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Abstract 

A new approximation to kinetic equations is derived which has a broad range of applicability. It allows one to take into 
account dominant memory and correlation effects while solving only Markovian instead of complicated non-Markovian 
kinetic equations. It furthermore yields a drastic simplification of kinetic equations for spatially inhomogeneous systems. 
The approximation is illustrated numerically on examples based on the quantum Boltzmann equation with, respectively, a 
static and a dynamically screened interaction potential (Lenard-Balescu equation). 

PACS: 05.20.Dd; 52.25.Dg 

Short-time phenomena are currently of high interest in the context of laser-plasma interaction, ultrafast 
optical response of semiconductors [ 1 ] and in nuclear matter as well [ 2,3]. Laser pulses have become so short 

that they do not only influence the carrier relaxation (one-particle properties), but also modify the interaction 

and the correlations between the particles (two-particle properties). Therefore, to understand the experimentally 
measured response of a many-particle system to ultra-short optical excitation (for a review, see, e.g., Ref. [ 41)) 

requires insight in the formation of binary correlations [ 5,6], the build-up of plasma screening [ 7,8] and the 
formation of bound states [ 91. 

These phenomena are best described in the framework of the Kadanoff-Baym equations for the two-time 

correlation functions [ lo]. However, these equations are of rather complex structure and are currently accessible 
oniy on supercomputers, and yet only within the Born approximation [ 351. One may therefore try to deal with 
the simpler equations for the one-time Wigner distribution function f (see, e.g., Refs. [ 2,l l] ) or, alternatively, 
coupled equations for the distribution and the binary correlation function g12 [ 61. However, still these equations 

are very complicated due to their non-Markovian structure and they have been solved only within the Born 
approximation [ 12,5]. More realistic models like the binary collision (T-matrix) approximation [ 93 or the 
random phase approximation (RPA) [ 111 increase the numerical effort by orders of magnitude, since, due 
to the intrinsic dynamics of the scattering matrix and the screened potential, respectively, they contain two 

additional time integrals in the collision terms. 
On the other hand, though recent experiments have been successfully explained using non-Markovian kinetic 

equations [ 11, many other experiments show only a weak signature of memory effects and agree well with 
“classical” Markovian models. This suggests that, in many situations of short-time relaxation, a full non- 
Markovian treatment is not necessary. Instead, one might try to look for simpler models which are based 
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on Markovian kinetics and account for memory effects approximately. One possible approach is to perform 

retardation expansions of the full kinetic equations [ 12,561. The analysis within the Born approximation 
showed that keeping only the lowest two expansion terms or even only the lowest one, yields in many cases 

sufficiently accurate results [ 51. However, the resulting collision integrals are still essentially more complicated 

than their “classical” counterparts since they contain energy broadening instead of a kinetic energy (quasi- 

particle) conserving delta function, what again becomes a problem if one goes beyond the Born approximation. 
For this reason, in this paper a different approach is proposed which is applicable to non-Markovian equations 

in general. The basic idea is to take advantage of the fact that generalized kinetic equations describe processes 

on several time scales (correlation time r,,, and relaxation time &I), which are often very different from each 

other. It turns out that if the correlation dynamics is much faster than that of the one-particle properties (as is 
the case in most situations), a drastic simplification of the kinetic description is possible. At the same time, 
in an spatially inhomogeneous system, a separation of time scales translates into separated length scales, what 
again allows for a significant simplification of the description. 

The concept of time scales is among the most fruitful for theoretical modelling of physical phenomena [ 131. 
The separation of fast processes (e.g. in oscillation theory) or the identification of “master” processes (self- 
organization, nonequilibrium phase transitions) allows one not only to simplify the model, but often yields far 

deeper insight into the underlying physics. Though the situation in kinetic theory is more complicated by the fact 
that the number of variables is large (e.g. continuous dependence of the Wigner distribution on coordinates and 

momentum), this concept is well established in the relaxation time approximation (RTA), where the collision 

term I in the kinetic equation is approximated by a single (total) collision rate v = t,:, 

4f tp, t> 
- = I(p, t) M - 

f(P, t> - fEQhC P) 

dt t,r(fl.T) . 
(1) 

Here fEo is the (local) equilibrium distribution function which depends on density (n) and temperature (T). 
Taking advantage of the existence of different time scales, this approximation was very successful for incorpo- 
rating the effect of collisions (fast process) into macroscopic balance equations, describing diffusion, electrical 

and heat conductivity etc. (slow processes) qualitatively correct. Among the well-known representatives of this 
approach we mention the Drude theory of dielectric and optical properties of solids and the relaxation time 

approximation to the semiconductor Bloch equations [ 151. The relaxation time trel in Eq. ( 1) is calculated as 
the inverse of the sum of all collision rates, accounting for different types of scattering processes and different 
particle species as well. The collision rates are taken from experiment or are derived from kinetic theory. 
Alternatively, comparison with the solution of the full kinetic equation allows one to determine t,l as a fit to 
the momentum dependent scattering rates and reproduces the exact relaxation properties to a high degree of 
accuracy [ 141. Of course, there are other situations where a relaxation time approximation is not applicable, 

i.e. when details of the momentum dependence of the scattering rates are important, especially if the system is 
far from equilibrium. 

To extend this concept to non-Markovian kinetics we use a density operator representation of generalized 
kinetic equations, because this allows for a clear distinction of the relevant time scales. The starting point 

are the first two equations of the BBGKY-hierarchy for the one-particle density operator Fi and the binary 

correlation operator gtz = Fl2 - FI F2, 

ifi$Fi - [Hi + UpF, Fi 1 = nTr;?[Vtz,gi21, (2) 

if&a2 - [f$ + hgnl - [h,FlFd = nTr3t[h,Fml + [v23,Fm31 + [V3 + h,gl231), (3) 

with the Hartree-Fock contributions, CJ, HF = n Tr2 Viz Fz and the effective free two-particle Hamiltonian q2 = 

H, + H2 + Uy” + UHF 2 , n is the density and Vi2 the binary interaction potential. Eqs. (2) and (3) are exact. 
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They couple to the higher order hierarchy equations via gtz3. Details of the spin statistics will not be important 
below, so we use the classical form (2), (3) of the hierarchy equations. 

Eqs. (2), (3) contain all possible generalized (non-Markovian) kinetic equations, including the Landau 
equation (second Born approximation), the Boltzmann (T-matrix) equation, the Lenard-Balescu equation 
(polarization approximation) and the screened ladder approximation. The choice of the model is governed by 
the approximation for the three-particle correlation operator gt23, i.e. the hierarchy is decoupled on the level of 
ternary correlations with g123 = g123({Fl}, {g12}), and by the neglect of various terms in Eq. (3). Furthermore, 
self-energy effects may be included also 151. 

Let us consider in the following the spatially homogeneous situation, extension to inhomogeneous systems 
will be discussed below. Then we introduce the momentum representation, with f and g being the matrix 
elements of the operators Ft and g12, respectively. Eqs. (2), (3) can now be rewritten in the form 

dP* dP2 -$(p,,t) =Z(p,,t) = ~/*-- 
(2&)3 (27rfi)3 (2TR)3” ( -) 

v Img(p,,p2rP19P2,t), 

$g(P,,p2,P,~p2J) = JWO}~ (g(t)}), Pl + P2 = 81 - I$ 

(4) 

where V is the volume. The formal solution of Eq. (5) can, due to linearity in g, be written as 

g(t) =Jot{go}J) +.&({f(t)},t), (6) 

where JO is related to the initial correlations go = g( to) and J, is a source term which arises from terms in 
Eq. (3) that do not contain gtz. The time dependence of all quantities is indicated explicitly. In particular, the 
source contribution .l, contains a two-fold time dependence: an explicit dependence and a dependence via the 
one-particle distribution function. This two-fold dependence has been studied in detail in Ref. [ 61 and will only 
briefly be summarized here: Typically, the relaxation can be divided into (at least) three distinct stages. At the 
initial stage, the two-particle and possibly higher correlations relax until they have reached an equilibrium form 
after the correlation time t = 7cOf, while f(t) changes only insignificantly. In the time interval rcTcor < t < t,], the 
one-particle distribution function relaxes towards its equilibrium form. Still the correlation function changes, 
but only weakly, via the implicit time dependence g(t) = g{f(t)}, t > rTcor. The third major stage is that 
of hydrodynamic relaxation, trel < t < tmac, where the relaxation towards the stationary state proceeds on a 
macroscopic scale, given by the evolution of density, temperature, pressure, etc. The main statement is now 
that, in most situations [ 13,6], 

Tcor +X Gel < fmac. (7) 

Whereas the last inequality is the basis for the relaxation time approximation, Eq. (l), in analogy, the first 
inequality allows for deriving the correlation time approximation (CTA). Before we proceed we have to 
eliminate physical situations for which the correlation time might be comparable to or even exceed the relaxation 
time. This is the case for long-range correlations, which are related to bound states, hydrodynamic modes 
(turbulent vortices) or plasma turbulence, and also correlations in the vicinity of phase transitions, which we 
will not consider in this paper. 

The reason for the complexity of non-Markovian kinetic equations is the complicated dynamics of g12 on 
times t < 7cor. When time approaches the correlation time, the deviation of gt2 from its equilibrium form 
gradually vanishes. Then we may expect a linear approximation to be sufficiently accurate, so we define the 
CTA as 

dg(p,,P2,P,,l%,f) ~ _g(p,,p2Jq,P2A - gEQ(P1,P2,P,~82,{F(t)}) 

dt Tcor 
(8) 
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where flo is an equilibrium (Markovian) binary correlation function, which still depends on time via the 
nonequilibrium distributions. The correlation time is momentum and time independent, though we may permit 

a slow time dependence (as a function of density or via the distribution functions, as is the case e.g. for pulsed 
excitation of carriers in semiconductors). 8Q and rcor will be specified below. The solution of Eq. (8) together 
with the initial condition g(to) = go is readily found (we drop the momentum arguments) 

aXA =gEQ{F(l)} + k0 - gEQ{F(f)}le-“7”. (9) 

gmA evolves from go at the initial moment, approaching g EQ for long times, while the influence of the initial 
correlations decays exponentially. In case of zero initial correlations (go = 0), the solution is particularly simple 

gaA(t) =gEQ{F(t)}(l -e-“7W). (10) 

Let us now consider the collision integral of the kinetic equation which follows from the CTA. Taking into 

account Eq. (4) and the solution (9) we obtain 

(11) 

Of course, the choice of a single scalar correlation time means a drastic simplification of the true dynamics 
and will not allow one to describe all situations of non-Markovian relaxation, in particular, on the very first 

stage of evolution, where t < r,,,. However, for times of the order of magnitude of the correlation time, 
which is sufficient in many cases, we may expect approximations that are based on Eq. (8) to qualitatively 
and quantitatively correctly reproduce the main features of the exact non-Markovian dynamics. This will be 

confirmed by the numerical examples below. 
Let us now summarize properties of non-Markovian kinetic equations and discuss how they are reproduced 

by approximations of the type of Eq. (8). 
( 1) Decay of initial correlations as well as correlation build-up on times of the order of r,,,: This is correctly 

reproduced by the CTA if rcor in Eq. (8) is sufficiently close to the true correlation time of the system. Similarly 

as with the RTA, this time may be taken from experiment or from full non-Markovian calculations. A simple 
way to calculate rcor within the Born approximation was given in Ref. [ 61. For systems with short-range (rini) 

interaction, rcor x Yint/Ua, where ua is a characteristic velocity determined by the initial distribution function. 
For long-range interaction (e.g. Coulomb interaction), 7cor E 25-/w,,,, where wpl is the plasma frequency [ 71. 

(2) In the limit of long times ( t > rcO,) the “classical” Markovian kinetics is recovered, including the kinetic 
(quasi-particle) energy conserving delta function: This is guaranteed if gsQ in Eq. (8) is taken to be the correct 

“classical” correlation function, 

Born, 

“( (P, - Fl ) lh) 
= ,~(E, _ E,,P, _B,),2~(P1rP2rP1~b2~~)~ RPA, 

IT(E12 + ie) I2 

= “((P, -B,)lfQ 
@(P*7P29P,7829t)9 (12) 

where @(p1,p2,Bl,B2,t) = (27d03&p, +p2-B, -&)274E ,2 - 1?,2)(_f,f2 - f,f2), E, is the one-particle 
(quasiparticle) energy, El2 = E, + E2, fl = f(p, ) and f = f(p). Furthermore, “Born”, “RPA” and “BCA” 
denote the second Born approximation, the random phase approximation and the binary collision approximation 
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(ladder approximation), respectively. E is the dielectric function and T the T-matrix (scattering matrix). 
Inserting go EQ from Eq. (12) in to the collision integral ( 1 l), yields the “classical” Markovian collision integral 

in the respective approximation modified by a switch-on factor accounting for the correlation build-up. This 
approximation will be studied numerically below for the Born approximation and for the RPA. 

(3) Non-Markovian kinetic equations conserve density: this is also fulfilled by the CTA. 

(4) Non-Markovian kinetic equations, in a proper formulation, conserve total energy [ 51: With the choice 
of Eq. ( 12)) due to the energy delta function, obviously only kinetic (quasi-particle) energy is conserved. 

However, it is well-known that total energy conservation may be achieved also with Markovian collision 
integrals [ 16,17,6]. For this it is sufficient to include into gEQ an additional contribution which can be derived 

from a retardation expansion of the distribution functions in the non-Markovian expression for the correlation 

function, Eq. (6). Keeping the first two terms, f( t - 7) M 
. I 

f(t) - rf’( t), the result in the long-time limit 

t - 00, 1s 

(13) 

where the limit E --) 0 is to be taken after the differentiation. $Q is identical to go, except that the energy delta 
function is replaced by a broadened function S, = 
( 13) yields just ImgiQ, from Eq. ( 12)) 

2e/[ (El.2 - fjt~)~ + e21. The first term on the r.h.s. of Eq. 
w h er eas the second tetm gives the first order retardation correction. 

With g EQ = gyQ in Eq. (8) total energy is conserved in the long time limit. 

(5) Non-Markovian kinetic equations contain memory (retardation) effects: Using gEQ = gFQ accounts for 

memory effects in first order (linear in the retardation time r), which is sufficient in most cases, because the 

actual memory depth is limited by the damping effect. 
(6) Non-Markovian kinetic equations exhibit collisional energy broadening, which is due to the replacement 

of the energy delta function by oscillating exponents of the form exp [ i( El2 - _i?12) t/h], and causes kinetic 

energy (quasi-particle energy) to increase in carrier-carrier scattering on short times t < T,.~~ [ 51: In choosing 

“classical” Markovian expressions for gnQ, such as g:Q or g, EQ, of course, this effect is lost. On the other hand, 
in systems with strong coupling, i.e. where the mean interaction energy is comparable to the mean kinetic 

energy, this can be an important and even the dominant effect. As a result, the system will relax towards a 
stationary state with significantly increased temperature, compared to the “classical” prediction. Therefore, in 

some cases, it may be highly desirable to incorporate this effect into the CTA. This can be done in the following 
phenomenological way: Suppose the kinetic energy at the initial moment is 

Eo s dp p2 
KIN 

= v 
~ --f(P, to) (2di)3 2m 

and increases by AEkm to 

E” - KIN = v s 
(due to the, basically, “classical” kinetics, for t > T cor, it will not change significantly further). If f( rcor) would 
be an equilibrium distribution fEQ(n, T), we would simply use ECKIN for the temperature, e.g. 3ksT/2 = EKIN. 
But in general this is not the case and f(rcor) is unknown. We know, however, the zeroth and second momenta 

of f( rcor), density (which is conserved) and kinetic energy (EKIN), respectively. Furthermore we know that 
f( rcor) is only slightly different from f( to). Then we may write 

’ This result is always true for the second Born approximation. In the case of the binary collision approximation and the RPA, such a 

simple relation has, so far, been found only for the nondegenerate case [ IS]. 
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Fig. I, Relaxation of the distribution function in the second Born approximation for a weak static potential ( KQ = 1.16). The relaxation 

corresponding to four different scattering approximations is shown: “classical” kinetic equation (long dashes), Kadanoff-Baym equations 

(dash-dotted line), CTA without and with energy increase (short dashes and full line, respectively). 

Fig. 2. The same as Fig. 1 but for the strong interaction potential ( K~Q = 0.2). 

A EKIN , 
n 

( 14) 

where the derivative is to be calculated at fixed density. Finally, we may reverse the question: How do we 

need to modify the initial distribution in order to obtain from the CTA-dynamics after t = rcor a distribution of 
the original density but with a modified kinetic energy equal to EC& ? The answer is to just replace f(tc) + 

f(t0) = f(r0r) f rom Eq. (14). Taking, for example, a pulse-shaped initial nonequilibrium distribution, this 

procedure means to “renormalize” it by increasing the width and reducing the height of the peak. This is also 

physically transparent: Due to energy broadening, the particles “see” an energetically broadened distribution. 

Like the correlation time, the value of A&IN has to be obtained from non-Markovian calculations [ 63. 
Thus, basic phenomena of non-Markovian calculations can be included into the correlation time approxima- 

tion. The numerical calculations below will show that even good quantitative agreement can be achieved. 
It is further possible to upgrade the CTA, by self-consistently calculating the correlation time from the 

“classical” total scattering rates r = flN + PUT according to 161 

n 
- = (Yr(po’fo). (15) 
rcor 

where LY and po are free parameters. Our numerical analysis shows that, at least for weak interaction potentials, 

it is always possible to choose cy and po such that the correlation time is well reproduced. 
We illustrate the use of the CTA on three numerical examples. First, we consider the simplest model of 

two-particle scattering, the second Born approximation. For this case, extensive numerical investigations of 
non-Markovian carrier relaxation have been performed. In particular, correlation build-up and kinetic energy 
relaxation have been studied in detail within different models, including the two-time Kadanoff-Baym equations 
[ 5,6]. Results from the latter should be regarded as the most accurate model and will, therefore, be used to 

test the results from the CTA. 
Figs. 1 and 2 show calculations with the same parameters as in Ref. [ 51, which were chosen to model the 

intraband relaxation of electrons in bulk-GaAs. The interaction potential is of Yukawa type (Debye potential) 
with the Fourier transform V(q) = 4mi/bt,/(q2 + K~), where ee is the free electron charge and Eb = 13.998 

the background dielectric constant. Fig. 1 shows calculations with a weak interaction potential, K = 1.1&i* 
(an = 132 A is the exciton Bohr radius), which corresponds to the static long wavelength limit of the 
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Fig. 3. Relaxation of the distribution function and total scattering rates in RPA. The relaxation corresponding to three different scattering 

approximations is shown: “classical” kinetic equation (long dashes), CTA without and with energy increase (short dashes and full line, 

respectively) The bottom left figure shows the total scattering rates for the “classical” calculation at the initial time (long dashes) and 

after 500 fs (full line). The bottom right figure shows the total scattering rates for the CTA without and with energy increase (short dashes 

and full line, respectively). Times are, from bottom to top, 60, 250 and 500 fs. At t = 0, the scattering rates are equal to zero. 

RPA polarization. The distribution function is shown for different times for four approximations: the classical 

scattering integral, the Kadanoff-Baym equations and two different variants of the CTA based on ImgiQ, Eq. 
( 12). The correlation time was calculated self-consistently according to Eq. (15), where pa was chosen to be 
the peak position of the initial distribution, and (Y = I, the result was r,,, = 56 fs. The difference between both 

CTA calculations is that in the second variant, a kinetic energy increase of about 8% (based on the results of 
Ref. [ 51) was included. The results of Fig. 1 show that for short times, t < r,,,, the CTA-relaxation is slower 
than the other models. After that time, the relaxation is faster than that based on the Kadanoff-Baym equations. 
With a proper choice of rcor the cross-over from the “slow” to the fast relaxation can be optimized. For long 
times, the CTA without kinetic energy increase approaches the “classical” relaxation, whereas the result with 
kinetic energy increase (broadened initial distribution in Fig. 1) is almost identical to the Kadanoff-Baym 

result. 

In a second calculation, we changed only the potential, choosing K = 0.2a;‘, thus making the interaction 
very strong. In that case, a self-consistent calculation of rcor is difficult. We chose the value rcor = 300 fs, 
when the kinetic energy increase in the Kadanoff-Baym calculations saturated [ 5,6]. In this case, correlation 
time and relaxation time are close to each other: After 300 fs the distribution function is almost thermalized. 
Thus, we cannot expect that the CTA is a good approximation. Nevertheless, Fig. 2 shows that the CTA again 
shows good results when time approaches the correlation time. However, after that time the relaxation is already 
almost finished. In this case, kinetic energy increases by about 80%, so the broadened version of the CTA is 
significantly closer to the Kadanoff-Baym result than the other. 

As a third calculation, we apply the CTA to the quantum Boltzmann equation with dynamically screened 
potential (Lenard-Balescu equation, RPA). This is of high interest for thermalization of optically excited 
semiconductors. In particular, solutions of the “classical” Balescu equation have yielded very high scattering 
and dephasing rates, which were explained by plasmon undamping due to nonequilibrium carrier distributions 
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[ 141. One may expect that these high dephasing rates are, at least in part, due to an overestimate of collective 
plasma effects, since the classical Balescu collision term replaces the true build-up of polarization effects 
by an instantaneous process (see, e.g., Refs. [ 7,8]). Unfortunately, the non-Markovian generalization of the 
Balescu equation [ 1 l] and of the Kadanoff-Baym equations in RPA is still numerically not feasible. Therefore, 

calculations using the CTA can yield some first insight into the effect of correlation build-up on the RPA 
relaxation. Fig. 3 shows the relaxation of the electron distribution in an equilibrium plasma where, e.g. by 
optical excitation, additional nonequilibrium carriers have been generated. In this case, one observes plasmon 

undamping and increased scattering rates. Along with the “classical” relaxation, CTA-calculations with and 

without energy increase are shown, where the correlation time was calculated by formula (15) using the 
“classical” RPA scattering rates. The result was rcor = 98 fs. As one can see from Fig. 3, indeed, a gradual 
increase of the scattering rates is found which reduces the previously observed very high dephasing rates and 

gives, at least, an estimate for the full non-Markovian result. 
After discussing numerical results for homogeneous systems, let us, finally, consider implications of the 

CTA for spatially inhomogeneous systems. If rcor < t,,t, then everything said above about the hierarchy 
of scales may be extended to scales in space also. Then, at t > T~,,~ the dependence of the correlations 
on fine-scale structures is lost and only large-scale space dependence via the distribution function remains, 
g( R, t) = g{f( R, t)} M gmA{f( R, t)}. This means that we may use exactly the same functional expressions 
for gaA as in the homogeneous case (momentum delta function), where now space dependence appears, but 

only parametrically via the distribution functions (zeroth order gradient expansion). In the same way, also the 
collision integral 1c-r~ become space dependent. This means, if spatial inhomogeneities of the size ~g/r~,,~ and 

smaller are not important, one may solve a kinetic equation for the space dependent Wigner function using the 

essentially simpler collision integrals for homogeneous systems. Moreover, correlation build-up in space may 
be included by making go and rcor space dependent. 

We have thus shown that most phenomena typical for non-Markovian relaxation may be successfully incor- 
porated into the correlation time approximation. Extension to quantum systems and to several particle species 

is straightforward. While the current discussion is aimed at illustrating the general concept of the CTA, for 

particular situations modifications will be necessary. Good agreement can be expected for a weak static inter- 
action (Born approximation). Beyond that, the dynamics of bound state formation (ladder approximation) [ 91 
or screening build-up [7,8] may be reproduced by the current version of the CTA if the spectral properties 

(of the bound states or of the screened potential) are close to that at t = 7cor. Otherwise, the scalar correlation 
time has to be replaced by a more complex quantity. If the correlation build-up involves more than one time 

scale, one has to generalize the ansatz (8) to involve several time constants. A typical example is the process 
of femto-second optical excitation of carriers, described by the non-Markovian generalization of the Bloch 
equations [ 151. In the same way as the “classical” (Markovian) coupled relaxation of carrier distribution and 
optical polarization has been successfully approximated by a RTA with two times Tt and T2 (see, e.g., Ref. 

[ 151) the concept of the CTA can easily be generalized, including a weakly time-dependent correlation time 

[191. 
In summary, we have proposed a new approximation scheme to generalized kinetic equations. It allows one 

to incorporate dominant non-Markovian effects, such as correlation build-up, decay of initial correlations and 
energy broadening, into much simpler and well understood “classical” Markovian kinetic equations. Not only 
may a drastic simplification of the numerical treatment become possible, at the same time, the resulting collision 
integrals, Eq. ( 1 l), give a physically very transparent picture of correlation dynamics on short times. 

This work is supported by the Deutsche Forschungsgemeinschaft (Schwerpunkt “Quantenkohtienz in Halb- 
leitern”) and by the German Academic Exchange Service. 



M. Bonitz / Physics Letters A 221 (19%) 85-93 93 

References 

[ I] L. Banyai, D.B. Tran Thoai, E. Reitsamer, H. Haug, D. Steinbach, M.U. Wehner, M. Wegener, T. Marschner and W. Stolz, Phys. 
Rev. Lett. 75 (1995) 2188. 

[2] P Danielewicz, Ann. Phys. (N.Y.) 152 (1984) 239. 
[3] H.S. Kohler, Phys. Rev. C ( 1995). 
[4] J. Shah, Solid State Electronics 32 ( 1989) 1051. 
[ 51 M. Bonitz, D. Kremp, D.C. Scott, R. Binder, W.D. Kraeft and H.S. Kohler, in: Physics of strongly coupled plasmas, eds. W.D. Kraeft, 

M. Schlanges, H. Haberland and Th. Bomath, (World Scientific, Singapore, 1996); J. Phys. Condens. Matt. ( 1996). 
[6] M. Bonitz and D. Kmmp, Phys. Lett. A ( 1996). 
[7] K. El Sayed, S. Schuster, H. Haug, E Herzel and K. Hennebetger, Phys. Rev. B 49 (1994) 7337. 
[8] G. Manzke, K. Henneberger, J. Heeg, K. El Sayed, S. Schuster and H. Haug, Phys. Status Solidi (b) 188 ( 1995) 395. 
]9] D. Kremp, M. Bonitz, W.D. Kraeft and M. Schlanges, to be published. 

[ IO] L.P. Kadanoff and G. Baym, Quantum statistical mechanics (Benjamin, New York, 1962). 
[ 111 H. Haug and C. Eli, Phys. Rev. B 46 (1992) 2126. 
[ 121 D.B. Tran Thoai and H. Haug, Z. Phys. B 91 (1993) 199. 
1 131 N.N. Bogolyubov, in Studies in statistical mechanics Vol. 1, eds. G. Uhlenbeck and J. de Boer (North-Holland, Amsterdam, 1961). 
[ 141 R. Binder, D.C. Scott, A.E. Paul, M. Lindberg, K. Hennebetger and SW. Koch, Phys. Rev. B 45 (1992) 1107. 
[ 151 R. Binder and SW. Koch, Progr. Quant. Electr. 19 (1995) 307. 
[ 161 K. B%winkel, Z. Naturforsch. 24a 22 ( 1969) 484. 
[ 171 Yu.L. Klimontovich, Kinetic theory of nonideal gases and nonideal plasmas (Pergamon, Oxford, 1982). 
[IS] Th. Bomath, D. Kremp, M. Schlanges and W.D. Kraeft, submitted for publication. 
[ 191 M. Bonitz and R. Binder, to be published. 


