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Abstract 

Balance equations for the density, momentum and energy of a dense plasma are derived on the basis of 
quantum kinetic theory. The influence of many-body effects on ionization/recombination reactions, dif- 
fusion and thermal conductivity are discussed. It is shown that (microscopic) many-particle effects lead 
to nonlinear macroscopic relaxation behaviour. For illustration, we solve the coupled density-temperature 
balance equations for a dense partially ionized hydrogen pksma 

1 Introduction 

The relaxation of chemical composition and temperature in dense plasmas are of special 
interest in ultrashort laser experiments [l, 21. Recently it became possible to measure 
electron densities up to  1023~m-3 and to investigate the dynamics of the expanding plasma 

In such dense plasmas, many-particle effects, as screening, self-energy, bound states, and 
lowering of the ionization energy, have particular influence on the nonequilibrium behaviour. 
From the theoretical point of view, the relaxation process can be described by generalized 
quantum kinetic equations including the many-particle effects mentioned [4] - [9]. On 
the hydrodynamic level of discription, the plasma relaxation is determined by equations of 
change for the density, mean velocity and energy. Now, the transport and rate coefficients 
follow from the kinetic equations and we found quantum statistical expressions for these 
quantities. 

It is of special importance for the investigation of dense laser produced plasmas to include 
reactive processes such as impact ionization and threebody recombination. 

In the present paper, we consider a spatially inhomogenous plasma and we will describe 
diffusion and heat transport in connection with chemical reactions. In earlier papers [lo, 111 
reaction-diffusion equations were desciibed for the isothermal case. Here, we investigate a 
nonisothermal dense plasma and look at the coupled system of equations for density and 
temperature. The influence of many-body effects on the transport coefficients and on the 
evolution process is demonstrated. 

[31. 

2 Hydrodynamic Equations for Dense Plasmas 

To obtain hydrodynamic equations for nonideal partially ionized plasmas, we start from gen- 
eralized quantum kinetic equations. Such kinetic equations for quasiparticles were derived 
in Refs. [4 - 91. Many-particle effects, such as screening of the Coulomb interaction, self- 
energy, Pauli blocking, formation and decay of bound states and pressure ionization (Mott 
effect) are included in those equations. Using the concept of quasiparticles, we can describe 
important many-particle effects in a simple manner. In this picture, the singleparticle 
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energy (quasiparticle energy) is given by the dispersion relation (a labels different species) 

( 1) 9 
&a (prt) = 2;;; + R e m w P 4  Ihw=co(*rt) 7 

where CF(wprt) is the retarded selfenergy function of Green’s function theory [12]. This 
function describes the modification of the energy of a particle due to the influence of the 
surrounding plasma. For bound particles we have to  include the binding energy in the 
expression of the quasiparticle energy (1). 

While the kinetic equation allows to describe relaxation processes on microscopic (ki- 
netic) and macroscopic scales, we are interested here only in the hydrodynamic relaxation. 
Then it is convenient to derive hydrodynamic balance equations for the macroscopic quanti- 
ties density, mean velocity and energy density, which are related to  the Wigner distribution 
function f. by 

.1 dP a&.(Prt) fa(prt), u,(rt) = - -- 
n,(rt) 1 (2nti)3 ap 

The energy density (4) contains a kinetic part (first integral), which will be related to  the 
temperature below, and an interaction contribution (second integral). The hydrodynamic 
equations are derived from the kinetic equations using standard methods [13] 

Let us discuss the terms in eqs. (5 )  - (7) more in detail. Consider first the drift terms 
on the 1. h. s. of eqs. ( 5 )  - (7). In eq. (5), jf is the diffusion current, defined as 

j! (rt) = 71. (ua - u) , (8) 
with the average mass velocity u = l/p~,p,u,, and the mass densities p. = noma, p = 
C,p5. The third term on the 1. h. s. of eqs. ( 5 )  is the convective current. In eq. (6), we 
introduced the pressure tensor, 

which contains many-body correlations due to the selfenergy. In eq. (7)’ Q5 is the energy 
ilux, 

Now, we consider the source terms on the r. h. s. of eqs. ( 5 )  - (7), which are given by 
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W, describes the change of particle number n, due to inelastic three-particfe collisions 
(the two-particle integrals Iab are density conserving). R, and U, describe the effect of 
collisions on the momentum and energy balance, respectively. The source terms for the 
bound particles in the balance equations are 

where P is the center of mass momentum und j comprises the quantum numbers of the 
levels of the bound particles. Explicit expressions for the collision integrals lab, I& and 

The balance equations ( 5 )  - (7) are generally valid for partially ionized nonideal plasmas. 
Simplifications are possible in the case of a threecomponent plasma consisting of electrons 
(e), z-fold charged ions ( 2 )  and atoms (ei). Furthermore, we will use simplifications for the 
selfenergy and for the pressure balance, which we discuss now. 

1. Momentum independent energy shifts: The retarded selfenergy function Ct(wprt) de- 
pends on the distribution function (for a discussion see Ref. [lo]). Therefore, in 
principle, it has to  be determined self-consistently with the solution of the kinetic 
equations. The solution of the hydrodynamic equation with self-consistently calcu- 
lated energy shifts would be very difficult. Therefore we use, for the energy shifts, 
the rigid shift approximation. Here Ct(wprt) is replaced by momentum independent 
shifts [14] 

can be found in Refs, [4] and [5]. 

P2 
&a(@) = - + A,(rt). 

2ma 
The shift A,(&) has to be determined from a condition, 
normalization to the density. In first order follows 

(17) 

which reproduces the correct 

(18) 

(19) 

The thermally averaged energy shift is connected with the chemical potential by 

' Pa(rt) = pid(&) + Aa(rt)i 

and is equal to the interaction part of the chemical potential. The analytical calcula- 
tion of Aa(rt) is only possible in simple cases. For example, in the nondegenerate low 
density case, we get (a = e, i )  

e2 1 n,z:ei ALa(rt) = -- - = K~ = 4a - 
2ro ' r: , kBTa 1 

with the screening length ro and the screening parameter K.  In eq. (20), A,(rt) is the 
Debye shift, which represents the limiting law for systems with Coulomb interactions. 
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2. Elimination of the momentum balance equation: Explicit expressions for the diffusion 
current jf can be derived from the momentum balance (6). If further the system 
is close to local equilibrium we have (u, - u) < (kBT/ma)’/’ and the distribution 
functions can be taken in linear approximation 

where ha is the thermal wavelength. A similar expression fallows for the distribution 
functions of the bound states. Neglecting contributions nonlinear in u, we obtain from 
eq. (6) for the mass average velocity 

a 
p p  FT -VP, 

and for the pressure 

(23) 
Pa 
P 

Vpa - -VP = S, = R, - u,maW,, 

where we used aII,;j/arj = VpaSij. According to eq. (9) and using momentum inde- 
pendent energy shifts (17), the pressure gradients are given by 

VP(r t )  = V x p a ( r t ) ,  Vpa(rt)  = Vpid(rt) + naVAa(rt). (24) 
a 

The pressure pa is not the pure ideal partial pressure because of the interaction con- 
tributions contained in the energy shift Aa(rt)  (for details see Ref. [lo]). 
eq. (23) connects the thermodynamic forces of the nonideal plasma with the mo- 
mentum transfer due to the collision processes. If we restrict ourselves to elastic 
contributions, we get for the r. h. s. of eq. (23) 

where n, is the total number density. The explicit expression for the diffusion coef- 
ficients can be found in Ref. [lo]. Now we can solve eq. (23) with expression (25) in 
standard way 

Dab are the multicomponent diffusion coefficients, which can be expressed in terms of 
the binary diffusion coefficients Dab 

Expression (26) is an important generalization of the ideal gas result because it con- 
tains nonideality contributions in terms of the energy shift. 

3. Ambipolar diffusion regime: In the following, we want to study the diffusion process 
in ambipolar diffusion regime. This leads to a steady state with charge neutrality and 
equal electron and ion number fluxes 
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Further we suppose V P  = 0. With eq. (22), u = cmst, and we can consider the 
system in a moving frame where u NH 0. As a result we get n = n, + n{,il, and the 
system of reaction-diffusion equations in a threecomponent plasma reduces to one 
equation a Z n ,  = We + V D m V n e .  

Here we introduced the ambipolar diffusion coefficient in a three-component plasma, 
which is given by [15, 161 

(29) 

4. Plasma temperature balance: In many cases, one anticipates a multi-stage process, 
where first a common nonequilibrium temperature T of the whole plasma is estab- 
lished. We will consider here the second stage, i.e. the coupled relaxation of the 
temperature m.entioned and of the chemical composition of the plasma in connection 
with diffusion and heat conductivity. The plasma temperature T is given by 

Summing up the eq. (7) over the components in a threecomponent plasma, we get 

3 7  we] (33) -= dT ( inokB+q-) - ’  1 e2ne [,,,,- (:kBT+JEl l - - -  
at 4 ro 

Here we introduced the thermal conductivity A. 

We reduced the system of balance equations ( 5 )  - (7) to the eqs. (29) and (33). These 
equations are strongly coupled. Before we solve the system of eqs. (29) and (33), we will 
discuss the source function, ambipolar diffusion and thermal conductivity, respectively. 

3 

3.1 Source Function 

Many-Particle Effects in the Transport Coefficients 

To study nonideality effects on the relaxation kinetics in a simple example, we consider in 
the following partially ionized hydrogen, consisting of electrons, protons and atoms. If we 
introduce impact ionization coefficients oljc and threebody recombination coefficients Pj’, 
corresponding to  atomic level j ,  we can transform the source terms (11) into 

Explicit expressions for the ionization and recombination coefficients can be found in Refs. [4] 
and [17]. Now we restrict ourselves to atoms in the ground state. Since the impact ionization 
by ions is much less effective as compared to electron impact ionization, it is usualIy sufficient 
t o  consider the latter process. The electron impact ionization coefficient was calculated with 
an approximate impact ionization c r w  section, which is given in Ref. [17]. Then we obtain 
an analytic expression for the ionization coefficient 
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Here a0 and g are defined by 

The ionization coefficient has a strong dependence on the density, because the ionization is 
a process with il, threshold energy. In the approximation of thermally averaged shifts, the 
ionization and the recombination coefficients are coupled by the relation 

pj = cljb~exp(I;ff/tsT), I;ff = IEjl- A1 + A, + Ap, (37) 

with I;ff being the effective ionization energy. The influence of many-body effects on the 
recombination coefficient is weaker in comparison to the ionization coefficient (cf. the results 
for nonideal hydrogen plasma [18, 193, for alkali plasma [20] and for carbon plasma [XI). 
We, therefore, use here w bid, in accordance with eqs. (35) and (37). 

3.2 Ambipolar Diffusion 

The ambiploar diffusion coefficient was given by eq. (30). This density-dependent coeffi- 
cient leads to nonlinear diffusion caused by many-body effects. In a hydrogen plasma the 
ambipolar diffusion coefficient was calculated in Refs. [lo] and [15]. It was shown, that the 
classical result D m  = 22),H occurs only for electron densities below 10i5cm-3. For higher 
densities, the many-body effects cause a minimum. Below T = 17500K even negative val- 
ues of D m  may occur as a direct consequence of the "van der Waals loop" in the plasma 
chemical potential. A discussion of the negative diffusion is found in Ref. 11. In this paper 
we concentrate on densities and temperatures, where D m  is positiv. 

3.3 Thermal Conductivity 

The total thermal conductivity in low density hydrogen plasmas was measured by many 
scientists, for example see Refs. [22] and [23]. Theoretical calculations were made also for low 
density hydrogen plasmas [24, 251. In dense plasmas many-body effects lead to deviations 
from these results. We use the Chapmann-Enskog-Burnett theory for the determination 
of the total thermal conductivity [13]. In this theory the total thermal conductivity is 
expressed in terms of transport cross sections [25] 

where qy is an array of elements qy and I q [ is formed from the explicitly given de- 
terminant by deleting the last row and the last column. The terms q? are sums over the 
transport cross sections "251. The thermal conductivity X is usually defined as the coefficient 
of the temperature gradient term when all diffusion velocities are zero. Because we do not 
consider thermal diffusion effects (these effects are very small in the considered situations), 
the term A' is equal to the usual thermal conductivity. 

The transport cross sections of the p H  ,H-p and H-H scattering were calculated 
with effective hard sphare diameters. For the dominating interactions (e-p , p e  and e-e) 
the transport cross sections were determined from scattering phase shift calculations. The 
elastic scattering of electrons on H-atoms was computed from the close coupling equations 
[26]. The p-p scattering is much less effective and is therefore not included. In Fig. 1, the 
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Figure 1: Total thermal conductivity in a dense hydrogen plasma for different temperatures. 

total thermal conductivity is shown in a partially ionized hydrogen plasma in equilibrium. 
The chemical composition was calcutated from the nonideal Saha equation. One clearly sees 
a density dependence of the total thermal conductivity. For low temperatures we observe a 
minimum, which is a consequence of the formation of H-atoms. At even higher densities, 
close to the Mott density, the thermal conductivity increases drastically due to pressure 
ionization. A similar behaviour was already found in Ref. [27] for the electronic part of the 
thermal conductivity. 

4 Numerical Solutions 

We now solve the system of equations (29) and (33) for partially ionized hydrogen. We use 
the ambipolar diffusion coefficient (30) , the heat conductivity (38), the ionization coefficient 
(35) and the recombination coefficient (37). We use momentum independent energy shifts 
given by eq. (20). It is convenient t o  introduce dimensionless variables for time, length, 
plasma density, temperature and diffusion 

r = t/to, z = r/ZO, c = ne/n,  0 = ~ B T / I E ~ ~ ,  D = D m / D o .  (39) 

The time and length scales are defined'as t o  = (&on)-' and li = Doto, where n is the total 
electron density and DO is given by eq. (31). Then we can rewrite eqs. (29) and (33) in the 
new variables (one dimensional case) 

The term g(0) is given by eq. (36). The function f(c,@,n) can be written as f(c,B,n) = 
(1 - c) exp[r(0, n)+J - cT(0 ,  n), where r(0, n) = 2e3/(0 I EI I) x [(217n)/(0 I El l)I1l2 and 
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Figure 2: Solution of the coupled equations (29) and (33). The density is n = 5 ~ 1 0 ~ ' c r n - ~ .  z 
is the dimensionless length, c the degree of ionization and B the dimensionless temperature. 
Fixed boundary concentrations and temperatures are used. The relaxation starts with 
profiles (A) and ends in profiles (B). The stationary density profile is reached at  r = 5 x lo-' 
and the temperature profile at T = 2.5 x (lr = 3.7 x 10''5s). 
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Figure 3: Same as Fig. 2, but with different boundary conditions and density of 
n = 2 x 1023cm-3. The stationary profiles for both density and temperature are reached at 
r = 3 x 10-2. 
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r(0, n) = X:nexp(l/B). In Fig. 2, the system is initially in a stable state of homogeneous 
density and temperature (profiles A). The values of this state were calculated from t h e  
nonideal Saha equation. At time 7 = 0, on the boundaries higher values of c and 0 are 
switched on (they are solutions of the Saha equation too), which axe kept constant during 
the relaxation. We see that in the stationary state (B) density and temperature change in 
a nonlinear way between the boundaria. 

While for the parameters of Fig. 2 the influence of the chemical reactions is small, in 
Fig. 3 we show a different situation. The density is increased by two orders of magnitude, 
what corresponds to the vicinity of the Mott point. Therefore the relaxation process is 
strongly affected by ionization of H-atoms. A remarkable feature of this situation is that the 
relaxation times of density and temperature are approximately equal, because.the relaxation 
is dominated by the chemical reactions. 
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