Can we treat strong correlations, spatial inhomogeneity and ultrafast dynamics with Green functions?

Sebastian Hermanns, Niclas Schlünzen, Michael Bonitz, and Claudio Verdozzi*

Institut für Theoretische Physik und Astrophysik Christian-Albrechts-Universität zu Kiel, Germany

*Department of Mathematical Physics, Lund University, Sweden

CECAM Lausanne, May 6 2015

Research

Chair Statistical Physics -Research Directions C | A | U Strongly correlated Coulomb systems Classical Coulomb systems Warm Dense matter

Complex plasmas Coulomb liquids Coulomb crystals Anomalous transport Plasma-surface interaction

Kinetic Theory Langevin MD Monte Carlo Warm Dense matter Astrophysical plasmas Correlated fermions bosons, excitons Atoms, dense matter interacting with lasers and x-rays Femtosecond dynamics Quark-gluon plasma

Time-dep. RAS - CI Quantum Kinetic Theory Nonequilibrium Green functions First principle simulations

Acknowledgements

Bundesministerium für Bildung und Forschung

Introduction

Nonequilibrium Green Functions

- I. Two-time (Keldysh) Green functions
- II. Inhomogeneous Systems
- III. Generalized Kadanoff-Baym ansatz (GKBA)

Excitation dynamics in Hubbard nanoclusters

- I. Testing the GKBA
- II. Transport properties of finite Hubbard clusters
- III. Excitation spectra

Conclusions

REVIEW B

VOLUME 45, NUMBER 3

15 JANUARY 1992-I

Carrier-carrier scattering and optical dephasing in highly excited semiconductors

R. Binder, D. Scott, A. E. Paul, M. Lindberg, K. Henneberger,* and S. W. Koch Optical Sciences Center and Physics Department, University of Arizona, Tucson, Arizona 85721 (Received 3 June 1991; revised manuscript received 3 September 1991)

Lenard-Balescu collision integral, Phys. of Fluids 3, 52 (1960) dynamically screened Coulomb potential $W(q,\omega) = \frac{V(q)}{1 - V(q) P(q,\omega)} = V(q) e^{-1}(q,\omega)$ unscreened potential $V(q) = \frac{4\pi e^2}{Vq^2}$ $P(\mathbf{q},\omega) = \lim_{\delta \to 0} 2 \sum_{\alpha,\mathbf{k}} \frac{f_{\alpha}(\mathbf{k}) - f_{\alpha}(|\mathbf{q} + \mathbf{k}|)}{\epsilon_{\alpha}(\mathbf{k}) - \epsilon_{\alpha}(|\mathbf{q} + \mathbf{k}|) + \hbar\omega + i\delta}$

$$\begin{cases} \frac{\partial}{\partial t} + \mathbf{v}_1 \frac{\partial}{\partial \mathbf{r}_1} - \frac{1}{m} \mathbf{F}_1 \frac{\partial}{\partial \mathbf{v}_1} \end{cases} f(\mathbf{r}_1, \mathbf{p}_1, t) = I(\mathbf{r}_1, \mathbf{p}_1, t), \\ I(\mathbf{r}_1, \mathbf{p}_1, t) = \int d^3 p_2 \int d^3 \bar{p}_1 \int d^3 \bar{p}_2 \ P(\mathbf{p}_1, \mathbf{p}_2; \bar{\mathbf{p}}_1, \bar{\mathbf{p}}_2; t) \\ \times \{f(\mathbf{r}_1, \bar{\mathbf{p}}_1, t) f(\mathbf{r}_1, \bar{\mathbf{p}}_2, t) - f(\mathbf{r}_1, \mathbf{p}_1, t) f(\mathbf{r}_1, \mathbf{p}_2, t)\}, \end{cases}$$
(1.1)
$$P(\mathbf{p}_1, \mathbf{p}_2; \bar{\mathbf{p}}_1, \bar{\mathbf{p}}_2; t) = \left| \frac{V(q)}{\epsilon(q, \omega; t)} \right|^2 \delta(\mathbf{p}_{12} - \bar{\mathbf{p}}_{12}) \delta(E_{12} - \bar{E}_{12}) \\ q = |\mathbf{p}_1 - \bar{\mathbf{p}}_1|, \ \mathbf{p}_{12} = \mathbf{p}_1 + \mathbf{p}_2, \ \hbar \omega = E_1 - \bar{E}_1, \ \text{Pauli blocking factors}(1 \pm f) \text{omitted} \end{cases}$$

- Equation (1.1): conserves quasi-particle energy, relaxes towards Fermi (Bose) function
- Equation (1.1): fails at short times, misses buildup of correlations, screening
- \Rightarrow unphysical fast relaxation dynamics \Rightarrow generalized quantum kinetic theory needed

¹M. Bonitz, *Quantum Kinetic theory*, Teubner 1998, 2nd ed.: Springer 2015

CIAU

hristian-Albrechts-Universität zu Kie

Build up of dynamical screening²

- first results: MB, 1996
- numerical solution of non-Markovian Balescu equation: Banyai, *et al.*, PRL 81, 882 (1998)
- Experimental verification of screening build up: Huber *et al.*, Nature **414**, 216 (2001)

²M. Bonitz, *Quantum Kinetic theory*, Teubner 1998, 2nd ed.: Springer 2015

Introduction

Nonequilibrium Green Functions

- I. Two-time (Keldysh) Green functions
- II. Inhomogeneous Systems
- III. Generalized Kadanoff-Baym ansatz (GKBA)

Excitation dynamics in Hubbard nanoclusters

- I. Testing the GKBA
- II. Transport properties of finite Hubbard clusters
- III. Excitation spectra

Conclusions

2nd quantization

• Fock space
$$\mathcal{F}
i | n_1, n_2 \ldots
angle$$
 , $\mathcal{F} = \bigoplus_{N_0 \in \mathbb{N}} \mathcal{F}^{N_0}$, $\mathcal{F}^{N_0} \subset \mathcal{H}^{N_0}$

CIAU

ristian-Albrechts-Universität zu Kir

- $\hat{c}_i, \hat{c}_i^{\dagger}$ creates/annihilates a particle in single-particle orbital ϕ_i
- Spin accounted for by canonical (anti-)commutator relations $\left[\hat{c}_i^{(\dagger)}, \, \hat{c}_j^{(\dagger)} \right]_{\mathfrak{T}} = 0, \quad \left[\hat{c}_i, \, \hat{c}_j^{\dagger} \right]_{\mathfrak{T}} = \delta_{i,j}$

• Hamiltonian:
$$\hat{H}(t) = \underbrace{\sum_{k,m} h_{km}^0 \hat{c}_k^{\dagger} \hat{c}_m}_{\hat{H}_0} + \underbrace{\frac{1}{2} \sum_{k,l,m,n} w_{klmn} \hat{c}_k^{\dagger} \hat{c}_m^{\dagger} \hat{c}_n \hat{c}_l}_{\hat{W}} + F(t)$$

Particle interaction w _{klmn}	Time	e-dependent excitation F(t)	
 Only electron dynamics 	• :	Single-particle type	
 Coulomb interaction 	•	Optical/Laser-induced	
M. Bonitz (Kiel University)	onequilibrium Green funct	ctions CECAM, May 6 2015 10	/ 57

C A U Christian-Albrechts-Universität zu Kiel Mathematisch-Naturwissenschaftliche Fakultät

time-ordered one-particle Nonequilibrium Green function, two times $z, z' \in C$ ("Keldysh contour"), arbitrary one-particle basis $|\phi_i\rangle$

$$G_{ij}^{(1)}(z,z') = \frac{\mathrm{i}}{\hbar} \left\langle \hat{T}_{\mathcal{C}} \hat{c}_i(z) \hat{c}_j^{\dagger}(z') \right\rangle$$

Keldysh–Kadanoff–Baym equation (KBE) on C:

$$\sum_{k} \left\{ \mathrm{i}\hbar \frac{\partial}{\partial z} \delta_{ik} - h_{ik}(z) \right\} G_{kj}^{(1)}(z, z') = \delta_{\mathcal{C}}(z, z') \delta_{ij} - \mathrm{i}\hbar \sum_{klm} \int_{\mathcal{C}} \mathrm{d}\bar{z} \, w_{iklm}(z^+, \bar{z}) \, G_{lmjk}^{(2)}(z, \bar{z}; z', \bar{z}^+)$$

KBE: first equation of Martin–Schwinger hierarchy for $G^{(1)},\,G^{(2)}\ldots\,G^{(n)}$

 $\label{eq:generalized_states} \int_{\mathcal{C}} w G^{(2)} \to \int_{\mathcal{C}} \Sigma G^{(1)}, \quad \text{Selfenergy}$

Nonequilibrium Diagram technique Example: Hartree-Fock + Second Born selfenergy

• Contour Green function mapped to real-time matrix Green function

Propagators

$$G^{\mathsf{R}/\mathsf{A}}(t_1, t_2) = \pm \theta \left[\pm (t_1 - t_2) \right] \left\{ G^{>}(t_1, t_2) - G^{<}(t_1, t_2) \right\}$$

• Correlation functions G^{\gtrless} obey real-time KBE

$$\begin{bmatrix} i\partial_{t_1} - h_0(t_1) \end{bmatrix} G^{<}(t_1, t_2) = \int dt_3 \Sigma^{\mathsf{R}}(t_1, t_3) G^{<}(t_3, t_2) + \int dt_3 \Sigma^{<}(t_1, t_3) G^{\mathsf{A}}(t_3, t_2) ,$$

$$G^{<}(t_1, t_2) \begin{bmatrix} -i\partial_{t_2} - h_0(t_2) \end{bmatrix} = \int dt_3 G^{\mathsf{R}}(t_1, t_3) \Sigma^{<}(t_3, t_2) + \int dt_3 \Sigma^{\mathsf{A}}(t_1, t_3) G^{<}(t_3, t_2) ,$$

CIAU

hristian-Albrechts-Universität zu Kie

C A U Christian-Albrechts-Universität zu Kie

> lathematischlaturwissenschaftliche Fakultät

Time-dependent single-particle operator expectation value

$$\langle \hat{O} \rangle(t) = \mp i \int dx \left[o(x't) g^{<}(xt, x't) \right]_{x=x'}$$

• Particle density

Density matrix

$$\langle \hat{n}(x,t) \rangle = n(1) = \mp i g^{<}(1,1)$$
 $\rho(x_1, x_1', t) = \mp i g^{<}(1,1') \big|_{t_1 = t_1'}$

• Current density:
$$\langle \hat{j}(1) \rangle = \mp i \left[\left(\frac{\nabla_1}{2i} - \frac{\nabla_{1'}}{2i} + A(1) \right) g^<(1,1') \right]_{1'=1}$$

Interaction energy (two-particle observable, [Baym/Kadanoff])

$$\langle \hat{V}_{12} \rangle(t) = \pm i \frac{\mathcal{V}}{4} \int \frac{d\vec{p}}{(2\pi\hbar)^3} \left\{ (i \partial_t - i \partial_{t'}) - \frac{p^2}{m} \right\} g^{<}(\vec{p}, t, t')|_{t=t'}$$

Full two-time solutions: Danielewicz, Schäfer, Köhler/Kwong, Bonitz/Semkat, Haug, Jahnke, van Leeuwen, Stefanucci, Verdozzi, Berges, Garny ...

Uncorrelated initial state

(3) solve KBE in t - t' plane for $g^{\gtrless}(t, t')$

[1] A. Rios et al., Ann. Phys. 326, 1274 (2011), [2] S. Hermanns et al., Phys. Scr. T151, 014036 (2012)

M. Bonitz (Kiel University)

Nonequilibrium Green functions

CIAU

hristian-Albrechts-Universität zu Kie

Two-time simulations: Summary

- - perfect conservation of total energy
- accurate short-time dynamics: phase 1: correlation dynamics 2: relaxation of f(p), occupations

Example: electrons in dense hydrogen, interaction quench [1]

accurate long-time behavior: spectral functions and high-order correlated spectra from real-time KBE dynamics (via Fourier transform) [2]

- extended to optical absorption, double excitations [3] etc.
- [1] MB and D. Semkat, Introduction to Computational Methods in Many-Body Physics, Rinton Press 2006,
- [2] N. Kwong and MB, PRL 84, 1768 (2000), [3] K. Balzer, S. Hermanns, MB, EPL 98, 67002 (2012)

Nonequilibrium Green functions

C A U Christian-Albrechts-Universität zu Kiel Mathematisch-Naturwissenschaftliche Fakultät

• few-electron atoms, molecules: Balzer et al., PRA 81, 022510 (2010)

Hartree-Fock $E_{os}^{\rm HF}$ [a.u.] $n_{e}(n_{b})$ 4(43)-2.229 (98) -2.22420914 (153) -2.2242096Second Born E_{gs}^{2ndB} [a.u.] $n_{o}(n_{b})$ Number of *t*-grid points 14 (153) 101 -2.23-2.233414 (153) 301 14 (153) 601 -2.2334114 (153) 1001 -2.233419TDSE (exact) E_{gs}^{TDSE} [a.u.] -2.2382578

1D He ground state

1D He dipole spectra

³pioneered by N. Dahlen and R. van Leeuwen, PRL 98, 153004 (2007)

Inhomogeneous systems: small molecules

- strong excitation of molecules: Balzer et al., PRA 82, 033427 (2010)
- XUV-pulse excitation of LiH (1d-model)
- Goals: correlated electron dynamics beyond Hartree-Fock

Numerical challenges of NEGF calculations

- Complicated structure of interaction w_{klmn} and selfenergy Σ
- Collision intergrals involve integrations over whole past

• CPU time $\sim N_t^3$, RAM $\sim N_t^2$

Typical computational parameters

- Spatial basis size: $N_b = 70$
- Time steps: $N_t = 10000$
- RAM consumption: 2 TB
- number of CPUs used: 2048
- total computation time: 2-3 days

${\sf Solutions}^4$

- Finite-Element Discrete Variable Representation [PRA 81, 022510 (2010)]
- Generalized Kadanoff–Baym ansatz [Phys. Scr. T151, 014036 ('12), JPCS 427, 012006 ('13)]
- Adiabatic switch-on of interaction [Phys. Scr. τ151, 014036 ('12)]
- Parallelization [PRA 82, 033427 (2010)] and GPU computing

⁴K. Balzer, M. Bonitz, Lecture Notes in Phys. vol. 867 (2013)

FEDV-Representation⁵

- strong excitation and ionization of atoms and molecules: need to resolve nucleus and large distances
- Selfenergy in FEDVR largely diagonal

FIG. 2. (Color online) Structure of a FE-DVR basis $\{\chi_m^i(x)\}$ with $n_g = 4$ (i.e., five local DVR basis functions in each element). While the element functions (solid) are defined in a single FE, the bridge functions (dashed and dashed-dotted lines) link two adjacent FEs.

⁵Balzer *et al.*, PRA **81**, 022510 (2010)

C A U Christian-Albrechts-Universität zu Kiel Mathematisch-Naturwissenschaltliche Fakultät

Equivalent form of the KBE [Lipavskii et. al.]:

• For times
$$t_1 > t_2 > t_0$$
:

$$\begin{aligned} G^{<}(t_{1}, t_{2}) &= -G^{\mathsf{R}}(t_{1}, t_{2})\rho(t_{2}) \\ &+ \int_{t_{2}}^{t_{1}} \mathrm{d}t_{3} \int_{t_{0}}^{t_{2}} \mathrm{d}t_{4} \ G^{\mathsf{R}}(t_{1}, t_{3})\Sigma^{<}(t_{3}, t_{4}) G^{\mathsf{A}}(t_{4}, t_{2}) \\ &+ \int_{t_{2}}^{t_{1}} \mathrm{d}t_{3} \int_{t_{0}}^{t_{2}} \mathrm{d}t_{4} \ G^{\mathsf{R}}(t_{1}, t_{3})\Sigma^{\mathsf{R}}(t_{3}, t_{4}) G^{<}(t_{4}, t_{2}) \,. \end{aligned}$$

• For times $t_0 < t_1 < t_2$:

$$\begin{aligned} G^{<}(t_{1}, t_{2}) = \rho(t_{1}) G^{\mathsf{A}}(t_{1}, t_{2}) \\ &- \int_{t_{0}}^{t_{1}} \mathrm{d}t_{3} \int_{t_{1}}^{t_{2}} \mathrm{d}t_{4} G^{\mathsf{R}}(t_{1}, t_{3}) \Sigma^{<}(t_{3}, t_{4}) G^{\mathsf{A}}(t_{4}, t_{2}) \\ &- \int_{t_{0}}^{t_{1}} \mathrm{d}t_{3} \int_{t_{1}}^{t_{2}} \mathrm{d}t_{4} G^{<}(t_{1}, t_{3}) \Sigma^{\mathsf{A}}(t_{3}, t_{4}) G^{\mathsf{A}}(t_{4}, t_{2}) \,. \end{aligned}$$

• Idea of the GKBA: lowest order solution⁶

$$G_{\mathsf{GKBA}}^{\gtrless}(t_1, t_2) = -G^{\mathsf{R}}(t_1, t_2) f^{\gtrless}(t_2) + f^{\gtrless}(t_1) G^{\mathsf{A}}(t_1, t_2)$$

$$f^{<}(t) = f(t) = \pm i G^{<}(t, t), \quad f^{>}(t) = 1 \pm f^{<}(t)$$

- correct causal structure, non-Markovian, no near-equilibrium assumption,
- Reduction to single-time quantities by use of HF propagators

$$G_{\mathsf{HF}}^{\mathsf{R}/\mathsf{A}}(t_1, t_2) = \mp \mathrm{i}\theta[\pm(t_1 - t_2)] \exp\left(-\mathrm{i}\int_{t_2}^{t_1} \mathrm{d}t_3 \, h_{\mathsf{HF}}(t_3)\right)$$

• Direct derivation from density operator theory possible⁷

M. Bonitz (Kiel University)

⁶P. Lipavsky, V. Spicka and B. Velicky Phys. Rev. B **34**, 6933 (1986)

⁷M. Bonitz, *Quantum Kinetic Theory*

- HF-GKBA: same conservation properties as two-time approximation⁸
- damped propagators, local approximation violate total energy conservation⁹
- Generalization of the energy conservation theorem of Baym and Kadanoff (relaxed conditions)¹⁰

Extensions: Gauge invariant generalization of the GKBA to strong electro-magnetic fields¹¹

- ⁹M. Bonitz, D. Semkat, H. Haug, Eur. Phys. J. B **9**, 309 (1999)
- ¹⁰S. Hermanns, N. Schlünzen, and M. Bonitz, Phys. Rev. B **90**, 125111 (2014)
- ¹¹D. Kremp, Th. Bornath, M. Bonitz, and M. Schlanges, Phys. Rev. E 60, 4725 (1999)

M. Bonitz (Kiel University)

Nonequilibrium Green functions

CIAU

⁸G. Baym and L.P. Kadanoff, Phys. Rev. **124**, 287 (1961)

HF-GKBA: reducing the selfconsistency

HF-GKBA: All propagators replaced by HF-propagators¹² Example: 2nd Born selfenergy. a) two-time, b) HF-GKBA, c) Hubbard

Nonequilibrium Green functions

¹²S. Hermanns, N. Schlünzen, and M. Bonitz, Phys. Rev. B **90**, 125111 (2014)

Performance gain with the GKBA+2B

 $t_0+N_i\Delta t$... $t_0+2\Delta t$ $t_0+\Delta t$ $t_0+2\Delta t$ $t_0+N_i\Delta t$

time stepping along diagonal only. Full memory retained.

S. Hermanns, K. Balzer, and M. Bonitz, Phys. Scripta T151, 014036 (2012)

we use about $5\cdot 10^3\dots 5\cdot 10^4$ time steps for the adiabatic switching and $10^5\dots 10^6$ for the excitation and relaxation.

Introduction

2 Nonequilibrium Green Functions

- I. Two-time (Keldysh) Green functions
- II. Inhomogeneous Systems
- III. Generalized Kadanoff-Baym ansatz (GKBA)

Excitation dynamics in Hubbard nanoclusters

- I. Testing the GKBA
- II. Transport properties of finite Hubbard clusters
- III. Excitation spectra

Conclusions

Hubbard

Anderson impurity

GO

Heisenberg

- simplification of the many-body problem
 - localized sites
 - interaction and exchange effects tractable
- macroscopic and finite systems

- derived from many-body theory for many systems
 - condensed matter (transition metal oxides, ...)
 - ultracold particles in optical lattices
 - molecules

The Hubbard model

- Simple, but versatile model for strongly correlated solid state systems
- Suitable for single band, small bandwidth

CIAU

hristian-Albrechts-Universität zu Kie

C A U Christian-Albrechts-Universität zu Kiel Mathematisch-Naturwissenschaftliche Fakultät

Problems of NEGF in second Born: N = 2, n = 1/2, U = 1, Excitation matrix: $f_{ij,\alpha\beta}(t) = w_0 \delta_{i,1} \delta_{j,1} \delta_{\alpha,\beta} \Theta(t)$, $w_0 = 5.0 J^{-1}$

• time-dependent density, KBE for various degrees of selfconsistency artif. damping, mult. steady states

 $^{13}\text{P.}$ von Friesen, C. Verdozzi, and C.O. Almbladh, Phys. Rev. B 82, 155108 (2010)

Nonequilibrium Green functions

Problems of NEGF in second Born: N = 2, n = 1/2, U = 1 [1], Excitation matrix: $f_{ij,\alpha\beta}(t) = w_0 \delta_{i,1} \delta_{j,1} \delta_{\alpha,\beta} \Theta(t)$, $w_0 = 5.0 J^{-1}$

 time-dependent density, KBE for various degrees of selfconsistency artif. damping, mult. steady states GKBA+2B: no damping! selfconsistency problem "cured"

 14 P. von Friesen, C. Verdozzi, and C.O. Almbladh, Phys. Rev. B **82**, 155108 (2010) 15 S. Hermanns, N. Schlünzen, and M. Bonitz, Phys. Rev. B **90**, 125111 (2014)

Nonequilibrium Green functions

CIAU

Half filling—noneq. initial state N = 8, U = 0.1

No field. Sites 0-3 doubly occupied, 4-7 empty

- failure of HF, good performance of GKBA up to long times ($t\sim50)$
- GKBA improves with particle number

M. Bonitz (Kiel University)

- For Hubbard model simplification¹⁶

$$\begin{split} \Sigma_{ik}^{\rm cor}(t_1, t_2) &= {\rm i} T_{ik}(t_1, t_2) G_{ki}(t_2, t_1), \\ T_{ik}(t_1, t_2) &= \pm {\rm i} U^2 \, G_{ik}^{\rm H}(t_1, t_2) + {\rm i} U \int_{\mathcal{C}} {\rm d} \bar{t} \, G_{il}^{\rm H}(t_1, \bar{t}) T_{lk}(\bar{t}, t_2), \\ G_{ik}^{\rm H}(t_1, t_2) &= G_{ik}^{\uparrow}(t_1, t_2) \, G_{ik}^{\downarrow}(t_1, t_2), \end{split}$$

- T-matrix + HF-GKBA: well defined and conserving strong coupling approximation - larger systems, long propagation feasible 17

 $^{16}\text{P.}$ von Friesen, C. Verdozzi, and C.O. Almbladh, Phys. Rev. B 82, 155108 (2010)

¹⁷M. Bonitz, S. Hermanns, and N. Schlünzen, Contrib. Plasma Phys. **55**, 152 (2015)

M. Bonitz (Kiel University)

Nonequilibrium Green functions

CIAU

Strong excitation: T-matrix vs. GKBA+T ¹⁸

C A U Christian-Albrechts-Universität zu Kiel Mathematisch-Naturwissenschaftliche Fakultät

Hubbard model at medium coupling: N = 2, n = 1/2, U = 1, Excitation matrix: $f_{ij,\alpha\beta}(t) = w_0 \delta_{i,1} \delta_{j,1} \delta_{\alpha,\beta} \Theta(t), \quad w_0 = 5.0 J^{-1}$

 $^{^{18}\}text{S.}$ Hermanns, N. Schlünzen, and M. Bonitz, Phys. Rev. B 90, 125111 (2014)

Introduction

2 Nonequilibrium Green Functions

- I. Two-time (Keldysh) Green functions
- II. Inhomogeneous Systems
- III. Generalized Kadanoff-Baym ansatz (GKBA)

Excitation dynamics in Hubbard nanoclusters

- I. Testing the GKBA
- II. Transport properties of finite Hubbard clusters
- III. Excitation spectra

Conclusions

Goals :

- study transport (diffusion, heat conductivity etc.) by a nonequilibrium approach¹⁹
- retain full spatial resolution (single-site)
- retain full temporal resolution
- explore particle number dependence, finite-size effects
- explore effects of inhomogeneity, geometry, dimensionality

¹⁹in contrast to standard equilibrium approaches based on fluctuation-dissipation relations

Fermionic transport and out-of-equilibrium dynamics in a homogeneous Hubbard model with ultracold atoms

Ulrich Schneider^{1,2,*}, Lucia Hackermüller^{1,3}, Jens Philipp Ronzheimer^{1,2}, Sebastian Will^{1,2}, Simon Braun^{1,2}, Thorsten Best¹, Immanuel Bloch^{1,2,4}, Eugene Demler⁵, Stephan Mandt⁶, David Rasch⁶ and Achim Rosch⁶

Time-resolved expansion of Fermi gas²⁰

- Experimental snapshots for ${
 m ^{40}K}$ -atoms in optical lattice
- Expansion initiated by turn-off ("quench") of harmonic confinement.
- Hubbard model with variable U , $\mathit{T}\sim0.13\,\mathit{T_{F}}$, $\mathit{N}\sim200,000.$

²⁰U. Schneider *et al.*, Nature Physics **8**, 213-218 (2012)

Theory:

use semiclassical Boltzmann equation in relaxation time approximation

$$\partial_t f_q + \mathbf{v}_q \nabla_r f_q + \mathbf{F}(\mathbf{r}) \nabla_q f_q = -\frac{1}{\tau(\mathbf{n})} \left(f_q - f_q^0(\mathbf{n}) \right)$$

Quote:

Although the expansion can be modelled in 1D (ref. 31) using DMRG methods (ref. 32), so far no methods are available to calculate the dynamics quantum-mechanically in higher dimensions.

²¹U. Schneider *et al.*, Nature Physics **8**, 213-218 (2012)

- NEGF can treat Hubbard clusters in any dimension
- ullet with T-matrix selfenergy: strong correlations accessible, $U\lesssim 4$
- problem: direct inhomogeneous expansion feasible only for small N
- idea: simulations for fixed N; attempt numerical extrapolation²²
- concept and first results²³ for $N \leq 8$

 $^{^{22}\}mathrm{S.}$ Hermanns, N. Schlünzen, and M. Bonitz, to be published

²³M. Bonitz, S. Hermanns, and N. Schlünzen, Contrib. Plasma Phys. **55**, 152 (2015)

Fermion expansion and doublon decay

- t = 0: circular array of doubly occupied sites. Confinement quench initiates diffusion.

- T-matrix selfenergy for U = 1 and 3 values of N.
- Plots show $\sqrt{N_{\uparrow}}$

CAU

hristian-Albrechts-Universität zu Kie

Quantifying the expansion. Correlation effects

Correlations slow down expansion. Exact result between T, GKBA+T

M. Bonitz (Kiel University)

Asymptotic expansion velocity vs. U

- Expansion of initially circular doubly occupied cloud for U = 1 and N = 2,74
- Strong correlation effect. Error of HF grows with \ensuremath{N}

CAU

hristian-Albrechts-Universität zu Kir

System size dependence of expansion velocity.

- Expansion of initially circular doubly occupied cloud for $\,U=1$ and $\,U=2$ at fixed N

- Extrapolation $N \to \infty$.

CAU

Transport properties of macroscopic Fermi system

- Extrapolation results for expansion velocity for different approximations
- Comparison to extrapolated "core expansion velocity" (HWHM)
- Core shrinks for $\,U\lesssim3$, as in experiment

CIAU

NEGF vs. experimental results

- Compare macroscopic T-matrix data to core expansion velocities of Schneider et al.²⁴
- Inset: theoretical results for full expansion velocity

 24 U. Schneider *et al.*, Nature Physics **8**, 213-218 (2012)

NEGF vs. experimental results and RTA-model

- Compare macroscopic T-matrix data to core expansion velocities of Schneider et al. 25
- grey line: relaxation time model (Rosch)

²⁵U. Schneider *et al.*, Natur<u>e Physics 8</u>, 213-218 (2012)

CAU

Introduction

2 Nonequilibrium Green Functions

- I. Two-time (Keldysh) Green functions
- II. Inhomogeneous Systems
- III. Generalized Kadanoff-Baym ansatz (GKBA)

Excitation dynamics in Hubbard nanoclusters

- I. Testing the GKBA
- II. Transport properties of finite Hubbard clusters
- III. Excitation spectra

Conclusions

• Charge-conserving spectral properties accessible via two-particle XC function

$$L(1,2,3,4) = \pm \left[G_2(1,2;3,4) - G(1;3) G(2;4) \right],$$

or reducible polarizability/density response function χ ,

$$\chi(1;2) = \pm iL(1,2;1^+,2^+).$$

• L fulfills Bethe–Salpeter equation (BSE)

$$\begin{split} L(1,2;3,4) &= G(1;4) \, G(2;3) \\ &\pm \int_{\mathcal{C}} \mathrm{d}1' \mathrm{d}2' \mathrm{d}3' \mathrm{d}4' \; G(1;1') \, G(3';3) K(1',2';3',4') L(4',2;2',4) \, , \end{split}$$

- BSE successfully used for ground state and equilibrium spectra
- examples: optical spectra in semiconductors and insulators, formation of particle-hole pairs, excitons, plasmons etc.
- Even for stationary case (in Fourier space) BSE can be solved only for simple kernels ${\cal K}$

Alternative approach:

- obtain response functions from time-dependent solution of KB equations
- consider weak change of single-particle Hamiltonian $h \rightarrow h + \delta h$,
- linear response from correlated equilibrium state: $G \rightarrow G + \delta G$,

$$\delta G(1;3) = \int_{\mathcal{C}} L(1,2';3,4') \delta h(4';2') \,.$$

General concept 1999: N. Kwong and MB²⁶

- 1998: optical absorption of semiconductors, exciton formation²⁷
- 2000: application to plasmon spectrum of correlated electron gas²⁸
- 2007: optical absorption of atoms²⁹

- 2012: double excitations of correlated systems³⁰

- ²⁹N. Dahlen and R. van Leeuwen, PRL **98**, 153004 (2007)
- ³⁰K. Balzer, S. Hermanns and M. Bonitz, EPL **98**, 67002 (2012);
- N. Säkkinen, M. Manninen and R. van Leeuwen, New J. Phys. 14, 013032 (2012)

M. Bonitz (Kiel University)

²⁶ M. Bonitz, N.H. Kwong, D. Semkat, and D. Kremp, Contrib. Plasma Phys. **39**, 37 (1999)

²⁷N.H. Kwong, M. Bonitz, R. Binder and S. Köhler, phys. stat. sol. (b) **206**, 197 (1998)

²⁸N.H. Kwong, and M. Bonitz, Phys. Rev. Lett. **84**, 1768 (2000)

Complex Spectra from simple selfenergies

Contrib. Plasma Phys. 39 (1999) 1-2, 37-40

Generalized Kadanoff-Baym Theory for Non-Equilibrium Many-Body Systems in External Fields. An Effective Multi-Band Approach

M. BONITZ, N.H. KWONG, D. SEMKAT, D. KREMP

correlated system in ext. field U: Dyson equation (on Keldysh contour)

$$\begin{split} G &= G_0^{[0]} + G_0^{[0]} (\Sigma + U) G, & \text{equivalent to system:} \\ G^{[0]} &= G_0^{[0]} + G_0^{[0]} \Sigma^{[0]} G^{[0]}, & ^{[0]}: \text{ field-free, but correlated} \\ G &= G^{[0]} + G^{[0]} (\Sigma^{[1]} + \Sigma^{[2]} + \dots + U) G, & \text{add field} \end{split}$$

in linear response the last eq. becomes ($\Xi^{[0]}$: field-free 2-particle kernel):

$$G^{[1]} = G^{[0]} + G^{[0]}(\Sigma^{[1]} + U)G^{[0]}, \quad \Sigma^{[1]} \equiv \Xi^{[0]}G^{[1]}$$

M. Bonitz (Kiel University)

Nonequilibrium Green functions

CECAM, May 6 2015

C A U Christian-Albrechts-Universität zu Kiel Mathematisch-Naturmissenschaftliche Fekultät

First order (in U) Green function (particle-hole NEGF):

L obeys Bethe-Salpeter equation ($\Sigma^{[1]} \equiv \Xi^{[0]} G^{[1]}$):

equivalent to³¹:

$$\Xi^{[0]} \to K(1,2;3,4) = V \pm \delta \Sigma(1;3) / \delta G(4;2)$$
.

³¹N.H. Kwong, and M. Bonitz, Phys. Rev. Lett. **84**, 1768 (2000)

Example 1: $\Sigma = \Sigma^{HF}$

K includes T-matrix and ring diagrams, i.e. exciton-like bound states

M. Bonitz (Kiel University)

Nonequilibrium Green functions

CECAM, May 6 2015 51 / 5

$\boxed{K} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$

- K includes particle-hole T-matrix diagrams
- when applied to uniform electron gas:
- \rightarrow yields correlated plasmon spectrum with vertex corrections (f-sum rule preserving)^{32}

³²N.H. Kwong, and M. Bonitz, Phys. Rev. Lett. **84**, 1768 (2000)

Hubbard cluster spectrum for $\Sigma = \Sigma^{GKBA+2B}$

Real-time propagation following weak excitation and Fourier transform Example: N = 8, n = 1/2, U = 0.1

 GKBA: increased resolution of spectra. Capture double excitations³³ improve on earlier results^{34 35}

M. Bonitz (Kiel University)

Nonequilibrium Green functions

³³S. Hermanns, N. Schlünzen, and M. Bonitz, PRB **90**, 125111 (2014)

³⁴N. Säkkinen, M. Manninen, and R. van Leeuwen, New J. Phys. 14, 013032 (2012).

³⁵K. Balzer, S. Hermanns, and M. Bonitz, Europhys. Lett. 98, 67002 (2012).

Outlook:

time-propagation with T–Matrix selfenergy yields BSE kernel $K^{T_{eh}}$:

S. Hermanns, N. Schlünzen, and M. Bonitz, to be published

Numerical possibilities (approximate)

C A U Christian-Albrechts-Universität zu Kie Mathematisch-Naturwissenschaftliche Fakultät

Up to $N_{\rm s} = 500$, up to $T = 1000 J^{-1}$

M. Bonitz (Kiel University)

CECAM, May 6 2015 55 / 57

- Correlated quantum systems in non-equilibrium failure of Boltzmann-type kinetic equations
- INEGF: can treat mixed and pure states, conserving
 - advantageous scaling with N (limitation: basis size)
 - **0** GKBA \Rightarrow efficiency gain, no artificial damping

Oynamics of finite Hubbard clusters

- Iong Hubbard simulations, strong excitation (small U)
- strong correlations accessible via T-matrix and GKBA+T
- Transport of strongly correlated fermions: good agreement with cold atom experiments
- **I High-quality spectra via time-propagation of KBE**

References

- MB and D. Semkat, *Introduction to Computational Methods in Many-Body Physics*, Rinton Press 2006
- K. Balzer, and M. Bonitz, Springer Lect. Not. Phys. 867 (2013)
- www.itap.uni-kiel.de/theo-physik/bonitz

Don't miss: (see web page above)

→ Progress in Nonequilibrium Green functions VI, Lund August 17-21
 → Isolated many-body quantum systems out of equilibrium: from unitary time evolution to quantum kinetic equations (Heraeus-Seminar)
 30 Nov - 3 Dec, Bad Honnef, Germany

CIAU

hristian-Albrechts-Universität zu Kie