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Abstract 

In the framework of real-time Green's functions, a general non-Markovian Boltzmann equation including initial correlations, 
full time retardation (memory) and self energy is considered. This equation conserves the total (kinetic plus potential) 
energy. Two approximations of this very general equation are investigated: (i) the first order expansion with respect to the 
retardation and (ii) the first Born approximation for the scattering T-matrix (non-Markovian Landau equation). The influence 
of memory and damping effects on the relaxation of the one-particle distribution and of the kinetic energy is demonstrated 
by a numerical analysis. 
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1. Introduction 

Though the Boltzmann equation is one of  the funda- 
mental equations in statistical physics, as it describes 
the irreversible relaxation to stationary states and is 
the basis of  transport theory, this equation has many 
essential shortcomings. Two of these are: 

(i) The Boltzmann equation is valid only on time- 
scales larger than the correlation time r~orr. 

(ii) The Boltzmann equation conserves the kinetic en- 
ergy or the quasiparticle energy only, instead of  
the total (kinetic plus potential) energy. 

Especially, the second point is a serious problem 
in strongly correlated many-particle systems. In such 
systems, thermodynamic functions, as for example the 
internal energy, are essentially determined by correla- 
tion effects. Any kinetic theory of  strongly correlated 
systems has to describe the relaxation to the nonideal 
thermodynamic properties. Now it is well known since 
papers of  B/irwinkel [ 1 ] and Klimontovich [2] that this 
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defect of  Boltzmann-type equations is essentially con- 
nected with the approximations with respect to time. 
Boltzmann-like kinetic equations are approximations 
local in time (Markovian equations) of  the most gen- 
eral nonlocal form of  kinetic equations given by Pri- 
gogine, Resibois, Zwanzig, Kadanoff and Baym and 
others [3 5]. In order to overcome the shortcomings, 
generalizations of  Boltzmann-like Markovian kinetic 
equations are necessary. This will be done here in 
the framework of  real-time Green's  functions. Specif- 
ically, the connection between memory and the con- 
servation laws shall be considered. Further, the influ- 
ence of  the memory and the memory depth on the 
relaxation of  the momentum distribution and of  the 
energy will be investigated solving numerically the 
non-Markovian Landau equation. 

2. Non-Markovian Boltzmann equation 

Within the frame work of real-time Green's  
functions, the equilibrium and nonequilibrium 
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properties of a many-particle system are determined 
by the two-time correlation functions :fig < (1, 1') = 
(T+(l ')7*(1)) and ig>(1, 1 ' ) =  (T(1 )~+( I ' ) )  with 
the abbreviation 1 = rl, s~, q. These functions contain 
the statistical and spectral information on the system. 
From the Martin-Schwinger-hierarchy of equations 
of motion for the correlation functions, one can, 
specifying an initial condition for the two-particle 
correlation function, give a generalization of the time- 
diagonal Kadanoff-Baym equations. The equation 
for the Wigner function f ( t ) =  +ig<(t , t )  has the 
form 

i' di [S<(ti)~A(tt) + ZR(ti),q <(h) 

.q<(ff)xA(h) -- ge( f f )X<(h) l .  (1) 

Here 27 is the self energy determined by the potential 
and the two-particle correlation functions. The contri- 
bution F+(t) is determined by 

f F~(t) = ]d3r2{V(rl r 2 ) -  V(rl 
1 

× ./ '  d3Ft d3F2 d3t~l d3F2,qf2(rl r2t, i:l F2to ) 

x , q ~ ( F I  - - -  A - -  , r2to, r ir2to)gl2(Fi r2to, r I r2t ). (2) 

The collision integral describes the different collision 
processes in the system and includes memory effects 
because it is nonlocal in time. 

In order to derive explicit expressions for the col- 
lision integral, one has to solve two problems: The 
self energy has to be determined in an appropri- 
ate approximation and the so-called reconstruction 
problem has to be solved, i.e. the two-time correla- 
tion functions have to be determined as a functional 
of the time-diagonal part. The first problem can be 
solved within standard approximations [6,7] as for 
instance the binary collision approximation. The self 
energy in this approximation reads with help of the 
T-matrix 

Z~(r l t ,  r ' l /)  = j ' d3 r l  d3r2 (rlr2 T~( t , t  ') r~ll:2) 

x( ±i)g% (Y2tt, r2t). (3) 

The T <>-matrices are given by the generalized optical 
theorem 

T~( t , t  ') = d[diTR(t , i) f#~(i ,?)T'4([, t ' ) .  (4) 
, "y. 

Thus they can be expressed in terms of the cor- 

relation functions N~ " ~ ~ = lgl g2 and the retarded 
and advanced T-matrices T R~A which describe the 
in-medium scattering. The latter have to be deter- 
mined from a generalized Lippmann-Schwinger 
equation 

TR4(t, t  ') -- V3(t - t') 

+i ./ '  dt" V(~e"4(t, i)Te"A([, t' ). (5) 

Another standard approximation for the self energy is 
the random phase approximation (RPA). 

Let us consider now the reconstruction problem. 
Because we are interested in memory effects, the 
simple Kadanoff-Baym ansatz is not applicable. In a 
quasiparticle approximation, the so-called generalized 
Kadanoff-Baym ansatz (GKBA) can be used [8], i.e. 

± .q~(t,.t2) = f~ ( t , )gA( t ,  t2) -- .q~(t, t2 ) f~( t2)  (6) 

w i t h f  < = f a n d . f  > = 1 4 - f .  
A solution of the reconstruction problem going be- 

yond the quasiparticle approximation but restricted to 
a first order expansion with respect to retardation is 
given by [9] 

+ i,q < (eX T) 
p' 

2rt3 (e~ E)f(T) . ) - E ~ T  J'~T;'" ~ 

U 
. .  ( ± i ) Z  < (¢o, T)  4- 2~5 (o~ - E )  

( . )  - L ;  

f _. ((b, T). (7) 
de5 p, 

(±i )Z < x 2n (~b - t~) 

Using the O K B A  and the binary coll ision approxima- 
tion, we get the non-Markovian generalization o f  the 
Boltzmann equation 

+ - - V R  f ( p R t ) = F  È( t )+ Tr d td td f  
m 

× { TR(t t)uA(7[IT~([t)uA(~t)  
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x [F<(/ )F > ( / ) - /P>  ([)/~<(/)] 

+ TR( tt lUR(t[ )T A ([[) U4(h ) 

× [F<(/-)P >(/) F>(/)P<(/) ]  

+UR(tF)Tn(~{)uS~(ii)TA(it)  

x [F<(/)P > ( i ) -  F>([)P(i)] 
+Uk(tF)TR(F~)U'4([[)T'4([t) 

x [F<(i)P>(/)  F>ff)P<ff) ] } ,  (8) 

• < " < :  f ~ .  with the abbreviations F < .[i J2 and = 
' L "  ' : >  

J l J2 ( l ± f i ) ( l + j'2 ). The propagators are 
given by 

uR'A(t / )  = (-)(±(t -- t ' ))e i(L'+&-L'' i;._,)u /I.  (9) 

with the quasiparticle energies E i and the damping 
i7 - Im X. 

The most important properties of  this kinetic equa- 
tion are: 
- The full energy, i.e. the sum of  averaged kinetic and 

potential energy, in binary collision approximation 
is conserved by this equation. This follows from 
the fact that the binary collision approximation is a 
conserving one [5] and that there was no further 
approximation with respect to time. 

- The equation includes memory effects with a mem- 
ory depth given by 1/712 = 1/(71 ± ]'2). 
With the contribution F+(t),  the influence of  initial 
correlations is described. Because of  the inclusion 
of  damping in the propagators (9), the initial cor- 
relations are weakened in times t ~ 1/',h2, i.e. the 
Bogoljubov condition is realized here by the inter- 
action. 

For applications this equation is very complicated 
due to the three time integrations in addition to 
the integrations with respect to momenta. We will 
therefore discuss two useful approximations in the 
following. 

3. F irs t  order  g r a d i e n t  e x p a n s i o n ,  c o n s e r v a t i o n  l a w s  

An essential simplification of  the non-Markovian 
Boltzmann equation can be reached if all the terms 
are expanded up to the first order with respect to 

the retardation. The result can be written in the 
form 

d f  _ IB(pI)  + lR(p  I)' (10) 
dt 

where the local term, the Boltzmann collision integral, 
is given by 

l B [ '  d3p2 d3/31 d3/5~ 
= . l  ( - ~  - [(PiP2I T(E,2 + ie) ]/52/5,)12 

x2g& (El2 - L'I2)(j1)7'2( 1 ± .]"1 )(1 ± f 2 )  

-f,.+,2( I ± 7, )(i i 72 )). ( 11 ) 

First order retardation corrections, based on a Green's 
function approach, were given first by Bfirwinkel [I]. 
But this result was not complete because B/irwinkel 
used the Kadanofl" Baym ansatz. 

Considering for simplicity only the case of  a non- 
degenerate many-particle system, the scattering T- 
lnatrices are dependent only on time differences, and 
we get 

/R(pl . /  d3p2(2x) 0d313i d3/)2 

×{  [](PiP21T(Ei2)IDil)2)I 2 

+l(p ,  p~ IT(El2 )1/51/52} 12] 

p/ 
× -- 2~c$(E12 El2) 

El2 ~'12 

×Im(TRT'4') \ dT d r  ' 

There is an interesting relation between I a and l R in 
the nondegenerate case. For this reason we define 

/B(g) = / d 3 p 2  d3pl d3p2 / &o 2C 
, (2~) 9 , 2re (E - e)) 2 + e 2 

2~ i (plp21TKc,J+ic)l~2pl)l~ 
X ( ~  __ 0')) 2 @ C2 

× Fi2 Fi2 . (13) 
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The kinetic equation in first order retardation then has 
the compact shape 

d 
~-~.f (pl T) 

( 1 d d ) I B ( p , , & T )  o. (14) 

This relation holds also in the random phase approxi- 
mation for the self energy, but in this case IB(S) has 
to be replaced by ILU(e) 

ILU(z ) / '  dp2 d/31 d/3 2 
, (2g) 9 

/ '  de) { 2c 

. ~ (03-- E 1 -~EI)2 __ ~2 

2e V (Pl - -  /31 ) 2 

X [/~I~FI~-/~I2FIIJ }. (15) 
It is easy to show that the kinetic equation (10) 
leads to conservation of the total density given by 
n = J'(dp/(2n) 3 i f (p)  . 

Mult ip ly ing the kinetic equation with p2/2m and 
integrating, we find 

• 

i . e .  

= ~7--f(r + V) = 0, (16) 

with the mean potential energy in binary collision ap- 
proximation 

(v )  = (v )  

+sTr12 T (E)[ E T ~  1 2 - F I 2  . (17) 

Thus the total energy in a binary collision approxima- 
tion is a conserved quantity. 

4. Non-Markovian Landau equation 

The first order expansion of the non-Markovian 
Boltzmann equation is not suited for the description of 
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short-time kinetics, i.e. details of the relaxation pro- 
cesses near the initial state cannot be described. In or- 
der to get a simplified kinetic equation, but without 
any approximation with respect to the times, we use 
the first Born approximation for the T-matrices 

(p, p21TR( t,, t2 )l /3, /32) 

= V(pl  -- /31 )6(tl -- t2)6(pl + P2 --/31 -- /32). 

(18) 

The collision integral is now much simpler because of 
the 6-function ~5(t~ - t2). We get the non-Markovian 
Landau equation 

d 
- ~ f ( p l t )  = I~ (p l t )  + l(p~t) .  (19) 

l(pl t) is the non-Markovian Landau collision integral 
given by 

j ) ' - r " f  d/3'd/32dp2(2n) 9 1 = 2n dr.  I V ( p l  /31 )12(2~) 3 

x6 (p l  + P2 -- /31 -- /52) e-I: ' :- ' '- ' !~ 
- ~  > - >  < 

xCOS((/~12 El2)r ) [FI2F ,2  FI2FI:],_r 

(20) 

The influence of initial correlations is described by 1 + 

l + 2,7 ./d/31(2n) 9 d/32 dp2 V(pl  - Pr )(2n) 3 

x,~(pl + P2 /31 -- /32)e I:,:+/,:)(t-t,,) 

xlm{exp (i(/~,2 -- El2)(t -- to)) gl2(t0)}. (21) 

Let us summarize the main properties of Eq. (19): the 
generalized Landau equation contains Pauli blocking 
and self energy effects, and it is valid for all times. 
The term 1 + describes the influence of (arbitrary) 
initial correlations. The time integral in (20) corre- 
sponds to correlation build up. Eq. (19) contains en- 
ergy broadening of the form cos ((E12 - Ei2)t) and 
includes retardation (memory effects) in the distri- 
bution functions. Self energy effects give rise to the 
damping exponents (712 ~ ImXi + ImX2). This as- 
sures time irreversibility and the correct long-time 
behaviour (damping of initial correlations and finite 
memory depth). 

In many cases, the memory depth is sufficiently 
small, so that damping and memory can be neglected. 
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Fig. 1. Relaxation tbr a screened potential with ~,aB = 1.16. The different parts of the figure represent the different time steps. Relaxation 
is calculated in tour different approximations for the collision integral: Markovian Landau equation (dotted line), collisional broadening 
approximation [Eq. (22)] (full line), the non-Markovian equation (20) with ~'12 - 0 (dashed line) and the Kadanofl;Baym equation in the 
first Born approximation [12] (dash-dotted line). 

Then the >integrat ion can be performed in (20) with 
the result 

1 = 2n / d/St d/~2 dp2 
• __ (2rt)9 IV(p, -/3,)12(2rc) 3 

xf i (p l  + P2 /31 - / 5 2 )  

sin(Et2 - Ei2)(t - to) 
X 

k712 E12 
- <  ~. - >  < 

x [ F 1 2 F ] R - - F ] 2 F 1 2 ] ! .  ( 2 2 )  

Eq. (19) conserves density, momentum and the total 
energy in second Born approximation. The general 
expression for the potential energy, including Pauli 
blocking, self  energy and initial correlations, is 

< v ) ( t )  - 
nN : dpl dp2 d/31 d/52 
2 a (2r~)t 2 V(pl - DI) 

x(2rc)36(PJ + p2 - Di - /32)  

I , / 0  l, × dre  I>~-~':*~sin ((/~12 -- EI2)c) 

,E . . . .  1 - " > : < e Cq'-+~:-)(t t~,) × V ( p l - p l  FI2FI2-FIzFI2 t--~ 

×Im[exp( i (E i2  Ei2)(t--to))gl2(to)] ~. (23) 
J 

The non-Markovian Landau equation is "simple" 
enough for a numerical evaluation. Fig. 1 shows re- 
sults o f  the numerical solution of  the non-Markovian 
Landau equation for a one-component 3D isotropic 
system starting from a nonequilibrium initial dis- 
tribution (Gaussian) with zero initial correlations. 
For the calculation, we used a screened potential 
V ( r ) = 2 / r e  ~". The relaxation is compared for 
different approximations, including the Markovian 
collision integral and also the solution of  the two- 
time Kadanoff-Baym equations for the correlation 
functions in the Born approximation [5,10-12].  Fig. 2 
shows the relaxation o f  the corresponding kinetic en- 
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Fig. 2. Relaxation of the kinetic energy. The same approximations, 
and line styles denoting them, as in Fig. 1 are used. 

ergy. As a result of energy broadening and correlation 
build up, the kinetic energy in the system increases. 
It is interesting that there is a good agreement be- 
tween the zeroth order retardation approximation [cf. 
(22)] and the Kadanoff-Baym equation. On the other 
hand, the full kinetic equation (19) without self 

energy, which is time reversible, strongly overesti- 
mates memory effects. 
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