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T-matrix approach to equilibium and nonequilibrium carrier-carrier scattering in semiconductors
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An analysis of strong-coupling effects in carrier-carrier scattering in electron-hole plasmas in semiconduc-
tors is presented. The conventional approach to scattering and dephasing rates is based on the Born approxi-
mation(a scattering cross section proportional to the square of the dynamically screened interaction potential
and is strictly valid only in the limit of the weakly coupled quantum plasma. Otherwise, strong correlations are
expected to become important in the scattering quantities. Therefore, we perform a thorough analysis of
scattering rates in the framework of the statically screefedatrix (ladde) approximation. We solve the
two-particle Schrdinger equation and provide explicit results for the carrier-carrier scattering rates in equilib-
rium as well as for optical excitation conditions. Numerical results for GaAs show evidence of significant
deviations from the common Born approximation. Finally, dynamic screening effects are included approxi-
mately.[S0163-182699)01815-9

. INTRODUCTION matter® and dense plasm&$2! However, despite remark-
able theoretical work?=?*a thorough quantitative investiga-

Recent impressive progress in the subpicosecond spetion for semiconductors which applies to general nonequilib-
troscopy of e|ectron-h0|ee€h) p|asmas in semiconductors rium situations is still missing. The theoretical approach has
has made time-resolved high-precision optical measuremente be based upon a summation of the full Born sefi@dder
possiblé which allow one to study the influence of carrier- serie which yields theT-matrix approximatiorf™**?° To
carrier scattering; see, e.g., Refs. 2 and 3. Similar progress gnalyze the relevance of these effects, it is useful to consider
observed in the field of semiconductor transport; for a recent
overview, cf. Ref. 4. This increased the need for a high- 6
quality theoretical modeling of the nonequilibrium properties 3l x=1
of charge carriers in semiconductors, including the relevant IDEAL e
scattering and dephasing mechanisms, which has to be based = 1, = 0.7
on kinetic equations such as the Boltzmann equaiticor its degenerate
interband extension, the semiconductor Bloch equaﬁ@ns. non-degenerate
Among the various scattering processes, carrier-carrier scat-
tering plays a central role, and is expected to dominate in IDEAL
high-quality samples and at temperatures below the phonon 9
threshold. 1 , . , ,

The commonly used carrier-carrier scattering models are -3 2 -1 0 1 2 3
characterized byi) an approximation of the differential scat- log( kgT/Eg )
tering cross section&scattering probabilitigsby the square
of the dynamically screened binary interaction potential,
oan~ V3% and (i) a Markovian form of the scattering
integrals. Strictly speaking, this confines the applicability of
these modelsi) to the case of weak carrier-carrier interac-
tion (see Fig. 1, and (ii) to sufficiently long times {
>71.,r, Where 7., is the correlation time of the systetf,
which is of the order of the inverse plasma frequéfcy
While the second aspect has been intensively studied in the
context of so-called memory effects in recent ydar$—1°
the first has attracted much less attentidit2In particular, it 9
remains widely unclear how important strong-coupling ef- |
fects (effects beyond the Born approximatjoare for the
relaxation of a nonequilibrium carrier ensemble in semicon- F|G. 1. Strong-coupling region in equilibriurm-T plane in
ductors. system-independent dimensionless parametdis the dimension-

Strong-coupling effects in two-particle scattering haveality) and for electrons in a bulk semiconduct@aAs (upper and
been intensively studied in various fields, including nuclearower figure, respective)y
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the dimensionless parameteFs (coupling parametdr r,  T-matrix effects in equilibriun®® In this paper, we study

(Brueckner parametgrand y (degeneracy paramejef strong-coupling effects in carrier-carrier scattering in more
detail, both in equilibrium and nonequilibrium, concentrating

(Va)| | 4me 1 on bulk materialchoosing GaAs as an exampbnd using a
I'a= W—)F—: ke T T (1) two-band model. We limit ourselves to nondegenerate

electron-hole plasmasy& 1), which allows us to advance
into the shaded region in Fig. 1 making use of efficient phase

Fo= L (2)  shift techniques’?® Although for y>1 one does not expect

ag a qualitatively different behavidian estimate of degeneracy

3 effects is given in Sec. 1)/ here one is forced to perform
_ NaAz |27k 3) computationally costly solutions of the Lippmann-Schwinger
Xa= 2s,+ 1’ & NmkgT equatior?® Moreover, this approach is, so far, feasible only

in equilibrium.

. . L X € This paper is organized as follows. In Sec. Il A, we give a
energy of pe}rt|cles of speC|e_sa, which, in the classical brief summary of the quantum kinetic description of optical
case, is equivalent to the ratio of the Landau lenigir the 4 yransport processes in semiconductors, focusing on the
mean interparticle distanae (e, is the charge andg the influence of (incoherent carrier scattering and dephasing
background dielectric constanfFurthermorey is the ratio  contributions in the common Born approximation. Section
of the interparticle distance to the Bohr radius of bound|| B gives a genera| discussion of tAematrix approxima_
states(excitons, and x**® is essentially the ratio of the ther- tion for the scattering rates. Next, in Sec. I C, we derive
mal (DeBrogli§ wavelengthA , to the interparticle distance explicit results for the equilibrium and nonequilibrium scat-
(sa is the spin projection Now the general prediction is that tering rates for bulk semiconductors with an isotropic mo-
T-matrix effects are important in the so-called corner ofmentum distribution. Section Il contains numerical results
correlations;" where the mean correlation energy of the car-for the cross sections and scattering rates for equilibrium as
riers is comparable to or even larger than their mean kinetigvell as nonequilibrium situations. Section IV concludes our
energy. In equilibrium, a reasonable estimate to the boundyaper with an analysis of the limitations of the used approxi-
aries of this region in the density-temperature plane is givemnation. In particular, the incorporation of dynamical screen-

I', is essentially the ratio of the mean potential to the kineti

by the lines* ing effects into theT matrices is discussed, and results are
ted.
I,=1 andrs=0.7, (4 presente
which are shown in Fig. 1 for an electron plasmalidimen-
sions(upper figure and for bulk GaAglower figure. While Il. THEORETICAL CONCEPTS

the first condition of Eq(4) gives the low-density limifclas-
sical plasmy the second applies to the high-density case
(quantum plasma Conversely, the commonly used Born ap-  We briefly recall the kinetic equations for a description of
proximation may be expected to be applicable only well out-optical and transport phenomena in semiconductors. Follow-
side this region, although it is well known that even there iting the notation of Kadanoff and Bayfwe define the one-
does not necessarily possess the correct limiting behavior. Iparticle two-time correlation functions as fermionic field op-
resmaton geviatos fom e, cxach msympitio ey o or 2YrIEy(Kile) =~ (AR) (a2 (1)
- ;

example, from the Spitzer result for the conductiyiiyhich andg"l“Z(ktltZ)_(1/%)(1'0“1‘((“) w"zk(tz»' where, a.nd
is reproduced only from th&-matrix approximation; see, HZ_Iabfl the energy bandgr subbands The equal time
e.g., Ref. 21 In fact, our numerical investigations show that imit 9, ,, (t)=—iAf, , (t) defines the Wigner distribu-
this is also the case for low-density electron-hole plasmadjons f (for u,=u,) and the transition probabilitiegnter-
which is a further strong motivation to study carrier-carrierband polarizationsP (for u,# u,). In the presence of an
scattering in thel-matrix approximation. electromagnetic fieldg= evolve according to the interband

However, these are rather general predictions which reKadanoff-Baym equationgwo—time semiconductor Bloch
quire a reliable quantitative verification. This is the intentionequations; see, e.g., Refs. 4 andvéhich, in the spatially
of our investigation, which continues our previous work onhomogeneous case, read

A. Interband quantum kinetic equations

0 =~ = - N
‘ if ot eﬂl(kl)] 9y, Ktata) = % 2;";7( kt))g,,, (ktito) =15, (Ktity), (5)

wheree,, is the one-particle energy for baridomponent u, Eﬂ=k—(eM/cﬁ)A, 3 HF is the Hartree-Fock self energy, and
A(t) the vector potential which obeys Maxwell's equations.

While the left-hand side of E(5) describes mean-field phenomena, collective and coherent excitonic effects, the collision
integralsl = on the right-hand sidé&he general definition can be found in textbooks; see, e.g., Rebrtains the influence
of scattering(correlations. 1= govern the dephasing of the interband polarization as well as the transport properties of the
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material, including the relaxation timey of the carrier distributions, the carrier mobility, the conductivity, and so on. In this
paper, we consider in detail incoherent effects caused by carrier scattering.

The Kadanoff-Baym equation@) can be solved directl}#° or may serve as the starting point to derive equations of
motion for the Wigner functions and interband polarizations, i.e., the semiconductor Bloch equations

J . Eﬂl(R)_ eﬂz(R) HF HF
JaT +1 D fM1M2(T) - 2 {Eulﬁ(T)f;Mz(T) - fﬂl:;(T) Elﬂz(T)}zll‘le(T)’

m
T _ — — _ . J— . — —
|W2(T)=ﬁ% Lcdt (2, 2(THg,, (D=2, (Tt g;, (tTT—g, ATHZZ (AT)+g, A(THEZ (D], (©

where T is the macroscopic tim@ = (t;+1t,)/2, and>= are generalized scattering rateself-energies The momentum
argument inf, |, g, and>, has been suppressed. To come to a closed equatidlfpzr(T), one has to solve two problems
concerning the collision integral which were mentioned in the S€¢). $uitable approximations for the self energy have to be
given, and(ii) the two-time functions have to be expressed in termfadP. Since our main interest in this paper is the
derivation and critical test of improved expressions for the carrier self-energy, we use the simple Kadanoff-Baytmtansatz
solve problentdii) and neglect the influence of the interband propagaforsFurthermore, to simplify the analysis &fmatrix

effects, we concentrate in the following on the band-diagonal self-energies. Below, we will change to the electron-hole picture
using latin subscripts to label the carrier species, Xg,,—2,. Thus2, includes electron-electron, hole-hole, and electron-

hole scattering, while polarization scattering is neglected. As a result, we obtain for the band-diagonal collision terms in Eq.

(6)
la(KT) =135 (KT, iw=€,(K)) [1—Fo(kKT)]—iZ (KT, hw=es(K)) fo(KT), (7)

which involve the well-known Markoviafi‘on-shell,” i.e., kinetic energy conservingscattering rateX > . We mention that
i35 (k) are positive real quantities which have the meaning of probabilities of scattering “into” and “out of” ktathich
are being multiplied in Eq(7) by the probabilities that the state is empty1) or occupied ), respectively.
Carrier-carrier scattering in semiconductors has been investigated so far mainly in the frame of weak-coupling approxima-
tions. This leads to the Born approximation for the self-energy,

iS5 (ke T)=2 2 [Vap(ki—Ki €1— €1, T) 28 ok, i+ 12T €1+ 62— €= €) 5 (K, Ty (Ko, T 5 (ky, T)

kakika
+ (exchangg, (8)
|
where we used the short notatiég=f, andf_=1—f,.  T-matrix results. The influence of dynamical screening and

Here V3,(k,®,T)=Vqp(k)/eR(k,w,T) is the dynamically its combination with strong-coupling effects will be dis-
screened Coulomb potential in the random-phase approxim&ussed in Sec. IV.

tion (RPA) with the retarded dielectric functioaR(k,w,T)

= 1—EaVaa(k)H§(k,w,T), and nonequilibrium intraband B. T-matrix carrier-carrier scattering rates

polarization functionlIR, which accounts for the influence As pointed out in Sec. |, the properties of strongly corre-
of collective plasma excitations on the scattering process;jateg plasmas are essentially influenced by multiple scatter-
see also Refs. 34 and 35. ing and bound states. In order to include these effects one has

To avoid the numerically difficult evaluation of the dy- ;4 go beyond the Born approximatiof8), summing up
namically screened potentabften the(quasijstatic long- higher-order ladder diagrams. The full two-particle ladder

wavelength limit of the RPA dielectric function is used gm yields the scattering rates in binary collision approxima-
which, in_three dimensions, is given By e®(k,T)=1  ion, the general nonequilibrium definition of whictf3s6-3"

— k?(T)/k?, and, correspondingly, (we substitutes,— (V/(27#)3) [ dp),
Vi kiT)= reethlee 2Pt
ke+ «4(T) dp
b = ’ = ’
with Iﬁ% jm<papb|1—ab(tt )|PoPa) Gp (o t't),
2 o
20T — 2 (10
K2(T) ﬁszé e?m, fo dK fo(K,T). 9)

whereT,, is theT matrix. Since we consider fermionic par-
The Born approximation8) together with Eq.(9), will be  ticles (electrons and holg¢sthe anti-symmetrized matrix
used below in most of the numerical comparisons with thehas to be used in the case of identical scatterarsh).
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The T-matrix approach is a well-developed concept of An efficient approach is to express the two-particle corre-
many-particle theory to describe strong dynamic correladation functions as a bilinear expansion in terms of the wave
tions, especially in nuclear physics and plasma theory, but ifunctions of the interacting particle pdi\l’K>.38 Then, Fou-
has been applied less to semiconductors. Therefore, beforir transformingG, with respect to the microscopic time
explicitly calculating the scattering rates, it is useful to give at—t’ and using the local approximation, we obtain
brief discussion of important relations of the binary collision
approximation. Thel matrices are defined by the two-time
E:v;]/gnpnaerlt,lcle correlation function6,, in the particle-particle Gan(@ T)=2 [Wi ) (Wy| FR(T) 2m8(ho—E).

- (12)
(L) =1 V3, Gop(tt)) Vay, 11

Whererb(t,t’) describe the behavior of a particle pair in an The sum in Eq(12) runs over all possible bound and scat-
interacting many-particle systeffor the definition, see Refs. tering states, W|tH=< being the corresponding occupation
25). V3 b IS the screened potential for which we use the stati:mumbers. The two- partlcle statgB) and the energy eigen-
limit (9). Thus the central problem is the determination of thevalues Ex follow from an effective Schidinger equation
binary correlation function§;,. which, in momentum representation, reads

[Ex— €a(Pa) — n(Pb) 1{PaPs| W) ~[ 1~ fa(Pa) = fu(Py)] J (PaPo| Vbl PoPa) (PaPyl k) =0. (13

a b
(2mh)® (2mh)3
This is a generalization of the usual two-particle Sdimger equation which accounts for the influence of the surrounding
particles on the pa@-b: first, the one-particle energies are modifieg(,p) = eg(p) +A,; and second, the interaction potential
is replaced by the statically screened Coulomb potelffgl For consistency of the approximation scheme, the energy shifts
are approximated by ,= — ke2/2e5 .22 It should be noted that Eq13) is not Hermitian, which requires a second Sehro
dinger equation fo{W| which contains the adjoint Hamiltonigifor a more detailed discussion, see Refs. 21 and 38

Let us come back to the collision integrél), where now the scattering rat@~ are to be given in thel-matrix
approximation, and their energy argument is fixed according to the “on shell” condition e,(p,T) = eg(p) +A4(T). From
Eq. (10), it then follows, after using the Kadanoff-Baym ansatz gﬁr, that

i22(P2: @ Nlpw=e,= E f ————(PaPo| Tan(€at €5, ) PoPa) f5 (Py. T)- (14

(2 ﬁ)3

It turns out that ther matricesbe have to be taken “on shell,” too, i.e., their energy argument,is e, .>° This means that
only two-particle scattering states contribute to the rét§$pa,ea) for this level of approximation. To include the effect of
bound states on the on-shell scattering rates, one has to go beyond the binary collision approximation, taking into account
three-body scattering processes between electrons/holes and boundestatéscoherent excitonssee Sec. IV.
For theT matrix in Eq.(14), we find the optical theorem from Eqgl1) and(12)%

To(o,T)=2xT b(w) fX(M(T) 8(ho—e,— eb)TQb(w), (15

where TR are the retarded and advanc&dmatrices which obey the Lippmann-Schwinger equatime drop the time
argumen):

—fa— Ty

TRIA s
w)=V3+VS, ———
b (@) =Vap abﬁw—e a— €EpTie

T (). (16)

If this equation is solved by iteration, a ladder-type diagram expansion follows. In lowest(nedgecting the second term on
the right-hand side the T matrix reduces to the quasistatic interaction potential which is just the Born approximation

discussed in Sec. Il A. The retard&dnatrix is directly related to the scattering-out stabg )= |E@)+>, determined by Eq.
(13

(PaPb| TRy €a+ €6)| PoPa) = (PaPol V3ol PoPat) - 17

Finally, inserting Eq(15) into Eq.(14), we can express the scattering rates in binary collision approximation in terms of the
retardedT matrix:
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. dp, dp. dp, _
i (Pa,€a,T)= 2 f 27Tﬁ)3 (27Tﬁ)3 (27Tﬁ)3 2mS(€a+ €y~ €5 €p)

X K PaPul TRy €at €0) [PoPa)? T3 (Pa, T 5 (P, )5 (Py, T). (18)

Thus, for an evaluation of the scattering rat&é8), the central problem is the determination of the retardiedatrix. One
approach is to solve the Lippmann-Schwinger equatid@. On the other hand, for nondegenerate plasmasy tmatrix can
be determined more efficiently from the solution of the effective Sdinger equation(13) using scattering phase-shift
techniques.

C. Evaluation of the T-matrix scattering rates for bulk semiconductors

In the following, we consider nondegeneraté plasmas. Furthermore, the momentum distributions are assumed isotropic,
i.e., f(p,T)=f(p,T), and the interaction is screened quasistatically; see(®q.Transforming Eq.(18) to relative and
center-of-mass momenga= (Myp,— mapb) /(m,+my) andP=p,+p,, the T-matrix approximation can be expressed by the

T matrix of the relative motiop| T} b| p) 26 Carrying out the integration ove?, we obtain for the scattering rates

dp

mm Rb|P>|2 S(p—P)fa(PatP—p.T) fo(¥Pa—yP—P. ), (19

i3 a(Pa€a,T)= _E

dp

— .1 _
WKN b|p>|256(p—p)fb(7pa—(1+ y)p,T), (20)

|2 (Pa€a,T)= _2

where y=my/m, is the mass ratio, aneh,,=m,m,/(m,+m,) is the reduced mass.
For the further denvatlons we express tfie matrix by the differential scattering cross sectitdp|T; b|p>|p 5

=(27h)~8(27) %" >my, doab(p 0)/dQ. Due to the isotropy of the distribution functions, two integrations can be per-
formed in Eqs(19) and(20) yielding

. 4 2m b(pl )
i35 (Paca.T)= (277;1)% > dpf dxlf de deyp a—a(p§+2p2—2papx1+2papx2,T)
ab
X fo(¥2(Pa+ P2 = PaP X) +2 ¥(p?X—Pa P X2) +p2,T), (21)
i3] (Pa€a,T) " 2n h)gE fdpf dxy p? o (P) fo(¥? Pa+ (14 %)? p*=29(1+y) pap X1, T). (22

In the “scattering-out” rate>~, we introduced the total cross section which follows by integratingd() over the solid

angle). The abbreviationg andx, are connected with the angles between the momenfa andp,; for a definition, see
Ref. 26. Expressionf1) and (22) represent generalizations of the equilibriimatrix scattering rates to nonequilibrium
electron-hole plasmas. Time dependencies enter the rates via the nonequilibrium momentum distribution functions and the
scattering cross sectidnia the quasistatic potenti®dS(T)].

In thermodynamic equilibrium, the scattering rates are related via the well-known detailed balance relation

Ei(paafa)zzi(pavea) fg(pa), (23

Wherefg(p)=naAg/(25a+ 1) expp?2m.kgT) is the Maxwell distribution function, and the thermal wavelength has
been defined in Eq.3). Therefore, in equilibrium, it is sufficient to compute the scattering-out rate given by

47T mbma nbAkaT
(27h)*F md,

152 (Pavea)= = [ “dp )
X{eXﬁ: - (pa/ma_ p/mab)zmb/ZKBT] - EXF[ - ( pa/ma+ p/mab)zmb/ZKBT]}- (24)

Expressiong21), (22), and (24) enable us to study the effect of strong correlations in a broad class of equilibrium and
nonequilibrium situations, thereby allowing for an efficient numerical evaluation.



10 644 D. O. GERICKE, S. KOSSE, M. SCHLANGES, AND M. BONITZ PRB 59

IIl. NUMERICAL RESULTS FOR THE T-MATRIX SCATTERING AND DEPHASING RATES
IN BULK GALLIUM ARSENIDE

A. Scattering cross sections

As we have seen above, in the scattering rates, the central quantities are the scattering cross sections which are related tc
the two-particleT matrix. Therefore, we turn to the evaluation of the differential cross sectiong/d{) making use of the
concepts of scattering theofy?® Because of the spherical symmetry of the statically screened Coulomb potential, a partial
wave expansion of the scattering quantities can be performed. For the differential cross section, it follows that

dO'ab
dQ

h2
= =2, (21+1)(21" +1) sindsind; cog &, — §,) Py(cosd) Py (cosd)
P

X{1+ 8api[ AL +B(1,1") ]+ api[AULI) = B(LIN T}, (29

wherel andl’ are the angular momentum quantum numbers, In order to calculate the phase shifts, the Sdhwger

9 is the angle betweep anda(scattering ang% P|(COS'I9) equat|0n(28) has to be Solveq nuzrl]erica”y. We have done
are the Legendre polynomials, a denote the scattering this using the Numerov algorittfh**to calculate the wave
phase shifts. Furthermore, we have introduced the functionfémCt'QI_”h.and 'Itst derlvaglve for a r?lzlheht l:ﬁ to :he ?0"1? ol
(Il N1y =rq. This point was chosen such that the ratio of potentia
AlLT)=(~1) and B(,I")=(=1) +(~1) . In Ea. and scattering energy dropped sufficienthlow <107 ° in
our calculations Knowing the scattering phase shifts, the
cross sections are computed according to E285—(27). For
a given value of the wave numbky only a limited number

(25), the second and third terms in curly brackets account fo
exchange effects in the case of identical particles.
From Eq.(25), the total cross section is obtained as

A2l of partial waves gives significant contributions to theum
Tap(P) = — > (21+1)sirts), (26)  which, therefore may be truncated for a certhinl, (I,
p= =0 was chosen such that the contribution of the remaining terms
wherea#b while, for identical particlesg="b), was less than ms)_- _ _
Before presenting numerical results, we briefly summa-
ok = rize the cross sections in the Born approximation, as they
a(p)= 5 > (21+1) s, will be needed for the numerical comparisons below. The
pe 1=024... Born approximation follows from the Lippmann-Schwinger
6ri2 * equation (16) by taking only the first term, i.e.TRA
+— 2 (214+1) sir?s, . (27) vab. For the differential scattering cross section of the
p= 1=135... e-h scattering, we obtain
Thus we have related the cross sections to the scattering do® (0.0 2
phase shiftss;. The latter, in turn, are closely related to the Tan(P.2) _ 2M,,€.Ep/ € (30
two-particle wave function, , which obeys the radial Schro dQ '

h2k%+4p2sins

dinger equation 2

@ 1(01+1) 2m For completeness, we give the result for identical particles
— ;bvgb(r) u(k,r)=k2u(k,r). with exchange effects included. Here the cross section is
dr r h composed of singuletf) and triplet (~) contributions ac-

(28 cording tode,,/dQ =1 (do/dQ) + 3(do,,/dQ), where
Here k?=2m,p(eap— Aap)/7? is the square of the wave

number, with A,,=A,+A, being the two-particle self- doga(p.Q) 1 M,e5C..(p,9)/ eg ? -
energy correction. The scattering phase shifts can be deter- dQ ~ 2 B4+ 40 2K2p2+ Apisirt 9 , (3D
mined from the asymptotics of the scattering solutitfhas-

suming a finite interaction rangg, the continuity condition C.(p,®)=2h%k*+4p? C_(p,9)=4p3cosd.

of the logarithmic derivative of the wave function at the ] ]
pointr =r, leads to the following expression for the scatter- The corresponding results for the total cross section are

ing phase shifts:

2 2
| _ poor 0T My 7
(k)= ko) ji(kn—uikn jitkro) Al m2| KA(h2kP+4p?)
uj(kro) n (kr)—uy (kr) n(krg) 44 p?
. L . + 6 In| 4 +1](, (32
The prime denotes the derivative with respectrtat r ab8p2(ﬁ2;<2+2p2) ( 52,2 (32)

=rq, andj(z), n;(z) are the Riccati-Bessel functions; see,
e.g., Ref. 27. with the exciton Bohr radiugg=7%2eg/mgp€?.
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FIG. 2. Differential scattering cross section of e ande-h FIG. 3. Total scattering cross section®"! of the e-e ande-h

scattering(upper and lower figure, respectivglipr two theoretical  scatteringlupper and lower figure, respectivelyT-matrix approxi-
models: theT-matrix (full line) and Born approximationsdashed  mation, full line; T-matrix approximation without exchange, dotted

line). ¥ is the scattering angle. The wave numhkerp/#% is fixed line; Born approximation, dashed linerhe screening parameters
(shown in the figurg and the screening parameterxis-0.1ag ™. arex=0.1ag ' (upper pairs of linegsand k=1.0ag* (lower triple/
pair of lines.

Let us now discuss the numerical results for the scattering
cross sections in th&matrix and Born approximations. The largest deviations are observed for small wave numkers

cross sections_reflect the microscopic propertie_s of the tWO('lndependentIy of the scattering partnemshereas, for large
particle scattering process, and are thus the basis for the mal?,'the differences vanish. An exception is #x scattering,

roscopic behavior. In Fig. 2, the differential scattering CroSS here for intermediaték and large scattering angles, the

sections fore-e and e-h scattering are plotted versus the T . | liahtl dthe B o
scattering angle for two fixed wave numbeks=p/% 'mf?‘”'x resu ts may slig _tyexcee_ the Born approximation
! pr identical particles, this effect is suppressed by the ex-

whereas Fig. 3 shows the momentum dependence of the tot S . . .
Cross sectign P change contribution This explicitly confirms that the Born

(i) First, we notice the qualitatively different scattering gpproxmatlon oyerestlmates small angle and sinattatter-
angle dependence of the differential cross sections for differd, but underestimates larger momentum-transfer processes.
ent scattering partners. Ferh scattering(the lower part of (iv) Although the angle integration smooths out many de-
Fig. 2), do/dQ decays monotonically with increasing angle tails of the differential cross section, the main features re-
9. In contrast, for identical particlesipper par, the curves ~Main visible in the total scattering cross sectid@3) and
increase again for large angles; in fact they are symmetri€26). Again we see that th@-matrix cross sections are
with respect tod= 7/2. This behavior is readily explained smaller than the Born approximation, except for éile scat-
by quantum-mechanical exchange effects and is, of courséering atK=1.0aB_1. The general trend is a monotonic de-
independent of the approximation for the scattering crossrease with increasing wave number, except for well-
section. In particular, it is most clearly seen in the analyticalpronounced peaks in the caseesh scattering. These peaks
expressiong31) for the Born approximation. Analogous re- are due to two—particle resonances in the continuum of scat-
sults are observed for the hole-hole scatteimgt shown. tering states. They appear when, due to screening, excitonic
(i) For smallk, in both Born andT-matrix approxima-  pound-state levels are shifted into the continu(Mott ef-
tions, the cross section changes only weakly as function ofect). Thus these resonances are traces of bound states con-
the scattering angl€Fig. 2), whereas, for large wave num- gjpting to the low-energy part of tHEmatrix cross section.

bers, it increases by several orders of magnitude when ap; : -, _ —1y :
. " ) particular, the peak in Fig. 3q=0.1ag ") is due to the 8
proaching the anglé =0 (and, additionally) =  for iden- resonance, whereas the increase othh(matrix e-h cross

tical particles. This is intuitively clear because, with i te—1.0a=" for | i lated to the 1
increasing kinetic energy, it becomes more unlikely that aooction alk=1.0ag " for low momenta IS related 1o the 1S

particle is deflected under a large angle resonance. For identical particles, exchange effects reduce

(i) The general tendency is that tilematrix cross sec- the cross section, which isi?oticable at large screening pa-
tions are smaller than the Born approximation results. Théameters(see curvex=1.0ag ).
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FIG. 4. Equilibrium dephasing raté=i3~+iX>< for different
scattering processes vs the wave number. The curves correspond to
the T-matrix approach(full lines) and the Born approximation
(dashed lines The density in=10' cm™2, and the temperature
T=300 K.

B. Equilibrium e-e, e-h, and h-h scattering rates

Now we turn to the scattering rates, beginning with an .
analysis of the equilibrium case. Here, only the total cross 10 B 5 102 B 5 10°
sectionoly is needed, cf. Eq24). First we discuss the be- T [K]
havior of the dephasing ratds,=i3_ +i3 as a function
of the wave number. In Fig. 4, the four different scattering FIG. 5. Ratio of the scattering rates in tliematrix and Born
processes in the-h plasma are compared at room tempera-approximations X ., dashed lines%,, solid lineg vs the tem-
ture andn=10cm™3. As for the total cross sectiofsee  PperatureT for three different wave numbets=p/# (shown in the
point (iv) abovd, the largest deviations between fRenatrix ~ figure). The carrier density is=10" cm 2.
and Born approximations occur for small momenta. For in-
creasing wave number, the deviations vanish quicklyhfdr
ande-h scattering, but persist much longer fere andh-e  rates is dominated by resonances which are clearly visible
scattering. This is a simple mass effect which is readily see@ven on the macroscopic level of the scattering rates: the
from Eq. (24). The first exponent in brackets has its maxi- shoulder in the upper Fig. 5 arouiid=60 K is due to the 8
mum atp=[m,/(m,+my)]p,. Therefore, folb=e (forany  and 2p resonances, whereas the strong low-temperature rise
givenp,), smaller moment@ (wherec'® is large and devi- comes from the & resonancécf. also Fig. 3. A discussion
ates stronger from the Born approximati@ontribute more  of the density dependence of the scattering rates can be
than in the caseé=h. For the same reason, teee andh-e  found in Ref. 26 and also in Sec. IV B, where we will con-
dephasing rates decay much more weakly with the waveider the effect of dynamical screening, see also Fig. 9.
number, and exceed the-h and h-h scattering for suffi- So far we considered the situation of GaAs. To obtain at
ciently largek. least a qualitative picture of the magnitude of strong-

The temperature dependence is explored for a lower dercoupling effects in other bulk materials, in Fig. 6 we show
sity over a larger range in Fig. 5, where the ratio of theresults for three different mass ratiog, /m, (for the sake of
T-matrix and Born approximation scattering rat&(and  comparison, the Bohr radius and the binding energy were left
Y <n), which dominate the behavior of the dephasing rates atonstant The general trend is cleaf-matrix effects be-
low densities, is plotted. Again we see that for increasingcome more important for increasing mass ratios. While the
wave number the deviations are generally smaller, and theg-e and h-e scattering rates change only weakly, there is a
further decrease with increasing temperature. On the othexubstantial reduction of th&-matrix rates fore-h scattering,
hand, at low temperatures, the ratio of théh scattering and an even stronger one forh scattering.
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FIG. 7. Electron dephasing rates for two different nonequilib-
rium situations: upper part, localized Gaussian distributiép (
=2.5a5",y=0.5a5%); lower part, broad Gaussian distribution
(y= 2.5aE§2).T-matrix and Born results are plotted as solid and
dashed lines, respectively. The carrier distributions correspond to a
hh T density ofn=5x10" cm™2.

04 F

s . the same peak momentum and corresponding to the same
0 2 4 6 carrier density of 5 10'® cm™ 3. Despite the different shape

k [1/ag] of the distributions, the qualitative picture in the two cases is
the same: The relative role of thematrix effects is larger

FIG. 6. Ratio of the dephasing rates in thienatrix and Born h ttering than f tteri Ith h for th
approximations for different scattering processes and three diﬁ‘erer{fJr e-h scattering than foe-€ scattering, althougn for the

hole-electron mass ratigshown in the figurgvs the wave number. atter _the effect is seen yp t_o larger momenta_. The gbs_,olute
The carrier density is=10' cm 3, and the temperatur&=300 magnitude of the effect is higher for the localized distribu-

K. tion. Here the Born approximation is up to 90% highe+h(
_ _ o scattering, zero momentynthan the T-matrix approxima-
C. Strong-coupling effects in nonequilibrium tion, compared to about 60% for the broad distribution.

We now turn to a discussion of strong-coupling effects The situation is more complex in Fig. 8, which shows
under nonequilibrium conditions. In particular, we are inter-calculations for varying peak positions of the nonequilibrium
ested to see if there exist special excitation conditions of thdistribution, while its width and density have been kept con-
electron-hole plasma which would enhance the differencstant. From the bottom to the center figure, the deviation of
between the Born an@-matrix approximations. To this end, the Born approximation dephasing rate above Thmatrix
we now have to consider the nonequilibrium formulas for thelevel increases from a factor of about 1.5 to almost 2 at zero
scattering ratefEqgs.(21) and(22)]. Notice that the expres- momentum, which seems to confirm the trend of Fig. 7.
sion for 2= contains a fourfold integral which makes the However, a further shift of the carrier distribution toward the
evaluation of the nonequilibriunT-matrix scattering rates band edgéupper figure gives rise to the opposite trend. The
rather time consuming. We have performed a series of scaf-matrix dephasing rates become even larger than the Born
tering rate calculations for various nonequilibrium distribu- result for low momenta. To understand the reason for this
tions as they are generated, e.g., under typical optical excbehavior, we plot the electron-scattering rates in the left
tation conditions. To simulate different photon energies andcolumn, broken down intoe-e and e-h contributions.
pulse durations, we used Gaussian carrier distributigpy  Clearly, the relative growth of th&matrix rates comes from
=Aexfd (p/h—kg)%y] with a different peak momenturhik,  the electron-hole scattering, which is quite similar to the be-
and widthy; see Figs. 7 and 8. havior which we observed previously in the equilibrium case

In Fig. 7, we compare the scattering rates for a localizedat low temperaturessee Fig. 3. In fact, the value of the
and a very broad distributiorf {=f},), both centered around inverse screening lengtk is slightly above the Mott point,
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FIG. 8. Electron-scattering
rates (left) and dephasing rates
(right) for three nonequilibrium
distributions, fe(K)=fn(k),
shown in the figurddotted line$.
The carrier density isn=5
X 10 cm™3. T-matrix and Born
results are plotted as solid and
dashed lines, respectively.
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i.e., this behavior is again caused by theave resonance, proximation possible, it was necessary to introduce simplifi-
which here is observed under nonenquilibrium conditions. cations. First of all, the effect of dynamical screening had to
With expressiong21) and(22), inserted into the collision pe neglected, cf. Eq$11) and (13); we come back to this
integral (7), time-dependent solutions of the coupled kineticquestion below. Second, we neglected degeneracy effects,
equations for the electron and hole distributions have bee@nich limits our results to parameters below the dashed line
performed, starting with initial distributions of the above j Fig. 1. To estimate the relevance of these effects, we plot-
type. We found that using th@-matrix approximation does (eq the static Born approximation results with full Pauli

not strongly change the shape of the distributions, but genc')locking included in Fig. 9(dash-dotted line As antici-

erally slows down the relaxation compared to the BOm apyaieq; the effect is a reduction of the scattering rates which

proximation. ; — 106 ~m—3 It
L _ ... sets in aroundi=10'® cm 3, It is reasonable to expect an
Summarizing the effect of nonequilibrium carrier distribu- P

tions, we have observed quite substantial strong collision ef-
fects. The magnitude and sign of the effect depend strongly 30

on the shape of the distribution and on the carrier density. In I T

most cases, the Born approximation overestimates the total s | \\\Q

scattering and dephasing rates. The largest deviations are g

predicted for distributions which are localized in momentum =

space. Furthermore, the deviations are particularly large at 20 s

low momenta, and may reach 100% and more. On the other ‘ﬁ _____ RPA

hand, in situations slightly above the Mott point, where the = 5 o atix

1s exciton state is still visible as a resonance, we observe a .y ——— Bom

strong enhancement of the nonequilibriimmatrix scatter- ™ 10} — - combined

ing rates. This is found, for the given density, for distribu- — - Born degenerate

tions which are localized at low momenta. . s .
10" 5 s10° 2 s10°: 51072 s 10®

IV. DISCUSSION n [cm73]

A. Limitations of the theory FIG. 9. Electron-scattering rafe; == .+, as a function of
Let us now discuss the range of validity of the presentedhe carrier density for a momentum,=0 and a temperatur@

results. To make a numerical evaluation of fhenatrix ap- =300 K for different theoretical models.
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analogous influence on thiematrix results, because at high exceed 20%, which justifies our approach. Of course, at
densities both approximations should merge as in the cadewer temperature, excitonic effects will be important.
without degeneracy effects.

The third limitation results from a neglect of bound states,
in particular (incoherent, as opposed to the interband polar-
ization) excitons. It is, of course, well known how to incor- ~ Further improvement of the theory of carrier—carrier scat-
porate bound states into the on-shell scattering rates: One hi&ing requires the inclusion of dynamical screening into the
to include three-body scattering processes between a frelematrix approximation. This can be done, e.g., in the frame-
carrier and a bound-h pair. This requires a kinetic equation Work of the dynamically screened ladder approximation of
for excitons, which has to be solved simultaneously, which ig3reen’s functions theofy which, in nonequilibrium, is out
not yet feasible. However, for the parameters considered iff reach. Alternatively, one can try to incorporate dynamical
the present study, the effect of incoherent excitons is foungcreening into our approach approximately. To this end, we
to be small. This can be verified by estimating the fractionuse a combination of statiematrix (“T" ), static(“B” ) and
ag of electrons bound in excitons, e.g., from a mass actiolynamically screened Born approximatiq®PA™ ) for the
law or coupled rate equatiofisWe solved a mass action law Self-energie¥ (see also Refs. 43 and #4
(Saha equatignusing an effective exciton binding energy

B. Dynamical screening effects in theT-matrix approximation

ESf=ES+Al, whereE3=4.2 meV(GaAs, and the lower- S,=31+3RPA_SB (33
ing of the ionization energy is due to screening and self-
energy effectsAl = — ke?/ eg. We found that, for tempera- In a nondegenerate equilibriune-h plasma, the RPA

tures above 50 K, over the whole density rangg,does not  scattering-out ratgEqg. (8)] simplifies to

ZezmaJWQJ—mZ/Zmawp Pa/my)
mh Palo P

iE;(paea)=— do Im e?1(p,0)ng(w), (34

—(p2/2mg)—(p pa/my)

where the Bose functiong(w)=[exp(w/kgT)—1]"* rep-  essential, and the combined scheme is governed by the RPA
resents the plasmon distribution. In Fig. 9, we show the sicontribution. For intermediate wave numbers, the combined
multaneous effect of dynamical screening and strong correscheme smoothly interpolates between the two limiting
lations for the electron-scattering rélg at zero momentum cases.

as a function of density. One clearly sees that the combined

model (33) yields the correct limits: at low densitiébelow C. Summary

10'® cm™), it practically coincides with the statiE matrix, In this paper, a treatment of carrier-carrier scattering in

whereas for high densities, it approaches the RPA. In besemiconductors was presented which goes beyond the com-

tween, the combined scheme essentially follows the statimon Born approximation. It was shown theoretically and nu-

T-matrix behavior, with the dynamics leading to a slight merically that the Born approximation strongly overesti-

overall increase. mates small-angle scattering, but cannot describe the effect
According to Fig. 1, we expect correlation effects to van-of strong collisions. This becomes a serious problem if the

ish beyonch~10'® cm™3. This is indeed observed in Fig. 9, coupling parameteF is of the order of 1 or larger, i.e., in the

as Born andT-matrix results merge at high densities. This corner of correlationgsee Fig. 1 However, the Born ap-

trend is interrupted only for the-h scattering(see Ref. 2B

which is again a consequence of resonances giving rise to the 30 y -

shoulder aroundi=10'® cm~3(2s/2p resonancesand the R

peak arouch=10"" cm 2 (1s). However, for low densities, 25 | N T 1
we do not observe a merging of the Born ahdnatrix re- e ";Z';'_'-_---;
sults, clearly indicating the breakdown of the former. The g 20| _ -~ - \\ _
reason for this is that, due to the decrease of screening, =

T-matrix effects remain important at low densities as well. . 15| |

Finally, let us consider the effect of dynamical screening =T

for different particle momenta. Figure 10 shows the electron — — Combined scheme T~ |
dephasing raté& . for n=10" cm 2 andT=300 K, and the 101 —— Bom .

same approximations as above as a function of wave num- — Tmatrix

ber. Clearly, for small wave numbers, dynamical screening 0 2 ;‘ 6
effects are small while strong correlations are dominant. k [1/ag]

Consequently, the statid-matrix approximation and the

combined scheme are close to each other. In contrast, for FIG. 10. Electron dephasing rafg=I"o.+I's,, as a function of
large wave numbers, statiEmatrix and Born approxima- the wave number for a density=10' cm 2 and a temperature
tions merge. In this case, the dynamical screening effects afe=300 K for different approximations.
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proximation fails not only in the “corner of correlations” to rates that are too high. Similar behavior should be ex-
but also at low densities, where only tliematrix approxi- pected for other transport coeffecients and for optical prop-
mation reproduces the correct analytical limits. We haveerties.

shown that deviations of the Born approximation from the

more generall-matrix result are visible not only in the mi- ACKNOWLEDGMENTS
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