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Interaction of photons with correlated matter

Modern light sources
Photons on demand

1 Diagnostic tool

Photon energy
Pulse shape
Synchronized pulses
(Pump-probe)

2 Excitation tool

Laser amplitude
⇒ multiphoton processes
⇒ ionization
⇒ heating, compression

Correlated Matter
Properties determined by interactions

1 Correlated materials

correlated electrons in solids
low-dimensional systems, e.g.
graphene nanoribbons

2 New states of matter

highly excited solids, liquids
new electronic states, phases
dense plasmas (warm dense
matter)
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Motivation

Our main interest: correlated charged particle systems in and out of equilibrium

Methods:
Kinetic theory for plasmas (PIC-MCC), MD for surface processes
ab initio thermodynamics for warm dense matter (quantum Monte Carlo, avoid
sign problem, fUEG

xc with 0.3% accuracy)1, functional available in library libxc
nonequilibrium Green functions (NEGF) approach to inhomogeneous systems

Recent nonequilibrium applications with NEGF:
Time-resolved photoionization of few-electron atoms and molecules
Dynamics of finite Hubbard clusters following a confinement quench
Interaction of low-temperature plasmas with solids: ion stopping, electronic
correlation effects, doublon formation
Photoexcitation dynamics of graphene nanoribbons. Carrier multiplication

1Schoof et al. PRL 2015, Dornheim et al., PRL 2016, Groth et al., PRL 2017, Physics Reports 2018
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Outline

1 Nonequilibrium Green functions (NEGF) - Theory
Applications to atoms and molecules
Hubbard model. Strong correlations
Problems of NEGF dynamics: myth and reality

2 Comparison of NEGF to exact DMRG solutions

3 Testing NEGF against 2D cold atom experiments

4 Optical excitation of graphene nanoribbons

5 Ion stopping in correlated materials
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Time-dependent expectation values with NEGF
Wave function based approach (Schrödinger picture)

time-dependent Schrödinger operator (e.g. laser field): ÔS(t), Ĥ(t)
time-dependent N-body state |Ψ(t)〉 = U(t, t0)|Ψ0〉, initial state |Ψ0〉

Expectation value: 〈Ô〉(t) = 〈Ψ(t)|ÔS(t)|Ψ(t)〉
problem: TDCI prohibitively costly: “exponential wall”,
approximations: coupled clusters, MCTDHF, TD-RASCIa etc.

aHochstuhl, Bonitz, JCP 2011, PRA 2012, EPJST 2014

Heisenberg-Keldysh picture (Ψ t-independent)
N-particle density operator: ρ̂N =

∑
αWα|Ψ(α)〉〈Ψ(α)|

〈Ô〉(t) = 〈Ψ0|U(0, t)ÔS(t)U(t, 0)|Ψ0〉, nasty expression (pure state)

= Tr ρ̂N0 U(0, t)ÔS(t)U(t, 0), mixed state–even more nasty

=
∑
kl ôkl(z)Glk(z, z+) 1-particle objects, pleasant
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Failure of the Boltzmann/Balescu equation1
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f(r1,p1, t) = I(r1,p1, t),

I(r1,p1, t) =

∫
d3p2

∫
d3p̄1

∫
d3p̄2 P (p1,p2; p̄1, p̄2; t)

× {f(r1, p̄1, t)f(r1, p̄2, t)− f(r1,p1, t)f(r1,p2, t)} , (1)

P (p1,p2; p̄1, p̄2; t) =

∣∣∣∣ V (q)

ε(q, ω; t)

∣∣∣∣2 δ(p12 − p̄12)δ(E12 − Ē12)

q = |p1 − p̄1|, p12 = p1 + p2, ~ω = E1 − Ē1, Pauli blocking factors(1± f)omitted

• Equation (1): conserves quasi-particle energy, relaxes towards Fermi (Bose) function
• Equation (1): fails at short times, misses buildup of correlations, screening
⇒ unphysical fast relaxation dynamics ⇒ generalized quantum kinetic theory needed

1
M. Bonitz, Quantum Kinetic theory, Teubner 1998, 2nd ed.: Springer 2016
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Nonequilibrium Green functions

2nd quantization
Fock space F 3 |n1, n2 . . .〉 , F =

⊕
N0∈NF

N0 , FN0 ⊂ HN0

ĉi,ĉ†i creates/annihilates a particle in single-particle orbital φi
Spin accounted for by canonical (anti-)commutator relations[
ĉ

(†)
i , ĉ

(†)
j

]
∓

= 0,
[
ĉi, ĉ

†
j

]
∓

= δi,j

Hamiltonian: Ĥ(t) =
∑
k,m

h0
kmĉ

†
k ĉm︸ ︷︷ ︸

Ĥ0

+ 1
2
∑

k,l,m,n

wklmn ĉ
†
k ĉ
†
l ĉnĉm︸ ︷︷ ︸

Ŵ

+F̂ (t)

Particle interaction wklmn

Coulomb interaction
electronic correlations

Time-dependent excitation F̂ (t)
single-particle type
em field, quench, particles

M. Bonitz (Kiel University) Dynamics of correlated electrons ELI-ALPS, Szeged, July 2018 6 / 70



Keldysh Green functions (NEGF)

two times z, z′ ∈ C (“Keldysh contour”), arbitrary one-particle basis |φi〉

Gij(z, z′) = i
~

〈
T̂ C ĉi(z)ĉ†j(z′)

〉
average with ρN

Keldysh–Kadanoff–Baym equations (KBE) on C (2× 2 matrix):
∑
k

{
i~
∂

∂z
δik − hik(z)

}
Gkj(z, z

′) = δC(z, z′)δij − i~
∑
klm

∫
C

dz̄ wiklm(z+
, z̄)G(2)

lmjk
(z, z̄; z′

, z̄
+)

t0 tz1

z2 C

KBE: first equation of Martin–Schwinger
hierarchy for G,G(2) . . . G(n)

∫
C wG

(2) →
∫
C ΣG, Selfenergy

Nonequilibrium Diagram technique
Example: Hartree–Fock + Second
Born selfenergy
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Real-time Keldysh-Kadanoff-Baym equations

Contour Green function mapped to real-time matrix Green function

Gij =
(
GR
ij G<ij

0 GA
ij

) G<ij(t1, t2) = ∓i
〈
ĉ†j(t2)ĉi(t1)

〉
G>ij(t1, t2) = −i

〈
ĉi(t1)ĉ†j(t2)

〉

Propagators (spectral properties)

GR/A(t1, t2) = ±θ [±(t1 − t2)] {G>(t1, t2)−G<(t1, t2)}

Correlation functions G≷ (statistical properties) obey real-time KBE

[
i∂t1 − h0(t1)

]
G
<(t1, t2) =

∫
dt3 ΣR(t1, t3)G<(t3, t2) +

∫
dt3 Σ<(t1, t3)GA(t3, t2) ,

G
<(t1, t2)

[
−i∂t2 − h0(t2)

]
=

∫
dt3 GR(t1, t3)Σ<(t3, t2) +

∫
dt3 ΣA(t1, t3)G<(t3, t2)

M. Bonitz (Kiel University) Dynamics of correlated electrons ELI-ALPS, Szeged, July 2018 8 / 70



Information in the Nonequilibrium Green functions

Time-dependent single-particle operator expectation value

〈Ô〉(t) = ∓ i
∫
dx
[
o(x′t)G<(xt, x′t)

]
x=x′

Particle density

〈n̂(x, t)〉 = n(1) = ∓ iG<(1, 1)

Density matrix

ρ(x1, x
′
1, t) = ∓ iG<(1, 1′)

∣∣
t1=t′

1

Current density: 〈ĵ(1)〉 = ∓ i
[(

∇1
2i −

∇1′
2i +A(1)

)
G<(1, 1′)

]
1′=1

Interaction energy (two-particle observable, [Baym/Kadanoff])

〈V̂12〉(t) = ± i V4

∫
d~p

(2π~)3

{
(i ∂t − i ∂t′)− p2

m

}
G<(~p, t, t′)|t=t′
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Selfenergy approximations2

Hartree–Fock (HF, mean field):
∼ w1

Second Born (2B): ∼ w2

GW: ∞ bubble summation,
dynamical screening effects

particle-particle T -matrix (TPP):
∞ ladder sum in pp channel

electron-hole T -matrix (TEH):
∞ ladder sum in ph channel

FLEX (GW+TPP+TEH)

3rd order approx. (TOA): ∼ w3

Choice depends on coupling strength, density (filling)

2Conserving, nonequilibrium Σ(t, t′), applies for ultra-short to long times
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Numerical solution of the KBE

Full two-time solutions: Danielewicz, Schäfer, Köhler/Kwong,
Bonitz/Semkat/Balzer, Haug, Jahnke, van Leeuwen, Stefanucci, Verdozzi, Garny ...

1 Uncorrelated initial state (t→ −∞)
2 adiabatically slow switch-on of

interaction for t, t′ ≤ t0 [1-3]

ts tH t0

t

0.0

0.2

0.4

0.6

0.8

1.0

f
τ
,t

H

A
S

(t
)

τ = tH

τ = 1
2
tH

τ = 1
4
tH

f
τ,tH
AS (t) = exp

(
−

AτtH
t/ (2tH)

exp
(

BτtH
t/ (2tH)− 1

))
B
τ
tH

:=
tH

τ ln(2)
−

1
2
, A

τ
tH

:=
ln(2)

2
e

2Bτ
tH

3 solve KBE in t− t′ plane for G≷(t, t′)

[1] A. Rios et al., Ann. Phys. 326, 1274 (2011), [2] S. Hermanns et al., Phys. Scr. T151, 014036 (2012)
[3] M. Watanabe and W. P. Reinhardt, Phys. Rev. Lett. 65, 3301 (1990)
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Two-time simulations for macroscopic systems

1 perfect conservation of total energy
2 accurate short-time dynamics:

phase 1: correlation dynamics
2: relaxation of f(p), occupations

Example: electrons in dense
hydrogen, interaction quench [1],
extended to e-h plasmas [2]

3 accurate long-time behavior: spectral
functions A(q, ω), dyn. structure
factor S(q, ω) from real-time KBE
dynamics (via Fourier transform) [3]

4 extended to optical absorption,
double excitations [4] etc.

[1] MB and D. Semkat, PRE 1997, 1999, MB, Quantum Kinetic Theory, 2nd ed. Springer 2016

[3] N. Kwong and MB, PRL 84, 1768 (2000), [4] K. Balzer, S. Hermanns, MB, EPL 98, 67002 (2012)
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Outline

1 Nonequilibrium Green functions (NEGF) - Theory
Applications to atoms and molecules
Hubbard model. Strong correlations
Problems of NEGF dynamics: myth and reality

2 Comparison of NEGF to exact DMRG solutions

3 Testing NEGF against 2D cold atom experiments

4 Optical excitation of graphene nanoribbons

5 Ion stopping in correlated materials
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Inhomogeneous systems: small molecules

strong excitation and
ionization of atoms and
molecules [1]

Example: XUV-pulse exci-
tation of LiH (1d-model)

Goals: correlated electron
dynamics beyond Hartree-
Fock, including Auger
processes

[1] Balzer et al., PRA
(2010); van Leeuwen, Ste-
fanucci et al.
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Numerical challenges of NEGF calculations

Complicated structure of
interaction wklmn and selfenergy
Σ
Collision intergrals involve
integrations over whole past
CPU time ~N3

t , RAM ~N2
t

Typical computational parameters
Spatial basis size: Nb = 70
Time steps: Nt = 10000
RAM consumption: 2 TB
number of CPUs used: 2048
total computation time: 2-3 days

Solutions3

Finite-Element Discrete Variable Representation [PRA 81, 022510 (2010)]

Generalized Kadanoff–Baym ansatz [Phys. Scr. T151, 014036 (’12), JPCS 427, 012006 (’13)]

Adiabatic switch-on of interaction [Phys. Scr. T151, 014036 (’12)]

Parallelization [PRA 82, 033427 (2010)]

3K. Balzer, M. Bonitz, Lecture Notes in Phys. vol. 867 (2013)
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FEDV-Representation4

strong excitation and
ionization of atoms and
molecules: need to resolve
nucleus and large distances
Selfenergy in FEDVR
largely diagonal
accurate 1D results
Alternative approaches:
restricted active space and
embedding methods

4Balzer et al., PRA 81, 022510 (2010)
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Generalized Kadanoff-Baym-ansatz5 (GKBA)

reduce computational effort: propagation along diagonal
only (scaling T 3 −→ T 2)
rigorous derivation from reduced density operators [4]
conserves total energy [5]
reduces artificial damping problems [5]

reconstruct off-diagonal NEGF from their values on time diagonal:

G
≷
ss′ (t, t′) = ±

[
Gret
ss̄(t, t′)ρ≷s̄s′ (t′)− ρ≷ss̄(t)G

adv
s̄s′ (t, t′)

]
with ρ

≷
ss′ (t) = ±i~G≷

ss′ (t, t)

HF-GKBA: use Hartree-Fock-propagators for Gret/adv
ss′

G
ret/adv
ss′ (t, t′) = ∓iΘC

(
±[t− t′]

)
exp
(
− i
~

∫ t

t′
dt̄ hHF(t̄)

)∣∣∣∣
ss′

5P. Lipavský, V. Špička, and B. Velický, Phys. Rev. B 34, 6933 (1986),
[4] MB, Quantum Kinetic Theory, 2nd ed. Springer (2016)
[5] Hermanns, Schlünzen, MB, PRB 2014.
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The generalized Kadanoff-Baym ansatz:
Conserving properties

HF-GKBA: same conservation properties as two-time approximation6

damped propagators, local approximation violate total energy conservation7

Generalization of the energy conservation theorem of Baym and Kadanoff (relaxed
conditions)8

Extensions: Gauge invariant generalization of the GKBA to strong electro-magnetic
fields, derivation of strong-field quantum kinetic equations containing inverse
bremsstrahlung heating and multipohoton absorption9 and numerical solutions10

6G. Baym and L.P. Kadanoff, Phys. Rev. 124, 287 (1961)
7M. Bonitz, D. Semkat, H. Haug, Eur. Phys. J. B (1999)
8S. Hermanns, N. Schlünzen, and M. Bonitz, Phys. Rev. B (2014)
9D. Kremp, Th. Bornath, M. Bonitz, and M. Schlanges, Phys. Rev. E (1999)
10H. Haberland, M. Bonitz, and D. Kremp, Phys. Rev. E (2001)
M. Bonitz (Kiel University) Dynamics of correlated electrons ELI-ALPS, Szeged, July 2018 18 / 70



Outline

1 Nonequilibrium Green functions (NEGF) - Theory
Applications to atoms and molecules
Hubbard model. Strong correlations
Problems of NEGF dynamics: myth and reality

2 Comparison of NEGF to exact DMRG solutions
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The Hubbard model. Correlated materials

⇒

Ĥ(t) = J
∑
ij, α hij ĉ

†
iαĉjα + U

∑
i ĉ
†
i↑ĉi↑ĉ

†
i↓ĉi↓ +

∑
ij,αβ fij,αβ(t) ĉ†iαĉjβ

hij = −δ〈i, j〉 and δ〈i, j〉 = 1, if (i, j) nearest neighbors, δ〈i, j〉 = 0 otherwise;
on-site repulsion (U > 0) or attraction (U < 0), U favors doublons (correlations)

• propagate NEGF in Hubbard basis, finite inhomogeneous system
• f : arbitrary 1-particle hamiltonian: laser field, quench, particles etc.
• Selfenergies given by sparse matrices
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Strong coupling: T-matrix selfenergy

- to access strong coupling: use T-matrix selfenergy (sum entire Born series)
- for Hubbard model simplification15

Σcor,↑(↓)
ss′ (z, z′) = i~T

ss′ (z, z′)G↓(↑)s′s
(z′, z) ,

T
ss′ (z, z′) = −i~U2 G↑

ss′ (z, z′)G↓ss′ (z, z′)

+ i~U
∫
C

dz̄ G↑
ss̄

(z, z̄)G↓
ss̄

(z, z̄)T
s̄s′ (z̄, z′) .

· · ·

- T-matrix: well defined and conserving strong coupling approximation
- limitation: low density (binary collision approximation)
- numerical optimization: large systems, long propagation feasible16
- no free parameters

15P. von Friesen, C. Verdozzi, and C.O. Almbladh, Phys. Rev. B 82, 155108 (2010)
16M. Bonitz, N. Schlünzen, and S. Hermanns, Contrib. Plasma Phys. 55, 152 (2015)
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Ground state results at half-filling
dispersion of 40-site Hubbard chain (2B/SOA):
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band structure for the
honeycomb lattice:

J.-P. Joost, N. Schlünzen, and M. Bonitz, to be published
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Density in quasi-momentum space

1D:
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momentum distribution

nk(t) = 1
Ns

∑
ss′

e−ik(s−s′)nss′ (t),

positive U : occupation of large energies
negative U : occupation of small energies
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Dispersion relation

1D:
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A(ω,k) = i~
NsNt

∑
ss′tt′

e−ik(s−s′)e−iω(t−t′) [G>ss′ (t, t′)−G<ss′ (t, t′)
]

single-particle dspersion from peaks of A
upper band: doublons
doublon dispersion shifts up ∼ U
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Properties of the selfconsistent KBE11

small Hubbard clusters. Strong external excitation (Right Fig.: Ns = 6, n = 1/6, U = 2, w0 = 5)
⇒ artificial damping of many-body approximations. Best behavior: T-matrix

11see also: M. P. von Friesen, C. Verdozzi, and C.-O. Almbladh, Phys. Rev. Lett. 103, 176404 (2009)
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Long-time behavior of two-time KBE and GKBA

Time-dependent excitation

t < 0 t = 0 t > 0
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KBE with all many-body approximations show unphysical damping effects
HF-GKBA: reduction or even removal of damping (small clusters)
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Adrian Stan’s claims12

1 Long propagation:
homogeneous density (HDD)
state is reached (“global
attractor”).

2 Unphysical damping occurs
also for weak excitation
(linear response regime).

3 Damping occurs also in
uncorrelated systems (Hartree
selfenergies), although
without HDD (right fig.).

⇒ Previous studies “overlooked the physics” (too short)
⇒ KBE are practically useless (negligible range of validity)

12A. Stan, Phys. Rev. B, Rapid Comm. 93, 041103 (2016) [Editors’ Choice]
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Test of Stan’s claims (1)13

Hubbard dimer in second Born approx. Hartree(-Fock) dynamics
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converged results (time step) show:

no HDD state is reached, even for
strong excitation

no damping occurs in uncorrelated
systems

13N. Schlünzen, J.-Ph. Joost, and M. Bonitz, Phys. Rev. B 93, 041103 (2017)
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Test of Stan’s claims (2)14

A careful convergence analysis reveals:

damping behavior and emergence of HDD state are
artefact of

too large time step in collision integral
integration rule of too low order

accompanied by dramatic violation of total energy
conservation
correlations in the system completely vanish, once
the HHD is reached

⇒ Unwarrented claims and generalizations
(from Hubbard dimer).

⇒ All statements are wrong,
numerical artefacts.

14N. Schlünzen, J.-Ph. Joost, and M. Bonitz, Phys. Rev. B 93, 041103 (2017)
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Benchmarks of NEGF against DMRG (1D)1

Expansion dynamics
large 1D system (Ns = 65)
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confirm accurate asymptotic expansion velocities
from NEGF T-matrix (within error bars)
2-time result (TMA) misses transient oscillations
exact result bracketed by T-matrix and GKBA+T

artificial damping2,3 in 2-time
solution for strongly excited,
finite systems
removed by GKBA

1N. Schlünzen, J.-P. Joost, F. Heidrich-Meisner, and M. Bonitz, Phys. Rev. B 95, 165139 (2017)
2M. P. von Friesen, C. Verdozzi, and C.-O. Almbladh, Phys. Rev. Lett. 103, 176404 (2009)
3N. Schlünzen, J.-P. Joost, and M. Bonitz, PRB 96, 117101 (2017)
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Benchmarks of NEGF against DMRG (1D)15

Initial state:
charge density wave
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excellent agreement for densities, energies etc.
sensitive observable: total double occupation
very good quality transients of NEGF, up to U ' bandwidth
accurate long-time behavior of GKBA+T-matrix (not shown)

15N. Schlünzen, J.-P. Joost, F. Heidrich-Meisner, and M. Bonitz, Phys. Rev. B 95, 165139 (2017)
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Complementarity of NEGF and DMRG16

DMRG: advantageous for large coupling,
simulation duration rapidly decreases with
system size L

NEGF: advantageous at small to
moderate coupling, good accuracy

NEGF have predictive capability:
- large systems
- long simulations
- any dimensionality

16N. Schlünzen, J.-P. Joost, F. Heidrich-Meisner, and M. Bonitz, Phys. Rev. B 95, 165139 (2017)
M. Bonitz (Kiel University) Dynamics of correlated electrons ELI-ALPS, Szeged, July 2018 33 / 70



Summary: properties of the KBE

Advantages:
perfect conservation of total energy17 and particle number
time reversible (unitary) dynamics
accurate description of dynamics far from equilibrium
convenient and easy way to implement various many-body approximations

Problems and solutions for strongly excited small systems:
full two-time KBE show unphysical damping dynamics18:
(⇒ self-consistency leads to diagrams of infinite order that would cancel in exact case)

get rid of damping by reducing the degree of self-consistency via HF-GKBA:
- “reconstruction” of two-time Green functions eliminates infinite order iterations
- Retains conserving behavior, additional class of conserving approximations19

large systems: two-time and one-time approximations of comparable accuracy

17“Conserving approximations” by Baym and Kadanoff
18M. P. von Friesen, C. Verdozzi, and C.-O. Almbladh, Phys. Rev. B 82, 155108 (2010)
19S. Hermanns, N. Schlünzen, and M. Bonitz, Phys. Rev. B 90, 125111 (2014)
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Recent computational breakthroughs

Improved selfenergies:
p-p and p-h T-matrix, GW, third order

Higher order numerical schemes:
Higher order integration of KBE
Higher order adaptive integration of collision integrals

Code optimization for graphics cards (GPU)

Result for lattice systems:
Increase of system size and propagation duration by 2...3 orders (finite systems
with Ns ∼ 200, T ∼ 200/J , reach TD limit)
work of Sebastian Hermanns, Niclas Schlünzen, Jan Philip Joost, Christopher Hinz
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Time-resolved expansion of fermionic atoms
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Time-resolved expansion of fermionic atoms (cont.)

- 2D optical lattice, ca. 200 000 atoms
- atom-atom interaction strength tuned (via Feshbach resonance)
- t<0: confinement in trap center, doubly occupied lattice sites
- t=0: confinement rapidly removed (“quench”):

system far from equilibrium ⇒ start of diffusion, equilibration

- at strong coupling: center (“core”) does not expand due to doublon formation
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Measured “Core expansion velocity”

- Measured HWHM of density distribution in Hubbard lattice20
- Strongly correlated fermions. Core “shrinks” for Hubbard-|U | & 3
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20U. Schneider et al., Nature Physics 8, 213-218 (2012)
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Theoretical model used by Schneider et al.21

Semiclassical Boltzmann equation in relaxation time approximation:

General problems of Boltzmann-type (Markovian) equations:
incorrect asymptotic state, conservation laws
isolated dynamics: expect reversibility

Additional limitations of RTA:
local TD equilibrium assumption questionable (Heisenberg)
no quantum dynamics effects
linear response assumption questionable

⇒ cannot describe ultrafast quantum dynamics of correlated fermions

21U. Schneider et al., Nature Physics 8, 213-218 (2012)
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A challenge for quantum many-body dynamics...

Quote from Schneider et al., (p. 216):

“Although the expansion can be modelled in 1D (...) using DMRG22 methods (...), so
far no methods are available to calculate the dynamics quantum-mechanically in higher
dimensions”

Similar claims in many experimental papers, for example:
“Quantengase unter dem Mikroskop”, M. Greiner, I. Bloch, Phys. Journal Okt. 2015:

“Ein anderes Gebiet, in dem Experimente schon heute leistungsfähiger als
Computersimulationen sind, ist die Untersuchung von Nichtgleichgewichtsprozessen in
Quanten-Vielteilchensystemen ... bisherige Algorithmen auf eindimensionale Systeme
beschränkt sind und meistens nur die Dynamik für sehr kurze Zeiten berechnen können.”

Not exactly true...23.

22Density Matrix Renormalization Group
23Nonequilibrium Green Functions (NEGF) exist for 50 years...
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Fermion expansion and doublon decay
- t = 0: central array of doubly occupied sites.
- confinement quench initiates expansion.
- measured in cold atom experiments (Schneider et al.)
- expansion speed, dynamics time-dependent, depend on

dimensionality D, interaction strength U , particle number N
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Time evolution of the expansion velocity24
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Diffusion quantities
mean squared displacement

R2(t) = 1
N

∑
s

ns(t)[s− s0]2

s0: center of the system
rescaled cloud diameter
d(t) =

√
R2(t)−R2(0)

expansion velocity vexp(t) = d
dtd(t)

asymptotic expansion velocity

v∞exp = lim
t→∞

vexp(t)

example: N = 58 doubly occupied sites in 2D
perform extrapolation with respect to N
similar procedure for “core expansion velocity” (∼ FWHM)

24N. Schlünzen, S. Hermanns, M. Bonitz, and C. Verdozzi, Phys. Rev. B 93, 035107 (2016)
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NEGF result25 vs. experiment and RTA26
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- agreement with measurements for the final stage of the dynamics
- in addition: NEGF predict early stages, correlation dynamics etc.

252-time T-matrix, N. Schlünzen, S. Hermanns, M. Bonitz, and C. Verdozzi, Phys. Rev. B 93, 035107 (2016)
26U. Schneider et al., Nature Physics 8, 213-218 (2012)
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Site-resolved evolution of correlations
double occupation n↑↓s
local entanglement entropy Ss

pair correlation function δn↑↓s = n↑↓s − n↑sn↓s
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insights into the early expansion phase
measurable in quantum atom microscopes
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Graphene Nanoribbons (GNRs)

“In spite of this interest, the field of GNRs is still in its infancy and little is known about
their photophysical properties, especially in the non-equilibrium regime.”

G. Soavi et al., Nature Communications 7, 2016

“Quasi-one-dimensional electron graphene nanoribbons
with tuneable electron densities and band gaps should
exhibit novel phenomena driven by strong many-body
correlations.”

D. Neilson et al., Journal of Physics: Conf. Series 702, 2016

A. Kimouche et al., Nature Communications 6, 2015
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Laser Excitation and Carrier Multiplication

interesting e-e correlations effects:
Auger processes, carrier multiplication
(CM) after pump
Number of conduction band electrons
(red), energy per electron (blue)

I. Gierz, A. Cavalleri et al., PRL 115, 086803 (2015)
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Theoretical Description of GNRs

Theory has to describe:
finite systems of up to 100 carbon atoms
2 dimensional geometry
moderate electron correlations
nonequilibrium long time dynamics

Existing theories fail:
CI
DMRG
DMFT
TDDFT

Our solution:
map graphene onto an extended Hubbard model (small but accurate basis)
use NEGF approach for field-matter coupling and correlation dynamics,
dipole approximation: HL(t) =

∑
i
−eEL(t)ri
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Time-resolved spectral properties

Local spectral function at site s (G contains pump pulse information)

Ass(ω) = i~
∫

dt dt′ e−iω(t−t′) [G>ss(t, t′)−G<ss(t, t′)
]

Full energy dispersion

A(ω,k) = i~
Ns

∑
ss′

e−ik(s−s′)
∫

dtdt′ e−iω(t−t′) [G>ss′ (t, t′)−G<ss′ (t, t′)
]

Time resolved photoemission spectrum

A<(ω, T ) = −i~
∑

s

∫
dtdt′ S(t− T )S(t′ − T )e−iω(t−t′)G<ss(t, t′)

S(t) = 1
σ
√

2π
exp
(
− t2

2σ2

)
←− “probe pulse′′

M. Eckstein and M. Kollar, Phys. Rev. B 78, 245113 (2008)
G. Stefanucci and R. v. Leeuwen, Nonequilibrium many-body theory of quantum systems: a modern introduction,

Cambridge University Press, Cambridge, 2013
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Extended Hubbard Model

Ĥkin = J
∑

ss′, α tss′ ĉ†sαĉs′α

hopping up to 3rd nearest neighbor:

tss′ =


t1 if (s, s′) is 1NN
t2 if (s, s′) is 2NN
t3 if (s, s′) is 3NN
0 else

orbital overlap included through overlap matrix S :
H → U†HU with U = S−1/2 (Löwdin)

Structure Set J/eV t1/J t2/J t3/J s1 s2 s3

2D
Graphene

1NN 2.7 1 - - - - -

3NN
(Reich2002) 2.97 1 0.025 0.111 0.073 0.018 0.026

Graphene
ribbons

3NN
(Tran2017) 2.756 1 0.026 0.138 0.093 0.079 0.070
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Ground State Results for Graphene

finite
sampling

discrete sampling of the first BZ due to finite system size

V.-T. Tran et al., AIP Advances, 7, 075212 (2017)
Ns = 100
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Ground State Results for Graphene

comparison between NEGF (colormap) and DFT / GW (lines)
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J = 2.756 eV

S. Wang et al.,
Nat. Commun. 7, 2016

it is well known that GW shows larger gap than DFT Ns = 112
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Ground State Results for Graphene

comparison between NEGF (colormap) and DFT / GW (lines)
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gap opening can be reproduced with GWA and U = 3.5J Ns = 112
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Carrier Multiplication during laser excitation

scattering processes due to Coulomb
interaction:

impact excitation (IE)
Auger recombination (AR)

IE leads to carrier multiplication (CM) in
the conduction band (CB)

Laser excitation
dipole approximation
Upot = − ~ELaser · ~x
ELaser = E0 sin(ω0(t− t0)) ·

exp
(
− (t−t0)2

2σ2

)
ω0 = (1.55− 1.85)J
σ = 4.35J−1
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Carrier Multiplication - Setups

Ns = 20 Ns = 24 Ns = 30

Polarization: Selfenergy: SOA
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Carrier Multiplication SOA, U = 3.5J , E0 = 0.1
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conduction band density: NCB =
∫∞

0 A<(ω) dω, energy: ECB =
∫∞

0 ωA<(ω) dω
CB occupancy and energy show IE-like behavior, for Ns = 20 and Ns = 30
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Carrier Multiplication SOA, U = 3.5J , E0 = 0.1
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ω0 > 2Egap, for Ns = 20 and Ns = 30 ω0 = 1.85J

ω0 < 2Egap, for Ns = 24 M.Gabor, Acc. Chem. Res., 46, 1348–1357 (2013)
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Carrier Multiplication Ns = 20, U = 3.5J , E0 = 0.1
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SOA and GWA show same general trend (SOA: smaller gap → stronger excitation)
HF shows opposite effect (recombination instead of excitation),
Joost, Schlünzen, and MB, to be published
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Laser-induced band structure dynamics
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Ion stopping in strongly correlated materials28

example: finite graphene flake (use 2D honeycomb lattice of size L)

x

y

(0,0)•
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L=24

L=54

a0

U
J

Wii

He = −J
∑
〈i,j〉,σ

c†iσcjσ + U
∑
i

(ni↑ − 1
2 )(ni↓ − 1

2 )

+
∑
i,σ

Wi(t)c†iσciσ with Wi(t) = − e2

4πε0
Zp

|rp(t)−Ri|

simple projectile (proton, α), treated classically [Zp, rp(t), Ehrenfest dynamics]
parameters27: a0 = 1.42 Å, J = 2.8 eV, rp(t)/a0 = {−1/6,−

√
3/3,−z(t)}

27TDDFT: Zhao et al., J. Phys.: Cond.Matt. 27, 025401 (2015)
28K. Balzer, N. Schlünzen, and M. Bonitz, Phys. Rev. B 94, 245118 (2016)
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Proton stopping. U/T0 = 4, L = 54

Top: proton energy change. Uncorrelated (black) vs. correlated (red,blue)
Bottom: electron density (4 sites adjacent to projectile)

(A)/(B) correspond to different initial states
Mean field approximation (black) not sufficient
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Ion stopping: Photoemission spectrum
NEGF description gives access to time-resolved photoemission spectra

Ii(ω, tp) = −i
∫

dt
∫

dt′ s(t− tp)s(t′ − tp)eiω(t−t′)G<iiσ(t, t′)

s(t) =
1

τ
√

2π
e−t

2/(2τ2)

energy loss of ion causes occupation of upper Hubbard band
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Ion energy loss: performance of NEGF29

Relevance of correlation effects Application to graphene

modified hopping amplitude to account
for influence on the electron mobility:
J〈i,j〉(t) = −J + γ

2 (Wi(t) +Wj(t))

parameters: a0 = 1.42 Å, U/J = 1.6,
J = 3.15 eV, γ = 0.55

29K. Balzer, N. Schlünzen, and M. Bonitz, Phys. Rev. B 94, 245118 (2016)
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Doublon production due to ion stopping30

exact diagonalization
parameters: 2D
cluster, N = 12
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Doublon production: analytical model31

Dimer model.
t-dependent exact
diagonalization,
Gaussian model W (t),
width σ ∼ v
Doublon production
probability (Landau-
Zener model):

PE0→EU = 2p(1− p)

p = exp
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Doublon production due to multiple ions 32

sequence of 20
equidistant kicks on
site 1, L = 8.
doublon distribution
becomes homogeneous
(c): Spectrum
converges to
symmetric form,
S(−E) = S(E),
at half filling
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Conclusions34

2D Graphene clusters, nanoribbons: promising electronic and optical properties
due to correlations: ion stopping, carrier multiplication, photon sidebands
GNR will be accessible with intense light sources (ARPES)
NEGF well suited to describe nonequilibrium dynamics in correlated finite
(inhomog.) systems, quantitatively reliable, predictive power
controlled choice of selfenergy: dictated by filling and interaction strength,
presently accurate up to U ' bandwidth
2 independent approximation schemes: 2-time and 1-time (GKBA). Exact result,
typically, enclosed between both
NEGF not restricted by geometry, dimensionality or ensemble. Approximately cubic
scaling with NB , t
Needed for realistic materials: combination with DFT (e.g. Yambo code of
Marini), hybrid schemes (e.g. DMFT)

34M. Bonitz, Quantum Kinetic Theory, 2nd ed. Springer 2016
K. Balzer, M. Bonitz, Nonequilibrium Green Functions Approach to Inhomogeneous systems, Springer 2013
www.itap.uni-kiel.de/theo-physik/bonitz
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Beyond lattice models: Ab initio NEGF28

use Kohn-Sham basis as input for NEGF
in collaboration with A. Marini, using Yambo

28e.g. Pedro Miguel M. C. de Melo and Andrea Marini Phys. Rev. B 93, 155102 (2016)
M. Bonitz (Kiel University) Correlated Fermions Lausanne, April 2016 46 / 48



Band gap vs. width of AGNRs

AGNRs can be divided into three families: Na = 3p, Na = 3p+ 1 and
Na = 3p+ 2, where Na is their width (number of dimer lines) and p is an integer
(a) tight-binding: large gap for Na = 3p and Na = 3p+ 1, no gap for Na = 3p+ 2
(b) LDA: Na = 3p+ 2 ribbons also have a small band gap
in general: band gap ∼ N−1

a

Y.-W. Son et al., PRL 97, 216803 (2006)
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