The Uniform Electron Gas at Warm Dense Matter Conditions

Tobias Dornheim, Simon Groth, and Michael Bonitz, Physics Reports 744, 1-86 (2018)

Institute of Theoretical Physics and Astrophysics Kiel University

Introduction: warm dense matter

Warm dense matter (WDM):

- Nearly classical ions
- Degenerate non-ideal electrons
- Coupling parameter:

$$r_s = rac{\overline{r}}{a_{\rm B}} \sim 0.1 \dots 10$$

Degeneracy parameter:

$$heta=k_{\rm B}T/E_{\rm F}\sim 0.1\dots 10$$

- Temperature, degeneracy and coupling effects equally important
 - \rightarrow No small parameters
 - \rightarrow Perturbation theory and ground-state approaches (DFT etc.) fail

Figure: T. Dornheim, S. Groth, and M. Bonitz, *Phys. Rep.* **744**, 1 (2018) (https://doi.org/10.1016/j.physrep.2018.04.001)

Improved ab initio simulations needed to capture all effects in WDM

The uniform electron gas - Coulomb interacting electrons in a uniform positive background

Ground state:

- Model description of metals
- Input for density functional theory (DFT)
- Accurate parametrization of XC-energy¹ for all r_s from ground state Monte Carlo data²
 → DFT simulations of real materials

Warm dense matter:

- Ground state DFT not sufficient³
 - \rightarrow Thermal DFT⁴
 - $\rightarrow \frac{\text{Requires finite-} T \text{ XC-functional}^3}{(\text{XC free energy } f_{xc})}$
- ► Finite-T XC-functional directly incorporated into
 - EOS models of astrophysical objects⁵
 - approximations in QHD⁶

Reliability of these approaches crucially depends on accurate parametrization of $f_{xc}(r_s, \theta)$

Figure: Relative importance of finite-*T* XC-functional³ (diagonal corresponds to $\theta \sim 0.5$)

¹ J.P. Perdew and A. Zunger, PRB 23, 5048 (1981) ² D.M. Ceperley and B. Alder, PRL 45, 566 (1980) ³V. Karasiev *et al.*, PRE 93, 063207 (2016) ⁴ N.D. Mermin, Phys. Rev 137, A1441 (1965) ⁵ A.Y. Potekhin and G. Chabrier, *A&A 550, A43* (2013) ⁶ D. Michta *et al.*, Contrib. Plasma Phys. 55 (2015)

Many parametrizations for f_{xc} based on different approximate approaches:

- Semi-analytical approaches by Ebeling¹
- Dielectric methods, e.g. Singwi-Tosi-Land-Sjölander² (STLS) and Vashista-Singwi³ (VS)
- Quantum-classical mappings, e.g. Perrot and Dharma-wardana⁴ (PDW)
- Most recent: Fit by Karasiev⁵ et al. (KSDT) to Restricted Path Integral Monte Carlo (RPIMC) data⁶

But: RPIMC invokes *fixed node approximation* \rightarrow induces **uncontrolled systematic errors**⁷

Accuracy of existing parametrizations for $f_{xc}(r_s, \theta)$ unclear

Ab initio description of the warm dense UEG highly needed

¹ W. Ebeling and H. Lehmann, Ann. Phys. **45**, (1988) ² S. Ichimaru, H. Iyetomi, and S. Tanaka, Phys. Rep. **149**, (1987) ³ T. Sjostrom and J. Dufty, PRB **88**, (2013) ⁴ F. Perrot and MWC Dharma-wardana, PRB **62**, (2000) ⁵ V.V. Karasiev *et al.*, PRL **112**, (2014) ⁶ E.W. Brown *et al.*, PRL **110**, (2013) ⁷ T. Schoof *et al.*, PRL **115**, (2015)

Path integral Monte Carlo (PIMC) simulation of the warm dense UEG

- Standard PIMC in warm dense regime severely hampered by *fermion sign problem*:
 - First results¹ by E. Brown, D. Ceperley et al. (2013) based on fixed node approximation (RPIMC)
 - Induces systematic errors of unknown magnitude
 - RPIMC limited to r_s ≥ 1

Our approach:

Avoid fermion sign problem by combining two novel exact and complementary QMC methods:

1. Configuration PIMC (CPIMC)^{2,3}

 \rightarrow Excels at high density $\mathit{r_s} \lesssim$ 1 and strong degeneracy

2. Permutation blocking PIMC (PB-PIMC)^{4,5}

 \rightarrow Extends standard PIMC towards stronger degeneracy

Exact ab initio simulations over broad range of parameters

¹ E.W. Brown *et al.*, PRL **110**, 146405 (2013)

² S. Groth *et al.*, Phys. Rev. B **93**, 085102 (2016)

⁴ T. Dornheim *et al.*, New J. Phys. **17**, 073017 (2015) ⁵ T. Dorn

³ T. Schoof *et al.*, Contrib. Plasma Phys. **55**, 136 (2015)

⁵ T. Dornheim *et al.*, J. Chem. Phys. **143**, 204101 (2015)

Results I: CPIMC for N = 33 spin-polarized electrons

Exchange-correlation energy $E_{xc} = E - E_0$ (E_0 : ideal energy)

T. Schoof, S. Groth, J. Vorberger, and M. Bonitz, PRL 115, 130402 (2015)

RPIMC: E.W. Brown *et al.*, PRL **110**, 146405 (2013) **DuBois:** ($\theta = 0.0625$) J.L. DuBois *et al.*, arXiv:1409.3262 (2014)

Results II: Combination of CPIMC and PB-PIMC

- **RPIMC** limited to $r_s \ge 1$
- CPIMC excels at high density
- **PB-PIMC** applicable at $\theta \gtrsim 0.5$

 $\begin{array}{l} \mbox{Combination}^1 \mbox{ yields exact results over} \\ \mbox{entire density range down to } \theta \sim 0.5 \end{array}$

- Also applies to the unpolarized UEG²
- Our results confirmed by recent DMQMC simulations³

UEG well understood⁴ for finite N

How to extend the simulations to the thermodynamic limit $(N \rightarrow \infty)$???

¹S. Groth et al., Phys. Rev. B 93, 085102 (2016) ²T. Dornheim et al., Phys. Rev. B 93, 205134 (2016)

³F.D. Malone *et al.*, Phys. Rev. Lett. **117**, 115701 (2016)

⁴T. Dornheim et al., Phys. Plasmas 24, 056303 (2017)

Results III: Extension to thermodynamic limit¹

- QMC results are afflicted with finite-size error $\Delta V(N)$ (exceeding 20%)
- Extrapolation and previous finite-size² corrections are unreliable
- ▶ Solution: Combine QMC data for S(k) with long-range behavior from RPA, STLS [exact for $S(k \rightarrow 0)$]

Improved finite-size correction for all WDM parameters!

$$\nu = \frac{V_N}{N} + \Delta V(N)$$

¹ ΔSpline: T. Dornheim *et al.*, PRL 117, 156403 (2016) ² ΔBCDC: E.W. Brown *et al.*, PRL 110, (2013)

Results IV: Extension to ground state

▶ With our two novel quantum Monte-Carlo (QMC) methods¹⁻⁴ and improved FSC⁵ we

Obtained the first <u>unbiased</u> QMC data⁵ for the potential energy of the UEG over the entire r_s - θ -plane for $\theta \ge 0.5$ (restriction due to fermion sign problem)

- For $\theta = 0$ use exact ground state QMC data⁶ v_0
- ▶ For $0 < \theta < 0.25$ add (small) STLS⁷ temperature-correction to v_0

$$v(\theta) = v_0 + \left[v^{\text{STLS}}(\theta) - v^{\text{STLS}}(0)\right]$$

 \rightarrow Highly accurate ($\sim 0.3\%$) data set for $v(\theta, r_s)$ over entire WDM regime

Exchange-correlation free energy f_{xc} linked to potential energy via

$$2f_{xc}(r_s,\theta) + r_s \frac{\partial f_{xc}(r_s,\theta)}{\partial r_s}\Big|_{\theta} = v(r_s,\theta)$$

Use suitable parametrization for fxc and fit l.h.s. to r.h.s.

¹ T. Schoof et al., Contrib. Plasma Phys. 51, 687 (2011) ² T. Schoof et al., Contrib. Plasma Phys. 55, 136 (2015) ³ T. Dornheim et al., New J. Phys. 17, 073017 (2015)

⁴ T. Dornheim *et al.*, J. Chem. Phys. **143**, 204101 (2015), ⁵ T. Dornheim *et al.*, PRL **117**, 156403 (2016) ⁶ G.G. Spink *et al.*, Phys. Rev. B **88**, 085121 (2013)

⁷ S. Tanaka, S. Ichimaru, J. Phys. Soc. Jpn. 55, 2278 (1986)

Results V: Parametrization of $f_{xc}(r_s, \theta)$

S. Groth, T. Dornheim, T. Sjostrom, F.D. Malone, W.M.C. Foulkes, and M. Bonitz, PRL 119, 135001 (2017)

Construct finite-*T* **XC-functional:**

• Temperature-corrected ground state data smoothly connects to <u>exact</u> finite-T QMC data (over entire WDM regime) \rightarrow Smooth fit through all data points for $v(r_s, \theta)$

ightarrow Obtain highly accurate (\sim 0.3%) parametrization for f_{xc}

Comparison to other parametrizations reveals deviations of $\sim 5-12\%$ (depending on r_s and θ)

Results VI: Ab initio description of spin-polarization effects

S. Groth, T. Dornheim, T. Sjostrom, F.D. Malone, W.M.C. Foulkes, and M. Bonitz, PRL 119, 135001 (2017)

- ► DFT in local spin-density approximation requires $f_{xc}(r_s, \theta)$ at arbitrary $\xi = (N_{\uparrow} - N_{\downarrow})/(N_{\uparrow} + N_{\downarrow})$
- Extend parametrization $f_{xc}(r_s, \theta) \longrightarrow f_{xc}(r_s, \theta, \xi)$
- Extensive new QMC data for $\xi = 0, 1/3, 0.6$, and 1

 \rightarrow First *ab initio* ξ -dependency

No previous parametrization captures correct spin-dependency of f_{xc}

Summary:

- ► QMC at finite-T severely hampered by *fermion sign problem* (FSP) → Common solution: *fixed node approximation* (RPIMC)¹ → systematic errors exceed 10%²
- Our approach: circumvent FSP by combining two novel exact QMC methods^{3,4}
- ▶ Presented improved finite-size correction⁵ → Extrapolate finite-N QMC data to TD limit

First exact data of the warm dense UEG down to $\theta = 0.5^5$

• Combined ground state QMC data⁶ + STLS temperature-correction for $\theta \leq 0.25$

Accurate (~ 0.3%) and consistent parametrization⁷ of f_{xc} across entire r_s - θ - ξ -space for the UEG at WDM conditions ($r_s \leq 20, \theta \leq 8$)

First benchmarks of previous parametrizations⁷

- Systematic errors of 5 12% in WDM regime
- Unsatisfactory description of spin-dependency

¹E.W. Brown *et al.*, PRL **110**, 146405 (2013) ²T. Schoof *et al.*, PRL **115**, 130402 (2015) ³S. Groth *et al.*, PRB **93**, 085102 (2016) ⁴T. Dornheim *et al.*, Phys. Plasmas **24**, 056303 (2017) ⁵T. Dornheim *et al.*, PRL **117**, 156403 (2016) ⁶G.G. Spink *et al.*, PRB **88**, 085121 (2013) ⁷S. Groth *et al.*, PRL **119**, 135001 (2017)

Concluding remarks:

- Use our new f_{xc}-functional as input for
 - DFT calculations
 - Quantum hydrodynamics
 - Equation of state models of astrophysical objects
- Functional available online (C++, Fortran, Python) at https://github.com/agbonitz/xc_functional
- Implemented in libxc4.0.4: LDA_T_GDSMFB

Outlook:

- inhomogeneous UEG
 - \rightarrow Access to static local field correction
- ► ab initio results for imaginary-time correlation functions
 - \rightarrow Reconstruction of dynamic structure factor $S(\mathbf{q},\omega)^1$

¹T. Dornheim, PhD thesis, Kiel University 2018

Tobias Dornheim, Simon Groth, and Michael Bonitz (picture courtesy J. Siekmann)

Bonitz group homepage: http://www.theo-physik.uni-kiel.de/bonitz/

Acknowledgements:

We thank Matthew Foulkes, Fionne Malone, Tim Schoof, Travis Sjostrom and Jan Vorberger for fruitful collaboration on this project.