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Abstract 
The derivation of non-Markovian quantum kinetic equations is reconsidered in the framework of density 
operators. Conventional-derivations use for the decoupling of the BBGKY-hierarchy the assumption of 
vanishing thretpartide correlations ~ 1 2 3  e 0. This yields non-Markovian kinetic equations with infinite 
memory depth. We discuss a different closure. relation to the hierarchy, which overcomes this difficulty 
without sasumptions on weakening of initial correlations and in fact corresponds to the indurion of selfenergy 
effects (beyond HartretFock). 

1 Introduction 

For the last decades, quantum kinetic properties of many-particle systems have success- 
fully been described on the basis of Markovian kinetic equations, such as the Landau, 
Lenard-Balescu or Boltzmann equation. However, these equations have several principal 
shortcomings: 

1. They are valid on time-scales larger than the correlation time r,, only, 

2. they neglect initial correlations and 

3. they conserve only kinetic energy (quasi-particle energy) instead of the total (ki- 

The last point becomes a serious problem, if strongly correlated systems are considered. 
Then, the behavior, both on a microscopic and macroscopic scale, is essentially influenced 
by many-body effects. In particular, hydrodynamic, thermodynamic and transport prop- 
erties will contain additional correlation contributions. If driven out of equilibrium, the 
system will relax towards a strongly coupled stationary state. To describe the relaxation 
of nonideal systems correctly requires generalized kinetic equations that conserve total en- 
ergy. On the other hand, the first point seems to be of quite specific relevance, confined 
to ultra-fast relaxation phenomena. However, this is not the case. As is well known, both 
points are linked together inseparably. Total energy conservation can be achieved only in 
the framework of non-Markovian kinetic equations. Even in situations, where short-time 
phenomena are not of interest or experimentally not (yet) accessible, details of the initial 
relaxation phase may be essential for the correct description of the asymptotic state. There- 
fore, progress in non-Markovian kinetic equations is a central problem of many-body theory 
in general. 

Generalized kinetic theories including memory effects have been derived already in the 
6Oies by Zwaazig [l], Prigogine and Resibois [2], Balescu [3], Silin [41, Klimontovich [5],  
Kadanoff and Baym [S] and others. Substantial contributions are dm due to B&winkel[7] 
and Zubarev [9]. Explicit non-Mmkovian collision integrals were derived by Silin [4] and by 

netictpotential) energy of the system. 
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Klimontovich and Ebeling [8, 51 for the classical Landau equation (statically screened Born 
approximation). 

For the application to  nonideal quantum systems, the non-Markovian Landau equation 
[5] has to be generalized in several directions: 
I. to include effects of the spin statistics for fermions or bosons, 

11. to incorporate many-particle effects, such as selfenergy, and 

111. to permit the inclusion of arbitrary initial correlations existing in the system at the 
starting point of the relaxation. 

This can be accomplished in the framework of Green's functions, where the first two points 
follow straightforwardly [14, 16, 171. However, these derivations encounter two principal 
problems. The first ist the question of arbitrary initial correlations, which despite interesting 
concepts [14, 151 is not yet solved satisfactorily. The reason is that the Green's functions 
approach, in one way or another, incorporates asymptotic conditions for t --$ -00. The 
second problem is that for the derivation of kinetic equations for the Wigner function, 
certain reconstruction ansatzes for the two-time correlation functions in terms of the one- 
time Wigner functions, such as the generalized Kadanoff-Baym ansatz [18], have to be used. 

These problems do not occur within the alternative approach of the quantum general- 
ization of the Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy for the reduced 
density operators [11, 121. We therefore will use this approach here. The density operator 
method easily allows us to incorporate initial correlations into the kinetic equations. On the 
other hand, inclusion of selfenergy effects into this concept was, so far, an open question. 
We solve this important problem here by identifying the appropriate approximation for the 
three-particle correlation operator1. The final kinetic equations are fully equivalent to the 
time-diagonal Green's functions results and provide a useful confirmation for the mentioned 
above reconstruction ansatz in second Born approximation, which follows directly as a result 
of our theory. 

2 Density Operator Approach to Generalized Kinetic Equations with 
Selfenergy 

The starting point for the density operator approach to quantum-kinetic theory is the 
Liouvillevon Neumann equation for the N-particle density operator 

From eq. (1) follows the BBGKY-hierarchy for the reduced density operators F', F12, . . ., 
F I . . . ~ ,  which are normalized according to Y-aTri...aF1...s = 1, by calculating the partial trace, 
[11, 121, 

Here,  HI...^ is the s-particle Hamiltoniaa, the binary interaction potential between par- 
ticles i and j ,  V is the volume and n the density. The complete hierarchy (2) has all the 
properties of the von Neumann equation (l), including time reversibility and total energy 
conservation. It is advantageous to rewrite eq. (2) in terms of correlation operators, and 
also to  include spin statistics effects explicitly [12], 

Fiz = FiFzA& + giz (3) 
FIB = FiFzF3& + J ' 3 g d & )  + F z ~ I ~ A & )  + Fig23A$.q + 9123, (4) 

'Thi. camxpf h. ban d4v.d t&v wkh  0. Xnmp [mi and did .*D b d i t  f m  umilr id- fm th. U r i r p h o n a  p m b h  [?el, 
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with the (anti-)symmetrization operators A& = 1 f P12, 

A:23/A:2 etc. The first two hierarchy equations are now: 
= (1 f P1z ItP13)At2, A:(23) = 

( 5 )  
a 

ih -g12 at - [fi;Z,gl21 t {%2g12 - 9 1 2 t . 2 )  = (V124F2 - 4F2q2}A:2 

+ nn3{ [Gi, Fi~zslA:2 + W 3 ,  Fzgi3lA& t [K3 + %3, gi231}, 

ifi --S - [Hi t U y F ,  3'11 = n'h[Viz, giz], at 
d 

(6) 

with the Hartree-Fock contributions, U?" = ~ T Q V ~ ~ F ~ A ? ~  and the effective free two- 
particle Hamiltonian B:2 = @ + H:, = A1 +- UFF.  v12 is the operator of the shielded 
potential which includes phase space occupation effects %2 = (1 f nF1 f nF2) V12. 

2.1 Non-Markovian Quantum Landau Equation 

A quite general conserving closing approximation to the hierarchy is to neglect threeparticle 
correlations, g123 = 0. Then eqs. ( 5 )  and (6) are sufficient to derive a large variety of 
generalized non-Markovian kinetic equations, including the Boltzmann equation (binary 
collision approximation, [24]), the Lenard-Balescu equation [25] or the Landau equation. To 
demonstrate the concept, we derive the quantum Landau equation which plays a central role 
in plasma and solid state theory, since it is, at the same time, the static limit of the Lenard- 
Balescu equation and the weak coupling limit of the ladder approximation. Neglecting 
ladder and polarization terms and three-particle correlations (third term on the 1.h.s. and 
d terms on the r.h.s. of eq. (6)), we obtain the hierarchy closure which corresponds to the 
static second Born approximation, 

(7) 
a 

ikgg i2  - [a,O,,gi2] = { Vi2FiFa - FiF2?;2) A&. 

eqs. (5 )  and (7), together with the initial conditions &(to) = and glz(t0) = go, form a 
closed system of local in time equations for F1 and g12. They describe the dynamics of the 
particle pair 1 - 2 including the effect of initial correlations and correlation build-up. We 
can solve eq. (7) for g12(t) 

00 

-A* Vo-( f t ) ,  (8) 1 
g12(t) = u:$(tto) go V:;(tot) t dfu:$(tq (P12FP2 - FIF8 12 }I t 12 12 

t o  

where U:: axe retarded/advanced propagators which have the properties U:$ = Up" U:', 
Uo*(tt') = [Uo'(t't))t. U:+ is defined by 

If 
particularly simple, with the matrix elements 

is just the freeparticle Hamiltonian, I?: + Ef = &/2rnl, the solution of eq. (9) is 

p ( t  - t') = @(t - t l ) e - f w t ' ) .  (10) 

Inserting the result for g12, eq. (8), with the propagators (10) into the r.h.s. of the 
first hierarchy equation (5 ) ,  we obtain the non-Markovian Landau equation for a spatially 
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d 
dt homogeneous system, -fi(t) = I(p1, t )  -+ I”(p1, t), with the collision integral 

4 V(P1 - Pl)(V(Pl - Pl) f V(pl - p2)) COS { E L  - ti E1”2 

and an additional collision integral due to the initial correlations 

x Im{e-t(~~-E;D,)(~-~)g~(pl ,p2,P~,P2)} ,  (12) 

where we denoted E!2 = E: -+ E:. This kinetic equation is an important extension of the 
conventional Landau equation to times shorter than the correlation time and generalizes the 
non-Markovian result of Silin [4] and Klimontovich and Ebeling [8] to systems with initial 
correlations and spin statistics. We will discuss its properties in Sec. 3. Here we point 
out only the problems with the collision integrals (11) and (12): These integrals describe 
a time-reversible dynamics of the Wigner distribution. The collision integrals are nonlocal 
in time with an unlimited memory depth, and the initial correlations in the system are not 
being weakened. This is, of course, an unphysical long-time behavior. The reason is that 
the coupled equations (8) and ( 5 )  describe the isolated dynamics of the particle pair 1 - 2 
what corresponds to two-particle states of infinite lifetime. We will show in the following, 
how finite lifetime (damping) effects can be incorporated into the BBGKY-hierarchy. 

2.2 Selfenergy in Density Operator Approach 

Instead of neglecting three-particle correlations, we now take into account those terms from 
9123, that describe the cpupling between a particle pair and the surrounding megum to 
lowest order. These terms will contribute to a renormalization of the Hamiltonian Hf2 - 
Hfzff. Inspection of the equation of motion for g1m (third hierarchy equation), leads to the 
following approximation 

where_ the effective Hamiltonian is, in general non-hermitean with Hfzf3’ = 1?1 t R2 f Es,  
and HI is yet to be defined selfconsistently. Solving for ~123, we obtain 

t 

g123(t) = U & 3 ( b )  !823 Ufi3(klt) t $ /dfu&,(tf) [v13 t %3, F3Y12llF Ufi3(ft), 
1 

(14) 
to  

where UA3 = U: U,” U: and Ut is defined by 

U,+(tf) = itr6(t - f). (15) 

To shorten the notation, we will not write the term with g:23, but restore it in the final 
expression (21). We will not proceed in the operator notation here [20], but, for sake of trans- 
parence, use the momentum representation assuming spatial homogeneity. Furthermore, we 
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consider only the local approximation of eq. (15). Then, introducing the matrix elements of 
the renormalized Hamiltonian 1311pl) = c1Jp1)  which are complex, q ( t )  = E ? + A l ( t ) + i ~ l ( t ) ,  
the renormalized oneparticle propagator has the form 

t 

- i l d T e 1 ( 7 )  

~ , + ( t t o )  = ~ ,+( t  - to )  = e to (16) 
The momentum representation of the solution (14) is given by (we denote p l  -+ 1 and 

use 1 + 2 + 3 = 1' + 2' + 3') 

" I  x { f; (9 ( 1 t 3 - 3', 2, l', 2') t 9(1,2 + 3 - 3 1 1 , 2  1) 
- f3 (9 (1,2,1' t 3' - 3,2') t g(l,2, l', 2' t 3' - 3))) I 

t-7 ' 
with €123 = €1 + €2 f €3. Now we insert expression (17) for 9123 on the r.h.s. of eq. (6). The 
result consists of 16 terms: 

d3 dq V2(q) a 1 
ih-g(1,2,1',2') = . . . t 7 af 0 dr /  (2*fr)303 
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where on the r.h.s., f and g are to be taken at the time t - T. Of these 16 terms, four (first 
terms after each exponential) have the same momentum arguments as g on the 1.h.s. of the 
equation, and, therefore, may be taken out of the and q integrals. The other 12 terms 
correspond to polarization contributions and have to  be neglected in the static second Born 
approximation. Introducing aa operator 9(12), we can rewrite the four remaining terms as 

W ) ( 1 , 2 ,  1',2',t)g(l12, lt,2/,t) = 

Due to symmetry in the momentum arguments, %(12) may be decomposed according to 

2(l2)(l,2,1',2',t) = &(t) +- % z ( t )  - 2:(t) - %>(t) 

91(t)g(l,2,lf,2',t) = E:c(t)g(l,2,1',2/,t) + 7 It-'' dsg( 1,2, if ,  2', t - T )  (20) 
o 

with 

where the complex conjugation in 2; and %; is understood as not to affect g under the inte- 
gral. Here, 9fc contains the initial three-particle correlations. Consistent with approxima- 
tion (13), they are assumed to  be of the form g1023 N [V13tV23, F3(t0)g~2(t0)]tpermutations, 
so $Ic is determined by the initial values of the distribution function and the correlation 
matrix, g:C(t)g(t) N J d3dqv2(q)f3(to)g(to). 

Now, we can write down the equation of motion for 912 in momentum representation, 
including the contributions from the three-particle correlations, eq. (19), 

{ i t k - ( E : t E ; -  Eyf-E;,)  } g(l ,2,lf ,2' ,t)= 

m 1 -  1') f V(1 - 2% (fif i(1 f f d ( 1  f f2) - flf2(1 f fW f A ) }  - 
{Et(t) t E2(t) - q ( t )  - 2>(t)} g(112,1',2',t). (21) 

eq. (21) allows to  identify the so far unknown renormalized one-particle and two-particle 
Hamiltonians and Hl2:  

8 1 2  = H I + &  (22) 

&g(1,2,1',2',t) = (23) 
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eq. (23) shows that 21 is in fact related to selfenergy effects. Let us briefly comment on 
this result. The closure relation (13) allows to include selfenergy effects to lowest order 
(in particular, two-particle selfenergy is neclected). To include spin statistics effects, the 
closure (13) has to be generalized according to v13 F3 912 - (&, F3 t Fi&V13) 912. 

2.3 Non-Markovian Quantum Landau Equation with Selfenergy 
Having determined the renormalized oneparticle Hamiltonian and its eigenvalue el we 
now can go back to eq. (16) and calculate the renormalized propagators Ut. With these 
propagators we immediately construct the solution for g12 and the collision integral as it 
wits shown in Sec. 2.1. To come to results which can be treated numerically, additional 
simplifications of the time dependencies on the r.h.s. of eq. (21) are necessary. Taking g 
under the time integral in the Markov limit, g( t - r )  w g( t )  and g( 121'2') - 6( El + E2 - E: - 
a;), g can be taken out of the integral and only four energies qeq + Q+,, - E;, - c$ remain in 
the exponent. Furthermore, the retardation in c in the exponent is neglected. As a result, 
we obtain the retarded selfenergy in second Born approximation (in local approximation), 
which is known from Green's functions theory, 

x {KXP f f 2 l  t f 2 P  f fi" f Xl}l*-, , (24) 

and damped quasiparticle expressions for the propagators, 

q ( t  - t') = @(t - t') e-+(El-i71)(t-:') (25) 

with shifted energy El = p:/2m1 f Re g(p1, t )  and the damping 71 = -iIm %(PI, t ) .  Finally, 
with eq. (25) we obtain the collision integrals of the generalized Landau equation: 

- 
El2 - El2, e- (nz++?la)7 /h  

x V(P1- Pl)(V(Pl - P1) f V(P1 - Pa)) cos{ 1 
x {f1?2[1 f f11P f f2l -. f l f 2 P  f fill1 f &I}/ t-r 7 

fi 

(26) 

and, the contribution from the initial correlations, 

I'C(p*,t - to )  = 

x (2a)1)3qp12 - p12) e-(*2+%)(t-to)lh 

x Im { e-t(El~-'lz)(~-to)go(pl, p2, p1, pz)}, (27) 

which are the generalization of eqs. ( l l ) ,  (12). Eq. (26) agrees with the result derived 
using Green's functions by applying the generalized Kadanoff-Baym ansatz (GKBA) [18] 
in [16, 171. Here, we obtained the result without postulating the GKBA based on the 
BBGKY-hierarchy with a generalized closure relation (13). 
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Thus, the problem is solved. The generalized Landau equation is given by the non- 
Markovian collision integral (26), the additional integral (27) and the expression for the 
selfenergy (24), which are coupled in a compiicated way. The energy shift and the damping 
coefficient are momentum and time dependent and appear under the retardation integral 
in the collision terms and in itself and have to be calculated selfconsistently with the 
distribution function. 

3 

3.1 Memory Effects 

Let us discuss some important properties of the generalized kinetic equation. The in- 
tegral (26) conserves density and momentum. It contains the specific scattering kernel 
D = cos{wr}e-rT under the retardation (7) integral, where we denoted w(1,2,1',2',t) = 
(El2 - Ei2)/h and l?(1,2, 1',2t7t) = (712 + &)/h. This gives rise to collisional energy 
broadening and memory effects. The latter are, however, only a formal consequence of the 
solution for 912. The original differential equations for F1 and g12, eqs. (5,6), are local in 
time. As a result of the selfenergy corrections, the initial correlations are being damped and 
the memory in the collision integrals has a finite duration. Eq. (26) is applicable to times 
shorter than the correlation time, i.e. beyond the Bogolyubov regime. For t < rcor - l/r, it 
describes the simultaneous relaxation of distribution function and binary correlation func- 
tion. For t N rCm, initial correlations are damped out, and correlations have reached an 
equilibrium form, depending on time only via the distribution functions (Bogolyubov's func- 

tional hypothesis). In the longtime limit, i.e. t-to - 00, D + - " If7 furthermore, 
damping is neglected, D -+ M ( w ) ,  yielding the Markovian Landau collision integral. How- 
ever, the long-time asymptotics of eq. (26) contains an additional integral 

Properties of the Generahed Landau Equation 

w2 t r2' 

d 
dt x - {Kf2[1 f fll[l f f21 - flf2[1-f A" f f21}lt , 

ti2 2r2 
w2 t r2 w2 t r with Dy(w,I ')  = -(7-l). 

This additional collision integral (28) is essential to obtain energy conservation in the long- 
time limit and the correct thermodynamic properties of an interacting many-particle system. 

3.2 Correlation Dynamics 

It is instructive to consider, instead of the formal solution for the complex correlation matrix 
element, closed equations for its imaginary and real part. Separating in eq. (21) real and 
imaginary part and denoting by hS(  1,2, 1'' 2', t) the term with the distribution functions 
on the r.h.s. of eq. (21), we obtain (for fixed momenta) 

(30) 

(31) 

d -Img = w R e g - I ' I m g - S  
dt 
d -Reg = - r R e g - w I m g .  
dt 
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Differentiating eqs.(30) with respect to time, we obtain equations of motion for the real and 
imaginary part: 

dl d 
d t a ~ ~ g + 2 r  - ~ m g +  dt (w2 t r2) 1t7Ig = -rq + al, 

d2 
- -Req+2rReg+  dt2 ( w 2 t r 2 )  Reg = & + a R ,  (33) 

d d d 
dt dt 
d d 6~ = -4 Reg - -wImg. 
dt dt 

ZQ> with 61 = -4 I m g  t -wReg - 

Eqs. (32) and (33) allow for a clear interpretation of our theoretical model. These equa- 
tions are fully equivalent to the non-Markovian Landau equation, but they are local in 
time, i.e. Markovian. If we neglect the, in most cases, weak time dependence of I', w and 
\k, the corrections 61 and t 5 ~  vanish, and we have two equations of damped quasi-harmonic 
oscillations. The oscillators are subject to an external force which is defined by the dis- 
tribution functions and which changes with time weakly. The oscillation Geqency is given 
by R = [(w2 t r2J - = (El2 - &)/h. The damping coefficient is just the sum 
of the one-particle damping coefficients f .  Damping coefficient and frequency are weakly 
time-dependent via their functional dependence on the distribution functions. The solution 
of eqs. (32), (33) is 

R e g ( t , w , r )  = \k(t)C,(w,I',t) t 
(Reg(t,)cos[w(t - to)]  - Img(t,)sin[w(t - t o ) ] )  e-r(t-to) (34) 

{ r n  g(t,)cos[w(t - to)]  t Beg(t,)sin[w(t - t o ) ] )  e-r(t-'o). (35) 

Img(t,w,I')  = -l!(t)D,(w,I',t - t o )  t 

Do and C, are given by 

and correspond to the approximation where the distribution function does not change over 
an oscillation period. The next corrections to  R e g  and Im g follow from assuming Q N t' , t2 
and so on, resulting in new functions D1, D2, . . . and C1, C2. . ., respectively. This expansion 
is identical to  a retardation expansion of the non-Markovian solution for 912. 

The solution (34,35) allows for a transparent discussion of the dynamics of binary corre- 
lations: If selfenergy is neglected (712  = A12 = 0 ) ,  the oscillations would be undamped, with 
the frequency h2R; = Ef t E i  - Ef, - E;,. This means, the oscillations are more rapid the 
more the scattering event violates kinetic energy conservation. The matrix element on the 
energy shell (where kinetic energy is conserved) does not change in time at all. During the 
relaxation, the oscillations of the qff-shell matrix elements become increasingly more rapid. 
Their contribution to the collision integral which contains a momentum average over Im g 
vanish due to destructive superposition, and only the on-shell terms remain. This means, 
the relaxation enters the "classical" kinetic stage. 

The account of one-particle damping gives rise mainly to damping of the oscillations of 
the off-shell correlation matrix elements with a characteristic decay time l/r. Furthermore, 
the functions Do and C, obtain a finite spectral width. For the on-shell components we find 
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This clearly shows the damping of initial correlations and the correlation build-up. This 
“on-shell’’ approximation has been derived in [21] as a relaxation time approximation for 912 
(correlation time approximation). It was shown that this approximation reproduces basic 
physical effects of the correlation dynamics qualitatively and even quantitatively correct. 

3.3 Energy Conservation and Potential Energy in Second Born Ap- 
proximat ion 

Energy conservation can be studied in detail for the Landau equation, since one can derive 
explicit expressions for the potential and kinetic energy (for a classical plasma with weakened 
initial correlations, cf. [22]). The potential energy density is found to be (201 

(h - P1) f V(P2 - PI)) (2 M 2 [ l  f fl][l f f2]}I t-T 

where N is the particle number. This is the correlation energy density of a quantum sys- 
tem in second Born approximation, including exchange, selfenergy and initial correlations. 
This expression is valid for all times, including the short-time behavior and the correct as- 
ymptotic result. Exact energy conservation can be shown if damping effects are neglected. 
With selfenergy corrections, the question is essentially more complex. In particular, in lo- 
cal approximation, energy is conserved only approximately. We have to omit the lengthy 
calculations here [23], and mention only that the error is of the order V6. 

4 Numerical Results and Discussion 

We have seen that at short times, t < r,,,,, the behavior of correlated many-particle systems 
is characterized by a coupled dynamics of one-particle and two-particle’ properties. The 
formation of binary correlations can be characterized by different quantities. In a one-time 
theory, such as the density operator formalism, the central quantity is the binary correlation 
operator g12, Fig. 1. On the other hand, the one-particle energy renormalization 5: contains 
the same information, since it is calculated from g12 too, cf. eq. (13). Consequently, 
the short-time behavior of both quantities should be very similar. To confirm this, we have 
performed numerical studies of relaxation processes in plasmas and semiconductors, e.g. [20]. 
Figs. 1 and 2 show numerical results for the correlation build-up in a typical femtosecond 
relaxation process in optically excited semiconductors. In Fig. 1 we plot the matrix element 
of 912 for a typical scattering process of two electrons entering the collision with momenta 
p1 and p2, respectively, as a function of the momentum transfer q and time. Fig. 2 shows 2 
in units of the exciton Rydberg energy as a function of the wave number for different times. 
Both figures show the initial phase of the relaxation starting from an uncorrelated initial 
state at t = 0. The correlation time in this system is about 50 femtoseconds. After this 
time, correlations are basically formed, and further changes are only gradual (Bogolyubov 
regime). Still the one-particle distribution is far from its equilibrium shape. 

We have to  note further problems related to the local approximation for the selfenergy 
correction 2. In the long-time limit it leads to  a broadened spectral kernel D which has 
a finite width I’ rather than to  a sharp energy delta function. This does not yield the 
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Figure 1: Relaxation of the imaginary part of the binary correlation function for static 
electron-electron scattering in a bulk semiconductor. The initial distribution is a Gaussian 
centered at k = 3a;;',+n = 3.64 x 1017cm'3,~ag = 0.2 in the case of full retardation and no 
selfenergy. The inset illustrates the two-particle scattering process. The initial momenta of 
the partide pair are pl = pz = 3h/ag, p1 and p2 are parallel. 

Re C Imc 
0.0 I i 

-0.2 

-0.4 

-0.6 

-0.8 

- 1  n 
-I." 

0 2 4 6 8 10 

k, l/aB 

2-o l-----l 

Oe4 0.0 0 t I Z 3  2 4 6 8 10 

k, l/aB 

Figure 2: Relaxation of the real and imaginary part of the retarded selfenergy 3 as a function 
of momentum for different times. The results are from a selfconsistent calculation using the 
local approximation for the selfenergy, eq. (24). Same system parameters as in Fig. 1, 
except ~ a g  = 1.16. 
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correct equilibrium distribution of correlated systems and also slows the relaxation down. 
Therefore, for selfconsistent calculations of the selfenergy which go beyond the correlation 
time, it is necessary to use improved expressions. One approach is to use phenomenological 
analytical expressions with non-Lorentzian tails [26]. An exact approach requires to solve 
the full Dyson equation for the two-time propagators (15) or, alternatively, the two-time 
Kadanoff-Baym equations [20]. 
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