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A density operator approach to generalized semiconductor Bloch equations (SBE) for one-time ob-
servables which includes carrier±carrier scattering effects is presented. The theoretical concept is
based upon the quantum generalization of the BBGKY hierarchy for the reduced density operators.
The advantage of our method is its simplicity and transparence ±± to a large extent, derivations
and physical approximations can be performed on the simplest level possible, that of a one-compo-
nent system of spinless particles. We discuss various approximations for the incoherent terms in the
Bloch equations which are related to carrier±carrier correlations, such as strong coupling effects
and the build-up of dynamical screening as well as self-energy effects. As a result we obtain non-
Markovian generalizations of the SBE.

1. Introduction

The theoretical description of fs-laser pulse excitation of electron±hole plasmas in semi-
conductors and the subsequent relaxation requires a kinetic treatment which is given by
the semiconductor (generalized) Bloch equations (SBE). They have been derived within
the framework of second quantization (creation/annihilation operators ay; a) using den-
sity operators [1] and Green's functions formalisms, e.g. [2]. We have shown recently [3]
that the derivation of the SBE, and in particular the analysis of incoherent effects in
semiconductors may be simplified considerably and performed in a very intuitive way by
using the concept of the BBGKY (Bogolyubov-Born-Green-Kirkwood-Yvon) hierarchy.
This approach has been successfully applied to a large variety of fields by many authors,
e.g. [4]. Our work aims at bridging the gap between ªconventionalº kinetic theory and
semiconductor optics. Here, we can only outline the main ideas of the BBGKY approach
and provide some important examples, for a detailed analysis we refer to [5].

2. Summary of the BBGKY Approach
to the Semiconductor Bloch Equations

The SBE are coupled equations of motion for the band populations fl�t� and interband
polarizations P ll0 �t�. Due to the Coulomb interaction between the semiconductor elec-
trons, these equations are coupled to the equations of motion of higher order correla-
tions giving rise to a hierarchy of equations. While the concept of second quantization
derives this hierarchy starting from the ªbottomº, i.e. from the equation for the expec-
tation values of two-operator products haylal0 i, the BBGKY approach starts from the
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ªtopº, from the well-known equation of motion for the density operator of the whole
N-electron system, i.e. the Liouville-von Neumann equation. By computing the partial
trace of the von Neumann equation one obtains the hierarchy [4] for N identical spinless
particles. This is the simplest situation possible, and an important feature of our ap-
proach is that all physical approximations regarding the treatment of correlations may
be performed within this simple ªelectron gasº picture. The fermionic properties of the
electrons and the band structure of the semiconductor are accounted for at later stages
of the derivation. To simplify the analysis, we will consider here only Coulomb correla-
tions. In summary, our approach consists of the following steps: 1. Analysis of the BBGKY
hierarchy and choice of the (decoupling) approximation for the carrier±carrier correla-
tions, see Section 3; 2. explicit inclusion of spin statistics effects by anti-symmetrization of
the truncated hierarchy, Section 5; 3. formal solution for the binary correlation operator
g12�t�, Section 4; 4. expansion of the first equation and of the solution g12�t� in terms of
Bloch states (Section 6). The result is a non-Markovian generalization of the SBE.

3. BBGKY Approach to Correlations

The BBGKY hierarchy provides a straightforward approach to correlation effects by
considering the correlation operators g12; g123; . . . which are related to the density opera-
tors by F12 � F1F2 � g12, F123 � F1F2F3 � F1g23 � F2g13 � F3g12 � g123 and so on. Then
the first two hierarchy equations (for Boltzmann statistics) can be rewritten as

i�h
@

@t
F1 ÿ � �H0

1 ; F1� � nTr2 �V12; g12� ; �1�

i�h
@

@t
g12 ÿ � �H0

12; g12� ÿ �V12; F1F2� � �V12; g12�
� nTr3 f�V13; F1g23� � �V23; F2g13� � �V13 � V23; g123�g ; �2�

where the quasiparticle Hamiltonians and the Hartree potential are defined as
�H0

1 � H1 �HH
1 �H f

1, �H0
12 � �H0

1 � �H0
2 and HH

1 � nTr2 V12F2. The Hamiltonian �H0
1 con-

tains the particle±field interaction part H f
1, which, in the simplest case, is given by the

dipole approximation H f
1 � ÿd1E�t�, where E is the total electric field and d1 the opera-

tor of the dipole moment. These equations are exact since they still contain the full
coupling to three-electron correlations.

The physical effects related to the different terms of Eqs. (1), (2) are easily under-
stood: The right-hand side of Eq. (1) describes the influence of correlations and gives
rise to the collision integrals in the SBE. In Eq. (2), the first term on the right-hand side
is the ladder term, describing strong coupling effects [13] including (incoherent) excitons,
while the second and third terms on the right-hand side describe polarization phenomena
and screening. Correspondingly, there exist four central approximations for the correla-
tions1�: (i) Dynamically screened ladder approximation: it accounts for all two-electron
correlations, including ladder and polarization terms, i.e. all remaining terms of Eq. (2);
(ii) statically screened ladder approximation: includes ladder terms but neglects the po-
larization terms; (iii) polarization approximation (dynamically screened Born approxi-
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1� In the limit of low laser intensities (which is not considered here), the decoupling can be based
on perturbation expansion in the electric field, cf. [6].



mation, RPA): neglects ladders but includes polarization effects; and (iv) statically
screened Born approximation: neglects ladder and polarization terms.

The last term on the right-hand side of Eq. (2) is usually neglected. However, this
leads to an unphysical behavior, such as infinite lifetime of two-particle states (having
real energy eigenvalues E12) and of initial correlations as well as to non-Markovian scat-
tering integrals with unlimited memory depth. This problem is cured rather naturally in
the Green's functions theory by the concept of self-energy. It was demonstrated recently
that self-energy may be introduced into the BBGKY approach also by taking into ac-
count appropriate contributions from the three-particle correlations [7, 8]. For example,
in the PRA case (iii), g123 has to be determined from the equation [10, 5]

i�h
@

@t
g123 ÿ f �H0

123g123 ÿ g123
�H0y

123g
� �V13 � V23; F3g12� � nTr4 �V14; F1g234� � nTr4 �V24; F2g134� � nTr4 �V34; F3g124� ;

�3�

where �H0
123 � �H1 � �H2 � �H3. Solving for g123 and inserting the result into Eq. (2), the

only change is that the Hamiltonian becomes renormalized �H0
12 ! �H0

12 � S�1 � S�2 , i.e.
�H0

1 ! �H1 � �H0
1 � S�1 . S�1 is the correlation part of the retarded self-energy in RPA

which is familiar from Green's functions. Notice that �H1 is not hermitean giving rise to
complex (damped) two-particle energies e12, thus fixing all the problems mentioned
above. Using this scheme, the corresponding self-energy may be derived for any hierar-
chy closure [7, 9, 5] leading to generalized SBE with correlations and energy renormal-
ization effects included.

4. Formal Solution of the Equation of Motion for g12

Instead of solving the (local in time) system (1), (2) it is often preferred to deal instead
with one closed kinetic equation for F1, i.e. the SBE. This may be achieved by formally
solving Eq. (2). For example, in the screened ladder approximation, one obtains �Q12�t�
� �V12; F1�t� F2�t���

g12�t� � Tr34
�U13; 24�tt0� g34�t0� � 1

i�h

�t
t0

d�t �U13; 24�t�t�Q34��t�
8<:

9=; : �4�

The first term is related to initial correlations and the second one describes the build-up
of correlations. This expression is nonlocal both in time (it depends on Q at previous
times) and in the particle indices (depending on Q34, which is due to polarization effects).
The propagator obeys the following equation:

L12
�U13; 24�tt0� ÿ nTr5 f�V15F1; �U53; 24�tt0�� � �V25F2; �U13; 54�tt0��g � 0 ;

(5)
�U13; 24�tt� � d13d24 ;

where L12A12 � i�h�@=@t�A12 ÿ f� �H0
12 � S�12�A12 ÿA12� �H0

12 � S�12�yg ÿ �V12; A12�, and the
self-energy is included in �H0

12 as discussed above. Solution (4) simplifies considerably for
approximations (ii) to (iv) of Section 3. For the strong coupling approximation (ii)
�U13; 24�t�t� � �U12�t�t� d13d24, which allows to derive the Lippmann-Schwinger equation for
the T -operator and the non-Markovian Boltzmann equation [9]. For cases (iii) and (iv),
the neglect of the ladder term �V12; A12� in L12 allows the factorization, �U13; 24�t�t�
� �U13�t�t� �U24�t�t�. Case (iv) is trivial: �U13; 24�t�t� � �U1�t�t� �U2�t�t� d13d24, [7]. Here, we illus-
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trate the concept on the case of dynamical screening, (iii). Then the factorized propaga-
tors �U13�t�t� and �U24�t�t� satisfy the linear quantum Vlasov equation

i�h
@

@t
�U13�t�t� ÿ �Heff

1
�U13�t�t� ÿ �U13�t�t�Heff y

1 � ÿ nTr5 �V15; F1�t� �U53�t�t�� � 0 �6�

with Heff
1 � H1 �HHF

1 � S�1 �H f
1 and the initial condition �Uab�tt� � dab. Thus, the prob-

lem is reduced to an effective single-particle dynamics. The dielectric propagator �U13

defines the correlation operator g12, Eq. (4), which, inserted into Eq. (1), yields the colli-
sion integrals (including initial correlations) in the non-Markovian SBE

I1�t� � n
3

i�h
Tr234

�t
t0

d�t�V12; �U13�t�t� �U24�t�t� fi�hd�t0 ÿ �t� g34��t� �Q34��t�g� �7�

and the retarded RPA self-energy S�1 �t�t� � �n3=i�h� Tr234 V12
�U13�t�t� �U24�t�t� V34F4��t�.

On the other hand, to establish the correspondence to the Green's functions results, it
is convenient to transform Eq. (6) into an integral equation

�U13�tt0� � �U0
13�tt0� � n2 Tr57

�t
t0

d�t �U0
17�t�t� �V75; F7��t�� �U53��tt� ; �8�

where the free (quasiparticle) propagator �U0 is the solution of Eq. (6) with the trace
term set to zero. The momentum representation of Eq. (8) is (homogeneous case)

hp1; p3j U13�tt0� jp1 � q; p03i � d�p1 ÿ p3� d�p3 � qÿ p03�K�p3; p3 � q; tt0�

� �t
t0

d�t K�p1; p1 � q ; t�t� ffp1
��t� ÿ fp1 �q��t�g

� V �q� I�p3; p03; q ; �tt0� ; �9�
where the first term on the right-hand side is the matrix element of �U0; V �q� is the
Coulomb matrix element and hp1j nF1 jp01i � d�p1 ÿ p01� fp1

. An equation for the un-
known integral

I�p3; q ; tt0� � 1

i�h

�
d�ph�p; p3j U13�tt0� j�p� q; p03i �10�

follows directly from integrating Eq. (9) over p1;

I�p3; p03; q ; tt0� � d�p3 � qÿ p03�
�t
t0

dt eÿ1�q ; tt�K�p3; p3 � q ; tt0� : �11�

Here we defined eÿ1 which obeys a Dyson equation

eÿ1�q; tt0� � d�tÿ t0� � V �q� �t
t0

d�tP�q; t�t� eÿ1�q; �tt0� �12�

with

P�q; t�t� � 1

i�h

�
dp1 K�p1; p1 � q; t�t� ffp1 �q��t� ÿ fp1

��t�g ; �13�

being the nonequilibrium RPA polarization function with self-energy included, which
has previously been derived from Green's functions using the generalized Kadanoff-
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Baym ansatz [11]. Here, it is not an ansatz, but an exact result of the BBGKY hierar-
chy with the RPA closure (iii) and g123 given by Eq. (3). eÿ1 is the nonequilibrium
generalization of the inverse dielectric function which is related to the screened potential
by eÿ1 � V s=V , and Eq. (12) fully describes the fs build-up of screening and of the plas-
mon spectrum. For more details and the inclusion of Fermi statistics see [10, 5].

5. Anti-Symmetrization of the Equations of Motion

The effects of the Fermi statistics of the electrons can be made explicit in the hierar-
chy by performing an antisymmetrization of the density operators, F1 ! F1;
F12 ! F12�1ÿ P12� etc. [12]. Here, P12 is a binary permutation operator acting on two-
particle states according to P12 j21i � j12i. Following this procedure, the first hierarchy
equation (1) transforms into

i�h
@

@t
F1 ÿ � �H1; F1� � nTr2 �V �12 ; g12� �14�

which contains all possible exchange effects via V �12 � V12�1ÿ P12�, appearing in the col-
lision integral and in the mean field (Hartree-Fock) Hamiltonian HH

1 ! HHF
1 �

nTr2 V
�

12F2. Analogously, the antisymmetrization of the second hierarchy equation [3]
and of the self-energy [9, 5] is performed.

6. Bloch Representation

Equation (14) together with the solution (4) for g12 constitute in fact the SBE in general
operator notation. The familiar form of coupled equations for band populations and
interband transitions, is obtained by expanding this operator equation in terms of appro-
priate Bloch states [3] jsi � jlsksi, where l is the band index and hs j s0i � dls; ls0dks; ks0

and
PN
s� 1

jsi hsj � 1.

6.1 Bloch representation of the kinetic equation

Denoting the Bloch matrix elements of F1 and g12, by fl1l01�k1� and g
l1l10
l2l20
�k1k2k

0
1k
0
2�, we

obtain the general matrix form of the spatially homogeneous SBE

i�h
@

@t
ÿ �El1

k1
ÿ El01

k1
�

� �
fl1l01�k1�

ÿP
�l1

f�h �Wl1
�l1�k1� f �l1l01�k1� ÿ fl1

�l1�k1� �h �W
�l1l01�k1�g � Il1l01�k1� ; �15�

where Els
ks

is the (unrenormalized) one-particle energy and the effective Rabi energy in-
cludes the matrix element of H f and of the Hartree-Fock energy �h �Wll0 �k� �
�hWll0 �k� � EHF

ll0 �k�. The collision term contains direct and exchange contributions

Il1l01�k1� �
P

k2l2
�k1

�k2

V �k1ÿ �k1� dk1 � k2; �k1 � �k2
fgl1l01

l2l2
��k1

�k2k1k2�ÿgl1l01
l2l2
�k1k2; �k1

�k2�g

ÿ P
k2l2

�k1
�k2

V �k1ÿ �k2� dk1 � k2; �k1 � �k2
fgl2l01

l1l2
��k1

�k2k1k2�ÿgl1l2

l2l01
�k1k2; �k1

�k2�g:
�16�
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6.2 Bloch representation of the solution g12(t)

What is left now is to calculate the correlation matrix elements by expanding the solu-
tion g12�t� in the Bloch basis. The necessary steps are best demonstrated on the static
Born approximation (iv), where under the �t integral in Eq. (4) we have
�U1�t�t� �U2�t�t�Q12��t� �Uy1�t�t� �Uy2�t�t�: To obtain g

l1l
0
1

l2l2
, we need to compute the matrix ele-

ments of Q12 and �U1. For the first one we use the antisymmetrized expression [3]
Q12 � V̂12F1F2 ÿ F1F2V̂

y
12 with the shielded potential V̂12 � �1ÿ nF1 ÿ nF2� V12 which

has the Bloch matrix element

h12j V̂12 j2010i � d
l1l
0
1
d

l2l
0
2
ÿ d

l2l
0
2
f

l1l01
k1k01
ÿ d

l1l
0
1
f

l2l02
k2k02

n o
V �k1 ÿ k01� dk1 � k2; k01�k02 :

The quasiparticle propagator under the influence of the laser field obeys the equation

i�h
@

@t
ÿ �H1

� �
�U1�tt0� � 0 ; �U1�tt� � 1 ; �H1 � H1 �HHF

1 � S�1 �Hf
1

�17�
which has the Bloch matrix representation,

i�h �@=@t� �Ull0
k �tt0� ÿ

P
�l

�Hl�l
k �t� �U

�ll0
k �tt0� � 0 :

These equations contain the full field±matter interaction scenario including multi±
photon absorption, field ionization etc. and are well suited for numerical integration.
Analytical solutions are possible in limiting cases, e.g. by expanding Ull0

k into a Fourier
series in terms of the field harmonics. Here, we restrict ourselves to a two-band (c, v)
model under the influence of a low intensity optical pulse E0�t� cos wot; dE0 � Egap,
which allows to apply the rotating wave approximation, e.g. [2]. If we further use the
local approximation for the selfenergy, i.e. S��tt0� ! S��tÿ t0�; we obtain
�U�tt0� � �U�tÿ t0� and �Ull0

k �0� � dll0 : The solution of Eq. (17) is then

�Ucc
k �t� � exp ÿ i

�h

�t
0

d�t ec
k��t� ÿ

jdcvE0j2
ev
k��t� � �hw0

" #8<:
9=; ;

(18)
�Uvc
k �t� � ÿ

dcvE0

ev
k��t� � �hw0

eÿiw0t ;

and similar expressions for �Uvv and �Ucv [5]. In the weak intensity limit, in the exponent
only the renormalized (complex) band energies ec; v

k remain, leading to four exponential
factors in g

l1l01
l2l2

, i.e. the familiar oscillations (with the real parts of ec; v) which are
damped (by the imaginary parts of ec; v).

7. Discussion

With the coupled equations (15), the result for the relevant matrix elements of (4) and
the solution of Eq. (17) we have obtained very general non-Markovian SBE which con-
tain correlations and self-energy and a general coupling to the electromagnetic field.
While these equations can of course be obtained using various theoretical concepts, the
BBGKY approach allows for a simple and straightforward derivation. In particular, the
treatment of carrier correlations and of the laser±matter interaction can be performed

186 M. Bonitz, J. W. Dufty, and Chang Sub Kim



within a very compact and transparent operator notation, cf. Eqs. (2) and (17), respec-
tively. Thus, the present approach is well suited to extend the theory to more complex
approximations.
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