
File: 595J 570301 . By:DS . Date:15:07:01 . Time:08:04 LOP8M. V8.0. Page 01:01
Codes: 4450 Signs: 2436 . Length: 51 pic 3 pts, 216 mm

Annals of Physics � PH5703

annals of physics 258, 320�359 (1997)

Non-Markovian Boltzmann Equation

D. Kremp and M. Bonitz*

Fachbereich Physik, Universita� t Rostock, Universita� tsplatz 3,
18051 Rostock, Germany

and

W. D. Kraeft and M. Schlanges

Institut fu� r Physik, Ernst-Moritz-Arndt Universita� t Greifswald,
Domstrasse 10a, 17487 Greifswald, Germany

Received December 27, 1996

A quantum kinetic equation for strongly interacting particles (generalized binary collision
approximation, ladder or T-matrix approximation) is derived in the framework of the density
operator technique. In contrast to conventional kinetic theory, which is valid on large time
scales as compared to the collision (correlation) time only, our approach retains the full time
dependencies, especially also on short time scales. This means retardation and memory effects
resulting from the dynamics of binary correlations and initial correlations are included.
Furthermore, the resulting kinetic equation conserves total energy (the sum of kinetic and
potential energy). The second aspect of generalization is the inclusion of many-body effects,
such as self-energy, i.e., renormalization of single-particle energies and damping. To this end
we introduce an improved closure relation to the Bogolyubov�Born�Green�Kirkwood�Yvon
hierarchy. Furthermore, in order to express the collision integrals in terms of familiar
scattering quantities (Mo% ller operator, T-matrix), we generalize the methods of quantum
scattering theory by the inclusion of medium effects. To illustrate the effects of memory and
damping, the results of numerical simulations are presented. � 1997 Academic Press

1. INTRODUCTION

The quantum kinetic properties of a many-particle system are determined in most
cases by the single-particle density matrix or the Wigner distribution function. The
development of the kinetic theory, aiming at the determination of these quantities,
began in 1872 when L. Boltzmann published the equation of motion for the
distribution function [1]. The quantum features of the colliding particles were
included later on in modern quantum-mechanical language. Other ``Boltzmann-
like'' kinetic equations are the well-known Landau and Lenard�Balescu equations,
the latter taking into account the dynamic screening in a plasma.
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The Boltzmann equation (BE) is one of the most fundamental equations of
many-particle theory. This equation describes the irreversible relaxation of a many-
particle system from an arbitrary initial state towards equilibrium. Furthermore, the
Boltzmann equation is the basic equation for the theory of transport processes in
macroscopic systems. Regardless of its fundamental character, the BE is, neverthe-
less, an approximation only. There are phenomena, such as bound states, energy
conservation, and short-time dynamics which cannot be described correctly by the
BE. In order to discuss all these problems, it is necessary to reconsider the derivation
of the BE from the basic equations of quantum statistics, i.e., from the von Neumann
equation,

i�
�*N

�t
=[HN , *N], (1)

where *N and HN denote the density operator and the Hamiltonian of an N-particle
system. This problem was first solved by Bogolyubov [2] who used the idea that
Boltzmann's assumption of molecular chaos can be used as an asymptotic condition
for the solution of the von Neumann equation. Then, the conventional Boltzmann
equation follows from Eq. (1) if, in addition, time retardation effects are neglected
completely (details will be discussed below). From this it follows:

(i) there exists a restriction with respect to the time; i.e., the BE is valid only
for times t with tr{corr . Therefore, the BE is not appropriate for short-time
kinetics. In particular, it cannot describe initial correlations.

(ii) The BE conserves only the mean kinetic energy (T)=( p2�2m).

This means, (T) is conserved during the relaxation process from an arbitrary
initial distribution into a stationary state. Of course, this is an unphysical behavior.
Instead, total energy (the sum of kinetic and potential energy) has to be conserved.
As a result, a temporal relaxation of (T) and of the mean potential energy (V)
to their thermodynamic values has to be expected, and the properties of the final
state will be determined by correlations. Therefore, the BE cannot yield the correct
asymptotic states. For these reasons, a generalization of the Boltzmann equation is
necessary.

We have to mention that generalized kinetic equations for the one-particle dis-
tribution that include initial correlations and memory effects have been derived
already in the early 1960s by Zwanzig [3], Prigogine and Resibois [4], and Fujita
[5]. In particular, Prigogine and Resibois demonstrated that initial correlations are
being damped and the memory duration is limited, due to interaction in the system,
and, therefore, in the long-time limit, the usual Markovian kinetic equation is
recovered. The question of total energy conservation has been investigated for a
long time, too [6]. In the works of Ba� rwinkel [7] and Klimontovich and Ebeling
[8] it was shown that energy conservation and short-time dynamics are closely
connected; see also [9�15]. On the other hand, these early works considered only
rather general aspects of the theory and did not derive explicit kinetic equations,
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such as the non-Markovian Boltzmann equation [16]. Furthermore, they did not
include specific quantum effects.

In the 1970s and early 1980s the interplay between retardation and self-energy in
three-particle collisions, including the formation and breakup of bound states, was
investigated by Paltsev [12], McLennan [13], and Klimontovich and Kremp
[14]. Furthermore, memory effects and initial correlations in two-time kinetic
equations were studied in the context of nuclear collisions by Danielowicz [17].

Recently, progress in short-pulse laser technology [18], has revived the interest
in non-Markovian kinetic equations for the Wigner distribution. For the theoretical
description of ultrafast relaxation of optically excited carriers in semiconductors,
generalized kinetic equations are essential. Here, numerous theoretical and numeri-
cal investigations have been performed, primarily regarding electron�phonon scat-
tering, e.g., [19�22]. Recently, also, studies of memory effects for the essentilly
more involved carrier�carrier scattering problem have been published [23�28], but
they were all limited to the Born approximation, i.e., to weak interactions. On the
other hand, there is high interest in the case of strong interactions, too, in particular
in nuclear collisions, in fluids, dense plasmas, but also in solids at densities suf-
ficiently below the Mott point. In this case, bound state complexes (nuclei, atoms,
molecules, excitons, bi-excitons, etc.) exist, which may alter the properties of the
system dramatically.

In this paper, we will consider several important aspects of generalized kinetic
equations for strongly coupled systems from the point of view of quantum statistics.
In particular, we derive the non-Markovian Boltzmann equation, which allows us
to describe effects of strong interaction on short time scales. Among others, we dis-
cuss the connection between the non-Markovian character of the Boltzmann equa-
tion and conservation laws. Another problem we will be concerned with is taking
into account initial correlations at a finite time t0 , their decay, and their influence
on the properties of the system.

A very powerful tool to derive generalized kinetic equations for the Wigner
function is the real-time Green's functions technique, which leads, e.g., to the well-
known Kadanoff�Baym equations. These equations are very general and have
important properties, such as the exact conservation of total energy and the fully
self-consistent account of damping effects. There exist several papers, where numeri-
cal solutions of the Kadanoff�Baym equations were given [17, 29, 30, 26, 25].
However, due to the two-time structure, a numerical analysis of the Kadanoff�
Baym equations is very complicated and still restricted to the Born approximation.
Simplifications are possible if the transition to kinetic equations for the Wigner
function is made. Such generalized non-Markovian kinetic equations have been
derived from the Kadanoff�Baym equations, e.g., in [31�34]. Nevertheless, there
exist several problems in these derivations. The first is related to the initial correla-
tions. The Kadanoff�Baym equations were originally derived under the assumption
of an asymptotic condition for t0 � &�, assuming an uncorrelated initial state
[6]. There have been several attempts to generalize this derivation to include
arbitrary correlations which may exist in the system at a finite initial time t0 [5, 35,
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17, 36]. The most satisfactory solutions appear to be those of Daniewlowicz [17],
who generalized the Wick theorem to the case of initial correlations, and a recent
alternate derivation which was based on the solution of the Martin�Schwinger
hierarchy [36]. These results coincide in the equal-time limit with the density
operator results. Another problem is related to the reconstruction of the correlation
functions g((t, t$), g)(t, t$) in terms of Wigner distributions f (t); here we mention
the successful attempt by Lipavsky� et al. [37]. Still there remain some questions
concerning the choice of the retarded�advanced propagators in this ansatz and, in
particular, the problem of energy conservation for different choices of propagators.

Based on their own experience with the real-time Green's function theory,
e.g. [38, 39, 31], the authors think it is very important to study also an alter-
native approach which is based on the Bogolyubov�Born�Green�Kirkwood�Yvon
(BBGKY)-hierarchy. The latter results are a valuable test case for the former in the
equal time limit. Moreover, the density operator results are physically intuitive. It
is one of the aims of this paper to show that the technique of density operators
yields the same results for the Wigner function as the Green's function technique.
In particular, we arrive, without any assumption, at the generalized Kadanoff�
Baym ansatz of Lipavsky� et al. Of course, there are, also drawbacks in the density
operator approach. So, it is difficult to incorporate various many-particle effects,
such as screening and self-energy in a simple manner. But the authors think it is
worthwhile to investigate this formalism and to solve these problems for the reasons
mentioned above; see also [40, 41].

This paper is organized as follows. Starting from the von Neumann equation, in
Section II, we show that there is total energy conservation in the untruncated
BBGKY-hierarchy. Futhermore, energy conservation holds, for any approximation
to the hierarchy, which allows for arbitrary permutations among the n particles
(n�3) involved in an n-particle density operator [42]. We then introduce a new
hierarchy closure on the level of ternary correlations, which corresponds to a
generalization of the binary collision approximation. This closure allows us to
define effective two-particle Hamiltonians and to derive the corresponding equa-
tions of motion for the single and two-particle density operators. We include Pauli
blocking effects (phase space occupation) according to Boercker and Dufty [43]
(see also [39, 31]) and, moreover, self-energies in binary collision approximation
in order to account for quasi-particle energies and damping.

In Section III, we construct a complete solution for the two-particle density
operator. To this end we introduce appropriate propagators, generalized T-matrices,
and Mo% ller-operators. We end up with an equation for the two-particle correlation
operator g12(t) which is, for short times, essentially determined by the initial
correlations. Only after these correlations are being damped out, the Bogolyubov-
regime is reached which is characterized by ``weakening of initial correlations.'' The
correlation operator g12(t) is given by a nonlocal function of time which leads to
memory effects that influence the behavior of the system. Furthermore, we perform
a gradient expansion of the correlation operator which simplifies the problem
significantly, and, at the same time allows us to highlight the main physical effects
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more clearly. In Section IV, we construct the collision integral for the equation of
motion of the single-particle density operator (kinetic equation), which includes
Pauli blocking and self-energy and accounts for initial correlations and memory
effects. Due to self-energy effects, initial correlations are damped, and the memory
has a ``finite depth.'' Due to the complex structure of the collision integral, we con-
sider two useful approximations. In Section IV, we consider the second Born
approximation of the T-matrix, leading to the Landau equation. In Section V, the
kinetic equation is treated in the first-order gradient expansion. In the Markov
limit, this yields the ``usual'' Boltzmann equation and, furthermore, important
corrections that just guarantee (total) energy conservation and the correct macro-
scopic properties of an interacting many-particle system. In Section VI, we present
numerical solutions of the non-Markovian Landau equation to illustrate the
memory effects in strongly coupled systems. Finally, Section VII is devoted to a
concluding discussion of the results.

II. THE BOGOLYUBOV HIERARCHY; GENERALIZED BINARY
COLLISION APPROXIMATION; ENERGY CONSERVATION

A. Bogolyubov hierarchy and total energy conservation

We consider a quantum many-body system with short-range binary interactions
V(ri&rj). We permit the interaction to be of arbitrary strength, so that the
mean value of the potential energy (V) may be of the same order or even larger
than that of the kinetic one (T). Moreover, in case of an attractive potential,
bound states may be included. To simplify the notation below, we consider a one-
component system and the spatially homogeneous case only. Generalizations to
several species and to inhomogeneous systems are straightforward.

In the quantum statistical description, the state of such a system of N particles
is completely determined by the density operator \N . However, more suitable for
practical purposes are the reduced s-particle density operators F1 } } } s , defined by

F1 } } } s=Vs Tr
s+1 } } } N

*N ; Tr
1 } } } s

F1 } } } s=Vs. (2)

In terms of the reduced density operators, the average of an s-particle observable
A is given by

<A> =
ns

s!
Tr

1 } } } s
F1 } } } sA1 } } } s . (3)

Here V and n denote the volume of the system and the density, respectively. The
equations of motion for the reduced density operators (Bogolyubov or BBGKY-
hierarchy) follow from the von Neumann equation (1) by taking the partial trace
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i�
�F1 } } } s

�t
&[H1 } } } s , F1 } } } s]

=n Tr
s+1

:
s

i=1

[Vi, s+1 , F1 } } } s+1], s=1 } } } N&1. (4)

The l.h.s. of each hierarchy equation has the same form as the von Neumann
equation, but the r.h.s. includes the coupling to the next higher order of s+1
particle quantities. The full hierarchy is equivalent to the von Neumann equation.
Interesting features of the complete hierarchy (4) are

(i) time reversibility, and

(ii) conservation of particle number and (total) energy including the potential
one; this latter conservation is in contrast to the ``usual'' Boltzmann equation which
conserves only the kinetic energy.

The energy conservation is readily demonstrated. It follows from the first two
hierarchy equations. We first consider the mean value of the kinetic energy using
the first hierarchy equation,

�

i
d
dt

(T)=
n
2

Tr
12 \

p2
1+p2

2

2m
[V12 , F12]+

(5)

=&
n
2

Tr
12

(V12[H12 , F12]).

Here we took into account that, due to the invariance of the trace,

Tr
12

(V12[V12 , F12])=0.

From the second hierarchy equation we obtain

Tr
12

(V12[H12 , F12])

=&Tr
12 \V12

�

i
dF12

dt +&
n
2

Tr
12

(V12[V13+V23 , F123]). (6)

Using the definition of the potential energy,

(V)=
n2

2
Tr
12

(V12 F12), (7)

we may write the central equation

d
dt

((T)+(V) )=
n3

2
Tr
123

(V12[V13+V23 , F123]). (8)
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It is easy to show that the r.h.s. of Eq. (8) vanishes if the three�particle density
operator has the property of permutation invariance with respect to the three
particles involved [44]

P123 F123=F123 , (9)

where P123 denotes the three-particle permutation operator. In that case,

d
dt

((T)+(V) )=0.

Constancy of the total energy in the course of the evolution does, of course, not
mean constancy of kinetic energy only. In particular, during the buildup of correla-
tions (formation of bound states etc.), potential energy changes, and so does the
kinetic energy. Energy conservation and kinetic energy relaxation were investigated
numerically by direct integration of the non-Markovian Landau equation in [24]
and by molecular dynamics techniques [45].

The permutation invariance is, of course, fulfilled for the exact F123 (full
hierarchy). We want to underline, however, that the conservation law holds
also for any permutation invariant truncation approximation (energy conserving
approximation) to the hierarchy. Notice that Eq. (9) is a sufficient condition only,
and there are situations not covered by Eq. (4). An important question is, why, con-
trary to the exact hierarchy, the usual Boltzmann equation does not conserve total
energy. We want to consider the question ``where'' energy conservation is lost. We
will show that this property is not determined by the symmetry of the closure rela-
tion alone. It is also connected with the time structure of the density operator; i.e.,
it is essentially connected with the memory effects in the kinetic theory [46].

B. Generalized Binary Collision Approximation; Selfenergy

The central physical problem in deriving a closed equation for F1 , i.e. a kinetic
equation, is the choice of the appropriate decoupling approximation of the
Bogolyubov hierarchy. For this purpose it is advantageous to rewrite Eqs. (4) in
terms of correlation operators g1 } } } s which are introduced by

F12=F1F2+g12 , (10)

F123=F1 F2 F3+F1g23+F2g13+F3g12+g123 , (11)

and so on. The first two equations of the hierarchy now read

i�
d
dt

F1&[H1+7HF
1 , F1]=n Tr

2
[V12 , g12] i�

d
t

g12

&[H 0
12+7HF

1 +7HF
2 +V12 , g12]&[V12 , F1F2] (12)

=n Tr
3

[[V13 , F1 g23]+[V23 , F2 g13]+[V13+V23, g123]],

(13)
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where we introduced the Hartree�Fock self-energy operator 7HF
1 and the free two-

particle Hamiltonian H 0
12 by

7HF
1 =n Tr

2
(V12F2), H 0

12=H1+H2 . (14)

Equations (12) and (13) are exact. They couple to the rest of the hierarchy via the
three-particle correlation operator. The hierarchy truncation problem is now
reduced to find approximations for g123 . A commonly used approximation for the
derivation of kinetic equations is g123=0. This means that the many-particle system
is fully determined by the one-particle and two-particle density operators. Any pair
of particles does not feel the rest of the system. As a result, two-particle states and
also initial correlations have an infinite lifetime. That is, of course, an unphysical
long-time behavior, as we will discuss below in detail.

The solution is, to take a different approximation for g123 , which accounts for the
interaction of the particles 1 and 2 with the surrounding medium, i.e. self-energy
(damping) effects. In order to include self-energy in binary collision approximation,
the equation of motion for g123 has to be taken in the following approximation:

i�
d
dt

g123&[H 0eff
123 g123&g123 H 0eff-

123 ]&[V12+V13+V23 , g123]

=[V12+V23 , F3 g12] (15)

Thus, we neglected 4�particle contributions related to higher orders in the density
(n Tr4-terms) and accounted only for interactions between particle 1 with particle
3, and 2 with 3, respectively, retaining the full correlation g12 between particles 1
and 2. Notice that the three-particle ladder terms (third term on the l.h.s.) are
included to achieve a consistent treatment of the collision integral and self-energy
[38, 48]. The simpler case of self-energy in the second Born approximation has
been developed in [27, 26, 49] and is studied in detail in [50].

Damping effects have also been derived for the electron�phonon problem in
[22].

The effective Hamiltonian H 0eff
123 is defined as

H 0eff
123=H� 1+H� 2+H� 3 , (16)

where H� 1 is the effective one-particle Hamiltonian, which is yet to be determined.
This means, we follow a self-consistent scheme, as a result of which we will obtain
the effective one-particle, two-particle, and three-particle Hamiltonians and the
corresponding propagators. We obtain the formal solution of Eq. (15) for g123 ,

g123(t)=
1
i� |

�

t0

dt� U+
123(tt� )[V13+V23 , F3 g12]t� U&

123(t� t), (17)
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where the initial value term has been dropped. The retarded propagator U+
123 is the

solution of the equation

i�
d
dt

U +
123(tt$)&(H 0eff

123+V12+V13+V23) U +
123(tt$)=i�$(t&t$), (18)

and the advanced propagator U &
123 obeys the adjoint equation and is related to the

retarded propagator by U &
123(t, t$)=[U +

123(t$, t)]-.
Expression (17) for g123 has to be inserted into the equation for g12 , Eq. (13),

i�
d
d

g12&[H1+7HF
1 +H2+7HF

2 +V12 , g12]&[V12 , F1 F2]

=
n
i�

Tr
3 _V13+V23 , |

�

t0

dt� U+
123(tt� )[V13+V23 , F3(t� ) g12(t� )]U&

123(t� t)& . (19)

Since we are interested in the binary collision approximation, we neglected the
polarization terms (first and second terms on the r.h.s. of Eq. (13)). Neglecting
under the trace off-diagonal contributions (with products V13 V23 which correspond
to higher order correlations), there remain four (due to the commutator) terms that
contain V 2

13 or V 2
23 . We consider one of them in detail:

S1(t)=
n
i�

Tr
3 |

�

t0

dt� V13U+
123(tt� ) V13F3(t� ) g12(t� ) U&

123(t� t). (20)

In consistency with approximation (15), the propagators in Eq. (20) factorize
according to

V13 U+
123=V13 U+

2 U+
13 , g12 U&

123 =g12 U&
12U3

&. (21)

Again, the two-particle propagators U+
12 etc. are still unknown and will be deter-

mined self-consistently with the corresponding one- and two-particle equations, that
will be discussed in the next section. With the factorizations (21), S1 can be
rewritten in a more familiar way,

S1(t)=|
�

t0

dt� 7+
1 (tt� ) U+

2 (tt� ) g12(t� ) U&
12(t� t). (22)

Here we introduced the retarded self-energy function

7+
1 (tt� )=

n
i�

Tr
3

[V13U+
13(tt� ) V13 F3(t� ) U&

3 (t� t)]. (23)

We will see immediately, that 7+
1 , in fact, renormalizes the one-particle energies, so

that it is appropriate to call it self-energy. As we will show below, this quantity is
indeed the well-known retarded self-energy function, familiar from Green's func-
tions theory, here, given in binary collision approximation.

328 KREMP ET AL.



File: 595J 570310 . By:DS . Date:15:07:01 . Time:08:04 LOP8M. V8.0. Page 01:01
Codes: 3060 Signs: 2039 . Length: 46 pic 0 pts, 194 mm

Let us now insert the four expressions of type S1 into the second hierarchy equa-
tion. The equation for g12 has again the form of the binary collision approximation,
but now with renormalized one-particle Hamiltonians,

i�
d
dt

g12&[(H� 1+H� 2) g12&g12 (H� -
1+H� -

2)]&[V12 , g12]=[V12 , F1F2], (24)

where the effective single-particle Hamiltonian H� 1 (quasi�particle Hamiltonian) is
given by

H� 1 g12=H1 g12+7HF
1 g12+|

�

t0

dt� 7+
1 (tt� ) U+

2 (tt� ) g12(t� ) U&
12(t� t). (25)

Thus, we have generalized the binary collision approximation in an important
direction. Having included self-energy effects, we took into account an essential
feature of many-particle systems, the coupling of the particle pair 1�2 to the sur-
rounding medium. As a result, the energy of the pair will be renormalized and
become complex, showing a finite lifetime of the two-particle state.

C. (Anti)-Symmetrization for Fermions�Bosons

Another many-particle effect of quantum systems, which has to be incorporated,
is related to the spin statistics theorem. For Bose or Fermi systems, we have to con-
sider in Eq. (24) only two-particle states belonging to the subspaces H\, i.e., sym-
metric or antisymmetric subspaces of the Hilbert space H, respectively. This fact
leads to a restricted availability of the phase space referred to as Pauli-blocking and
to exchange effects [51]. An alternate approach is to work in the full Hilbert space,
but to modify the operators instead. According to Dufty and Boercker [43], Pauli-
blocking and exchange may be accounted for by a modification of the Hamiltonian
and the interaction potential leading to a modification of the equations of motion
for F1 , g12 , and g123 , Eqs. (12), (13), (15). We will use the latter concept. We have
then, instead of Eq. (24),

i�
d
dt

g12(t)&(H eff
12 g12&g12H eff-

12 )=(N12V12F<
12&F<

12V12 N12) 4\
12. (26)

Here and in the following, we shall use the notations

F<
1 =F1 , F>

1 =1\nF1 (27)

Fy
12=Fy

1 Fy
2 . (28)

The effective two-particle Hamiltonian in Eq. (26) accounts for both, self-energy
and Pauli-blocking,

H eff
12=H� 1+H� 2+N12 V12 , (29)
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and the Pauli-blocking operator reads for bosons (+) and fermions (&)

N12=1\nF1\nF2 . (30)

4\
12 is the two-particle exchange operator, 4 \

12 =1\P12 , with the permutation
operator P12 defined by P12 |12)=|21). Furthermore, the Hartree�Fock term in
H� 1 explicitly contains an exchange part,

7HF
1 =n Tr

2
(V12 F2) 4 \

12 . (31)

We mention that we have to perform an (anti-)symmetrization also in the third
hierarchy equation (15). Without going into details, we give the final result. The
three-particle Hamiltonian has to be decomposed as

H eff
123=H� 1+H� 2+H� 3+N12 V12+N13V13+N23V23 , (32)

and in the inhomogeneity on the r.h.s. of Eq. (15) we have to replace (for details
see [50])

V13 F3 g12 � N13V13 F3 g12�F1F3 V13 g12 (33)

and similarly for the terms with 1 W 2. This gives rise to Pauli-blocking and
exchange contributions in the retarded self-energy 7+ and to an additional
contribution (due to the second term on the r.h.s. of Eq. (33)),

7+
1 (tt� )=

n
i�

Tr
3

[V13U+
13(tt� )(N13 V13 F3�F1F3V13)| t� U3

&(t� t)]4 \
13 . (34)

In Section IV, this expression will be transformed to the familiar self-energy in
binary collision approximation, introducing the concepts of scattering theory and
the T-operator.

Let us summarize the main results of this section. We introduced a new closure
to the BBGKY-hierarchy, given by Eq. (15) for g123 . This allowed us to incorporate
self-energy into the density operator formalism. Moreover, we derived equations of
motion for the one- and two-particle density operators, given by Eqs. (12) and (26).
This system is closed and includes the complete binary collision scenario (ladder
approximation) and, moreover, essential many-particle effects, such as self-energy
and Pauli-blocking. The system (12), (26) describes the coupled dynamics of the
distribution function and the binary correlations. It is applicable to the whole time
range, including short times, where t<{corr. Notice that Eqs. (12), (26) are local in
time. If supplemented with initial conditions for F1 and g12 , they define an initial
value problem for these quantities which, in principal, is well suited for numerical
analysis. However, this is currently not feasable. We proceed differently and con-
sider first a formal solution for g12 (Section III) which can be inserted into the
equation for F1 to yield a closed kintic equation (Section IV).
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III. TWO-PARTICLE DENSITY OPERATOR IN GENERALIZED
BINARY COLLISION APPROXIMATION

A. Formal Solution for the Binary Correlation Operator

The most important quantity of a many-particle system with binary interactions
is the reduced two-particle density operator F12 . This operator determines the mean
value of the potential energy and the collision integral of kinetic equations for the
one-particle density operator F1 . If we include degeneracy effects associated with
Bose or Fermi statistics and the self-energy contribution in binary collision
approximation, as discussed in the previous section, the equation for the binary
correlation operator g12 can be written as

i�
d
dt

g12&[H eff
12(t) g12&g12H eff-

12 (t)]

=[N12(t) V12 F<
12(t)&F<

12(t) V12N12(t)] (35)

with the initial condition

g12(t) | t=t0
=g0

12 .

Here and in the following, we drop the exchange terms (4\
12 � 1), since they do not

alter our derivation. Equations (35) and (36) define an initial value problem for
g12(t), with t0 being an arbitrary starting point for the evolution. Moreover, in
principle, arbitrary values for g0

12 are possible, with the only restriction that g0
12 has

to be consistent with the initial value of F1 . This allows one to describe a great
variety of nonequilibrium situations which are of interest as a starting state for the
relaxation [52].

The formal solution of the linear problem (35), (36) reads

g12(t)=U+
12(tt0) g0

12 U&
12(t0 t)

+
1
i� |

�

t0

dt� U+
12(tt� ) [N12(t� )V12F<

12(t� )&F<
12(t� )V12N12(t� )] U&

12(t� t).

(37)

The first term on the r.h.s. follows from the homogeneous part of Eq. (35) and
describes the dynamics of initial correlations according to the effective two-particle
Hamiltonian H eff

12. The second term in Eq. (37) gives the contribution of two-
particle correlations being built up after the initial time t0 , during the relaxation
process.

It is interesting to note that the solution (37) describes a reversible dynamics
of the statistical quantity g12(t), if self-energy effects beyond Hartree�Fock are
neglected. Then Eq. (35) itself is invariant with respect to reversal of time. It is
another attractive feature of the density operator approach that the transition from
reversible to irreversible dynamics can be traced in detail. Irreversibility follows if
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the initial value problem is replaced by an asymptotic condition for t0 � &�, as it
was introduced by Bogolyubov who considered the special case of total weakening
of initial correlations g0

12=0 [53]. Less restrictive conditions are possible too
(partial weakening of initial correlations) [14, 15]. This allows one to consider the
effect of long-living correlations, such as bound states or large-scale fluctuations etc.
If self-energy effects beyond Hartree�Fock are included, the effective Hamiltonian
is no longer hermitian. Then the question of irreversibility is more subtle and
depends on the evolution of the eigenvalues of H eff

12 .
Despite the simple form of the solution (37), its internal structure (basically the

propagators U\
12) is quite complex. This is due to the complicated time dependence

of the quantities in Eq. (35) and the fact that the Hamilton operator contains
the potential (binary collision approximation). Therefore, a detailed analysis of
Eq. (37) is necessary; that is what we are going to do now. U+

12 and U&
12 are

retarded and advanced effective two-particle propagators, respectively. The retarded
one satisfies the differential equation

\i�
d
dt

&H1&H2&N12(t) V12+ U+
12(tt$)

&|
�

t0

dt� [7+
1 (tt� ) U+

2 (tt� )+7+
2 (tt� ) U+

1 (tt� )] U+
12(t� t$)

=i�$(t&t$) (38)

with the self-energies 7+
1 , 7+

2 given by Eq. (34). The propagators U+
12(tt$) and

U&
12(tt$) are related by

[U+
12(tt$)]-=U&

12(t$t). (39)

Therefore, all relations for an advanced quantity which will be needed below, may
be obtained from the equation for the corresponding adjoint quantity. Obviously,
Eq. (38) represents a Schro� dinger-like equation of motion for interacting quasipar-
ticles with a free two�particle Hamiltonian modified by the one-particle self-energy
contributions 7 +

1 and 7 +
2 . In the case of an attractive binary interaction, it

includes the possibility of bound states which are modified by medium effects.

B. One-Particle Propagators and the Renormalized Energy Spectrum

Before continuing the analysis of Eq. (38), let us consider the free propagators
U 0\

12 which obey Eq. (38) without the interaction potential,

\i�
d
dt

&H1&H2+ U 0+
12 (tt$)

&|
�

t0

dt� [7 +
1 (tt� ) U+

2 (tt� )+7 +
2 (tt� ) U+

1 (tt� )] U 0+
12 (t� t$)=i�$(t&t$). (40)
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The structure of this equation suggests making the ansatz for U 0+
12

U 0+
12 (tt$)=U+

1 (tt$) U+
2 (tt$).

The equation for the single-particle propagators is

\i�
d
dt

&H1+ U+
1 (tt$)&|

�

t0

dt� 7+
1 (tt� ) U+

1 (t� t$)=i�$(t&t$). (41)

This equation corresponds to the well-known Dyson equation of Green's function
theory with a self-energy function here in binary collision approximation, according
to Eq. (34) (U\ correspond to the retarded�advanced Green's functions i�GR�A).

We give a brief discussion of some important properties of U\
1 , starting from the

coordinate representation of Eq. (41). For this purpose it is useful to introduce the
microscopic and macroscopic variables by r=r1&r$1 , {=t&t$ and R= 1

2(r1+r$1),
T= 1

2(t+t$), respectively. The Fourier transform with respect to the microscopic
variables is then defined by

U\
1 ( p|, RT )=| dr d{ e&(i��) pr+i|{U\

1 (r{, RT ).

The analytic properties of the propagators are well known. First, the propagators
may be continued analytically into the complex |-plane. The analytic continuation
of U\

1 may be written as a Cauchy-type integral

U\
1 ( pz, RT )=i |

d|�
2?

A1( p|� , RT )
z&|�

(42)

with the spectral function

A1( p|, RT )=U+
1 ( p|, RT )&U&

1 ( p|, RT ). (43)

U\
1 are analytic in the upper�lower half plane and may be continued into the lower

(upper) half plane by

U\
1 ( pz, RT )=U�

1 ( pz, RT )\A1( pz, RT ).

The propagators can be determined explicitly, if the local approximation is applied
to Eq. (41), i.e., if all quantities depend only on the difference variables. Then, the
solution of Eq. (41) is given by

U\
1 ( p|, RT )=1<\�|&

p2

2m
&7\

1 ( p|, RT )\i=+ . (44)
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Using the result of Eq. (44) and Eq. (43), we obtain for the spectral function

A1( p|, RT )=
#1( p|, RT )

[�|&p2�2m&Re 7 +
1 ( p|, RT )]2+[ 1

2#1( p|, RT )]2 . (45)

with #1= &2 Im 7 +
1 . This is a rather general result. In order to demonstrate the

meaning of the spectral function, Eq. (45), we consider a further simplification; we
calculate Re 7 +

1 and #1 , substituting the argument �| � p2�2m. This leads to a
Lorentz shape of the spectral function,

A1( p|RT )=
#1( pRT )

[�|&E1( pRT )]2+[ 1
2#1( pRT )]2 . (46)

This result for the spectral function yields the following expression for the single-
particle propagators:

U\
1 ({)=3(\{)e&(i��)(E1�i#1){. (47)

Although Eq. (47) has the familiar exponential form, there are some important
differences in comparison to the propagator of a free particle. We have effective
one-particle energies given by

E1( pRT )=
p2

2m
+Re 7 +

1 ( p|RT )| |=E1( pRT ) (48)

and damping of the one-particle states given by the imaginary part of the self-
energy, #1 . Therefore Eq. (47) describes the propagator of damped quasiparticles.

C. Connection between the Propagators and the Scattering Matrix

After having determined the quasiparticle propagators, let us now return to the
exact equations, Eqs. (38) and (40). The appropriate theoretical formalism to
describe binary collisions in a many-particle system is given by a generalization of
the quantum scattering theory. This requires us to define the quantities of scattering
theory, such as the Mo% ller operator and the scattering operator (T-operator) and
to generalize them to scattering in a medium. To do this, it is convenient to trans-
form the differential equations for the two-particle propagators U \

12 into integral
equations.

It is easy to prove that the effective two�particle propagator obeys the following
integral equations:

U+
12(tt$)=U 0+

12 (tt$)&
i
� |

�

&�
dt� U 0+

12 (tt� ) N12(t� ) V12 U+
12(t� t$)

=U 0+
12 (tt$)&

i
� |

�

&�
dt� U+

12(tt� ) N12(t� ) V12 U 0+
12 (t� t$). (49)
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The corresponding equations for U&
12 follow from the adjoint equations, using the

property (39). Equation (49) has a clear physical meaning. While the first term on
the r.h.s. is related to free quasi-particles (which is exact in the case of weak
coupling or Born approximation), the integral terms account for the coupling
between the two particles. Equation (49) is a many-particle generalization of the
propagator equation of scattering theory [54, 55]. In particular, it contains in addi-
tion the Pauli-blocking factors N12(t). To establish a closer relation to standard
scattering theory, it is useful to consider, instead of U\

12 , new propagators defined
as

G\
12(tt$)=\3[\(t&t$)][G>

12(tt$)&G<
12(tt$)] (50)

with

Gy
12(tt$)=U+

12(tt$) Fy
12(t$)+Fy

12(t)U&
12(tt$). (51)

Then we can rewrite Eq. (50) as

G\
12(tt$)=\3[\(t&t$)][U+

12(tt$)N12(t$)+N12(t)U&
12(tt$)]. (52)

We emphasize that the definition of the new quantities Gy
12 does not contain any

approximations. Thus the equations for Gy
12 are fully equivalent to the equations for

U \
12 . Similarly, we have for the free propagators G0\

12 ,

G0\
12 (tt$)=\3[\(t&t$)][G0>

12 (tt$)&G0<
12 (tt$)] (53)

with

G0y
12 (tt$)=U 0+

12 (tt$) Fy
12(t$)+Fy

12(t) U 0&
12 (tt$) (54)

and also

G0\
12 (tt$)=\3[\(t&t$)][U 0+

12 (tt$) N12(t$)+N12(t) U 0&
12 (tt$)] (55).

The propagators G\
12 and G0\

12 have the advantage to ``absorb the spin statistics,''
contained in the Pauli-blocking factors N12 , so that the structure of the resulting
equations is now similar to that of quantum scattering theory for spinless particles.
But in comparison to conventional scattering theory, G\

12 describe in-medium scat-
tering, accounting for Bose or Fermi statistics and self-energy effects. Using Eq. (49)
and the definition (52), we obtain an integral equation for G+

12:

G+
12(tt$)=G 0+

12 (tt$)&
i
� |

+�

&�
dt� G 0+

12 (tt� ) V12G+
12(t� t$). (56)

As before, the adjoint equation yields the integral equation for the advanced
propagator G&

12.
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It is useful to rewrite (56) as

G+
12(tt$)=|

+�

&�
dt� G 0+

12 (tt� ) {$(t$&t� )&
i
�

V12G+
12(t� t$)= . (57)

To make use of the methods of quantum scattering theory, we now introduce a
generalized Mo% ller operator 0+

12 by

0+
12(tt$)=$(t&t$)&

i
�

G+
12(tt$) V12 (58)

=$(t&t$)&
i
�

U+
12(tt$) N12 V12 . (59)

The integral equation for the propagator G+
12 can be written in a compact form

G+
12(tt$)=|

+�

&�
dt� 0+

12(tt� ) G 0+
12 (t� t$). (60)

In the same manner, we get for the advanced quantity

G&
12(tt$)=|

+�

&�
dt� G 0&

12 (tt� ) 0&
12(t� t$). (61)

Analogously, we obtain for the propagators U \
12

U+
12(tt$)=|

+�

&�
dt� 0+

12(tt� ) U 0+
12 (t� t$) (62)

and

U&
12(tt$)=|

+�

&�
dt� U 0&

12 (tt� ) 0&
12(t� t$). (63)

Finally, let us introduce the central quantity of the binary collision approxima-
tion, the T-operator, by defining

T+
12(tt$)=V12 0+

12(tt$); T&
12(tt$)=0&

12(tt$)V12 . (64)

With Eqs. (60) and (64), we can express the propagator G+ by the T-operator

V12 G+
12(tt$)=|

�

&�
dt� T+

12(tt� ) G 0+
12 (t� t$), (65)
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and with Eqs. (56) and (58), also the Mo% ller operator can be written in terms of
the T-operator,

0+
12(tt$)=$(t&t$)&

i
� |

�

&�
dt� G 0+

12 (tt� ) T+
12(t� t$). (66)

What is left now, is to derive the two fundamental equations for the generalized
T-operator, the Lippmann�Schwinger equation and the optical theorem. First,
combining Eqs. (60), (61), (64), and (65), we obtain the well-known Lippmann�
Schwinger equation:

T+
12(tt$)=V12$(t&t$)&

i
�

V12 G+
12(tt$) V12

(67)

=V12$(t&t$)&
i
� |

+�

&�
dt� V12 G 0+

12 (tt� ) T+
12(t� t$).

We will further need the corresponding equation for the advanced operator,

T&
12(tt$)=V12 $(t&t$)&

i
�

V12G&
12(tt$) V12

(68)

=V12 $(t&t$)&
i
� |

+�

&�
dt� T&

12(tt� ) G0&

12 (t� t) V12 .

Second, we derive from Eqs. (67) and (68) the optical theorem in time representa-
tion

T+
12(tt$)&T&

12(tt$)= &
i
� | dt� dt�� T+

12(tt� )[G 0+
12 (t� t�� )&G 0&

12 (t� t�� )] T&
12(t�� t$). (69)

The difference of the quasiparticle propagators entering Eq. (69) can be rewritten in
terms of the propagators U0\, according to Eq. (55),

G 0+
12 (tt$)&G 0&

12 (tt$)=U 0+
12 (tt$) N12(t$)&N12(t) U 0&

12 (tt$).

With the above equations, we have obtained a closed system for the scattering
quantities and quasiparticle propagators. It should be mentioned again that, in
comparison to scattering theory for an isolated pair of particles, here, in-medium
effects are incorporated (cf. Eqs. (67) and (69)). With the generalized two-particle
propagators G+

12 and G 0+
12 , many-body effects such as self-energy and degeneracy

due to Bose or Fermi statistics are taken into account, providing for an important
extension of conventional scattering theory.
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D. Correlation Operator in Binary Collision Approximation

Let us now return to the determination of the two-particle correlation operator
g12(t) which is given by the formal solution (37). Using the relations (62), (59), and
(63), it is easy to show that g12(t) can be written in the form

g12(t)+F<
12(t)= |

�

t0
|

�

t0

dt� dt�� 0+
12(tt� ) U 0+

12 (t� t0) g12(t0) U 0&
12 (t0 t�� ) 0&

12(t�� t)

+|
�

t0
|

�

t0

dt� dt�� 0+
12(tt� ) G0<

12 (t� t�� ) 0+
12(t�� t), (70)

where the generalized Mo% ller operators 0\
12 were defined by Eq. (58) and the

operator G0<
12 is given by

G0<
12 (tt$)=U 0+

12 (tt$) F<
12(t$)+F<

12(t) U 0&
12 (tt$). (71)

Notice that the sum on the l.h.s of Eq. (70) is just the reduced two-particle density
operator F12 . With Eq. (70) we obtained an exact solution of the Bogolyubov
hierarchy on the level of the binary collision approximation. Especially, there is no
restriction with respect to the time. All nonequilibrium properties of the many-
particle system can be derived from this expression in well-known manner. So, we
can determine the collision integral in the equations of motion for the single-
particle density operator, Eq. (12), which allows us to calculate the time evolution
of the distribution function and all one-particle observables. Furthermore, it is
possible to evaluate the dynamics of all two-particle properties from g12 , e.g., the
mean potential energy, Eq. (7).

At this point it is instructive to discuss some properties of the solution given by
the expression (70). First, we have to notice here that the quantities U 0\

12 are two-
particle propagators of free damped quasiparticles. In general, these propagators
are to be determined from Eq. (40). In the simplest approximation, we get,
according to Eq. (47),

U 0\
12 ({)=3(\{)e&(i��)[E12�i(#12)]{, (72)

where we introduced the short notation E12=E1+E2 and #12=#1+#2 .
Second, the binary correlation operator is influenced by its value at t=t0 , which

means g12(t) depends on the dynamics of a correlated initial state. This contribution
follows from the first term on the r.h.s. of Eq. (70). But, the effect of the initial
correlations is weakened because the quasiparticle propagators are damped. This
can be seen most easily from approximation (72). Then, the initial correlation term
reads

|
�

t0
|

�

t0

dt� dt�� 0+
12(tt� )e&(i��)[E12&i#12](t� &t0)g12(to)e&(i��)[E12+i#12](t0&t�� )0&

12(t�� t)
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which gives us an estimate for the time scale on which the initial correlations decay,

{corrt1�#12 . (73)

Therefore, for tr{corr , the Bogolyubov assumption of weakening of initial correla-
tions holds, and the nonequilibrium properties of the many-particle system can be
described by simpler ``conventional'' Markovian equations. Our result is of interest
for the understanding of the short-time behavior of the system. It shows that the
Bogolyubov (kinetic) regime is established dynamically after relaxation of the
correlations (see also [24]). We thus made important progress: We do not need to
postulate the Bogolyubov condition; it follows from our approach directly as a
result of the dynamics of the system confirming the assumption made by Bogolyubov
and others.

We want to mention, however, that the damping of one- and two-particle states
is, in general, very complex. Only in Born approximation is it reduced to one-
particle damping. Otherwise, the propagators U 0\

12 , as derived in our approach,
yield only qualitatively correct results for the damping. Furthermore, it is clear that
various types of correlations have different decay times. In particular, bound state
correlations or large scale fluctuations may have a rather long lifetime. A correct
treatment of the latter type of correlations again requires the inclusion of damping
effects resulting from two-particle dynamics. We will not dicsuss this problem here
but mention the main results of such analysis [14, 38]: It turns out that bound
states are affected by the surrounding medium much less than continuum
(scattering) states; i.e., the former are damped less than the latter. The reason
is a rather complex compensation mechanism between different many-particle
(damping) effects for bound states. This compensation does not occur for
continuum states.

A third property of the solution (70) is that the binary correlation operator is
given by an expression which is nonlocal in time. At the actual time t, the operator
is determined not only by its actual value, but also by its values in the past; that
means, there are memory effects which can essentially influence the relaxation
behavior of the system. This nonlocality can be seen from the last expression on the
r.h.s. of Eq. (70) which gives the contribution of correlations built up from
the initial time t0 up to the actual time t. But, if we look more closely at the
special correlation function G0<

12 , Eq. (71), and apply for simplicity approximation
(72), we see that the memory has a ``finite depth'' which is again determined by the
damping.

E. Gradient Expansion of g12 and Conservation Laws

The physical consequences of the memory effects in g12 can be conveniently
studied if g12(t) is expanded with respect to the retardation in time. In particular,
this allows us to evaluate the first corrections to the local (Markovian) behavior in
explicit form. Let us discuss this expansion with two simplifying assumptions:
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(i) We consider the special case

lim
t0 � &�

g12(t0)=0

(complete weakening of initial correlations).

(ii) The time dependence of the Mo% ller operator and the related retarded and
advanced quantities is given by

0\
12(tt$)=0\

12(t&t$),

what means that in the scattering quantities Pauli blocking is neglected.

In order to perform the retardation (gradient) expansion we introduce ``center of
mass'' and relative variables, t and {, respectively,

F12(t)=|
+�

&�
|

+�

&�
d{ d{� 0+

12({) G0<
12 \&({+{� ), t+

{� &{
2 + 0&

12({� ), (74)

where {=t&t$ and {� =t�� &t$. Taylor expansion up to first order in the relative
times around t and Fourier transformation with respect to { yields

F12(t)=|
d|
2?

0+
12(|) G0<

12 (|, t) 0&
12(|)

+
i
2 |

d|
2? _ d

d|
0+

12(|)
�
�t

G0<
12 (|, t) 0&

12(|)

&0+
12(|)

�
�t

G0<
12 (|, t)

d
d|

0&
12(|)& . (75)

Here, we have to account for the expansion of G0<
12 which follows from Eq. (71),

G0<
12 ({, t)=[U 0+

12 ({)+U 0&
12 ({)] F<

12(t)

&
{
2

[U 0+
12 ({)&U 0&

12 ({)]
d
dt

F<
12(t). (76)

If, furthermore, the damping in the propagators is being neglected, we obtain after
Fourier transformation and using the Dirac identity

U 0+
12 (|)+U 0&

12 (|)=&2?i� $(�|&E12),

U 0+
12 (|)&U 0&

12 (|)=&2�
P

�|&E12

,
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which yields the gradient expansion of G0<
12

G0<
12 (|, t)=&2?i� $(�|&E12) F<

12(t)+�
d

d|
P

�|&E12

d
dt

F<
12(t). (77)

Here, E12=E1+E2 is the two-particle energy. Finally, we can write down the full
gradient expansion up to the first order for the binary density operator,

F12(t)=&i 0+
12(E12) F<

12(t) 0&
12(E12)

+� |
d|
2?

0+
12(|)

d
d|

P
�|&E12

d
dt

F<
12(t) 0&

12(|)

+
�

2 {
d0+

12

dE12

dF<
12

dt
0&

12&0+
12

dF<
12

dt
d0&

12

dE12= . (78)

The first term on the r.h.s. of Eq. (78) represents the so-called local approximation.
This contribution leads to the usual quantum Boltzmann collision integral in the
equation of the one-particle density operator including self-energy corrections and
degeneracy due to Bose or Fermi statistics. The further contributions are the first-
order gradient expansion terms.

Having determined the binary density operator, we can calculate all macroscopic
observables with correlation contributions in binary collision approximation fully
included. For example, let us determine the mean value of the potential energy,

(V)=
n2

2
Tr
12

V12F12 . (79)

With the local approximation for F12 , it follows that

(V) =
n2

2
Tr
12

[V12 0 +
12 F <

12 0 &
12 ]. (80)

Using the relation between 0 +
12 and T +

12 according to Eq. (66) and the invariance
of the trace, Eq. (80) may be transformed to

(V) =&i
n2

4
Tr
12

[T+
12(E) F<

12(t) 0&
12(E)+0+

12 F<
12(t) T&

12(E)]. (81)

Using again Eq. (66), it follows easily that

(V) =i
n2

2
Tr
12 {Re T+

12(E) F<
12(t)+T+

12(E)
PN12

E&E�
F<

12(t) T&
12(E)= . (82)

This expression explains once more the character of the approximations used in our
theory. From relation (82) we are able to determine the mean value of the potential
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energy for an arbitrary nonequilibrium situation once the single-particle density
operator F1(t) is known. Equation (82) is a rather general result. Further simplifi-
cations are possible in limiting cases only. In particular, in thermodynamic equi-
librium, the density operator is known explicitly, and we can replace

n2 F <
12 =n2 F1 F2=n12(1\ f1\ f2), (83)

where we introduced the Bose function n12(|)=1�(exp[;(�|&+1&+2)]&1) and
f1, 2 being Fermi functions. Inserting expression (83) into Eq. (82) we obtain, after
partial integration,

(V) =&
kT
2 |

�

&�

d|
?

ln |1&z1 z2e&;|| Tr
12 {

�
�|

Im(G+
0 (|+i=) T +(|+i=))= . (84)

Here, z1, 2=exp[;+1, 2] are the fugacities. The corresponding expression for the
equation of state may be derived from Eq. (82) using the charging procedure

V ( p&p0)=&|
1

0

d*
*

(V) * . (85)

The *-integration can be carried out with the help of the identity N12 (���|)(G+
0 T +)

=&(���*)(G+
0 T +G+

0 ). The result is

V( p&p0)=
kT
2 |

�

&�

d|
?

ln |1&z1z2e&;|| Im Tr
12 {

�G+
0

�|
T +(|+i=)= . (86)

Following the calculations given in Ref. [57], we arrive at the well-known result for
the pressure

V( p&p0)=&
kT
2

:
n

ln |1&z1z2e&;En|

+
kT
2

Tr
12 {N12 n12(E) Re T +(E)+ln |1&z1z2e&;E| ?$(E&H)

_i \dT +(E)
dE

N12T &(E)&T +(E) N12

dT +(E)
dE += . (87)

The first term on the r.h.s. gives the contribution of the bound states. In the special
case of a nondegenerate (classical) system, this is just the second cluster coefficient
of the fugacity expansion of the pressure. Formulas of this type can be found, e.g.,
in the text book of Landau and Lifshits [56].

Finally, by using a partial wave expansion of the T-matrix, it follows the Beth�
Uhlenbeck representation as shown in Refs. [57, 58].
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F. Recovery of the Generalized Kadanoff�Baym Ansatz

It is interesting to compare the expression obtained for the binary density
operator in binary collision approximation, Eq. (70), with the corresponding result
which follows from the theory of nonequilibrium Green's functions [39]. We give
a brief summary of this result. Using the Green's function formalism, one can derive
an expression of the same form as Eq. (70). The main difference is that the quantity
G0<

12 in Eq. (70) is now given by a product of two one-particle two-time correlation
functions, i.e. (we suppress the momentum arguments),

G0<
12 (tt$)=ig<

1 (tt$) g<
2 (tt$), (88)

while, in the density operator approach, G0<
12 was given by Eq. (71). An agreement

between our density operator result, Eq. (71), and the Green's function result,
Eq. (88), can be achieved only if the one-particle correlation functions in Eq. (88)
are ``reconstructed'' from their value on the time diagonal, �i�g<(tt)=F(t),
according to the generalized Kadanoff�Baym ansatz proposed by Lipavsky� et al.
[37],

�i�g<(tt$)=gR(tt$) F(t$)&F(t) gA(tt$), (89)

where ``&(+)'' refers to fermions (bosons). Using this ansatz for g<
1 and g<

2 in
Eq. (88), we obtain

G0<
12 (tt$)=

&i
�2 [gR

1(tt$) gR
2 (tt$) F1(t$) F2(t$)+F1(t) F2(t) gA

1 (tt$) gA
2 (tt$)], (90)

where we used the fact that products of retarded and advanced functions of the
same arguments vanish. If we now recall that U0\(tt$)=i�GR�A(tt$), Eq. (90)
coincides with Eq. (71) which was an exact result of the density operator approach.
We thus showed that the Green's function formalism agrees with the density
operator result only if the reconstruction ansatz of Lipavsky� et al. is used. We want
to underline, however, that with the density operator approach we are not required
to postulate this ansatz. It is the structure of the binary correlation operator, here
in binary collision approximation, Eqs. (70), (71), which is exactly of the form of
the product of two generalized Kadanoff�Baym ansatzes. Notice also that this
agreement does not depend on the particular choice of the free propagators.

IV. COLLISION INTEGRAL WITH MEMORY EFFECTS

Let us now consider the derivation of the non-Markovian kinetic equation in
binary collision approximation. For this, we start from the first equation of the
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hierarchy, in which we can now insert the solution for the binary correlation
operator, Eq. (70),

d
dt

F1(t)=n Tr
2

[V12 , g12]=I IC
1 (t)+I1(t), (91)

where the second term is the conventional collision term and the first one is an
additional contribution coming from the initial correlations (second and first
integrals on the r.h.s. of Eq. (70), respectively). These collision integrals are given by

I1(t)=n Tr
2 _V12 , |

�

t0
|

�

t0

dt� dt�� 0+
12(tt� ) G0<

12 (t� t�� ) 0&
12(t�� t)& (92)

I IC
1 (t)=n Tr

2 _V12 , |
�

t0
|

�

t0

dt� t�� 0+
12(tt� ) U 0+

12 (t� t0) F12(t0) U 0&
12 (t0 t�� ) 0&

12(t�� t)&F<
12(t)& .

(93)

We first consider the integral I1 . The transformation of I IC
1 can be performed

analogously. The integral I1 can be cast into a more convenient form by intro-
ducing the T-operator which is related to 0 according to Eqs. (64), (66). Then we
get

I1(t)=n Tr
2 |

t

t0

dt� {[T+
12(tt� )&V12$(t&t� )] G0<

12 (t� t)

+
i
� |

t

t0

dt�� dt$ T+
12(tt� ) G0<

12 (t� t�� ) T&
12(t�� t$) G 0&

12 (t$t)=
&adjoint. (94)

Now we transform the first term of (94) with the help of the optical theorem (69)
and get

I1(t)=
i
�

n Tr
2 |

t

t0

dt� dt�� dt$[T+
12(tt� )[G 0+

12 (t� t�� )&G 0&
12 (t� t�� )] T&

12(t�� t$) G0<
12 (t$t)

&G0<
12 (tt� ) T+

12(t� t�� )[G 0+
12 (t�� t$)&G 0&

12 (t� t�� ] T&
12(t$t)

+T+
12(tt� ) G0<

12 (t� t�� ) T&
12(t�� t$) G 0&

12 (t$t)&G0+
12 (tt� ) T+

12(t� t�� ) G0<
12 (t�� t$) T&

12(t$t)]. (95)

Here we used G 0+
12 &G 0&

12 =G 0>
12 &G0<

12 .
Equation (95) is very general and goes far beyond the usual Boltzmann equation.

It still includes the full retardation and, thus, memory effects, and it includes self-
energy and damping. We want to remark that the result derived in the framework
of the density operator technique is in agreement with results derived with the
Greens's functions method (see [39, 31]).
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We now transform the collision integral into the momentum representation. With
(69) and using the T-matrices we obtain for I1=I( p1)

I( p1 , t)=
i

�2 | dp2 dp� 1 dp� 2 | dt� dt�� dt$

_[(p1 p2 |T+
12(tt� )| p� 2 p� 1) U� 0+

12 (t� t�� )( p� 1 p� 2 |T&
12(t�� t$)| p2p$1)

_U 0&
12 (t$t)[N� 12(t�� ) F<

12(t$)&F� <
12(t�� )N12(t$)]

+( p1 p2 |T+
12(tt� )| p� 2 p� 1) U� 0&

12 (t� t�� )( p� 1 p� 2 |T&
12(t�� t$)| p2p$1)

_U 0&
12 (t$t)[N� 12(t� ) F<

12(t$)&&F� <
12(t� ) N12(t$)]

&U 0+
12 (tt$)( p1 p2 |T+

12(t$t�� )| p� 2 p� 1) U 0&
12 (t�� t� )( p� 1 p� 2 |T&

12(t� t)| p2 p$1)

_[N� 12(t�� ) F <
12(t$)&F� <

12(t�� ) N12(t$)]

&U 0+
12 (tt$)( p1 p2 |T+

12(t$t�� )| p� 2 p� 1) U� 0+
12 (t�� t� )( p� 1 p� 2 |T&

12(t� t)| p2 p$1)

_[N� 12(t� ) F<
12(t$)&F� <

12(t� ) N12(t$)]]. (96)

Here we used the following short notations for the momentum dependence of
the different quantities: N12=1&F1&F2 , N� 12=1&F� 1&F� 2 , U 0\

12 =U 0\
1 U 0\

2 =
U0\( p1) U0\( p2), U� 0\

12 =U� 0\
1 U� 0\

2 , F<
12 =F1 F2 , F� <

12 =F� 1 F� 2 , F1=F( p1), and
F� 1=F( p� 1). The distribution functions are normalized according to 2V � dp�[(2?�)3]
F( p)=1, where V is the volume. Notice that the renormalized free propagators
U0\ are to be determined self-consistently from Eq. (41) and the adjoint equation,
respectively.

The collision integral arising from initial correlations is obtained in complete
analogy. We apply Eqs. (64) and (66), and the final form is

IIC =n Tr
2 | dt$[T+

12(tt$) K12(t$t)&K12(tt$) T&
12(t$t)]&n Tr

2
[V12 , F<

12(t)]

&n
i
�

Tr
2 | dt� dt�� dt$[G 0+

12 (tt$) T+
12(t$t� ) K12(t� t�� ) T&

12(t�� t)

+T+
12(tt� ) K12(t� t�� ) T&

12(t�� t$) G 0&
12 (t$t)], (97)

where we introduced the abbreviation

K12(tt$)=U 0+
12 (tt0) g12(t0) U 0&

12 (t0 t$).

Further simplifications may only be done if g12(t0) is given explicitly.
The last step left to perform is to express the retarded self-energy in binary colli-

sion approximation in terms of the T-matrix, too. The derivation follows the same
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lines as for the collision integral above. We start from Eq. (23) and use Eqs. (62)
and (64), leading to the result

7+
1 (tt� )=

n
i�

Tr
3 |

+�

&�
dt$ T+

13(tt$) U 0+
13 (t$t� )

_[N13(t� ) V13 F3(t� )�F1(t� ) F3(t� )V13] U&
3 (t� t). (98)

Equation (98) is the ladder approximation to the self-energy which includes all
ladder-type diagrams, except the one with one rung only and those which are
``closed'' by a single-particle propagator. In terms of Green's functions, this self-
energy expression is discussed in [6, 38, 48].

Equation (96) is the collision integral of a very general kinetic equation for the
evolution of the single-particle density matrix. We want to stress the fact that this
kinetic equation follows from the solution of the initial value problem for g12 ,
Eq. (70), without any additional approximations. In particular, the time dependence
was treated exactly. Therefore, this equation is valid without restrictions with
respect to the time. This equation has the following remarkable properties:

(i) The equation is nonlocal in time; i.e., the distribution function at time t
is determined by its values for the preceding times too. We have a memory effect
with the ``memory depth'' of the order of 1�#12 .

(ii) For times t<1�#12 , initial correlations influence the behavior of the
system significantly, while for tr1�#12 , they are being completely weakened.

(iii) For #12 � 0 we have a symmetric hierarchy closure, i.e., P[123] F123=
F123 ; i.e., total energy is conserved,

d
dt

(T+V)=0. (99)

(iv) Conventional Boltzmann-type two-particle scattering integrals, which
conserve kinetic energy only do not include bound states because, in that case,
energy and momentum cannot be conserved simultaneously [13, 14]. In our case
of the non-Markovian collision integral (96) this restriction does not exist because
kinetic energy is not a conserved quantity. This means, the nonlocality in time
allows for the existence of bound states in the framework of a two-particle collision
approximation already. In particular, bound states may exist in the system already
at the initial moment t0 , which can be accounted for by the choice of the initial
correlations.

It is known from scattering theory that, for weak interaction, the scattering cross
section may be approximated rather well by the Born approximation of the latter.
Let us thus consider a simplified equation by taking the first Born approximation
for the matrix element of the T-operator,

( p1 p2 |T\
12(tt$)| p� 2 p� 1) =V( p1&p� 1) $( p1+p2&p� 1&p� 2) $(t&t$),
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leading to essential simplifications of the numerical analysis. We mention that this
type of approximation retains all non-Markovian features of the time dependencies
discussed above. However, it is worthwhile to discuss such an equation as it leads
to considerable simplifications; e.g., by the occurrence of the delta distribution,

d
dt

F( p1 t)=I IC+
2V2

�2 |
dp2

(2?�)3

dp� 1

(2?�)3

dp� 2

(2?�)3

_|
t&to

0
d{ V2( p2&p� 2)(2?�)3 $( p1+p2&p� 1&p� 2)

_U� 0+
12 (t, t+{) U 0&

12 (t+{, t)

_[F� <
12(t&{) F>

12(t&{)&F<
12(t&{) F� >

12(t&{)]. (100)

Here, the initial correlation term is given by

IIC =
2V

� |
dp2

(2?�)3

dp� 1

(2?�)3

dp� 2

(2?�)3 V( p$1&p1)

_(2?�)3 $(2p� 12) Im[U� 0+
12 (t, t0) U 0&

12 (t0 , t) g0( p1 , p2 , p� 1 , p� 2), (101)

where $(2p� 12)=$( p1+p2&p� 1&p� 2). In Eqs. (100), (101), we still retained the full
renormalized propagators. This means that self-energy effects are still included in a
fully self-consistent way.

A further simplification is possible if propagators for damped quasiparticles,
Eq. (47), are used. Taking, furthermore, into account that the free propagators U 0\

12

factorize, we obtain

d
dt

F( p1 t)=I IC+
2V2

�2 |
dp2

(2?�)3

dp� 1

(2?�)3

dp� 2

(2?�)3

_|
t&to

0
d{ V2( p2&p� 2)(2?�)3 $( p1+p2&p� 1&p� 2)

_exp {&
#� 12+#12

�
{= cos

(E� 12&E12){
�

[F� <
12F>

12&F<
12F� >

12]| t&{ . (102)

Here, E12=E1+E2 and E1 is the quasiparticle energy, E1=p2
1 �2m+Re 7+

1 , and
#=&2 Im 7+

1 . In the quasiparticle approximation, the retarded self-energy in the
second Born approximation is given by
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7+
1 ( p1t)=

2V 2

� |
dp2

(2?�)3

dp� 1

(2?�)3

dp� 2

(2?�)3

_|
t&to

0
d{ V2( p2&p� 2)(2?�)3 $( p1+p2&p� 1&p� 2)

_exp {&
#� 12+#12

�
{= cos

(E� 12&E12){
�

[F� <
12F2

>�F2
<F� >

12] | t&{ . (103)

Equation (102) is a generalization of the Landau equation which is often used in
plasma and solid state physics. This equation, in the limit, where self-energy and
initial correlations are neglected, has been derived, among others, by Klimontovich
[8, 11]. It contains initial correlations, energy broadening cos[(E12&E� 12)(t&{)��],
self-energy, and retardation effects in the distribution function. In cases where the
memory depth is small, it was shown that a qualitatively correct approximation is
to neglect, at the same time initital correlations, the retardation in the distributions
and self-energy (damping) effects [27, 26]. Then, one can take the distributions out
of the time integral and the {-integration can be performed. The result is given by
[26, 32]

d
dt

F( p1 , t)=
2V2

� |
dp2

(2?�)3

dp� 1

(2?�)3

dp� 2

(2?�)3 V2( p2&p� 2)(2?�)3 $( p1+p2&p� 1&p� 2)

_
sin[(E� 12&E12)(t&to)��]

E� 12&E12

[F� <
12(t)F>

12(t)&F<
12(t)F� >

12(t)]. (104)

V. KINETIC EQUATIONS IN FIRST-ORDER GRADIENT EXPANSION

A. Gradient Expansion of the Colision Integral

In deriving Eq. (96) we have obtained a very general equation which is nonlocal
in time (non-Markovian) and which is valid on arbitrary time scales. An essential
question is now to investigate how the usual Boltzmann equation, which is local in
time turns out to be an approximation of our nonlocal equation Eq. (96). To this
end, it is useful to expand the collision integral (96) with respect to the retardation.
To begin we consider the expansion under the preassumption that the quantities T
and 0 depend only on time differences; e.g., T(t, t$)=T(t&t$); the initial time is
t0 � &�; and limt0 � &� g(t0)=0 (Boltzmann limit). In order to make the retarda-
tion ``visible'' explicitly, we introduce the variables

t� =t&{, t�� =t&{� , t$=t&{�� .
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Then we get

I( p1 , t)=
1
�2 | d{ d{� d{�� |

dp2 dp� 1 dp� 2

(2?�)9

_[T+
12({) U� 0+

12 ({� &{) T&
12({� &{�� ) U 0&

12 (&{�� )

_[F� >
12(t&{� ) F<

12(t&{�� )&F� <
12(t&{� ) F>

12(t&{�� )]

+T+
12({) U� 0&

12 ({� &{) T&
12({� &{�� ) U 0&

12 (&{�� )

_[F� >
12(t&{) F<

12(t&{�� )&F� <
12(t&{) F>

12(t&{�� )]

&U 0+
12 ({�� ) T+

12({�� &{� ) U� 0&
12 ({&{� ) T&

12(&{)

_[F� >
12(t&{� ) F<

12(t&{�� )&F� <
12(t&{� ) F>

12(t&{�� )]

&U 0+
12 ({�� ) T+

12({�� &{� ) U� 0+
12 ({&{� ) T&

12(&{)

_[F� >
12(t&{) F <

12(t&{�� )&F� <
12(t&{) F>

12(t&{�� )]]. (105)

The local approximation of Eq. (105) follows by expansion with respect to the
retardations {, {� , and {�� . The result up to first-order in the retardation is

d
dt

F1( p1)=I0( p1)+I (1)( p1). (106)

For the zeroth order we get, then, with the application of the convolution theorem
for the Fourier transforms and using formulae (69), (70), the usual Boltzmann
collision integral (E#E12),

I0( p1 , t)=
2
� |

dp2 dp� 1 dp� 2

(2?�)9 | ( p1 p2 | T+
12(E+i=) | p� 2 p� 1) | 2 $(E12&E� 12)

_[F� >
12F<

12 &F� <
12F>

12]. (107)

The integral (107), i.e., the first contribution of (106) describes the relaxation in an
asymptotic manner, i.e., for times t sufficiently far away from the initial time t0 such
that trtcorr. The following contributions I (1)( p1) in Eq. (106) are corrections which
are of importance for higher orders of the density expansion of the collision integral
and for the correct asymptotic value of the mean value of the total energy.

For the determination of the first-order retardation terms, I is first expanded with
respect to {�� , yielding I (1)

1 . Using Eq. (44), we get, after a simple calculation,

I (2)
1 =

2
�

Tr
2 { |T+

12(E� +i=)|2 d
dE

P

E&E� _F� >
12

dF<
12

dt
&F� <

12

d
dt

F>
12&= . (108)
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Another contribution to I (1) follows by expansion of F� >(t&{� ) and F� >(t&{) and
reads

I (1)
2 =

1
�

Tr
2 | d{ d{� d{�� [[(({� &{)+{) T+

12({) U� 0+
12 ({� &{) T&

12({� &{�� ) U 0&
12 (&{�� )

+{T+
12({) U� 0&

12 ({� &{) T&
12({� &{�� ) U 0&

12 (&{�� )]

&[{U 0+
12 ({�� ) T+

12({�� &{� ) U� 0+
12 ({&{� )T&

12(&{)

+(({� &{)+{) U 0+
12 ({�� ) T+

12({�� &{) U� 0&
12 ({&{� ) T&

12(&{)]]

__F< dF� >

dt
&F> dF� <

dt & . (109)

Again, we use the convolution theorem and the relations (44), (70). We get, after
some algebra,

I (1)
2 =

1
� |

dp2 dp� 1 dp� 2

(2?�)9 {&|T+
12(E� )|2 P$

E� &E
&|T+

12(E)| 2 P$
E� &E

+?i $(E&E� ) _dT+
12

dE
T&

12&T+
12

dT&
12

dE &={F< dF� >

dt
&F>dF� <

dt = . (110)

With (109) and (110) we have

I (1)=I (1)
1 +I (1)

2 (111)

and, thus,

I (1)=&
1
� |

dp2 dp� 1 dp� 2

(2?�)9 {2 |T+
12(E)| 2 P$

E� &E _dF<

dt
F� >&F� < dF>

dt &
+\ |T+

12(E)| 2 P$

E� &E
+|T+

12(E� )| 2 P$

E� &E
&?i $(E&E� ) {dT+

12

dE
T&

12&T+
12

dT&
12

dE =+
__F< dF� >

dt
&F> dF� <

dt &= . (112)

In connection with Eq. (112), we may apply a useful relation which may be derived
from the optical theorem (71) by differentiation. Using the dispersion relation for
T+

12, it follows that

T+
12(E� )

P$ N12

E� &E
T&

12(E)&|T+
12(E)| 2 P$ N12

E� &E

=?i $(E&E� ) {dT+
12

dE
N12T&

12&T+
12N12

dT&
12

dE = . (113)
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Eqution (113) determines the difference between the off-shell T-matrices for the
energies E� and E. We mention that the application of the optical theorem leads to
a neglect of bound states. This can be avoided if the contribution of the discrete
energy spectrum to the T-matrix is separated off first as discussed in Ref. [31].

Unfortunately, a drastic simplification of Eq. (112) is possible only in the case of
nondegenerate quantum systems, i.e., if (d�dt)(1&F1&F2)=0 and F>

12=1. In this
case, we may write

I (1)( p1 , t)= &
1
� |

dp2 dp� 1 dp� 2

(2?�)9

_{ |T+
12(E)| 2 P$

E� &E
+|T+

12(E� )|2 P$

E� &E
&i? $(E&E� )

__dT+
12

dE
T&

12&T+
12

dT&
12

dE &= d
dt

[F� >
12(t)&F<

12(t)]. (114)

With the help of Eq. (113), this expression may be reduced to the simpler form

I (1)( p1 , t)= &
2
�

d
dt |

dp2 dp� 1 dp� 2

(2?�)9 |T+
12(E)| 2 P$

E&E�
[F� <

12(t)&F<
12(t)]. (115)

There exists a close connection of expression (114) and I 0( p1). To find this connec-
tion, let us define

I0(=)=&
1
� |

dp2 dp� 1 dp� 2

(2?�)9 | d| 2$=(E&|) 2$=(E� &|)

_|( p1 p2 | T+
12(E+i=) | p� 2 p� 1) | 2 [F� <

12(t)&F<
12(t)]. (116)

Here, $=(x) is a broadened delta function,

$=(x)=
1
?

=
x2+=2 .

Using this expression for $=, it is easy to show that

lim
= � 0

I 0(=)=I0. (117)

Furthermore, one can derive an interesting relation between the first-order retarda-
tion term I (1)( p1) and the Boltzmann collision integral I 0 (in agreement with
Peletminski [59]), which reads

I (1)( p1)=
1
2

d
dt

d
d=

I 0(=) } = � 0

. (118)
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Here we used the relation

lim
= � 0

d
d=

$=(x)=
P$
x

.

Consequently, the kinetic equation in first order gradient expansion may be given
for nondegenerate many-particle systems in the following compact shape:

d
dt

F1( p1)=\1+
1
2

d
dt

d
d=+ I0(=) } = � 0

. (119)

As compared to Eq. (96), the result of Eq. (119) is less general, and especially the
non-Markovian character is lost. Nevertheless, Eq. (119) goes far beyond the usual
Boltzmann equation. We will demonstrate this by considering the conservation
laws.

B. Conservation Laws

As already mentioned, the usual Boltzmann equation leads only to conservation
laws for an ideal many-particle system. This follows from the delta-function
$(E1+E2&E� 1&E� 2) which conserves only the single-particle energies. The first-
order gradient terms do not include such a delta function. One can show that these
gradient contributions lead to the correct conservation laws of correlated many-
particle systems. We will show this for the conservation of the (total) energy.

To this end, we multiply the kinetic equation (106), together with Eqs. (107),
(114), by the kinetic energy p1

2�(2m1) and calculate the trace with respect to the free
index 1. Furthermore, we symmetrize the resulting expression with respect to the
variables 1, 2 and 1� , 2� . Then we get the relation

�
�t {(T) +

1
2

Tr
12

[T+
12(E)

P

E&E�
F� <

12(t) T&
12(E� )

+T+
12(E)

P

E&E�
T&

12(E� ) F<
12(t)&==0, (120)

and with the dispersion relation

2 Re T+
12(E)=T+

12(E)
P

E&E�
T&

12(E� ), (121)

we get the energy conservation

d
dt

[(T) +(V)]=0. (122)
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Here we used

(V) =
n2

2
Tr
12 {Re T+

12(E) F<
12(t)&T+

12(E)
P

E&E�
F� <

12(t) T&
12(E� )= . (123)

Equation (123) is, according to formula (82), just the mean value of the potential
energy in binary collision approximation. Thus, the first order-gradient terms
provide for the consistency of the character of approximation of the kinetic equa-
tion with that of the conservation laws.

After having considered a simplified time behavior, let us now go back to the
more general case of a finite initial time t0 and arbitrary initial correlations g(t0).
But now we will consider an approximation with respect to the strength of the
interaction; i.e., we consider a retardation expansion of the Born approximation
(Landau equation). An expansion of the distribution functions with respect to the
retardation leads to the equation

dF1( p1)
dt

=IIC+I0+I (1).

Here, the zeroth-order term is given by

I 0=
2V

� |
dp2 dp� 1 dp� 2

(2?�)9 |V( p� 1&p1)| 2 $( p1+p2&p� 1&p� 2)
sin [(E&E� )(t&t0)��]

E&E�

_[F� >
12(t) F<

12(t)&F� <
12(t) F>

12(t)]. (124)

For the first-order retardation term we may write

I (1)=
2V

� |
dp2 dp� 1 dp� 2

(2?�)9 |V( p� 1&p1)| 2 $( p1+p2&p� 1&p� 2)

_
d

dE
cos[(E&E� )(t&t0)��]&1

E&E�

_
d
dt

[F� >
12(t) F<

12(t)&F� <
12(t) F>

12(t)]. (125)

The initial correlation term I IC is given by Eq. (101). This equation was discussed in
[24]. In the Boltzmann limit, i.e. t0 � &�, initial correlations are being neglected,
limt0 � &�g12(t0)=0. Then, using lim{ � �(sin x{�x)=$(x) and limt � �((cos a{&1)�a)
=P�x, we get the Born approximations of the collision integral contributions I0,
Eq. (107), and I (1), Eq. (112).
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VI. NUMERICAL RESULTS

To illustrate our theoretical results on non-Markovian effects in kinetic equa-
tions, we present some numerical examples. Unfortunately, the non-Markovian
Boltzmann equation is still not feasable for numerical solution. Therefore, we have
to restrict ourselves to approximations. In this section we present numerical results
for the solution of the kinetic equation in Born approximation. We expect, however,
that qualitative features, like the interplay between retardation (memory) and
damping effects will remain the same also in the case of the T-matrix approximation.

We studied the relaxation of a dense electron gas starting from an initial non-
equilibrium distribution using various approximations of the kinetic equation in
second Born approximation, such as the Markovian Landau equation, the non-
Markovian Landau equation in zeroth-order retardation approximation, Eq. (124),
and the non-Markovian Landau equation with full memory but without self-energy.
Some of these results were presented in Ref. [24], where also a comparison with
solutions of the Kadanoff�Baym equations was given. We refer to this paper for
numerical details. Here, we focus on the influence of self-energy effects on the
relaxation. To this end, we solved the non-Markovian Landau equation with full
memory, Eq. (102), where the retarded self-energy was calculated self-consistently,
according to Eq. (103). The calculation of the self-energy was performed using the
local approximation for the free propagators and different approximations to
the time dependencies, including the Markov approximation and the full non-
Markovian level, Eq. (103). These results are compared to the relaxation without
damping (Fig. 1), whereas Fig. 2 shows the relaxation according to the non-
Markovian calculation of the self-energy. The results for the real and imaginary
parts of the retarded self-energy, used in Fig. 2, are shown in Fig. 3. One clearly
sees the buildup of correlations. At the initial time, t=0, Re 7+=Im 7+=0.
During the relaxation, the damping coefficient (Im 7+) and the energy shift
(Re 7+) increase until they reach an almost stationary value after about 100 fs,
which is of the order of the correlation time {corr . With the Markov limit for the
self-energy, the relaxation starts already with nonzero values for 7R which results
in an overestimation of the damping.

The effect of self-energy on the relaxation can be seen by comparing Figs. 1 and
2, which show the evolution of the distribution function and its time derivative.
(The derivative is of interest since it is much more sensitive to retardation and
damping effects than the distribution function.) As one can see, the effect of self-
energy is twofold. First, the relaxation is slowed down, because the memory depth
is reduced, which leads to a reduction of the scattering cross section. Second, the
damping terms lead to a broadening of the spectral function. In the long-time limit,
the system relaxes toward a broadened energy delta function ($= with =tIm 7+).
This Lorentzian shape of the spectral function leads to increased scattering into
high momentum states, which can be seen by comparing the high momentum tails
of the time derivatives df�dt in Fig. 2, as compared to Fig. 1. Furthermore, this
broadening causes a continuous increase of kinetic energy (cf. Fig. 4). On the other
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Fig. 1. Relaxation of the distribution function (upper figure) and its time derivative (lower figure),
calculated from the non-Markovian Landau equation (102) without self-energy.

Fig. 2. Same as Fig. 1, but for the non-Markovian Landau equation (102) with full self-consistently
calculated self-energy according to Eq. (103).
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Fig. 3. Evolution of the real and imaginary parts (upper and lower figures, respectively) of the
retarded self-energy, Eq. (103), corresponding to Fig. 2.

hand, after times of the order of the correlation time, we expect that the relaxation
reaches the kinetic (Markovian) stage, where kinetic energy does not change further
[24]. This indicates that the Lorentzian form of the spectral function is not a good
approximation in the long-time limit. This is in agreement with the recent analysis
of Haug and Banyai, who discussed improved spectral functions [60] which decay
faster at high momentum values.

Fig. 4. Relaxation of the kinetic energy for different scattering models: non-Markovian Landau
equation with self-energy (corresponding to Fig. 2, dashes), non-Markovian Landau equation without
self-energy (corresponding to Fig. 1, full line), zeroth-order retardation approximation (Eq. (104), dots),
and Kadanoff�Baym equations (from Ref. [26], dash-dots).
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Furthermore, we mention that for times of the order of the correlation time, one
can avoid the solution of non-Markovian equations and solve, instead, modified
Markovian equations using the so-called correlation time approximation [61].

VII. CONCLUDING REMARKS

In this paper we presented a derivation of a quantum kinetic equation in binary
collision approximation which generalizes the conventional quantum Boltzmann
equation for the Wigner distribution function in several directions. First, we
extended the kinetic equation to the regime of ultrashort times by including the full
dynamics of the binary correlations. This lead us to a kinetic equation which con-
tains memory (retardation) effects and initial correlations. On the other hand, we
saw that the coupled dynamics of one-particle and two-particle quantities alone
(i.e., the dynamics of an isolated pair of particles) leads to unphysical long-time
behavior, which is characterized by time reversibility and by an inifinite lifetime of
the initial correlations. Therefore, a second generalization was necessary, namely to
account for the influence of many-body (medium) effects on the two-particle inter-
action, which was accomplished by including relevant contributions from three-par-
ticle correlations. This was the motivation for the generalized closure relation of the
hierarchy, Eq. (4). Solving the BBGKY-hierarchy with this closure, opened up a
straightforward way to incorporate self-energy effects, and in particular, damping,
into the density operator formalism.

Our main result was the kinetic Eq. (91), which includes all the effects just men-
tioned. Moreover, by avoiding any assumption about weakness of the interaction,
our results are valid for systems with strong coupling, too. Therefore, our analysis
applies to strongly correlated systems, in particular to systems containing bound
states, and thus generalizes previous investigations of memory effects which were
confined to the Born approximation.

Of course, there remain numerous open questions. It remains a challenging yet
unfeasible task to solve the kinetic equation (91) numerically. This would allow one
to investigate the ultrashort time dynamics of strongly correlated systems. On the
other hand, the very interesting problem of the dynamics of bound state correla-
tions, their formation and break up requires further extensions of the theory.
For this it is necessary to include three-particle scattering integrals, two-particle
self-energy contributions, but also to account for the dynamical character of the
interaction.
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