Perspectives of quantum plasma and warm dense matter theory¹

Michael Bonitz, Zhandos Moldabekov**, Tobias Dornheim[†], Paul Hamann, Jan Vorberger*

in collaboration with Alexey Filinov, Travis Sjostrom¹, Fionn D. Malone², W.M.C. Foulkes³, and Frank Graziani²

Institute of Theoretical Physics and Astrophysics, Kiel University [†] Center for Advanced Systems Understanding, * Helmholtz-Zentrum Dresden ** Al Farabi University, Almaty, Kazakhstan

¹Theoretical Division Los Alamos National Laboratory, Los Alamos, New Mexico, USA ²Lawrence Livermore National Lab ³Department of Physics, Imperial College London, UK

September 2020

¹ http://www.theo-physik.uni-kiel.de/bonitz/index.html \Rightarrow Research \Rightarrow Publications, Talks

Introduction: warm dense matter

Warm dense matter (WDM):

- Nearly classical ions
- Degenerate non-ideal electrons
- Coupling parameter:

$$r_{s}=rac{\overline{r}}{a_{
m B}}\sim 0.1\ldots 10$$

Degeneracy parameter:

 $\theta = T/T_{\rm F} \sim 0.1 \dots 10$

 Temperature, degeneracy and coupling effects equally important
 No small parameters

Figure: From T. Dornheim, S. Groth, and M. Bonitz, *Physics Reports* **744**, 1-86 (2018)

Perturbation theory and ground-state approaches fail

Importance of the uniform electron gas (UEG)

Model system of Coulomb interacting quantum electrons in a uniform positive background

Ground state (T = 0):

- Simple model for conduction electrons in metals
- Exchange-correlation (XC) energy:

 $e_{xc}(r_s) = e_{tot}(r_s) - e_0(r_s)$

- \rightarrow Input for density functional theory (DFT) simulations (in LDA and GGA)
- \rightarrow Parametrization¹ of $e_{xc}(r_s)$ from ground state quantum Monte Carlo data²

¹ J.P. Perdew and A. Zunger, PRB **23**, 5048 (1981) ² D.M. Ceperley and B. Alder, PRL **45**, 566 (1980) ³ N.D. Mermin, Phys. Rev **137**, A1441 (1965) ⁴ A.Y. Potekhin and G. Chabrier, *A&A 550*, *A43* (2013)

Importance of the uniform electron gas (UEG)

Model system of Coulomb interacting quantum electrons in a uniform positive background

Ground state (T = 0):

- Simple model for conduction electrons in metals
- Exchange-correlation (XC) energy:

 $e_{xc}(r_s) = e_{tot}(r_s) - e_0(r_s)$

- \rightarrow Input for density functional theory (DFT) simulations (in LDA and GGA)
- \rightarrow Parametrization¹ of $e_{xc}(r_s)$ from ground state quantum Monte Carlo data²

Warm dense matter ($T \sim T_F$):

► Thermal DFT³: minimize free energy F = E - TS→ Requires parametrization of XC free energy of UEG:

$$f_{xc}(r_s, \theta) = f_{tot}(r_s, \theta) - f_0(r_s, \theta)$$

- f_{xc}(r_s, θ) direct input for EOS models of astrophysical objects⁴
- f_{xc}(r_s, θ) contains complete thermodynamic information of UEG

¹ J.P. Perdew and A. Zunger, PRB 23, 5048 (1981) ² D.M. Ceperley and B. Alder, PRL 45, 566 (1980) ³ N.D. Mermin, Phys. Rev 137, A1441 (1965) ⁴ A.Y. Potekhin and G. Chabrier, A&A 550, A43 (2013)

Many parametrizations for f_{xc} based on different approximate approaches:

- Semi-analytical approaches by Ebeling¹
- Dielectric methods, e.g. Singwi-Tosi-Land-Sjölander² (STLS) and Vashista-Singwi³ (VS)
- Quantum-classical mappings, e.g. Perrot and Dharma-wardana⁴ (PDW)
- Most recent: Fit by Karasiev⁵ et al. (KSDT) to Restricted Path Integral Monte Carlo (RPIMC) data⁶

¹ W. Ebeling and H. Lehmann, Ann. Phys. 45, (1988) ² S. Ichimaru, H. Iyetomi, and S. Tanaka, Phys. Rep. 149, (1987)

³ T. Sjostrom and J. Dufty, PRB 88, (2013)

⁵ V.V. Karasiev et al., PRL **112**, (2014)

⁴ F. Perrot and MWC Dharma-wardana, PRB **62**, (2000)

⁶ E.W. Brown et al., PRL **110**, (2013)

Many parametrizations for f_{xc} based on different approximate approaches:

¹ W. Ebeling and H. Lehmann, Ann. Phys. 45, (1988) ² S. Ichimaru, H. Iyetomi, and S. Tanaka, Phys. Rep. 149, (1987) ³ T. Siostrom and J. Dufty, PRB 88, (2013)

⁴ E. Perrot and MWC Dharma-wardana, PBB 62, (2000)

⁶ E.W. Brown et al., PRL **110**, (2013)

⁵ V.V. Karasiev et al., PRL **112**, (2014)

Standard PIMC in warm dense regime severely hampered by *fermion sign problem*:

² T. Schoof *et al.*, Phys. Rev. Lett **115**, 130402 (2015) ³ T. Schoof *et al.*, Contrib. Plasma Phys. **51**, 687 (2011) E.W. Brown et al., PBL 110, 146405 (2013) ⁴ T. Dornheim et al., New J. Phys. 17, 073017 (2015)

⁵ T. Dornheim *et al.*, J. Chem. Phys. **143**, 204101 (2015)

- Standard PIMC in warm dense regime severely hampered by *fermion sign problem*:
 - First results¹ by E. Brown, D. Ceperley et al. (2013) based on fixed node approximation (RPIMC)
 - Induces systematic errors of unknown magnitude
 - **RPIMC** limited to $r_s \ge 1$

² T. Schoof *et al.*, Phys. Rev. Lett **115**, 130402 (2015) ³ T. Schoof *et al.*, Contrib. Plasma Phys. **51**, 687 (2011) E.W. Brown et al., PBL 110, 146405 (2013) ⁴ T. Dornheim et al., New J. Phys. 17, 073017 (2015)

⁵ T. Dornheim et al., J. Chem. Phys. 143, 204101 (2015)

- Standard PIMC in warm dense regime severely hampered by *fermion sign problem*:
 - First results¹ by E. Brown, D. Ceperley et al. (2013) based on fixed node approximation (RPIMC)
 - Induces systematic errors of unknown magnitude
 - ► RPIMC limited to r_s ≥ 1

Our approach:

Avoid fermion sign problem by combining two exact and complementary QMC methods:

E.W. Brown *et al.*, PRL **110**, 146405 (2013) ² T. Schoof *et al.*, Phys. Rev. Lett **115**, 130402 (2015)

⁴ T. Dornheim *et al.*, New J. Phys. **17**, 073017 (2015)

⁵ T. Dornheim *et al.*, J. Chem. Phys. **143**, 204101 (2015)

^{15) &}lt;sup>3</sup> T. Schoof *et al.*, Contrib. Plasma Phys. **51**, 687 (2011)

- Standard PIMC in warm dense regime severely hampered by *fermion sign problem*:
 - First results¹ by E. Brown, D. Ceperley et al. (2013) based on fixed node approximation (RPIMC)
 - Induces systematic errors of unknown magnitude
 - RPIMC limited to r_s ≥ 1

Our approach:

Avoid fermion sign problem by combining two exact and complementary QMC methods:

1. Configuration PIMC (CPIMC)^{2,3}

 \rightarrow Excels at high density $\mathit{r_s} \lesssim$ 1 and strong degeneracy

¹ E.W. Brown *et al.*, PRL **110**, 146405 (2013)

⁴ T. Dornheim *et al.*, New J. Phys. **17**, 073017 (2015)

³ T. Schoof et al., Contrib. Plasma Phys. 51, 687 (2011)

² T. Schoof *et al.*, Phys. Rev. Lett **115**, 130402 (2015)

⁵ T. Dornheim *et al.*, J. Chem. Phys. **143**, 204101 (2015)

- Standard PIMC in warm dense regime severely hampered by *fermion sign problem*:
 - First results¹ by E. Brown, D. Ceperley et al. (2013) based on fixed node approximation (RPIMC)
 - Induces systematic errors of unknown magnitude
 - RPIMC limited to r_s ≥ 1

Our approach:

Avoid fermion sign problem by combining two exact and complementary QMC methods:

- 1. Configuration PIMC (CPIMC)^{2,3}
 - \rightarrow Excels at high density $\mathit{r_s} \lesssim$ 1 and strong degeneracy
- 2. Permutation blocking PIMC $(PB-PIMC)^{4,5}$

 \rightarrow Extends standard PIMC towards stronger degeneracy

¹ E.W. Brown *et al.*, PRL **110**, 146405 (2013)

⁴ T. Dornheim *et al.*, New J. Phys. **17**, 073017 (2015)

² T. Schoof *et al.*, Phys. Rev. Lett **115**, 130402 (2015)

³ T. Schoof et al., Contrib. Plasma Phys. 51, 687 (2011)

⁵ T. Dornheim *et al.*, J. Chem. Phys. **143**, 204101 (2015)

- Standard PIMC in warm dense regime severely hampered by *fermion sign problem*:
 - First results¹ by E. Brown, D. Ceperley et al. (2013) based on fixed node approximation (RPIMC)
 - Induces systematic errors of unknown magnitude
 - RPIMC limited to r_s ≥ 1

Our approach:

Avoid fermion sign problem by combining two exact and complementary QMC methods:

- 1. Configuration PIMC (CPIMC)^{2,3}
 - \rightarrow Excels at high density $\mathit{r_s} \lesssim$ 1 and strong degeneracy
- 2. Permutation blocking PIMC (PB-PIMC)^{4,5}

 \rightarrow Extends standard PIMC towards stronger degeneracy

Ab initio simulations over broad range of parameters

- ¹ E.W. Brown *et al.*, PRL **110**, 146405 (2013)
- ² T. Schoof *et al.*, Phys. Rev. Lett **115**, 130402 (2015)
- ⁴ T. Dornheim *et al.*, New J. Phys. **17**, 073017 (2015)

- ³ T. Schoof et al., Contrib. Plasma Phys. 51, 687 (2011)
- ⁵ T. Dornheim et al., J. Chem. Phys. 143, 204101 (2015)

RPIMC limited to $r_s \ge 1$

¹S. Groth *et al.*, Phys. Rev. B **93**, 085102 (2016) ²T. Dornheim *et al.*, Phy ³F.D. Malone *et al.*, Phys. Rev. Lett. **117**, 115701 (2016) ⁴T. Schoof *et al.*

²T. Dornheim *et al.*, Phys. Rev. B **93**, 205134 (2016)

- **RPIMC** limited to $r_s \ge 1$
- CPIMC excels at high density

¹S. Groth *et al.*, Phys. Rev. B **93**, 085102 (2016) ²T. Dornheim *et al.*, Phys. Rev. B **93**, 205134 (2016)

³F.D. Malone et al., Phys. Rev. Lett. 117, 115701 (2016)

- **RPIMC** limited to $r_s \ge 1$
- CPIMC excels at high density
- **PB-PIMC** applicable at $\theta \gtrsim 0.5$

²T. Dornheim et al., Phys. Rev. B 93, 205134 (2016)

¹S. Groth *et al.*, Phys. Rev. B **93**, 085102 (2016) ³F.D. Malone *et al.*, Phys. Rev. Lett. **117**, 115701 (2016)

- **RPIMC** limited to $r_s \ge 1$
- CPIMC excels at high density
- **PB-PIMC** applicable at $\theta \gtrsim 0.5$

 $\label{eq:combination} \begin{array}{l} \mbox{Combination}^1 \mbox{ yields exact results over} \\ \mbox{ entire density range down to } \theta \sim 0.5 \end{array}$

- Also applies to the unpolarized UEG²
- confirmed by independent DMQMC simulations³

²T. Dornheim *et al.*, Phys. Rev. B **93**, 205134 (2016)

¹ S. Groth *et al.*, Phys. Rev. B **93**, 085102 (2016) ³ F.D. Malone *et al.*, Phys. Rev. Lett. **117**, 115701 (2016)

Key quantity: dynamic structure factor

$$S(\mathbf{q},\omega) := rac{1}{2\pi} \int_{-\infty}^{\infty} \mathrm{d}t \; \underbrace{\langle \hat{n}_{\mathbf{q}}(t) \hat{n}_{-\mathbf{q}}(0)
angle}_{:=F(\mathbf{q},t)} \; e^{i\omega t}$$

 \rightarrow Directly measured in scattering experiments

X-ray Thomson scattering experiments at free electron laser facilities (e.g. FLASH, X-FEL, LCLS)

yields the most accurate information on plasma density, ionic charge state, and temperature

Analysis requires model input

Key quantity: dynamic structure factor

$$S(\mathbf{q},\omega) := \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathrm{d}t \underbrace{\langle \hat{n}_{\mathbf{q}}(t) \hat{n}_{-\mathbf{q}}(0) \rangle}_{:=F(\mathbf{q},t)} e^{i\omega t}$$

 \rightarrow Directly measured in scattering experiments

Chihara decomposition applies for non-collective scattering:

$$\begin{split} & S(\mathbf{q},\omega) = S_{\text{b-b}}(\mathbf{q},\omega) + S_{\text{b-f}}(\mathbf{q},\omega) + S_{\text{f-f}}(\mathbf{q},\omega) \\ & \rightarrow S_{\text{f-f}}(\mathbf{q},\omega) \sim S^{\text{UEG}}(\mathbf{q},\omega) \end{split}$$

X-ray Thomson scattering experiments at free electron laser facilities (e.g. FLASH, X-FEL, LCLS)

yields the most accurate information on plasma density, ionic charge state, and temperature

Analysis requires model input

Key quantity: dynamic structure factor

$$S(\mathbf{q},\omega) := rac{1}{2\pi} \int_{-\infty}^{\infty} \mathrm{d}t \; \underbrace{\langle \hat{n}_{\mathbf{q}}(t) \hat{n}_{-\mathbf{q}}(0)
angle}_{:=F(\mathbf{q},t)} \; e^{i\omega}$$

 \rightarrow Directly measured in scattering experiments

Chihara decomposition applies for non-collective scattering:

$$\begin{split} & \boldsymbol{S}(\mathbf{q},\omega) = S_{\text{b-b}}(\mathbf{q},\omega) + S_{\text{b-f}}(\mathbf{q},\omega) + S_{\text{f-f}}(\mathbf{q},\omega) \\ & \rightarrow S_{\text{f-f}}(\mathbf{q},\omega) \sim \boldsymbol{S}^{\text{UEG}}(\mathbf{q},\omega) \end{split}$$

Practical example: Fit model for S(q, \omega; T_e) to spectrum to determine electron temperature T_e

Scattering spectrum of isochorically heated graphite at LCLS. From D. Kraus *et al.*, *Plasma Phys. Control. Fusion* (2019)

Key quantity: dynamic structure factor

$$S(\mathbf{q},\omega) := rac{1}{2\pi} \int_{-\infty}^{\infty} \mathrm{d}t \; \underbrace{\langle \hat{n}_{\mathbf{q}}(t) \hat{n}_{-\mathbf{q}}(0)
angle}_{:=F(\mathbf{q},t)} \; e^{i\omega}$$

 \rightarrow Directly measured in scattering experiments

Chihara decomposition applies for non-collective scattering:

$$\begin{split} & \boldsymbol{S}(\mathbf{q},\omega) = S_{\text{b-b}}(\mathbf{q},\omega) + S_{\text{b-f}}(\mathbf{q},\omega) + S_{\text{f-f}}(\mathbf{q},\omega) \\ & \rightarrow S_{\text{f-f}}(\mathbf{q},\omega) \sim \boldsymbol{S}^{\text{UEG}}(\mathbf{q},\omega) \end{split}$$

- Practical example: Fit model for S(q, \omega; T_e) to spectrum to determine electron temperature T_e
- Problem:

 $F(\mathbf{q}, t)$ requires **real time-dependent simulations** \rightarrow with PIMC have to use analytic continuation, reconstruct F(q, it) and 4 frequency moments, but: insufficient information

Scattering spectrum of isochorically heated graphite at LCLS. From D. Kraus *et al.*, *Plasma Phys. Control. Fusion* (2019)

Fluctuation-dissipation theorem:

$$S(\mathbf{q},\omega) = -rac{{
m Im}\chi(\mathbf{q},\omega)}{\pi n(1-e^{-eta\omega})}$$

Dynamic structure factor of the UEG: $\overline{(\theta = 1, r_s = 10, N = 33, q = 0.63q_F)}$ 40RPA 35GIFT ML30 25 $S\cdot \omega_P$ 201510 M $\mathbf{5}$ 0 0.51.5 ω/ω_P

Fluctuation-dissipation theorem:

$$S(\mathbf{q},\omega) = -rac{{
m Im}\chi(\mathbf{q},\omega)}{\pi n(1-e^{-eta\omega})}$$

Express response function χ via ideal response function χ_0 and dynamic local field correction *G*:

$$\chi(\mathbf{q},\omega) = \frac{\chi_0(\mathbf{q},\omega)}{1 - v_q [1 - G(\mathbf{q},\omega)]\chi_0(\mathbf{q},\omega)}$$

• Random phase approximation (RPA): $G \equiv 0$

Dynamic structure factor of the UEG: $\overline{(\theta = 1, r_{s} = 10, N = 33, q = 0.63q_{\rm F})}$ 40 RPA 35GIFT ML30 25 $\cdot \omega_P$ 20Ś 1510M 50 0.51.5 ω/ω_P

Fluctuation-dissipation theorem:

$$S(\mathbf{q},\omega) = -rac{{
m Im}\chi(\mathbf{q},\omega)}{\pi n(1-e^{-eta\omega})}$$

Express response function χ via ideal response function χ₀ and dynamic local field correction G:

$$\chi(\mathbf{q},\omega) = \frac{\chi_0(\mathbf{q},\omega)}{1 - v_q [1 - G(\mathbf{q},\omega)]\chi_0(\mathbf{q},\omega)}$$

• Random phase approximation (RPA): $G \equiv 0$

Make ansatz and optimize $G(\mathbf{q}, \omega)$ instead of $S(\mathbf{q}, \omega)$

Advantages:

- Limits $G(\mathbf{q}, 0)$ and $G(\mathbf{q}, \infty)$ known from PIMC simulation
- Other exact properties of G can be incorporated

Dynamic structure factor of the UEG: $\overline{(\theta = 1, r_{s} = 10, N = 33, q = 0.63q_{\rm F})}$ 40RPA 35GIFT ML 30 25dm. 20S 15105n 1.50.5 ω/ω_P

Fluctuation-dissipation theorem:

$$S(\mathbf{q},\omega) = -rac{{
m Im}\chi(\mathbf{q},\omega)}{\pi n(1-e^{-eta\omega})}$$

Express response function χ via ideal response function χ₀ and dynamic local field correction G:

$$\chi(\mathbf{q},\omega) = \frac{\chi_0(\mathbf{q},\omega)}{1 - v_q [1 - G(\mathbf{q},\omega)]\chi_0(\mathbf{q},\omega)}$$

• Random phase approximation (RPA): $G \equiv 0$

Make ansatz and optimize $G(\mathbf{q}, \omega)$ instead of $S(\mathbf{q}, \omega)$

Advantages:

- Limits $G(\mathbf{q}, 0)$ and $G(\mathbf{q}, \infty)$ known from PIMC simulation
- Other exact properties of G can be incorporated

Dynamic structure factor of the UEG: $\overline{(\theta = 1, r_{s} = 10, N = 33, q = 0.63q_{\rm F})}$ 40SLFC 35RPA GIFT 30 ML25dm. 20S 15105n 1.50.5

 ω/ω_P

Fluctuation-dissipation theorem:

 $Im\chi(\mathbf{q},\omega)$ $S(\mathbf{a} \omega) =$ GIFT and ML spectra not in agreement with exact properties of $G(\mathbf{q}, \omega)$ \rightarrow to be discarded as unphysical

$$\chi(\mathbf{q},\omega) = \frac{1 - v_q [1 - G(\mathbf{q},\omega)] \chi_0(\mathbf{q},\omega)}{1 - v_q [1 - G(\mathbf{q},\omega)] \chi_0(\mathbf{q},\omega)}$$

Random phase approximation (RPA): $G \equiv 0$

Make ansatz and optimize $G(q, \omega)$ instead of $S(q, \omega)$

Advantages:

- Limits $G(\mathbf{q}, 0)$ and $G(\mathbf{q}, \infty)$ known from PIMC simulation
- Other exact properties of G can be incorporated

Dynamic structure factor of the UEG: $\overline{(\theta = 1, r_{s} = 10, N = 33, q = 0.63q_{\rm F})}$ 40SLFC 35RPA

Fluctuation-dissipation theorem:

 $S(\mathbf{q}, \omega) = - \frac{\operatorname{Im} \chi(\mathbf{q}, \omega)}{\operatorname{GIFT} \text{ and } ML \text{ spectra not in agreement}}$ with exact properties of $G(\mathbf{q}, \omega)$ \rightarrow to be discarded as unphysical

$$\chi(\mathbf{q},\omega) = \frac{1 - v_q [1 - G(\mathbf{q},\omega)] \chi_0(\mathbf{q},\omega)}{1 - v_q [1 - G(\mathbf{q},\omega)] \chi_0(\mathbf{q},\omega)}$$

• Random phase approximation (RPA): $G \equiv 0$

Stochastic sampling of $G(\mathbf{q}, \omega)$ accurately determines $S(\mathbf{q}, \omega)$

Advantages:

- Limits $G(\mathbf{q}, 0)$ and $G(\mathbf{q}, \infty)$ known from PIMC simulation
- Other exact properties of G can be incorporated

Dynamic structure factor of the UEG: $\overline{(\theta = 1, r_{s} = 10, N = 33, q = 0.63q_{\rm F})}$ 40QMC 3530 25dm. 20S 151050.51.5

 ω/ω_P

Correlation effects in the peak position of $S(q, \omega)$: $\theta = 1, r_s = 2$

T. Dornheim, S. Groth, J. Vorberger, and M. Bonitz, Phys. Rev. Lett. 121, 255001 (2018)

- Ab initio results for G(q, 0) available: Dornheim et al., J. Chem. Phys. (2019)
- Slight correlation induced redshift of peak for intermediate q (at small r_s)

Correlation effects in the peak position of $S(q, \omega)$: $\theta = 1, r_s = 6$

T. Dornheim, S. Groth, J. Vorberger, and M. Bonitz, Phys. Rev. Lett. 121, 255001 (2018)

- Peak position and FWHM: Dynamic structure factor of the UEG: 12QMC RPA 3.510 3 8 2.5 ω/ω_P q/q_F 6 24 1.5QMC $\mathbf{2}$ 1 RPA 0 0.52.57.55 100 3 ω/ω_P q/q_F
- Ab initio results for G(q, 0) available: Dornheim et al., J. Chem. Phys. (2019)
- Slight correlation induced redshift of peak for intermediate q (at small r_s)
- Pronounced redshift and broadening with increasing r_s

Correlation effects in the peak position of $S(q, \omega)$: $\theta = 1$, $r_s = 10$

T. Dornheim, S. Groth, J. Vorberger, and M. Bonitz, Phys. Rev. Lett. 121, 255001 (2018)

- Ab initio results for G(q, 0) available: Dornheim et al., J. Chem. Phys. (2019)
- Slight correlation induced redshift of peak for intermediate q (at small r_s)
- Pronounced redshift and broadening with increasing r_s
- Negative dispersion of peak for large r_s around q = 2q_F predicted for dense hydrogen
- How is this related to plasmons?
 Requires dielectric function ε(q, ω)

$$S(\mathbf{q},\omega) = -rac{\mathrm{Im}\,\epsilon^{-1}(\mathbf{q},\omega)}{\pi n \tilde{v}(q)(1-e^{-eta\omega})}$$

Peak position and FWHM:

3

 q/q_F

QMC

RPA

WDM Dielectric function: finite temperature, quantum and correlation effects

- Quantum hydrodynamics²: incorrect plasmon dispersion in 2D and 3D (factor 9/5 in q² term)³
- Quantum Vlasov (Hartree, mean field or random phase) approximation (RPA) at finite T:

$$\epsilon(q,\omega;T) = 1 - ilde{
u}(q) \Pi(q,\omega;T) \,, \quad \Pi^{ ext{RPA}}(ec{q},\omega;T) = \int rac{dec{
ho}}{(2\pi)^3} rac{f\left(et{E}_{ec{
ho}};T
ight) - f\left(et{E}_{ec{
ho}+ec{q}};T
ight)}{et{E}_{ec{
ho}} - et{E}_{ec{
ho}+ec{q}} + \omega + i\delta}, \qquad \delta o 0^+ \,.$$

• Mean field plus correlations: models for local field correction $G(q, \omega)$ or quantum kinetic theory:

$$\Pi^{ ext{RPA}} o \Pi(q,\omega) = rac{\Pi^{ ext{RPA}}(q,\omega)}{1+ ilde{
u}(q)G(q,\omega)\Pi^{ ext{RPA}}(q,\omega)}$$

► Exact results⁴ : $G^{\text{QMC}}(q, \omega) \rightarrow \Pi^{\text{QMC}}(q, \omega) \rightarrow \epsilon^{\text{QMC}}(q, \omega)$ Accurate and efficient approximation: $G^{\text{QMC}}(q, \omega) \rightarrow G^{\text{QMC}}(q, 0) = G(q)$, insert in $\Pi(q, \omega) \rightarrow \epsilon^{\text{SLFC}}(q, \omega; T)$

- > QHD with exchange-correlation corrections⁵, but only: T = 0 and low accuracy xc effects (LDA)
- Improved QHD⁶: finite T, ω- and q-dependent coefficients, correlations via G and non-local effects

²G. Manfredi and F. Haas, Phys. Rev. B (2001)

³M. Bonitz et al., Phys. Plasmas (2019)

⁴P. Hamann et al., Phys. Rev. B (2020), arXiv: 2007.15471

⁵N. Crouseilles et al., Phys. Rev. B (2008)

⁶Zh. Moldabekov et al., Phys. Plasmas (2019)

Parametrizations of the plasmon dispersion of the 3D electron gas (mean field)

► Bohm and Gross 1949, classical plasma⁷:
$$\frac{\omega^2(q)}{\omega_p^2} = 1 + \frac{v_{th}^2}{\omega_p^2}q^2$$
, $v_{th}^2 = \frac{3k_B T}{m}$

▶ Bohm and Pines 1953, quantum plasma, T = 0 (RPA)⁸: $\frac{\omega^2(q)}{\omega_p^2} = 1 + \frac{3}{5} \frac{v_p^2}{\omega_p^2} q^2 + \frac{\hbar^2}{4m^2} \frac{q^4}{\omega_p^2}$,

Ferrell 1957,
$$q^4$$
 terms, $T = 0^9$: $\frac{\omega^2(q)}{\omega_p^2} = 1 + \frac{3}{5} \frac{v_F^2}{\omega_p^2} q^2 + \left(\frac{(\Delta v_0^2)^2}{\omega_p^2} + \frac{\hbar^2}{4m^2}\right) \frac{q^4}{\omega_p^2}$, $(\Delta v_0^2)^2 = \langle v^4 \rangle_0 - \langle v^2 \rangle_0^2$

• Quantum hydrodynamics
$$(T = 0)^{10}$$
: $\frac{\omega^2(q)}{\omega_p^2} = 1 + \frac{1}{3} \frac{v_F^2}{\omega_p^2} q^2 + \frac{\hbar^2}{4m^2} \frac{q^4}{\omega_p^2}$,

► Hamann *et al.*¹¹ RPA, finite
$$T$$
 : $\frac{\omega^2(q)}{\omega_p^2} = 1 + \frac{\langle v^2 \rangle}{\omega_p^2} q^2 + \left(\frac{(\Delta v^2)^2}{\omega_p^2} + \frac{\hbar^2}{4m^2}\right) \frac{q^4}{\omega_p^2}$, $\langle \dots \rangle$ average with Fermi function

Analytical parametrization for WDM: $\frac{\omega^2(q)}{\omega_p^2} = 1 + B_2(r_s, \Theta) \frac{q^2}{q_F^2} + B_4(r_s, \Theta) \frac{q^4}{q_F^4}$

Note: finite q-range of plasmons to be accounted for separately

⁷D. Bohm and E.P. Gross, Phys. Rev. (1949)

⁸D. Bohm and D. Pines, Phys. Rev. (1953), also: Lindhard, Klimontovich, Silin

⁹R.A. Ferrell, Phys. Rev. (1957)

¹⁰G. Manfredi and F. Haas, Phys. Rev. B (2001)

¹¹P. Hamann et al., Contrib. Plasma Phys. (2020), arXiv: 2008.04605

Dielectric function: plasmons

 Solution of Maxwell's equations: EM field modes, E(q, t), in plasma (isotropic), from

 $\hat{\epsilon}(\vec{q},\omega(q))=0$

contains collective excitations (plasmon)
 weak damping approximation (WDA):

 $\operatorname{Re} \hat{\epsilon}(\vec{q}, \omega(q)) = 0$

- roots on real axis vanish for *q* ≥ *q*_{cr}, and damping, |Im ω|, becomes large
- drop WDA and find exact roots

 $\hat{\epsilon}(\vec{q},z)=0$

at complex frequencies $z = \omega - i\gamma$:

$$E(q;t) \sim e^{i\omega(q)t}e^{-\gamma(q)t}, \quad \gamma > 0$$

Figure: Moderately correlated electron gas, $\Theta = 1$, $r_s = 2$

Analytic continuation (AC) of the dielectric function¹²

- AC of the retarded DF into the lower frequency half plane, γ > 0.
- full lines: Re ε = 0, dotted lines: Im ε = 0, plasmon = intersection (arrows)
- green: mean field (RPA) black: correlated (static LFC)
- complex zeroes may exist, even if Re
 e has no zeroes on real axis (top right).
- Finite temperature, $\Theta = 1$ ($k_B T = E_F$)

¹²M. Bonitz, Quantum Kinetic Theory, 2nd ed. Springer 2016; P. Hamann *et al.*, Contrib. Plasma Phys. (2020), arXiv:2008.04605

Plasmon dispersion in RPA: weak damping approximation vs. complex solution

Figure: RPA-plasmon dispersion (top) and damping (bottom) for $\theta = 1$ and $r_s = 1$ (left) and $r_s = 4$ (right). Green line: complex dispersion; blue dashes: small damping approximation; dash-dotted orange: next order expansion result. Dots: analytical RPA parametrization. The complex dispersion solution exists up to about $q/q_F \approx 1.0$, for $r_s = 1$ and $q/q_F \approx 2.0$, for $r_s = 4$. From P. Hamann *et al.*, Contrib. Plasma Phys. (2020), arXiv:2008.04605

Plasmon dispersion for $\Theta = 0.5$

Figure: Plasmon dispersion (top) and damping (bottom) with (SLFC) and without (RPA) correlations. Orange: weak damping approximation. I: full RPA dispersion, II: $(\Delta v^2)^2$ replaced by $\langle v^4 \rangle$. IV: neglecting q^4 -terms. Grey area: pair continuum. Vertical dashes: $q = \lambda_{scr}$. From P. Hamann *et al.*, Contrib. Plasma Phys. (2020), arXiv:2008.04605

Plasmon dispersion for $\Theta=2$

Figure: Plasmon dispersion (top) and damping (bottom) with (SLFC) and without (RPA) correlations. Orange: weak damping approximation. green dots: full RPA dispersion, green dashes: $(\Delta v^2)^2$ replaced by $\langle v^4 \rangle$. green dash-dots: neglecting q^4 -terms. Red: peak of Im ϵ^{-1} , Grey area: pair continuum. Vertical dashes: $q = \lambda_{scr}$. From P. Hamann *et al.*, Contrib. Plasma Phys. (2020), arXiv:2008.04605

Plasmon dispersion vs. Dynamics structure factor, for $\Theta = 1$

Figure: Plasmon dispersion (top) and damping (bottom) with (SLFC) and without (RPA) correlations. Orange: weak damping approximation. blue: peak of $S(q, \omega)$. Grey area: pair continuum. Vertical dashes: $q = \lambda_{scr}$. From P. Hamann *et al.*, Contrib. Plasma Phys. (2020), arXiv:2008.04605

Summary²⁰

- ab initio QMC simulations provide complete thermodynamic data for warm dense uniform electron gas¹³
- accurate functional $f_{xc}(r_s, \Theta, \xi)$ input for finite-T LDA-DFT, implemented in Libxc (LDA_XC_GDSMFB)
- ab initio data for inhomogeneous EG¹⁴ \Rightarrow accurate parametrization of static local field correction¹⁵ G(q)
- ▶ first *ab initio* data for the dynamic structure factor $S(q, \omega)$ and the dielectric function of warm dense electrons¹⁶ first *ab initio* data for the plasmon dispersion $\omega(q)$, accurate parametrization¹⁷
- Direct comparison with state of the art Thomson scattering (XRTS) experiments possible

¹³T. Dornheim *et al.*, Phys. Reports (2018)

¹⁴S. Groth *et al.*, J. Chem. Phys. (2017); T. Dornheim *et al.*, Phys. Rev. E (2017)

¹⁵T. Dornheim et al., J. Chem. Phys. (2019)

¹⁶T. Dornheim *et al.*, Phys. Rev. Lett. (2018); P. Hamann *et al.*, Phys. Rev. B (2020), arXiv:2007.15471

¹⁷P. Hamann et al., Contrib. Plasma Phys. (2020), arXiv:2008.04605

¹⁸Zh. Moldabekov et al., Phys. Plasmas (2018); M. Bonitz et al., Phys. Plasmas (2019)

¹⁹M. Bonitz, "Quantum Kinetic Theory", 2nd ed. Springer 2016; N. Schlünzen et al., J. Phys. Cond. Matt. 32, 103001 (2020)

 $^{^{20} \}text{http://www.theo-physik.uni-kiel.de/bonitz/index.html} \Rightarrow \text{Research} \Rightarrow \text{Publications, Talks}$

Summary²⁰

- ab initio QMC simulations provide complete thermodynamic data for warm dense uniform electron gas¹³
- accurate functional $f_{xc}(r_s, \Theta, \xi)$ input for finite-T LDA-DFT, implemented in Libxc (LDA_XC_GDSMFB)
- ab initio data for inhomogeneous EG¹⁴ \Rightarrow accurate parametrization of static local field correction¹⁵ G(q)
- First *ab initio* data for the dynamic structure factor $S(q, \omega)$ and the dielectric function of warm dense electrons¹⁶ first *ab initio* data for the plasmon dispersion $\omega(q)$, accurate parametrization¹⁷
- Direct comparison with state of the art Thomson scattering (XRTS) experiments possible
- QHD rigorously derived from Microscopic QHD (TDDFT), coefficients depend on excitation conditions ¹⁸ ⇒ systematic improvements possible, promising for large space and time scales in WDM
 - \Rightarrow Focus on linear and nolinear plasmons in real XRTS experiments

¹³T. Dornheim *et al.*, Phys. Reports (2018)

¹⁴S. Groth *et al.*, J. Chem. Phys. (2017); T. Dornheim *et al.*, Phys. Rev. E (2017)

¹⁵T. Dornheim et al., J. Chem. Phys. (2019)

¹⁶T. Dornheim *et al.*, Phys. Rev. Lett. (2018); P. Hamann *et al.*, Phys. Rev. B (2020), arXiv:2007.15471

¹⁷P. Hamann et al., Contrib. Plasma Phys. (2020), arXiv:2008.04605

¹⁸Zh. Moldabekov et al., Phys. Plasmas (2018); M. Bonitz et al., Phys. Plasmas (2019)

¹⁹M. Bonitz, "Quantum Kinetic Theory", 2nd ed. Springer 2016; N. Schlünzen et al., J. Phys. Cond. Matt. 32, 103001 (2020)

 $^{^{20} \}text{http://www.theo-physik.uni-kiel.de/bonitz/index.html} \Rightarrow \text{Research} \Rightarrow \text{Publications, Talks}$

Summary²⁰

- ab initio QMC simulations provide complete thermodynamic data for warm dense uniform electron gas¹³
- accurate functional $f_{xc}(r_s, \Theta, \xi)$ input for finite-T LDA-DFT, implemented in Libxc (LDA_XC_GDSMFB)
- ▶ ab initio data for inhomogeneous EG¹⁴ \Rightarrow accurate parametrization of static local field correction¹⁵ G(q)
- First *ab initio* data for the dynamic structure factor $S(q, \omega)$ and the dielectric function of warm dense electrons¹⁶ first *ab initio* data for the plasmon dispersion $\omega(q)$, accurate parametrization¹⁷
- Direct comparison with state of the art Thomson scattering (XRTS) experiments possible
- QHD rigorously derived from Microscopic QHD (TDDFT), coefficients depend on excitation conditions ¹⁸ ⇒ systematic improvements possible, promising for large space and time scales in WDM
 - \Rightarrow Focus on linear and nolinear plasmons in real XRTS experiments
- Electronic correlations and correlation build up (thermalization, dynamical screening, Auger processes etc.) are captured by (Nonequilibrium) Green functions. Highly efficient new computational techniques available¹⁹

¹³T. Dornheim *et al.*, Phys. Reports (2018)

¹⁴S. Groth *et al.*, J. Chem. Phys. (2017); T. Dornheim *et al.*, Phys. Rev. E (2017)

¹⁵T. Dornheim et al., J. Chem. Phys. (2019)

¹⁶T. Dornheim *et al.*, Phys. Rev. Lett. (2018); P. Hamann *et al.*, Phys. Rev. B (2020), arXiv:2007.15471

¹⁷P. Hamann et al., Contrib. Plasma Phys. (2020), arXiv:2008.04605

¹⁸Zh. Moldabekov et al., Phys. Plasmas (2018); M. Bonitz et al., Phys. Plasmas (2019)

¹⁹M. Bonitz, "Quantum Kinetic Theory", 2nd ed. Springer 2016; N. Schlünzen et al., J. Phys. Cond. Matt. 32, 103001 (2020)

 $^{^{20}}$ http://www.theo-physik.uni-kiel.de/bonitz/index.html \Rightarrow Research \Rightarrow Publications, Talks