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Abstract

The energy loss of charged projectiles in correlated materials is of prime
relevance for plasma-surface interaction for which we have developed
a nonequilibrium Green functions (NEGF) approach. A particularly in-
teresting effect is the correlation induced increase of stopping power
at low velocities [1]. However, NEGF simulations are possible only for
short time durations, due to the unfavorable N3

t scaling with the num-
ber of discretization time steps. The situation has changed radically
with the recently developed G1-G2 scheme [2], which is based on the
generalized Kadanaoff-Baym ansatz in combination with Hartree-Fock
propagators, and allows to achieve linear scaling with Nt. This en-
hancement enables us to improve previous simulations by using better
selfenergies [3] and by extending the simulation duration which gives
access to slower projectiles.

Stopping Power Theory
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FIG. 1: 2D finite honeycomb lattice structure
L denotes the number of sites, L = 24 (black) L = 54 (blue), with the
site coordinates Ri. The green point indicates the position, where
the projectile hits the lattice plane. Furthermore, a0 denotes the
lattice spacing, J(U) is the nearest neighbour hopping (the onsite
interaction), andWii is the local energy (see below). From Ref. [4].

• The Hubbard-Hamiltonian of the lattice electrons

Ĥe = Ĥhop + Ĥrep + Ĥ int

• Nearest-neighbor hopping • On-site Coulomb repulsion

Ĥhop = −J ∑
⟨i,j⟩,σ

ĉ†iσ ĉjσ Ĥrep = U∑
i

(n̂↑i −
1

2
)(n̂↓i −

1

2
)

• Electron-projectile interaction

Ĥ int =∑
i,σ

Wi(t)ĉ†iσ ĉiσ with Wi(t) = −
e2

4πε0

Zp

∣rp(t) −Ri∣

with ĉ†iσ (ĉiσ) creation (annihilation) operator on site i with spin σ
and electron density n̂iσ = ĉ

†
iσ ĉiσ, as well as projectile position rp

• The bare Coulomb interaction between the projectile, the fixed back-
ground charges, and the target electrons which are initially in equi-
librium is the actual cause for the stopping dynamics.

• To describe the interaction with the charged classical projectile, we
use an Ehrenfest-type approach.

• Furthermore, to compute the projectiles motion, Newton´s equation
with the total potential V(rp, t), which includes all lattice charges,
have to be solved. Zi(t) refers to the net charge on site i and m
denotes the particle’s mass.

V (rp, t) =
e2

4πε0
∑
i

ZpZi(t)
∣rp(t) −Ri∣

↷ m
d2

dt2
rp = −∇V (rp, t)

• The projectiles initial position • Its initial velocity

rp = (−1

6
a0,−

√
3

3
a0,−z)

drp

dt
= (0,0, vz)

(This position has been found to give similar stopping results com-
pared to calculations, where one averages over many sites).

Generation of the Initial State
• The initial state is found by use of the adiabatic switching method:

- Time propagation starts with noninteracting ground state
- Interaction strength U(t) is switched on adiabatically

• In the following Figures the projectile is a proton (Zp = 1) starting
at z = 100a0. Furthermore, the size of the honeycomb cluster is set
to L = 24 sites and the nearest-neighbour hopping is a fixed value
of J = 2.8 eV (typical for graphene).
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FIG. 2: Stopping dynamics
Change of the projectile’s kinetic energy ∆Ekin(t) = Ekin(t) −
Ekin(t = 0) as function of time in units of t0 = h̵

J
for a fixed coupling

strength of U
J
= 2. timp denotes the time of the protons impact on

the lattice plane. From Ref. [5].

• FIG.2 depicts three different kinetic energy curves for a slow (green),
a medium-fast (red) and a fast (blue) projectile. These were cre-
ated using the G1-G2 scheme with the particle-particle T-matrix
selfenergy. The stopping power denotes the difference between the
energy prior to and after the interaction.

G1-G2 Theory

• In general, a nonequilibrium Green functions (NEGF) approach was
used and extended by Ehrenfest dynamics for the projectile.

• More specifically, the NEGF were used within the G1-G2 scheme,
which is equivalent to the generalized Kadanoff Baym ansatz
(GKBA).

• This scheme is particularly interesting, as for its favorable linear
time scaling. The equations of motion using the Hartree-Fock ap-
proximation (HF), second-Born approximation (SOA) and particle-
particle T-matrix (TPP) for the selfenergy:
One-particle (HF):

ih̵
d

dt
G<ij(t) = [hHF,G<]ij(t)

One-particle (SOA and TPP):

ih̵
d

dt
G<ij(t) = [hHF,G<]ij(t) + [I + I†]ij(t)

with the collision Integral Iij(t) = −ih̵U(t)Giiji and the effective
single-particle Hartree-Fock Hamiltonian hHF (cf. Ref. [4])
Two-particle (SOA without Λ-terms):

ih̵
d

dt
Gijkl(t) − [h(2),HF,G]ijkl(t) = Ψijkl(t) +ΛPPijkl(t) − [ΛPPijkl(t)]∗

with Ψijkl(t) = (ih̵)2U(t)∑
p

[G>ip(t)G>jp(t)G<pk(t)G<pl(t)

−G<ip(t)G<jp(t)G>pk(t)G>pl(t)]

and ΛPPijkl(t) = (ih̵)2U(t) ×∑
p

[G>ip(t)G>jp(t) −G<ip(t)G<jp(t)]Gppkl(t)

including h(2),HF
ijkl (t) = δjlhHF

ik (t) + δikhHF
jl (t)

(Note that in general these equations contain spin-up/-down de-
pendencies, but for our calculations these are irrelevant due to spin
symmetry)

Stopping Power Results

FIG. 3: Stopping power for various selfenergies
The data was generated using the G1-G2 scheme with the on-site
interaction U/J = 2 for three different selfenergies: HF (blue), SOA
(orange), TPP (green). The effect of different selfenergies is partic-
ularly strong at the maximum and at Ekin = 0.25keV /u. From Ref.
[5].

Summary

• Time-dependent simulation of ion stopping goes beyond linear re-
sponse theory and includes nonlinear and non-adiabatic effects

• The electronic correlations are important for the stopping power.

• A further deviation of the selfenergies is noticeable at Ekin =
0.25keV /u. The reason for this still has to be investigated.

Outlook

• More precise results for improved adiabatic switching

• Extension to computation of larger system sizes

• Improvement of the G1-G2 scheme itself by taking into account
three-particle correlations.

• Simulations of even slower projectiles will provide valuable informa-
tion about the extent of correlation effects in solid targets and
plasmas

• G1-G2 scheme can be extended to plasmas using the momentum
representation (see talk TO06, Thu 10:42 AM CST by C. Makait)
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