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Abs t rac t  

The Kadanoff-Baym approach (two-time nonequilibrium Green's functions approach) is extended to charged 
particle systems in external fields. It is shown that its combination with an effecive multi-band picture' yields 
a powerful theoretical and numerical method to describe correlated many-body systems in nonequilibrium. 

1 Kadanoff-Baym approach  to relaxation in many-body systems 

Ultrafast relaxation processes in quantum many-body systems are presently attracting much 
interest, especially due to the development of femtosecond lasers and their rapidly growing 
availabilty and application. The theoretical description of relaxation on a femtosecond scale 
is difficult because it requires to take into account complex processes, such as the buildup 
of correlations and of dynamical screening or the formation of bound states. This is far 
beyond the scope of conventional (Boltzmann-type) kinetic equations; among the possible 
generalizations, the two-time Kadanoff-Baym approach [2] was found to be advantageous 
[3] due to  its remarkable internal consistency because all approximations are determined by 
a single function (the selfenergy C). 

After investigating the general properties of the KBE, e.g. [3], we now extend this 
approach to correlated many-particle systems under the influence of quite general external 
fields U. 

2 Externa l  fields. Generalized In t e rband  K B E  

We consider an N-particle system with the Hamilton operator 

Ei(t) = ksvs + C O(j.;,@;, t ) ,  i = 1,. . . N ,  (1) 
i 

where the system Hamiltonian is hsys = xi hi(@;) + & j  V ; j ,  with ki and V ; j  being the 
one-particle Hamiltonian and the binary interaction potential, respectively. The external 
potential 0 may be for instance '(but is not limited to) a transverse electromagnetic field 
or a longitudinal electric field. The best known and analyzed example, e.g. [4, 51, are 
semiconductors subject to a low intensity laser field which may excite electrons from one 
energy band (PI) to another (pz) .  Here, the appropriate theoretical basis is given by the 
interband KBE which are the coupled equations of motion for the one-particle two-time 
correlation matrix Gala2(t1tz) describing the intmband (pl  = p2) and interband (PI # pz) 
propagation of electrons. For the explicit equations and numerical solutions, see [3, 61. 

'Thiw concept **I first presented at the German Phy.ic.1 Society (DPG) Spring meeting, Regensburg, March 1998 [l]. 
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On the other hand, it is well known that an interband transition of a single electron can 
equivalently be described as the two-particle process of creation of an electron-hole pair 
in the conduction/valence band. The corresponding theoretical description is given by 
the Bethe-Salpeter equation for the two-particle (four-point) Green's function Gleh] [7]. 
It fully describes the propagation of an e-h pair, including the correlations between the 
particles and - if taken in ladder approximation - also the possibility to form a bound 
state (incoherent exciton). From the view of this complicated theory, it must be a surprise 
that excitonic phenomena are described also in the simpler interband KBE discussed above 
where, moreover, the selfenergies C have to be taken only in Hartree-Fock approximation, 
e.g. [4,5]. In the following, we will consider the correspondence of the two approaches more 
in detail and discuss possible generalizations of the one-particle multi-band description to 
other many-body systems. 

Let us consider the KBE (Dyson equation) for the nonequilibrium Green's functions for 
system (1) which we write in integral form on the Keldysh contour, 

G = G!] + G!] (c+ U )  G, (2) 
where the full Green's function G is generated from the uncorrelated (subscript "0") and 
field-free (superscript "[O]" denotes U = 0) Green's function Gtl under the action of C and 
U. To separate the correlation and field effects, we rewrite (2) according to 

where G[O] is.the correlated field-free Green's function. The field appears now only in the 
second equation, where we also took into account that U gives rise to additional contributions 
to C, which are written as an expansion in powers of the field with C["1 N Urn. While these 
equations may be analyzed for arbitrary field strength, e.g. [4], the comparison with the 
Bethe-Salpeter theory is performed most easily for weak fields. 

3 Weak field. Linear response 

If U is small so that, for all m > 1, C["] << C"], Eq. (4) may be linearized in the field 
leading to GI1] = G['] (C"] + U )  G['], which may be written diagrammatically as 

( 5 )  
where a single full line stands for iG['], a double line for iG"1 and a dashed line for ( - i )U.  
Expressing the first order selfenergy by a field-free four-point vertex 5['] times a first order 
Green's function, C['] = ZIO]G[l], [8], Eq. (5) can be solved by iteration, 1 = }-.* + B--* + )-ql-qp-.. + ... = p* 

(6) 
where we defined a generalized retarded susceptibility LR.  I ts  equation of motion follows 
immediately from Eq. (6), and is just the Bethe-Salpeter equation: 

(7) 
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Thus, we have established a direct relation between the one-particle and two-particle 
approaches given by equations ( 5 )  and (7), respectively. Moreover, we have derived a one 
to one correspondence between the central quantities of the two theories, the single-particle 
selfenergy C['] and the two-particle vertex do]. In choosing an approximation for C[O], we 
immediately may derive the equivalent result for :['I. This will be demonstrated below for 
two important examples. 

4 Examples for C[O] and corresponding results for C['] a n d  do] 

The procedure of deriving I?['] for a given C['] is straightforward. First, one has to determine 
C['] which follows from C[O] by replacing one G['] by a full G['] (each G[O] gives rise to a 
separate class of diagrams), see e.g. Eq. (8). Next, with this C"], Eq. (5) is solved by 
iteration, starting with G['] = G[olUG[ol and so on. Finally, the appearing diagrams have 
to be summed and classified. 

I. We start from the Hartree-Fock approximation for El']. The result is 

--x + ---x 

+ ... 

(8) 
where V is the Coulomb potential and T the T-matrix. Thus, already the Hartree-Fock 
selfenergy in the interband KBE gives rise to a Bethe Salpeter equation on the T-matrix + 
ring diagrams level, and, therefore, includes bound states, as mentioned above. 

11. Now the interesting question arises, which consequences for r[O] has the inclusion of 
correlations in C[']. Using the random phase approximation we obtain a result of the same 
form, except for a more general function K ,  

(9) 
which involves the dynamic potential Vjol and vertex correct.3n.s. This . d s  to a dynami- 
cally screened T-matrix T ,  cf. Eq. (8). 

5 Conclusions 

In this paper, we have established the correspondence between the one and two-particle 
descriptions of nonequilibrium many-body systems and demonstrated that the one-particle 
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multi-band approach is able to describe the same phenomena with a much simpler approx- 
imation. Two restrictions apply: the KBE approach crucially depends on the existence 
of the field U and allows only to reproduce the retarded two-particle quantities (i.e. the 
response properties) and, furthermore, the exact correspondence exists only for the linear 
response case. However, the crucial point is beyond this formal correspondence and lies in 
its far reaching practical consequences: It opens the possibility to switch from one descrip 
tion to the other whenever needed, taking advantage of favorable properties of both. In 
particular, one can use the KB approach with its known consistency properties to include 
into the Bethe-Salpeter theory correlations in a systematic way, thereby fully preserving 
conservation laws, sum rules etc. Furthermore, the Kadanoff-Baym approach, being now 
feasible for direct numerical solution [3, 61, may be used to compute the time dependent 
excitation and relaxation dynamics of many-body systems subject t o  a field, fully taking 
into account correlation effects on a very high level, such as the dynamically screened ladder 
approximation. 

While, for weak fields, the ‘solution G[’1 is essentially the band-off-diagonal Green’s 
function, the calculations may be directly extended to strong fields where also the band 
occupations will be affected by the field. 

Interestingly, this approach may be extended to other many-body systems, if there 
exists a field U the action of which consists in creating a particle (particle-hole, particle- 
antiparticle) pair. For example, it  allows for a n  efficient analysis of nonlinear plasma oscil- 
lations in nonideal quantum systems [9]. 
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