Tobias Dornheim, Simon Groth and Michael Bonitz

Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Germany

Christian-Albrechts-Universität zu Kiel

38th International Workshop on High Energy Density Physics with Intense Ion and Laser Beams

イロト イロト イヨト

Motivation

► Warm dense matter: $r_s = \overline{r}/a_B \sim 1$, $\theta = k_B T/E_F \sim 1$ ⇒ nontrivial interplay of coupling, temperature and quantum degeneracy effects

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 \rightarrow Quantum Monte Carlo (QMC) is the best option!

Motivation

- Warm dense matter: r_s = r̄/a_B ~ 1, θ = k_BT/E_F ~ 1⇒ nontrivial interplay of coupling, temperature and quantum degeneracy effects → Quantum Monte Carlo (QMC) is the best option!
- Uniform electron gas (UEG): Interacting electrons with neutralizing background uniform electron gas (DEG): Interacting electrons with neutralizing background

▲□▶▲□▶▲□▶▲□▶ □ のQ@

 \rightarrow Important as input for, e.g., DFT (XC free energy $\mathit{f}_{xc})$

Motivation

- Warm dense matter: r_s = r̄/a_B ~ 1, θ = k_BT/E_F ~ 1⇒ nontrivial interplay of coupling, temperature and quantum degeneracy effects → Quantum Monte Carlo (QMC) is the best option!
- ▶ Uniform electron gas (UEG): Interacting electrons with neutralizing background \rightarrow Important as input for, e.g., DFT (XC free energy f_{xc})

 Standard PIMC severely hampered by the Fermion Sign Problem

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Motivation

- Warm dense matter: r_s = r̄/a_B ~ 1, θ = k_BT/E_F ~ 1⇒ nontrivial interplay of coupling, temperature and quantum degeneracy effects → Quantum Monte Carlo (QMC) is the best option!
- ▶ Uniform electron gas (UEG): Interacting electrons with neutralizing background \rightarrow Important as input for, e.g., DFT (XC free energy f_{xc})

- Standard PIMC severely hampered by the Fermion Sign Problem
- Our solution: Combination of two complementary QMC methods
 - \rightarrow Permutation Blocking PIMC (PB-PIMC)
 - \rightarrow Configuration PIMC (CPIMC)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

1. Theory of Fermionic QMC Simulations

- \rightarrow The Fermion Sign Problem
- \rightarrow Permutation Blocking PIMC
- \rightarrow Configuration PIMC

<ロ> <部> <部> <き> <き> <き> <き> <き

- Motivation

Outline

1. Theory of Fermionic QMC Simulations

- \rightarrow The Fermion Sign Problem
- \rightarrow Permutation Blocking PIMC
- \rightarrow Configuration PIMC
- 2. The Uniform Electron Gas

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Outline

1. Theory of Fermionic QMC Simulations

- \rightarrow The Fermion Sign Problem
- \rightarrow Permutation Blocking PIMC
- \rightarrow Configuration PIMC
- 2. The Uniform Electron Gas
- 3. The Inhomogeneous Electron Gas: Static Density Response Functions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Motivation

Outline

1. Theory of Fermionic QMC Simulations

- \rightarrow The Fermion Sign Problem
- \rightarrow Permutation Blocking PIMC
- \rightarrow Configuration PIMC
- 2. The Uniform Electron Gas
- 3. The Inhomogeneous Electron Gas: Static Density Response Functions
- Reconstruction of the Dynamic Structure Factor S(q, ω) from QMC data

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ●臣 = の々で

Theory of PIMC⁸

• Canonical partition function for *N* spin-polarized fermions in coordinate space, $\beta = 1/k_{\rm B}T$ and $\mathbf{R} = {\mathbf{r}_1, \dots, \mathbf{r}_N}$

$$Z = \frac{1}{N!} \sum_{\sigma \in \mathcal{S}_N} \operatorname{sgn}(\sigma) \int d\mathbf{R} \, \left\langle \mathbf{R} \right| e^{-\beta \hat{H}} \left| \hat{\pi}_{\sigma} \mathbf{R} \right\rangle$$

 Express the density matrix as a path over P sets of particle coordinates at P times higher temperature

$$Z = \frac{1}{N!} \sum_{\sigma \in \mathcal{S}_N} \operatorname{sgn}(\sigma) \int d\mathbf{X} \, \left\langle \mathbf{R}_0 \right| e^{-\epsilon \hat{H}} \left| \mathbf{R}_1 \right\rangle \dots \left\langle \mathbf{R}_{P-1} \right| e^{-\epsilon \hat{H}} \left| \hat{\pi}_{\sigma} \mathbf{R}_0 \right\rangle$$

- Primitive factorization $e^{-\epsilon \hat{H}} \approx e^{-\epsilon \hat{V}} e^{-\epsilon \hat{V}}$, $\epsilon = \beta/P$, with the commutator error $\mathcal{O}(\epsilon^2)$
- ► The partition function is the sum over all closed paths X = {R₀,..., R_{P-1}} in imaginary time, with P "time slices"

$$Z = \sum_{\mathbf{X}} W(\mathbf{X})$$
, $W(\mathbf{X})$: configuration weight of path \mathbf{X}

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

⁸D. Ceperley, Rev. Mod. Phys. 67, 279 (1995)

- Path integral Monte Carlo

Fermion Sign Problem of PIMC

- Sample all permutations/ exchange cycles
- For every exchange, the sign of W(X) changes
- W(X) cannot be interpreted as a probability distribution

 \Rightarrow Calculate fermionic observables using the Metropolis algorithm⁹ via

$$\langle O \rangle_{\mathsf{f}} = \frac{\langle OS \rangle^{'}}{\langle S \rangle^{'}}, \quad Z^{'} = \int \mathsf{d}\mathbf{X} |W(\mathbf{X})|, \quad \langle S \rangle^{'} = \frac{1}{Z^{'}} \int \mathsf{d}\mathbf{X} |W(\mathbf{X})| \mathsf{sign}(\mathbf{X}) = e^{-\beta N(f-f')}$$

 \Rightarrow The statistical error increases exponentially with N and β

$$\Delta O \propto rac{1}{\left< S \right>'} \propto e^{eta N(f-f')}$$

⁹N. Metropolis et al., J. Chem. Phys. 21, 1087 (1953)

- Permutation blocking path integral Monte Carlo

Idea of Permutation Blocking PIMC¹²

- Blocking: Combine positive with negative terms to perform the cancellation (at least partly) analytically
- Use antisymmetric propagators (determinants)^{10,11} to combine positive and negative permutations into a single configuration weight ⇒ permutation blocking
- With increasing number of propagators *P*, the effect of the blocking decreases \Rightarrow Use higher order factorization of $e^{-\epsilon \hat{H}}$

¹⁰ M. Takahashi and M. Imada, J. Phys. Soc. Jpn. 53, 963-974 (1984)

¹¹ A.P. Lyubartsev, J. Phys. A: Math. Gen. 38, 6659 (2005)

¹² T. Dornheim et al., New J. Phys. 17, 073017 (2015)

- Configuration path integral Monte Carlo

Configuration PIMC

<u>Basic idea:</u>^{13, 14} Use antisymmetric states (i.e., Slater determinants)

$$\langle O \rangle_f = \mathsf{Tr}\left(\hat{O}\hat{
ho}^-
ight) = \mathsf{Tr}^-\left(\hat{O}\hat{
ho}
ight)$$

► Hamiltonian (arbitrary one particle basis {|i⟩})

$$\hat{H} = \sum_{i,j} h_{ij} \hat{a}^{\dagger}_i \hat{a}_j + \sum_{i < j,k < l} w^-_{ijkl} \hat{a}^{\dagger}_i \hat{a}^{\dagger}_j \hat{a}_l \hat{a}_k$$

- Split Hamiltonian into diagonal and off-diagonal part:¹⁵ $\hat{H} = \hat{D} + \hat{Y}$
- Switch to interaction picture in imaginary time with respect to \hat{D}

$$e^{-\beta\hat{H}} = e^{-\beta\hat{D}}\hat{T}_{\tau}e^{-\int_{0}^{\beta}\hat{Y}(\tau)d\tau} \quad \text{with} \quad \hat{Y}(\tau) = e^{\tau\hat{D}}\hat{Y}e^{-\tau\hat{D}}, \ \tau \in (0,\beta)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

¹³ T. Schoof et al., Contrib. Plasma Phys. 51, 687-697 (2011)

¹⁴ T. Schoof et al., Phys. Rev. Lett. **115**, 130402 (2015)

¹⁵ N.V. Prokof'ev, B.V. Svistunov and I.S. Tupitsyn, JETP Lett., 64, 911 (1996)

- Configuration path integral Monte Carlo

CPIMC - Partition function

$$Z_{CP} = \sum_{\substack{K=0\\K\neq 1}}^{\infty} \sum_{\{n\}} \sum_{s_1} \dots \sum_{s_{K-1}} \int_0^\beta d\tau_1 \int_{\tau_1}^\beta d\tau_2 \dots \int_{\tau_{K-1}}^\beta d\tau_K (-1)^K \exp\left\{-\sum_{i=0}^K \frac{D_{\{n^{(i)}\}}}{(\tau_{i+1} - \tau_i)}\right\} \prod_{i=1}^K Y_{\{n^{(i-1)}\},\{n^{(i)}\}}(s_i) = \sum_{C_{CP}}^f W(c_{CP})$$

 \Rightarrow Generate all closed paths $c_{CP} = \{(K), \{n\}, \tau_1, \dots, \tau_K, s_1, \dots, s_{K-1}\}$ acc. to the configuration weight $W(c_{CP})$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

- Density dependence of N = 33 spin-polarized electrons¹⁶
- Exchange-correlation (XC) energy: $E_{xc} = E E_0$ (E_0 : non-interacting UEG)

• **RPIMC**¹⁷ simulations are limited to $r_s \ge 1$

(日) (日) (日) (日) (日) (日) (日)

¹⁶ T. Dornheim *et al.*, arXiv 1611.02658 (submitted to Phys. Plasmas), ¹⁷ E.W. Brown *et al.*, Phys. Rev. Lett. **110**, 146405 (2013)

¹⁸ S. Groth *et al.*, Phys. Rev. B **93**, 085102 (2016), ¹⁹ T. Dornheim *et al.*, J. Chem. Phys. **143**, 204101 (2015)

²⁰ F.D. Malone *et al.*, J. Chem. Phys. **143**, 044116 (2015), ²¹ F.D. Malone *et al.*, Phys. Rev. Lett. **117**, 115701 (2016)

- Density dependence of N = 33 spin-polarized electrons¹⁶
- Exchange-correlation (XC) energy: $E_{xc} = E E_0$ (E_0 : non-interacting UEG)

- **RPIMC**¹⁷ simulations are limited to $r_s \ge 1$
- CPIMC¹⁸ is efficient at small r_s and eventually fails with increasing coupling

くしゃ 人間 そう キャット マックタイ

¹⁶ T. Dornheim *et al.*, arXiv 1611.02658 (submitted to Phys. Plasmas), ¹⁷ E.W. Brown *et al.*, Phys. Rev. Lett. **110**, 146405 (2013)

¹⁸ S. Groth *et al.*, Phys. Rev. B **93**, 085102 (2016), ¹⁹ T. Dornheim *et al.*, J. Chem. Phys. **143**, 204101 (2015)

²⁰ F.D. Malone *et al.*, J. Chem. Phys. **143**, 044116 (2015), ²¹ F.D. Malone *et al.*, Phys. Rev. Lett. **117**, 115701 (2016)

- Density dependence of N = 33 spin-polarized electrons¹⁶
- Exchange-correlation (XC) energy: $E_{xc} = E E_0$ (E_0 : non-interacting UEG)

- ► RPIMC¹⁷ simulations are limited to r_s ≥ 1
- CPIMC¹⁸ is efficient at small r_s and eventually fails with increasing coupling
- PB-PIMC¹⁹ extends standard PIMC towards lower r_s and lower temperature

(日本)(四本)(日本)(日本)(日本)

¹⁶ T. Dornheim *et al.*, arXiv 1611.02658 (submitted to Phys. Plasmas), ¹⁷ E.W. Brown *et al.*, Phys. Rev. Lett. **110**, 146405 (2013)

¹⁸ S. Groth *et al.*, Phys. Rev. B **93**, 085102 (2016), ¹⁹ T. Dornheim *et al.*, J. Chem. Phys. **143**, 204101 (2015)

²⁰ F.D. Malone *et al.*, J. Chem. Phys. **143**, 044116 (2015), ²¹ F.D. Malone *et al.*, Phys. Rev. Lett. **117**, 115701 (2016)

- Density dependence of N = 33 spin-polarized electrons¹⁶
- Exchange-correlation (XC) energy: $E_{xc} = E E_0$ (E_0 : non-interacting UEG)

- **RPIMC**¹⁷ simulations are limited to $r_s \ge 1$
- CPIMC¹⁸ is efficient at small r_s and eventually fails with increasing coupling
- PB-PIMC¹⁹ extends standard PIMC towards lower r_s and lower temperature

くしゃ 人間 そう キャット マックタイ

Combination of $\mbox{PB-PIMC}$ and \mbox{CPIMC} allows for accurate results over broad parameter range 18,19

¹⁶ T. Dornheim *et al.*, arXiv 1611.02658 (submitted to Phys. Plasmas), ¹⁷ E.W. Brown *et al.*, Phys. Rev. Lett. **110**, 146405 (2013)

¹⁸ S. Groth *et al.*, Phys. Rev. B **93**, 085102 (2016), ¹⁹ T. Dornheim *et al.*, J. Chem. Phys. **143**, 204101 (2015)

²⁰ F.D. Malone *et al.*, J. Chem. Phys. **143**, 044116 (2015), ²¹ F.D. Malone *et al.*, Phys. Rev. Lett. **117**, 115701 (2016)

How to extend our results to the TD limit? [PRL 117, 156403 (2016)]

► QMC results are afflicted with a finite-size error △V(N)

$$\nu = \frac{V_N}{N} + \Delta V(N)$$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

How to extend our results to the TD limit? [PRL 117, 156403 (2016)]

- ► QMC results are afflicted with a finite-size error △V(N)
- Extrapolation and previous finite-size corrections are unreliable

$$\nu = \frac{V_N}{N} + \Delta V(N)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

How to extend our results to the TD limit? [PRL 117, 156403 (2016)]

- ► QMC results are afflicted with a finite-size error △V(N)
- Extrapolation and previous finite-size corrections are unreliable
- ▶ Solution: Combine QMC data for S(k)with long-range behavior from RPA, STLS \rightarrow LRT exact for $S(k \rightarrow 0)$

$$\nu = \frac{V_N}{N} + \Delta V(N)$$

How to extend our results to the TD limit? [PRL 117, 156403 (2016)]

- ► QMC results are afflicted with a finite-size error △V(N)
- Extrapolation and previous finite-size corrections are unreliable
- ▶ Solution: Combine QMC data for S(k)with long-range behavior from RPA, STLS \rightarrow LRT exact for $S(k \rightarrow 0)$

Accurate S(k) over entire *k*-range in TDL

$$\nu = \frac{V_N}{N} + \Delta V(N)$$

How to extend our results to the TD limit? [PRL 117, 156403 (2016)]

- ► QMC results are afflicted with a finite-size error △V(N)
- Extrapolation and previous finite-size corrections are unreliable
- ▶ Solution: Combine QMC data for S(k)with long-range behavior from RPA, STLS \rightarrow LRT exact for $S(k \rightarrow 0)$

Improved finite-size correction for all WDM parameters!

- ▶ Unprecedented accuracy, $\Delta V/V \sim 0.3\%$ → Input for parametrization of $f_{xc}(r_s, \theta, \xi)$ [PRL 119, 135001 (2017)]
 - ightarrow See poster by S. Groth

$$\nu = \frac{V_N}{N} + \Delta V(N)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- The Inhomogeneous Electron Gas

The inhomogeneous electron gas: $\hat{H} = \hat{H}_0 + 2A \sum_k \cos(\mathbf{q} \cdot \mathbf{r}_k)$

 Basic idea: Apply small external harmonic perturbation of wave vector q, amplitude A

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

- The Inhomogeneous Electron Gas

The inhomogeneous electron gas: $\hat{H} = \hat{H}_0 + 2A \sum_k \cos(\mathbf{q} \cdot \mathbf{r}_k)$

- Basic idea: Apply small external harmonic perturbation of wave vector q, amplitude A
- Small A: Linear Response Theory (LRT) is accurate

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- The Inhomogeneous Electron Gas

The inhomogeneous electron gas: $\hat{H} = \hat{H}_0 + 2A \sum_k \cos(\mathbf{q} \cdot \mathbf{r}_k)$

- Basic idea: Apply small external harmonic perturbation of wave vector q, amplitude A
- Small A: Linear Response Theory (LRT) is accurate
- <u>LRT:</u> $\rho_{ind}(\mathbf{q})$ is linear in A

$$\rho_{\text{ind}}(\mathbf{q}) = \frac{1}{V} \left\langle \sum_{k=1}^{N} e^{-i\mathbf{q}\cdot\mathbf{r}_{k}} \right\rangle_{\mathcal{A}}$$
$$= \chi(\mathbf{q})\mathcal{A} ,$$

with the density–density response function $\chi(\mathbf{q})$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- The Inhomogeneous Electron Gas

The inhomogeneous electron gas: $\hat{H} = \hat{H}_0 + 2A \sum_k \cos(\mathbf{q} \cdot \mathbf{r}_k)$

- Basic idea: Apply small external harmonic perturbation of wave vector q, amplitude A
- Small A: Linear Response Theory (LRT) is accurate
- <u>LRT:</u> $\rho_{ind}(\mathbf{q})$ is linear in A

$$\rho_{\text{ind}}(\mathbf{q}) = \frac{1}{V} \left\langle \sum_{k=1}^{N} e^{-i\mathbf{q}\cdot\mathbf{r}_{k}} \right\rangle_{A}$$
$$= \chi(\mathbf{q})A ,$$

with the density–density response function $\chi(\mathbf{q})$

QMC simulations for multiple *A*-values for each wave vector **q** allows us to obtain χ (**q**).

The Inhomogeneous Electron Gas

<u>Results</u>: Electron Gas at $r_s = 10$, $\theta = 1$ [PRE 96, 023203 (2017)]

► almost no system size dependence, \(\chi_N(\mathbf{q}) \approx \(\chi(\mathbf{q})\)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The Inhomogeneous Electron Gas

<u>Results</u>: Electron Gas at $r_s = 10$, $\theta = 1$ [PRE 96, 023203 (2017)]

► almost no system size dependence, \(\chi_N(\mathbf{q}) \approx \(\chi(\mathbf{q})\)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- The Inhomogeneous Electron Gas

<u>Results</u>: Electron Gas at $r_s = 10$, $\theta = 1$ [PRE 96, 023203 (2017)]

- ► almost no system size dependence, \(\chi_N(\mathbf{q}) \approx \(\chi(\mathbf{q})\)
- RPA description not appropriate

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- The Inhomogeneous Electron Gas

<u>Results</u>: Electron Gas at $r_s = 10$, $\theta = 1$ [**PRE 96**, 023203 (2017)]

- ► almost no system size dependence, \(\chi_N(\mathbf{q}) \approx \(\chi(\mathbf{q})\)
- RPA description not appropriate
- Static G(q) from STLS leads to significant improvement
- Correlation effects particularly important for q ~ k_F

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- The Inhomogeneous Electron Gas

<u>Results</u>: Electron Gas at $r_s = 10, \theta = 1$ [PRE 96, 023203 (2017)]

- ► almost no system size dependence, \(\chi_N(\mathbf{q}) \approx \(\chi(\mathbf{q})\)
- RPA description not appropriate
- Static G(q) from STLS leads to significant improvement
- Correlation effects particularly important for q ~ k_F

Ab initio QMC results for the static density response of the warm dense UEG possible!

The Dynamic Structure Factor

What about Dynamic Quantities?

 Dynamic QMC simulations prevented by dynamic sign problem

- The Dynamic Structure Factor

What about Dynamic Quantities?

- Dynamic QMC simulations prevented by dynamic sign problem
- But: Computation of imaginary time correlation functions possible:

$$G_n(\mathbf{q}, au) = rac{1}{N} \langle
ho_{\mathbf{q}}(au)
ho_{-\mathbf{q}}(0)
angle$$

preliminary, unpublished $(r_s = 10, \theta = 1)$

The Dynamic Structure Factor

What about Dynamic Quantities?

- Dynamic QMC simulations prevented by dynamic sign problem
- But: Computation of imaginary time correlation functions possible:

$$G_n(\mathbf{q}, au) = rac{1}{N} \left<
ho_{\mathbf{q}}(au)
ho_{-\mathbf{q}}(0)
ight>$$

 G_n(q, τ) is connected to the dynamic structure factor S(q, ω) via

$$G_n(\mathbf{q}, au) = \int_{-\infty}^\infty \mathsf{d}\omega \; e^{- au\omega} S(\mathbf{q},\omega)$$

preliminary, unpublished $(r_s = 10, \theta = 1)$

・ロト・西ト・ヨト ・ヨー シック

- The Dynamic Structure Factor

What about Dynamic Quantities?

- Dynamic QMC simulations prevented by dynamic sign problem
- But: Computation of imaginary time correlation functions possible:

$$G_n(\mathbf{q}, au) = rac{1}{N} \left<
ho_{\mathbf{q}}(au)
ho_{-\mathbf{q}}(0)
ight>$$

 G_n(q, τ) is connected to the dynamic structure factor S(q, ω) via

$$G_n(\mathbf{q}, au) = \int_{-\infty}^\infty \mathsf{d}\omega \; e^{- au\omega} S(\mathbf{q},\omega)$$

We need to perform an inverse Laplace transform preliminary, unpublished $(r_s = 10, \theta = 1)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The Dynamic Structure Factor

QMC Results for the Dynamic Structure Factor

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 Reconstruction: Find a model function S_M(**q**, ω) which reproduces the QMC data for G_n(**q**, τ)

$$G_n(\mathbf{q}, au) pprox \int_{-\infty}^{\infty} \mathrm{d}\omega \; e^{- au\omega} S_{\mathsf{M}}(\mathbf{q}, \omega)$$

- The Dynamic Structure Factor

QMC Results for the Dynamic Structure Factor

 Reconstruction: Find a model function S_M(**q**, ω) which reproduces the QMC data for G_n(**q**, τ)

$$G_n(\mathbf{q}, au) pprox \int_{-\infty}^{\infty} \mathrm{d}\omega \; e^{- au\omega} S_{\mathsf{M}}(\mathbf{q}, \omega)$$

 Notoriously hard problem, Monte Carlo error bars pose additional obstacle

The Dynamic Structure Factor

QMC Results for the Dynamic Structure Factor

 Reconstruction: Find a model function S_M(**q**, ω) which reproduces the QMC data for G_n(**q**, τ)

$$G_n(\mathbf{q}, au) pprox \int_{-\infty}^{\infty} \mathrm{d}\omega \; e^{- au\omega} S_{\mathsf{M}}(\mathbf{q}, \omega)$$

- Notoriously hard problem, Monte Carlo error bars pose additional obstacle
- Use Genetic Inversion algorithm and average over many noisy solutions²²

preliminary, unpublished $(r_s = 10, \theta = 1)$

²² E. Vitali et al., Phys. Rev. B 82 (2010)

The Dynamic Structure Factor

QMC Results for the Dynamic Structure Factor

 Reconstruction: Find a model function S_M(**q**, ω) which reproduces the QMC data for G_n(**q**, τ)

$$G_n(\mathbf{q}, au) pprox \int_{-\infty}^\infty \mathrm{d}\omega \; e^{- au\omega} S_{\mathrm{M}}(\mathbf{q},\omega)$$

- Notoriously hard problem, Monte Carlo error bars pose additional obstacle
- Use Genetic Inversion algorithm and average over many noisy solutions²²

Ab initio QMC results for $S(\mathbf{q}, \omega)$ possible for some parameters!

²² E. Vitali et al., Phys. Rev. B 82 (2010)

preliminary, unpublished $(r_s = 10, \theta = 1)$

Summary and outlook

- QMC simulations of WDM are severely hampered by the fermion sign problem
- Solution: Combine the complementary CPIMC and PB-PIMC approaches

 \rightarrow New FSC allows for accurate results of the warm dense UEG in the TDL with $\Delta V/V \sim 10^{-3} \Rightarrow$ Parametrization of $f_{xc}(r_s, \theta, \xi)$

Simulation of the inhomogeneous electron gas

Ab initio results for static density response $\chi(q)$, G(q) of warm dense UEG

QMC allows to compute imaginary-time correlation functions

Reconstruction of the dynamic structure factor $S(q, \omega)$ **possible**!

New Review: arXiv:1801.05783 (2018)

(日) (日) (日) (日) (日) (日) (日)