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Evolution equations for the coupled relaxation of densities and temperatures for the components in
nonideal partially ionized plasmas are given. In these equations many-body effects, such as
screening, self-energy, and lowering of the binding energy, are included. The coupled equations are
solved numerically for a hydrogen plasma consisting of electrons, protons, and atoms. Impact
ionization, three-body recombination, and elastic processes are taken into account. Thermal
relaxation times are determined and the results are compared with those from the literature. The
influence of many-body effects on the evolution process are discussed. In some cases, a significantly
increased lifetime of the two-temperature regime is found. ©1996 American Institute of Physics.
@S1070-664X~96!00704-7#

I. INTRODUCTION

In nonideal partially ionized plasmas, many-particle ef-
fects, such as screening, self-energy, bound states, and low-
ering of the ionization energy, play an important role.1,2 In
Ref. 3, the influence of these effects on the reaction-diffusion
process in nonideal plasmas was studied. Reaction-diffusion
equations with generalized expressions for the coefficients of
ionization, recombination, and diffusion were derived. Be-
cause of the nonideality, these coefficients are density depen-
dent. Nonlinear behavior like nonlinear diffusion, bistability,
and running ionization fronts were discussed. A limitation of
Ref. 3 was that the density relaxation was considered in the
case of homogeneous constant temperature.

In the next paper4 we took into account the temperature
evolution. We derived hydrodynamic equations from gener-
alized quantum kinetic equations for quasiparticles. With
these equations one can describe the relaxation of the density
and temperature of the plasma species in nonideal partially
ionized plasmas. We only considered dense plasmas that are
collision dominated. To highlight the effect of temperature
on the relaxation process, we analyzed the simplest case—
that of a single temperature common for all components. As
a result, we found strong correlations between the evolution
of chemical composition and temperature.

Now we are interested in the class of plasmas where
light and heavy particles have not yet relaxed toward a com-
mon temperature. This is the case when the plasma is ex-
posed to the action of electric fields5 or particle beams that
generate highly energetic electrons. Such a plasma can also
arise when a short pulse laser radiation interacts with solid
matter.6 To focus on the evolution of the macroscopic quan-
tities, we assume here that the quasihydrodynamic regime is
reached.7 This means, each component has relaxed toward its
own quasiequilibrium momentum distribution characterized
by a specific temperature. At the same time, these tempera-
tures are not yet in equilibrium with each other and chemical
equilibrium has not yet been reached. This regime is justified
for gaseous plasmas with large mass differences (me!mh).

In this paper we study the relaxation process in the two-

temperature model.8 The validity of this model is discussed
in Ref. 6. We analyze the coupled evolution of density, elec-
tron temperature, and temperature of heavy particles, assum-
ing the same temperature for ions and atoms nonideal par-
tially ionized plasmas. We study the evolution processes for
large electron densities. That means we consider plasmas,
which are collision dominated, and therefore the radiation
processes can be neglected. We determine relaxation times
and compare the results with those from the literature~see
Refs. 7, 8, and 9!. Of special interest is the influence of
bound states on the temperature relaxation process, which is
included in our approach.

Furthermore, we study many-particle effects in detail.
We will show that the dominating effects are screening of the
Coulomb interaction and lowering of the binding energy. As
a result, the lifetime of the two-temperature regime is ex-
tended significantly.

Our paper is organized as follows. First we derive from
the hydrodynamic equations the equations for densities and
temperatures in the two-temperature model~Sec. II!. Here,
we take into account many-body effects. Then we apply
these equations in the case of a nonideal hydrogen plasma.
The transport coefficients, impact ionization, and three-body
recombination coefficients for hydrogen are given in Sec. III.
In Sec. IV we present numerical results for the solution of
the coupled equations of density, electron temperature, and
temperature of heavy particles in a spatially homogeneous
hydrogen plasma. Finally, a discussion of the results is given
in Sec. V.

II. HYDRODYNAMIC EQUATIONS FOR TWO-
TEMPERATURE NONIDEAL PLASMA

In Ref. 4, hydrodynamic equations for nonideal partially
ionized plasmas were derived. If we consider a system of
electrons (e), singly charged ions (i ), and atoms (ei), the
resulting equations for the densities of free (a5e,i ) and
bound particles in the spatially homogeneous case are

]na
]t

5Wa , ~1!
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]n~ei!

]t
5(

j
W~ei!

j . ~2!

Heren(ei) is the total number density of atoms and is given
by n(ei)5( jn(ei)

j ~j -atomic level!. Nonideality effects enter
Eqs.~1! and~2! via the source functions of free particlesWa

and of atomsW(ei)
j . These functions are related by

We5Wi52(
j
W~ei!

j 52(
j
E d3P

~2p\!3 (
c
I ~ei!c .

~3!

The source function of electrons, for instance, is given by

We5 (
c5e,i

(
j

~a j
cncn~ei!

j 2b j
cncneni !. ~4!

The summation is over the impact particles and the quantum
numbers of the atom. Herea j

c andb j
c are the coefficients of

impact ionization and three-body recombination of the
atomic levelj . Explicit expressions for these rate coefficients
can be found in Ref. 10.

The resulting equations for the energy densities in the
nondegenerate case can be written as

]

]t S 32 nakBTa1
1

2 E d3p

~2p\!3
ReSa

R~p,v5ea ,t ! f a~pt! D
5E d3p

~2p\!3
ea~prt !S (

b
I ab1(

bc
I abcD , ~5!

]

]t S 32 n~ei!kBT~ei!1(
j
Ejn~ei!

j D
5(

j
E d3P

~2p\!3 S P2

2m~ei!
1Ej D(

c
I ~ei!c . ~6!

The integralsI ab , I abc , and I (ei)c describe the two- and
three-particle scattering processes and are given in Refs. 11
and 12. Because we are interested in the description of dense
plasmas, radiation processes can be neglected.

The free particles~electrons and ions! were considered
in a quasiparticle picture in which their energy is given by

ea~prt !5
p2

2ma
1ReSa

R~pvrt !u\v5ea~prt ! . ~7!

It was shown in Refs. 1 and 13 that the energy shift of the
bound states is small. Therefore this shift was neglected in
Eq. ~6!.

As shown in Ref. 4, the system of Eqs.~1!, ~2!, ~5!, and
~6! has the important property that it conserves the total den-
sity of particlesna1n(ei)5const witha5e,i as well as the
total energy density,

Etot5 (
a5e,i

S 32 nakBTa1
1

2 E d3p

~2p\!3

3ReSa
R~p,v5ea ,t ! f a~pt! D

1
3

2
n~ei!kBT~ei!1(

j
Ejn~ei!

j . ~8!

In contrast to an approach starting from the ordinary Boltz-
mann equation, in Eq.~8! nonideality contributions in quasi-
particle approximation are included.

The real part of the self-energy function ReSa
R, which

accounts for the interaction with the surrounding medium,
can be calculated in the framework of the Green’s functions
techniques. An appropriate approximation is the so-calledVs

approximation,1 with Vs denoting the screened potential. In
Eq. ~5! there is needed the self-energy averaged with the
distribution function. For local thermodynamic equilibrium
one obtains in the lowest order the result1,14

E d3p

~2p\!3
ReSa

R~p,v5ea ,t ! f a~p,t !52
e2na
2r 0

, ~9!

with the screening length

1

r 0
2 54p(

b

nbe
2

kBTb
. ~10!

Thus we have for the total energy density, conserved by Eqs.
~5! and ~6!, the approximation

Etot5 (
a5e,i

S 32 nakBTa2
e2na
4r 0

D1
3

2
n~ei!kBT~ei!

1(
j
Ejn~ei!

j . ~11!

The temporal change of the energy densities of the various
species is determined by the collision integrals on the right-
hand side~RHS! of Eqs.~5! and~6!. The calculation of these
terms involves the quasiparticle energies. In order to simplify
the calculations, we will use the so-called rigid shift approxi-
mation for the quasiparticle energies,14

«a~pt!5
p2

2ma
1Da~ t !, ~12!

where the momentum-independent shift is given approxi-
mately by

Da~ t !5
1

na
E d3p

~2p\!3
ReSa

R~p,v5«a ,t ! f a~p,t !.

~13!

Using Eq.~9!, we have

Da52
e2

2r 0
. ~14!

Now we can derive the evolution equations of the tem-
peratures for the light and heavy particles in the two-
temperature model from Eqs.~5! and~6!. The relaxation pro-
cess is determined by the elastic and inelastic collisions
between equal and different particle species. The energy
transfer between electrons and heavy species~singly charged
ions and atoms! is not very effective, because of the great
mass difference. Therefore the thermal relaxation times be-
tween particles of great mass difference~electron–ion and
electron–atom! are greater than the times between particles
of equal mass~electron–electron, ion–ion, and atom–atom!
or nearly equal mass~ion–atom!. That means there exists a
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stage where the electrons and heavy particles are in quasi-
equilibrium with the respective temperaturesTe andTh .

We obtain the temperature equation for the electrons
from Eq. ~5!, together with Eq.~9!. The time derivative on
the left-hand side~LHS! can be easily calculated. The RHS
of Eq. ~5! describes the energy transfer due to the various
collision processes. There are some useful approximations.
The energy transfer terms of the elastic collisions of three
free particles can be neglected in comparison to the elastic
two-particle collisions. The impact ionization by ions is
much less effective compared to the electron impact ioniza-
tion. Therefore we restrict us to the latter process. Some
details of the derivation are discussed in the Appendix. From
the energy balance equation~5! for the electrons, we obtain

S 32 kBne1
nee

2The
8Te

2r 0
D ]Te

]t
1
nee

2The
8Th

2r 0

]Th
]t

5(
j

S 32 kBTe2
7e2

8r 0
2Ej DW~ei!

j 1Zei1Ze~ei! . ~15!

The integralsZeb , b5 i , (ei) stand for the energy transfer
following from the elastic collisions between electrons and
ions,

Zei5
1

\V E d3pe
~2p\!3

d3pi
~2p\!3

d3p̄e
~2p\!3

d3p̄i
~2p\!3

pe
2

2me

3u^pepi uTeiu p̄ep̄i&u22pd~Eei2Ēei!~ f̄ ef̄ i2 f ef i !

~16!

and electron–atom collisions

Ze~ei!5
1

\V (
j̄

(
j
E d3pe

~2p\!3
d3P~ei!

~2p\!3
d3p̄e

~2p\!3
d3P̄~ei!

~2p\!3

3
pe
2

2me
u^peP~ei! j uTe~ei!

11 u p̄eP̄~ei! j̄ &u22pd~Ee~ei! j

2Ēe~ei! j̄ !~ f̄ ef̄ j̄ ~ei!2 f ef j ~ei!!. ~17!

The temperature equation of the heavy particles is ob-
tained by summing up equations~5! for ions and~6! for
atoms,

S 32 kB~ne1n~ei!!1
nee

2The
8Th

2r 0
D ]Th

]t
1
nee

2The
8Te

2r 0

]Te
]t

5
e2

8r 0
(
j
W~ei!

j 1Zie1Z~ei!e1X~ei!e . ~18!

HereThe is given byThe5ThTe/(Th1Te). In addition,Zie
follows from Zei by substitutingpi

2/(2mi) for pe
2/(2me). If

we replacepe
2/(2me) by p(ei)

2 /(2m(ei)) in Ze(ei) , we obtain
Z(ei)e . The integralX(ei)e is only important for excitation and
deexcitation reactions and can be written as

X~ei!e5(
j̄
Ej̄(

j

1

\V E d3pe
~2p\!3

d3P~ei!

~2p\!3
d3p̄e

~2p\!3

3
d3P̄~ei!

~2p\!3
u^peP~ei! j uTe~ei!

11 u p̄eP̄~ei! j̄ &u22pd~Ee~ei! j

2Ēe~ei! j̄ !3~ f̄ ef̄ j̄ ~ei!2 f ef j ~ei!!. ~19!

In the following, we consider only the ground state (j̄5 j
51). This is a good approximation for the high densities we
are interested in because the excited states have already van-
ished due to the Mott effect.

The LHS of the Eqs.~15! and ~18! contain the deriva-
tives of the temperature of both~electrons and heavy! spe-
cies. The solution of these system of equations can be written
as

]Te
]t

5
1

k1k42k2k3
H k1F S 32 kBTe2

7

8

e2

r 0
2E1DW~ei!

1 1Zei

1Ze~ei!G2k3S 18 e2

r 0
W~ei!

1 1Zie1Z~ei!eD J , ~20!

]Th
]t

5
1

k1k42k2k3
H 2k2F S 32 kBTe2

7

8

e2

r 0
2E1DW~ei!

1

1Zei1Ze~ei!G1k4S 18 e2

r 0
W~ei!

1 1Zie1Z~ei!eD J .
~21!

The termsk1 , k2 , k3 , andk4 are given by

k15
3

2
kB~ne1n~ei!!1k3 , ~22!

k25
nee

2The
8Te

2r 0
, ~23!

k35
nee

2The
8Th

2r 0
, ~24!

k45
3

2
kBne1k2 . ~25!

For comparison, we give the corresponding equations for an
ideal plasma, i.e. nonideality effects are neglected,

]ne
]t

52W~ei!
1 ,

3

2
kBne

]Te
]t

5S 32 kBTe2E1DW~ei!
1 1Zei1Ze~ei! , ~26!

3

2
kB~ne1n~ei!!

]Th
]t

5Zie1Z~ei!e .

Similar expressions are given in Ref. 5.
The calculation of the integralsZab @see Eqs.~16! and

~17!# is difficult. But we can use the quasihydrodynamic ap-
proximation. For a nondegenerate system with local equilib-
rium distribution functions for each species, the expressions
Zab can be simplified,7
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Zab5
8kBnanbmab

~ma1mb!
A 2

pwab
Qab~Tb2Ta!, ~27!

with Zba52Zab , and

mab5
mamb

~ma1mb!
, wab5

wawb

~wa1wa!
. ~28!

The termwa can be written aswa5ma/(kBTa). HereQab is
an integral over the transport cross section and is given by

Qab5E
0

`

z5 exp~2z5!Qab
T ~z!dz, ~29!

with z25wab\
2k2/(2mab

2 ). The transport cross sectionQab
T

can be calculated from the scattering phase shifts according
to

Qab
T 5

4p

k2 (
l

`

~ l11!sin2~d l112d l !. ~30!

The numerical calculation of the phase shifts is described in
the following section.

III. HYDROGEN PLASMA: RATE COEFFICIENTS AND
TRANSPORT CROSS SECTIONS

In the following we consider a partially ionized hydro-
gen plasma, because we want to study the influence of non-
ideality effects on the relaxation process in a simple ex-
ample. In order to have an analytic expression for the
reaction functionW(ep)

1 , we use the results of Ref. 10. The
ionization coefficient is then given by (j51)

a15a1
id exp@~2De2Dp!/kBTe#, ~31!

a1
id5a0g~ uE1u/kBTe!. ~32!

Herea0 andg are defined by

a05
~10paB

2uE1u1/2!
~2pme!

1/2 , ~33!

g~x!5x1/2E
x

`S exp~2t !

t Ddt. ~34!

There is a strong influence of many-body effects on the ion-
ization coefficient. This coefficient is an increasing function
with increasing electron density. The ionization and the re-
combination coefficients are related by

b15a1le
3 exp@ I 1

eff/~kBTe!#, ~35!

with le being the thermal wavelength, and the effective ion-
ization energy isI 1

eff5uE1u1De1Dp . It was shown in Refs.
1 and 13 that the energy shift of the bound states is small.
Therefore this shift was neglected in Eqs.~31! and ~35!. If
we insert Eq.~31! into Eq. ~35!, it follows thatb1 is a func-
tion of Te only. That means in this approximation the recom-
bination coefficient is independent of the density. In Refs.
15–17, rate coefficients were calculated in a more rigorous
way. The numerical results show that the many-body effects
have only a small influence on the recombination in compari-
son with the ionization coefficients.

In the coupled set of balance equations@see Eqs.~1!,
~20!, and ~21!#, we have, along with the reaction function
W(ep)

1 , the contributionsZep andZe(ep) . They mainly deter-
mine the energy transfer in the collision process between
electrons and heavy particles. In order to calculate these
quantities, the corresponding transport cross sectionsQab

T

that can be expressed by the phase shifts@see Eq.~30!# must
be known.

The phase shifts for the electron–proton collisions were
determined by numerical solution of the radial Schro¨dinger
equation using the Numerov method. The effective interac-
tion potential between the charged particles was assumed to
be a statically screened Coulomb potential,

Vep
eff~q,0!5

Vep~q!

e~q,0!
, e~q,0!511

k2

q2
, ~36!

whereVep(q)524pe2/q2 is the Fourier transform of the
Coulomb potential ande(q,0) is the RPA~random phase
approximation! dielectric function in static approximation.
Herek is the inverse screening length@see Eq.~10!#.

The elastic scattering of electrons on hydrogen atoms
was treated on the basis of the close coupling equations of
quantum scattering theory. Within perturbation theory, this
system of equations can be reduced to an integrodifferential
equation for the electron scattering wave function that de-
scribes the scattering of the electrons in an effective atomic
potential.18 Neglecting exchange effects we obtain, instead of
an integrodifferential equation,

d2

dr2
f l~r !1S k22 l ~ l11!

r 2
2VeH

st ~r !2VeH
pol~r ! D f l~r !50.

~37!

This is a radial Schro¨dinger equation for the electron scatter-
ing wave functionf l(r ), where the electron–atom interaction
is determined by a static and a polarization contribution. The
static potential is given by

VeH
st ~r !52e2S 2r 1

2

aB
DexpS 22r

aB
D . ~38!

In dipole approximation, assuming static Debye screening,
the polarization potential is19

VeH
pol~r !52

e2

2

a

~r 21r 1
2!2

~11kr !2 exp~22kr !. ~39!

Herea54.5aB
3 is the atomic polarizability, and the param-

eterr 1 was chosen to ber 151.456aB , which interpolates the
behavior for small distances. As in the case of electron–
proton scattering, we have calculated the transport cross sec-
tion Qe(ep)

T from the scattering phase shifts, which were de-
termined from Eq.~37! by numerical integration.

Numerical results are given in Refs. 20 and 21.

IV. NUMERICAL RESULTS FOR THE DENSITY AND
TEMPERATURE EVOLUTION IN A HYDROGEN
PLASMA

Let us study the kinetics of density and temperatures in a
dense partially ionized hydrogen plasma. We consider a
closed system, where the total number of electrons
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n5ne1n(ep) is constant. We use the density equation~1! and
the temperature equations~20! and ~21!. We take into ac-
count the approximations~27! for the elastic collisions and
Eqs.~31! and~35! for the rate coefficients. The energy shifts
are given by Eq.~14!. It is convenient to use dimensionless
variables for density, time, and temperatures,

c5
ne
n
, t5

t

t0
, ue5

kBTe
uE1u

, uh5
kBTh
uE1u

. ~40!

c is the degree of ionization,n is the total electron density,t
is the dimensionless time [t05(a0n)

21], ue is the dimen-
sionless electron temperature, anduh is the dimensionless
temperature of heavy particles. Now we transform the evo-
lution equations~1!, ~20!, and~21! into dimensionless form,

]c

]t
5cg f, ~41!

]ue
]t

5
1

m1m42m2m3
Hm1F S 712 Achue2ue2

2

3D cg f
1

2

3uE1un2a0
~Zep1Ze~ep!!G2m3

3S 2
1

12
Achuecg f1

2

3uE1un2a0
~Zpe1Z~ep!e! D J ,

~42!

]uh
]t

5
1

m1m42m2m3
H 2m2F S 712 Achue2ue2

2

3D cg f
1

2

3uE1un2a0
~Zep1Ze~ep!!G1m4

3S 2
1

12
Achuecg f1

2

3uE1un2a0
~Zpe1Z~ep!e! D J .

~43!

The termg5g(ue) is given by Eq.~34!, and the integrals
Zab5Zab(c,ue ,uh ,n) follow from Eq. ~27!. The function
f (c,ue ,uh ,n) is

f ~c,ue ,uh ,n!5~12c!exp@h~ue ,uh ,n!Ac#

2c2x~ue ,n!, ~44!

whereh(ue ,uh ,n) andx(ue ,n) are given by

h~ue ,uh ,n!5
2e3

uE1uue
S pn

uE1uuhe
D 1/2,

x~ue ,n!5le
3~ue!n expS 1ueD . ~45!

The termsm1 , m2 , m3 , andm4 can be written as

m1511m3 , m25
cAch~ue ,uh ,n!uhe

12ue
, ~46!

m35
cAch~ue ,uh ,n!ueuhe

12uh
2 , m45c1m2 ,

uhe5
uhue

uh1ue
. ~47!

The system of equations~41!–~43! describes the relaxation
process in a dense two-temperature hydrogen plasma. Terms
that contain the quantityh5h(ue ,uh ,n) arise from the non-
ideality. Furthermore, we take into account nonideality ef-
fects inZab . All these terms show the influence of the many-
body effects on the kinetics. The corresponding expressions
for an ideal hydrogen plasma follow from Eqs.~41!–~43!, if
we seth50 and if we take transport cross sections for a
small screening parameterlD .

In the following we want to study the influence of elastic
and ionization~recombination! processes on the relaxation
process. Also, we look at the modifications in partially ion-
ized plasma, and we will compare our results with the low-
density ideal case.

A. Effect of elastic collisions in a fully ionized plasma

First we study the evolution without inelastic collisions
in a fully ionized plasma. Therefore, we setcg f50 in Eqs.
~41!–~43!. In this case the temperature relaxation is driven
by the elastice–p collisions alone. From Eq.~41!, it follows
that the degree of ionization is constant. We solved Eqs.~42!
and~43! numerically under the conditionc5const51. From
the numerical results, we have determined thermal relaxation
times. First, we calculated the temperaturesue(t) anduh(t).
Then we calculated the temperature difference (ue2uh) as a
function of time. From the slope of this function, we ob-
tained the thermal relaxation time similar to Ref. 22. Here
tlD

1 was determined, including nonideality effects. On the

other hand, we neglected these effects int1. That means we
seth50 in Eqs.~42! and ~43! and we take transport cross
sections for a small screening parameterlD .

These relaxation times can be compared with expres-
sions from the literature. In fully ionized hydrogen plasmas
(c51), the rate of energy transfer is given by the Landau–
Spitzer~LSP! relaxation time,8,9

tLSP
1 5

3memp

8~2p!1/2npe
4 ln L S kBTeme

D 3/2. ~48!

The Coulomb logarithm is lnL5ln( l`/ l 0). Here l` is
equivalent to the screening lengthr 0 @see Eq.~10!#, and
l 05\/(2pmepkBTe)

1/2.
The relaxation time can also be calculated according to

Shdanov~SH!,7

tSH
1 5

~me1mp!

2mep
tep , ~49!

wheretep can be written as

tep
215

4

3
npA 8

pwep
Qep , ~50!

andwep is given by Eq.~28!. The integralQep is equivalent
to Eq. ~29!. To calculate this integral, we need the transport
cross sectionsQep

T ~see Sec. III!.
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In Table I, the relaxation timestLSP
1 andtSH

1 according to
Eqs. ~48! and ~49! and our results,tlD

1 and t1, are shown.

The relaxation times show a qualitative agreement. With a
constant temperature of heavy particles and increasing elec-
tron temperature, the relaxation is slower. There is one ex-
ception, becausetLSP

1 (Te) can show a minimum~see Table I
for the densityn51027 m23!. In our results, we do not ob-
serve this behavior. On the other hand, with constant electron
temperature and increasing temperature of heavy particles,
the relaxation is faster. This is not valid fort1, because non-
ideality effects were neglected. Furthermore, we see that
with increasing density the relaxation is quicker. Obviously,
with decreasing interparticle distance, the collision frequency
increases.

The Landau–Spitzer resultstLSP
1 are in good agreement

with our resultstlD

1 . The relaxation timestSH
1 from formula

~49! are too large.
The relaxation in nonideal plasma is slower in compari-

son with that in the low-density limit~comparetlD

1 andt1!.

The explanation is that the two-particle interaction in non-
ideal plasmas is screened. The collisions are less effective
compared to the low-density case.

B. Effect of elastic collisions in a partially ionized
plasma

In the following we study the relaxation process in par-
tially ionized plasmas (cÞ1) again without inelastic colli-
sions@cg f50 in Eqs.~41!–~43!, c5const#, but taking into
account additionally thee–H scattering. The relaxation time
can be calculated according to Ref. 7,

tSH
2 5

1

2 S meptep
21

me1mp
1

meHteH
21

me1mH
D 21

, ~51!

where thetab
21 are given by Eq.~50!. For the calculation of

tSH
2 , we need thee–H transport cross sections~see Sec. III!.

Table II shows the relaxation timestSH
2 in comparison to

our resultstlD

2 and t2. We solved Eqs.~42! and ~43! under

the conditionsc5constÞ1. But now, additionally to thee–p
scattering, we take into account the scattering between elec-
trons and H atoms. We found the same qualitative behavior
as in Table I. With a decreasing degree of ionization, the
relaxation is slower because more bound states arise, and the
e–H scattering is less effective than the Coulomb scattering
between electrons and protons.

TABLE I. Comparison of the thermal relaxation times in fully ionized hydrogen plasma (c51) without ionization and recombination processes. HeretLSP
1 is

the Landau–Spitzer result.8,9 Also, tSH
1 is calculated from Ref. 7. Our results aretlD

1 , including nonideal effects andt1 the relaxation time in the low-density
limit.

n ~m23! Te ~K! Th ~K! tLSP
1 ~s! tSH

1 ~s! tlD

1 ~s! t1 ~s!

1026 10 000 5000 2.08E-12 7.90E-12 3.48E-12 0.25E-12
1026 30 000 5000 6.96E-12 16.55E-12 6.36E-12 0.87E-12
1026 50 000 5000 13.01E-12 26.52E-12 9.03E-12 1.62E-12
1026 50 000 5000 13.01E-12 26.52E-12 9.03E-12 1.62E-12
1026 50 000 15 000 10.71E-12 21.11E-12 8.73E-12 1.62E-12
1026 50 000 25 000 10.01E-12 19.26E-12 8.59E-12 1.63E-12
1027 10 000 5000 4.22E-12 3.63E-12 1.64E-12 0.02E-12
1027 30 000 5000 1.78E-12 4.09E-12 1.78E-12 0.09E-12
1027 50 000 5000 2.77E-12 5.67E-12 2.03E-12 0.16E-12
1027 50 000 5000 2.77E-12 5.67E-12 2.03E-12 0.16E-12
1027 50 000 15 000 1.90E-12 3.97E-12 1.65E-12 0.13E-12
1027 50 000 25 000 1.69E-12 3.54E-12 1.60E-12 0.14E-12

TABLE II. Comparison of the thermal relaxation times in partially ionized hydrogen plasma (cÞ1) without ionization and recombination processes. HeretSH
2

is calculated from Ref. 7. Our results aretlD

2 , including nonideal effects andt2 the relaxation time in the low-density limit.

n ~m23! c Te ~K! Th ~K! tSH
2 ~s! tlD

2 ~s! t2 ~s!

1027 0.5 10 000 5000 4.39E-12 1.74E-12 0.05E-12
1027 0.5 30 000 5000 5.29E-12 2.16E-12 0.18E-12
1027 0.5 50 000 5000 7.19E-12 2.67E-12 0.38E-12
1027 0.1 10 000 5000 5.27E-12 3.27E-12 0.33E-12
1027 0.1 30 000 5000 6.91E-12 4.07E-12 0.97E-12
1027 0.1 50 000 5000 9.17E-12 5.22E-12 1.74E-12
1027 0.5 50 000 5000 7.19E-12 2.67E-12 0.38E-12
1027 0.5 50 000 15 000 5.65E-12 2.61E-12 0.37E-12
1027 0.5 50 000 25 000 5.20E-12 2.50E-12 0.37E-12
1027 0.1 50 000 5000 9.17E-12 5.22E-12 1.74E-12
1027 0.1 50 000 15 000 8.54E-12 5.11E-12 1.74E-12
1027 0.1 50 000 25 000 8.31E-12 5.02E-12 1.75E-12
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C. Relaxation including elastic and inelastic collisions

Let us now study the full relaxation process, including
e–p scattering,e–H scattering, ionization by electrons, and
three-body recombination. Starting with initial nonequilib-
rium valuesc(t50), ue(t50), anduh(t50), we can solve
the system of Eqs.~41!–~43!. Typical results are shown in
Figs. 1 and 2. In these figures we demonstrate the relaxation
of the degree of ionizationc, the temperature of electrons
ue , and heavy particlesuh . In Fig. 1 we start with the same
initial values forc anduh , but vary the electron temperature
from Fig. 1~a! to 1~c!. On the contrary, in Fig. 2 we vary the
ionization degreec. For comparison, each run is also redone
for the ideal~low-density! case.

Let us analyze the evolution process in detail. In the
beginning of the relaxation process, we start with hot elec-
trons. This is a typical situation. The energy of the electrons
can be transformed in different channels:~i! elastic scattering
between electrons and protons,~ii ! elastic and inelastic scat-
tering between electrons and H atoms. The elastic energy
transfer is relatively slow for particles with a great mass
difference. Such a situation is given in hydrogen plasmas.
Therefore, it takes many collisions until the electrons have
the same temperature as the heavy particles. On the other
hand, we can observe a big energy transfer between an elec-

tron and a H atom in a single inelastic collision, ifEe
kin

. I eff. Then the H atom is ionized. Therefore, the inelastic
process cools the electrons more effectively than the elastic
process.

Now we study the influence of nonideality effects on the
relaxation process. The following effects have to be ac-
counted for.

~1! Elastic scattering:~a! between electrons and protons:
The Coulomb interaction between electrons and protons is
screened. Therefore, the energy exchange is less effective
compared to the ideal~low-density! case~see Refs. 20 and
21!; ~b! between electrons and H atoms: The influence of
nonideality effects is very small~see Refs. 20 and 21!.

~2! Ionization and recombination: In nonideal plasmas
we observe a lowering of the ionization energy with increas-
ing density. Therefore electrons with a kinetic energy lower
compared to the ideal case can ionize the H atoms. That
means, with increasing density, elastic collisions are becom-
ing less effective compared to inelastic collisions.

Figures 1 and 2 show a two-time regime. The first fast
regime is connected with the inelastic processes between
electrons and H atoms. During this regime, the temperature
of the heavy particles is nearly constant. We observe only a
coupled relaxation ofc and ue . The next time regime is
determined by the elastic scattering~electron–proton and
electron–H atom scattering!. In this regime the temperature
of electrons and heavy particles are adjusted.

FIG. 1. Solution of the coupled density–temperature equations~41!–~43!
for an ideal and nonideal hydrogen plasma. We start with the same initial
values for the degree of ionizationc and the temperature of heavy particles
uh , but vary the electron temperatureue from ~a! to ~c!. The total density is
n51027 m23 ~1t51.84310214 s!.

FIG. 2. The same as Fig. 1, but we vary the degree of ionizationc.
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In Fig. 1 the electron temperature is increased from Fig.
1~a! to 1~c!. Because the electron distribution is a Maxwell
function, there are more electrons withEe

kin.I eff from Fig.
1~a! to 1~c! at the beginning of the relaxation process. The
result is that the slope of the electron temperature curve de-
creases, and the slope of the curve of the ionization degreec
increases from Fig. 1~a! to 1~c!. The maximum of the ion-
ization degreec is reached aftert53.4310213 s. We can
observe a plateau ofc andue . That means there is a satura-
tion of c andue , because nearly all H atoms are ionized by
inelastic collisions. After the maximum, the elastic process is
dominating. The temperature of electrons and heavy particles
are adjusted. Thereby the degree of ionization is decreased to
the equilibrium value.

From Fig. 2~a! to 2~c! the degree of ionization is de-
creased. The behavior in Figs. 2~b! and 2~c! is similar to Fig.
1. In Fig. 2~a! the ionization degree is only decreased to the
equilibrium value, because all H atoms are ionized in the
beginning. Due to the compensation of elastic and inelastic
processes, we can observe a maximum in the curveue(t).

The nonideality effects, which were discussed earlier,
are clearly seen in Figs. 1 and 2. In nonideal plasmas, the
equilibration process ofue anduh takes much longer than in
ideal plasmas, because the Coulomb interaction is screened.
This depends on the total densityn. With increasing total
density, the deviation from an ideal plasma increases. The
influence of the effective ionization energy is clearly seen in
Fig. 1. The ionization degree increases stronger than in ideal
plasmas in the first time regime, because there are more elec-
tronswithEe

kin . I eff.

V. CONCLUSIONS

The aim of this paper was to study the influence of non-
ideality effects on the kinetics of macroscopic quantities like
temperature and composition of a partially ionized plasma.
Starting from hydrodynamic equations given in an earlier
paper,4 evolution equations were derived for the tempera-
tures of heavy and light particles in a nonideal three-
component plasma. The nonideality corrections lead, in com-
parison to ideal plasmas, to an additional density dependence
of the temperatures.

As a rather simple example, the coupled equations for
densities and temperatures of the various species were nu-
merically analyzed for a hydrogen plasma. In order to show
the importance of the several processes, different levels of
approximation were investigated. In a fully ionized hydrogen
plasma, our results are in good agreement with the Landau–
Spitzer relaxation times. Because of the screening, the relax-
ation in nonideal plasmas is slower compared with the low-
density~ideal! case.

As a next step, a partially ionized plasma was studied,
taking into account additionally only elastic electron–atom
scattering. Because these collisions are less effective than the
scattering between electrons and protons, the relaxation is
slower with a decreasing degree of ionization.

Finally, the full relaxation process was analyzed, includ-
ing elastic and inelastic collisions. In nonideal plasmas we
found two competing influences of screening. First, the en-

ergy exchange between electrons and protons is less effective
compared to the ideal case. On the other hand, we observe a
lowering of the ionization energy with increasing density.
Therefore, electrons with a lower kinetic energy, compared
to the ideal case, are able to ionize the atoms. Hence, with
increasing nonideality, hot electrons lose more and more en-
ergy in inelastic collisions~ionization!, reducing the heating
of the heavy particles. This leads to significantly increased
lifetime of the two-temperature regime.

In our calculations, we restrict us to hydrogen atoms in
the ground state. This is certainly a good approximation for
very dense systems because excited states already disap-
peared due to the Mott effect. In a intermediate density re-
gion, one should, of course, take into account also all pro-
cesses involving excited states. This will be done in a
subsequent paper.
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APPENDIX: DERIVATION OF THE EVOLUTION
EQUATIONS FOR THE TEMPERATURES
OF ELECTRONS AND HEAVY PARTICLES

In this appendix, the derivation of Eqs.~15! and ~18! is
shown. At first we consider the electron temperature evolu-
tion. We start from Eq.~5! with the approximation~9!. The
time derivation of the LHS of Eq.~5! can be calculated,
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The RHS of Eq.~5! describes the energy transfer of the
species due to elastic and inelastic collisions. The collision
integrals on the RHS of this equation can be found, for in-
stance, in the appendix of Ref. 4@see Eqs.~A3!–~A6!#. The
elastic electron–ion contribution to the energy transfer in the
nondegenerate case can be written as

Zei5
1
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~A3!

with Eei5ee(pe)1e i(pi). The quasiparticle energiesee and
e i are given by Eq.~12! with the momentum-independent
shift from Eq.~14!. In this approximation, the delta function
in Eq. ~A3! is given by
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HereZei splits into two contributions. The first contribution
is given by Eq.~16!, whereas the second one vanishes.

The energy transfer terms due to elastic collisions of
three free particles can be neglected in comparison to the
two-particle collisions.

The electron–atom contribution to the energy transfer in
the nondegenerate case can be written as

Ze~ei!5
1

\V (
j̄

(
j
E d3pe

~2p\!3
d3P~ei!

~2p\!3
d3p̄e

~2p\!3
d3p̄~ei!

~2p\!3

3eeu^peP~ei! j uTe~ei!
11 u p̄eP̄~ei! j̄ &u22pd~Ee~ei! j

2Ēe~ei! j̄ !~ f̄ ef̄ j̄ ~ei!2 f ef j ~ei!!, ~A5!

with Ee(ei) j5ee(pe)1P(ei)/2m(ei)1Ej . The expression~17!
follows similar to Eq.~16!.

At last the reaction terms are considered. The impact
ionization by ions is much less effective compared to the
electron impact ionization. Therefore we restrict us to the
latter process. Collecting the corresponding integrals to the
ionization/recombination processes and using the properties
of these integrals with respect to an interchange of the inte-
gration variables, we obtain
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Using the adiabatic approximation and momentum-
independent shifts, we can derive
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From the results of this appendix, we can obtain the tempera-
ture equation of electrons@see Eq.~15!#.

Similar considerations can be made for the temperature
equation of heavy particles. We get Eq.~18! if we sum Eqs.
~5! and ~6! of ions and atoms, respectively.
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