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Kadanoff-Baym equations with initial correlations

D. Semkat, D. Kremp, and M. Bonitz
Fachbereich Physik, Universita¨t Rostock, Universita¨tsplatz 3, 18051 Rostock, Germany

~Received 10 August 1998!

Equilibrium and nonequilibrium properties of nonideal many-particle systems are strongly influenced by
correlation effects that are well described by generalized quantum kinetic equations, in particular, the
Kadanoff-Baym equations~KBE!. However, these equations are usually derived under the assumption of the
weakening of initial correlations~Bogolyubov’s condition! and, therefore, fail to correctly describe the short
time behavior. We demonstrate that this assumption is not necessary for the derivation of the KBE. Using
functional derivatives techniques, we present a straightforward generalization of the KBE that allows us to
include arbitrary initial correlations and that is more general than previous derivations. As a result, an addi-
tional collision integral is obtained, which is being damped out after a few collisions. Our results are comple-
mented with numerical investigations showing the effect of initial correlations.@S1063-651X~99!11202-9#

PACS number~s!: 05.20.Dd, 52.25.Dg
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I. INTRODUCTION AND BASIC EQUATIONS

The Kadanoff-Baym equations~KBE! for the two-time
correlation functionsg:(1,18), 15(r1t1s1) have been very
successful in the description of the nonequilibrium proper
of quantum many-body systems, thereby allowing for a h
degree of generality. Knowing the temporal evolution
these correlation functions, most properties of the system
be calculated, including the Wigner distribution, the spec
function, the mean kinetic and interaction energy, and so
However, despite their fundamental role in many-parti
theory, the original KBE@1# have a principal weakness—
they do not contain initial correlations. Indeed, fort and t8
approaching the initial timet0 , the KBE yield the Hartree-
Fock equations, thus describing an uncorrelated system.
thermore, it can be shown@2# that the KBE follow from the
exact equations of motion for the correlation functions~the
Martin-Schwinger hierarchy! under the assumption o
Bogolyubov’s condition of weakening of the initial correla
tions. Therefore, the KBE are unable to describe the ini
stage of the evolution (t0<t<tcor , wheretcor is the corre-
lation time! and the influence of initial correlations, whic
can be important for ultrafast relaxation processes.

This shortcoming of the KBE has been first pointed out
Fujita @3#. Fujita proposed generalized Kadanoff-Baym equ
tions that, unfortunately, turned out to be inconsistent w
the exact equations of motion for the correlation functio
Further investigations of these problems have been
formed by Craig@4# and Hall @5# who used a generalize
perturbation theory, which incorporates initial correlation
A convincing solution has been presented by Danielew
@6#. He developed aperturbation theory for a general initia
stateand derived generalized KBE, which take into accou
arbitrary initial correlations@7#.

In this paper, we present a derivation of closed equati
of motion for the one-particle Green’s functions~correlation
functions!, which is not based on perturbation theory. In-
stead, we use a straightforward and very intuitive meth
which was proposed in Refs.@2,8#, to generalize the KBE to
the case ofarbitrary initial correlations.

The starting point of this nonperturbative method is t
PRE 591063-651X/99/59~2!/1557~6!/$15.00
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Martin-Schwinger hierarchy, a system of coupled equatio
for the s-particle Green’s function that is defined on th
Keldysh contourC by

g1, . . . ,s~1, . . . ,s;18, . . . ,s8!

5S 1

i D
s

^TC@C~1!•••C~s!C1~s8!•••C1~18!#&, ~1!

whereC is the field operator,TC the time ordering operato
on the contour, and̂•••& denotes averaging over the dens
operatorr. The first hierarchy equation is the equation
motion for the single-particle Green’s function

E
C
d1̄$g1

021
~11̄!2U~11̄!%g1~ 1̄18,U !5d~1218!

6 i E d2V~122!g12~121821!, ~2!

with U being an external potential andg1
021

the inverse
Green’s function

g1
021

~118!5S i
]

]t1
1

¹1
2

2mD d~1218!. ~3!

Equation~2! is not a closed equation forg1(118), because
the interaction leads to a coupling of the one-particle to
two-particle function and so on. The general form of t
resulting hierarchy is

E
C
d1̄$g1

021
~11̄!2U~11̄!%gs~ 1̄, . . . ,s;18, . . . ,s8!

5 (
n851

n

~61!n821d~12n8!

3gs21~2, . . . ,s;18, . . . ,n821,n811, . . . ,s8!

6 i E daV~12a!gs11~1, . . . ,a;18, . . . ,s,a1!, ~4!

with a5s11,V(122)5V(r 12r 2)d(t12t2), andV(12a)
5V(r 12r s11)d(t12ts11).
1557 ©1999 The American Physical Society
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To make further progress, the hierarchy has to be dec
pled by means of suitable approximations, which leads t
closed system of equations for the firsts Green’s functions.
This requires us to find formal solutions for the higher-ord
functions.

The system~4! constitutes first-order differential equa
tions with respect to the time; therefore, initial~or boundary!
conditions are required, which constrain the solution. W
further remark that in the derivation of the hierarchy,
assumptions about the density operatorr, which appears in
Eq. ~1!, have been made. On the other hand, the explicit fo
of r has an influence on the boundary conditions. For
ample, in thermodynamic equilibrium with a grand canoni
density operator, the solutions to Eqs.~4! are uniquely fixed
by the Kubo-Martin-Schwinger condition. However, for re
time nonequilibrium Green’s functions this condition is n
valid. In this case, the most general and natural choice i
supply initial conditions for the higher order Green’s fun
tions. In particular, we will be interested in a closed equat
for the one-particle Green’s function; then, the required i
tial condition is given by

g12~121828!u t15t25t
185t

285t0
5g12~ t0!5g12

0 . ~5!

The familiar condition of weakening of initial correlation
which is commonly used in kinetic theory, follows as a sp
cial case of Eq.~5! from the limit

lim
t0→2`

g12~121828!u t15t25t
185t

285t0

5@g1~118!g1~228!6g1~128!g1~218!#u t15t25t
185t

285t0
.

~6!

As was shown in Ref.@2#, a decoupling of the hierarchy with
condition ~6! directly yields the original equations o
Kadanoff and Baym. Therefore, the question arises how
KBE will change if in the derivation, condition~6! is re-
placed by Eq.~5!.

II. SELF-ENERGY AND INITIAL CORRELATIONS

A formally closed equation for the one-particle Green
function can be derived by introducing the self-energ
which we define on the Keldysh contour, by

E
C
d1̄S~11̄!g1~ 1̄18!56 i E d2V~122!g12~121821!.

~7!

Taking into account thatg12 can be derived fromg1 by
means of functional derivation, we can rewrite Eq.~7! as

E
C
d1̄S~11̄!g1~ 1̄18!

56 i E d2V~122!

3H 6
dg1~118,U !

dU~212!
1g1~118!g1~221!J . ~8!
u-
a

r

e

-
l

to

n
-

-

e

,

Since the self-energy follows from the two-particle Green
function, definition ~7! becomes unique only if the initia
condition ~5! is properly taken into account. With this defi
nition of the self-energy, we have obtained a formally clos
equation for the one-particle Green’s function on t
Keldysh contour, which may be cast into the form

E
C
d1̄$g1

021
~11̄!2U~11̄!2S~11̄!%g1~ 1̄18,U !5d~1218!.

~9!

This equation is a compact notation of the Kadanoff-Ba
equations and is sometimes called the Dyson-Schwin
equation. The same procedure for the adjoint of Eq.~2! leads

to the adjoint Dyson equation with the self-energyŜ. As we

will see below,S5Ŝ for all times t,t8.t0 .
So far our considerations have been formal, and a num

of questions remain open, among them:~a! Does the self-
energy defined by Eq.~7! exist?~b! How do initial correla-
tions affect the self-energy and, thus, the KBE?~c! How can
one derive suitable approximations for the self-energy?
answer these questions, we return to the definition~8! of the
self-energy. Further analysis of this equation requires us
evaluate the functional derivative

dg1~118,U !

dU~282!
56$g12~121828!2g1~118!g1~228!%

56L~121828!, ~10!

for which a simple procedure has been given@9#. Here,L is
the density fluctuation function. The result is not an arbitra
four-point function, but it is restricted toL(1,r 2t2,18,r 28t2)
because of the temporally local character of the poten
U(282)5U(r 28r 2)d(t22t28). However, this restriction doe
not influence our further considerations, and so all four-po
functions, which appear, can be regarded as formally no
cal.

For t,t8.t0 , the Dyson equation can be written in th
form

E
C
d1̄g1

21~11̄!g1~ 1̄18!5d~1218!, ~11!

where we introduced the inverse Green’s function

g1
21~118!5g1

021
~118!2U~118!2S~118!. ~12!

Functional differentiation of Eq.~11! for t,t8.t0 yields eas-
ily

E
C
d1̄

dg1
21~11̄!

dU~282!
g1~ 1̄18!52E

C
d1̄g1

21~11̄!
dg1~ 1̄18!

dU~282!
.

~13!

Using Eq.~12!, the general solution of this equation is foun
immediately;
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dg1~118!

dU~282!
5g1~128!g1~218!1E

C
d1̄d1̄̄g1~11̄!

3
dS~ 1̄1̄̄!

dU~282!
g1~ 1̄̄18!6C~121828!, ~14!

whereC is an arbitrary function, which obeys the homog
neous equation, i.e.,

E
C
d1̄g1

21~11̄!C~ 1̄21828!50. ~15!

There are three similar conditions, one following from t
crossing symmetry (1↔2) and two from the adjoint Dyson
equation.

Let us now analyze the physical and mathematical con
quences of the functionC(121828). To this end, we conside
Eq. ~14! in the limit t,t8→t0 . In this case, the integral ove
the Keldysh contour vanishes, and it directly follows

L~r 1 ,r 2 ,r 18 ,r 28 ,t0!5C~r 1 ,r 2 ,r 18 ,r 28 ,t0!

6g1~r 1 ,r 28 ,t0!g1~r 2 ,r 18 ,t0!. ~16!

Hence, the functionC(t0) is to be identified with initial bi-
nary correlations. Furthermore, using the commutation r
tions for the field operators at equal times, it is readily ve
fied that all Keldysh components ofL differ only by one-
particle functions. This means,C(t0) is a universal initial
correlation, that is the same for the correlation functions a
for the causal and anticausal Green’s functions as well.

After having given a physical interpretation to the fun
tion C(t0), we now explore its temporal evolution. For th
purpose, we consider the four conditions forC, Eq. ~15! and
the three analogous relations, which are valid on the Keld
contour. Taking into consideration that~a!, the inverse func-
tion g21 acts only on one variable ofC and ~b!, the initial
value is universal for all Keldysh components, one read
verifies the following two properties ofC: ~i! C is a function,
which does not depend on the positioning of the times on
Keldysh contour. That means it is completely determined
its values on the physical time axis.~ii ! C obeys four equa-
tions, which follow from Eq.~15!, by using the identitySc

2S,5SR,

E d1̄g1
R21

~11̄!C~ 1̄21828!50, with g1
R21

~11̄!

5g1
021

~11̄!2U~11̄!2SR~11̄!,

~17!

and analogously for the other three conditions.
The four equations of the type~17! have to be solved

together with the initial condition

C~121828!u t15t25t
185t

285t0
5C~ t0!. ~18!

This is done conveniently by introducing the functiong1
R,

which is the retarded function of the homogeneous differ
tial Eq. ~17!, and satisfies
-

e-

-
-

d

h

y

e
y

-

E d1̄g1
R21

~11̄!g1
R~ 1̄18!5d~1218!. ~19!

As a result, the solution of the initial value problem~17! and
~18! can be written as

C~121828!5E dr̄1dr̄2dr̄̄1dr̄̄2g1
R~1,r̄ 1t0!g1

R~2,r̄ 2t0!

3C~ r̄ 1t0 , r̄ 2t0 , r̄̄ 1t0 , r̄̄ 2t0!g1
A~ r̄̄ 1t0,18!

3g1
A~ r̄̄ 2t0,28!, ~20!

whereC( r̄ 1t0 , r̄ 2t0 , r̄̄ 1t0 , r̄̄ 2t0) denotes the coordinate repre
sentation of the correlation part of the two-particle dens
operator. With this result, the density fluctuation functionL
is formally defined too.

In order to rewrite all relations in a compact way on t
Keldysh contour, we take into account that for a functi
C(121828), which is uniquely defined on the physical tim
axis, it holds

E
C
d1̄g1~11̄!C~ 1̄21828!5E d1̄g1

R~11̄!C~ 1̄21828!,

~21!

and, therefore, Eq.~20! can be rewritten in the form

C~121828!5E
C
d1̄d2̄d1̄̄d2̄̄g1~11̄!g1~22̄!

3c~ 1̄2̄1̄̄2̄̄!g1~ 2̄̄28!g1~ 1̄̄18!, ~22!

with

c~ 1̄2̄1̄̄2̄̄!5c~ r̄ 1t0 , r̄ 2t0 , r̄̄ 1t0 , r̄̄ 2t0!d~ t̄ 12t0!

3d~ t̄ 22t0!d~ t̄̄ 12t0!d~ t̄̄ 22t0!. ~23!

Let us now come back to the self-energy. Introducing E
~14! with solution ~22! into Eq. ~8!, the latter can be solved
by acting on it withg21. The result is a functional equatio
for the self-energy:

S~118!56 i E d2V~122!H 6E
C
d1̄g1~11̄!

dS~ 1̄18!

dU~212!

1d~1218!g1~221!6d~2218!g1~121!

1E
C
d1̄d2̄d2̄̄g1~11̄!g1~22̄!c~ 1̄2̄18 2̄̄!g1~ 2̄̄21!J .

~24!

An analogous equation follows readily forŜ. With Eq. ~24!,
the self-energy is given as a functional of the interaction,
initial correlations, and the one-particle Green’s functio
where the initial correlations are contained in the last te
From the definition ofc, Eq. ~22!, it is obvious that this
contribution is local in time with ad-type singularity att
5t8. Additional terms of this structure arise from the fun
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tional derivative. A further important property of the se
energy follows from comparingS, Eq. ~24!, with the corre-

sponding expression forŜ. One verifies thatS5Ŝ for all
times t,t8.t0 , which means, in particular, that for thes
times, a well-defined inverse Green’s function does exist

Equation~24! is well suited to come to approximation
for the self-energy. By iteration, a perturbation series forS
in terms ofg,V, andC can be derived, which begins with

S1~118!56 id~1218!E d2V~122!g1~221!

6 i E d2V~122!E
C
d1̄d2̄d2̄̄g1~11̄!g1~22̄!

3c~ 1̄2̄18 2̄̄!g1~ 2̄̄21!1~exchange!. ~25!

It is now instructive, to introduce Feynman diagrams, wh
allows for the following representation of formula~25!:

~26!

In contrast to conventional diagram techniques, we h
introduced the initial correlations as a new basic eleme
drawn as a shaded rectangle. Second-order contribution
evaluated straightforwardly, too, with the result

S2~118!5S1~118!6 i 2E
C
d2d2̄V~122!

3g1~118!g1~22̄!V~ 2̄218!g1~ 2̄21!

6 i 2E
C
d2d1̄d2̄d1̄̄d2̄̄d2̄̄̄V~122!

3g1~11̄!g1~22̄!V~ 1̄22̄!g1~ 1̄1̄̄!g1~ 2̄2̄̄!

3c~ 1̄̄2̄̄18 2̄̄̄!g1~ 2̄̄̄21!1•••1~exchange!,

~27!

or, in terms of Feynman diagrams,

~28!

The analysis of the iteration scheme allows us to concl
that all contributions to the self-energy~all diagrams! fall
into two classes:~i! the termsSHF undSc, which begin and
end with a potential, and~ii ! S in—those which begin with a
potential but end with an initial correlation. This means t
self-energy has the structure
e
t,
are

e

S~118!5SHF~118!1Sc~118!1S in~118!, ~29!

S in~118!5S in~1,r 18t0!d~ t182t0!. ~30!

The initial correlation part of the self-energy turns out to
a temporally local contribution~similar to the Hartree-Fock
term! that is nonzero only ift18 ~or, in the adjoint case,t1) is
equal to the initial timet0 .

Interestingly, the same result was obtained
Danielewicz based on his perturbation theory for general
tial states@6#, which was mentioned in the Introduction. Th
agreement of the two approaches becomes particularly o
ous from the diagrammatic representation ofS.

If one considers the first two iterations for the self-energ
Eqs.~25! and~27!, more in detail, it becomes evident that,
the initial correlation contribution in front of the functionc,
appear just the ladder terms, which lead to the buildup of
two-particle Green’s function. Thus, obviously, the iterati
‘‘upgrades’’ the product of retarded one-particle propagat
in the functionC to a full two-particle propagator, in the
respective order, i.e.,S in is of the form

S in~118!56 i E d2V~122!E dr̄1dr̄2dr̄̄1dr̄̄2

3g12
R ~12,r̄ 1t0 , r̄ 2t0!c~ r̄ 1t0 , r̄ 2t0,18, r̄̄ 2t0!

3g1
A~ r̄̄ 2t0,21!d~ t182t0!. ~31!

Notice especially that this renormalization occurs not sy
metrically, i.e., in the adjoint of Eq.~31!, S in[@S in#† (S in

denotes the initial correlation contribution ofŜ) appears the
adjoint propagatorg12

A .

III. GENERALIZED KADANOFF-BAYM EQUATIONS

Let us now come back to the Kadanoff-Baym equatio
In order to discuss the influence of initial correlations, w
insert expression~29! into Eq. ~2! and find

E
C
d1̄@g1

021
~11̄!2U~11̄!2SHF~11̄!#g1~ 1̄18!

5d~1218!1E
C
d1̄@Sc~11̄!1S in~11̄!#g1~ 1̄18!.

~32!

From this equation, we obtain the KBE for the correlati
functions if we restrict the time arguments to oppos
branches of the Keldysh contour:

S i
]

]t1
1

¹1
2

2mDg1
:~118!2E d1̄U~11̄!g1

:~ 1̄18!

2E dr̄1SHF~11̄!g1
:~ 1̄18!

5E
t0

`

d1̄SR~11̄!g1
:~ 1̄18!1E

t0

`

d1̄@S:~11̄!

1S in~11̄!#g1
A~ 1̄18!, ~33!

whereas the adjoint equation reads



w

ce

e
te

e-
i-

g

th

e

a
-

o-
d

l

re-
-
f

on
-
en,

ator

for

r-
ns

lf-
ini-
on

in

a-
es
e
n-
nd

ini-

o a

to
tly
itial
fter
at,
by

or

PRE 59 1561KADANOFF-BAYM EQUATIONS WITH INITIAL CORRELATIONS
S 2 i
]

]t18
1

¹18
2

2mD g1
:~118!2E d1̄g1

:~11̄!U~ 1̄18!

2E dr̄1g1
:~11̄!SHF~ 1̄18!

5E
t0

`

d1̄g1
R~11̄!@S:~ 1̄18!1S in~ 1̄18!#

1E
t0

`

d1̄g1
:~11̄!SA~ 1̄18!. ~34!

In contrast to the original KBE, there are two important ne
properties, which have to be underlined here: Equations~33!
and ~34! are valid for anarbitrary initial time point t0 , and
they explicitly contain the influence ofarbitrary initial cor-
relations in the additional self-energy termS in.

The analytical properties of the retarded and advan
Green’s functions give rise to a dampingg12 leading to a
decay of the initial correlation term after a time of the ord
t;1/g12;tcor . Thus, there is no need at all to postula
Bogolyubov’s weakening condition; fort.tcor , the gener-
alized Kadanoff-Baym equations switch from the initial r
gime into the kinetic, or Bogolyubov regime, ‘‘automat
cally.’’

As we have seen in the previous section, the termS in

contains all singular in time contributions to the self-ener
~except the Hartree-Fock term, of course!. The importance of
this temporal structure becomes obvious if we consider
Kadanoff-Baym equations in the limitt,t8→t0 . Then only
the terms withd singularities remain, and we get for th
right-hand side,

E dr2V~r 12r 2!$g1~r 1r 18 ,t0!g1~r 2r 28 ,t0!

6g1~r 1r 28 ,t0!g1~r 2r 18 ,t0!1c~r 1r 2r 18r 28 ,t0!%,

~35!

which is just the right-hand side of the first hierarchy equ
tion ~2!, for t5t85t0 . This identity is an essential consis
tency criterion for the theory. This condition would be vi
lated if weakening of initial correlations would be assume

FIG. 1. Time evolution of kinetic, potential, and total energy f
zero~solid lines! and nonzero~dashed lines! initial correlations. The
initial distribution is an uncorrelated equilibrium~Fermi! distribu-
tion with T5290 K andn51018 cm23.
d

r

y

e

-

,

since then Eqs.~33! and ~34! would go over into the usua
Kadanoff-Baym equations, which in the limitt,t8→t0 , yield
the Hartree-Fock equations.

A further consistency criterion is, of course, the requi
ment that the equal time limit of the additional collision in
tegral of Eq.~33! coincides with the well-known results o
density operator theory, e.g.,@10,11#. In order to explore this
problem more in detail, we consider the approximati
g12

R/A;g1
R/A

•g2
R/A , i.e., the initial correlation part of the self

energy is taken in second-order Born approximation. Th
I IC(t) reads, in momentum representation,

I IC~p1 ,t !572\5E dp2

~2p\!3

dp̄1

~2p\!3

dp̄2

~2p\!3

3V~ p̄12p1!~2p\!3d~p11p22 p̄12 p̄2!

3Im$g1
R~ p̄1 ,tt0!g1

R~ p̄2 ,tt0!

3c~ p̄1 ,p̄2 ,p1 ,p2 ;t0!g1
A~p2 ,t0t !g1

A~p1 ,t0t !%,

~36!

which exactly agrees with the corresponding density oper
result.

It is readily confirmed that the collision integral~36!
conserves density and total energy and that it vanishes
t@tcor ; see, also, the numerical results below.

IV. NUMERICAL ILLUSTRATIONS AND DISCUSSION

For illustration of our theoretical results, we have pe
formed numerical solutions of the Kadanoff-Baym equatio
including the initial correlation integral~36!. We considered
the relaxation of a weakly coupled electron gas with se
energies in second Born approximation. Starting from an
tial nonequilibrium distribution, we compared the relaxati
for two cases:~1! without initial correlations,C(t0)[0, and
~2! with nonzero initial correlations, which were chosen
the form of the Debye pair correlation function,

C~q,p1 ,p2 ,t0!52
VD~q!

kT
f ~p1! f ~p2!

3@12 f ~p11q!#@12 f ~p22q!#,

~37!

where f [ f (t0). As expected, the presence of initial correl
tions turns out to be important on short times. This becom
particularly clear from analyzing the time evolution of th
mean potential and kinetic energy, Fig. 1. While for the u
correlated initial state, potential energy starts with zero a
builds up continuously, the picture changes if there exist
tial correlations. With the choice of the form~37!, the corre-
lations are stronger than in equilibrium that corresponds t
larger magnitude of potential energy att5t0 , which, conse-
quently, is reduced in the course of the relaxation. Due
conservation of total energy, kinetic energy shows exac
the opposite trend. One clearly sees the decay of the in
correlation term as the curves for the two cases merge a
times of the order of the correlation time. This confirms th
indeed, Bogolyubov’s weakening principle is reproduced
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the presented generalized Kadanoff-Baym equations in a
namic and self-consistent way.

The behavior of the initial correlation term can be an
lyzed directly by investigating its contribution to the corr
lation energy,

^V&~ t !5
1

4
V\E d3p

~2p\!3S i\
]

]t
2 i\

]

]t8
2

p2

m D
3~6 i !g,~p,t,t8!u t85t , ~38!

with V denoting the system volume. Since this quantity
essentially determined by the derivative of the correlat

FIG. 2. Imaginary part of the initial correlation contribution
the t derivative of the correlation functiong,(tt8) for t5t8(t
50).
s

at
u
g.

n
lib
y-

-

s
n

function g,(tt8) perpendicular to the time diagonal fort
5t8 ~i.e., derivative with respect tot[t2t8,]/]t5]/]t
2]/]t8), this derivative can be used to isolate the effect
initial correlations on^V&. In fact, ]g/]t;2i Im(I 1I IC),
cf. Eqs. ~33! and ~34!. We, therefore, show in Fig. 2 th
evolution~along the time diagonal! of Im I IC as a function of
momentum. One clearly sees the decay of the initial corre
tions within the correlation time.

Our numerical results illustrate the effect of initial corr
lations on the short-time relaxation behavior for a simp
model case. But our theoretical approach is completely g
eral and allows for numerical investigations of far more co
plex initial correlations. Besides the fundamental interes
the problem of initial correlations in the Kadanoff-Bay
equations, our results are also of practical importance. W
the possibility to start quantum kinetic calculations from
general initial state, the scope of nonequilibrium processe
many-body systems, which are accessible for numerical
vestigation, is essentially extended. Although the determ
tion of C(t0) can be complicated by itself, our approac
allows us to separate this problem~the ‘‘generation’’ of the
correlated state! from the relaxation dynamics.
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