
— —< <

Density Matrix Methods for
Semiconductor Coulomb
Dynamics

JAMES W. DUFTY,1 CHANG SUB KIM,2 MICHAEL BONITZ,3

ROLF BINDER4

1Department of Physics, University of Florida, Gainesville, Florida 32611
2Department of Physics, Chonnam National University, Kwangju 500-757, South Korea
3Universitat Rostock, Fachbereich Physik, Universitatsplatz 3, Rostock 18051, Germany¨ ¨
4Optical Sciences Center, University of Arizona, Tucson, Arizona 85721

Received 29 March 1997; revised 28 April 1997; accepted 8 May 1997

ABSTRACT: Current experiments on semiconductor devices using femtosecond lasers
provide new theoretical challenges for the description of charge carrier dynamics. Among
the new features of such experiments are states driven very far from equilibrium and
probes on time scales short compared to scattering and other characteristic material
relaxation times. Standard many-body methods must be modified and extended to
accommodate these features. We propose that the quantum hierarchy for reduced density
operators is an ideal formulation of such initial value problems and describe how the
dominant effects of exchange and charge correlations can be accounted for in a simple
and physically transparent closure of the hierarchy of equations. The transformations,
approximations, and interpretation can be accomplished independent of any particular
matrix representation. Decomposition into kinetic equations for band occupation densities
and polarization densities follows in a straightforward way after the many-body problem
has been brought under control. Q 1997 John Wiley & Sons, Inc. Int J Quant Chem 65: 929]940,
1997

Correspondence to: J. W. Dufty.
Contract grant sponsor: NSF.
Contract grant numbers: INT 9414072; PHY 9312723.
Contract grant sponsors: KOSEF; KRF.

( )International Journal of Quantum Chemistry, Vol. 65, 929]940 1997
Q 1997 John Wiley & Sons, Inc. CCC 0020-7608 / 97 / 050929-12



DUFTY ET AL.

Introduction

or the past decade, the fabrication of ultra-F small devices and associated developments
in laser technology for exploration of their proper-
ties have raised important theoretical questions,
both conceptual and practical. In particular, the
short times sampled in femtosecond laser studies
and the wealth of potential information from dif-
ferent initial preparations call for a description of

Ž .Coulomb kinetics e.g., electrons and holes far
from equilibrium, extending from initial times to
times long compared to the characteristic collision

w xtimes and dephasing times 1, 2 . Such theoretical
considerations already have been explored in other
contexts, such as transport in simple classical liq-

w x w xuids and plasmas 3 and for nuclear matter 4 ,
but their experimental relevance in these cases has
been less compelling. The objective here is to for-
mulate the problem of Coulomb kinetics in terms
of the fundamental exact first two hierarchy equa-
tions for the one- and two-particle reduced density
operators. Practical applications result from an
approximate closure of the two-particle equation
subject to important constraints on acceptable ap-
proximations associated with conservation laws,
representability, stationary solutions, and quan-
tum statistics. These structural properties are inde-
pendent of considerations of classical or quantum
effects and do not rely on the matrix representa-
tion appropriate to the specific problem. The theo-
retical analysis of a given approximation occurs at
the compact abstract level for greatest simplicity
and generality and in a formulation that allows
exploitation of previous work on classical systems.

This approach is illustrated for a simple two-
band model of a semiconductor, to show how
corrections to the semiconductor Bloch equations
can be constructed to include the effects of scatter-
ing and dynamic screening. In this discussion, only
electron]electron and electron]laser interactions
are considered; the lattice is presumed to be rigid.
A simple closure approximation including exact
three-particle exchange correlations and all resid-
ual pair correlations is indicated and its content
discussed. Solution of the two-particle equation
gives the two-particle reduced density operator as
a functional of the one-particle density operator.
Use of this result in the first hierarchy equation for
the one-particle density operator gives a closed

kinetic equation. The resulting non-Markovian ki-
netic equation describes the evolution of an arbi-
trary initial preparation from asymptotically short
times to the long-time Boltzmann limit. The short
time evolution includes the buildup of dynamical

Ž .screening polarization effects ; at long times, the
Boltzmann scattering rates are determined from
the full T-matrix rather than from the weak cou-
pling Born approximation.

In this brief presentation, only the theoretical
structure and method are described as an overview
of the general approach to carrier dynamics. More
detailed calculations based on the approximation
suggested here are in progress.

Reduced Density Operators and
Hierarchy

We consider N electrons interacting with a rigid
ionic lattice, with overall charge neutrality. The
electrons interact with the lattice and with each
other via bare Coulomb potentials. In addition,

Ž .they interact with a classical i.e., many photon
Ž .transverse electric field, E t via a dipole interac-

tion. The Hamiltonian for the system is then

N

Ž . Ž . Ž . Ž .H t s H q U q U t , H s h i 1Ý0 e x t 0 0
is1

N1
Ž . Ž . Ž .U s V i , j , U s ym ? E t , 2Ý e x t2 i/j

Ž .where h i is the single-particle Bloch Hamilto-0
nian for interaction of electron i with the lattice,
Ž .V i, j is the Coulomb potential for interaction of

N Ž .electrons i, j, and m s Ý m i is the total dipoleis1
moment due to all electrons. The external field
Ž .E t characterizes the laser field, which may have

a very short time scale in some pump experiments,
but may also represent a longer time driving field
with a duration comparable to various dephasing
mechanisms. The details of this field are not im-
portant for the formal considerations here, but can
play a role in the numerical method used to solve
the equations. The eigenvalue problem for the
Bloch Hamiltonian is described by

Ž . Ž . Ž . Ž .h c k s e k c k , 30 a a a

where a denotes the band index, and k, the mo-
Žmentum quantum number here and in the follow-

.ing we set " s 1 .
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The initial state of the system is defined by an
Ž .N-particle density operator, r 1, . . . , N . This could

be the Gibbs distribution if the electron]lattice
system is initially in equilibrium, but it is not
necessary to specify its form at this point. Im-
plicit in the definition of the density matrix is an
N-particle symmetrization operator so that a repre-
sentation of its matrix elements in terms of unsym-
metrized products of single particle states is possi-

w xble 5 . This is an important feature that will be
exploited in the next section to extract the ex-
change correlation of the reduced density opera-

Ž .tors associated with r 1, . . . , N . The time evolu-
tion of the density operator is governed by the
Liouville]von Neumann equation

Ž . w Ž . Ž .x Ž . r t q i H t , r t s 0. 4t

The reduced density operators for m particles are
defined by

Žm. Ž . m Ž . Ž .f 1, . . . , m; t s N Tr r t . 5mq 1 . . . N

The notation on the right side indicates a trace
over the degrees of freedom associated with parti-
cles m q 1 through N. More precisely, in matrix
representation, it denotes summation over the di-
agonal quantum numbers for these particles. The
reduced density operators f Žm. inherit an M-par-
ticle symmetrization operator from the corre-
sponding N-particle symmetrization operator in r.

ŽThe BBGKY Born, Bogoliubov, Green, Kirkwood,
. w xYvon hierarchy equations 5, 6 for the time de-

pendence of the reduced distribution functions
now follow directly from a partial trace of the
Liouville]von Neumann equation,

m
Žm. Ž . Ž Ž . Ž . Ž .. f 1, . . . , m; t q i h i y m i ? E t ,Ýt 0

is1

Žm. Ž .f 1, . . . , m; t
m

Žm.w Ž . Ž .xq i V i , j , f 1, . . . , m; tÝ
i/j

m

w Ž .s y Tr i V i , m q 1 ,Ý mq 1
is1

Žmq1. Ž .x Ž .f 1, . . . , m q 1; t . 6

The left side of this equation is just the
Liouville]von Neumann equation for m isolated
particles. The right side expresses a coupling to the

other degrees of freedom through the Coulomb
interactions. In the following, it will be sufficient
to consider only the cases with m s 1 and 2,

Ž1. Ž . w Ž . Ž1. Ž .x f 1; t q i H 1; t , f 1; tt

w Ž . Ž2. Ž .x Ž .q Tr i V 1, 2 , f 1, 2; t s 0 72

Ž2. Ž . w Ž . Ž2. Ž .x f 1, 2; t q i H 1, 2; t , f 1, 2; tt

2
Ž3.w Ž . Ž .x Ž .q Tr i V i , 3 , f 1, 2, 3; t s 0, 8Ý 3

is1

where the single-particle and two-particle Hamil-
tonians are given by

Ž . Ž . Ž . Ž . Ž .H 1; t s h 1 y m 1 ? E t H 1, 2; t0

2

Ž Ž . Ž . Ž .. Ž . Ž .s h i y m i ? E t q V 1, 2 . 9Ý 0
is1

These equations are exact but formal since they
are not closed in terms of f Ž1. and f Ž2. alone. It is
necessary to construct a suitable approximation
that expresses f Ž3. as a functional of f Ž1. and f Ž2..

Ž . Ž .Then Eqs. 7 and 8 provide the means to calcu-
late f Ž1. and f Ž2.. In particular, if the equation for
f Ž2. is solved as a functional of f Ž1., i.e.,

Ž2. Ž . Ž2. Ž Ž1. . Ž .f 1, 2; t s F 1, 2; t N f , 10

then use of this solution in the first hierarchy Eq.
Ž . Ž1.7 provides a closed kinetic equation for f :

Ž1. Ž . w Ž . Ž1. Ž .x f 1; t q i H 1; t , f 1; tt

w Ž . Ž2. Ž Ž1. .x Ž .q Tr i V 1, 2 , F 1, 2; t N f s 0. 112

This is the approach proposed here for obtaining
the appropriate kinetic equation for charge carri-
ers. The procedure is representation-independent,
and as a first-order equation in time, it is appropri-
ately posed as an initial value problem. This is in
contrast to the alternative nonequilibrium Keldysh
Green’s function method which requires a detailed
reconstruction of the specified initial conditions

w xfrom an artificial past history 7 .

Exact Exchange Effects and
Correlations

There are two important sources of correlations
among the charge carriers. One is due to the long-
range Coulomb interaction, while the other is due
to the exchange symmetry among particles of the
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same species. It is useful to extract explicitly the
dominant effects due to exchange symmetry by
identifying the exchange operators implicit in the
definitions of the reduced density operators. This
will allow a more controlled identification of the
residual correlations due to Coulomb interactions.
The two- and three-particle reduced density opera-
tors are expressed as

Ž2. Ž2.Ž . Ž . Ž .f 1, 2; t ' f 1, 2; t SS 1, 2
Ž2.Ž . Ž . Ž .s SS 1, 2 f 1, 2; t 12

Ž3. Ž3.Ž . Ž . Ž .f 1, 2, 3; t ' f 1, 2, 3; t SS 1, 2, 3
Ž3.Ž . Ž . Ž .s SS 1, 2, 3 f 1, 2, 3; t , 13

Ž . Ž .where SS 1, 2 and SS 1, 2, 3 are the two- and
three-particle antisymmetrization operators that
convert product states for two and three electrons
into antisymmetric states, respectively. Such sym-
metrization factors occur necessarily from the defi-
nition of the underlying N-particle density matrix.
The last equality follows from the permutation
symmetry of the reduced density operators and of
the symmetrization operators. Next, the correlation

Ž2.Ž .operators associated with f 1, 2; t and
Ž3.Ž .f 1, 2, 3; t are introduced:

Ž2. Ž1. Ž1.Ž . Ž . Ž . Ž . Ž .f 1, 2; t ' f 1; t f 2; t q g 1, 2; t 14
Ž3. Ž .f 1, 2, 3; t

Ž1. Ž . Ž1. Ž . Ž1. Ž .' f 1; t f 2; t f 3; t
Ž1. Ž1.Ž . Ž . Ž . Ž .q f 1; t g 2, 3; t q f 2; t g 1, 3; t
Ž1. Ž . Ž . Ž . Ž .q f 3; t g 1, 2; t q g 1, 2, 3; t . 15

Since the symmetrization operators have been ex-
Ž . Ž .tracted explicitly in 12 and 13 , the correlation

Ž . Ž .functions g 1, 2; t and g 1, 2, 3; t are primarily
measures of correlations due to the Coulomb inter-
actions. Conversely, even when there are no corre-

Ž2. Ž3.Ž . Ž .lations in f 1, 2; t and f 1, 2, 3; t , the distri-
Ž2.Ž . Ž3.Ž .bution functions f 1, 2; t and f 1, 2, 3; t have

two- and three-particle correlations induced by the
antisymmetrization operators. Therefore, it is use-
ful to rewrite the first two hierarchy equations in

Ž . Ž .terms of g 1, 2; t and g 1, 2, 3; t . The first equa-
tion becomes

Ž1. Ž . w Ž . Ž1. Ž .x f 1; t q i H 1; t , f 1; tt

Ž1. Ž1.Ž . Ž . Ž .q Tr i V 1, 2 , f 1; t f 2; t2 s

w Ž . Ž .x Ž .q Tr i V 1, 2 , g 1, 2; t s 0, 162 s

Ž . Ž . Ž .where V 1, 2 ' V 1, 2 SS 1, 2 is the pair potentials
with exchange effects. The left side of this equation
is recognized as generating the time-dependent
Hartree]Fock dynamics so the equation becomes

Ž1. Ž1.Ž . Ž . Ž . f 1; t q i H 1; t , f 1; tt h f

w Ž . Ž .x Ž .s yTr i V 1, 2 , g 1, 2; t , 172 s

where the Hartree]Fock Hamiltonian is

Ž . Ž . Ž .H 1; t s H 1; t q V 1; t ,h f h f

Ž . Ž1. Ž . Ž . Ž .V 1; t ' Tr f 2; t V 1, 2 . 18h f 2 s

This is the expected result: The mean-field
Hartree]Fock dynamics is modified by a coupling
to other electrons due to the presence of Coulomb
correlations.

Ž .The equation for the correlations, g 1, 2; t , fol-
lows from the second hierarchy equation. The ef-
fects of the symmetrization operators are evalu-
ated in detail in the Appendix leading to the exact

Ž .equation for g 1, 2; t :

ˆŽ . Ž . Ž . g 1, 2; t q i H 1, 2; t g 1, 2; tt

†ˆŽ . Ž .yg 1, 2; t H 1, 2; t

Ž1.Ž . Ž .qTr i V 1, 3 , f 1; t�3 s

Ž . Ž .=g 2, 3; t SS 2, 3
Ž1.Ž . Ž .q V 2, 3 , f 2; ts

Ž . Ž .=g 1, 3; t SS 1, 3 4
ˆ Ž1. Ž1.Ž . Ž . Ž .s yi V 1, 2; t f 1; t f 2; t�

Ž1. Ž1. ˆ†Ž . Ž . Ž .yf 1; t f 2; t V 1, 2; t 4
2

w Ž . Ž .y Tr i V j, 3 , g 1, 2, 3; tÝ 3
js1

Ž .x Ž .= 1 y P y P , 1913 23

with the definitions

ˆ ˆŽ . Ž . Ž . Ž .H 1, 2; t s H 1; t q H 2; t q V 1, 2; th f h f

Ž .20

ˆ Ž1. Ž1.Ž . � Ž . Ž .4 Ž .V 1, 2; t ' 1 y f 1; t y f 2; t V 1, 2 .
Ž .21

The first two terms on the left side describe pair
ˆŽ .dynamics generated by the Hamiltonian H 1, 2; t .

Ž .This Hamiltonian differs from H 1, 2 in two im-
portant ways: First, the single-particle energies are
renormalized to the mean-field Hartree]Fock
energies. Second, the pair potential is modified
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� Ž1.Ž . Ž1.Ž .4by the prefactor 1 y f 1; t y f 2; t describ-
ing ‘‘blocking’’ effects of the statistics. To see

� Ž1.Ž . Ž1.Ž .4this, note that 1 y f 1; t y f 2; t s
� Ž1.Ž . Ž1.Ž . Ž1.Ž . Ž1.Ž .4h 1; t h 2; t y f 1; t f 2; t , where
Ž1.Ž . Ž1.Ž .h 1; t s 1 y f 1; t is the ‘‘hole’’ occupancy.

ˆŽ .Thus, the matrix elements of V 1, 2; t are re-
stricted according to the occupation of carrier den-
sity in the nonequilibrium state. Both the blocking

ˆŽ .and mean-field effects in H 1, 2; t account for
significant many-particle correlations in this effec-
tive pair dynamics. The third and fourth terms on
the left side describe polarization or screening ef-
fects that are essential for a proper treatment of the
long-ranged Coulomb interactions. In the classical
limit, these are the linearized Vlasov operators
leading to the Debye]Huckel dynamic screening¨
and pair correlations. Here, these operators gener-
ate the random phase or chain approximation in-
cluding exchange effects. The first term on the

Ž .right side of 20 is a source of correlations due to
ˆŽ .the ‘‘commutator’’ of V 1, 2; t with the uncorre-

Ž1.Ž . Ž1.Ž .lated pair operator f 1; t f 2; t ; equivalently,
the time derivative of the uncorrelated state is
correlated due to the Coulomb interactions. Here,
this source of correlations is due to the pair inter-
action including blocking effects. Finally, all resid-
ual many-body effects are contained in the last
term on the right side describing three-particle
correlations not associated solely with three-par-
ticle exchange effects.

Ž . Ž .Equations 17 and 20 are still exact and fully
Ž . Ž .equivalent to Eqs. 7 and 8 . However, the analy-

sis of the exchange effects and the transformation
to the correlation functions provides a form in
which the dominant mean field, polarization, and
blocking effects are made explicit. This is a more
convenient form for introduction of appropriate
approximations or application to specific prob-
lems.

Bloch Representation

The above analysis has used only the abstract
operator form of the reduced density operators
and associated hierarchy equations. Specific appli-
cations require a particular matrix representation.
For example, a fully ionized plasma might best be
described in terms of single-particle momentum
states. To show the relationship of the density
matrix approach to the standard equations of
semiconductor physics, we consider a representa-

Ž . ² : Ž . :tion using Bloch states c r s r N ak , h 1 N akak
Ž . :s e k N ak . Only the first hierarchy equationa

will be considered; the analysis for the second
equation is similar:

Ž1. Ž1.Ž . Ž . Ž . Ž . f 1; t q i H 1; t , f 1; t q C 1; t s 0,t h f

Ž .22

Ž .where C 1; t is the ‘‘collision’’ operator due to
pair correlations

Ž . w Ž . Ž .x Ž .C 1; t s Tr i V 1, 2 , g 1, 2; t . 232 s

Ž .The band occupation densities, n k; t , and thea

Ž .polarization densities, p k; t , are defined bya a9

Ž . ² Ž1. Ž . :n k; t ' ak N f t N aka

Ž . ² Ž1. Ž . : Ž .p k; t ' ak N f t N a9k , 24a a9

where the band indices a / a9 in the definition of
Ž .the polarization density p k; t . To simplify thea a9

discussion, we consider the case of only two bands
Ž .conduction and valence . Also, we consider only
homogeneous states, so that the one-particle den-
sity matrix is diagonal in the wave vector, k. The
equations are then found to be

Ž . ² Ž . : Ž . n k; t y 2Im ak N H 1; t N a9k p k; t� 4t a h f a9a

Ž . Ž .q C k; t s 0 25a a

Ž . ² Ž . : p k; t q i ak N H 1; t N akt a a9 h f

² Ž . < : Ž .y a9k N H 1; t a9k p k; th f a a9

² Ž . :qi ak N H 1; t N a9kh f

w Ž . Ž .x= n k; t y n k; ta9 a

Ž . Ž .qC k; t s 0, 26a a9

where it is understood that a / a9. The matrix
elements in these equations are easily evaluated:

² Ž . :ak N H 1; t N n kh f

Ž . ² : Ž . Ž .s e k d q ak N V N n k y E t ? m , 27a a , n h f an

Ž . ² : Ž .where m k ' ak N m N n k . Equations 25 andan

Ž .26 then become

Ž . ² : Ž . n k; t y 2Im ak N V N a9k y E t ? m�t a h f a a9

Ž . Ž . Ž .=p k; t q C k; t s 0 284a9a a a

Ž . ² Ž . : p k; t q i ak N H 1; t N akt a a9 h f

² Ž . : Ž .y a9k N H 1; t N a9k p k; th f a a9

² : Ž .qi ak N V N a9k y E t ? mh f a a9

Ž Ž . Ž .. Ž .= n k; t y n k; t q C k; t s 0.a9 a a a9

Ž .29
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The matrix elements of the Hartree]Fock potential
are easily evaluated and the resulting equations

Ž . Ž .for n k; t and p k; t are found to bea a a9

Ž . Ž Ž . Ž .. n k; t q 2Im E t ? m p k; tt c c v vc

˜Ž . w Ž . Ž .q 2Im V q n k q q; t I k, yqÝ c cc
q

U Ž . Ž .=I k, yq q n k q q; tvc v

Ž . U Ž .=I k, yq I k, yqc v v v

Ž . Ž . U Ž .qp k q q; t I k, yq I k, yqc v cc v v

Ž . Ž . U Ž .x Ž .qp k q q; t I k, yq I k, yq p k; tvc c v vc vc

Ž . Ž .q C k; t s 0 30cc

Ž . Ž Ž . Ž . Ž . p k; t q i e k y e k y E tt c v c v

w x . Ž .? m y m p k; tcc v v c v

˜Ž . Ž .yi V q n k q q; tÝ c
q

< Ž . < 2 < Ž . < 2= I k, yq y I k, yqŽ .cc vc

Ž . < Ž . < 2 < Ž . < 2qn k q q; t I k, yq y I k, yqŽ .v c v v v

Ž . Ž Ž . U Ž .q2 p k q q; t Re I k, yq I k, yqc v cc c v

Ž . U Ž .. Ž .xyI k, yq I k, yq p k; tvc v v c v

˜Ž . w Ž .yi V q n k q q; tÝ c½
q

Ž . U Ž . Ž .=I k, yq I k, yq q n k q q; tcc vc v

Ž . U Ž .=I k, yq I k, yqc v v v

Ž .qp k q q; tc v

Ž . U Ž . Ž .=I k, yq I k, yq q p k q q; tcc v v vc

Ž . U Ž .x=I k, yq I k, yqc v vc

Ž .q E t ? mc v 5
Ž Ž . Ž .. Ž . Ž .= n k; t y n k; t q C k; t s 0. 31v c c v

Ž .Here, I k, q arises from the Coulomb matrixa a9

elements

² < < X X X X :a k ; a k V a k ; a k1 1 2 2 2 2 1 1

˜Ž .X X Xs d V q dÝk qk , k qk k , k qq1 2 1 2 1 1
q

Ž . Ž . Ž .X X= I k , yq I k , q 32a a 1 a a 21 1 2 2

Ž . iq?r U Ž . Ž .I k, q ' dr e c r c rHa a9 ak a9kyq

U Ž . Ž .s I k y q, yq 33a9a

˜Ž .and V q is the Fourier-transformed pair potential.
The valence and conduction occupation numbers

Ž . Ž .are related by n k; t q n k; t s constant, andc q
the polarization densities are related by p s p †.c v vc
These are the most general hierarchy equations.

Ž .The matrix elements C k; t describe botha a9

inter- and intraband collisions and can be ex-
pressed in terms of the matrix elements of the

Ž . Ž .correlation function g 1, 2; t using 23

Ž .C k; ta a9

² <� w Ž . Ž .x 4 < :s ak Tr i V 1, 2 , g 1, 2; t a9k2 s

�² < < :s i ak; n k V n k ; n kÝ Ý 1 1 s 2 2 3 3
n , n , nk , k , k 1 2 31 2 3

² < < := n k ; n k g a9k; n k2 2 3 3 1 1

² < < :y ak; n k g n k ; n k1 1 2 2 3 3

² < < :4 Ž .= n k ; n k V a9k; n k . 342 2 3 3 s 1 1

Further reduction follows from substitution of the
Ž .Coulomb matrix element 32 .

In practice, the relevant values of q may be
sufficiently small to justify the approximation

Ž . Ž .I k, q ª I k, 0 s d . Then, these equationsa, n an a, n

simplify to the usual forms

Ž . Ž Ž . Ž .. n k; t q 2Im E t ? m p k; tt c c v vc

˜Ž . Ž . Ž .q 2Im V q p k q q; t p k; tÝ c v vc
q

Ž . Ž .q C k; t s 0 35cc

Ž . Ž Ž . Ž . Ž . p k; t q i e k y e k y E tt c v c v

w x . Ž .? m y m p k; ta a a9a9 c v

˜Ž . w Ž . Ž .xyi V q n k q q; t y n k q q; tÝ c v
q

Ž .=p k; tc v

˜Ž . Ž . Ž .yi V q p k q q; t q E t ? mÝ c v c v½ 5
q

Ž Ž . Ž ..= n k; t y n k; tv c

Ž . Ž .qC k; t s 0, 36c v
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with the collision matrix elements

Ž .C k; tcc

˜Ž .s y2Im V qÝ
q/0, k 1

�² < < := ck y q; ck q q g ck; ck1 1

² < < :q ck y q; n k q q g ck; n k1 1

² < < :y ck q q; ck y q g ck; ck1 1

² < < :4 Ž .y vk q q; ck y q g ck; vk 371 1

Ž .C k; tcn

˜Ž .s y2Im V qÝ
q/0, k 1

�² < < := ck y q; ck q q g vk; ck1 1

² < < :4q ck y q; vk q q g vk; vk1 1

˜Ž . �² < < :y V q ck q q; ck y q g vk; ckÝ 1 1
q/0, k 1

² < < :q vk q q; ck y q g vk; vk1 1

² < < :y ck; ck g ck q q; vk y q1 1

² < < :4 Ž .y ck; vk g vk q q; vk y q . 381 1

Aside from the small q limitation of the
Coulomb matrix elements, the above equations are

Ž .still exact. The detailed dependence of C k; ta a9

Ž . Ž .on n k; t and p k; t requires specification ofa a a9
Ž1.Ž . Ž .g 1, 2; t as a functional of f 1; t . This follows

Ž .from an approximate solution to Eq. 19 . To illus-
trate the procedure, consider the weak coupling

Ž .limit in which g 1, 2; t is evaluated to first order
Ž .in the Coulomb interactions. Since g 1, 2, 3; t oc-

Ž . Ž .curs in 19 multiplied by V 1, 2 , it is sufficient to
Ž .evaluate g 1, 2, 3; t to zeroth order in the poten-

tial. However, since the correlations due to statis-
tics have already been extracted, the three-particle
correlation function vanishes to this order. Also,
since the source term on the right side is of first

Ž .order in the potential, then g 1, 2; t also is of first
Ž .order. Thus, all explicit dependence on V 1, 2 can

be neglected on the left side of the equation, lead-
ing to the weak coupling equation

Ž . w Ž Ž . Ž .. Ž .x g 1, 2; t q i H 1 q H 2 , g 1, 2; tt

ˆ Ž1. Ž1.Ž . Ž . Ž .s y i V 1, 2; t f 1; t f 2; t�
Ž1. Ž1. ˆ†Ž . Ž . Ž . Ž .yf 1; t f 2; t V 1, 2; t , 394

with the solution

yi ŽH Ž1.qH Ž2.. t iŽH Ž1.qH Ž2.. tŽ . Ž .g 1, 2; t s e g 1, 2; 0 e

t iŽH Ž1.qH Ž2..Ž tyt .y i dt eH
0

ˆ Ž1. Ž1.Ž . Ž . Ž .= V 1, 2; t f 1; t f 2; t�
Ž1. Ž .yf 1; t

Ž1. ˆ† iŽH Ž1.qH Ž2..Ž tyt .Ž . Ž .=f 2; t V 1, 2; t e .4
Ž .40

Ž .Since the Hamiltonian H 1 is diagonal in the
Bloch representation, it is straightforward to calcu-

Ž . Ž .late the matrix elements of g 1, 2; t given by 40
and obtain the collision operator as a quartic func-

ˆw Ž .tion of the occupation numbers recall V 1, 2; t '
� Ž1.Ž . Ž1.Ž .4 Ž .x1 y f 1; t y f 2; t V 1, 2 . The result is a
generalization of the Born]Boltzmann collision op-
erator, extended to include the effects of initial
correlations and non-Markovian effects at short
times. In the long time limit, it becomes exactly the
Uhlenbeck]Boltzmann collision operator with
scattering calculated in the Born approximation.
An improved approximation appropriate for most
current experimental conditions is described in the
next section, where strong scattering and polariza-
tion effects are accounted for as well.

Pair Correlation Approximation

Ž .The exact transformed hierarchy Eq. 19 for
Ž .g 1, 2; t is an appropriate form for the introduc-

tion of approximations since it makes explicit the
physical mechanisms for renormalized single-par-
ticle states, blocking in the pair dynamics, and
dynamic screening. The approximations entail
some statement about the three-particle correla-

Ž .tions in g 1, 2, 3; t . More specifically, the approxi-
Ž .mation should give g 1, 2, 3; t in terms of the pair

correlations and one-particle distribution function,
so that the first two hierarchy equations become

Ž1.Ž . Ž .closed equations for f 1; t and g 1, 2; t . The
formal solution to the second equation provides

Ž .the functional in 10 required for a kinetic equa-
tion

Ž2. Ž Ž1. .F 1, 2; t N f
Ž1. Ž1. Ž1.� Ž . Ž . Ž .4 Ž .s f 1; t f 2; t q g 1, 2; t N f SS 1, 2 .

Ž .41
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In general, there is no small parameter on which to
base a systematic expansion. However, there are
exact structural properties of the hierarchy equa-
tion that impose important constraints on the class
of approximations considered acceptable. For ex-
ample, the single-particle reduced density operator
is representable as a trace over the two-particle

Ž1.Ž . Ž2.reduced density operator, Nf 1; t s Tr f2
Ž .1, 2; t and, therefore, the exact first hierarchy

Ž1.Ž .equation for f 1; t should result from a partial
trace over any acceptable approximate closure of
the second hierarchy equation. Additional con-
straints follow from the invariance of the hierarchy
equations under symmetry transformations de-

Žrived from the Hamiltonian e.g., rotations, trans-
.lations, Galilean boosts . An important conse-

quence of these invariances is the local conserva-
tion laws for mass, energy, and momentum. Con-
straints imposed by the requirement of exact

w xconservation laws are discussed in 5, 8, 9 . Other
constraints can be included as well. For example, if
the reduced density operators for the equilibrium
state are known, it can be required that they are
also solutions to the approximate hierarchy equa-
tions. In this way, the class of approximations can
be assured to have the most important properties
of the exact hierarchy in a context that does not
imply weak coupling or other small parameter
limits.

For long-range Coulomb interactions, it is im-
portant to describe screening effects. This is in-

Ž .cluded explicitly on the right side of 20 , as are
the mean field Hartree]Fock-renormalized single-
particle energies and the Pauli blocking effects for
the pair potential. Thus, all of the important mech-
anisms appear in this form even before consider-

Ž .ing three-particle correlations in g 1, 2, 3; t . Fur-
w xthermore, it is shown in 5 that any choice for

Ž .g 1, 2, 3; t that is Hermitian and pairwise symmet-
ric in the particle labels preserves both the repre-
sentability of f Ž1. and the exact conservation laws.
Consequently, we suggest that the residual three-

Ž .particle correlations described by g 1, 2, 3; t can
be neglected entirely, except for the conditions of
very strong coupling. The resulting approximation
preserves the exact local conservation laws for
mass, energy, and momentum and is time reversal

Žinvariant. It contains strong collision effects ladder
.diagrams through the dependence on the poten-

ˆŽ .tial in H 1, 2; t and dynamical polarization effects
Žin the random-phase approximation ring dia-

.grams . There are no a priori limitations on the

time scale in this approximation so that a uniform
treatment of the initial value problem is possible.

Ž .With this approximation, Eq. 19 becomes a
Ž1.Ž . Ž .closed equation for g 1, 2; t in terms of f 1; t ,

with the form

Ž Ž .. Ž . y L 1, 2; t g 1, 2; tt

Ž1. Ž1.ˆŽ . Ž . Ž .s y i V 1, 2; t f 1; t f 2; t

Ž1. Ž1. †ˆŽ . Ž . Ž . Ž .yf 1; t f 2; t V 1, 2; t . 42

Ž .The formal solution provides the functional in 10
required for a kinetic equation

Ž2. Ž Ž1. . � Ž1. Ž . Ž1. Ž .F 1, 2; t N f s f 1; t f 2; t
Ž1.Ž .4 Ž . Ž .qg 1, 2; t N f SS 1, 2 , 43

Ž1.Ž . Ž . Ž .g 1, 2; t N f s Tr U 1, 2, 3, 4; t , t g 3, 4; t34 0 0

t Ž .y iTr dtU 1, 2, 3, 4; t , tH34
t0

Ž1. Ž1.ˆŽ . Ž . Ž .= V 3, 4; t f 3; t f 4; t

Ž1. Ž1. †ˆŽ . Ž . Ž .yf 3; t f 4; t V 3, 4; t .
Ž .44

Ž .Here, U 1, 2, 3, 4; t, t is the two-particle propaga-0
Ž .tor associated with the generator L 2, 2; t . Its form

and reduction to familiar quantities such as scat-
tering matrices and dielectric functions will be

w xdiscussed elsewhere 10 and only the structural
features noted here. The first term on the right side

Ž .of 44 gives the pair dynamics due to initial corre-
lations determined from the system preparation.
The second term describes the correlation buildup
even in the absence of such initial correlations.
Both contributions can be of equal importance for
initial value problems at short times.

Ž .The collision operator in the kinetic Eq. 22
reflects these two contributions:

Ž . w Ž . Ž .xC 1; t s yiTr V 1, 2 , g 1, 2; t2 s

c Ž . Ž . Ž .s I 1; t q I 1; t 45
c Ž . w Ž .I 1; t s yiTr V 1, 2 ,234 s

Ž . Ž .x Ž .U 1, 2, 3, 4; t , t g 3, 4; t 460 0

tŽ . Ž . Ž .I 1; t s yiTr dt V 1, 2 , U 1, 2, 3, 4; t , tH234 s
t0

Ž1. Ž1.ˆŽ . Ž . Ž .= V 3, 4; t f 3; t f 4; t�
Ž1. Ž1. †ˆŽ . Ž . Ž . Ž .yf 3; t f 4; t V 3, 4; t . 474
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The Hartree]Fock dynamics is modified at short
times by the conditions of the initial preparation

cŽ .through I t . The other modification is indepen-1
dent of the initial preparation and represents the

Ž .buildup of scattering effects. The term I 1; t grows
Ž .from zero to an asymptotic value I 1; ` , while the

cŽ .initial correlations term I t is expected to de-1
crease to zero for most physical preparations. This
initial transient period represents the transition
from time scales short compared to the scattering
time up to times long enough for completed colli-

Ž . Ž .sions. On the long time scale, C 1; t ª I 1; ` and
the kinetic equation takes the usual Markov form.
In this limit, a Boltzmann]Uhlenbeck form is ob-
tained with scattering determined by the full T-

w xmatrix 11 . During the transient period, the in-
complete scattering is described by an effective
potential with dynamical screening ranging from
Coulomb at short times to fully screened at long
times.

Discussion

The objective of this presentation has been to
give an overview of an approach to formulating
practical kinetic theories for charged particle dy-
namics, with the potential for application to cur-
rent and proposed experiments on semiconductors
using femtosecond lasers to prepare and probe the
charges. The new features of such experiments
requiring reconsideration of standard kinetic the-
ory are states far from equilibrium and the inclu-
sion of short time scales. The approach here formu-
lates the description in terms of the exact hierarchy
for the one- and two-particle reduced density op-
erators. These operators determine most directly
the relevant observables of interest. There are two
components to the analysis. First, an exact trans-
formation of the first two hierarchy equations is
performed to isolate the strong correlations due to
quantum statistics from correlations due to the
Coulomb forces. This description in terms of the
excess correlations also makes explicit the mean-
field effects associated with Hartree]Fock renor-
malization of the single-particle energies and the
dominant polarization effects necessary to account
for screening of the long-range Coulomb forces. As
a single-time Markovian first-order set of differen-
tial equations, the description is formulated as an
initial value problem, appropriate for the experi-
mental conditions of interest. The second compo-

nent of the analysis is an approximate closure of
the second hierarchy equation, with the three-par-
ticle correlations expressed as explicit functionals
of the two-particle correlations and the one-par-
ticle reduced density operator. The resulting ap-
proximation transforms the first two hierarchy
equations into a closed set of coupled equations to
determine the one-particle-reduced density opera-
tor and the two-particle correlations. Finally, a last
step is possible where the approximate second
hierarchy equation is solved formally to give the
two-particle correlations in terms of the one-par-
ticle density operator. Use of this result in the
exact first hierarchy equation gives a closed kinetic
equation for the one-particle density operator.
While the coupled pair of equations for the corre-
lations and one-particle distribution is local in time
Ž .Markovian , the reduced kinetic theory descrip-
tion in terms of the one-particle distribution alone
is necessarily nonlocal in time. This latter feature is
essential for a proper treatment of relaxation and
transport at short times.

The transformation of the hierarchy and result-
ing explicit representation of the most important
physical mechanisms simplifies the choice of ap-
proximations considerably. Additional constraints
are associated with the exact relationship on one-
and two-particle reduced density operators, the
exact conservation laws, and the existence of sta-

Žtionary states equilibrium, in the absence of driv-
.ing fields . It is proposed in the fifth section that

these constraints are satisfied by an approximation
Ž .obtained by neglecting g 1, 2, 3; t . The resulting

approximate equations retain all of the desired
physical mechanisms and time scales, excluding
only conditions of strong Coulomb coupling. The
detailed solution to the equation for the pair corre-
lations is essentially an effective two-body prob-
lem and will be discussed elsewhere.

The analysis of the hierarchy and considerations
leading to this approximation occurs at the ab-
stract operator level and does not require explicit
attention to the detailed structure of the physical

Ž .system considered e.g., the number of bands and
additional processes are easily accounted for at
this abstract level. Having completed the many-
body analysis, the physical properties of interest
follow directly from an appropriate matrix repre-
sentation of the operator equations, so that manip-
ulation of complex notation is deferred to this late
stage. Of course, the final measure of any ap-
proach is the ability to describe interesting new
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phenomena in quantitative applications. We hope
to report on such results in the near future.
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Appendix: Transformation of the
Hierarchy Equations

Define a superoperator, PP , that exchanges the12
labels of particles 1 and 2 in all operators to its
right:

Ž . Ž . Ž .PP X 1, 2 s X 2, 1 . 4812

This operator should not be confused with the
permutation operator defined over quantum states,
P , that permutes the quantum labels of the states.12
The second equation of the BBGKY hierarchy then
can be written in the compact form:

Ž2. Ž . w Ž . Ž2. Ž .x f 1, 2; t q i H 1, 2; t , f 1, 2; tt

Ž . w Ž . Ž3. Ž . xq 1 q PP Tr i V 1, 3 f 1, 2, 3; t y hc12 3

Ž .s 0, 49

where hc indicates the Hermitian conjugate of the
preceding term in the brackets. The objective of
this Appendix is to show how the exchange effects

Ž2.Ž . Ž3.Ž .in the definitions of f 1, 2; t and f 1, 2, 3; t
can be evaluated exactly to give the Hartree]Fock
energies, the blocking factors in the pair potential,
and the linear operators responsible for polariza-

Ž . Ž .tion effects. Substitution of 14 into 49 and use of
the first hierarchy equation gives

Ž2. Ž2.Ž . Ž . w Ž . Ž .xSS 1, 2  g 1, 2; t q i H 1, 2; t , g 1, 2; t� t

w Ž . Ž1. Ž . Ž1. Ž .xqi V 1, 2; t , f 1; t f 2; t 4
Ž2.Ž . Ž . w Ž . Ž .ySS 1, 2 1 q PP Tr i V 1, 3 f 1, 3; t12 3

Ž1. Ž . Ž . x=f 2; t SS 1, 3 y hc

Ž .q 1 q PP Tr i12 3

Ž3.w Ž . Ž .= V 1, 3 f 1, 2, 3; t

Ž . x Ž .=SS 1, 2, 3 y hc s 0. 50

First, note that the last term can be written with an
Ž .overall prefactor of SS 1, 2 as well using the iden-

Ž . Ž . Ž .tity SS 1, 2, 3 s 1 y P y P SS 1, 2 and the fact13 23
Ž .that SS 1, 2 commutes with any symmetric two-

particle operator. Consequently, the overall opera-
Ž . Ž .tor SS 1, 2 in 51 can be factored out, leaving the

simpler result:

Ž2. Ž2.Ž . w Ž . Ž .x g 1, 2; t q i H 1, 2; t g 1, 2; tt

w Ž . Ž1. Ž . Ž1. Ž .xqi V 1, 2; t , f 1; t f 2; t
Ž2.Ž . w Ž . Ž .y 1 q PP Tr i V 1, 3 f 1, 3; t12 3

Ž1. Ž . Ž . x=f 2; t SS 1, 3 y hc

Ž .q 1 q PP Tr i12 3

Ž3.Ž . Ž . Ž .= V 1, 3 f 1, 2, 3; t 1 y P y P y hc13 23

Ž .s 0. 51

Ž3.Ž .Next, represent f 1, 2, 3; t in the last term using
Ž .15 in the equivalent form

Ž3. Ž .f 1, 2, 3; t
Ž2. Ž1. Ž1.Ž . Ž . Ž . Ž .s f 1, 3; t f 2; t q f 1; t g 2, 3; t

Ž1. Ž . Ž . Ž .q f 3; t g 1, 2; t q g 1, 2, 3; t

to obtain

Ž3.Ž . Ž . Ž .V 1, 3 f 1, 2, 3; t 1 y P y P13 23

Ž2. Ž1.Ž . Ž . Ž .Ž Ž . .s V 1, 3 f 1, 3; t f 2; t SS 1, 3 y P23

Ž1.Ž . � Ž . Ž .qV 1, 3 g 2, 3; t f 1; t
Ž1.Ž . Ž .qg 1, 2; t f 3

Ž .4 Ž . Ž .qg 1, 2, 3; t 1 y P y P . 5213 23

Ž .The contribution proportional to SS 1, 3 cancels
Ž .the terms on the second line of 51 and the equa-

Ž2.Ž .tion for g 1, 2; t becomes

Ž2. Ž2.Ž . w Ž . Ž .x g 1, 2; t q i H 1, 2; t , g 1, 2; tt

w Ž . Ž1. Ž . Ž1. Ž .xq i V 1, 2; t , f 1; t f 2; t
Ž2.Ž . Ž . Ž .y 1 q PP Tr i V 1, 3 f 1, 3; t12 3

Ž1. Ž .=f 2; t P y hc23

Ž . Ž .q 1 q PP Tr i V 1, 312 3

Ž1. Ž1.� Ž . Ž . Ž . Ž .4= g 2, 3; t f 1; t q g 1, 2; t f 3

Ž .= 1 y P y P y hc13 23

Ž3.Ž . Ž . Ž .q 1 q PP Tr i V 1, 3 g 1, 2, 3; t12 3

Ž . Ž .= 1 y P y P y hc s 0. 5313 23
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The fourth term on the left side can be simplified
using the identities

P P s 1, Tr P s 1,23 23 3 23 Ž .54Ž . Ž .P X 1, 2, 3 P s X 1, 3, 223 23

to write

Ž2. Ž1.Ž . Ž . Ž .Tr V 1, 3 f 1, 3; t f 2; t P3 23

Ž2. Ž1.Ž . Ž . Ž .s Tr P P V 1, 3 f 1, 3; t f 2; t P3 23 23 23

Ž2. Ž1.Ž . Ž . Ž .s Tr P V 1, 2 f 1, 2; t f 3; t2 23

Ž1. Ž2.Ž . Ž . Ž .s Tr f 3; t P V 1, 2 f 1, 2; t3 23

Ž1. Ž2.Ž . Ž . Ž .s Tr P P f 3; t P V 1, 2 f 1, 2; t3 23 23 23

Ž1. Ž2.Ž . Ž . Ž .s Tr P f 2; t V 1, 2 f 1, 2; t3 23

Ž1. Ž2.Ž . Ž . Ž . Ž .s f 2; t V 1, 2 f 1, 2; t . 55

The second equation of the BBGKY hierarchy now
becomes

Ž2.Ž . w Ž Ž . Ž .. Ž .x g 1, 2; t q i H 1; t q H 2; t , g 1, 2; tt

ˆŽ . Ž .q i V 1, 2; t g 1, 2; t y hc

Ž1.Ž . Ž . � Ž . Ž .q 1 q PP Tr i V 1, 3 g 2, 3; t f 1; t12 3

Ž1.Ž . Ž .4 Ž .qg 1, 2; t f 3 1 y P y P y hc13 23

Ž1. Ž1.ˆŽ . Ž . Ž .q i V 1, 2; t f 1; t f 2; t

Ž1. Ž1. †ˆŽ . Ž . Ž .yf 1; t f 2; t V 1, 2; t

Ž3.Ž . Ž . Ž .q 1 q PP Tr i V 1, 3 g 1, 2, 3; t12 3

Ž . Ž .= 1 y P y P y hc s 0, 5613 23

with the definition

ˆ Ž1. Ž1.Ž . w Ž . Ž .x Ž .V 1, 2; t ' 1 y f 1; t y f 2; t V 1, 2 .
Ž .57

This shows clearly the origin of the Pauli blocking
factor in the pair potential.

The remaining exchange terms in the second
Ž .line of 56 can be analyzed in a similar way:

Ž1.Ž . w Ž . Ž .Tr V 1, 3 g 2, 3; t f 1; t3

Ž1.Ž . Ž .x Ž .qg 1, 2; t f 3 1 y P y P13 23

Ž1.Ž . Ž . Ž .s Tr V 1, 3 g 1, 2; t f 33

Ž1.Ž . Ž .yg 2, 3; t f 1; t P13

Ž1.Ž . Ž . Ž .Ž .qTr V 1, 3 g 2, 3; t f 1; t 1 y P3 23

Ž1.Ž . Ž .Ž .yg 1, 2; t f 3 P q P13 23

Ž1.Ž . Ž . Ž .s Tr V 1, 3 g 1, 2; t f 33

Ž1.Ž . Ž .yP P g 2, 3; t f 1; t P13 13 13

Ž1.Ž . Ž . Ž .Ž .qTr V 1, 3 g 2, 3; t f 1; t 1 y P3 23

Ž1.Ž . Ž . Ž .yP P g 1, 2; t f 3 P 1 q P P13 13 13 13 23

Ž1.Ž . Ž . Ž .s Tr V 1, 3 f 3 g 1, 2; t3 s

Ž1.Ž . Ž . Ž .Ž .qTr V 1, 3 g 2, 3; t f 1; t 1 y P3 23

Ž1.Ž . Ž .Ž . Ž .yP g 2, 3; t f 1 1 q P P . 5813 13 23

The first term on the right side gives the
Hartree]Fock single-particle energy shift:

Ž . Ž . Ž1. Ž .V 1; t s Tr V 1, 3 f 3 ,h f 3 s

Ž . Ž . Ž .V 1, 3 ' V 1, 3 SS 1, 3 .s

The second term can be transformed by writing
Ž . Ž . Ž .the factor 1 q P P s 1 y P q 1 q P P13 23 23 13 23

Ž . Ž .s 1 y P q P 1 q P . Recall that an overall23 23 12
Ž .factor of SS 1, 2 has been canceled out in writing

Ž . Ž . Ž . Ž56 . Since 1 q P SS 1, 2 s 0, the term P 1 q12 23
. Ž .P vanishes in this context and Eq. 58 simplifies12

to

Ž1.Ž . w Ž . Ž .Tr V 1, 3 g 2, 3; t f 1; t3

Ž1.Ž . Ž .x Ž .qg 1, 2; t f 3 1 y P y P13 23

Ž . Ž .s V 1, 2; t g 1, 2; th f

Ž1.Ž . Ž . Ž .Ž .qTr V 1, 3 g 2, 3; t f 1; t 1 y P .3 s 23

Ž .59

The second term gives the polarization effects with
Ž .exchange. The exact equation for g 1, 2; t now

Ž .takes the final form of 19 .
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