of cuboids isM and the k-th cuboid is represented by the

set

Sk =
{
(x ,y, z) | xmin

k ≤ x < xmax
k , ymin

k ≤ y < ymax
k , z

min
k ≤ z < zmax

k

}
, (5.27)

the shape function can be de�ned as

S (x ,y, z) =


1, if (x ,y, z) ∈

M
⋃

k=1
Sk

0, otherwise .

(5.28)
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With this, we �nd the following analytical expression for the form factor:

F (qx ,qy ,qz ) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
S (x ,y, z) exp

(

−i
[
qxx + qyy + qzz

] )
dx dy dz

=

M
∑

k=1

∫ xmax
k

xmin
k

dx exp(−iqxx )
∫ ymax

k

ymin
k

dy exp(−iqyy)

×
∫ zmax

k

zmin
k

dz exp(−iqzz)

=

M
∑

k=1

i

qx

{
exp(−iqxxmax

k ) − exp(−iqxxmin
k )

}

× i

qy

{
exp(−iqyymax

k ) − exp(−iqyymin
k )

}

× i

qz

{
exp(−iqzzmax

k ) − exp(−iqzzmin
k )

}
.

(5.29)

However, this expression only holds as long as qx , qy and qz are di�erent from zero. If any of

these values becomes zero, Eq. (5.29) has to be replaced by the corresponding limiting value.

When the form factors Fi of all clusters have been obtained, we can insert them into Eq. (2.3)

to calculate the scattering cross section. However, it has turned out that the system sizes of

the present simulation data are still too small to allow for a meaningful comparison with

the experimental GISAXS data. To brie�y demonstrate this, we �rst rewrite Eq. (2.3) for Nc

clusters with positions R1, . . . ,RNc , and we isolate the terms with i = j on the right-hand

side [74]:

Nc
dσ

dΩ
(q) =

Nc
∑

i=1

��Fi (q)��2 +
Nc
∑

i, j=1
j,i

Fi (q)F
∗
j (q) exp

[
−iq ·

(

Ri − Rj

)]
. (5.30)

This form allows us to distinguish between the contributions from all individual clusters—which

scale with Nc—and the contributions from all pairs of clusters—which scale with N 2
c . It is thus

clear that Nc should be large to obtain broad distributions of form factors and distances be-

tween the particles, and also to obtain the correct statistical weights of both terms in Eq. (5.30).

With the present simulation data, the second term Eq. (5.30) is insu�ciently represented to

reproduce the dominant features of the experimental data, e. g., the prominent side peak in

qy-direction from which the distance between the clusters can be obtained [61]. Another

di�culty of the calculation is, again, the limitation of the simulation box which may cause

artifacts in the form factors of large clusters and in the distributions of distances.

Despite these di�culties, the unique contribution from the form factor of just one cluster

is singled out for demonstration in Fig. 5.12: on the left, the quantity |F (qy ,qz ) |2 is shown,
which has been calculated for the cluster depicted on the right. For that calculation, qx = 0

was set to zero, in accordance with the introductory explanation in Sec. 2.1.2. The size of the

grid cells was set to 0.4 nm × 0.4 nm because the value 0.4 nm is close to the lattice constant

of gold; if one takes much smaller values, the resulting shape function may contain holes.
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Figure 5.12.: Exemplary scattering pattern (left) calculated in Born approximation for a single

cluster that occurred in a simulation (right). Adapted from [145].

Since the scattering pattern of single clusters are not detected in the relevant experiments,

we will not pursue this type of calculations in the remainder of this work. Nevertheless, we

conclude by making two remarks: �rst, the method presented in this section might open up

new perspectives on the comparison between simulations and experiment once su�ciently

big simulation boxes can be simulated. second, even if the scattering cross section cannot be

calculated accurately, another utilization of the present data is conceivable: instead of using

simpler geometric shapes, e. g., hemispheres, one may use the form factors of selected cluster

structures to make a �t to experimental GISAXS data. For example, this can be done with

the software program BornAgain [76], which already o�ers the functionality to implement

custom form factors.

5.6. Summary

In this chapter, we established an MD simulation scheme to simulate the growth of gold

clusters on a polymer surface. While all gold atoms were treated in full atomistic detail, a

rather simple model was used to describe the di�usion of atoms in and on the polymer, the

re-evaporation of atoms and the creation of surface defects. In order to mimic the behavior on

experimental time scales, the simulations were carried out with proportionally rescaled values

of the deposition rate and the di�usion coe�cient presented in Ref. [61]. This procedure

resulted in an e�ective acceleration of the growth dynamics by a factor of on the order of 109.

Although such a strong shift of the time scales entails the risk of introducing arti�cial e�ects

in the description, the comparison with the experimental morphology data was largely in

support of the method. In Chapter 7, we will therefore take up these results and apply the

method to a more complex situation, namely the deposition of two metallic species, silver

and copper. Beforehand, however, we insert a chapter to make a further examination of the

assumptions behind the rescaling procedure.
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Chapter 6

Complementary Analysis of the MD

Simulation Scheme

The derivation wemade in Sec. 5.3 was based on the assumption that all δ -dependent functions

to describe the morphology remain invariant under a rescaling of the deposition rate and

the di�usion coe�cient by an arbitrary factor. More precisely, we also remarked that the

rate at which atoms re-evaporate from the surface must be rescaled as well, but due to the

lack of experimental reference data, the quantities pre and tre were treated as free parameters

in the simulations. In fact, the necessity to carry out the MD simulations with several free

parameters makes it di�cult to judge the accuracy of the method on a purely theoretical basis.

The checks in the the last chapter were therefore restricted to comparisons with experimental

data, and indeed, the results displayed at least partial agreement. In this chapter, we will

go beyond such a comparison and make a further analysis which allows us to discuss some

assumptions behind the rescaling method in greater detail. In Sec. 6.1, we will start by showing

how the results are a�ected if the simulations are performed with another scaling factor ξ ,

see Eq. (5.20). Then, in Sec. 6.2, we will establish another approach to describe the cluster

growth on surfaces in terms of rate equations. This will allow us to make the above mentioned

invariance more plausible.

6.1. Variation of the scaling factor

In the derivation we made in Sec. 5.3 to motivate the rescaling of the deposition rate and the

di�usion coe�cients, we started by �xing the values of the temperature T and the time step

∆t ; only then we set the damping parameter τ ‖
surface

to the typical value of 1 ps, which was

chosen in respect of the time step. In doing so, the di�usion coe�cientD ‖
surface

was �xed at the

same time, and this allowed us to calculate the scaling factor ξ . One of the main assumptions

made in Sec. 5.3 was that the problem of cluster growth remains similar on any time scale

as long as the deposition rate, the di�usion coe�cients (and the re-evaporation rates) are

proportionally rescaled. Hence, one might argue that the MD simulations should yield the

same �lm morphology even if they are performed for other ratios ξ . However, we will see in

the next two sections that this is not exactly true because the behavior in the simulations
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Figure 6.1.: In�uence of the damping parameter τ ‖
surface

on the �lm morphology. The results

were obtained from three simulations with pre = 0 and γ = 1 × 10−2.

is more complicated than the simpli�ed picture on which the idea of the rescaling is based.

Before we undertake this a closer examination in Sec. 6.1.2, we discuss possible choices of

τ
‖
surface

and present exemplary simulation results in Sec. 6.1.1.

6.1.1. Simulation results

A practical way to perform the simulations with other values of ξ is to modify the damping

parameterτ ‖
surface

and raise or lower the deposition rate and the re-evaporation rate accordingly.

However, τ ‖
surface

can only be varied within a relatively small range. In the limit τ ‖
surface

→ ∞,
the friction force and the stochastic force in Eq. (5.7) vanish, i. e., the relaxation and the

formation of clusters is strongly hampered. Consequently, there exists a regime of too large

τ
‖
surface

-values for which the simulations do not yield a reasonable behavior. In contrast, if

τ
‖
surface

is lowered, both the di�usion and the deposition become slower because the system is

strongly damped. Although the time scale of the simulation becomes closer to experimental

time scales in that case, there are two reasons why the value of τ ‖
surface

should not be very

small: �rst, this may lead to numerical problems as both appearances of τ ‖
surface

in Eq. (5.7)

are in the denominators of the force terms. Second, a reduction of τ ‖
surface

by a certain factor

leads to an increase of the simulation time by nearly the same factor. For many applications,

it is therefore highly impractical to use values below roughly 0.1 ps.

For this study, we restrict ourselves to considering only small damping parameters as they

shift the time scales to more realistic values. Despite the mentioned limitations, a comparison
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for small �lm thicknesses below 0.3 nm is already possible employing the reduced values

τ
‖
surface

= 0.1 ps and 0.05 ps. The corresponding morphology data from three simulations

with those values of the damping parameter and τ
‖
surface

= 1 ps is shown in Fig. 6.1. To

make this investigation less complex, the re-evaporation probability pre was set to zero in

the simulations. The parameter γ was set to 1 × 10−2, and all other parameters—except the

adjusted �ux J simm —were the same as for the simulations discussed in Sec. 5.5.2.

Considering the cluster density and the mean cluster distance �rst, one can hardly �nd

any deviations between the results for the three values of τ ‖
surface

. Only for δ > 0.2 nm, it is

apparent that the densities are slightly lowered for τ ‖
surface

= 0.05 ps. More obvious deviations

can be found for the cluster radius and the cluster height: apart from small �uctuations, the

reduction of τ ‖
surface

leads to larger radii, but smaller heights.

6.1.2. Discussion

The data in �gure Fig. 6.1 is apparently not invariant under changes of the scaling factor

ξ . As only a relatively small range of damping parameters was considered in this analysis,

it remains open how strong the deviations will become if τ ‖
surface

is reduced even further.

However, we must stress that the behavior does not necessarily become more realistic just

by decreasing τ ‖
surface

—even though the simulated times approach experimental time scales.

Whilst it is indeed the case that the time evolution of the mean squared displacement of single

atoms on the surface becomes more realistic if τ ‖
surface

is decreased, it remains unclear to what

degree the formation and relaxation of cluster structures is hampered. This, however, could

put limitations on the range of possible damping parameters because one main assumption

was that cluster processes must be su�ciently fast. The results for the radius and the height

shown in Figs. 6.1b and c can be taken as an indication that the relaxation times of clusters

are not rescaled in the same way as the di�usion coe�cients and the deposition rate. The

fact that a reduction of τ ‖
surface

leads to larger radii but lower heights might be caused by

the strong damping as it keeps the atoms in the surface layer and thus impedes clusters

from expanding perpendicularly to the surface. However, further work would be required

to analyze this in greater detail, because it is still unclear whether certain other parameters

such as the detection time t
regions

detect
should also be modi�ed if τ ‖

surface
is changed.

Against this backdrop, we gain a more detailed view on the concept of the rescaling

procedure: As the system is driven by Langevin dynamics, there is no other possibility than

using a time step on the order of 1 fs and adjusting the damping parameter with respect to

the time step. These parameters may only be varied within a small range. The deposition

rate used in the simulations must be su�ciently large and adequately re�ect the desired

experimental conditions. In order to ful�ll both requirements, it seems natural to make

use of the assumption that certain processes are invariant under a rescaling of the process

times—this aspect will be subject to the next section. Nevertheless, that does not mean the

conditions in the simulations are the same for any chosen value of τ ‖
surface

. For that reason,

the choice of the simulation parameters is to some extent always made by trial and error.

Even then, there is no guarantee that we can reproduce the conditions of any deposition

experiment with the rather simple simulation model.
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6.2. Comparison with rate equations for cluster growth

In this section, we try to make it more plausible that the simulated behavior can indeed be

mapped to other time scales. For that purpose, we introduce a set of rate equations with the

following properties:

• The equations describe a cluster growth process on a surface. The solutions allow us to

express the δ -dependence of the same morphological quantities that we investigated in

Chapter 7.

• The δ -dependence of the morphological quantities remains una�ected by a linear

rescaling of the deposition rate, all involved di�usion coe�cients and the re-evaporation

rate.

Finally, if it is possible to reproduce the simulated behavior with rate equation of this kind,

this may be an indicator that the simulated behavior indeed remains invariant if it is shifted

to other time scales according to the rescaling procedure.

In Sec. 6.2.1, we start this investigation by introducing a simple model for cluster growth

on surfaces, and in Sec. 6.2.2, we analyze a set of rate equations which governs the time

evolution of this model. Finally, in Sec. 6.2.3, we compare the results from the rate equations

with results from the previous chapter.

6.2.1. Description of the model

We begin by giving a brief description of the components of the model and the considered

processes. While some parts of the model are based on similar assumptions as the ones made

for the de�nition of the KMC model presented in Chapter 4, it is also referred to the model on

the growth of clusters in a magnetron-based gas aggregation source by Fujioka [39], because

it provided the ideas for some other parts of the model. Furthermore, it is also referred to a

similar study concerned with the growth of islands on a surface in Ref. [150].

The model system contains two di�erent particle which represent atoms and clusters. The

atoms are taken to have a spherical shape with the �xed radius ra, and the clusters have a

hemispherical shape whose radius rc may grow over time. We assume that both species are

located on a two-dimensional plane according to the illustration shown in Fig. 6.2. To avoid a

description with explicit particle coordinates, we only use number densities (with dimensions
[length]−2) to describe the amounts of both species on the surface; in particular, we assume

that these densities are spatially homogeneous, but time-dependent. Later, it will also be

necessary to distinguish between isolated atoms on the surface and atoms that belong to a

cluster. For the number densities of both atom types, we therefore introduce the labels na and

n∗a; for the number density of clusters, we write nc.

Now we move to describe the processes that lead to changes of the three densities. An

additional graphical illustration of these processes is provided by Fig. 6.3. For the sake

of convenience, both the �gure and the following explanations always refer to individual

particles; nevertheless, it is still the case that the mathematical description will be in terms of

number densities.
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top view side view

atom hemispherical cluster

rc
ra

Figure 6.2.: Representation of atoms and clusters in the model which is used for the formu-

lation of rate equations. It is stressed that this illustration may be misleading

with regard to the positions of atoms and clusters: rather than taking account

of any explicit particle coordinates, the model only makes statements about the

number densities of atoms and cluster, and these densities are assumed to be

homogeneous.

At the beginning, the surface is empty, but atoms are added to the system right after the

beginning and throughout the whole time. The associated �ux of atoms to the surface, Jm, is

assumed to be constant and homogeneous. Just like in the MD simulations, it is also possible

that isolated atoms are removed to represent incomplete condensation. The associated re-

evaporation rate will be de�ned below. The formation of clusters is only possible when two

isolated atoms join each other or when an atom is deposited on top of an isolated atom. The

following three processes may lead to the growth of already existing clusters: an isolated

atom is attached to a cluster as a result of surface di�usion, an atom is deposited on top of

a cluster, or two clusters coalesce. It is assumed that all mentioned cluster formation and

growth processes happen instantaneously. Furthermore, we simplify the problem by making

the restriction that all clusters on the surface must have the same sizes. That means that

whenever clusters are formed or clusters grow, we obtain a new value of the radius rc, which

can be understood as a mean value referring to all clusters. In fact, this approximation is

only justi�ed for systems with narrow cluster size distribution. As we have found that the

size distributions resulting from the MD simulations become broader with increasing �lm

thickness, we can already expect that both methods yield discrepancies for large values of δ .
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(a) (b) (c)

(d) (e) (f)

Figure 6.3.: Illustration of the processes described by the rate equations for cluster growth:

deposition of an atom on the surface (a), re-evaporation of an atom (b), deposition

of an atom on top of a cluster or another atom (c), merging of two di�using atoms

into the smallest possible cluster (d), merging of two di�using clusters into a

larger cluster (e), merging of a di�using cluster and a di�using atom (f).

6.2.2. Formulation of the equations

We proceed by putting the above behavior of the model in mathematical terms. Before we

formulate three rate equations describing the time evolution of na,n
∗
a and nc, we brie�y turn

towards the calculation of several quantities which later enter the �nal equations.

Required quantities

Atomic radius The speci�c choice of the atomic radius used in this model has an e�ect

on the calculation of the surface coverage and the di�usion coe�cient of atoms. For this

study, ra is set to the Wigner-Seitz radius of gold, ra = 0.165 nm [142]. Nevertheless, it was

checked that there exists a range of other reasonable values for which the solutions of the

rate equations are nearly the same.

Cluster radius. As all clusters are de�ned to have the same shape and size, the knowledge

of n∗a and nc allows us to calculate the volume of each cluster from the expression

Vc =
n∗amAu

ncϱAu
, (6.1)

where we reused the atomic massmAu and the density of gold ϱAu. Since the clusters are

hemispherical, their radius can be obtained from

rc =

(6Vc
4π

)−1/3
. (6.2)

Hence, rc unambiguously depends on the densities n∗a and nc in this model.
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Surface coverage. In order to calculate the amount of atoms which is deposited on top of

another atom or a cluster on the surface, it is required to calculate the fraction of the surface

area which is covered with isolated atoms or clusters. At that, it is required to make separate

calculations for each species, namely

ca = na · 4πr 2a and cc = nc · 4πr 2c . (6.3)

As the method puts no limitations on the amount of atoms and clusters in the system, the sum

ca + cc may, in principle, become larger than one. Therefore, we introduce another function

for the total coverage which is always less than or equal to one,

ctotal =

ca + cc, if ca + cc ≤ 1

1, otherwise .
(6.4)

Di�usion coe�icients. For the calculation of collision rates, the di�usion coe�cients of

atoms and clusters will be required. Aiming at a reproduction of the MD simulation results,

the di�usion coe�cients of atoms, Da, is set to the same value of D ‖
surface

as in the simulations,

see Eq. (5.10). For the di�usion coe�cients of clusters, we make the ansatz

Dc (r ) =
Da

N (r )
, (6.5)

where N (r ) is the number of atoms per cluster with radius r . This ansatz has been taken from

the KMC simulation scheme which treats the size dependence of surface di�usion coe�cients

in the same fashion, see Eq. (4.6). For the determination of the collision rates, we summarize

Da and Dc using the notation

D (r ) =

Da, if r = ra

Dc (r ), otherwise .
(6.6)

Coagulation rates. A crucial step in the explicit formulation of the rate equations is the

determination of coagulation rates for all possible combinations of the involved particles.

A typical approach to do this is based on an ansatz by Smoluchowski, which expresses the

coagulation rate of two particle species A and B as the product of the associated densities

nA, nB and a coagulation kernel κA,B [151]. In doing so, the problem is reduced to �nding a

kernel which appropriately describes the problem of interest. A commonly used kernel for

systems whose particles move di�usively between collisions, is the so-called di�usion kernel

[39, 152]. If we let rA and rB be the radii of particle species A and B, and DA and DB be their

di�usion coe�cients, the di�usion kernel takes the form

κA,B = 4π (DA + DB) (rA + rB) . (6.7)

Although the di�usion kernel is usually applied to three-dimensional systems, here, we will

also use it for particles which grow on two-dimensional surfaces. For that purpose, we

introduce the factor η = 1 nm−1 to obtain correct units and write

κ (rA, rB) = 4πη (D (rA) + D (rB)) (rA + rB) (6.8)
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6. Complementary Analysis of the MD Simulation Scheme

for two atoms or clusters with radii rA and rB.

It is stressed that the ansatz in Eq. (6.8) for the coagulation kernel involves a certain

amount of guessing. However, as we do not need very accurate results for the purpose of

this consideration, we make no attempt to �nd a strict derivation of a more appropriate

coagulation kernel in this work. The primarily important assumption concerning the scale

invariance is the fact that the dependence on both di�usion coe�cients in Eq. (6.8) is linear.

Re-evaporation. In order to account for the re-evaporation of isolated atoms, we introduce

the re-evaporation rate νre, which denotes the fraction of isolated atoms that is removed per

unit time. To achieve similarity between the MD simulations and this model, we reuse the

quantities from Sec. 5.2 and write νre = pre/tre. For the results of this study, the parameters

pre = 0.9 and tre = 300 fs were used.

Rate equations for the densities of atoms and clusters

Making use of the above considerations, we proceed by formulating three di�erential equa-

tions for the dependence of na, n
∗
a and nc on the time t . We will do this by writing down and

explaining each equation one after the other.

First rate equation: number density of isolated atoms. The �rst equation describes

the change of the density of isolated atoms, na,

d

dt
na = (1 − ctotal) Jm − κ (ra, rc)nanc − κ (ra, ra)nana − ca Jm − νrena . (6.9)

The �rst term on the right side, (1 − ctotal) Jm accounts for the addition of isolated atoms

due to deposition. As atoms may also be deposited on top of other atoms or clusters, the

contribution is limited to the fraction 1 − cc of the �ux Jm. The two terms −κ (ra, rc)nanc and
−κ (ra, ra)nana express a reduction of na due to the coagulation of atoms and clusters or atoms

and atoms. The term −ca Jm accounts for a reduction as a consequence of immediate cluster

formation right after deposition on top of isolated atoms, and the last term −νrena describes a
reduction due to re-evaporation.

Second rate equation: number density of atoms in clusters. The second equation,

referring to the density of atoms in clusters, reads

d

dt
n∗a = 2ca Jm + cc Jm + κ (ra, rc)nanc + κ (ra, ra)nana . (6.10)

Again, 2ca Jm, describes the cluster formation after the deposition of an atom on top of an

isolated atom; the factor two takes into account that two atoms contribute to this process. For

the second term, cc Jm, this factor is not required because just one atom is added to a cluster.

The last two terms, κ (ra, rc)nanc and κ (ra, ra)nana, represent the same amount of atoms which

has been removed from na in Eq. (6.9).
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Third rate equation: number density of clusters. Finally, we let the density of clusters

be governed by the equation

d

dt
nc =

1

2
κ (ra, ra)nana −

1

2
κ (rc, rc)ncnc + ca Jm . (6.11)

The �rst two terms on the right side describe an increase due to the coagulation of atoms

and a decrease due to the coagulation of clusters. The factor 1/2 occurring in each of the

terms arises from the assumption that only half of the involved particles make an e�ective

contribution. The last term, ca Jm, represents an increase due to immediate cluster formation

after the deposition of an atom.

Discussion of the solutions

The present set of rate equations has the property that the solutions for two di�erent parameter

sets {Da, Jm,νre} and
{
D̃a, J̃m, ν̃re

}
can be transformed into each other according to

ña (t ) = na (ξt ) , (6.12)

ñ∗a (t ) = n
∗
a (ξt ) , (6.13)

ñc (t ) = nc (ξt ) (6.14)

if the relation

D̃a = ξDa , (6.15)

J̃m = ξ Jm , (6.16)

ν̃re = ξνre (6.17)

holds. That immediately follows from the fact that each term on the right sides of Eqs. (6.9),

(6.10) and (6.11) has a linear dependence on either Da, Jm or νre. Furthermore, we can also

deduce

f (na (t ),n
∗
a (t ),nc (t )) = f (ña (ξt ), ñ

∗
a (ξt ), ñc (ξt )) . (6.18)

for any function f that depends on the three densities. In particular, we �nd

δ (na (t ),n
∗
a (t )) = δ (ña (ξt ), ñ

∗
a (ξt )) (6.19)

for the e�ective �lm thickness as it only depends on the amount of atoms in the system.

Consequently, we can use δ as a joint reference quantity and �nd that the morphological

quantities which only depend on any combination of the three densities have the same

δ -dependence for both parameter sets.

6.2.3. Results

In Fig. 6.4, the MD results for pre = 1 × 10−4 and γ = 1 × 10−2 and the experimental results,

which were �rst presented in Fig. 5.6, can be compared with the results obtained from a

numerical solution of the three rate equations. The curves belonging to the rate equations
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represent the following quantities: For the density of clusters in Fig. 6.4a, the quantity nc is

shown. For the curves of both the radius and the height in Figs. 6.4b and c, the cluster radius

rc de�ned in Eq. (6.2.2) is shown. The curve for the cluster distance in Fig. 6.4d represents the

term n−1/2c , i. e., the distance is again derived from the cluster density. Finally, in Fig. 6.4e, the

quantity ctotal from Eq. (6.4) indicates the total coverage of the surface.

The data in the �gure reveals that the results from the rate equations are indeed similar

to the simulation results, but there are also strong deviations, in particular for large values

of δ . While the rising part and the maximum of the cluster density are accurately captured,

the decay is clearly weaker than in the simulations and in the experiment. The curve for the

height always remains below the other two curves, which might be a systematic weakness of

the model as it enforces the equality of the cluster radius and the cluster height. Finally, also

the coverage obtained from the rate equations displays clear deviations from the MD results;

for example, it already reaches a value of 100 % for δ = 2 nm while the value from MD is still

around 65 %.

Since the model used for the rate equations is based on several estimations and approxi-

mations with unknown accuracy, we could have expected that no perfect agreement with

the simulation results is achieved. The fact that the strongest deviations occur for large

values of δ can be explained by the following two reasons: On the one hand, the shape of

the hemispherical clusters clearly deviates from the branched structures occurring in the

MD simulations. On the other hand, we can expect that the inaccuracies resulting from the

choice of the coagulation kernel mainly a�ect the δ -regime containing the decay of the cluster

density; this is the part where the coagulation process dominates the behavior of the system.

Furthermore, the choice of a di�usion kernel is only appropriate if the motion of the involved

particles is di�usive before they coagulate; however, this requirement becomes violated when

the surface coverage becomes so large that the space between the clusters is very small. In

this work, all those �aws of the model for the rate equations are not eradicated. Nevertheless,

that does not mean that the results cannot be signi�cantly improved, e. g., by spending further

theoretical work on the establishment of a coagulation kernel which is more appropriate for

this problem. For the purpose of this study, it is su�cient that the rate equations and the

MD simulations show at least partial agreement for δ . 0.4 nm. We have thus found another

reason to justify the approximation that the δ -dependence of the �lm morphology remains

invariant under linear rescaling of the �ux of atoms to the surface, the involved di�usion

coe�cients and the re-evaporation rate.
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Figure 6.4.: Comparison of the �lm morphology data obtained from a solution of the rate

equations with MD simulation results and experimental results. The MD results

and the experimental results are the same as the ones shown before in Fig. 5.6.
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Chapter 7

Growth of Silver–Copper Clusters

on a Polymer Surface

The MD simulation scheme presented in Chapter 5 allows for a simple exchange of the

metallic particle species. For the most part, the technical realization only requires to replace

the interaction potential and a few material constants. Therefore, it is even just a small e�ort

to integrate more than one metallic species. In fact, we will do this in this chapter: we will

reuse the simulation scheme from Chapter 5 and apply it to the growth of silver–copper

(Ag–Cu) nanoparticles.

Before we start this investigation, we make a few remarks to motivate the speci�c choice

of silver and copper. First of all, there is a general interest in combining di�erent materials

because of the potential to discover nanoparticles with new properties. This especially holds

for intermatallic compound particles, which have been in the focus of many studies during the

last few years [62, 153, 154]. The speci�c interest in Ag–Cu nanoparticles arises from the fact

that the Ag–Cu bulk system possesses a well-known miscibility gap over wide temperature

and concentration ranges [155], but only little is known about the miscibility of both materials

on the nanoscale. In particular, it is not known how the separation of Ag and Cu atoms in a

cluster behaves during the growth on polymer surfaces. On the one hand, it has been shown

that a segregated structure with silver on the surface and copper in the core is the energetically

favorable structure of clusters with radii of up to several nanometers [63, 156]. On the other

hand, however, it has also been reported that the �nal con�guration of the particles is quite

sensitive to the way the particles are created; in many cases, one thus observes metastable

con�gurations rather than core–shell geometries.

One reason why MD simulation results might provide valuable insights is that even the

most recent experimental �ndings concerning the phase separation in Ag–Cu nanoparticles

still lack full atomistic detail and a high time resolution. Although there already exist various

computational studies—e. g., on the ground states of very small Ag–Cu clusters [156, 157], on

the formation of Ag shells on Cu clusters [155], and on the coalescence of Ag and Cu clusters

[63, 158]—the complex mechanisms involving a multitude of clusters on a surface during �lm

growth have not yet been taken into account.

A common experimental technique to study the composition of bi- or polymetallic nanopar-
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ticles draws upon spectroscopic ultraviolet-visible (UV-vis) extinction measurements [62, 159,

160]. For example, it has been observed for nanocomposites composed of Ag–Cu nanoparticles

in a Te�on AF matrix that an increase of the particle size is associated with the occurrence of

double plasmon resonances [62]. The authors presume that this is attributed to the formation

of core–shell structures, but the nature of the experimental method does not permit a direct

observation. Another approach that draws on electron microscopy was followed by Radnóczi

et al. who tried to infer structural details of co-deposited Ag–Cu nanoparticles on a carbon

�lm by calculating the Fourier transform of high-resolution real-space images [161]. Studying

di�erent compositions with an Ag content varying in the range from 15 to 80 at.%, the authors

have found that particles with sizes below 5 nm grow as a solid solution for all compositions;

for larger particles, they have observed a composition-dependent unmixing of both phases by

spinodal decomposition.

Due to the recent interest in the phase separation of Ag–Cu clusters, exactly this aspect

will be in the focus of this chapter; the morphology, which we extensively studied for gold

in Chapter 5, will only play a minor role. In Secs. 7.1 and 7.2, we will explain how the

simulation scheme can be adapted to the Ag–Cu system and de�ne the distribution functions

to characterize the phase separation. In Sec. 7.3, we will �rst make a brief comparison with

the results for gold and then study the phase separation for four di�erent ratios of the �uxes

of Ag and Cu atoms towards the surface.

7.1. Adjustment of simulation parameters

The MD simulation scheme contains several parameters whose values cannot be derived from

a rigorous methodology. Instead, they are guessed under rather general physical assumptions

or they are optimized such that speci�c experimental data can be reproduced. While the

simulations for the growth of gold �lms were intended to re�ect the experimental behavior

observed in Ref. [61], similar reference data is lacking for the Ag–Cu system. Therefore, the

adjustment of the parameters for the simulations discussed in this chapter introduces some

additional uncertainties. Nevertheless, we can expect to capture the characteristic behavior at

least on a qualitative level. In the following, we will concern ourselves with the modi�cations

of the simulation parameters that have been made to simulate the deposition silver and copper

instead of gold.

Material constants. All involved material constants for gold are replaced by the corre-

sponding values for silver and copper. Hence, the masses of Ag and Cu atoms are set to

mAg = 63.55 u andmCu = 107.87 u, and the respective densities are set to ϱAg = 10.49 g/cm3

and ϱCu = 8.96 g/cm3.

Dimensions of the simulation box. The partitioning of the simulation box is the same as

the one for gold. However, most of the results in this chapter have been obtained with larger

simulation boxes, namely Lx = Ly = 60 nm. The only exception are the simulations for two

curves shown in Fig. 7.1, which have been performed with surface sizes of 40 nm × 40 nm.
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Di�usion and deposition. The main di�culty imposed by the lack of experimental refer-

ence data lies in �nding reasonable values for the deposition rates and the damping parameters.

The simulations for the results in this chapter have been carried out with guessed values. In

the following, we look closer at the assumptions under which these guesses have been made.

The equations of motion introduced in Sec. 5.2 have been written for particles with di�erent

masses, but the employed damping parameters have been the same for all particles. A

generalization of the equations of motion for the particles in the surface region B (II) can be

written as follows:

mi ẍi = F xi (ri ) −
mi

τ
‖
surface,i

ẋi +

√

2mikBT

τ
‖
surface,i

Rxi , (7.1)

miÿi = F
y
i (ri ) −

mi

τ
‖
surface,i

ẏi +

√

2mikBT

τ
‖
surface,i

R
y
i , (7.2)

mi z̈i = F zi (ri ) −
mi

τ⊥
surface,i

żi +

√

2mikBT

τ⊥
surface,i

Rzi (7.3)

Likewise, we can write

mi r̈i = Fi (ri ) −
mi

τbulk,i
ṙi +

√

2mikBT

τbulk,i
Ri (7.4)

for the bulk region B (I) . For both regions, we added the index i to all occurring damping

parameters, which allows us to de�ne individual damping parameters for each particle. In

particular, if we are restricted to two particle species, the index i is used to distinguish between

both species Ag or Cu. In principle, this formulation allows us to assign di�erent values to the

damping parameters of Ag and Cu so that any required di�usion coe�cient can be realized.

However, as it is unknown which di�usion coe�cients are most appropriate for both species,

the damping parameters τ ‖
surface,i

are again set to the standard value τ ‖
surface

= 1 ps for all i .

Just as in the case of gold, the remaining parameters τ⊥
surface,i

and τbulk,i are then set to the

same values according to

τbulk,i = τ
⊥
surface,i =

τ
‖
surface

rs/b
(7.5)

for all i with rs/b = 80. As a result of this method, both atom species are assigned the same

sets of damping parameters, but the resulting di�usion coe�cients still di�erent because of

the di�erent atomic masses. In this case, the di�usion of Ag atoms will be faster becausemAg

is less thanmCu.

While the proper choice of di�usion coe�cients is crucial to represent speci�c materials,

the choice of deposition rate is less critical because it can be varied over a broad range in the

experiments. The total �ux of atoms towards the surface, J simm , is therefore set to the same

value as the value used for the deposition of gold. This �ux is the some of the �uxes of Ag

and Cu atoms, i. e., it can be written as

J simm = J simAg + J simCu . (7.6)
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However, we will not explicitly name the values of J simAg and J simCu in the results section, but

rather employ the ratios

ϵAg =
J simAg

J simm

and ϵCu =
J simCu

J simm

. (7.7)

These ratios are not necessarily equal to the fractions of Ag and Cu atoms in the deposited

�lm because the amount of re-evaporated atoms may be di�erent for both species. In this

case, however, the re-evaporation probability is set to the same value for both species (see

below); thus, the fractions ϵAg and ϵCu indeed apply to the amount of Ag and Cu atoms in the

�lm, too.

Finally, it is remarked that the lack of material-speci�c di�usion coe�cients makes it

impossible to specify the boost factor ξ the sameway as for gold, using Eq. (5.20). Nevertheless,

we may assume that a similar boost factor on the order of 109 is also be achieved for silver

and copper.

Interaction potentials. The interatomic interactions are again treated in the framework

of the embedded-atom method. The speci�c potential for Ag–Cu alloys was taken from the

work by Williams et al. in Ref. [162]. This choice was motivated by the fact that similar MD

simulations for Ag–Cu nanoparticles described in Refs. [63, 158] were performed with the

same potentials.

Surface defects and re-evaporation. Just as in the case for gold, the parameters γ and

pre used to control the creation of surface defects and the re-evaporation of atoms should be

adjusted to experimental data. Yet, due to the lack of appropriate reference data, it is again

uncertain what the values of these parameters should be for the simulations with silver and

copper. The values are therefore guessed on the basis of the simulations for gold. Such being

the case, the re-evaporation probability was set to pre = 1 × 10−4 for all simulations discussed

in this chapter. The fraction of deposited defects γ was varied between 1 × 10−3 and 1 × 10−1
for the results on the morphology in Sec. ??; for the study of phase separation in Sec. 7.3.2,

however, only the value γ = 1 × 10−2 was considered because the use of pre = 1 × 10−4 and
γ = 1 × 10−2 for gold led to good agreement with experimental data.

7.2. Calculation of distribution functions

To study the degree of phase separation, we will characterize both species in terms of the

following distribution functions: one for the z-coordinates of all atoms in the �lm, and one

for the radial distances of atoms in clusters. Both distributions functions are approximately

determined from corresponding histograms of atom positions with bins of equal size.

In the following, we let X represent the atom species, i. e., Ag or Cu. The vertical distribution

for X is obtained at positions zi from the expression

f X (zi ) =
NX,i

Nm∆z
, (7.8)
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where ∆z is the bin width, Nm is the total number of both Ag and Cu atoms in the system,

and NX,i is the number of Ag/Cu atoms in the i-th bin ranging from zi − ∆z/2 to zi + ∆z/2.
According to this de�nition, the distribution function of species X is normalized to its relative

amount ϵX. We can thus write
∫ ∞

0
fX (z) dz = ϵX (7.9)

and
∫ ∞

0

(

fAg (z) + fCu (z)
)

dz = 1 . (7.10)

While we do not distinguish between di�erent clusters for the calculation of the vertical

distribution function, the radial distribution function is de�ned to be the pointwise average

of the radial distribution functions of all clusters. This quantity is only meaningful as long

as all clusters have nearly the same shapes and sizes. Similarly to the vertical distribution

function, the radial distribution function of the k-th clusters is obtained from

χX,k (ri ) =
NX,k,i

Nm,k∆r
, (7.11)

where ∆r is the bin width, Nm,k is the total number of atoms in the cluster, and NX,k,i is the

number of Ag/Cu atoms whose planar distance d from the center of the cluster (see Eq. (5.23))

lies in the range from ri − ∆r/2 to ri + ∆r/2. According to this de�nition, we obtain the

integrals
∫ ∞

0
χX,k (r ) dr = ϵX (7.12)

and
∫ ∞

0

(

χAg,k (r ) + χCu,k (r )
)

dr = 1 . (7.13)

Finally, the average radial distribution function is calculated from

χX (r ) =
1

Nc

Nc
∑

k=1

χX,k (r ) , (7.14)

where Nc is the number of clusters in the system. This de�nition consistently yields

∫ ∞

0
χX (r ) dr = ϵX (7.15)

and
∫ ∞

0

(

χAg (r ) + χCu (r )
)

dr = 1 . (7.16)

It is remarked that the above de�nition of the radial distribution function may be considered

uncommon in so far as the integrand of the integral (7.12) does not contain an additional factor

r 2. Nevertheless, this aspect is uncritical because the behavior of the relevant intersections of

the Ag and Cu distribution curves remains una�ected from the normalization procedure.
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Figure 7.1.: Evolution of the Ag–Cu �lm morphology as a function of the e�ective �lm

thickness δ for di�erent fractions of deposited defects γ . The Ag content is 50 at.%.

For comparison, the data for gold with γ = 1 × 10−2 and pre = 1 × 10−4 from
the previous chapter is also shown. The simulation runs for Ag–Cu �lms with

γ = 1 × 10−1 and 1 × 10−3 have been performed with a reduced surface size of

40 nm × 40 nm. Adapted from [163].

7.3. Simulation results

We proceed by discussing the simulation results. In Sec. 7.3.1, we brie�y consider the �lm

morphology, and in Sec. 7.3.2, we study the phase separation.

7.3.1. Film morphology

Just to show the similarity to the simulations for gold, the morphological quantities which

have been in the focus of the previous chapter are also shown for the deposition of silver and

copper. In Fig. 7.1, the number density of clusters, the cluster heights, radii and distances are

depicted as a function of the e�ective �lm thickness δ for three values of γ and ϵAg = 0.5. For

γ = 1 × 10−3 and γ = 1 × 10−1, the simulations have been restricted to �lm thicknesses below
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δ ≈ 0.5 nm; this is su�cient to show the peaks of the cluster density. A longer simulation

run has only been performed for γ = 1 × 10−2 because this is the value which is used for the

study of phase separation. In addition to the data for silver and copper, the results for gold

with the parameters γ = 1 × 10−2 and pre = 1 × 10−4 are shown as well, but one has to take

into account that that any value of δ for Ag and Cu corresponds to a total number of atoms

which is di�erent from the total number of gold atoms that belongs to the same value of δ .

The reason for this is the di�erence of the corresponding densities.

For all three values of γ the behavior of the Ag–Cu �lm morphology displays the same

characteristic features as discussed in Secs. 5.5.2 and 5.5.3 for gold. In particular, it is again

the case that an increase of the amount of defects leads to a larger number of clusters, but the

cluster sizes are reduced. Apart from that, we will refrain from an additional description of the

morphology in this section. Instead, we restrict ourselves to noticing that the Ag–Cuclusters,

whose phase separation is considered in the next section, have similar shapes as the gold

clusters. This is also true for other values of ϵAg, but the corresponding data is not shown

here.

7.3.2. Phase separation

We now move to the investigation of phase separation. It is mentioned in advance that all

simulations displayed the expected trend that more Ag atoms than Cu atoms can be found

in the vicinity of the cluster surface. However, a perfect core–shell structure, i. e., complete

phase separation, occurred in none of the simulations.

Results for equal fluxes of Ag and Cu

We start the discussion by referring to the simulation results for ϵAg = 0.5 presented in

Fig. 7.2. The �gure shows the evolution of the arrangement of Ag and Cu atoms in the

cluster by depicting the cluster con�gurations and the distribution functions χ and f for

four di�erent values of δ ranging from 0.07 nm (1.7 × 104 atoms) to 1.8 nm (4.4 × 105 atoms).

In the �rst row, the clusters are shown as seen from a top view. The dominating blue color

already indicates the presence of Ag atoms on top of the clusters—not only for large e�ective

thicknesses, but already for δ = 0.07 nm, which is more di�cult to recognize. In order to

reveal more information on the arrangement of atoms inside the cluster, the same clusters as

in the �rst row are also shown in the second row, but all atoms with z-coordinates larger than

1 have been removed. In these images, the red color dominates, i. e., the preferred region of

Cu atoms is the core of the cluster. A detailed look at the clusters also reveals that nearly all

clusters are surrounded by a thin shell of Ag atoms. In most cases, the thickness of these shells

does not exceed that of roughly one monolayer. A similar observation was also made in the

aforementioned MD simulations of Ag–Cu cluster formation [63, 158], but an experimental

con�rmation is still required. Besides the formation of the outer layer of silver, a signi�cant

amount of Ag atoms can also be found in the whole inner volume of the cluster. While some

of these atoms appear to be randomly distributed amidst the surrounding copper atoms, other

Ag atoms tend to from structures that connect the outer parts of the clusters like a network.

These structures are formed when two or more clusters with Ag shells agglomerate because
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Figure 7.2.: Illustration of �lm growth and phase separation for di�erent values of the e�ective

thickness δ according to a simulation with 50 at.%Ag content. The �rst row shows

the evolution of the morphology as seen in a top view; the size of the surface is

60 nm×60 nm. The second row shows the same con�gurations, but all atoms with

z-coordinates larger than 1 nm are excluded. The third and fourth rows show the

distribution of Cu and Ag in a cluster for vertical and radial directions. Adapted

from [163].

106



7.3. Simulation results

side view top view of cluster slices

5 nm
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Figure 7.3.: Arrangement of Ag and Cu atoms in an exemplary cluster which occurred in a

simulation with 50 at.% Ag content. On the left, the cluster is has been cut into

six slices of thickness 0.5 nm. On the right, the same slices are shown from the

top. Adapted from [163].

some atoms, which were previously on the surfaces of both clusters, are moved to the bulk

of the resulting cluster. As the internal rearrangement of atoms is a very slow process, the

network structures remain stable for a long time. Because it may be di�cult to recognize

these details in Fig. 7.2, it is also referred to Fig. 7.3, which shows the same e�ects for an

exemplary cluster. The �gure demonstrates the internal structure of cluster by prov ding a

look at six slices of equal thickness which have resulted from dissecting the cluster several

times parallely to the surface.

In addition to the above qualitative statements on the basis of the visualized cluster struc-

tures, we now turn towards the distribution functions shown in the third and fourth rows

of Fig. 7.2. Both the redial and the vertical distribution function con�rm that the clusters

exhibit Cu-rich regions, which are formed at an early stage and then persist throughout

the remaining time of the deposition. The heights at which the largest relative di�erences

between the numbers of Ag and Cu atoms occur have relatively stable positions between

0.4 nm and 0.6 nm; Beyond that, we �nd that these heights are very close to the maxima of

functions for Cu and—for δ = 1.0 nm and 1.8 nm— also to the local minima of the curves

for Ag. The transitions between Cu-rich and Ag-rich regions are indicated by intersections

of the distribution functions: while the each pair of vertical distributions functions exhibit

two such intersections—marking the transitions at the top and the bottom of the cluster—the

corresponding radial distributions exhibit just one intersection, which refers to all radial

directions. Furthermore, the tails of all presented Ag distribution functions lie above the tails

of the functions for Cu, but the di�erence is only small as it is mainly caused by the thin layer

of Ag atoms on the cluster surface. In fact, the distributions reveal that a large fraction of Ag

and Cu atoms remains mixed with each other. Simulation snapshots such as the ones in the

�rst two rows therefore provide valuable additional information on the structural details of

both phases.
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Evolution of characteristic points

To complement the above analysis, we now summarize the δ -dependence of the vertical

distribution functions. For that purpose, we introduce the following characteristic points:

1. zmax,Cu is the height at which the local maximum of fCu occurs.

2. zmin,Ag is the height at which the local minimum of fAg occurs. As mentioned before,

such a minimum can only be found for su�ciently large values of δ .

3. zmax,Ag is the height at which the local maximum of fAg occurs. Again, only su�ciently

large values of δ are considered for which local maxima with zmax,Ag > zmin,Ag exist.

4. ∆zAg is the di�erence of the height larger than zmax,Ag at which the value of fAg falls

below 0.5 · fAg (zmax,Ag) and zmin,Ag. Hence, ∆zAg is only de�ned if the second and third

points exist. ∆zAg can be understood as a measure for the peak width of the function

fAg.

In Fig. 7.4, it is shown how the values of these points depend on the �lm thickness δ . The

curves for zmax,Cu and zmin,Ag con�rm that the Cu-rich regions maintain a relatively stable

height throughout the whole deposition process. The characteristic peak of the function fCu
already appears for small values of δ because the clusters rapidly form a Cu core. Before the

corresponding value of zmax,Cu remains nearly constant at 0.6 nm for δ > 0.4 nm, it slowly

increases from an initial value of 0.36 nm. In contrast, a minimum of the function fAg can

only be found for slightly larger �lm thicknesses, δ > 0.37 nm; however, the associated value

of zmin,Ag remains nearly constant from the beginning.

Stronger changes are only exhibited by the curves for zmax,Ag and ∆zAg. As a maximum of

the function fAg can only be found for δ > 0.7 nm, these curves set in for larger thicknesses

than the other curves. For δ < 1 nm, zmax,Ag only weakly increases from 1.1 nm to 1.2 nm. A

stronger increase of zmax,Ag to the value 1.5 nm follows in the range between δ = 1 nm and

δ = 1.4 nm. Only for larger values of δ , zmax,Ag levels o� again. Lastly, the most apparent

increase is exhibited by the curve for the width ∆zAg, whose slope is nearly constant for all

values of δ . Although the peak of fAg becomes broader, we have already seen in the third row

of Fig. 7.2 that the tail of fCu broadens as well; thus, we cannot take the rise of ∆zAg as an

indicator for an ongoing phase separation. As mentioned before, rather the opposite is the

case, namely that both phases persistently display a considerable overlap. It remains to be

discussed to which extent this behavior can be considered realistic.

Results for other ratios of the fluxes

To conclude this investigation, we now turn towards other values of ϵAg, namely 0.3, 0.7 and

0.9. Here, we restrict ourselves to considering the vertical distribution functions fAg and fCu
for δ = 0.05 nm, 0.3 nm and 0.6 nm shown in Fig. 7.5; the radial distributions are not shown

because they exhibit a very similar behavior.

The behavior for ϵAg = 0.3, which is displayed by the graphs in the �rst row, has a strong

similarity to the behavior for ϵAg = 0.5: the clusters have a Cu-rich core, and the Ag atoms
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Figure 7.4.: Dependence of the values of the characteristic points zmax,Cu, zmin,Ag, zmax,Ag and

∆zAg (de�ned in the body text) on the e�ective �lm thickness δ . To obtain greater

accuracy, the points of the corresponding distribution functions fAg/Cu were

interpolated with a cubic spline prior to the determination of the characteristic

points.

tend to accumulate on the cluster surface; however, as compared to ϵAg = 0.5, the latter e�ect

is less pronounced and we cannot �nd the distinct intersections between the functions fAg
and fCu. Instead, the tails of the functions are overlapping, and for all three δ -values, we still

�nd more Cu atoms than Ag atoms at the bottoms of the clusters.

The other two rows of the �gure reveal that the behavior discussed so far becomes di�erent

for large Ag contents. While the previous cases allow us to identify at least a weak separation

of both phases, this becomes di�cult or impossible for ϵAg = 0.7 and 0.9. The amount of Ag

atoms is so large that their presence dominates over the entire volume of the cluster. Instead

of making out a distinct Cu-rich region in the cores of the clusters, we rather observe that the

cluster states change over to a solid solution. However, we cannot attribute this transition to

a speci�c value of ϵAg. For example, the small drop of the function fAg at a height of 0.5 nm

for ϵAg = 0.7 and δ = 0.6 nm still reveals a very weak depletion of Ag atoms in the center of

the cluster; for the lower �lm thickness δ = 0.05 nm, however, such a drop cannot be found.

7.4. Summary

In this chapter, we have shown how the MD simulations for the deposition of gold can be

extended to the co-deposition of silver and copper. Making use of distribution functions and
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Figure 7.5.: Vertical distribution functions (perpendicular to the surface) of Ag and Cu atoms

for three di�erent values of the e�ective thickness δ . The data in each row has

been obtained from one simulation run with Ag contents of 30 at.%, 70 at.% and

90 at.%, respectively. Adapted from [163].

graphical visualization of cluster con�gurations, we con�rmed the expectation that silver

atoms are preferentially located near the surface of the cluster. In particular, for an Ag content

of 50 at.%, at least one monolayer of silver atoms was always present on the cluster surface.

Nevertheless, the cluster con�gurations remained in all cases far from a perfect core–shell

arrangement. In the following, we brie�y discuss why further work is required to �nd out if

and to what extent the simulations underestimate the degree of phase separation.

In Sec. 5.3, we have already explained that the rescaling procedure only a�ects the deposition
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rate and the di�usion on the polymer surface (and in the polymer bulk). For small liquid

clusters, all internal cluster processes should be su�ciently fast so that at least a weak

separation is possible. For large solid clusters, however, we can expect that the rearrangement

of the atoms is mainly driven by infrequent events, e. g., hops of atoms on the cluster surface

or vacancy di�usion in the cluster bulk. As these very slow processes are not accelerated,

it seems likely that the simulations underestimate the degree of phase separation—even

though it has been reported that under certain conditions Ag–Cu clusters indeed remain

in a metastable state [158]. Nevertheless, further work would be required to obtain reliable

reference data that helps to answer the question how much stronger the phase separation

would be in in actual experiment.
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Chapter 8

Conclusions

The present work was concerned with computational investigations of the plasma-based

formation of metal–polymer nanocomposites. In particular, two di�erent experimental

scenarios were covered: the �rst was the growth of metallic clusters and nanocolumns in a

polymer host matrix during co-deposition of metal and polymer. The other scenario was the

growth of a nanogranular metal �lm on a polymer substrate during the exclusive deposition

of metal.

Even though di�erent simulation techniques—kinetic Monte Carlo (KMC) and molecular

dynamics (MD) simulations—were applied to treat both cases, one common goal of the

approaches was to establish a model which describes the creation of surface defects during the

deposition process. Such a model is required to account for highly energetic plasma particles

which may impinge on the substrate during sputter deposition. In fact, the interaction of

a plasma with the substrate may lead to other e�ects as well, e. g., the charging of clusters

or the emission of secondary electrons, but none of the present models is currently able to

describe them. In accordance with experimental �ndings, the surface defects were intended to

limit the di�usion of atoms and clusters; yet, the respective implementations in the KMC and

MD simulations schemes di�ered due to the nature of the methods. Presently, both presented

KMC and MD models are still incapable of giving an exact microscopic representation of

the way the defects are created, their appearance and their property to trap particles. For

that reason, the treatment in the simulations must be understood as a rough approximation

of the actual behavior. The advantage of the employed techniques is that the amount of

defects can be easily varied in a broad range. Hence, there is a high chance that a realistic

amount of trapped clusters can be achieved in the simulations. However, the choice of the

defect parameters still requires a certain amount of guessing. Due to the lack of detailed

experimental reference data, it remains so far impossible to map the simulation parameters

to speci�c experimental conditions such as plasma parameters.

In the following, we separately recapitulate the �ndings from both employed simulation

methods, and we point out several critical aspects that are speci�c to either KMC or MD.

Kinetic Monte Carlo simulations. The work on KMC was performed to incorporate the

creation of surface defects into the nanocolumnar growth model by Rosenthal et al. [34].
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Concerning the question if the previously observed growth of nanocolumns [30] is also

possible if sputter deposition is applied, the results give a comprehensive answer: a general

trend displayed by many simulations was that an increase of the amount of defects leads to

an increased amount of columns. At that, it was observed that the columns typically become

thinner if a �xed amount of metal had to be distributed to a larger amount of columns. As

opposed to this, however, the simulations also showed that very large amounts of defects

may also lead to a reduction of even a complete suppression of columnar growth. If this is

the case, the composite typically exhibits a large amount of trapped spherical clusters which

have not reached the critical size that enables the columnar growth mode.

Another e�ect studied in this work was that of allowing clusters to di�use in the polymer

bulk. As the ratio between the surface and bulk di�usion coe�cients of metal atoms must

be guessed, this parameter was varied in a broad range. Even though it turned out that bulk

di�usion may indeed have a strong in�uence—e. g., it generally leads to an increase of the

number of columns—it was shown that the signi�cance of the e�ects is restricted to very

small ratios of the di�usion coe�cients, which are expected to be far below realistic values.

The neglect of bulk di�usion is thus justi�ed for many practical applications.

All new aspects considered in this work could be easily integrated into the previous simu-

lation model from Ref. [34]. In fact, such a �exibility, which pertains to many KMC models, is

an important advantage of the method. In some cases, the �exibility to make quick changes

to the model might even compensate for the uncertainties of the required parameters—for

example, when the in�uence of certain processes can be assessed by performing comprehen-

sive parameter scans. Even then, however, substantial improvements of the model usually

require detailed comparisons with reliable reference data. Although the simulation model by

Rosenthal et al. could be used to explain several e�ects that occurred in actual experiments

[34–36], it still involved some approximations and guesses that have not yet been subject to

detailed checks. Before further extensions of the model are made, it would thus be reasonable

to make new comparisons with experiments. For example, the treatment of the defects in this

work is consistent with the previous version of the model, but so far, no experimental work

has been done to assess the speci�c �ndings.

Molecular dynamics simulations. Complementing the KMC simulations, the MD sim-

ulation scheme was developed because the atomistic treatment of the metal atoms allows

one to dispense with the initial assumptions about possible cluster shapes. In fact, the step

towards a microscopic treatment of the metal atoms is the main advantage over the KMC

model; the description of the polymer, the surface defects and the re-evaporation of atoms

relies on similarly simple models. The experimental scenario under consideration was the

formation of a nanogranular metal �lm on a polymer substrate during sputter deposition.

In one part of this investigation, the focus was put on the time evolution of the �lm

morphology resulting from the deposition of gold (Au) atoms. Although several aspects of the

simulation model are based on rough assumptions, it was possible to bring the results into

good agreement with experimental reference data from Ref. [61]. However, for none of the

investigated parameter sets, all considered quantities agreed equally well. Furthermore, it was

argued that the simulations may accumulate certain artifacts whose signi�cance increases
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with growing �lm thickness (see also below).

Another application of MD based on the simulation model for gold was the investigation of

the phase-separation of silver–copper (Ag–Cu) clusters growing on a polymer surface during

sputter deposition. Considering four di�erent ratios of Ag and Cu deposition rates, a weak

tendency of phase separation could be found in all cases. In particular, for an Ag content of

50 at.%, very small clusters already formed a thin Ag shell which persisted during the whole

growth process. In the cores of the clusters, a small majority of Cu atoms was found, but both

species remained largely intermixed.

The technical novelty of the MD simulation scheme is the treatment of the polymer sub-

strate as a continuous medium in which and on which the metal atoms perform Langevin

dynamics. It was claimed that the simulated behavior—which happens on time scales of

nanoseconds—corresponds to the much slower behavior of an actual experiment if the simu-

lations are performed with proportionally increased values of the di�usion coe�cient and

the deposition rate measured in that experiment. As a result of this, an e�ective boost fac-

tor of roughly 109 was achieved. It was explained that the rescaling method fails if it is

inappropriate to assume that internal cluster processes happen instantaneously. Therefore,

the treatment of large solid clusters, whose structure takes a long time to relax, is likely to

introduce artifacts in the morphology. It still requires further work to determine accurate

limits of the applicability of the method. For example, it would be particularly insightful if

the atomic arrangement of individual clusters could be tracked on a long time scales, but the

common experimental approaches still lack the ability to reach su�ciently high spatial and

temporal resolutions at the same time. Alternatively, one could also resort the problem to

complementary computational studies, but these have to overcome several challenges as well.

On the one hand, one could try to apply one of the MD acceleration techniques mentioned in

Sec. 3.2.4 to enforce the execution of infrequent events. Yet, it is still uncertain if all required

processes can be accelerated and if a su�ciently long simulation time can be reached. On

the other hand, it would also be possible to describe internal cluster processes with atomistic

KMC simulations. As is typical of KMC studies, the main di�culty of such an approach lies

in the acquirement of all required atomistic processes and the associated rates. First attempts

in this direction have already been made, see, e. g., Refs. [164, 165], but the employed models

are still very simple.
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Appendix A

Curve Fitting Results

It is di�cult to identify the maximum of the number density of clusters in the noisy experi-

mental data from Ref. [61]. For this reason, the parameters a, b and δ0 of the function

f (δ ) = a(δ − δ0)2 + b (A.1)

have been �tted with the method of least squares so that f approximates the experimental

data. For the �t, only the data with δ -values in the range [0.02 nm, 0.25 nm] has been taken

into account. The resulting curve f and the experimental data are shown in Fig. A.1. The

maximum of the function f occurs at the point (0.17 nm, 1.58 × 1013 cm − 2).
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Figure A.1.: Number density of clusters from the experiment presented in Ref. [61], and the

�tted curve f (Eq. (A.1)).

117





Bibliography

[1] R. P. Feynman, There’s plenty of room at the bottom [data storage], Journal of Micro-

electromechanical Systems 1, 60 (1992) (cit. on p. 1).

[2] A. D. Pomogailo, and V. N. Kestelman, Metallopolymer Nanocomposites, edited by

R. Hull, R. M. Osgood, Jr., J. Parisi, and H. Warlimont, Springer Series in Materials

Science (Springer Berlin Heidelberg, 2006) (cit. on pp. 1, 6).

[3] P. Ball, Roll-up for the revolution, Nature 414, 60 (2001) (cit. on p. 1).

[4] S. Kaskel, The Chemistry of Metal-Organic Frameworks: Synthesis, Characterization,

and Applications (Wiley, 2016) (cit. on p. 1).

[5] G. Guisbiers, S. Mejía-Rosales, and F. L. Deepak, Nanomaterial Properties: Size and

Shape Dependencies, Journal of Nanomaterials 2012, 1 (2012) (cit. on p. 1).

[6] I. Khan, K. Saeed, and I. Khan, Nanoparticles: Properties, applications and toxicities,

Arabian Journal of Chemistry (in press) (2017) (cit. on p. 1).

[7] B. Calderón-Jiménez, M. E. Johnson, A. R. M. Bustos, K. E. Murphy, M. R. Winchester,

and J. R. V. Baudrit, Silver Nanoparticles: Technological Advances, Societal Impacts, and

Metrological Challenges, Frontiers in Chemistry 5, 6 (2017) (cit. on p. 1).

[8] J. Mielke, S. Rades, E. Ortel, T. Salge, and V.-D. Hodoroaba, Improved Spatial Resolution

of EDX/SEM for the Elemental Analysis of Nanoparticles, Microscopy and Microanalysis

21, 1713 (2015) (cit. on p. 1).

[9] L. Rosenthal, Kinetic Monte Carlo Simulations of Metal-Polymer Nanocomposite Forma-

tion, PhD thesis (University of Kiel, 2013) (cit. on pp. 1, 2, 5, 6, 10–13, 15, 18, 19, 27, 28,

30, 32, 33, 35, 36, 38, 54).

[10] S. Khan, and L. Lorenzelli, Recent advances of conductive nanocomposites in printed and

�exible electronics, Smart Materials and Structures 26, 083001 (2017) (cit. on p. 1).

[11] M. K. Hedayati, M. Javaheri, A. U. Zillohu, H. J. El-Khozondar, M. S. Bawa’aneh, A.

Lavrinenko, F. Faupel, and M. Elbahri, Photo-driven Super Absorber as an Active Meta-

material with a Tunable Molecular-Plasmonic Coupling, Advanced Optical Materials 2,

705 (2014) (cit. on p. 1).

[12] M. Karttunen, P. Ruuskanen, V. Pitkänen, and W. M. Albers, Electrically Conductive

Metal Polymer Nanocomposites for Electronics Applications, English, J. Electron. Mater.

37, 951 (2008) (cit. on p. 1).

119

http://dx.doi.org/10.1109/84.128057
http://dx.doi.org/10.1109/84.128057
http://dx.doi.org/10.1155/2012/180976
http://dx.doi.org/10.3389/fchem.2017.00006
http://dx.doi.org/10.1017/s1431927615009344
http://dx.doi.org/10.1017/s1431927615009344
http://stacks.iop.org/0964-1726/26/i=8/a=083001
http://dx.doi.org/10.1002/adom.201400105
http://dx.doi.org/10.1002/adom.201400105
http://dx.doi.org/10.1007/s11664-008-0451-2
http://dx.doi.org/10.1007/s11664-008-0451-2


Bibliography

[13] H. Takele, S. Jebril, T. Strunskus, V. Zaporojtchenko, R. Adelung, and F. Faupel, Tuning

of electrical and structural properties of metal-polymer nanocomposite �lms prepared by

co-evaporation technique, Appl. Phys. A 92, 345 (2008) (cit. on p. 1).

[14] H. Graf, J. Vancea, and H. Ho�mann, Single-electron tunneling at room temperature in

cobalt nanoparticles, Applied Physics Letters 80, 1264 (2002) (cit. on p. 1).

[15] T. A. Fulton, and G. J. Dolan, Observation of single-electron charging e�ects in small

tunnel junctions, Physical Review Letters 59, 109 (1987) (cit. on p. 1).

[16] M. Hedayati, F. Faupel, and M. Elbahri, Review of Plasmonic Nanocomposite Metamate-

rial Absorber, Materials 7, 1221 (2014) (cit. on p. 1).

[17] C. Etrich, S. Fahr, M. Hedayati, F. Faupel, M. Elbahri, and C. Rockstuhl, E�ective Optical

Properties of Plasmonic Nanocomposites, Materials 7, 727 (2014) (cit. on p. 1).

[18] A. Biswas, O. Aktas, J. Kanzow, U. Saeed, T. Strunskus, V. Zaporojtchenko, and F.

Faupel, Polymer–metal optical nanocomposites with tunable particle plasmon resonance

prepared by vapor phase co-deposition, Mater. Lett. 58, 1530 (2004) (cit. on p. 1).

[19] A. Biswas, O. Aktas, U. Schürmann, U. Saeed, V. Zaporojtchenko, F. Faupel, and T.

Strunskus, Tunable multiple plasmon resonance wavelengths response from multicompo-

nent polymer-metal nanocomposite systems, Applied Physics Letters 84, 2655 (2004)

(cit. on p. 1).

[20] M. Carbone, D. T. Donia, G. Sabbatella, and R. Antiochia, Silver nanoparticles in

polymeric matrices for fresh food packaging, Journal of King Saud University - Science

28, 273 (2016) (cit. on p. 1).

[21] A. Emamifar, Applications of Antimicrobial Polymer Nanocomposites in Food Packaging,

edited by A. Haschim, Advances in Nanocomposite Technology (InTech, 2011) (cit. on

p. 1).

[22] H. M. C. de Azeredo, Nanocomposites for food packaging applications, Food Research

International 42, 1240 (2009) (cit. on p. 1).

[23] R. Benzaid, J. Chevalier, M. Saâdaoui, G. Fantozzi, M. Nawa, L. A. Diaz, and R. Tor-

recillas, Fracture toughness, strength and slow crack growth in a ceria stabilized zir-

conia–alumina nanocomposite for medical applications, Biomaterials 29, 3636 (2008)

(cit. on p. 1).

[24] F. Faupel, V. Zaporojtchenko, H. Greve, U. Schürmann, V. S. K. Chakravadhanula, C.

Hanisch, A. Kulkarni, A. Gerber, E. Quandt, and R. Podschun, Deposition of Nanocom-

posites by Plasmas, Contributions to Plasma Physics 47, 537 (2007) (cit. on pp. 1,

6).

[25] F.-R. F. Fan, and A. J. Bard, Chemical, Electrochemical, Gravimetric and Microscopic

Studies on Antimicrobial Silver Films, The Journal of Physical Chemistry B 106, 279

(2002) (cit. on p. 1).

[26] F. Faupel, V. Zaporojtchenko, T. Strunskus, and M. Elbahri, Metal-Polymer Nanocom-

posites for Functional Applications, Advanced Engineering Materials 12, 1177 (2010)

(cit. on pp. 1, 5, 6).

120

http://dx.doi.org/10.1007/s00339-008-4524-0
http://dx.doi.org/10.1103/PhysRevLett.59.109
http://dx.doi.org/10.3390/ma7021221
http://dx.doi.org/10.3390/ma7020727
http://dx.doi.org/http://dx.doi.org/10.1016/j.matlet.2003.10.037
http://dx.doi.org/https://doi.org/10.1016/j.jksus.2016.05.004
http://dx.doi.org/https://doi.org/10.1016/j.jksus.2016.05.004
http://dx.doi.org/https://doi.org/10.1016/j.foodres.2009.03.019
http://dx.doi.org/https://doi.org/10.1016/j.foodres.2009.03.019
http://dx.doi.org/https://doi.org/10.1016/j.biomaterials.2008.05.021
http://dx.doi.org/10.1002/ctpp.200710069


Bibliography

[27] L. Nicolais, and G. Carotenuto, eds., Metal-Polymer Nanocomposites (John Wiley &

Sons, Inc., Nov. 2004) (cit. on p. 1).

[28] F. Faupel, V. Zaporojtchenko, T. Strunskus, J. Erichsen, K. Dolgner, A. Thran, and

M. Kiene, Fundamental Aspects of Polymer Metallization, in Metallization of Polymers 2

(Springer, Boston, MA, 2002), pp. 73–96 (cit. on p. 1).

[29] G. V. Ramesh, S. Porel, and T. P. Radhakrishnan, Polymer thin �lms embedded with in

situ grown metal nanoparticles, Chem. Soc. Rev. 38, 2646 (2009) (cit. on p. 1).

[30] H. Greve, A. Biswas, U. Schürmann, V. Zaporojtchenko, and F. Faupel, Self-organization

of ultrahigh-density Fe–Ni–Co nanocolumns in Te�on® AF, Applied Physics Letters 88,

123103, (2006) (cit. on pp. 1, 2, 6, 11, 27, 30, 114).

[31] Q. Wang, and L. Zhu, ACS Symposium Series 1034, Functional polymer nanocomposites

for energy storage and conversion (American Chemical Society, Washington D.C., 2010)

(cit. on p. 1).

[32] M. Schwartzkopf, A. Bu�et, V. Körstgens, E. Metwalli, K. Schlage, G. Benecke, J.

Perlich, M. Rawolle, A. Rothkirch, B. Heidmann, G. Herzog, P. Müller-Buschbaum,

R. Röhlsberger, R. Gehrke, N. Stribeck, and S. V. Roth, From atoms to layers: in situ gold

cluster growth kinetics during sputter deposition, Nanoscale 5, 5053 (2013) (cit. on pp. 1,

9, 56, 77).

[33] C.-C. Chen, C. Zhu, E. R. White, C.-Y. Chiu, M. C. Scott, B. C. Regan, L. D. Marks,

Y. Huang, and J. Miao, Three-dimensional imaging of dislocations in a nanoparticle at

atomic resolution, Nature 496, 74 (2013) (cit. on p. 1).

[34] L. Rosenthal, H. Greve, V. Zaporojtchenko, T. Strunskus, F. Faupel, and M. Bonitz,

Formation of magnetic nanocolumns during vapor phase deposition of a metal-polymer

nanocomposite: Experiments and kinetic Monte Carlo simulations, Journal of Applied

Physics 114, 044305 (2013) (cit. on pp. 1, 2, 5, 6, 11, 19, 23, 27, 30, 35, 36, 38, 54, 113,

114).

[35] M. Bonitz, L. Rosenthal, K. Fujioka, V. Zaporojtchenko, F. Faupel, and H. Kersten, To-

wards a Particle Based Simulation of Complex Plasma Driven Nanocomposite Formation,

Contributions to Plasma Physics 52, 890 (2012) (cit. on pp. 1, 2, 6, 12, 19, 54, 114).

[36] L. Rosenthal, A. Filinov, M. Bonitz, V. Zaporojtchenko, and F. Faupel, Di�usion and

Growth of Metal Clusters in Nanocomposites: A Kinetic Monte Carlo Study, Contributions

to Plasma Physics 51, 971 (2011) (cit. on pp. 1, 2, 5, 12, 19, 33, 35, 54, 114).

[37] R. Rozas, and T. Kraska, Formation of metal nano-particles on and in polymer �lms

investigated by molecular dynamics simulation, Nanotechnology 18, 165706 (2007)

(cit. on pp. 1, 3).

[38] A. Thran, and F. Faupel, Computer Simulation of Metal Di�usion in Polymers, Defect

and Di�usion Forum (Trans Tech Publications) 143, 903 (1997) (cit. on pp. 1, 2, 11, 12).

[39] K. Fujioka, Kinetic Monte Carlo Simulations of Cluster Growth in Magnetron Plasmas,

PhD thesis (University of Kiel, 2015) (cit. on pp. 1, 6, 11, 90, 93).

121

http://dx.doi.org/10.1007/978-1-4615-0563-1_8
http://dx.doi.org/10.1039/B815242J
http://dx.doi.org/http://dx.doi.org/10.1063/1.2187436
http://dx.doi.org/http://dx.doi.org/10.1063/1.2187436
http://dx.doi.org/10.1039/C3NR34216F
http://dx.doi.org/10.1038/nature12009
http://dx.doi.org/http://dx.doi.org/10.1063/1.4816252
http://dx.doi.org/http://dx.doi.org/10.1063/1.4816252
http://dx.doi.org/10.1002/ctpp.201200038
http://dx.doi.org/10.1002/ctpp.201100034
http://dx.doi.org/10.1002/ctpp.201100034
http://stacks.iop.org/0957-4484/18/i=16/a=165706


Bibliography

[40] D. M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing (Elsevier, Ams-

terdam, 2010) (cit. on p. 1).

[41] M. Bonitz, N. Horing, and P. Ludwig, eds., Introduction to Complex Plasmas, Vol. 59,

Springer Series on Atomic, Optical and Plasma Physics (Springer Berlin Heidelberg,

2010) (cit. on pp. 2, 20, 21).

[42] M. Bonitz, J. Lopez, K. Becker, and H. Thomsen, eds., Complex Plasmas: Scienti�c

Challenges and Technological Opportunities, Vol. 82, Springer Series on Atomic, Optical

and Plasma Physics (Springer, Cham, 2014) (cit. on p. 2).

[43] P. Kratzer, “Monte Carlo and Kinetic Monte Carlo Methods – A Tutorial”, inMultiscale

Simulation Methods in Molecular Sciences, Lecture Notes, Vol. 42, NIC series (John von

Neumann Institute for Computing, Jülich, 2009), pp. 51–76 (cit. on pp. 2, 15, 16, 18).

[44] W. Brenig, and E. Pehlke, Reaction dynamics of H2 on Si. Ab initio supported model

calculations, Progress in Surface Science 83, 263 (2008) (cit. on p. 2).

[45] N. Schlünzen, and M. Bonitz, Nonequilibrium Green Functions Approach to Strongly

Correlated Fermions in Lattice Systems, Contributions to Plasma Physics 56, 5 (2016)

(cit. on p. 2).

[46] K. Balzer, N. Schlünzen, and M. Bonitz, Stopping dynamics of ions passing through

correlated honeycomb clusters, Physical Review B 94, 245118 (2016) (cit. on p. 2).

[47] M. Bonitz, Quantum Kinetic Theory (Springer International Publishing, Cham, 2016)

(cit. on p. 2).

[48] L. Rosenthal, T. Strunskus, F. Faupel, J. W. Abraham, and M. Bonitz, “Kinetic Monte

Carlo Simulations of Cluster Growth and Di�usion in Metal-Polymer Nanocompos-

ites”, in Complex Plasmas: Scienti�c Challenges and Technological Opportunities, Vol. 82,

edited by M. Bonitz, J. Lopez, K. Becker, and H. Thomsen, Springer Series on Atomic,

Optical and Plasma Physics (Springer, Cham, 2014), pp. 321–370 (cit. on pp. 2, 6, 10,

12, 13, 27, 28).

[49] Blender - a 3D modelling and rendering package, Blender Foundation (Blender Institute,

Amsterdam, http://www.blender.org) (cit. on p. 2).

[50] E. C. Neyts, and P. Brault, Molecular Dynamics Simulations for Plasma-Surface Inter-

actions, Plasma Processes and Polymers 14, 1600145 (2016) (cit. on pp. 2, 3, 20, 23,

24).

[51] D. Perez, B. P. Uberuaga, Y. Shim, J. G. Amar, and A. F. Voter, in Chapter 4 Accelerated

Molecular Dynamics Methods: Introduction and Recent Developments, Vol. 5, edited by

R. A. Wheeler, Annu. Rep. Comput. Chem. (Elsevier, Amsterdam, 2009), pp. 79–98

(cit. on pp. 2, 24).

[52] A. Filinov, M. Bonitz, and D. Lo�hagen, Microscopic modeling of gas-surface scattering.

I. A combined molecular dynamics-rate equation approach, submitted to Plasma Sources

Science and Technology, preprint available under arXiv:1802.03466 [cond-mat.stat-

mech] (2018) (cit. on pp. 3, 25).

122

http://juser.fz-juelich.de/record/153081
http://juser.fz-juelich.de/record/153081
http://dx.doi.org/10.1016/j.progsurf.2008.06.001
http://dx.doi.org/10.1007/978-3-319-05437-7_10
http://dx.doi.org/10.1002/ppap.201600145


Bibliography

[53] A. Filinov, M. Bonitz, and D. Lo�hagen, Microscopic modeling of gas-surface scattering.

II. Application to argon atom adsorption on a platinum (111) surface, submitted to

Plasma Sources Science and Technology, preprint available under arXiv:1802.01985

[physics.plasm-ph] (2018) (cit. on pp. 3, 25).

[54] K. M. Bal, and E. C. Neyts, Merging Metadynamics into Hyperdynamics: Accelerated

Molecular Simulations Reaching Time Scales from Microseconds to Seconds, Journal of

Chemical Theory and Computation 11, 4545 (2015) (cit. on pp. 3, 23, 24).

[55] A. F. Voter, F. Montalenti, and T. C. Germann, Extending the Time Scale in Atomistic

Simulation of Materials, Annual Review of Materials Research 32, 321 (2002) (cit. on

pp. 3, 20, 23–25).

[56] J. C. Tully, G. H. Gilmer, and M. Shugard, Molecular dynamics of surface di�usion. I.

The motion of adatoms and clusters, The Journal of Chemical Physics 71, 1630 (1979)

(cit. on p. 3).

[57] A. Patti, Molecular Dynamics of Spherical Nanoparticles in Dense Polymer Melts, The

Journal of Physical Chemistry B 118, 3731 (2014) (cit. on p. 3).

[58] C. Luo, and J.-U. Sommer, Coding coarse grained polymer model for LAMMPS and its

application to polymer crystallization, Computer Physics Communications 180, 1382

(2009) (cit. on p. 3).

[59] J. G. D. Ochoa, K. Binder, andW. Paul,Molecular dynamics simulations of the embedding

of a nano-particle into a polymer �lm, Journal of Physics: Condensed Matter 18, 2777

(2006) (cit. on p. 3).

[60] L. Xie, P. Brault, C. Coutanceau, J.-M. Bauchire, A. Caillard, S. Baranton, J. Berndt,

and E. C. Neyts, E�cient amorphous platinum catalyst cluster growth on porous car-

bon: A combined molecular dynamics and experimental study, Applied Catalysis B:

Environmental 162, 21 (2015) (cit. on p. 3).

[61] M. Schwartzkopf, G. Santoro, C. J. Brett, A. Rothkirch, O. Polonskyi, A. Hinz, E.

Metwalli, Y. Yao, T. Strunskus, F. Faupel, P. Müller-Buschbaum, and S. V. Roth, Real-

Time Monitoring of Morphology and Optical Properties during Sputter Deposition for

Tailoring Metal–Polymer Interfaces, ACS Applied Materials & Interfaces 7, 13547 (2015)

(cit. on pp. 3, 5, 9, 11, 12, 55, 56, 62, 65, 68, 70, 73, 74, 76–82, 84, 85, 100, 114, 117).

[62] H. T. Beyene, V. S. K. Chakravadhanula, C. Hanisch, T. Strunskus, V. Zaporojtchenko,

M. Elbahri, and F. Faupel, Vapor Phase Deposition, Structure, and Plasmonic Properties

of Polymer-Based Composites Containing Ag–Cu Bimetallic Nanoparticles, Plasmonics

7, 107 (2012) (cit. on pp. 3, 99, 100).

[63] M. Chandross, Energetics of the formation of Cu–Ag core–shell nanoparticles, Modelling

and Simulation in Materials Science and Engineering 22, 075012 (2014) (cit. on pp. 3,

99, 102, 105).

[64] V. Zaporojtchenko, T. Strunskus, K. Behnke, C. Bechtolsheim, A. Thran, and F. Faupel,

Formation of metal–polymer interfaces by metal evaporation: in�uence of deposition

parameters and defects, Microelectronic Engineering 50, 465 (2000) (cit. on pp. 5, 12,

13).

123

http://dx.doi.org/10.1021/acs.jctc.5b00597
http://dx.doi.org/10.1021/acs.jctc.5b00597
http://dx.doi.org/10.1146/annurev.matsci.32.112601.141541
http://dx.doi.org/10.1063/1.438490
http://dx.doi.org/10.1021/jp412440g
http://dx.doi.org/10.1021/jp412440g
http://dx.doi.org/10.1016/j.cpc.2009.01.028
http://dx.doi.org/10.1016/j.cpc.2009.01.028
http://stacks.iop.org/0953-8984/18/i=10/a=003
http://stacks.iop.org/0953-8984/18/i=10/a=003
http://dx.doi.org/https://doi.org/10.1016/j.apcatb.2014.06.032
http://dx.doi.org/https://doi.org/10.1016/j.apcatb.2014.06.032
http://dx.doi.org/10.1021/acsami.5b02901
http://dx.doi.org/10.1007/s11468-011-9282-8
http://dx.doi.org/10.1007/s11468-011-9282-8
http://dx.doi.org/https://doi.org/10.1016/S0167-9317(99)00316-0


Bibliography

[65] H. Greve, Magnetische Metall/Polymer Nanokomposite für Hochfrequenzanwendungen,

PhD thesis (University of Kiel, 2007) (cit. on pp. 5, 6).

[66] O. Polonskyi, P. Solař, O. Kylián, M. Drábik, A. Artemenko, J. Kousal, J. Hanuš, J.

Pešička, I. Matolínová, E. Kolíbalová, D. Slavínská, and H. Biederman, Nanocomposite

metal/plasma polymer �lms prepared by means of gas aggregation cluster source, Thin

Solid Films 520, 4155 (2012) (cit. on p. 6).

[67] H. Urbassek, Sputtering of molecules, Nuclear Instruments and Methods in Physics

Research Section B: Beam Interactions with Materials and Atoms 18, 587 (1986) (cit. on

p. 6).

[68] D. Depla, and S. Mahieu, eds., Reactive sputter deposition, Springer Series in materials

science (Springer-Verlag Berlin Heidelberg, 2008) (cit. on p. 6).

[69] H. Biederman, RF sputtering of polymers and its potential application, Vacuum 59,

Proceedings of the Fifth International Symposium on Sputtering and Plasma Processes,

594 (2000) (cit. on p. 6).

[70] H. Biederman, Nanocomposites and nanostructures based on plasma polymers, Surface

and Coatings Technology 205, PSE 2010 Special Issue, S10 (2011) (cit. on p. 6).

[71] K. Norrman, A. Ghanbari-Siahkali, and N. B. Larsen, 6 Studies of spin-coated polymer

�lms, Annual Reports Section “C” (Physical Chemistry) 101, 174 (2005) (cit. on p. 7).

[72] M. Schwartzkopf, and S. Roth, Investigating Polymer–Metal Interfaces by Grazing Inci-

dence Small-Angle X-Ray Scattering from Gradients to Real-Time Studies, Nanomaterials

6, 239 (2016) (cit. on pp. 7, 8).

[73] J. R. Levine, J. B. Cohen, Y. W. Chung, and P. Georgopoulos, Grazing-incidence small-

angle X-ray scattering: new tool for studying thin �lm growth, Journal of Applied

Crystallography 22, 528 (1989) (cit. on p. 7).

[74] R. Lazzari, IsGISAXS: a program for grazing-incidence small-angle X-ray scattering

analysis from supported islands, Journal of Applied Crystallography 35, 406 (2002)

(cit. on pp. 7–10, 84).

[75] P. Müller-Buschbaum, Grazing incidence small-angle X-ray scattering: an advanced

scattering technique for the investigation of nanostructured polymer �lms, Analytical

and Bioanalytical Chemistry 376, 3 (2003) (cit. on p. 7).

[76] C. Durniak, M. Ganeva, G. Pospelov, W. V. Herck, and J. Wuttke, BornAgain – Software

for simulating and �tting X-ray and neutron small-angle scattering at grazing incidence,

http://www.bornagainproject.org/ (2015) (cit. on pp. 9, 85).

[77] M. Volmer, and A. Weber, Keimbildung in übersättigten Gebilden, Zeitschrift für

Physikalische Chemie 119U, 277 (1926) (cit. on p. 10).

[78] V. Zaporojtchenko, K. Behnke, A. Thran, T. Strunskus, and F. Faupel, Condensation

coe�cients and initial stages of growth for noble metals deposited onto chemically

di�erent polymer surfaces, Applied Surface Science 144-145, 355 (1999) (cit. on p. 11).

[79] K. K. Nanda, Size-dependent melting of nanoparticles: Hundred years of thermodynamic

model, Pramana 72, 617 (2009) (cit. on p. 11).

124

http://dx.doi.org/10.1016/j.tsf.2011.04.100
http://dx.doi.org/10.1016/j.tsf.2011.04.100
http://dx.doi.org/10.1016/s0168-583x(86)80093-3
http://dx.doi.org/10.1016/s0168-583x(86)80093-3
http://dx.doi.org/https://doi.org/10.1016/j.surfcoat.2011.03.115
http://dx.doi.org/https://doi.org/10.1016/j.surfcoat.2011.03.115
http://dx.doi.org/10.1039/b408857n
http://dx.doi.org/10.3390/nano6120239
http://dx.doi.org/10.3390/nano6120239
http://dx.doi.org/10.1107/S002188988900717X
http://dx.doi.org/10.1107/S002188988900717X
http://dx.doi.org/10.1007/s00216-003-1869-2
http://dx.doi.org/10.1007/s00216-003-1869-2
https://doi.org/10.1515/zpch-1926-11927
https://doi.org/10.1515/zpch-1926-11927
http://dx.doi.org/https://doi.org/10.1016/S0169-4332(98)00826-5
http://dx.doi.org/10.1007/s12043-009-0055-2


Bibliography

[80] B. M. Smirnov, Cluster processes in gases and plasmas (John Wiley & Sons, 2009) (cit. on

p. 11).

[81] G. Antczak, and G. Ehrlich, Surface Di�usion: Metals, Metal Atoms, and Clusters (Cam-

bridge University Press, Cambridge, 2010) (cit. on p. 11).

[82] F. Faupel, V. Zaporojtchenko, A. Thran, T. Strunskus, and M. Kiene, Metal Di�usion

in Polymers and on Polymer Surfaces, in Di�usion Processes in Advanced Technological

Materials, edited by D. Gupta, (Springer Berlin Heidelberg, 2005), pp. 333–363 (cit. on

p. 12).

[83] A. Thran, T. Strunskus, V. Zaporojtchenko, and F. Faupel, Evidence of noble metal

di�usion in polymers at room temperature and its retardation by a chromium barrier,

Applied Physics Letters 81, 244 (2002) (cit. on p. 12).

[84] G. Je�ers, M. Dubson, and P. Duxbury, Island-to-percolation transition during growth

of metal �lms, Journal of Applied Physics 75, 5016 (1994) (cit. on pp. 12, 62).

[85] M. H. Cohen, and D. Turnbull, Molecular Transport in Liquids and Glasses, The Journal

of Chemical Physics 31, 1164 (1959) (cit. on pp. 12, 33).

[86] J. S. Vrentas, and J. L. Duda, Di�usion in polymer–solvent systems. I. Reexamination of

the free-volume theory, Journal of Polymer Science: Polymer Physics Edition 15, 403

(1977) (cit. on pp. 12, 33).

[87] J. S. Vrentas, and J. L. Duda, Di�usion in polymer–solvent systems. II. A predictive theory

for the dependence of di�usion coe�cients on temperature, concentration, and molecular

weight, Journal of Polymer Science: Polymer Physics Edition 15, 417 (1977) (cit. on

pp. 12, 33).

[88] J. S. Vrentas, and J. L. Duda, Di�usion in polymer–solvent systems. III. Construction of

Deborah number diagrams, Journal of Polymer Science: Polymer Physics Edition 15,

441 (1977) (cit. on pp. 12, 33).

[89] J. Vrentas, and C. Vrentas, Predictive methods for self-di�usion and mutual di�usion

coe�cients in polymer–solvent systems, European Polymer Journal 34, 797 (1998) (cit.

on pp. 12, 33).

[90] V. Zaporojtchenko, K. Behnke, T. Strunskus, and F. Faupel, Condensation coe�cients

of noble metals on polymers: a novel method of determination by x-ray photoelectron

spectroscopy, Surface and Interface Analysis 30, 439 (2000) (cit. on p. 12).

[91] A. P. J. Jansen, An Introduction to Kinetic Monte Carlo Simulations of Surface Reactions,

Lecture notes in physics (Springer, Berlin, Heidelberg, 2012) (cit. on pp. 15, 17, 18).

[92] A. Chatterjee, and D. G. Vlachos, An overview of spatial microscopic and accelerated

kinetic Monte Carlo methods, Journal of Computer-Aided Materials Design 14, 253

(2007) (cit. on p. 15).

[93] C. C. Battaile, The Kinetic Monte Carlo method: Foundation, implementation, and appli-

cation, Computer Methods in Applied Mechanics and Engineering 197, 3386 (2008)

(cit. on p. 15).

125

http://dx.doi.org/10.1007/978-3-540-27470-4_7
http://dx.doi.org/10.1007/978-3-540-27470-4_7
http://dx.doi.org/10.1063/1.1491609
http://dx.doi.org/10.1063/1.355742
http://dx.doi.org/10.1063/1.1730566
http://dx.doi.org/10.1063/1.1730566
http://dx.doi.org/10.1002/pol.1977.180150302
http://dx.doi.org/10.1002/pol.1977.180150302
http://dx.doi.org/10.1002/pol.1977.180150303
http://dx.doi.org/10.1002/pol.1977.180150304
http://dx.doi.org/10.1002/pol.1977.180150304
http://dx.doi.org/10.1016/s0014-3057(97)00205-x
http://dx.doi.org/10.1002/1096-9918(200008)30:1<439::AID-SIA787>3.0.CO;2-K
http://dx.doi.org/10.1007/s10820-006-9042-9
http://dx.doi.org/10.1007/s10820-006-9042-9
http://dx.doi.org/10.1016/j.cma.2008.03.010


Bibliography

[94] A. F. Voter, “Introduction to the Kinetic Monte Carlo Method”, in Radiation e�ects in

solids, edited by K. E. Sickafus, E. A. Kotomin, and B. P. Uberuaga, (Springer Nether-

lands, Dordrecht, 2007), pp. 1–23 (cit. on pp. 15, 17, 20).

[95] A. B. Bortz, M. H. Kalos, and J. L. Lebowitz, A new algorithm for Monte Carlo simulation

of Ising spin systems, Journal of Computational Physics 17, 10 (1975) (cit. on p. 17).

[96] D. T. Gillespie, A general method for numerically simulating the stochastic time evolution

of coupled chemical reactions, Journal of Computational Physics 22, 403 (1976) (cit. on

p. 18).

[97] D. T. Gillespie, Exact stochastic simulation of coupled chemical reactions, The Journal of

Physical Chemistry 81, 2340 (1977) (cit. on p. 18).

[98] D. T. Gillespie, Monte Carlo simulation of random walks with residence time dependent

transition probability rates, Journal of Computational Physics 28, 395 (1978) (cit. on

p. 18).

[99] S. Plimpton, C. Battaile, M. Chandross, L. Holm, A. Thompson, V. Tikare, G. Wagner, E.

Webb, X. Zhou, C. G. Cardona, et al., Crossing the mesoscale no-man’s land via parallel

kinetic Monte Carlo, Sandia Report SAND2009-6226 (2009) (cit. on pp. 19, 23).

[100] M. Leetmaa, and N. V. Skorodumova, KMCLib: A general framework for lattice kinetic

Monte Carlo (KMC) simulations, Computer Physics Communications 185, 2340 (2014)

(cit. on p. 19).

[101] R.Marcelin,Contribution à l’étude de la cinétique physico-chimique, Annales de physique

3, 120 (1915) (cit. on pp. 19, 24).

[102] H. Eyring, The Activated Complex in Chemical Reactions, J. Chem. Phys. 3, 107 (1935)

(cit. on pp. 19, 24).

[103] K. Pötting, W. Schmickler, and T. Jacob, Self-Di�usion on Au(100): A Density Functional

Theory Study, ChemPhysChem 11, 1395 (2010) (cit. on p. 19).

[104] S. Maeda, T. Taketsugu, and K. Morokuma, Exploring transition state structures for

intramolecular pathways by the arti�cial force induced reaction method, Journal of

Computational Chemistry 35, 166 (2013) (cit. on p. 20).

[105] B. J. Alder, and T. E. Wainwright, Phase Transition for a Hard Sphere System, The

Journal of Chemical Physics 27, 1208 (1957) (cit. on p. 20).

[106] B. J. Alder, and T. E. Wainwright, Studies in Molecular Dynamics. I. General Method,

The Journal of Chemical Physics 31, 459 (1959) (cit. on p. 20).

[107] M. Griebel, S. Knapek, and G. Zumbusch, Numerical Simulation in Molecular Dynamics,

Numerics, Algorithms, Parallelization, Applications, Vol. 5, Texts in Computational

Science and Engineering (Springer-Verlag, Berlin, Heidelberg, 2007) (cit. on p. 20).

[108] H. Kählert, Dynamics of a spherically con�ned Yukawa plasma: shell formation and

collective excitations, PhD thesis (University of Kiel, 2011) (cit. on pp. 20, 23).

[109] Y. K. Shin, T.-R. Shan, T. Liang, M. J. Noordhoek, S. B. Sinnott, A. C. van Duin, and

S. R. Phillpot, Variable charge many-body interatomic potentials, MRS Bulletin 37, 504

(2012) (cit. on p. 21).

126

http://dx.doi.org/10.1007/978-1-4020-5295-8_1
http://dx.doi.org/10.1007/978-1-4020-5295-8_1
http://dx.doi.org/https://doi.org/10.1016/0021-9991(75)90060-1
http://dx.doi.org/https://doi.org/10.1016/0021-9991(76)90041-3
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/https://doi.org/10.1016/0021-9991(78)90060-8
http://dx.doi.org/10.1016/j.cpc.2014.04.017
http://dx.doi.org/10.1063/1.1749604
http://dx.doi.org/10.1002/cphc.200900807
http://dx.doi.org/10.1002/jcc.23481
http://dx.doi.org/10.1002/jcc.23481
http://dx.doi.org/10.1063/1.1743957
http://dx.doi.org/10.1063/1.1743957
http://dx.doi.org/10.1063/1.1730376
http://dx.doi.org/10.1557/mrs.2012.95
http://dx.doi.org/10.1557/mrs.2012.95


Bibliography

[110] T. Liang, Y. K. Shin, Y.-T. Cheng, D. E. Yilmaz, K. G. Vishnu, O. Verners, C. Zou, S. R.

Phillpot, S. B. Sinnott, and A. C. van Duin, Reactive Potentials for Advanced Atomistic

Simulations, Annual Review of Material Science 43, 109 (2013) (cit. on pp. 21, 22).

[111] P. Ballone, Modeling Potential Energy Surfaces: From First-Principle Approaches to

Empirical Force Fields, Entropy 16, 322 (2013) (cit. on p. 21).

[112] K. Farah, F. Müller-Plathe, and M. C. Böhm, Classical Reactive Molecular Dynamics

Implementations: State of the Art, ChemPhysChem 13, 1127 (2012) (cit. on p. 21).

[113] A. D. Mackerell, Empirical force �elds for biological macromolecules: Overview and

issues, Journal of Computational Chemistry 25, 1584 (2004) (cit. on p. 21).

[114] S. Nosé, A uni�ed formulation of the constant temperature molecular dynamics methods,

The Journal of Chemical Physics 81, 511 (1984) (cit. on p. 21).

[115] W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Physical

Review A 31, 1695 (1985) (cit. on p. 21).

[116] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak,

Molecular dynamics with coupling to an external bath, The Journal of Chemical Physics

81, 3684 (1984) (cit. on p. 21).

[117] P. Langevin, Sur la théorie du mouvement brownien, Comptes rendus de l’Académie

des sciences (Paris) 146, 530 (1908) (cit. on p. 21).

[118] T. Schneider, and E. Stoll,Molecular-dynamics study of a three-dimensional one-component

model for distortive phase transitions, Physical Review B 17, 1302 (1978) (cit. on p. 21).

[119] B. Dünweg, and W. Paul, Brownian dynamics simulations without Gaussian random

numbers, International Journal of Modern Physics C 02, 817 (1991) (cit. on p. 21).

[120] J. L. García-Palacios, Introduction to the theory of stochastic processes and Brownian

motion problems, arXiv:cond-mat/0701242 [cond-mat.stat-mech] (2007) (cit. on p. 21).

[121] M. S. Daw, and M. I. Baskes, Semiempirical, Quantum Mechanical Calculation of Hy-

drogen Embrittlement in Metals, Physical Review Letters 50, 1285 (1983) (cit. on p. 21).

[122] M. S. Daw, and M. I. Baskes, Embedded-atom method: Derivation and application to

impurities, surfaces, and other defects in metals, Physical Review B 29, 6443 (1984)

(cit. on p. 21).

[123] M. S. Daw, S. M. Foiles, and M. I. Baskes, The embedded-atom method: a review of

theory and applications, Materials Science Reports 9, 251 (1993) (cit. on p. 22).

[124] M. I. Baskes, Application of the Embedded-Atom Method to Covalent Materials: A

Semiempirical Potential for Silicon, Physical Review Letters 59, 2666 (1987) (cit. on

p. 22).

[125] S. M. Foiles, M. I. Baskes, and M. S. Daw, Embedded-atom-method functions for the fcc

metals Cu, Ag, Au, Ni, Pd, Pt and their alloys, Physical Review B 33, 7983 (1986) (cit. on

pp. 22, 59).

[126] H. Thomsen, Melting Processes and Laser Manipulation of Strongly Coupled Yukawa

Systems, PhD thesis (University of Kiel, 2015) (cit. on p. 23).

127

http://dx.doi.org/10.1146/annurev-matsci-071312-121610
http://dx.doi.org/10.3390/e16010322
http://dx.doi.org/10.1002/cphc.201100681
http://dx.doi.org/10.1002/jcc.20082
http://dx.doi.org/10.1063/1.447334
http://dx.doi.org/10.1103/physreva.31.1695
http://dx.doi.org/10.1103/physreva.31.1695
http://dx.doi.org/10.1063/1.448118
http://dx.doi.org/10.1063/1.448118
http://link.aps.org/doi/10.1103/PhysRevB.17.1302
http://dx.doi.org/10.1142/s0129183191001037
http://dx.doi.org/10.1103/PhysRevLett.50.1285
http://dx.doi.org/10.1103/PhysRevB.29.6443
http://dx.doi.org/https://doi.org/10.1016/0920-2307(93)90001-U
http://dx.doi.org/10.1103/PhysRevLett.59.2666
http://dx.doi.org/10.1103/PhysRevB.33.7983


Bibliography

[127] W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson, A computer simulation

method for the calculation of equilibrium constants for the formation of physical clusters

of molecules: Application to small water clusters, The Journal of Chemical Physics 76,

637 (1982) (cit. on p. 23).

[128] L. Verlet, Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of

Lennard-Jones Molecules, Physical Review 159, 98 (1967) (cit. on p. 23).

[129] J. W. Hewage, Core/shell formation and surface segregation of multi shell icosahedral

silver-palladium bimetallic nanostructures: A dynamic and thermodynamic study, Mate-

rials Chemistry and Physics 174, 187 (2016) (cit. on p. 23).

[130] E. C. Neyts, and A. Bogaerts, Combining molecular dynamics with Monte Carlo simula-

tions: implementations and applications, Theoretical Chemistry Accounts 132, 2 (2012)

(cit. on pp. 23, 24).

[131] A. F. Voter, Hyperdynamics: Accelerated Molecular Dynamics of Infrequent Events,

Physical Review Letters 78, 3908 (1997) (cit. on p. 24).

[132] K. A. Fichthorn, R. A. Miron, Y. Wang, and Y. Tiwary, Accelerated molecular dynam-

ics simulation of thin-�lm growth with the bond-boost method, Journal of Physics:

Condensed Matter 21, 084212 (2009) (cit. on p. 24).

[133] A. Laio, and M. Parrinello, Escaping free-energy minima, Proceedings of the National

Academy of Sciences of the United States of America 99, 12562 (2002) (cit. on p. 24).

[134] A. Laio, and F. L. Gervasio, Metadynamics: a method to simulate rare events and recon-

struct the free energy in biophysics, chemistry and material science, Reports on Progress

in Physics 71, 126601 (2008) (cit. on p. 24).

[135] K. M. Bal, and E. C. Neyts, Direct observation of realistic-temperature fuel combustion

mechanisms in atomistic simulations, Chemical Science 7, 5280 (2016) (cit. on p. 24).

[136] M. R. Sørensen, and A. F. Voter, Temperature-accelerated dynamics for simulation of

infrequent events, J. Chem. Phys. 112, 9599 (2000) (cit. on p. 24).

[137] A. F. Voter, Parallel replica method for dynamics of infrequent events, Physical Review

B 57, R13985 (1998) (cit. on p. 25).

[138] B. P. Uberuaga, S. J. Stuart, and A. F. Voter, Parallel replica dynamics for driven systems:

Derivation and application to strained nanotubes, Physical Review B 75, 014301 (2007)

(cit. on p. 25).

[139] S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comp.

Phys. 117, 1 (1995) (cit. on p. 26).

[140] A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the

Open Visualization Tool, Modelling and Simulation in Materials Science and Engineer-

ing 18, 015012 (2010) (cit. on p. 26).

[141] J. W. Abraham, N. Kongsuwan, T. Strunskus, F. Faupel, and M. Bonitz, Simulation

of nanocolumn formation in a plasma environment, Journal of Applied Physics 117,

014305 (2015) (cit. on pp. 28, 37, 44–46, 48, 52).

128

http://dx.doi.org/10.1063/1.442716
http://dx.doi.org/10.1063/1.442716
http://dx.doi.org/10.1103/physrev.159.98
http://dx.doi.org/10.1016/j.matchemphys.2016.02.074
http://dx.doi.org/10.1016/j.matchemphys.2016.02.074
http://dx.doi.org/10.1103/PhysRevLett.78.3908
http://dx.doi.org/10.1088/0953-8984/21/8/084212
http://dx.doi.org/10.1088/0953-8984/21/8/084212
http://dx.doi.org/10.1073/pnas.202427399
http://dx.doi.org/10.1073/pnas.202427399
http://dx.doi.org/10.1088/0034-4885/71/12/126601
http://dx.doi.org/10.1088/0034-4885/71/12/126601
http://dx.doi.org/10.1039/c6sc00498a
http://dx.doi.org/http://dx.doi.org/10.1063/1.481576
http://dx.doi.org/10.1103/PhysRevB.57.R13985
http://dx.doi.org/10.1103/PhysRevB.57.R13985
http://dx.doi.org/10.1103/PhysRevB.75.014301
http://lammps.sandia.gov
http://lammps.sandia.gov


Bibliography

[142] B. M. Smirnov, Clusters and Small Particles, Vol. 1, Graduate Texts in Contemporary

Physics (Springer-Verlag New York, 2000) (cit. on pp. 30, 92).

[143] A. Thran, M. Kiene, V. Zaporojtchenko, and F. Faupel, Condensation Coe�cients of Ag

on Polymers, Physical Review Letters 82, 1903 (1999) (cit. on p. 33).

[144] E. Main, T. Karabacak, and T. M. Lu, Continuum model for nanocolumn growth during

oblique angle deposition, Journal of Applied Physics 95, 4346 (2004) (cit. on p. 40).

[145] J. W. Abraham, T. Strunskus, F. Faupel, and M. Bonitz, Molecular dynamics simulation

of gold cluster growth during sputter deposition, Journal of Applied Physics 119, 185301

(2016) (cit. on pp. 57, 73, 78, 82, 85).

[146] T. Karabacak, J. P. Singh, Y.-P. Zhao, G.-C. Wang, and T.-M. Lu, Scaling during shad-

owing growth of isolated nanocolumns, Physical Review B 68, 125408 (2003) (cit. on

p. 58).

[147] Y. Shim, and J. G. Amar, E�ects of Shadowing in Oblique-Incidence Metal (100) Epitaxial

Growth, Physical Review Letters 98, 046103 (2007) (cit. on p. 58).

[148] L. Bai, and D. Breen, Calculating Center of Mass in an Unbounded 2D Environment,

Journal of Graphics, GPU, and Game Tools 13, 53 (2008) (cit. on p. 68).

[149] M. Schwartzkopf, A. Hinz, O. Polonskyi, T. Strunskus, F. C. Löhrer, V. Körstgens, P.

Müller-Buschbaum, F. Faupel, and S. V. Roth, Role of Sputter Deposition Rate in Tailoring

Nanogranular Gold Structures on Polymer Surfaces, ACS Applied Materials & Interfaces

9, 5629 (2017) (cit. on p. 81).

[150] M. Körner, M. Einax, and P. Maass, Island size distributions in submonolayer growth:

Prediction by mean �eld theory with coverage dependent capture numbers, Physical

Review B 82, 201401 (2010) (cit. on p. 90).

[151] M. Smoluchowski, Drei Vorträge über Di�usion, Brownsche Molekularbewegung und

Koagulation von Kolloidteilchen, Zeitschrift für Physik 17, 557 (1916) (cit. on p. 93).

[152] B. M. Smirnov, Processes involving clusters and small particles in a bu�er gas, Physics-

Uspekhi 54, 691 (2011) (cit. on p. 93).

[153] R. Ferrando, J. Jellinek, and R. L. Johnston, Nanoalloys: From Theory to Applications of

Alloy Clusters and Nanoparticles, Chemical Reviews 108, 845 (2008) (cit. on p. 99).

[154] E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. Xia, J. Huang, G. C. Schatz, L. D.

Marks, and R. P. Van Duyne, Unraveling the E�ects of Size, Composition, and Substrate

on the Localized Surface Plasmon Resonance Frequencies of Gold and Silver Nanocubes:

A Systematic Single-Particle Approach, The Journal of Physical Chemistry C 114, 12511

(2010) (cit. on p. 99).

[155] F. Baletto, C. Mottet, and R. Ferrando, Growth simulations of silver shells on copper and

palladium nanoclusters, Physical Review B 66, 155420 (2002) (cit. on p. 99).

[156] G. Rossi, A. Rapallo, C. Mottet, A. Fortunelli, F. Baletto, and R. Ferrando, Magic

Polyicosahedral Core-Shell Clusters, Physical Review Letters 93, 105503 (2004) (cit. on

p. 99).

129

http://dx.doi.org/10.1103/PhysRevLett.82.1903
http://dx.doi.org/10.1063/1.1687033
http://dx.doi.org/10.1103/PhysRevB.68.125408
http://dx.doi.org/10.1103/PhysRevLett.98.046103
http://dx.doi.org/10.1103/PhysRevB.82.201401
http://dx.doi.org/10.1103/PhysRevB.82.201401
http://dx.doi.org/10.3367/ufne.0181.201107b.0713
http://dx.doi.org/10.3367/ufne.0181.201107b.0713
http://dx.doi.org/10.1021/cr040090g


Bibliography

[157] A. Rapallo, G. Rossi, R. Ferrando, A. Fortunelli, B. C. Curley, L. D. Lloyd, G. M. Tar-

buck, and R. L. Johnston, Global optimization of bimetallic cluster structures. I. Size-

mismatched Ag–Cu, Ag–Ni, and Au–Cu systems, J. Chem. Phys. 122, 194308 (2005)

(cit. on p. 99).

[158] P. Grammatikopoulos, J. Kioseoglou, A. Galea, J. Vernieres, M. Benelmekki, R. E. Diaz,

and M. Sowwan, Kinetic trapping through coalescence and the formation of patterned

Ag-Cu nanoparticles, Nanoscale 8, 9780 (2016) (cit. on pp. 99, 102, 105, 111).

[159] Y. Hu, A.-Q. Zhang, H.-J. Li, D.-J. Qian, and M. Chen, Synthesis, Study, and Discrete

Dipole Approximation Simulation of Ag-Au Bimetallic Nanostructures, Nanoscale Re-

search Letters 11, 209 (2016) (cit. on p. 100).

[160] R. D. Corpuz, Y. Ishida, M. T. Nguyen, and T. Yonezawa, Synthesis of Positively Charged

Photoluminescent Bimetallic Au–Ag Nanoclusters by Double-Target Sputtering Method

on a Biocompatible Polymer Matrix, Langmuir 33, 9144 (2017) (cit. on p. 100).

[161] G. Radnóczi, E. Bokányi, Z. Erdélyi, and F.Misják, Size dependent spinodal decomposition

in Cu-Ag nanoparticles, Acta Materialia 123, 82 (2017) (cit. on p. 100).

[162] P. L. Williams, Y. Mishin, and J. C. Hamilton, An embedded-atom potential for the

Cu–Ag system, Modelling and Simulation in Materials Science and Engineering 14,

817 (2006) (cit. on p. 102).

[163] J. W. Abraham, and M. Bonitz, Molecular dynamics simulation of Ag–Cu cluster growth

on a thin polymer �lm, Contributions to Plasma Physics 58, 164 (2018) (cit. on pp. 104,

106, 107, 110).

[164] X. He, F. Cheng, and Z.-X. Chen, The Lattice Kinetic Monte Carlo Simulation of Atomic

Di�usion and Structural Transition for Gold, Scienti�c Reports 6, 33128 (2016) (cit. on

p. 115).

[165] C. H. Turner, Y. Lei, and Y. Bao,Modeling the atomistic growth behavior of gold nanopar-

ticles in solution, Nanoscale 8, 9354 (2016) (cit. on p. 115).

130

http://dx.doi.org/10.1063/1.1898223
https://doi.org/10.1186/s11671-016-1435-4
https://doi.org/10.1186/s11671-016-1435-4
http://dx.doi.org/10.1021/acs.langmuir.7b02011
http://dx.doi.org/http://dx.doi.org/10.1016/j.actamat.2016.10.036
http://dx.doi.org/10.1002/ctpp.201700151


Acknowledgments

The present thesis owes its existence to the many people who generously assisted me through-

out my doctoral journey.

First and foremost, I would like to express my sincere gratitude to my supervisor, Prof. Dr.

Michael Bonitz, for the advice, guidance and care he has provided ever since I �rst joined his

group in 2010. Over the years, I greatly bene�ted from his knowledge and scienti�c expertise.

Furthermore, he gave me the invaluable opportunity to present my research at various do-

mestic and international conferences, thus allowing me to become an active member of the

scienti�c community.

For the long-standing collaboration, I am grateful to Prof. Dr. Franz Faupel and his group

members Dr. Thomas Strunskus, Dr. Oleksandr Polonskyi and Alexander Hinz. Their experi-

mental work provided the motivation for my computational investigations, and I learned a

lot from them about metal–polymer nanocomposites.

I also thank Nuttawut Kongsuwan and Kangkang Wang, who gave me the opportunity to

supervise their projects during their RISE internships in summer 2014 and 2015, respectively.

Finally, I wish to thank my colleagues for the friendly atmosphere and their willingness to

share their knowledge. In particular, I am indebted to XXXwho proofread the manuscript of

this thesis.

131





Selbständigkeitserklärung

Ich erkläre, dass die vorliegende Abhandlung – abgesehen von der Beratung durch den

Betreuer – nach Inhalt und Form die eigene Arbeit ist.

Außerdem versichere ich, dass die Arbeit in dieser Formweder ganz noch zum Teil schon einer

anderen Stelle im Rahmen eines Prüfungsverfahrens vorgelegen hat, noch nicht verö�entlicht

worden ist und auch nicht zur Verö�entlichung eingereicht worden ist. Die hier vorgestellten

Ergebnisse sind zum größten Teil bereits in wissenschaftlichen Fachzeitschriften publiziert

worden. Eine ausführliche Publikationsliste �ndet sich auf Seite iii.

Die Arbeit ist unter Einhaltung der Regeln guter wissenschaftlicher Praxis der Deutschen

Forschungsgemeinschaft entstanden.

Ort, Datum Jan Willem Abraham

133


	Contents
	Motivation and Outline
	Metal–Polymer Nanocomposites
	Important experimental techniques
	Deposition methods
	Grazing-incidence small-angle X-ray scattering

	Behavior of metal atoms and clusters

	Simulation Methods
	Kinetic Monte Carlo simulations
	Idea of the method
	First reaction method
	Application of kinetic Monte Carlo simulations in this work
	Critical aspects of the KMC method

	Molecular dynamics simulations
	Introduction
	Langevin dynamics
	Embedded-atom method
	Numerical integration and acceleration methods
	Application of molecular dynamics in this work


	Growth of Metallic Nanocolumns in a Polymer Matrix
	Description of the model system
	Components of the model and growth
	Processes

	Simulation results
	Preliminary remarks
	Influence of defects on the substrate
	Defect creation during deposition
	Influence of bulk diffusion

	Summary

	Growth of Gold Clusters on a Polymer Surface
	Experimental reference data
	Simulation scheme
	Acceleration of the dynamics: the rescaling method
	Explanation of the method
	Remarks on the procedure

	Evaluation of simulation results
	Simulation results
	Preliminary remarks
	General properties of the film morphology
	Influence of defects and re-evaporation
	Influence of the deposition rate
	X-ray scattering on clusters

	Summary

	Complementary Analysis of the MD Simulation Scheme
	Variation of the scaling factor
	Simulation results
	Discussion

	Comparison with rate equations for cluster growth
	Description of the model
	Formulation of the equations
	Results


	Growth of Silver–Copper Clusters on a Polymer Surface
	Adjustment of simulation parameters
	Calculation of distribution functions
	Simulation results
	Film morphology
	Phase separation

	Summary

	Conclusions
	Curve Fitting Results
	Bibliography
	Acknowledgments
	Selbständigkeitserklärung

