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Non-Lorentzian spectral functions for Coulomb quantum kinetics
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Abstract. Numerical solutions of the Kadanoff-Baym equations with self-energies in second Born approx-
imation are presented for electrons in a bulk semiconductor. The results are used to analyze in detail the
two-time spectral function A(p, t1, t2). In particular, (I) the damping of the spectral function is investi-
gated over a broad density range both, for low and high temperatures; (II), A(p, t1, t2) is compared to
analytical expressions – an exponential and a recently proposed inverse hyperbolic cosine decay law; (III),
the two analytical spectral functions are studied with respect to conservation of total energy, where for
the inverse hyperbolic cosine an improved behavior is demonstrated.

PACS. 05.20.Dd Kinetic theory – 05.30.-d Quantum statistical mechanics

1 Introduction

In the relaxation behavior of Coulomb systems, being ex-
cited by transverse electromagnetic (e.g. femtosecond laser
pulses) or longitudinal electric fields, a variety of short-
time phenomena is observed. The latter include collisional
energy broadening, the buildup of correlations and screen-
ing and, instead of kinetic energy conservation, the con-
servation of total energy (kinetic plus interaction energy),
see e.g. [1,2] for a detailed overview. These effects cannot
be described by conventional Boltzmann-type (semiclas-
sical) kinetic equations, but require generalized quantum
kinetic equations. Among them, the most general are the
Kadanoff-Baym equations (KBE) for the two-time corre-
lation functions. Alternatively, one can consider quantum
kinetic equations for single-time functions (Wigner dis-
tributions and interband polarizations) which are essen-
tially simpler but, the price for this is some arbitrariness
in the choice of the spectral functions A (or, retarded
Green’s functions GR) appearing in the scattering ker-
nels. In the weak-field limit and within a one-band model,
the simplest ansatz for the single-particle spectral function
[GR(p, t1, t2) = Θ(t1 − t2)A(p, t1, t2)] is the local approx-
imation,

A(p, t1, t2) ≈ A(p, τ) = e−iE(p)
~
τe−γτ ; τ ≡ t1 − t2, (1)

where E(p) is the single-particle energy. Often, for
the damping a phenomenological constant γ is taken
(Wigner-Weisskopf approximation), but also improved
self-consistent momentum- and time-dependent expres-
sions have been derived, see e.g. [2]. In all cases, how-
ever, the ansatz (1) leads to serious problems – it violates
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energy conservation and causes an artificial heating and
electron runaway in the long-time limit. The reason is the
Lorentzian form of the Fourier transform of equation (1),
which exhibits a too slow decay (∼ 1/ω2) for large ener-
gies. In the time representation, this is traced back to the
behavior in the vicinity of the time diagonal τ = 0, where
the ansatz (1) has a finite slope −γ. This is in contrast
to known analytical results and, as we will see below, also
the Kadanoff-Baym equations give rise to a zero slope of
the real part of the spectral function on the diagonal.

Therefore, recently an improved inverse hyperbolic co-
sine damping model has been proposed [3] which is of the
form

A(p, τ) = e−iE(p)
~
τ 1

coshα (ω0τ)
, (2)

and reproduces the correct limits: (i) zero slope of ReA
at τ = 0 and (ii) exponential decay for large τ , where the
damping constant is γ = αω0. This ansatz leaves open
the two parameters α and ω0. For the case of electron-
LO-phonon scattering, the natural choice for α is the di-
mensionless Fröhlich constant and for ω0 the LO-phonon
frequency [3].

While the electron-phonon case has been analyzed in
detail [4], where essentially improved properties of the
ansatz (2) were confirmed, its critical test for the more
complex carrier-carrier scattering is still missing. It is
the aim of the current paper to present an in-depth
study of this case. To this end, we solve numerically
the Kadanoff-Baym equations for electron-electron scat-
tering which provides us with the “exact” two-time spec-
tral function A(p, t1, t2). This function is analyzed in de-
tail with respect to its momentum dependence as well
as its behavior for different densities and temperatures.
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Furthermore, we compare the two-time spectral func-
tions to the Lorentzian and non-Lorentzian forms, equa-
tions (1, 2), respectively. A reasonable choice for ω0 for
Coulomb scattering is given by the plasma frequency ωpl,
whereas the parameter α is determined as the best fit of
(2) to the KB result. Finally, we test the spectral func-
tions (1, 2) in quantum kinetic relaxation calculations,
using the obtained before values for α and ω0. Our re-
sults show that the 1/ cosh form reduces the total energy
increase, observed in the Lorentzian case, by about 50%.

2 Survey of the used quantum kinetics results

We recall the Kadanoff-Baym equations [5] for the two-
time correlation functions G≷(1, 1′), for a spatially homo-
geneous one-band system (1 = p1, t1),(

i~
∂

∂t1
−

p2
1

2m

)
G≷(1, 2)−

∫
dr3 Σ

HF(1, 3)G≷(3, 2)

=

∫ t

t0

dt3
{
Σ>(1, 3)−Σ<(1, 3)

}
G≷(3, 2)

−

∫ t′

t0

dt3Σ
≷(1, 3)

{
G>(3, 2)−G<(3, 2)

}
, (3)

where G≷(1, 2) simultaneously obey equation (3) and its
adjoint, and initial correlations are neglected, as we limit
ourselves to not preexcited semiconductors, (for the ac-
count of initial correlations in the KBE, see [2,6]). From
the solutions G≷(1, 2) of the KBE, all relevant quantities
may be computed, in particular, the Wigner function f ,
the spectral function, and the kinetic and correlation en-
ergy density 〈T 〉 and 〈V 〉,

f(p, t) = −i~G<(p, t, t) (4)

A(p, t1, t2) = i~[G>(p, t1, t2)−G<(p, t1, t2)] (5)

〈T 〉(t) =

∫
dp

(2π~)3

p2

2m
(−i~)G<(p, t, t) (6)

〈V 〉(t) =
1

4

∫
dp

(2π~)3

{(
i~

∂

∂t1
− i~

∂

∂t2

)
−
p2

m

}
× (−i~)G<(p, t1, t2)

∣∣
t1=t2=t

, (7)

from which the total energy follows according to 〈H〉 =
〈T 〉+〈V 〉. The Hartree-Fock contribution is not important
for our considerations and will, therefore, be neglected. It
is well known that the KBE conserve total energy for a
broad class of self-energy functions Σ≷ [5]. Among them,
the static second Born approximation is the simplest ap-
proximation for carrier-carrier scattering, involving the
Debye potential Vs,

Σ≷(p, t1, t2) =

i~
∫

dq

(2π~)3
V 2
s (q)Π≷(q, t1, t2)G≷(p + q, t1, t2), (8)

Π≷(q, t1, t2) =

− i~
∫

dp′

(2π~)3
G≷(p′ − q, t1, t2)G≶(p′, t2, t1). (9)

and will be used in the following. In the framework of
quantum kinetics, the screened Coulomb potential should
be treated also as a two-time-dependent quantity [7,8],
but for our present studies we use the time-independent
Debye potential as a simple model potential.

The Kadanoff-Baym equations fully include retarda-
tion effects and are, thus, well suited for the investiga-
tion of short-time phenomena. Most importantly, with the
self-energies being fixed, a fully self-consistent quantum
kinetic model is given, and no further assumptions are
necessary.

This is in contrast to the quantum kinetic equations
for single-time functions which follow in well-known man-
ner from the difference of equation (3) and its adjoint,
but require additional approximations to eliminate the
two-time functions in the collision integral I,

d

dt
f(p, t) = I(p, t)

= 2Re

∫ t

t0

dt̄
{
Σ>(p, t, t̄)G<(p, t̄, t)

−G>(p, t, t̄)Σ<(p, t̄, t)
}
, (10)

which is achieved by means of the generalized Kadanoff-
Baym ansatz (GKBA) [9],

(−i~)G≷(p, t1, t2) = A(p, t1, t2)
{
Θ(t1 − t2)f≷(t2)

+Θ(t2 − t1)f≷(t1)
}
, (11)

where f< ≡ f and f> ≡ 1 − f . As a result, with
the self-energies in Born approximation (8), the r.h.s. of
equation (10) becomes

I(p, t) =
2

~2
Re

∫ t

t0

dt̄

∫
dq

(2π~)3
V 2
s (q)

×

∫
dp′

(2π~)3
A(p, t, t̄)A(p′, t, t̄)A(p + q, t̄, t)A(p′ − q, t̄, t)

×
{
f<(p)f<(p′)f>(p + q)f>(p′ − q) − (f< ↔ f>)

} ∣∣
t̄
,

(12)

which contains the two-time spectral functions. To elimi-
nate this last relict from the KBE, additional approxima-
tions for A(p, t1, t2) are necessary, two of which have been
discussed in the introduction, cf. equations (1, 2).

3 Numerical Results

In this section, we present results from numerical solutions
of quantum kinetic equations describing carrier relaxation
due to electron-electron scattering in bulk semiconductors.
We solve the KBE (3) and the equation for the Wigner dis-
tribution with the non-Markovian collision integral (12),
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Fig. 1. Real part and absolute value of the spectral function A
versus relative time τ = t−t′ from a two-time (KB) calculation
for three different wave numbers. The initial distribution was
a Fermi function with n = 5× 1017 cm−3 and T = 290 K. The
plot corresponds to a macroscopic time of T = 248 fs after
which a correlated equilibrium distribution has been built up.

using the spectral functions (1, 2), respectively, and also
an undamped function (free GKBA), for numerical de-
tails, see references [2,10]. To be specific, we choose GaAs
parameters for the background dielectric constant and the
exciton Bohr radius, εB = 13 and aB = 132 Å.

We limit ourselves to a single-band relaxation and
study various initial conditions. First we consider the equi-
librium two-time spectral function, Figures 1–5. To this
end, the KBE were solved starting with a Fermi distribu-
tion. For a correlated many-particle system, this distribu-
tion is a nonequilibrium one. The system relaxes towards
a stationary correlated state and the damping builds up.

Figure 1 shows A(p, t, τ) for a fixed macroscopic time
t = (t1 + t2)/2 = 248 fs for three different wave num-
bers. The damping is strongest for zero momentum and
decreases weakly with growing k. We, therefore, will con-
centrate in the following on the k = 0 case. Furthermore,
one clearly sees the zero slope on the time diagonal, τ = 0.
Therefore, as expected, A(t, τ) can be approximated much
better by the non-Lorentzian function (2), than by the
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Fig. 2. Absolute value of the spectral function from a KB cal-
culation (full line) compared to two one-time calculations: with
Lorentzian damping (dashed line) and with the 1/cosh ansatz
(dotted line). The damping increment is γ = αωpl, where ωpl

is the plasma frequency and α is obtained as the best fit of
the non-Lorentzian curve to the KB-result. The same damp-
ing is used for the Lorentzian spectral function. The density is
n = 1016 cm−3 and temperature T = 10 K.
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Fig. 3. Same as Figure 2, but for n = 1017 cm−3 and T =
290 K.

form (1). Figures 2 and 3 show the results of the fits of
approximations (1, 2) to A(p, t, τ) for low and high tem-
peratures, respectively. The agreement is generally better
for high temperature where the damping is stronger. At
low temperature, the decay of the two-time spectral func-
tion is more complex at intermediate times τ , so to im-
prove the quantitative agreement would require to include
further corrections into the function (2).

In Figures 4 and 5 we investigate the density depen-
dence of the fit parameter α and of the damping increment
γ = αωpl for a low and a high temperature. Notice the
minimum in the curves γ(n) which resembles the behavior
of the scattering rates in static Born approximation. At
high densities, where the role of correlations decreases, α
approaches the value

α(n) =
1

32/3π5/6

√
me2

~2ε0
n−1/6 (13)

which is independent of temperature. On the other hand,
for low densities, the Born approximation scattering rates
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Fig. 4. Density dependence of the fit parameter α for T = 10 K
(a) and 290 K (b). Symbols are extracted from the numeri-
cal solutions of the KB calculations by fitting to formula (2),
cf. Figures 2 and 3, dashed line corresponds to the analytical
fit formula (14), full line is the high density limit (13).
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Fig. 5. Density dependence of the damping coefficient γ =
αωpl (b) for two different temperatures. As in Figure 4, the cir-
cles and squares represent KB results, the lines to formula (14).

in a charged particle system approach a constant. Using
these two limits, we construct a simple Padé formula to
fit the density dependent two-time data,

α(n) = a
n−1/2 + b+ c n1/2 + dn3/2

1 + e n5/3
, (14)

where the parameter values are shown in Table 1.
Let us now consider nonequilibrium situations. The

analysis of relaxation processes allows us to consider sev-
eral further interesting questions including the influence
of the initial distribution and the quality of the spec-
tral functions (2) versus (1) in nonequilibrium. In order
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Fig. 6. Relaxation of a nonequilibrium Gaussian electron dis-
tribution function, shown for two different times and four dif-
ferent approximations for the spectral function, for explana-
tion, see inset. The density is n = 0.97a−3

B .

to investigate these problems, we have performed a se-
ries of solutions of the quantum kinetic equation for the
Wigner function with the collision term (12) using var-
ious nonequilibrium initial distributions, e.g. Gaussians,
and zero initial correlations. For each case, first the KBE
equations were solved. Then, as before, from the two-time
spectral functions the parameter α was extracted as the
best fit to the form (2). This is not trivial since α changes
with time. However, the analysis shows that the damp-
ing of the spectral function grows during the initial time
(correlation time), but afterwards approximately remains
constant. Therefore, α was fitted to the spectral function
for the final time.

Furthermore, the investigation showed that the spec-
tral functions for initial “equilibrium” (Fermi) and
nonequilibrium (Gaussian) distributions are quite similar.
Provided, the two distributions lead to the same equilib-
rium state (same density and temperature), the time evo-
lution of the spectral functions is not qualitatively differ-
ent. There are, of course, quantitative differences in the
transient relaxation behavior. In particular, at intermedi-
ate times our results show a stronger damping for Gauss
distributions which is due to a higher correlation energy.

Figure 6 shows the relaxation of the distribution
according to the four scattering models. Clearly, the
Lorentzian spectral function slows down the relaxation
compared to the two-time calculation. On the other hand,
the free GKBA (i.e. Lorentzian spectral function with
zero damping) turns out to be faster than the KBE, ap-
proaching the latter for large times, see also [11]. The dis-
tributions calculated with the 1/ cosh form lie approxi-
mately in the middle between the Lorentz and the free
GKBA cases. Furthermore, the results confirm that for
the Lorentzian case, the distribution decreases with in-
creasing momentum significantly slower than the KB run.
Again, the 1/ cosh form reduces this effect.

This behavior is more clearly seen in the evolution
of macroscopic averages, in particular kinetic and po-
tential energy. Consider first potential energy, Figure 7a.
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Table 1. Fit parameters for the Padé formula (14) for two temperatures.

Temperature/K a b c d e

10 0.022 6733 −3.579 64 −8.0729 2418.74 1115.7

290 11.6349 −8.7345 32.5059 26.9986 4864.86
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Fig. 7. Time evolution of kinetic and potential energy (a) and
of total energy (b) for the relaxation conditions of Figure 6,
where also the different approximations are explained.

Interestingly, there are only small differences between the
four models, that is, correlation energy is quite insensi-
tive of details of the scattering model: correlation energy
decreases over a short time (correlation time τcor) which
reflects the formation of (attractive) binary correlations.
After this period, it remains nearly constant, as the system
enters the regime of (Markovian) Boltzmann-type kinet-
ics, cf. [11]. The same trend, but with the opposite sign,
is observed for the kinetic energy, Figure 7a, in the case of
the KBE and of the free GKBA, which is a consequence
of exact total energy conservation in these models, see
Figure 7b. In contrast, the Lorentzian spectral function
leads to a much stronger growth of kinetic energy which,
moreover, does not saturate after t > τcor. As one can see,
the non-Lorentzian spectral function shows an improved
behavior, reducing this heating effect approximately by
50%. This is a rather general result which was verified
also for other situations, see for example Figure 8, where
a higher density has been used.

4 Discussion

In this paper, a numerical study of the effect of dif-
ferent spectral functions for Coulomb quantum kinetics
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Fig. 8. Same as Figure 7, but for a higher density of n =
2.77a−3

B .

has been performed. While the Lorentzian spectral func-
tion shows the well-known problems, for the previously
proposed 1/cosh function, improved behavior could be
demonstrated. Nevertheless, this improvement turns out
to be quantitative, and it does not overcome the quali-
tative problems. Also, the achieved effect is less than for
the phonon case [8], which is, most likely, due to the more
complex momentum structure of the Coulomb collision
integrals containing summations (averaging) over two in-
ternal momenta. One may, of course, ask why not use
at all the free GKB (zero damping) approximation, as
it shows the same conservation behavior than the two-
time result, and the stationary distributions reached by
both are rather close to each other. There are two aspects
to this question. The first is a technical: without damp-
ing, the memory duration in the collision integral (12) be-
comes unlimited leading to increasingly dense oscillations
of the integrand. As a consequence, an accurate integra-
tion is possible only for a limited time (which is set by
the chosen discretization). On the other hand, there is a
more fundamental objection: in a correlated system, there
do exist damping effects, as clearly shown by the KBE,
cf. Figure 1, therefore, the choice of free spectral function
would be inconsistent.



314 The European Physical Journal B

Of course, our one-band calculations are model studies
which directly apply e.g. to a correlated electron gas. Nev-
ertheless, our approach is expected to be of use also for
the interband dynamics of optically excited semiconduc-
tors where one has to consider the intraband (Acc, Avv)
and interband (Acv) spectral functions. Solutions of the
interband KBE [10] allow us to conclude that the pro-
posed 1/cosh approximation is directly applicable to the
intraband spectral functions. On the other hand, the in-
terband functions are more complex and require further
studies.

Finally, let us mention that the ansatz (2) could be
even more important for two-time calculations. One prob-
lem of the latter is that the generated data are depending
in an extremely complex way on the two times and the
momentum and are usually reduced in the calculation of
macroscopic quantities. For example, a central quantity in
quantum statistics is the damping of the spectral function,
i.e. its τ -dependence. For this, the 1/ cosh form might be
very useful, e.g. to extract the density and temperature
dependencies, as was demonstrated in Figure 5.
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H.S. Köhler, J. Phys.-Cond. 8, 6057 (1996).


