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T-matrix approach to equilibium and nonequilibrium carrier-carrier scattering in semiconductors
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An analysis of strong-coupling effects in carrier-carrier scattering in electron-hole plasmas in semiconduc-
tors is presented. The conventional approach to scattering and dephasing rates is based on the Born approxi-
mation~a scattering cross section proportional to the square of the dynamically screened interaction potential!,
and is strictly valid only in the limit of the weakly coupled quantum plasma. Otherwise, strong correlations are
expected to become important in the scattering quantities. Therefore, we perform a thorough analysis of
scattering rates in the framework of the statically screenedT-matrix ~ladder! approximation. We solve the
two-particle Schro¨dinger equation and provide explicit results for the carrier-carrier scattering rates in equilib-
rium as well as for optical excitation conditions. Numerical results for GaAs show evidence of significant
deviations from the common Born approximation. Finally, dynamic screening effects are included approxi-
mately.@S0163-1829~99!01815-9#
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I. INTRODUCTION

Recent impressive progress in the subpicosecond s
troscopy of electron-hole (e-h) plasmas in semiconductor
has made time-resolved high-precision optical measurem
possible1 which allow one to study the influence of carrie
carrier scattering; see, e.g., Refs. 2 and 3. Similar progre
observed in the field of semiconductor transport; for a rec
overview, cf. Ref. 4. This increased the need for a hig
quality theoretical modeling of the nonequilibrium properti
of charge carriers in semiconductors, including the relev
scattering and dephasing mechanisms, which has to be b
on kinetic equations such as the Boltzmann equation5–7 or its
interband extension, the semiconductor Bloch equation8,9

Among the various scattering processes, carrier-carrier s
tering plays a central role, and is expected to dominate
high-quality samples and at temperatures below the pho
threshold.

The commonly used carrier-carrier scattering models
characterized by~i! an approximation of the differential sca
tering cross sections~scattering probabilities! by the square
of the dynamically screened binary interaction potent
sab;uVab

S u2; and ~ii ! a Markovian form of the scattering
integrals. Strictly speaking, this confines the applicability
these models~i! to the case of weak carrier-carrier intera
tion ~see Fig. 1!, and ~ii ! to sufficiently long times (t
.tcor, where tcor is the correlation time of the system,10

which is of the order of the inverse plasma frequency11!.
While the second aspect has been intensively studied in
context of so-called memory effects in recent years,4,9,12–15

the first has attracted much less attention.16–18In particular, it
remains widely unclear how important strong-coupling
fects ~effects beyond the Born approximation! are for the
relaxation of a nonequilibrium carrier ensemble in semic
ductors.

Strong-coupling effects in two-particle scattering ha
been intensively studied in various fields, including nucle
PRB 590163-1829/99/59~16!/10639~12!/$15.00
c-

ts

is
nt
-

nt
sed

at-
in
on

re

l,

f

he

-

-

r

matter19 and dense plasmas.20,21 However, despite remark
able theoretical work,22–24a thorough quantitative investiga
tion for semiconductors which applies to general nonequi
rium situations is still missing. The theoretical approach h
to be based upon a summation of the full Born series~ladder
series! which yields theT-matrix approximation.21,23,25 To
analyze the relevance of these effects, it is useful to cons

FIG. 1. Strong-coupling region in equilibrium.n-T plane in
system-independent dimensionless parameters (d is the dimension-
ality! and for electrons in a bulk semiconductor~GaAs! ~upper and
lower figure, respectively!.
10 639 ©1999 The American Physical Society
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the dimensionless parametersG ~coupling parameter!, r s
~Brueckner parameter!, andx ~degeneracy parameter!:20

Ga[
u^Vaa&u
^Ta&

→
l

r̄
5

4pea
2

eBkBT

1

r̄
, ~1!

r s[
r̄

aB
, ~2!

xa[
naLa

3

2sa11
, La5A2p \2

makBT
. ~3!

Ga is essentially the ratio of the mean potential to the kine
energy of particles of species ‘‘a, ’ ’ which, in the classical
case, is equivalent to the ratio of the Landau lengthl to the
mean interparticle distancer̄ (ea is the charge andeB the
background dielectric constant!. Furthermore,r s is the ratio
of the interparticle distance to the Bohr radius of bou
states~excitons!, andx1/3 is essentially the ratio of the ther
mal ~DeBroglie! wavelengthLa to the interparticle distance
(sa is the spin projection!. Now the general prediction is tha
T-matrix effects are important in the so-called corner
correlations,21 where the mean correlation energy of the c
riers is comparable to or even larger than their mean kin
energy. In equilibrium, a reasonable estimate to the bou
aries of this region in the density-temperature plane is gi
by the lines21

Ga51 and r s50.7, ~4!

which are shown in Fig. 1 for an electron plasma ind dimen-
sions~upper figure! and for bulk GaAs~lower figure!. While
the first condition of Eq.~4! gives the low-density limit~clas-
sical plasma!, the second applies to the high-density ca
~quantum plasma!. Conversely, the commonly used Born a
proximation may be expected to be applicable only well o
side this region, although it is well known that even there
does not necessarily possess the correct limiting behavio
particular, the low-density~classical! limit of the Born ap-
proximation deviates from the exact asymptotic result~for
example, from the Spitzer result for the conductivity! which
is reproduced only from theT-matrix approximation; see
e.g., Ref. 21!. In fact, our numerical investigations show th
this is also the case for low-density electron-hole plasm
which is a further strong motivation to study carrier-carr
scattering in theT-matrix approximation.

However, these are rather general predictions which
quire a reliable quantitative verification. This is the intenti
of our investigation, which continues our previous work
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T-matrix effects in equilibrium.26 In this paper, we study
strong-coupling effects in carrier-carrier scattering in mo
detail, both in equilibrium and nonequilibrium, concentrati
on bulk material~choosing GaAs as an example! and using a
two-band model. We limit ourselves to nondegener
electron-hole plasmas (x,1), which allows us to advance
into the shaded region in Fig. 1 making use of efficient ph
shift techniques.27,28 Although forx.1 one does not expec
a qualitatively different behavior~an estimate of degenerac
effects is given in Sec. IV!, here one is forced to perform
computationally costly solutions of the Lippmann-Schwing
equation.29 Moreover, this approach is, so far, feasible on
in equilibrium.

This paper is organized as follows. In Sec. II A, we give
brief summary of the quantum kinetic description of optic
and transport processes in semiconductors, focusing on
influence of ~incoherent! carrier scattering and dephasin
contributions in the common Born approximation. Secti
II B gives a general discussion of theT-matrix approxima-
tion for the scattering rates. Next, in Sec. II C, we deri
explicit results for the equilibrium and nonequilibrium sca
tering rates for bulk semiconductors with an isotropic m
mentum distribution. Section III contains numerical resu
for the cross sections and scattering rates for equilibrium
well as nonequilibrium situations. Section IV concludes o
paper with an analysis of the limitations of the used appro
mation. In particular, the incorporation of dynamical scree
ing effects into theT matrices is discussed, and results a
presented.

II. THEORETICAL CONCEPTS

A. Interband quantum kinetic equations

We briefly recall the kinetic equations for a description
optical and transport phenomena in semiconductors. Foll
ing the notation of Kadanoff and Baym,25 we define the one-
particle two-time correlation functions as fermionic field o
erators averagesgm1m2

, (kt1t2)52(1/i\)^cm2k
† (t2) cm1k(t1)&

andgm1m2

. (kt1t2)5(1/i\)^cm1k(t1) cm2k
† (t2)&, wherem1 and

m2 label the energy bands~or subbands!. The equal time
limit gm1m2

, (tt)52 i\ f m1m2
(t) defines the Wigner distribu

tions f ~for m15m2) and the transition probabilities~inter-
band polarizations! P ~for m1Þm2). In the presence of an
electromagnetic field,g: evolve according to the interban
Kadanoff–Baym equations~two–time semiconductor Bloch
equations; see, e.g., Refs. 4 and 9! which, in the spatially
homogeneous case, read
d

llision

of the
H i\
]

]t1
2em1

~ k̃1!J gm1m2

: ~kt1t2!2(
m̄

Sm1m̄
HF

~kt1!gm̄m2

:
~kt1t2!5I m1m2

: ~kt1t2!, ~5!

whereem is the one-particle energy for band~component! m, k̃m5k2(em /c\)A, SHF is the Hartree-Fock self energy, an
A(t) the vector potential which obeys Maxwell’s equations.

While the left-hand side of Eq.~5! describes mean-field phenomena, collective and coherent excitonic effects, the co
integralsI : on the right-hand side~the general definition can be found in textbooks; see, e.g., Ref. 4! contains the influence
of scattering~correlations!. I : govern the dephasing of the interband polarization as well as the transport properties
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material, including the relaxation timetR of the carrier distributions, the carrier mobility, the conductivity, and so on. In
paper, we consider in detail incoherent effects caused by carrier scattering.

The Kadanoff-Baym equations~5! can be solved directly,14,30 or may serve as the starting point to derive equations
motion for the Wigner functions and interband polarizations, i.e., the semiconductor Bloch equations

H ]

]T
1 i

em1
~ k̃!2em2

~ k̃!

\
J f m1m2

~T!2(
m̄

$Sm1m̄
HF

~T! f m̄m2
~T! 2 f m1m̄~T! Sm̄m2

HF
~T!%5I m1m2

~T!,

I m1m2
~T!5\(

m̄
E

2`

T

dt̄ @Sm1m̄
.

~T t̄ ! gm̄m2

,
~ t̄ T!2Sm1m̄

,
~T t̄ ! gm̄m2

.
~ t̄ T!2gm1m̄

.
~T t̄ ! Sm̄m2

,
~ t̄ T!1gm1m̄

,
~T t̄ ! Sm̄m2

.
~ t̄ T!#, ~6!

where T is the macroscopic timeT5(t11t2)/2, and S: are generalized scattering rates~self-energies!. The momentum
argument inf, I, g, andS has been suppressed. To come to a closed equation forf m1m2

(T), one has to solve two problem
concerning the collision integral which were mentioned in the Sec. I:~i! suitable approximations for the self energy have to
given, and~ii ! the two-time functions have to be expressed in terms off andP. Since our main interest in this paper is th
derivation and critical test of improved expressions for the carrier self-energy, we use the simple Kadanoff-Baym an25 to
solve problem~ii ! and neglect the influence of the interband propagators.31–33Furthermore, to simplify the analysis ofT-matrix
effects, we concentrate in the following on the band-diagonal self-energies. Below, we will change to the electron-hole
using latin subscripts to label the carrier species, i.e.,Smm→Sa . ThusSa includes electron-electron, hole-hole, and electro
hole scattering, while polarization scattering is neglected. As a result, we obtain for the band-diagonal collision term
~6!

I a~kT!5 iSa
,
„kT,\v5ea~k!… @12 f a~kT!#2 iSa

.
„kT,\v5ea~k!… f a~kT!, ~7!

which involve the well-known Markovian~‘‘on-shell,’’ i.e., kinetic energy conserving! scattering ratesSa
: . We mention that

iSa
:(k) are positive real quantities which have the meaning of probabilities of scattering ‘‘into’’ and ‘‘out of’’ statek, which

are being multiplied in Eq.~7! by the probabilities that the state is empty (12 f ) or occupied (f ), respectively.
Carrier-carrier scattering in semiconductors has been investigated so far mainly in the frame of weak-coupling app

tions. This leads to the Born approximation for the self-energy,

iSa
:~k1 ,T!5(

b
(

k2k̄1k̄2

uVab
S ~k12 k̄1 ,e12 ē1 ,T!u2dk11k2 ,k̄11 k̄2

2pd~e11e22 ē12 ē2! f a
:~ k̄1 ,T! f b

:~ k̄2 ,T! f b
"~k2 ,T!

1~exchange!, ~8!
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where we used the short notationf a
,[ f a and f a

.[12 f a .
Here Vab

S (k,v,T)5Vab(k)/eR(k,v,T) is the dynamically
screened Coulomb potential in the random-phase approx
tion ~RPA! with the retarded dielectric functioneR(k,v,T)
512(aVaa(k)Pa

R(k,v,T), and nonequilibrium intraband
polarization functionPR, which accounts for the influenc
of collective plasma excitations on the scattering proce5

see also Refs. 34 and 35.
To avoid the numerically difficult evaluation of the dy

namically screened potential,5 often the~quasi-!static long-
wavelength limit of the RPA dielectric function is use
which, in three dimensions, is given by34 eR(k,T)51
2k2(T)/k2, and, correspondingly,

Vab
S ~k,T!5

4peaeb /eB

k21k2~T!

with

k2~T!5
2

\2peB
(

a
ea

2ma E
0

`

dK fa~K,T!. ~9!

The Born approximation~8! together with Eq.~9!, will be
used below in most of the numerical comparisons with
a-

;

e

T-matrix results. The influence of dynamical screening a
its combination with strong-coupling effects will be dis
cussed in Sec. IV.

B. T-matrix carrier-carrier scattering rates

As pointed out in Sec. I, the properties of strongly cor
lated plasmas are essentially influenced by multiple sca
ing and bound states. In order to include these effects one
to go beyond the Born approximation~8!, summing up
higher-order ladder diagrams. The full two-particle ladd
sum yields the scattering rates in binary collision approxim
tion, the general nonequilibrium definition of which is25,36,37

„we substitute(k→(V/(2p\)3)*dp…,

iSa
:~pa ,tt8!

5\(
b
E dpb

~2p\!3
^papbuTab

: ~ tt8!upbpa& gb
"~pb ,t8t !,

~10!

whereTab is theT matrix. Since we consider fermionic pa
ticles ~electrons and holes!, the anti-symmetrizedT matrix
has to be used in the case of identical scatterers (a5b).
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The T-matrix approach is a well-developed concept
many-particle theory to describe strong dynamic corre
tions, especially in nuclear physics and plasma theory, b
has been applied less to semiconductors. Therefore, be
explicitly calculating the scattering rates, it is useful to give
brief discussion of important relations of the binary collisi
approximation. TheT matrices are defined by the two-tim
two-particle correlation functionsGab

: in the particle-particle
channel,

Tab
: ~ t,t8!5 i Vab

S Gab
: ~ t,t8! Vab

S , ~11!

whereGab
: (t,t8) describe the behavior of a particle pair in a

interacting many-particle system~for the definition, see Refs
25!. Vab

S is the screened potential for which we use the sta
limit ~9!. Thus the central problem is the determination of t
binary correlation functionsGab

: .
f
-
it
re

c
e

An efficient approach is to express the two-particle cor
lation functions as a bilinear expansion in terms of the wa
functions of the interacting particle pairuCK&.38 Then, Fou-
rier transformingGab

: with respect to the microscopic tim
t2t8 and using the local approximation, we obtain

Gab
: ~v,T!5(

K
uCK&^CKu FK

:~T! 2pd~\v2EK!.

~12!

The sum in Eq.~12! runs over all possible bound and sca
tering states, withFK

: being the corresponding occupatio
numbers. The two-particle statesuCK& and the energy eigen
values EK follow from an effective Schro¨dinger equation
which, in momentum representation, reads
ing
al
hifts
o

f
account

n

f the
@EK2ea~pa!2eb~pb!#^papbuCK&2@12 f a~pa!2 f b~pb!#E dp̄a

~2p\!3

dp̄b

~2p\!3
^papbuVab

S up̄bp̄a&^p̄ap̄buCK&50. ~13!

This is a generalization of the usual two-particle Schro¨dinger equation which accounts for the influence of the surround
particles on the paira-b: first, the one-particle energies are modified,ea(p)5ea

0(p)1Da ; and second, the interaction potenti
is replaced by the statically screened Coulomb potentialVab

S . For consistency of the approximation scheme, the energy s
are approximated byDa52kea

2/2eB .21,24 It should be noted that Eq.~13! is not Hermitian, which requires a second Schr¨-
dinger equation for̂CKu which contains the adjoint Hamiltonian~for a more detailed discussion, see Refs. 21 and 38!.

Let us come back to the collision integral~7!, where now the scattering ratesS: are to be given in theT-matrix
approximation, and their energy argument is fixed according to the ‘‘on shell’’ condition\v5ea(p,T)5ea

0(p)1Da(T). From
Eq. ~10!, it then follows, after using the Kadanoff-Baym ansatz forgb

: , that

iSa
:~pa ,v,T!u\v5ea

5(
b
E dpb

~2p\!3
^papbuTab

: ~ea1eb ,T!upbpa& f b
:~pb ,T!. ~14!

It turns out that theT matricesTab
: have to be taken ‘‘on shell,’’ too, i.e., their energy argument isea1eb .39 This means that

only two-particle scattering states contribute to the ratesSa
:(pa ,ea) for this level of approximation. To include the effect o

bound states on the on-shell scattering rates, one has to go beyond the binary collision approximation, taking into
three-body scattering processes between electrons/holes and bound states~e.g., incoherent excitons!; see Sec. IV.

For theT matrix in Eq.~14!, we find the optical theorem from Eqs.~11! and ~12!38

Tab
: ~v,T!52p i Tab

R ~v! f a
:~T! f b

:~T! d~\v2ea2eb!Tab
A ~v!, ~15!

where Tab
R/A are the retarded and advancedT matrices which obey the Lippmann-Schwinger equation~we drop the time

argument!

Tab
R/A~v!5Vab

S 1Vab
S 12 f a2 f b

\v2ea2eb6 i«
Tab

R/A~v!. ~16!

If this equation is solved by iteration, a ladder-type diagram expansion follows. In lowest order~neglecting the second term o
the right-hand side!, the T matrix reduces to the quasistatic interaction potentialVS, which is just the Born approximation
discussed in Sec. II A. The retardedT matrix is directly related to the scattering-out stateuCK&5up̄ap̄b1&, determined by Eq.
~13!

^papbuTab
R ~ea1eb!up̄bp̄a&5^papbuVab

S up̄bp̄a1& . ~17!

Finally, inserting Eq.~15! into Eq. ~14!, we can express the scattering rates in binary collision approximation in terms o
retardedT matrix:
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iSa
:~pa ,ea ,T!5

1

V\(
b
E dpb

~2p\!3

dp̄a

~2p\!3

dp̄b

~2p\!3
2pd~ea1eb2 ēa2 ēb!

3 z^papbuTab
R ~ea1eb!up̄bp̄a& z2 f a

:~ p̄a ,T! f b
:~ p̄b ,T! f b

"~pb ,T!. ~18!

Thus, for an evaluation of the scattering rates~18!, the central problem is the determination of the retardedT matrix. One
approach is to solve the Lippmann-Schwinger equation~16!. On the other hand, for nondegenerate plasmas, theT matrix can
be determined more efficiently from the solution of the effective Schro¨dinger equation~13! using scattering phase-shi
techniques.

C. Evaluation of the T-matrix scattering rates for bulk semiconductors

In the following, we consider nondegeneratee-h plasmas. Furthermore, the momentum distributions are assumed isot
i.e., f (p,T)5 f (p,T), and the interaction is screened quasistatically; see Eq.~9!. Transforming Eq.~18! to relative and
center-of-mass momentap5(mbpa2mapb) /(ma1mb) andP5pa1pb , theT-matrix approximation can be expressed by t
T matrix of the relative motion̂puTab

R up̄&.26 Carrying out the integration overP, we obtain for the scattering rates

i Sa
,~paea ,T!5

4p

\ (
b

mb
3

mab
2 E dp

~2p\!3

dp̄

~2p\!3
z^puTab

R up̄& z2
1

p
d~p2 p̄! f a~pa1p̄2p,T! f b~gpa2gp2p̄,T!, ~19!

i Sa
.~paea ,T!5

4p

\ (
b

mb
3

mab
2 E dp

~2p\!3

dp̄

~2p\!3
u^puTab

R up̄&u2
1

p
d~p2 p̄! f b„gpa2~11g!p,T…, ~20!

whereg5mb /ma is the mass ratio, andmab5mamb /(ma1mb) is the reduced mass.
For the further derivations, we express theT matrix by the differential scattering cross sectionu^puTab

R up̄&up5 p̄
2

5(2p\)26(2p)24\22mab
22 dsab(p,V)/dV. Due to the isotropy of the distribution functions, two integrations can be

formed in Eqs.~19! and ~20!, yielding

iSa
,~paea ,T!5

4p

~2p\!3(b

mb
3

mab
4 E

0

`

dpE
21

1

dx1E
21

1

dxE
0

2p

dwxp
3

dsab~p,V!

dV
f a~pa

212p222 pa p x112 pa p x2 ,T!

3 f b„g
2~pa

21p22pa p x!12 g~p2 x2pa p x2!1p2,T…, ~21!

iSa
.~paea ,T!5

4p

~2p\!3(b

mb
3

mab
4 E

0

`

dpE
21

1

dx1 p3 sab
tot~p! f b„g

2 pa
21~11g!2 p222g~11g! pa p x1 ,T…. ~22!

In the ‘‘scattering-out’’ rateS., we introduced the total cross section which follows by integratingds/dV over the solid
angleV. The abbreviationsx andx1 are connected with the angles between the momentap, p̄, andpa ; for a definition, see
Ref. 26. Expressions~21! and ~22! represent generalizations of the equilibriumT-matrix scattering rates to nonequilibrium
electron-hole plasmas. Time dependencies enter the rates via the nonequilibrium momentum distribution functions
scattering cross section@via the quasistatic potentialVS(T)].

In thermodynamic equilibrium, the scattering rates are related via the well-known detailed balance relation

Sa
,~pa ,ea!5Sa

.~pa ,ea! f a
0~pa!, ~23!

where f a
0(p)5naLa

3/(2sa11) exp(2p2/2makBT) is the Maxwell distribution function, and the thermal wavelengthLa has
been defined in Eq.~3!. Therefore, in equilibrium, it is sufficient to compute the scattering-out rate given by

iSa
.~pa ,ea!5

4p

~2p\!3(b

mb
2ma

mab
3

nbLb
3kBT

pa
E

0

`

dp p2 s tot~p!

3$exp@2~pa /ma2p/mab!
2mb/2kBT#2exp@2~pa /ma1p/mab!

2mb/2kBT#%. ~24!

Expressions~21!, ~22!, and ~24! enable us to study the effect of strong correlations in a broad class of equilibrium
nonequilibrium situations, thereby allowing for an efficient numerical evaluation.
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III. NUMERICAL RESULTS FOR THE T-MATRIX SCATTERING AND DEPHASING RATES
IN BULK GALLIUM ARSENIDE

A. Scattering cross sections

As we have seen above, in the scattering rates, the central quantities are the scattering cross sections which are
the two-particleT matrix. Therefore, we turn to the evaluation of the differential cross sectionsdsab /dV making use of the
concepts of scattering theory.27,28 Because of the spherical symmetry of the statically screened Coulomb potential, a
wave expansion of the scattering quantities can be performed. For the differential cross section, it follows that

dsab

dV
5

\2

p2(
l ,l 8

`

~2l 11!~2l 811! sind lsind l 8cos~d l2d l 8! Pl~cosq!Pl 8~cosq!

3$11da,b
1
4 @A~ l ,l 8!1B~ l ,l 8!#1da,b

3
4 @A~ l ,l 8!2B~ l ,l 8!#%, ~25!
rs

io

fo
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e
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e

rms
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he

les
is
wherel andl 8 are the angular momentum quantum numbe
q is the angle betweenp andp̄ ~scattering angle!, Pl(cosq)
are the Legendre polynomials, andd l denote the scattering
phase shifts. Furthermore, we have introduced the funct
A( l ,l 8)5(21)l 1 l 8 and B( l ,l 8)5(21)l1(21)l 8. In Eq.
~25!, the second and third terms in curly brackets account
exchange effects in the case of identical particles.

From Eq.~25!, the total cross section is obtained as

sab
tot~p!5

4p\2

p2 (
l 50

`

~2l 11! sin2d l , ~26!

whereaÞb while, for identical particles (a5b),

saa
tot~p!5

2p\2

p2 (
l 50,2,4 . . .

`

~2l 11! sin2d l

1
6p\2

p2 (
l 51,3,5 . . .

`

~2l 11! sin2d l . ~27!

Thus we have related the cross sections to the scatte
phase shiftsd l . The latter, in turn, are closely related to th
two-particle wave functionul , which obeys the radial Schro¨-
dinger equation

F d2

dr 2
2

l ~ l 11!

r 2
2

2mab

\2
Vab

S ~r !Gul~k,r !5k2ul~k,r !.

~28!

Here k252mab(eab2Dab)/\
2 is the square of the wav

number, with Dab5Da1Db being the two-particle self-
energy correction. The scattering phase shifts can be d
mined from the asymptotics of the scattering solutions.28 As-
suming a finite interaction ranger 0 , the continuity condition
of the logarithmic derivative of the wave function at th
point r 5r 0 leads to the following expression for the scatte
ing phase shifts:

tand l~k!5
ul~kr0! j l8~kr !2ul8~kr ! j l~kr0!

ul~kr0! nl8~kr !2ul8~kr ! nl~kr0!
. ~29!

The prime denotes the derivative with respect tor at r
5r 0 , and j l(z), nl(z) are the Riccati-Bessel functions; se
e.g., Ref. 27.
,

ns

r

ng

er-

-

,

In order to calculate the phase shifts, the Schro¨dinger
equation~28! has to be solved numerically. We have do
this using the Numerov algorithm40,24 to calculate the wave
function and its derivative for a givenl up to the pointr
5r 0 . This point was chosen such that the ratio of poten
and scattering energy dropped sufficiently~below ,1025 in
our calculations!. Knowing the scattering phase shifts, th
cross sections are computed according to Eqs.~25!–~27!. For
a given value of the wave numberk, only a limited number
of partial waves gives significant contributions to thel sum
which, therefore may be truncated for a certainl 5 l 0 ( l 0
was chosen such that the contribution of the remaining te
was less than 1025).

Before presenting numerical results, we briefly summ
rize the cross sections in the Born approximation, as t
will be needed for the numerical comparisons below. T
Born approximation follows from the Lippmann-Schwing
equation ~16! by taking only the first term, i.e.,Tab

R/A

→Vab
S . For the differential scattering cross section of t

e-h scattering, we obtain

dsab
B ~p,V!

dV
5F 2mabeaeb /eB

\2k214p2sin
q

2
G 2

. ~30!

For completeness, we give the result for identical partic
with exchange effects included. Here the cross section
composed of singulet (1) and triplet (2) contributions ac-
cording todsaa /dV5 1

4 (dsaa
1 /dV)1 3

4 (dsaa
2 /dV), where

dsaa
B6~p,V!

dV
5

1

2F maea
2C6~p,q!/eB

\4k414\2k2p214p4sin2q
G 2

, ~31!

C1~p,q!52\2k214p2, C2~p,q!54p2cosq.

The corresponding results for the total cross section are

sab
B,tot5

16p

aB
2

mab
2

meh
2 F \2

k2~\2k214p2!

1dab

\4

8p2~\2k212p2!
lnS 4

p2

\2k2
11D G , ~32!

with the exciton Bohr radiusaB5\2eB /mehe
2.
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Let us now discuss the numerical results for the scatte
cross sections in theT-matrix and Born approximations. Th
cross sections reflect the microscopic properties of the t
particle scattering process, and are thus the basis for the
roscopic behavior. In Fig. 2, the differential scattering cro
sections fore-e and e-h scattering are plotted versus th
scattering angle for two fixed wave numbersk5p/\,
whereas Fig. 3 shows the momentum dependence of the
cross section.

~i! First, we notice the qualitatively different scatterin
angle dependence of the differential cross sections for dif
ent scattering partners. Fore-h scattering~the lower part of
Fig. 2!, ds/dV decays monotonically with increasing ang
q. In contrast, for identical particles~upper part!, the curves
increase again for large angles; in fact they are symme
with respect toq5p/2. This behavior is readily explaine
by quantum-mechanical exchange effects and is, of cou
independent of the approximation for the scattering cr
section. In particular, it is most clearly seen in the analyti
expressions~31! for the Born approximation. Analogous re
sults are observed for the hole-hole scattering~not shown!.

~ii ! For small k, in both Born andT-matrix approxima-
tions, the cross section changes only weakly as function
the scattering angle~Fig. 2!, whereas, for large wave num
bers, it increases by several orders of magnitude when
proaching the angleq50 ~and, additionally,q5p for iden-
tical particles!. This is intuitively clear because, wit
increasing kinetic energy, it becomes more unlikely tha
particle is deflected under a large angle.

~iii ! The general tendency is that theT-matrix cross sec-
tions are smaller than the Born approximation results. T

FIG. 2. Differential scattering cross section of thee-e ande-h
scattering~upper and lower figure, respectively! for two theoretical
models: theT-matrix ~full line! and Born approximations~dashed
line!. q is the scattering angle. The wave numberk5p/\ is fixed
~shown in the figure!, and the screening parameter isk50.1aB

21 .
g

o-
ac-
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tal
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ic
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e

largest deviations are observed for small wave numbek
~independently of the scattering partners!, whereas, for large
k, the differences vanish. An exception is thee-h scattering,
where for intermediatek and large scattering angles, th
T-matrix results may slightly exceed the Born approximati
~for identical particles, this effect is suppressed by the
change contribution!. This explicitly confirms that the Born
approximation overestimates small angle and small-k scatter-
ing, but underestimates larger momentum-transfer proces

~iv! Although the angle integration smooths out many d
tails of the differential cross section, the main features
main visible in the total scattering cross sections~27! and
~26!. Again we see that theT-matrix cross sections ar
smaller than the Born approximation, except for thee-h scat-
tering atk51.0aB

21 . The general trend is a monotonic d
crease with increasing wave number, except for we
pronounced peaks in the case ofe-h scattering. These peak
are due to two–particle resonances in the continuum of s
tering states. They appear when, due to screening, excit
bound-state levels are shifted into the continuum~Mott ef-
fect!. Thus these resonances are traces of bound states
tributing to the low-energy part of theT-matrix cross section.
In particular, the peak in Fig. 3 (k50.1aB

21) is due to the 3d
resonance, whereas the increase of theT-matrix e-h cross
section atk51.0aB

21 for low momenta is related to the 1
resonance. For identical particles, exchange effects red
the cross section, which is noticable at large screening
rameters~see curvek51.0aB

21).

FIG. 3. Total scattering cross sectionss tot of the e-e and e-h
scattering~upper and lower figure, respectively! (T-matrix approxi-
mation, full line;T-matrix approximation without exchange, dotte
line; Born approximation, dashed line!. The screening parameter
arek50.1aB

21 ~upper pairs of lines! andk51.0aB
21 ~lower triple/

pair of lines!.
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B. Equilibrium e-e, e-h, and h-h scattering rates

Now we turn to the scattering rates, beginning with
analysis of the equilibrium case. Here, only the total cr
sectionsab

tot is needed, cf. Eq.~24!. First we discuss the be
havior of the dephasing ratesGa5 iSa

.1 iSa
, as a function

of the wave number. In Fig. 4, the four different scatteri
processes in thee-h plasma are compared at room tempe
ture andn51016cm23. As for the total cross section@see
point ~iv! above#, the largest deviations between theT-matrix
and Born approximations occur for small momenta. For
creasing wave number, the deviations vanish quickly forh-h
ande-h scattering, but persist much longer fore-e andh-e
scattering. This is a simple mass effect which is readily s
from Eq. ~24!. The first exponent in brackets has its ma
mum atp5@mb /(ma1mb)#pa . Therefore, forb5e ~for any
given pa), smaller momentap ~wheres tot is large and devi-
ates stronger from the Born approximation! contribute more
than in the caseb5h. For the same reason, thee-e andh-e
dephasing rates decay much more weakly with the w
number, and exceed thee-h and h-h scattering for suffi-
ciently largek.

The temperature dependence is explored for a lower d
sity over a larger range in Fig. 5, where the ratio of t
T-matrix and Born approximation scattering rates (See

. and
Seh

. ), which dominate the behavior of the dephasing rate
low densities, is plotted. Again we see that for increas
wave number the deviations are generally smaller, and t
further decrease with increasing temperature. On the o
hand, at low temperatures, the ratio of thee-h scattering

FIG. 4. Equilibrium dephasing rateG5 iS.1 iS, for different
scattering processes vs the wave number. The curves correspo
the T-matrix approach~full lines! and the Born approximation
~dashed lines!. The density isn51016 cm23, and the temperature
T5300 K.
s
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rates is dominated by resonances which are clearly vis
even on the macroscopic level of the scattering rates:
shoulder in the upper Fig. 5 aroundT560 K is due to the 2s
and 2p resonances, whereas the strong low-temperature
comes from the 1s resonance~cf. also Fig. 3!. A discussion
of the density dependence of the scattering rates can
found in Ref. 26 and also in Sec. IV B, where we will co
sider the effect of dynamical screening, see also Fig. 9.

So far we considered the situation of GaAs. To obtain
least a qualitative picture of the magnitude of stron
coupling effects in other bulk materials, in Fig. 6 we sho
results for three different mass ratiosmh /me ~for the sake of
comparison, the Bohr radius and the binding energy were
constant!. The general trend is clear:T-matrix effects be-
come more important for increasing mass ratios. While
e-e and h-e scattering rates change only weakly, there is
substantial reduction of theT-matrix rates fore-h scattering,
and an even stronger one forh-h scattering.

d to

FIG. 5. Ratio of the scattering rates in theT-matrix and Born
approximations (See

. , dashed lines;Seh
. , solid lines! vs the tem-

peratureT for three different wave numbersk5p/\ ~shown in the
figure!. The carrier density isn51015 cm23.
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C. Strong-coupling effects in nonequilibrium

We now turn to a discussion of strong-coupling effe
under nonequilibrium conditions. In particular, we are int
ested to see if there exist special excitation conditions of
electron-hole plasma which would enhance the differe
between the Born andT-matrix approximations. To this end
we now have to consider the nonequilibrium formulas for
scattering rates@Eqs.~21! and ~22!#. Notice that the expres
sion for S, contains a fourfold integral which makes th
evaluation of the nonequilibriumT-matrix scattering rates
rather time consuming. We have performed a series of s
tering rate calculations for various nonequilibrium distrib
tions as they are generated, e.g., under typical optical e
tation conditions. To simulate different photon energies a
pulse durations, we used Gaussian carrier distributionsf (p)
5A exp@(p/\2k0)

2/g# with a different peak momentum\k0
and widthg; see Figs. 7 and 8.

In Fig. 7, we compare the scattering rates for a localiz
and a very broad distribution (f e5 f h), both centered around

FIG. 6. Ratio of the dephasing rates in theT-matrix and Born
approximations for different scattering processes and three diffe
hole-electron mass ratios~shown in the figure! vs the wave number
The carrier density isn51016 cm23, and the temperatureT5300
K.
-
e
e

e

t-

i-
d

d

the same peak momentum and corresponding to the s
carrier density of 531015 cm23. Despite the different shap
of the distributions, the qualitative picture in the two cases
the same: The relative role of theT-matrix effects is larger
for e-h scattering than fore-e scattering, although for the
latter the effect is seen up to larger momenta. The abso
magnitude of the effect is higher for the localized distrib
tion. Here the Born approximation is up to 90% higher (e-h
scattering, zero momentum! than theT-matrix approxima-
tion, compared to about 60% for the broad distribution.

The situation is more complex in Fig. 8, which show
calculations for varying peak positions of the nonequilibriu
distribution, while its width and density have been kept co
stant. From the bottom to the center figure, the deviation
the Born approximation dephasing rate above theT-matrix
level increases from a factor of about 1.5 to almost 2 at z
momentum, which seems to confirm the trend of Fig.
However, a further shift of the carrier distribution toward th
band edge~upper figure! gives rise to the opposite trend. Th
T-matrix dephasing rates become even larger than the B
result for low momenta. To understand the reason for t
behavior, we plot the electron-scattering ratesS. in the left
column, broken down intoe-e and e-h contributions.
Clearly, the relative growth of theT-matrix rates comes from
the electron-hole scattering, which is quite similar to the b
havior which we observed previously in the equilibrium ca
at low temperatures~see Fig. 5!. In fact, the value of the
inverse screening lengthk is slightly above the Mott point,

nt

FIG. 7. Electron dephasing rates for two different nonequil
rium situations: upper part, localized Gaussian distributionk0

52.5aB
21 ,g50.5aB

22); lower part, broad Gaussian distributio
(g52.5aB

22).T-matrix and Born results are plotted as solid a
dashed lines, respectively. The carrier distributions correspond
density ofn5531015 cm23.
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FIG. 8. Electron-scattering
rates ~left! and dephasing rate
~right! for three nonequilibrium
distributions, f e(k)5 f h(k),
shown in the figure~dotted lines!.
The carrier density is n55
31015 cm23. T-matrix and Born
results are plotted as solid an
dashed lines, respectively.
,
.

tic
ee
e

e
ap

u-
e
g
.
to

a
m

e
th
he
e

u-

te

lifi-
to

cts,
line
lot-
li

ich
n

i.e., this behavior is again caused by thes-wave resonance
which here is observed under nonenquilibrium conditions

With expressions~21! and~22!, inserted into the collision
integral ~7!, time-dependent solutions of the coupled kine
equations for the electron and hole distributions have b
performed, starting with initial distributions of the abov
type. We found that using theT-matrix approximation does
not strongly change the shape of the distributions, but g
erally slows down the relaxation compared to the Born
proximation.

Summarizing the effect of nonequilibrium carrier distrib
tions, we have observed quite substantial strong collision
fects. The magnitude and sign of the effect depend stron
on the shape of the distribution and on the carrier density
most cases, the Born approximation overestimates the
scattering and dephasing rates. The largest deviations
predicted for distributions which are localized in momentu
space. Furthermore, the deviations are particularly larg
low momenta, and may reach 100% and more. On the o
hand, in situations slightly above the Mott point, where t
1s exciton state is still visible as a resonance, we observ
strong enhancement of the nonequilibriumT-matrix scatter-
ing rates. This is found, for the given density, for distrib
tions which are localized at low momenta.

IV. DISCUSSION

A. Limitations of the theory

Let us now discuss the range of validity of the presen
results. To make a numerical evaluation of theT-matrix ap-
n

n-
-

f-
ly
In
tal
re

at
er

a

d

proximation possible, it was necessary to introduce simp
cations. First of all, the effect of dynamical screening had
be neglected, cf. Eqs.~11! and ~13!; we come back to this
question below. Second, we neglected degeneracy effe
which limits our results to parameters below the dashed
in Fig. 1. To estimate the relevance of these effects, we p
ted the static Born approximation results with full Pau
blocking included in Fig. 9~dash-dotted line!. As antici-
pated, the effect is a reduction of the scattering rates wh
sets in aroundn51016 cm23. It is reasonable to expect a

FIG. 9. Electron-scattering rateSe
.5See

.1Seh
. as a function of

the carrier density for a momentumpa50 and a temperatureT
5300 K for different theoretical models.
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analogous influence on theT-matrix results, because at hig
densities both approximations should merge as in the c
without degeneracy effects.

The third limitation results from a neglect of bound stat
in particular~incoherent, as opposed to the interband po
ization! excitons. It is, of course, well known how to inco
porate bound states into the on-shell scattering rates: One
to include three-body scattering processes between a
carrier and a bounde-h pair. This requires a kinetic equatio
for excitons, which has to be solved simultaneously, which
not yet feasible. However, for the parameters considere
the present study, the effect of incoherent excitons is fo
to be small. This can be verified by estimating the fract
aB of electrons bound in excitons, e.g., from a mass ac
law or coupled rate equations.41 We solved a mass action law
~Saha equation! using an effective exciton binding energ
EB

eff5EB
01DI , whereEB

054.2 meV~GaAs!, and the lower-
ing of the ionization energy is due to screening and s
energy effects,DI 52ke2/eB . We found that, for tempera
tures above 50 K, over the whole density range,aB does not
s
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exceed 20%, which justifies our approach. Of course,
lower temperature, excitonic effects will be important.

B. Dynamical screening effects in theT-matrix approximation

Further improvement of the theory of carrier–carrier sc
tering requires the inclusion of dynamical screening into
T-matrix approximation. This can be done, e.g., in the fram
work of the dynamically screened ladder approximation
Green’s functions theory21 which, in nonequilibrium, is out
of reach. Alternatively, one can try to incorporate dynami
screening into our approach approximately. To this end,
use a combination of staticT-matrix ~‘‘T’’ !, static~‘‘B’’ ! and
dynamically screened Born approximations~‘‘RPA’’ ! for the
self-energies42 ~see also Refs. 43 and 44!

Sa5Sa
T1Sa

RPA2Sa
B . ~33!

In a nondegenerate equilibriume-h plasma, the RPA
scattering-out rate@Eq. ~8!# simplifies to
iSa
.~paea!52

2e2ma

p\ pa
E

0

`dp

p E
2~p2/2ma!2~p pa /ma!

2~p2/2ma!1~p pa /ma!
dv Im eR21~p,v!nB~v!, ~34!
RPA
ed

ing

in
om-
u-
ti-
ffect
the
e

where the Bose functionnB(v)5@exp(v/kBT)21#21 rep-
resents the plasmon distribution. In Fig. 9, we show the
multaneous effect of dynamical screening and strong co
lations for the electron-scattering rateSe

. at zero momentum
as a function of density. One clearly sees that the combi
model ~33! yields the correct limits: at low densities~below
1016 cm23), it practically coincides with the staticT matrix,
whereas for high densities, it approaches the RPA. In
tween, the combined scheme essentially follows the st
T-matrix behavior, with the dynamics leading to a slig
overall increase.

According to Fig. 1, we expect correlation effects to va
ish beyondn;1018 cm23. This is indeed observed in Fig. 9
as Born andT-matrix results merge at high densities. Th
trend is interrupted only for thee-h scattering~see Ref. 26!
which is again a consequence of resonances giving rise to
shoulder aroundn51016 cm23(2s/2p resonances! and the
peak aroudn51017 cm23 ~1s!. However, for low densities
we do not observe a merging of the Born andT-matrix re-
sults, clearly indicating the breakdown of the former. T
reason for this is that, due to the decrease of screen
T-matrix effects remain important at low densities as wel

Finally, let us consider the effect of dynamical screen
for different particle momenta. Figure 10 shows the elect
dephasing rateGe for n51015 cm23 andT5300 K, and the
same approximations as above as a function of wave n
ber. Clearly, for small wave numbers, dynamical screen
effects are small while strong correlations are domina
Consequently, the staticT-matrix approximation and the
combined scheme are close to each other. In contrast
large wave numbers, staticT-matrix and Born approxima
tions merge. In this case, the dynamical screening effects
i-
e-

d

e-
ic
t

-

he

g,

g
n

-
g
t.

or

re

essential, and the combined scheme is governed by the
contribution. For intermediate wave numbers, the combin
scheme smoothly interpolates between the two limit
cases.

C. Summary

In this paper, a treatment of carrier-carrier scattering
semiconductors was presented which goes beyond the c
mon Born approximation. It was shown theoretically and n
merically that the Born approximation strongly overes
mates small-angle scattering, but cannot describe the e
of strong collisions. This becomes a serious problem if
coupling parameterG is of the order of 1 or larger, i.e., in th
corner of correlations~see Fig. 1!. However, the Born ap-

FIG. 10. Electron dephasing rateGe5Gee1Geh as a function of
the wave number for a densityn51015 cm23 and a temperature
T5300 K for different approximations.
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proximation fails not only in the ‘‘corner of correlations
but also at low densities, where only theT-matrix approxi-
mation reproduces the correct analytical limits. We ha
shown that deviations of the Born approximation from t
more generalT-matrix result are visible not only in the mi
croscopic scattering quantities~cross sections!, but also in
macroscopic quantities, such as scattering and depha
rates. There the Born approximation results may be wr
by as much as a factor of 2 and more, leading, in most ca
s.

er

tu

en

d

in
fo
f

a

s.
a

,

s

e

e

ing
g
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to rates that are too high. Similar behavior should be
pected for other transport coeffecients and for optical pr
erties.
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22H. Stolz, Einführung in die Vielelektronentheorie der Kristall
~Akademieverlag, Berlin, 1974!.
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