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Abstract. The non-Markovian carrier–carrier scattering dynamics in a dense electron gas
is investigated. Within the framework of quantum kinetic equations in the second Born
approximation we study the relevance of retardation (memory) effects, energy broadening and
correlation build-up for femtosecond relaxation processes. Furthermore, the important issue of
total energy conservation, within various well-established approximation schemes, is analysed.
The most important non-Markovian effect is shown to be the broadening of the energy delta
function leading to an increase of kinetic energy with time. Our numerical analysis includes both
the single-time kinetic equation and the full two-time Kadanoff–Baym equations. Our results
are expected to correctly reproduce qualitative features of non-Markovian dynamics in plasmas,
fluids, nuclear matter and in the intraband relaxation of semiconductors. The comparison of
the exact solutions for different approximations allows suggestions for simplifications that make
this kind of calculation and their extension, especially to realistic semiconductor situations, more
feasible.

1. Introduction

Recent progress in the sub-picosecond spectroscopy of electron–hole (e–h) plasmas in
semiconductors [1] increased the need for a theoretical description of charge-carrier
scattering which goes beyond the well-studied Markov approximation regime (the
Boltzmann, Landau or Lenard–Balescu equation); see, for example, [2, 3]. Generalized
kinetic equations have been derived a long time ago—e.g., see [2–4]—and have been
studied recently in application to semiconductors [5, 6, 7, 8]. These equations contain
memory (or retardation) effects as well as the ‘smearing out’ of the kinetic energy
conservation (or energy broadening) in two-particle collisions due to a generalized energy–
time uncertainty. For example, studies of electron–phonon interactions in semiconductors
have demonstrated the importance of non-Markovian (i.e., memory) effects in the initial
stage of the thermalization of non-equilibrium e–h plasmas towards the lattice temperature
[9–12]. Recently, oscillations of the transient four-wave-mixing signal in bulk GaAs
have been successfully explained in terms of non-Markovian carrier–LO-phonon scattering,
demonstrating the relevance of these generalized quantum kinetic equations [13]. A typical
memory effect is temporal pulsations of the electron distribution [11].
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Similar effects should occur in carrier–carrier scattering, but the more complex nature
of the corresponding non-Markovian kinetic equations makes these processes significantly
more difficult to investigate numerically, and previous numerical studies did not focus on
the relaxation of the distribution function [7, 14]. We therefore study, amongst other issues,
the temporal relaxation of the electron distribution. Our analysis reveals that temporal
pulsations of the distribution are indeed intrinsically present, but that they are suppressed
by both destructive interference and self-energy (damping) effects.

Another problem which, so far, has been investigated only rarely in recent solid-state
studies [12, 17], is the issue of energy conservation. It is well known that conventional
Markovian kinetic equations, besides being limited to time-scales large compared to the
correlation time, conserve only kinetic (quasi-particle) energy. It was realized a long time
ago [18, 4] that the problems of energy conservation and short-time behaviour are closely
linked together. Presenting an explicit expression for the potential energy, we show that
the non-Markovian kinetic equation does indeed conserve total (the sum of kinetic and
potential) energy. As a consequence, kinetic energy may change during the thermalization,
giving rise, for example, to a different temperature of the final state compared to that of
Markovian approximations. Our numerical evaluation shows that this effect may be as large
as 50% [19].

As a third issue, we study the effects of self-energy (damping) on the relaxation. In
limiting the memory depth, these effects are essential for the correct long-time behaviour,
including the transition to the Markovian regime. On the other hand, self-energy (damping)
effects in the form in which they are often introduced into non-Markovian kinetic equations
are shown to cause a violation of total energy conservation. This has recently been found
also for carrier–phonon scattering [17]. Though this effect is of higher order (beyond the
second Born approximation), this indicates a fundamental problem related to the general-
ized Kadanoff–Baymansatz. We outline a solution to this problem. Furthermore, it is
well known that the Kadanoff–Baym equations which treat the self-energy problem self-
consistently do conserve total energy and should be regarded as an adequate theoretical
model. We therefore present solutions of these equations too. The comparison of the
results for the evolution of the distribution functions and the kinetic energy allows us
to draw conclusions about the relevance of various general non-Markovian effects, such
as retardation and collisional energy broadening. Furthermore, it allows us to suggest
simplifications which render the numerical model for femtosecond carrier–carrier scattering
numerically feasible yet physically appropriate. This should also allow one to treat
more complex experimentally relevant situations, such as four-wave-mixing set-ups, more
efficiently.

We want to underline that non-Markovian effects are very general phenomena in the
short-time behaviour of interacting many-particle systems. These effects are related to the
relaxation of binary correlations and will always be of importance for times shorter than the
correlation time [26]. Besides semiconductor systems, these phenomena are of interest also
for dense plasmas, fluids or nuclear matter. Therefore, we focus in this paper on phenomena
which are common to all of these systems.

In our numerical analysis we consider a dense electron gas, choosing the parameters
of an electron gas in the GaAs conduction band as an example. To focus on the issues
outlined above, we consider the second Born approximation, assuming a static interaction
potential. In real optical situations in semiconductors it is not always possible to separate
excitation dynamics from carrier relaxation dynamics. However, in order to study non-
Markovian effects on carrier relaxation in its pure form, we choose a simple model treating
the optical excitation as a non-equilibrium initial condition. We also consider only the
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electron component and its thermalization to intraband scattering alone. Of course for a
quantitative theory–experiment comparison in semiconductor optics, the inclusion of the
hole component would play an important role.

Numerical results will be presented for the following four approximations: the
Markovian kinetic equation (a), the generalized kinetic equation (1) without damping in
the limits of zero memory (b) and full memory (c), and the Kadanoff–Baym equations
(12), (d).

2. A summary of the kinetic equations

2.1. The non-Markovian Landau equation

We would like to begin with a brief summary of the non-Markovian kinetic equations (for
a derivation, see, for example, [6]). Neglecting contributions due to quantum mechanical
exchange and from initial correlations [19], one can derive the kinetic equation for the one-
particle distributionF , where one has to assume the existence of a neutralizing background
(for the elimination of the contributions due to positive charge carriers from the system’s
Hamiltonian in the thermodynamic limit, see, e.g., [20]):

d

dt
F1(t) = 2V2

h̄2

∫ t−t0

0
dτ

∫
dp2

(2πh̄)3

∫
dp̄1

(2πh̄)3

∫
dp̄2

(2πh̄)3
(2πh̄)3δ( p12 − p̄12)

× V 2

(
p̄1 − p1

h̄

)
cos

{
E12 − Ē12

h̄
τ

}
e−(γ12+γ̄12)τ/h̄

×
{
F̄1F̄2[1 − F1][1 − F2] − F1F2[1 − F̄1][1 − F̄2]

}∣∣∣
t−τ

(1)

with E12 = E1 + E2, p12 = p1 + p2, γ12 = γ1 + γ2, F1 = F( p1), F̄ = F( p̄) etc, wherep
denotes the momentum andV is the volume.F is the Wigner distribution function which
is normalized to the particle number,

V
∫

dp

(2πh̄)3
F( p) = N.

The binary interaction potentialV contains the volume too, so it has the dimension of energy
(see section 3.2).E1 is the quasi-particle energy, and the damping coefficient is related to the
imaginary part of the retarded self-energy byγ1 = Im 6R( p1) [6]. Equation (1) contains
memory or retardation effects (dependence on the distribution functions at all previous
times) and energy broadening (the cosine of the energy difference instead of theδ-function
appearing in Markovian kinetic equations). The memory depth is limited by the damping
exponents which, in turn, are functionals of the distribution functions. The relaxation of the
distribution function strongly depends on how these coefficients are calculated. To highlight
this effect, we include in our numerical results (figures 1–4) solutions of equation (1) without
damping,γ = 0, which are labelled ‘approximation (c)’.

2.2. Total energy conservation

One can readily investigate the issue of total energy conservation for equation (1). For this
one has to recall (cf., e.g., [4]), that the collision integral can be expressed in terms of a
binary correlation operatorg12, i.e., the correlated part of the two-particle density operator



6060 M Bonitz et al

g12 = F12 − F1F2, whereF1 is the one-particle density operator. In operator notation we
have [19]

i h̄
dF1

dt
= n Tr2[V12, g12] (2)

where square brackets denote the commutator, andn is density. Notice that the s-particle
operator is normalized toV s .

We obtain an explicit expression for the potential energy of a homogeneous system
using the definition〈V 〉 = (n2/2)Tr12(V12g12) and equation (2):

〈V 〉(t) = −V3N

2h̄

∫ t−t0

0
dτ

∫
dp1

(2πh̄)3

∫
dp2

(2πh̄)3

∫
dp̄1

(2πh̄)3

∫
dp̄2

(2πh̄)3
V 2

(
p̄1 − p1

h̄

)
× (2πh̄)3δ(p12 − p̄12)e

−(γ12+γ̄12)τ/h̄ sin

(
E12 − Ē12

h̄
τ

)
×

{
2F̄1F̄2[1 − F1][1 − F2]

}∣∣∣
t−τ

. (3)

The time derivative of equation (3) can be compared to the time derivative of the kinetic
energy which follows immediately from the kinetic equation (1):

d

dt
〈T 〉 = V

∫
dp1

(2πh̄)3

p2

2m

dF1

dt

= V3N

2h̄

∫
dp1

(2πh̄)3

∫
dp2

(2πh̄)3

∫
dp̄1

(2πh̄)3

∫
dp̄2

(2πh̄)3

×
{

d

dt
− γ12 + γ̄12

h̄

} ∫ t−t0

0
dτ V 2

(
p̄1 − p1

h̄

)
× (2πh̄)3δ( p12 − p̄12)e

−(γ12+γ̄12)τ/h̄ sin

(
E12 − Ē12

h̄
τ

)
×

{
2F̄1F̄2[1 − F1][1 − F2]

}∣∣∣
t−τ

(4)

where the last line is obtained after a symmetrization of the momenta yielding(E12−Ē12)/4.
For the derivation of equation (4), the time dependence of the quasi-particle energy and the
damping has been neglected. In most situations, this is justified, and our conclusions will
not depend on that assumption. The general case is discussed in [27].

Summing equation (4) and the time derivative of equation (3) leaves us with the term
containing−V 2(γ12 + γ̄12)/h̄; this means

d

dt
〈T + V 〉 ∼ 4 γ̃1

h̄
〈V 〉 (5)

whereγ̃1 is some value of the one-particle damping averaged over all momenta. We may,
therefore, conclude that, if self-energy contributions are being neglected, total energy is
exactly conserved. Otherwise, energy is conserved only approximately, with the error being
of the order of the mean value of the damping constant itself,〈γ̃1〉. During the relaxation,
the damping rate increases as a consequence of correlation build-up and reaches an almost
time-independent value after the correlation time (e.g. the inverse plasma frequency, [26]).
According to equation (5), the error to the total energy will accumulate in time, eventually
giving rise to wrong predictions for the long-time behaviour of the system. This is indeed
confirmed by numerical results. In calculations where we included damping but neglected
the energy shift (related to Re6R), we found a constant almost linear increase of kinetic
and total energy, with no tendency towards saturation (see the discussion in section 3.3).



Non-Markovian effects in carrier–carrier scattering 6061

Therefore, our result is important because it forces one to have a closer look at the non-
Markovian kinetic equation (1), the appearance of the damping terms in it and the underlying
theoretical assumptions.

There are several theoretical approaches on which the derivation of non-Markovian
kinetic equations, such as equation (1), can be based—for example the method of Green’s
functions or the density operator formalism. Both approaches can be used to introduce
energy renormalization, including damping. In the Green’s functions approach, the starting
point can be, for example, the two-time Kadanoff–Baym equation [21]; see section 2.4.
Within the so-called generalized Kadanoff–Baymansatz (GKBA), [23], the two-time
correlation functions take the form

− ig
>
<( p, t1, t2) = ∓i

{
gR( p, t2, t2)F

>
<( p, t2) − F

>
<( p, t1)g

A( p, t1, t1)

}
(6)

which relates the two-time functionsg
>
< to the one-time distribution functions and thus

allows one to derive non-Markovian kinetic equations from the two-time Kadanoff–Baym
equations; see, e.g., [6]. In equation (6),F<( p, t1) = F( p, t1) and F>( p, t1) =
1 − F( p, t1). gR/A are the retarded/advanced Green’s functions, respectively. In the local
approximation, the retarded and advanced functions depend on the time difference:

gR( p, t1, t2) = −i h̄2(t1 − t2) exp

((
−i

E( p)

h̄
− γ ( p)

h̄

)
(t1 − t2)

)
(7)

gA( p, t1, t2) = i h̄2(t2 − t1) exp

((
−i

E( p)

h̄
+ γ ( p)

h̄

)
(t1 − t2)

)
(8)

where the quasiparticle energyE = E( p, T ) may depend on the macroscopic timeT .
γ ( p, T ) is the corresponding damping which gives rise to the damping terms in the kinetic
equation (1). In principal,E( p, T ) and γ ( p, T ) have to be calculated self-consistently
from the retarded self-energy. For reasons of feasibility, this is usually avoided, andE

is approximated by the free-particle energy, and forγ some phenomenological broadening
is chosen. The result of equation (5) shows that this approximation violates total energy
conservation in the sense discussed above. One can show that the main reason for this is
the neglect of the energy shift (which is related to the real part of the retarded self-energy)
which tends to reduce the error.

The problem of energy conservation in non-Markovian kinetic equations with energy
renormalization can be studied conveniently within the density operator formalism; for a
detailed discussion, see [27]. The main results of this analysis are that generalized kinetic
equations with self-energy, such as equation (1), do conserve total energy up to higher orders
in the interaction potential, ifE( p, T ) and γ ( p, T ) are calculated fully self-consistently
from the retarded self-energy. Furthermore, additional simplifying approximations, such
as retardation expansions (see section 2.3) can be developed which are also approximately
energy conserving, providing that the self-consistent treatment between the retarded self-
energy and collision integral is retained. This means that one has to use the same
approximations for the collision integral and for the retarded self-energy.

Similar issues in the case of carrier–phonon scattering have been presented in [17].

2.3. The retardation expansion of the kinetic equation

The quite complex structure of the collision integral of the kinetic equation (1) makes
simplifying approximations desirable, especially if the carrier dynamics is part of a more
complex calculation. One systematic approach is a retardation expansion of the collision
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integral. This means expanding the distribution function into a series with respect to the
memory timeτ , F(t − τ) = F(t) − τ dF(t)/dτ + · · · . The zeroth-order retardation term
(∼τ 0) is given by

I(0)(t) = 2V2

h̄2

∫
dp2

(2πh̄)3

∫
dp̄1

(2πh̄)3

∫
dp̄2

(2πh̄)3
(2πh̄)3δ( p12 − p̄12)

× V 2

(
p̄1 − p1

h̄

)
D0(E12 − Ē12, γ12 + γ̄12, t − t0)

×
{
F̄1(t)F̄2(t)[1 − F1(t)][1 − F2(t)] − (F ↔ 1 − F)

}
(9)

with

D0(ω, 0, t) = h̄

ω2 + 02

{(
ω sin

ω

h̄
t − 0 cos

ω

h̄
t

)
exp−

(
0

h̄
t

)
+ 0

}
. (10)

This approximation has been obtained in [6]. This expression is the exact short–time limit
of equation (1), when the next terms of the retardation expansion (∼τ, τ 2, · · ·) are still
negligibly small. This approximation neglects the retardation (memory); however, it retains
the energy broadening effect and, therefore, allows one to separate the influence of the two
effects. Furthermore, at short times, self-energy effects are small, and approximation (9),
(10) with γ12 = 0, i.e.

D0(ω, 0, t − t0) −→ D0
0 = sin((ω/h̄)(t − t0))

ω/h̄

(below referred to as ‘approximation (b)’) can be expected to be a reasonable model. This
will indeed be confirmed by our numerical results.

In the long–time limit,

sin((ω/h̄)(t − t0))

ω/h̄
−→ h̄δ(ω)

and approximation (b) yields just the Markovian collision integral in the second Born
approximation. For comparison, below the solution of the Markovian kinetic equation
(‘approximation (a)’) will be given too.

Of course, with increasing time, higher-order retardation contributions become
important. However, there is a partial compensation due to the alternating sign of the
successive terms. The relevant term at long times will be the first-order contribution (∼τ 1),
with the asymptotic form

lim
t→∞ D1(ω, 0, t) = h̄2

ω2 + 02

(
202

ω2 + 02
− 1

)
(11)

and the particular result for0 −→ 0 equals−h̄(d/dω)(P/ω), with P denoting the principal
value. Notice that an approximation that uses this first-order retardation integral plus
the conventional Markovian Boltzmann integral (approximation (a)) gives a qualitative
improvement of the theory. This gives a ‘corrected’ collision integral of Markov type which
includes the main correlation effects correctly. Thermodynamic or transport properties
calculated from this scattering term (correlation energy, virial coefficients, conductivity,
optical properties and so on) will contain the proper correlation corrections which are
essential for the description of interacting many-particle systems. In particular, this
approximation is sufficient to conserve total energy, but already on the level of Markovian
kinetic equations. This is just the result of [18, 4], which immediately follows from our
more general analysis. A more detailed discussion will be given in [27].
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2.4. Kadanoff–Baym equations in the second-order Born approximation

The fourth model which we consider in our numerical analysis is that of the full Kadanoff–

Baym equations for the two-time correlation functionsg
>
< [21]:(

i h̄
∂

∂t
− p2

2m

)
g

>
<( p, t, t ′) =

∫ t

t0

dt̄
{
6>( p, t, t̄) − 6<( p, t, t̄)

}
g

>
<( p, t̄ , t ′)

−
∫ t ′

t0

dt̄ 6
>
<( p, t, t̄)

{
g>( p, t̄ , t ′) − g<( p, t̄ , t ′)

}
(12)

where the self-energy has to be calculated in the second-order Born approximation:

6
>
<(p1, t, t

′) = 2h̄2V2
∫

dp2

(2πh̄)3

∫
dp̄1

(2πh̄)3

∫
dp̄2

(2πh̄)3
V 2

(
p1 − p̄1

h̄

)
× (2πh̄)3δ( p12 − p̄12)g

>
<(p̄1, t, t

′)g
>
<(p̄2, t, t

′)g
<
>( p2, t

′, t). (13)

Notice that in addition to equation (12), the functionsg
<
> have to obey also the Hermitian

conjugate equations, or, what is equivalent, the symmetry relationg
<
>(t ′, t) = −[g

<
>(t, t ′)]∗

[21].
Among the physical quantities of interest to us are the Wigner distribution function and

the total energy, which are readily calculated from the two-time correlation functions [22]:

F( p, t) = −i h̄g<( p, t, t) (14)

〈T + V 〉(t) = 1

4
Vh̄

∫
dp

(2πh̄)3

{(
i h̄

∂

∂t
− i h̄

∂

∂t ′

)
+ p2

m

}
(∓i)g<( p, t, t ′)

∣∣
t=t ′ . (15)

Total energy is conserved by these equations [21]. The generalized kinetic equation (1) can
be derived from equation (12) in a well-known manner, using theansatzof Lipavski et al,
equation (6) [23, 6].

Notice that the Kadanoff–Baym equations (12) were originally derived in the limit
t0 → −∞ [21], which leads to irreversible equations. Furthermore, in this limit correlations
were assumed to vanish, which is equivalent to the neglect of all long-living correlations such
as large-scale fluctuations and bound states. One can overcome this limitation in generalizing
the derivation of the Kadanoff–Baym equations to include arbitrary initial correlations at a
given finite initial momentt0 [22, 28]. These modified equations are time-reversal invariant
and their solution is uniquely defined by the initial values for the one-particle and two-
particle correlation functionsg<(t0, t0) and g<

12(t0, t0). For the specific situation of pulsed
semiconductor excitation, the initial time may be chosen sufficiently long before the pulse
thatg<

12(t0, t0) = g<(t0, t0) = 0, and the evolution is driven by the laser-generated interband
polarization. Such a complete simulation of the coupled-semiconductor–light-field dynamics
is, however, beyond the scope of this paper. We, therefore, have to specify non-zero
initial conditions. For simplicity and for consistency with the solution of the one-time
kinetic equation (1), we used an alternative approach which uses the result of the excitation
as an initial condition at the finite timet0 and, furthermore, neglects initial two-particle
correlations. So the only initial condition used with equations (12) is−i h̄g<(t0, t0) = F(t0)

which determines the relaxation completely and in a unique way [22, 24, 31].
Notice that time-reversible equations, such as equations (1) withγ = 0 and (12), can

be used successfully to model statistical processes of (irreversible) relaxation or transport
phenomena. Examples are the solutions of the Vlassov equation, molecular dynamics
approaches and the Jaynes–Cummings model for spontaneous emission and luminescence
[30]. The main condition is the use of a macroscopically large particle number, so that
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revival phenomena like the Poincaré revival occur on time-scales which are large compared
to the characteristic times of all of the processes in the system. Note that for the derivation
of equations (12) and (1), in fact, the thermodynamic limit is implied.

Figure 1. Relaxation of the distribution function for a strong long-range potential with
κaB = 0.2. The figure parts correspond to different times. The relaxation corresponding to
four different scattering approximations (denoted (a)–(d) in the text) is shown: the Markovian
Landau equation (dotted line, (a)), the zeroth-order retardation approximation of equation (9)
(full line, (b)), the non-Markovian equation (1) with full retardation but no self-energy (dashes,
(c)), and the Kadanoff–Baym equations (dash–dotted line, (d)).

3. Numerical results

3.1. Description of the numerical methods

We perform our numerical studies for a one-component system. For detailed comparison
of the different approximations, we solve (cf. above)

(a) the kinetic equation with the Markovian collision integral,
(b) the kinetic equation with the zeroth-order retardation integral of equation (9) with

γ12 = 0, that includes energy broadening but neglects retardation effects,
(c) the kinetic equation with the collision integral of equation (1) including the

retardation completely (full memory depth) but neglecting self-energy contributions, and
(d) the Kadanoff–Baym equations (12) in the second Born approximation which include

self-energy self-consistently.
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Figure 2. Relaxation of the distribution function for a weak short-range potential with
κaB = 1.16. The figure parts correspond to different times. The relaxations corresponding to
four different scattering approximations (denoted (a)–(d) in the text) are shown: the Markovian
Landau equation (dotted line, (a)), the zeroth-order retardation approximation of equation (9)
(full line, (b)), the non-Markovian equation (1) with full retardation but no self-energy (dashes,
(c)), and the Kadanoff–Baym equations (dash–dotted line, (d)).

The Kadanoff–Baym equations and their Hermitian conjugate were solved as in [22, 24].
A particularly difficult part was the solution of the kinetic equation with full memory and
no damping (c). (With damping included the solution simplifies substantially, since both
the memory depth and the spread of the distribution in momentum space are cut off.)
We therefore provide some numerical details. We solved the kinetic equation by direct
integration, using a fourth-order adaptive-step-size Runge–Kutta scheme. In the isotropic
case, the collision term of equation (1) contains a fivefold integral (over two momenta,
two angles and time). The number of integration points was chosen in such a way that
density and total energy are conserved within less than 1% during each simulation, and
the oscillations of the integrands are well covered up to a time of about 300 fs. Typical
numbers were 25 integration points and 100 points for the storage of the distribution. As
an alternative integration scheme, we took advantage of the fact that theq-integration
(q = p̄1 − p1) over the potential can be performed analytically. Though this scheme is less
stable and required more integration points (about 40), it saves one integration and, therefore,
proved to be significantly faster. It is, however, not applicable to the collision integrals for
the exchange terms. To verify the numerical results, we used as a third independent scheme
the solution of the Kadanoff–Baym equations with the generalized Kadanoff–Baymansatz
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(6) without damping and found excellent agreement of all three approaches. The numerical
complexity is drastically reduced in the zeroth-order retardation expansion (b) and in the
Markov case (a).

Figure 3. Relaxation of the kinetic energy density for the four runs withκaB = 0.2 shown
in figure 1: the Markovian Landau equation (dotted line, (a)), the zeroth-order retardation
approximation of equation (9) (full line, (b)), the non-Markovian equation (1) with full retardation
but no self-energy (dashes, (c)), and the Kadanoff—Baym equations (dash-dotted line, (d)).

Figure 4. Relaxation of the kinetic energy density for the four runs withκaB = 1.16 shown
in figure 2: the Markovian Landau equation (dotted line, (a)), the zeroth-order retardation
approximation of equation (9) (full line, (b)), the non-Markovian equation (1) with full retardation
but no self-energy (dashes, (c)), and the Kadanoff–Baym equations (dash–dotted line, (d)).

3.2. Parameters of the model

To be specific, we choose, as an example, electrons in a GaAs bulk semiconductor. The
parameters are the effective massm = 0.067m0 (m0 is the electron mass in vacuum), and
the Rydberg energyER = 4.2 meV, corresponding to a background dielectric constant
εb = 13.998 and an exciton Bohr radiusaB = 132 Å. Our calculations are intended to
be model calculations that reveal qualitative features of non-Markovian kinetics rather than
quantitative predictions. Focusing on the Landau equation (the kinetic equation in the second
Born approximation with statical interaction), we consider only static interaction potentials
and do not consider screening dynamics. We use a Yukawa-type interaction potential with
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the Fourier transformV (q) = A/(q2 + κ2) for different amplitudesA and rangesκ−1.
This is a reasonable model for both neutral particles and for plasmas with constant carrier
density. The following results are obtained forA = 4πe2

0/Vεb (e0 = free-electron charge).
Modifying κ, we vary the strength and range of the potential.

We studied various types of initial non-equilibrium distribution. As a typical example,
we present here a Gaussian centred around the momentump0 = 3h̄/aB , corresponding to
a density ofn = 3.64× 1017 cm−3. Figures 1 and 2 show the relaxation process for the
models (a)–(d), forκ = 0.2a−1

B andκ = 1.16a−1
B , respectively. The second number is close

to the static long-wavelength limit of the equilibrium inverse screening lengthκ = 1/rsc in
the random-phase approximation (RPA). This models the situation where in the initial state
the screening cloud has already been formed. In principle the formation of a static screening
cloud takes a time at least of the order of the inverse plasma frequency [15, 16], but for
times beyond this initial stage, a quasi-static interaction should be reasonable. Takingκ to
be the lower number, the situation is closer to that of a plasma without screening. This
might model the initial stage of an optically excited plasma in semiconductors [14]. In this
case, non-Markovian effects are expected to be most pronounced.

3.3. Results

Consider now the relaxations shown in figure 1. Comparison of the models (a) and (c)
reveals that non-Markovian effects slow down the relaxation significantly. This is due do
the fact that correlations have to be built up first (dF/dt (t0) = 0). A true memory effect is
seen in the relaxation (c). In place of the non-equilibrium peak of the initial distribution,
the system tends to create a minimum (it still remembers the peak even after it has been
destroyed). At the same time, the population of originally empty low-momentum states
reveals a strong increase with an overshooting beyond the stationary value. These structures
in the distribution show pulsations in time which increase with increasing amplitudeA of
the potential (they are more pronounced in the time evolution of the derivative dF/dt).
This behaviour is natural, since in (c), the non-Markovian kinetic equation is equivalent to
an equation which is local in time, but contains higher-order time derivatives. Since this
approximation neglects self-energy, it leads to a time-reversible (dynamic) equation, where
damping results only from destructive interference of the fast oscillations of the integrand.
An unphysical by-product of this approximation is that there exist initial conditions for
which the distribution functions become larger than 1 or negative. Therefore, here the
inclusion of self-energy effects (Im6R) is principally important for the correct long-time
behaviour. The corresponding self-consistent result is shown in the relaxation (d). The
evolution is completely smooth. At the same time, the reduction of the system’s memory
leads here to a further slowing down of the relaxation. A smooth relaxation is observed for
the calculation (b) too, since it neglects the retardation completely.

Consider now figure 2. Due to the weaker amplitude and shorter range of the potential
in this calculation (κ = 1.16a−1

B ), the interaction between the particles is much weaker
compared to that for the run in figure 1. Now, even the full retardation approximation (c) is
completely smooth. In this run, the deviations of all three non-Markovian runs (b)–(d) from
the Markovian (a) are small. Differences are mainly pronounced in the high-momentum
tail of the distributions (more pronounced in the momentum distribution of higher moments
of the distribution function, such as the particle number or kinetic energy). The reason is
that due to the broadening of the kinetic-energy-conserving delta function, scattering into
high-momentum states becomes possible. An unexpected result is that the system relaxes
faster with the weaker interaction for the Kadanoff–Baym equations. The reason is that
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with increasing potential strength, the damping rates also increase. Since the damping rate
appears in the exponent in the collision integral, its increase strongly reduces the memory
depth and the energy range accessible for scattering processes. This point is further explored
in [25].

Notice that all of the models yield a relaxation towards a stationary distribution. Models
(a) and (b) relax towards a Fermi function, where model (b) gives a higher temperature due
to the increase of the kinetic energy (see below). Models (c) and (d) do also show relaxation
behaviour despite the time reversibility of the corresponding equations (see the discussion
in section 2.4). However, due to correlation build-up, the stationary distribution in both
cases deviates slightly from a Fermi function.

Since kinetic energy is not a constant in the non-Markovian models, it is interesting to
consider its relaxation. The results for the approximations (a)–(d) are shown in figures 3
and 4. All non-Markovian models yield a monotonic increase. The reason is the correlation
build-up in the system (in neglecting initial correlations, we assumed an initial state with
zero potential energy). Since the asymptotic state of an interacting many-body system is
characterized by binary correlations, during the relaxation, potential energy is accumulated
in the system. The sign of the potential energy is negative (otherwise the system would be
unstable); cf. equation (3). Despite the repulsion between electrons, the necessary account
for a neutralizing background leads to an overall attractive interaction. The monotonic
increase of (the absolute value of) the potential energy, via the conservation of total
energy, transforms into the kinetic energy increase observed in figures 3 and 4. Naturally,
particularly strong correlations are built up if the potential is strong (figures 1 and 3),
and, therefore, the kinetic energy increases significantly. The increase with the weaker
potential, is much smaller; cf. figure 4. Nevertheless, the asymptotic kinetic energy, i.e. the
temperature established in the system, is significantly higher than predicted by the Markovian
model (a).

After discussing the long-time behaviour of the system, let us consider now the initial
stage of the relaxation. For this, it is instructive to compare the relaxation with the kinetic
equation (c) and its short-time asymptotics, the zeroth-order retardation approximation (b).
As expected, figure 4 shows good agreement between the kinetic energy evolution for the
non-Markovian models (b) and (c) at the beginning (for the first 20 fs). After this time, the
zeroth-order retardation term (b) starts to saturate whereas in (c) higher-order retardation
terms become important, and kinetic energy increases further. The same tendency exists
in the small-κ case (figure 3), but there the initial phase is much longer, and model (b)
starts to saturate only after about 500 fs to a value of about 10ER. With saturation of the
kinetic energy, the correlation build-up is finished, which yields a direct measure of the
non-equilibrium correlation time in the system [26].

Notice that model (c) was shown to conserve total energy exactly; see section 2.2. There-
fore, the long increase of the kinetic energy is merely related to a strong overestimation of
the retardation. We also investigated the relevance of higher-order retardation contributions
numerically. The first-order term contributes to the kinetic energy just after the saturation
of model (b), but the effect is less by an order of magnitude. This indicates that for finite
times the retardation expansion (beyond the zeroth-order term) is poorly converging, at least
within the Born approximation and without taking into account self-energy effects.

Notice the surprisingly good agreement of the kinetic energy behaviour for models (b)
and (d). This allows us to conclude that the actual memory depth (which is zero in model
(b)) is rather small. On the other hand, in model (c), the memory depth has the maximum
value (equal to the actual timet), which strongly overestimates retardation effects. To further
investigate the effect of finite memory depth and of self-energy, we solved equation (1) with
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non-zero damping, treating the self-energy approximately. The simplest approximation
is to neglect the renormalization of the real part of the energy (related to Re6), but to
include the damping coefficientsγ (p, t) and calculate them from the Markovian limit of
the retarded self-energies Im6R(p, t, t). This means that we use as the damping coefficients
the intraband dephasing rates calculated from the Markovian Boltzmann equation with the
actual distribution function. The results show the same tendency as the Kadanoff–Baym
equations: the relaxation is faster for the largerκ-value [26]. This is due to the fact
that with decreasingκ, the dephasing ratesγ grow rapidly, reducing at the same time the
effective range of theτ -integration in equation (1) and, hence, the whole collision integral.
However, the Markovian approximation for the self-energy turns out to be too large. As a
result, with this approximation the relaxation of the distribution function is slowed down
significantly in comparison to all other models. The reason is that in this approximation,
the damping ‘switched on’ instantaneously rather than building up with the correlations. At
the same time, the kinetic energy increases even more strongly than according to model (c),
which here is a consequence of the violation of total energy conservation mentioned in the
discussion of equation (4) above, caused by the neglect of the real part of the self-energy.

On the other hand, a self-consistent treatment of the retarded self-energy is possible.
One can calculate the retarded self-energy in the second Born approximation from its full
non-Markovian expression and keep both the real and the imaginary part. The collision
integral calculated in this way shows good quantitative agreement with the results of the
full two-time calculations (d). Results for various approximations for the self-energy will
be given in [27].

4. Discussion

Despite their model character, our calculations allow a number of conclusions to be reached
regarding the theoretical description of carrier–carrier scattering on short time-scales.

(i) In conserving total energy, the non-Markovian kinetic equation (1) provides a
significant improvement over conventional kinetic equations. Without self-energy effects
the conservation is exact. The inclusion of damping into the kinetic equation gives rise
to additional contributions to the total energy. The commonly used phenomenological
expressions for the damping violate energy conservation. Using total energy conservation
as a criterion allows us to test the consistency of the approximations for the retarded self-
energy, e.g. in the generalized Kadanoff–Baymansatz. The physically correct conservation
behaviour may be restored if also the real part of the renormalization (self-energy) is included
and a self-consistent non-Markovian treatment of the self-energy is performed.

(ii) The most important non-Markovian effect turns out to be the kinetic energy increase.
As a result, high-momentum states are more populated and the temperature of the final
state is higher than predicted by Markovian models. This may significantly alter the
thermodynamics and transport properties of the stationary state in comparison to those
predicted by Markovian kinetic equations.

(iii) The inclusion of self-energy effects is essential for a correct description of the
relaxation in the long-time limit. However, self-energy has to be treated well, balanced with
the kinetic equation. This requires self-consistency, with respect to the actual distribution
function, as to the level of approximation (e.g. Markovian versus non-Markovian). A fully
self-consistent treatment is possible only on the basis of the full Kadanoff–Baym equations.

(iv) Good quantitative agreement with the results of the Kadanoff–Baym calculations
can be achieved from a retardation expansion of the non-Markovian collision integral (1),
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even from the first expansion term (approximation (b)). This means that the neglect of
both the memory and the self-energy effects seems still to retain the main effects (energy
broadening), at least within the Born approximation.

(v) As a consequence of point (ii), experimental tests of memory effects should be
designed to probe directly the tail of the distribution. The best candidates are systems with
strong carrier interaction, such as quantum-confined semiconductor structures, since the
actual amount of kinetic energy increase directly depends on the strength of the interaction.

For the extension to femtosecond relaxation in semiconductors, the kinetic equation
(1) has to be generalized to include the hole component(s) and the interband polarization
dynamics, i.e. to the generalized semiconductor Bloch equations; see e.g., [7, 8]. Further-
more, the use of a static approximation which is mainly dictated by the numerical
complexity is not always justified. In pre-excited or electrically pumped semiconductors
(optical amplifiers and lasers), this approximation may safely be regarded as fully sufficient
microscopic description. For optically excited semiconductors, a static model should be
sufficient to describe processes after longer times. For the initial stage, the description of
carrier generation has to include screening build-up [15, 16], for which (once a sufficient
electron–hole density has been created) the appropriate approximation is the RPA [5, 6].
For the case of strong coupling (low density; the first few femtoseconds of the excitation),
the Born approximation fails, and one has to use the ladder approximation (theT -matrix
approximation), which, moreover, allows one to describe the formation of bound complexes,
such as excitons and bi-excitons [29] .
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