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Abstract 

The numerical solution of the quantum Landau kinetic equation for a dense electron gas is considered. Being 
one of the most simple Getic  equations, it still retains essential physical features of a correlated many- 
particle system, such as selfconsistent static screening and Pauli blocking, and, at the same time, it is a good 
test case for the efficiency of numerical methods. Two schemes for the evaluation of the scattering rates and 
the collision integral are discussed. To illustrate our results, we present time-dependent calculations i )  for 
the relaxation of a nonequilibrium electron distribution function and ii) for the stopping of fast electrons. 

1 Introduction 

Nonequilibrium phenomena on short-time scales are of topical interest in the fields of carrier 
kinetics in semiconductors[l, 2, 3, 41, nuclear physics[5, 61, plasma discharge physics[?], 
deceleration of particle beams in target plasmas[8] and non-LTE (local thermal equilibrium) 
population kinetics[9, lo]. The theoretical description of the relevant processes requires the 
calculation of the Wigner distribution function from a kinetic equation. Here, the rate of 
change of the momentum distribution is determined (i) by the drift in phase space (which 
includes the effect of spatial inhomogeneity and of external fields) and (ii) by a collision term 
accounting for the correlation in the system. In the case of charged particles, the electro- 
magnetic field is coupled to the carrier relaxation via Maxwell’s equation and may give rise 
to  collective oscillations and plasma instabilities. On the other hand in a dense system, 
where the scattering process is strongly influenced by medium effects, by the existence of 
bound complexes or screening effects due to the long range Coulomb interaction in a plasma 
the correlation term is complicated. The complexity of the problem is further increased if 
(iii) the system consists of many species. Until now a fully selfconsistent treatment of this 
complex kinetic problem is not feasible: 

Of course, there is a vast literature on kinetic theory and numerical solutions of ki- 
netic equations. However they treat only parts of the complex problem. We mention this 
solution of the Vlassov equation (where collisions are completely neglected) together with 
Maxwell’s equations for classical plasmas[ll, 121 and quantum plasmas in low-dimensional 
semiconductors[l3]. On the other hand there exist many approaches to  systems in which 
collisions play a dominant role. In many cases a simplified classical expression for the col- 
lision integral is chosen, so complex calculations in systems consisting of many species or 
with a complicated geometry become feasible. This approach neglects quantum effects and 
avoids a selfconsistent treatment of screening. Our aim here is different. We focus on sim- 
ple physical situations in dense plasmas where quantum and many-body effects due to  the 
surrounding medium can be included into the theory and treated numerically. 

A general quantum-statistical approach to this problem has to  include many-particle 
effects, such as dynamical screening, selfenergy and Pauli blocking (phase space occupation). 
In general, this analysis leads to generalized non-Markovian kinetic equations[2, 4, 14, 15, 
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161, first solution of which have become possible in recent years[2, 3, 4, 5, 61. We will not 
consider memory effects here. Other important many-body effects are related to bound 
states and their influence on the plasma properties, there we refer to density operator 
approach given in [17] and to our analysis based on the Green’s functions technique[l5] 
and to the references therein. Other important collective effects are related to plasma 
instabilities and particle-beam interaction (energy deposition), where first applications of 
quantum kinetic equations have benn given recently[l8]. This latter question is of interest for 
the ignition of fusion pellets by heavy ion beams for the inertially confined fusion research. 
For such tasks, it is necessary to  determine the nonequilibrium distribution functions. 

The purpose of the present paper is to investigate accurately a simple kinetic equa- 
tion, the Landau equation, which may serve as a model for comperative purposes and as a 
standard for delivering start solutions for the handling of more complicated equations. In 
the Landau equation, the scattering T-matrix is replaced by its Born approximation, what 
is justified for weakly coupled systems, including high density quantum plasmas, such as 
charge carrier systems in semiconductors[4]. 

We will show that the special techniques for the numerical solution of.the Landau equa- 
tion are of relevance, especially for purposes of the investigation of particle stopping and for 
the buil-up of instabilities. For simplicity, we consider the homogeneous and isotropic case 
which retains, however, essential physical features. In this paper, non-Markovian effects were 
neglected; see, however, [4]. The numerical solution of inhomogeneous equations is only in 
a preliminary stage; mainly classical work is done there using polinomial expansions[l9, 201. 

2 The Quantum Landau Equation 

Let us start from the quantum kinetic equation for the Wigner distribution function in 
binary collision approximation. In the spatially homogeneous case the quantum Boltzmann 
equation reads 

Here& is the two-particle energy, and the distribution functions are denoted by fa = 
f ( p ,  T ) ,  f a  = f@, T )  etc. Tab is the T-matrix to be determined from the scattering theory 
and should include, moreover, exchange and medium effects. According to these possibilities 
and due to the occurrance of occupation factors (1 f f a ) ,  eq.(l) goes far beyond the usual 
(classical) Boltzmann equation. Eq.( 1) is appropriate especially for systems with short range 
forces; however, it is also applied to plasmas in which the interaction has to be screened. 
The consequent inclusion of dynamical screening is realized in the Lenard-Balescu kinetic 
equation. 

The (numerical) solution of both the Boltzmann and the Lenard-Balescu equations was 
dealt with in numerous papers and is a time consuming task. While the quantum Lenard- 
Balescu equation including nonequilibrium dynamical screening was solved only recently[l] , 
the question of the solution of the Boltzmann equation has a long history. However, in 
most cases there were done essential approximations to eq.(l), and especially there was 
chosen a simple version of the T-matrix, or a decomposition of the distribution function was 
performed with respect to orthogonal polynomials[l9, 201. In teh general case one has  to 
determine the T-matrix, e.g., from the numereical solution of the Schrdinger equation; here 
phase space occupation (Pauli blocking) should be incorporated. 
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The question becomes still more complicated if memory effects and long lived correlations 
such as bound states are taken into account. In this paper which is mainly of methodical 
interest we choose the Born approximation to the Boltzmann equation, i.e, the (statically 
screened) Landau equation. This equation retains still several many-body features, namely 
screening and phase space occupation. The quantum version of the Landau equation reads 
for a Fermi system 

b 

Here we used R = 1. In the following, the momentum distribution is assumed to be 
isotropic and the two-particle ener ies are taken to be free particle energies, i.e. Eab = p2/2rna +pf2/2mb. The potentid vab B is taken to be the statically screened Debye potential. 

Here Vab(q) = 4reaeb/qz is the Fourier transform of the Coulomb potential and E ( q ,  0) 
is the static dielectric function in Random Phase Approximation (RPA). For the inverse 
screening length we find 

In this paper, we want to discuss the featurs of the Landau equation from the numerical 
point of view and especially consider the time evolution of the distribution function. This 
study is intended to serve as a standard problem for comparative purposes with systems in 
which additional effects such as memory, initiaI correlations etc. are included[4]. We want 
to mention that eq.(2) does not exhibit any divergencies; the long range ones are avoided 
by screening, and the short range ones do not occur due to quantum effects. 

We introduce an abbreviation for the set of distribution functions 

1 1 
x d  (2m, KP + - $1 + [ (P' - q.)* - P"] )  * 

In (6),  we have to carry out 4 nontrivial integrals i.e., we have the integrations over 
Ip'l, Iql, z1 = cos(q,p) and z2 = cos(q,p'), among which one may be done with the delta 
distribution. 
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The z2 integration is carried out using the 6 distribution representing energy conser- 
vation. This leads to a condition foe the integration over the modulus of p’ integration, 
namely 

New variables p’ + p‘ + ji lead to 

x @ab ( dq2 + p2  d- SqPZl, /mi P, P‘, t )  . (7) 

Another possibility according to Banyai[21] is now to remove the quantities z1 and 2 2  

from the combination’of distribution functions. In the isotropic case, the distribution func- 
tions depend only on the absolut values of the momenta. The procedure is the introduction 
of two additional integrations. The price will be that the q integration will be more com- 
plicated. Equation (6) reads then 

~ ~ ~ d z d y ~ ~ * ( q ) ( 2 s ) 6 ( ~ [ ( z - p 2 ]  +- 1 [(y-p”]) 
= / (2r)3 (2,,-)3 2ma 2mb 

0 

x@ab(&, &i bl 7 ~ ‘ I I  t )& (. - IP + qI2) (Y - b’ - qlz) . (8) 

The additional 6 distributions have zeros for positive arguments only. The t l ,  22  in- 
tegrations may be done using the last mentioned 6 distributions, the modulus integration 
over lp’l is carried out with the energy conserving 6 distribution, and there remain only the 
z, y and 141 integration. In the case of the Born approximation and if Vab(q) is sufficiently 
simple, the latter integration may be carried out, too. The variables z1 and z2 run, in 
principle, from -1 to +l. According to 

we get for the restriction of the lql integration (141 q)  

qmin = maximum [IP - 61; IP’ - 1 

qmax = minimum [p + 6; p’ + &] , (10) 
qmin < qmex- 

With these abbreviations, the q integration may be done. The conditions (10) may be 
controlled by a computer for given external momentum IpI and for any step of the current 
remaining integrations over Ip’l, x and y. 



S. Kosse, M. Bonitz, M. Schlanges, et al., Quantum Landau Equation 503 

The integration over q is now carried out using the statically screened Coulomb potential 
given by (3): 

Then we get from (8) and (9) replacing t by t2 and y by y2 

In (12), aab is defined by ( 5 ) ,  and in the isotropic case considered all distribution func- 
tions depend only an the absolute values of momenta. We want to mention again that we 
can take advantage of the analytical integrability of the Debye potential. Things become 
more complicated and cannot be reduced to a two dimensional integral in the general case 
of a Boltzmann equation with a T-matrix instead of the Born approximation. 

3 Numerical Evaluation 

3.1 Dicussion of the Collision In tegra l  

In the following we consider a dense quantum electron gas, i.e. the relaxation of the electron 
distribution is calculated from a Landau kinetic equation with an electron-electron collision 
integral. The interaction potential is the statically screenend Coulomb potential given by 
(3). The momentum distribution is assumed to be isotropic. 

The aim is to solve numerically the kinetic equation using two different expressions for 
the collision integral given by (7) and(l2). Especially, we will compare the efficiency of 
their numerical evaluation. Three integrations must be done in (7), while there are only ;wo 
integrals in equation (12). 

For the further considerations, it is useful to write the Landau collision integral in terms 
of the scattering-in rate ktiC,<(p, T )  and the scattering-out rate iC;(p,  T ) ,  i.e. 

(13) 
a 

&=(PIT) = c,<(PIT)P - fc(P,T)I - ~ , > ( P , T ) f e ( P , T ) .  

> 
The E,< follow from (1) using the*first Born approximation for the T-matrix and can 

be taken from (7) and (12) where some integrations were carried out already. We give the 
scattering-in and scattering-out rates explicitly for the case where the collision integral is 
written as the double integral expression (12) and we find 

% 1 d t  1 dyGa"(p, t, y), 
K 

0 0  

M M  

C,>(p )  = % ] d t  / dyGoUf(p, z, y). 
K 

0 0  

Here, we introduce the abbreviations 
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and 

x [ ( l - f h ( s ) ) ( l - f a ( Y ) ) f a ( ~ ~ ) ] .  ma (17) 

As before, the mass is given in units of the reduced mass and the energy is given in Ryd 

To study the numerical method the initial distribution function f e ( p ,  0) was chosen to 
units. i 

be a Gaussian distribution function of the form 

where y is the width and po is the maximum location. 

2 

I 
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Figure 1: Integration range for the potential.The left pictures show the scattering-in term 
(16) (signed with in), the right pictures show the scattering-out term (17) before x,  y inte- 
gration for different external momenta. 

A problem to treat (12) numerically is the integration range with respect to x and y. 
The area in which the integrands G'" and Gout give nonzero contributions to the integral 
is small, what could be used to reduce the integration region. But this area is different for 
different external momenta and it changes if the distribution function changes in time. 
In Fig. 1 the regions in the x-y plane are shown where G'" and Gout give contributions to  
the integral. The time is kept constant and a Gaussian distribution function was used used 
in the Gaussian form (18) with the paxameters A = 0.15, 7 = 0.05 and po = 0.4. 
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We found that a relatively high number of integration points is needed to perform the 
double integral. The number of points per single integration as well as the memory demand 
is higher compared to the triple integral if the same accuracy is required. 

3.2 Relaxation of the Distribution Function 

The quantum Landau equation is a simple kinetic equation which can be dealt with ac- 
curately. Therefore, it is a useful model equation to study relaxation processes in dense 
quantum systems. in the following the solution of the Landau equation is applied to model 
nonequilibrium phenomena relevant for dense plasma physics. 

First let us consider the complete relaxation of a special electron distribution function in 
a quantum electron gas. An interesting situation is given if we have a disturbed equilibrium 
state due to high energetic electrons. Special problems related to such a situation are 
electron beams in plasmas, runaway electrons and the build-up of instabilities. Here, we 
will not discuss these special phenomena, but we will restrict ourselves to the relaxation of 
the momentum distribution which we chose in the special shape 

Density and temperature of the equilibrium state described by the Fermi function are 
n = 1.5 .  1023~m:3 and T = 200001C. Furthermore, the parameters of the Gaussian part of 
the initial distribution function are chosen to be A = 0.1, po = 2.5 and y = 0.04. 

The electron number density described by (19) corresponds to that of a very dense 
plasma. Recently, highly ionized Carbon plasmas with electron densities exceeding 1023cm-3 
were produced by intensive subpicosecond laser pulses[22, 231. the investigation of such 
extreme plasma conditions is of great importance for further developments in the field of 
inertially confined fusion experiments. Here, the theoretical modelling of the short time 
behaviour to give estimates about transient properties and relaxation times is of special 
interest. 

1.0, - I I 

4.0 
0.0 

0.0 1 .o 2.0 3.0 

Figure 2: Relaxation of an initial distribution (19) (a: Ofs, b: O.lfs, c: 0.2fs, d: 0.4fs, e: 2fs). 
The Fermi distribution corresponds to a number density n = 1.5. 1023~m-3 and a temper- 
ature T = 20000K. The parameters of the Gaussian part are A = 0.1, ko = 2.5, y = 0.04. 

The time evolution of the distribution function given by (19) is shown in Fig. 2. The 
behaviour of the second moment of the distribution function is presented in the lower part of 
the Figure. We observe a rapid thermalization with a high decay rate of the high energetic 
maximum of the distribution function. Due to the high density of the electron gas, the 
relaxation time is extremly small. In our case, equilibrium is reached already at nearly 
2.0 fs. 
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3.3 Stopping Power 

A further problem relevant in dense plasma physics is the investigation of energy deposition 
of a particle beam into target plasma. This problem was intensely studied in the last years, 
especially, in connection with inertial fusion research[8, 24, 251. The characteristic quantity 
is the stopping power which is considered to be the time derivative of the mean kinetic 
energy of the beam particles, e.g. 

where nb is the density and f b  the distribution function of the beam. Usually, the 
stopping power calculated in such a way corresponds to  the initial moment of the beam- 
target interaction and does not describe the complete thermalization process[26,27, 28,293. 
In particular, the beam particle distribution function is assumed to be of delta-like shape. 
The result is then a time independent expression for the stopping power (stopping force) 
and reads, e.g., for the calculation in the framework of a Boltzmann equation[30], 

Here p* = p f mbv + ( m ~ m ~ c k ~ T ) / ( m c p ) .  QT is the transport cross section which is 
determined by the T-matrix, mbc is the reduced mass. 

In contrast to such procedure, the new aspect to this paper is to consider the time 
evolution of the deposition procedure. In general, one has  to start from the coupled set of 
beam-target equations 

In the following we will do this in a simplified manner using the Landau kinetic equa- 
tion considered so far. Our model is a two-component electron gas with different initial 
distribution functions. The first one describes the target system which is assumed, at the 
beginning, t o  be in the thermodynamic equilibrium. The second one is given by a Gaussian 
distribution function. The latter corresponds to high energetic electrons and therefore it 
reflects some features of a particle beam. The time evolution is calculated then solving the 
coupled set of Landau equations (22) including the corresponding two-component collision 
integrals. For the collision integrals, we use the expression given by (12). 

The relaxation of the system into the final equilibrium state is shown in Fig. 3. The 
initial distribution of the target component (right figure) is described by a Fermi distribution 
which corresponds to a density n = 5 1021cm-3 and to a temperature of T = 20000K. The 
left figure shows the temporal evolution of the high energetic component (electron beam). 
The relaxation process is characterized by a first time interval of rapid broadening of the 
initial Gaussian peak. This process has  a duration time of nearly 1 fs whereas the final 
equilibrium state is reached at 10 fs. 

From the calculated distribution functions we can find the temporal evolution of the 
mean kinetic energies per particle. It describes the thermalization shown in Fig. 4. 
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Figure 3: Relaxation of the distribution functions of a two component electron gas (a: Ofs, 
b: O.lfs, c: 0.2fs, d: 0.4fs, e: 2fs). The initial state of the high energetic component (left) is 
given by a Gaussian distribution function with A = 0.1, ICo = 2.5, 7 = 0.04. The tar et  sys 
tem (right) is considered to be initially in thermodynamic equilibrium with n = 5 . 1 8 l ~ r n - ~  
and a temperature,T = 20000K described by a Fermi distribution function. 

time [fa] 

Figure 4: Temporal evolution of the mean kinetic energy of the two component electron gas 
considered in Figure 3 (solid line - target system, dotted line - high energetic component). 
Thermalization is reached nearly at 1Ofs. 

0.0 0.5 1 .o I .5 20 

dv, 

Figure 5: Energy deposition of the beam component into the target system in the initial 
moment (a). It is given as a function of the characteristic (beam) velocity in units of thermal 
velocity Vth  = (2k~T/ rn ) ( ' /~ ) .  The results are compared with that obtained from an explicit 
stopping power expression in Landau approxiamtion (b)[30]. 
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Finally, let us look at the energy deposition in the initial moment of relaxation. Practi- 
cally it was determined considering the first time steps of numerical integration. Different 
Gaussian distribution functions were used for the beam component varying the location of 
the peak. In this way, we can model the dependence of the stopping power on the char- 
acteristic (beam) velocity. The result are shown in Fig. 5 for a target electron gas with 
density TZ = 1021cm-3 and temperature T = 30000K. Furthermore, a comparison is given 
with results obtained from explicit stopping power expressions which were derived in the 
usual manner from the kinetic equations[30]. Here, the collisions integral was also used in 
Landau approximation. The results show a relatively good agreement in the considered 
velocity range. Both curves describe an energy gain at low velocities and exhibit a zero 
approximately at a velocity equal to the thermal velocity of the target plasma. At high 
velocities, the expected energy loss of the beam component is observed which corresponds 
to a heating of the target system. 

4 Conclusions 

In this paper, we investigated two different possibilities to solve a special kinetic equation. 
The advantage of the shorter CPU time for the double integral goes along with the fact that 
the number of integration points h a s  to be chosen very carefully due to the complicated 
structure of the integration area. The triple integral does not have this problem, and is 
more robust. 

The example chosen - the Markovian quantum Landau equation - is the simplest one; 
however, the integration schemes discussed are applicable to other problems. The method 
outlined for the double integral may he used for the solution of the non-Markovian Landau 
equation, too. The triple integration may be applied to the Markovian Lenard-Balescu 
equation. Here we are faced with the fact that the dynamically screened potential cannot 
be integrated analytically. 

From these examples we see that both the double and the triple integration scheme are 
of relevance; if applicable the double integration saves computer time. As an application 
of the quantum Landau equation we looked on relaxation processes relevant for strongly 
coupled plasmas. Plasmas with densities exceeding 1023~m-3 were considered which were 
produced recently by high intense laser pulses. For such plasma conditions we calculated the 
relaxation of the electron distribution function. Finally, some features of temporal evolution 
of a beam target system were investigated. 

Acknowledgements 
This work was supported by the Deutsche Forschungsgemeimchaft of Germany - SFB 198 and by the EU 
network program SILASI. We acknowledge a grant for CPU time at the HLRZ Jiilich. 

References 

[l] R. Binder, D.C. Scott, A.E. Pad,  M. Lindberg, K. Henneberger, S.W. Koch, Phys. Rev. B 45, 1107 
(1992). 

[2] D.B. Tran Thoai, H. Haug, Z. Phys. B 91, (1993) 199. 

[3] H.S. Khler, Phys. Rev. E 53, 3145 (1996). 

[4] M. Bonitz, D. Kremp, D.C. Scott, R. Binder, W.D. Kraeft and H.S. Khler, Journal of Physics: Con- 
denses Matter 8, 6057 (1996). 

[5] P. Danielewin, Ann. Phys. (NY) 152, (1984) 239; 152, (1984) 305. 

[6] H.S. Khler, Phys. Rev. C 51, 3232 (1995). 



S. Kosse, M. Bonitz, M. Schlanges, et al., Quantum Landau Equation 509 

[7] H.-J. Kunze, K.N. Koshelev, C. Steden, D. Uskov, H.T. Wieschebrink, Phys. Lett. A 193, (1984) 183. 

[8] J. Jacoby, D.H.H. Hoffmann, W. Laux, R.W. Mller, H. Wahl, K. Weyrich, E. Boggasch, B. Heimrich, 
C. Stdd, H. Wetzler, S. Miyamoto, Phys. Rev. Lett. 75, (1995) 445. 

[9] M. Schlanges, Th. Bornath, R. Prenzel and D. Kremp, Atomic Processes in Plasmas AIP Proceeding, 
San Francisco, 1996 381, (Eds. A.L. Osterheld, W.H. Goldstein). 

[lo] T.E. Glover, J.K Crane, M.D. Perry, R.W. Lee, R.W. Falcone, Phys. Rev. Lett. 75, (1995) 445. 

[Ill H. Ruhl, P. Mulser, Phys. Lett. A 205, (1995) 388. 

[12] 0. Boine-Frankenheim, J. D’Avanzo, Phys. Plasmas 3, (1996) 792. 

[13] M. Bonitz, D.C. Scott, R. Binder, and S.W. Koch, Phys. Rev. B 50, 15095 (1994). 

[14] W.D. Kraeft, M. Schlanges and D. Kremp, J. Phys. A 19, 3251 (1986). 

[15] Th. Bornath, D. Kremp, W.D. Kraeft and M. Schlanges, Phys. Rev. E 54, (1996) 3274. 

[16] D. Kremp, Th. Bomath, M. Bonitz, M. Schlanges, Physica B 228, (1996) 72. 

[17] Y.L. Klimontovich and D. Kremp, Physica 109 A, 517 (1981). 

[18] M. Bonitz, D.C. Scott, D. Kremp, S. K o w ,  W.D. Kraeft and M. Schlanges, Physics of Strongly Coupled 
Plasmas, (Eds. W.D. Kraeft, M. Schlanges), World Scientific Publishing 1996, p. 177. 

[19] R. Winkler, M.W. Wuttke, Appl. Phys. B 54, (1992) 1. 

[20] G.L. Braglia, J. Wilhelm, R. Winkler, I1 Nouvo Cimento (1994) 411. 

[21] L. Banyai, private communication. 

[22] Z. Jiang, J.C. Kieffer, J.P. Matte, M. Chaker, 0. Peyrusse, D. Gilles, G. Korn, A. Maksimchuk, S. Coe, 
G. Mourou, Phys. Plasmas 2 ,  (1995) 1702. 

1231 W. Theobald, R. Hssner, C. Wlker, R. Sauerbrey, Phys. Rev. Lett. 77, (1996) 298. 

[24] R.C. Arnold, J. Meyer-ter-Veh-, Z. Phys. D 9, (1988) 65. 

[25] C. Deutsch, Ann. Phys. (Paris) 11, (1986) 1. 

[26] H. Bethe, AM. Phys. 5, (1930) 325. 

[27] J.D. Jackson, Classical Electrodynamics (Wiley, N.Y., 1975). 

[28] Th. Peter, J. Meyer-ter-Vehn, Phys. Rev. A 43, (1991) 1998. 

(291 W.D. Kraeft. B. Strege, Physica A 149, (1988) 313. 

[30] D.O. Gericke, M. Schlanges, W.D. Kraeft, Physics Letters A 222, (1996) 241. 

Received April 2, 1996; 
revised manuscript received December 4, 1997 




