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Summary 

The composition andiihe equation of state for a binary mixture of dense partially ionized hydrogen 
and helium are investigated on the basis of quantum statistical theory. Theoretical evidence for the 
existence of a hydrogen-like and helium-like plasma phase transition is found. Critical data for the 
phase transitions are given for the whole range of the mixing parameter. 

I. Introduction 

The thermodynamic and transport properties of hydrogen and hydrogen-helium mixtures 
are of high current interest for the investigation of astrophysical objects such as giant planets 
or stars. The helium contents, the degree of ionization as well as possible demixing of the 
hydrogen and helium components [ 1 - 31 are crucial for astrophysical evolution models. 
However, equally important is the question of the existence of phase transitions in H -He 
mixtures. The appearence of two coexisting phases would significantly change the mass 
and heat transport as well as electrical and optical properties of these systems. 

The equation of state (EOS) and the resulting phase diagram for hydrogen and helium at low 
pressure are well investigated. However, more relevant for astrophysical problems is the 
high pressure 'behavior where the plasma is strongly correlated [4- 161. There are strong 
theoretical arguments for the existence of a plasma phase transition (PPT) at megabar 
pressures. The critical point is expected to be mainly determined by the Coulomb interaction 
of the free charge carriers. Though the PPT in ionized gases is still not accessible for 
systematic experimental study, its occurence in semiconductor electron-hole plasmas is well 
established, for a review cf. [17]. 

The PPT was first discussed in papers of NORMAN and STAROSTIN [4] and EBELING, 
KRAEFT and KREMP [5 ] .  During the last 20 years the PPT then has been extensively studied 
theoretically for hydrogen, e.g. [7- 10, 14- 161. It is interesting to note that the prediction 
of the PPT has been derived from quite different models. There are papers which use the 
grand canonical ensemble deriving the EOS in the physical picture and transforming it in 
the chemical picture [5, 10, 18-20]. Another approach departs from models for the free 
energy in the chemical picture, i.e. works in the canonical ensemble [ll - 151. The latter is 
better known in astrophysics due to its relative conceptual simplicity. However, some 
problems, in particular the free-bound and bound-bound particle interaction, cannot be 
accounted for in a systematic way at this level of description. 

The quantum statistical approach starting from the physical picture, is without doubt, 
the most general and systematic approach to thermodynamic properties of dense nonideal 
plasmas. Of course, a complicated problem has to be solved in this case, especially, if one is 
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interested in a consistent and full description of the plasma state accounting for dynamical 
screening, phase space occupation effects, cluster formation and pressure ionization and 
dissociation. The way how to develop such a theory will be outlined in sections I1 and 111. 

Due to the complexity of the quantum statistical theory, in practice, additional simplifying 
assumptions are unavoidable. Substantial simplifications in the treatment of the Coulomb 
interaction were acchieved by the introduction of Pade approximations [7]. Improved Pade 
approximations have been presented in subsequent years [21, 221. They give the correct 
limiting behavior, and they reproduce results for the thermodynamic functions obtained 
from Monte Carlo calculations for one-component plasmas. The contribution of the neutral 
particle interaction has so far been included, applying classical theories of dense fluids where 
the two-body interaction is described by the hard sphere potential with temperature- 
dependent diameters [6, 10,231. Improved theories have been applied working with density 
and temperature dependent hard sphere diameters [ 14,151. The interaction between charged 
particles and neutrals is usually treated on the level of third virial coefficients in first and 
second Born approximation [18, 101. The third virial coefficient is frequently reduced to a 
second virial coefficient for a polarization potential. 

Summarizing current results for the PPT in hydrogen according to different theories, 
one, first of all, has to admit surprisingly good agreement in the critical temperatures. The 
data range from 14000 K to 20000 K. Larger differences exist with respect to the critical 
pressure, the critical density and the coexistence line. 

The question of a plasma phase transition in pure helium was investigated much less, 
[24, 251. As in the case of hydrogen, a plasma phase transition is predicted for dense helium 
too. Recently FORSTER and EBELING [26] obtained for the critical temperature T,  = 19000 K 
and for the critical pressure pc = 0.5 TPa. It is difficult to estimate the quality of these first 
results due to the lack of experimental data. There are EOS-data given by KOORTBECK 
et al. [27]. Unfortunately, these data don't cover the He-plasma region. Of course, specific 
properties of helium that are due to the more complex atomic structure should become 
important at high densities. In fact, FORSTER et al. predict a second phase transition in 
helium in connection with pressure ionization of He' with T,, = 61 000 K, pc, = 20 TPa [26]). 

For many problems of astrophysical interest, the system is mainly consisting of hydrogen 
and helium. Therefore, an interesting problem is, what will happen to the PPT in the binary 
mixture, i.e. what will be the influence of the helium component on the plasma phase 
transition. In this paper we make a first attempt to answer this question. Our calculations 
are based on a quantum statistical approach developed by EBELING, KREMP, KRAEFT and 
co-workers, e.g. [5 ,  91, that has been successfully applied to partially ionized hydrogen, e.g. 
[7, 101. The aim of this paper is to extend this approach to hydrogen-helium mixtures. Our 
model covers the fully ionized plasma state and the atomic and molecular gas mixture as 
well. The charged particle interaction is considered in the framework of the two-fluid model, 
utilizing the Pade formulas of EBELING and RICHERT. For the charged particle-neutral inter- 
action, the polarization potential model, and for the neutral-neutral interactions, effective 
hard sphere models are used. All approximations are given in section IV. The simplifying 
approximations are chosen to treat both components in a consistent manner. Certain better 
approximations that are known for hydrogen [15] should be applied to H-He mixtures 
after similar results for the helium component become available. 

Focussing on the pressure ionization of helium atoms, it was sufficient to consider only 
that part of the phase diagramm where the twofold ionization of He can be neglected. Our 
analysis showed that this is possible for temperatures T < 25000 K and number densities 
below 1024cm-3. At the same time our calculations do not enter the region of limited 
solubility of helium in hydrogen at very high pressures ( p  > 10 Mbar) where phase separation 
is predicted (see e.g. STEVENSON (21, HUBBARD and DEWITT [3], KLEPEIS et al. [28]). Based 
on the previous results for pure hydrogen [7, 9, lo], we expect that the current model will 
give reasonable results for the critical point of the PPT in hydrogen-helium mixtures. Our 
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main result is somewhat surprising: There is not one plasma phase transition of the binary 
mixture, but both the hydrogen and the helium PPTs survive. However, with an increase 
of the number fraction of the other component, the instability region is shifted to lower 
temperatures. This behavior of the critical temperatures of the PPTs resembles the freezing 
temperature curves of binary liquid alloys. 

11. The Equation of State for Partially Ionized Plasmas 

In the grand canonical ensemble using the Green’s functions techniques, the thermodynamic 
properties can be calculated from the relation 

which is of advantage because it allows, in a simple manner, to build up a quasiparticle 
picture summing up all the corresponding interaction contributions to the EOS. In (2.1) na 
is the number den$y of the elementary plasma particles (a = e, i) and f . ( w )  is the Fermi 
function 

.L(w) = [ ~ X P  P(w - pa) + 1I-I 

The spectral function A , ( p o )  is given by 

- 2 Im C,(pw) 

( w  - & - Re C,(pw) 
Aa(Po) = 

where the self energy function Ca(pw) is defined in well-known manner by the Dyson 
equation of the one-particle Green’s function. With eq. (2.1), the EOS is determined quantum 
statistically in the physical picture. The two-particle Green’s function or the self energy 
function are the central quantities which can be calculated using the diagram expansion 
or the methods based on the equations of motion. For details concerning Green’s functions 
in quantum statistics, we refer to [9, 291. 

In this paper we start from eq. (2.1). The chemical potentials p, can be obtained by 
inversion, and therefore all thermodynamic functions are available if the self energy is 
known. In order to derive approximate expressions for the EOS we will assume that the 
imaginary part of the self energy function is small compared to the real part. The physical 
meaning of this approximation is that we have weakly damped one-particle states (weakly 
interacting quasiparticles). From (2.1) then we get [30] 

where P denotes the principal value, and Ea(p)  is the quasiparticle energy which follows 
from the solution of the dispersion relation 
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As can be seen, the real part of the self energy represents a correction to the kinetic energy 
describing the influence of the plasma medium on the one particle properties. With eq. (2.3) 
different contributions to the density are obtained: The first term on the r.h.s. is the 
contribution of an ideal Fermi system of quasiparticles with the energy given by (2.4). The 
second and the third terms in (2.3) are the contributions due to the interaction of quasi- 
particles. Of course, the renormalized description given by (2.3) can be turned into the usual 
formulation with “undressed” particles expanding the Fermi function with respect to Re C,. 
In the nondegenerate case, then the well-known fugacity expansion of the EOS can be 
derived [30]. 

Let us start from the renormalized description given by eq. (2.3). In order to get explicit 
results, approximations for the self energy are necessary. In our case of a partially ionized 
plasma where the formation of bound state complexes is of importance, a cluster expansion 
of the self energy function has to be found. Such cluster expansions which follow from 
diagram techniques and from the equations of motion are given in [33, 31, 18, lo]. 

For demonstration of the approach we will restrict our discussion to the second order 
cluster expansion, that means, we consider the binary screened ladder approximation (SLA). 
Using the diagram representation the self energy reads [5, 30, 341 

where the full lines denote single particle Green’s functions, the wavy line the dynamically 
screened potential in random phase approximation. 

The first diagram on the r.h.s. of (2.5) represents the Hartree-Fock and the Montroll-Ward 
contributions. Then we have the second order exchange and the third order diagrams. The 
last diagram represents the in-medium two-particle T-matrix determined by a generalized 
Lippmann-Schwinger equation [36]. The P“ substracts the (divergent) lowest order terms. 
Explicit expressions of the diagrams in (2.5) can be found in [5].  

Inserting the screened ladder approximation into eq. (2.3) one gets after transforming 
the energy variables 

+ m  

- m  

2 Im < pp’ l%b(o) l  P’P > N,Jnib(o)  - n”sb(E,J . (2.6) 

Here nib(w) = (e@(‘-#--ub) - I ) - I  is the Bose function, N u b  = 1 - fa - fb is the Pauli 
blocking factor and E,, = E, + E, is the two-particle energy. 

For the further consideration it is convenient to split the quasiparticle shift into the part 
which contains the terms up to the third order and into the part of the higher orders. Then 
the quasiparticle distribution function is expanded according to 

(2.7) 

Eb denotes an approximation to the quasiparticle energy that takes into account the 
Hartree-Fock, the Montroll-Ward diagrams and the contributions of third order, that 
means the first four diagrams of (2.5). 

f , (E,)  = + p“B Re CJP, Eb) f , ( E b )  Vb(Eb) - 11 . 
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With (2.7) it is possible to rewrite (2.6). Especially, one can separate the bound state and 
the scattering state contribution what gives [35, 30, 361 

Here, Tr is the trace and E j ,  is the energy of the two particle bound state wherej denotes 
the set of internal quantum numbers and P the total momentum. Gab is the retarded 
two-particle Green’s function which is determined by the Bethe-Salpeter equation. Gab 
describes the two-particle properties in the medium and is related to T-matrix by 

(2.9) 
G:b is the corresponding Green’s function of free quasiparticles. 

The first term iu (2.8) gives the Fermi gas contribution of quasiparticles where the 
interaction with the surrounding plasma particles is accounted for by a self energy correction 
which includes dynamical screening and degeneracy effects. The second and the third terms 
can be considered as the bound state and the scattering part of a generalized second cluster 
coeficient, respectively. It gives the contribution of the two-particle interaction to the EOS 
taking into account in-medium effects. In particular, the bound states behave like Bose 
particles with Energies Ej,. These bound state energies are to be determined from an effective 
wave equation which follows from the homogeneous Bethe-Salpeter equation or from the 
ladder T-matrix equation [9, 371. The effective wave equation can be written in the form 

Gab = G:b + G:bxbG:b 

(H:b + H$) I y j P )  = E j P l y j P )  * (2.10) 

Here H:,, is the Hamiltonian of the isolated two-particle problem, and H$ takes into account 
all the corrections due to the influence of the surrounding plasma medium on the two-particle 
states. It contains self energy corrections, Pauli blocking and the effective interaction. 
Expressions for H:: can be found in [9]. The bound state energies which follow from (2.10) 
are then given by 

E j ,  = Ej”, + A j ,  (2.11) 

where Eyp is the energy of the isolated atom and A,,  is the energy shift due to the influence 
of the many-body effects. 

In first order perturbation theory the shift can be calculated from [9] 

A j ,  = <Yyj”p IH:LI Yj”P> 

with the IYjO,) being the eigenstates of H t k  
Let us now return to the EOS given by eq. (2.8). As already mentioned this is a very 

general EOS in the two-particle ladder approximation. But, there are many physical 
situations which allow to restrict to the nondegenerate case. Furthermore, if the second 
and the third terms of eq. (2.8) are taken in the static limit, we get 

(2.12) 



114 Contrib. Plasma Phys. 35 (1995) 2 

where z, = (2s, + 1)&/.42 is the fugacity normalized to the density with fa = en’’=’ and 
A,  = (2nh2/m,k,T)”*. The second and the third terms on the r.h.s. represent the second 
cluster coefficient given by the Beth-Uhlenbeck-formula (the lowest order terms are 
substracted). Here, the En, are the bound state energies and the q,(E) are the scattering 
phase shifts which follow from the solution of the statically screened effective wave equation. 
In eq. (2.12) the thermal wave length is I, ,  = (h2/2m,,k,T)’/2 with m,b being the reduced 
mass. For simplicity of the notation, we have dropped the exchange term here. If higher 
order Levinson-theorems are applied the second cluster coefficient can be rewritten in the 
form [38, 391 

Here 9(’3) is a reduced phase shift sum subtracting the Born terms up to the third order. 
The full phase shift sum is 

1 
9(E)  = - c ( 2 1  + 1) q, (E) .  

7 1 1  

For systems with Coulomb interactions the representation (2.13) is of special interest. In 
particular, we obtain the Planck-Larkin-sum of bound states, given by the second term 
on the r.h.s. of (2.13). This quantity has the useful property to be convergent for plasmas 
in the zero density limit. In this approach, this sum is a straightforward result of the theory. 

As already mentioned, we have restricted our theoretical considerations on the EOS in 
the screened ladder approximation taking into account two-particle correlations. Of course, 
generalizations are possible in order to include higher order clusters. Then further diagrams 
have to be included in the self energy function C, as well as in the plasma-Hamiltonian 

which describe the formation of more complex bound states and corresponding scattering 
processes. For instance, if we want to include the interaction of free charged particles with 
neutrals (two-particle bound states) the self energy function is given approximately by 

As can be seen, the interaction between the free particles and the bound states is accounted 
for by a special three body T-matrix determined by the Lippmann-Schwinger equation 
P I ,  321 

(2.14) 

where the notation of multi-channel scattering theory is used. In (2.14) V$ is the scattering 
potential in the channel k and H 3  is the three-particle Hamiltonian. In order to describe 
the influence of three-body interactions on the bound state energy shifts in eq. (2.10) 
one has to include the Ti3-matrix contribution in the plasma Hamiltonian of the effective 
wave equation. With T z 3  the interaction of the two-particle bound state with a free particle 
is accounted for. 
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Further generalizations to higher order complexes can be achieved in similar manner by 
inclusion of corresponding T-matrix contributions in the self energy function and the plasma 
Hamil tonian. 

111. Chemical Picture. Mass Action Law 

The structure of the EOS given by (2.8) or by (2.12) shows that it is possible to transform 
the physical picture described up to now into a chemical picture. Applying the principle 
that bound states can be treated as new (composite) particles we define the fugacity of these 
new particles by [5, 341 

iAj = e-DEP. (3.1) 

Eq. (3.1) represents a mass action law in terms of the fugacities of the free charged particles 
and the atoms in the state I j ) .  Starting from (2.8) the fugacities of the atoms can be obtained 
by inversion from 

(3.2) 

where n A j  is the.atomic number density. 
The densities of the particles that are not in bound states are defined by the first and 

the third terms on the r.h.s. of eqs. (2.8). These terms represent the free quasiparticle and 
the reduced two-particle scattering contributions of the EOS. Since the quasiparticle density 
already contains major scattering contributions, in many cases, the reduced scattering part 
is small. If we neglect this contribution, the fugacities of the free particles follow from 

(3.3) 

where Eb(p)  is the quasiparticle energy. 
For the further consideration we will apply the "rigid shift" approximation [37]. In this 

approximation the quasiparticle energy shifts are replaced by thermally averaged shifts 
which are determined by the normalization condition of the respective distribution function. 
It follows that this momentum independent shift coincides with the interaction part of the 
chemical potential. One gets for the free charged particles 

(3.4) 

If we consider the nondegenerate case, from (3.1) with (3.2) and (3.3) the following form of 
the mass action law can be derived 

(3.5) 

where nA denotes the total number density of bound states. The sum of discrete atomic 
states reads 

b p n d  = xe-DEy. 
j 

In (3.5) the relation (3.4) was used. 
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In connection with the transformation into the chemical picture it should be mentioned 
that for the description of the ionization equilibrium it is useful to start from an EOS with 
a renormalized sum of bound states, i.e., we start from eq. (2.13) were we have extracted 
the Planck-Larkin formula avoiding divergencies in the zero density limit (Coulomb case) 
[39, 401. For the transformation into the chemical picture it is now possible to define the 
new composite particles by 

(3.6) 

which results in a modified mass action law containing a sum of discrete atomic states 
according to (3.6). 

The mass action law (3.5) has the well-known form of a Saha equation describing the 
ionization equilibrium of a nonideal nondegenerate plasma consisting of free charged 
particles and atoms. The interaction and therefore the nonideality is described by the energy 
shifts which are equal to the correlation part of the chemical potentials. If higher order 
bound state complexes have to be taken into account the chemical picture can be generalized 
and a system of mass action laws follows which determines the number densities of the 
different chemical species. Such a generalization is applied in the next section to the EOS 
for hydrogen helium plasmas. 

IV. Application to Hydrogen-Helium Plasmas 

We will now investigate the EOS for a partially ionized hydrogen-helium plasma for 
temperatures below T = 25000 K. We account for the formation of hydrogen and helium 
atoms as well as the formation of hydrogen molecules. As already mentioned, the twofold 
ionization of helium is negligible in the considered density temperature range. The plasma 
composition is determined then by a system of mass action laws describing the ionization 
and the dissociation equilibria in the plasma mixture. For the description of the ionization 
equilibria of the hydrogen and helium component we start from eq. (3.5) making some 
modifications. First, because of the relatively low temperatures, we approximate the sum 
of bound states by the ground state contribution (c = H, He) 

bpUnd e - P E ? ~ .  

Second, degeneracy is partially included for the free electrons via the ideal chemical potential 
determined by inversion of 

with the Fermi integral ZIiz(a)  
m 

0 

Furthermore, taking into account that the thermally averaged shifts are equal to the 
correlation part of the chemical potential, the mass action law can be written as [lo] 

n, = 2n:bpUnd(T) exp [bpid + b(pF' + pin' - p 3 ]  (4.2) 

where n, is the number density of the atoms (c = H, He) and n: is the number density of 
the corresponding free ions (i = p, He'). 
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Let us consider now the chemical equilibrium of molecular dissociation. It can be described 
by the following mass action law 

nn2 - - (nH)2 bkGnd(T) exp [/?(pF + /.$ - &:)] (4.3) 
Here bkGnd is the bound state part of the fourth cluster coefficient for the electronic 
singlet state Ej  of atom-atom interaction given in terms of all vibrational and rotational 
molecular states. It can be approximated by the following formula [lo] 

(4.4) 

with the characteristic temperatures T D  = 51960.5 K, 0 = 6160 K, 0, = 85.6 K and the 
thermal wavelength A ,  = (2nf1~/m,k,T)'/~. 
In deriving (4.2) and (4.3) the factorization of the partition function of the discrete atomic 
and molecular states was assumed. 

Let us now give a brief discussion of the approximations made in determining the 
correlation parts of,the chemical potentials. The free charged particle chemical potentials 
are given by the respective self energy function according to (3.4). The lowest order diagrams 
which we have included in section I1 give the correct behaviour for low densities up to 
O(n2e6) [5.42]. Because we are interested in a wide density temperature range to cover the 
partially ionized plasma region we have used Pade formulae given by EBELING and RICHERT 
[7, 101 which were constructed from the known limiting behaviour of low and high densities 
assuming the two-fluid model. Furthermore, numerical results, especially Monte Carlo 
data were taken into account. In order to treat the ionic mixture we have modified these 
formulae in a simple manner introducing an effective ion model with the free ion density 
nfff  = np" + n&+ and the mass mi = (n,*m, + n&+mH,+)/n;". This model works well as 
long as there are no multiply charged ions in the system. In the following we denote the 
free charged particle contributions by pf"' and pf"". For the electron contribution we have 

with the abbrevations fie = n:(47~fl)~", I, = (3/47~n:)"~, peD = - ( T C / ? ) - ' / ~  fi: l2 and 
p G B  = - 1.2217/1, - 0.08883 In (1 + 6.2208/r:.'). 

For the ion contribution the following expression was used 

(4.6) 

with fii = 8P3nPff, r = (4/3nfii)IE3, p i D  = -3/2. 2.1605(n'i)'12 and pMc/kBT = - 1.1928f 
+ 3.5382f - 0.5012 ln(f)  - 2.9761 - ~-,fi;/~/(l + rf) [0.0933 + 0.8206(fii)-114 - 0.2287 . 
(Zi)- 'I3]. Furthermore, we have 

a = {+ [1+  - 1 exp ( " )] - 0.299311. 
In (4P) - 6 1/4p 

The formulae (4.5) and (4.6) are written in Rydberg units. In eq. (4.6) p("' denotes the classical 
hard spherecontribution of the ions discussed below (only for the He-ions a nonzero diameter 
was assumed with d,,+ = 3aB/2). 

9 Contrib. Plasma Phys. 35 (1995) 2 
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The charged particle neutral interaction is considered on the level of pair approximations 
of the higher order virial coefficients for the corresponding quantum mechanical few-body 
problem. Using the optical potential method of scattering theory it is possible to introduce 
local effective atomic potentials which allow to express the higher order virial coefficients 
by second virial coefficients [6, 101. The interaction part of the charged particle chemical 
potential then can be written as (a = e, p, He+) 

p:' = py + 2kBT c ncB,,, c = H, H,, He 
C 

(4.7) 

where B,, represents the virial coefficient of charged particle-neutral pair interaction which 
is given by 

m 

B,, = 1 6 ~ ' / ~ / ? 1 ~  s dpp2 e-BEp Re (pYoI x, IYop).  (4.8) 
0 

Here IYo) is the atomic ground state vector and T,, denotes the T-operator of the few-body 
scattering process between the charged particle and the atom. If we introduce the transition 
operator 

t,, = (Yo1 T,, lYo> 

the following Lippmann-Schwinger-equation can be derived 

t,, = uZCp' + u:,P'G,(E) t,, 

with the resolvent operator G,(E) = ( E  - p2/2rn, + it$-' and the optical potential 

U::' = (Pol u,, lY0) . (4.9) 

The quantity u,, is determined by 

(4.10) 

Here V,, is the scattering potential in the considered channel, and H a  is the free charged 
particle Hamiltonian. In the simplest case of e-Hi-scattering one gets from eqs. (4.9) and 
(4.10), up to the second order assuming adiabatic and dipole approximation 

(4.1 1) 

The first term on the r.h.s. of (4.11) gives the static contribution and the second term 
represents the longer ranged polarization potential where apol is the polarizibility of the 
bound particle and ro is a fit radius for the behaviour at small distances. The parameters 
are chosen to be a?, = 4.5~2, ro = 1.456~1, for the e-H and ape, = 1.39~2, ro = 1.105aB for 
the e-He polarization potentials. For the e-H, interaction the averaged polarizability 
apol = 5 . 5 ~ 2  is used and ro is fitted to be ro = 1 . 4 ~ ~  In the calculation of the polarization 
potential static Debye screening was assumed with x2 = ~ x Z : , = , , ~  e% d/dp, na(pa) being the 
inverse screening length. 

If the charged particle-neutral contributions in (4.8) are considered in quantum first Born 
approximation with respect to the optical potential one gets 

B,, = p s d3ruZ,"'(r). 
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In the case of the electron neutral interaction we have taken into account the polarization 
potential contribution only because it gives the main contribution. For the ion-neutral 
interaction the hard sphere potential model is used, and the Bi, are approximated by classical 
virial coefficients of hard spheres [ 101 whereas the corresponding Hef-contributions are 
extended to the same level as the hard sphere contribution of the neutral particles with the 
diameter given above. 

The interaction part of the chemical potentials for the atoms and the molecules have 
been calculated from (c = H, H,, He) 

(4.12) 

where pfs contains the neutral-neutral hard sphere interaction and the last term accounts 
for the charged particle-neutral interaction in $'. For the calculation of p y S  the 
Mansoori-formulae valid for classical fluid mixtures of hard spheres was applied [41]. We 
use temperature dependent diameters of the atoms that are determined from second virial 
coefficients using Morse- and EXP-pair-potentials for the interaction of hydrogen atoms 
[23] and a EXP-6-pair potential for the He-He interaction [27]. The diameters of the 
H,-molecules are obtained from the atomic ones by an addition rule including the atom-atom 
equilibrium distance. In Tab. 1 the atomic and molecular diameters are given for some 
temperatures. 

We want to mention again that the model presented here is based on a level of description 
developed in earlier papers [21, lo]. The aim of this paper is to use this model as a first 
step in order to describe the main influence of the helium component on the plasma phase 
transition in H- He mixtures. Of course, improvements of the model are necessary in order 
to get more rigorous results. Better approximations must be used for the charged 
particle-neutral and the neutral-neutral correlations. Especially, the temperature dependent 
hard sphere interaction represents a crude model which allows a description on a qualitative 
level only. Because the plasma is considered up to very high densities, quantum many-body 
effects are of importance and one, in principle, has to carry out a rigorous quantum statistical 
calculation in a consistent manner according to the theory described above. However, this 
is a very complicated problem, and it is solved up to now only with many additional 
approximations [5,  91. In the last time SAUMON and CHABRIER [15] are trying to improve 
the equation of state for dense hydrogen plasmas applying a free-energy model in a chemical 
picture for a mixture of electrons, protons, hydrogen atoms and hydrogen molecules. 
Especially, the hard sphere contribution of the neutral-neutral interaction was treated with 
higher accuracy using the WCA perturbation theory and interatomic potentials modified 
according to available experimental results. In their calculations the plasma phase transition 
could be found and a detailed discussion was given about the influence of the different 
contributions in their free-energy model. 

Let us discuss now the results concerning the plasma phase transition for hydrogen-helium 
mixtures which follow from the simple model used in this paper. 

Table 1. Hard sphere diameters for different temperatures 

T(K) d H ( A )  dH, (A) dHc (A)  

10000 1.56 2.31 1.46 
15000 1.44 2.19 1.37 
20000 1.36 2.11 1.30 
25000 1.30 2.05 1.25 

9* 
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V. Numerical Results 

Figs. 1-4 show the results of the numerical solution of the coupled set of three mass action 
laws eqs. (4.2), (4.3), for different values of the mixing parameter y. The mixing parameter 
is defined a s y  = (n&+ + nHe)/ni with n, = n t  + nH + 2nH, + n i e +  + nHe being the total ion 
density. The number fraction coefficients are a, = n:/n,  aH = nH/ni, aH, = 2nH,/ni, uHe 
= nHe/ni and uHe+ = nGe+/ni. 
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Fig. 1. Plasma composition of pure hydrogen (y = 0) vs. total ion density for T = 15OOO K. 
Fig. 2. Plasma composition ofa H - He mixture with y = 0.1 vs. the total ion density for T = 20000 K. 
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Fig. 3. Plasma composition of a H - He mixture with y = 0.5 vs. total ion density for T = 20000 K. 
Fig. 4. Plasma composition of pure He (y = 1) vs. total ion density for T = 20000 K. 
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Consider first pure hydrogen. Fig. (1) shows the plasma composition for T = 15000 K, 
i.e. close to the critical point of the PPT (see below). At low densities the plasma is fully 
ionized. With increasing density, hydrogen atoms are formed. The atom fraction decreases 
again for densities above 1O2I cm-3 due to the formation of hydrogen molecules. Around 
loz3 ~ m - ~ ,  we observe a strong increase of the degree of ionization, what describes the 
Mott transition in the dense hydrogen plasma. Notice that in our model, pressure ionization 
and pressure dissociation occur nearly at the same density, in contrast to previous results 
[lo]. Figs. 2, 3 show the composition of H-He mixtures at T = 20000 K. At low densities, 
our model describes the partially ionized plasma mixture. First, we observe the formation 
of helium atoms because of their higher binding energy. In the region from ni x lo2’ cm-3 
to ni x cm-3 the plasma mixture mainly consists of neutrals. As in the case of pure 
hydrogen, pressure ionization and pressure dissociation of hydrogen occur nearly at the 
same density n, 2 ~ m - ~ .  

It can be seen that the pressure ionization of the helium component is separated from 
that of the hydrogen and occurs at higher total ion densities depending on the helium 
number fraction. By reducing the helium number fraction, pressure ionization of the helium 
component is shifted to higher densities. For comparison, we show in Fig.4 the plasma 
composition of pure helium in the region of one-fold ionization for T = 20000 K. 

Let us now consider the results for the EOS which can be calculated using the formula 

Here, p denotes the pressure and p = pe + (1 - y )  p p  + ypHc+ the plasma chemical 
potential, respectively. Comparing our results obtained for the plasma composition and the 
equation of state with available data for pure hydrogen and pure helium [15, 271, we found 
good agreement up to densities e - 0.2 g/cm3 for hydrogen and e - 0.6 g/cm3 for heiium. 

Consider now the pressure isotherms as a function of the total ion density. We clearly 
observe Van-der-Waals-like loops below a critical temperature indicating the existence of 
the plasma phase transition in the hydrogen-helium mixture for all values of the mixing 
parameter. For pure hydrogen, we find that the critical data are close to those of SAUMON 
and CHABRIER [15]. There are deviations with respect to the behavior of the coexistence 
line p(T) (Fig. 7a), which, in our opinion, is mainly a consequence of our simplified treatment 
of neutrals. For pure helium we get a critical temperature of the plasma phase transition 
(cf. Tab. 2) significantly lower as compared to the results of FORSTER et al. [24]. Their later 

Table 2. The critical points of the plasma phase transition in mixtures 
of hydrogen and helium. Two critical points are given for the helium 
number fractions y = 0.8 and y = 0.9, first line corresponds to the 
H-like transition and second one to the He-like transition, respectively 

Y T,, (lo3 r0 per (Mbar) nc, (loz3 c m - 7  

0.0 14.90 0.723 1.74 
0.1 .14.75 0.750 1.80 
0.2 14.55 0.790 1.85 
0.3 14.30 0.825 1.90 
0.4 14.00 0.865 1.94 
0.5 13.50 0.920 1.98 
0.6 12.80 0.970 2.02 
0.7 11.80 1.050 2.06 
0.8 10.30 1.160 2.10 

5.90 5.100 3.98 
0.9 7.80 1.310 2.14 

10.30 6.050 3.90 
1 .o 17.00 1.220 3.76 
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Fig. 5. Pressure isotherms of a H -He mixture 
with y = 0.1 vs. total ion density. The tem- 
peratures are T = 18000 K (a), 14750 K (b), 
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improved result 1261 is quite close to our data. The critical temperature of pure helium is 
higher than that for pure hydrogen, due to the higher binding energy. However, the finite 
size of the helium ions results in an additional lowering of the effective binding energy. 

The pressure isotherms in H-He mixtures with low values of the mixing parameter show 
small deviations from the pure hydrogen result. Fig. (5 )  gives the result for y = 0.1, relevant 
for conditions in giant planets. Obviously, the phase transition is here mainly dominated 
by the hydrogen component. We now consider plasmas with larger He fractions. One can 
see that there is not a single phase transition of the mixture. Both, the hydrogen and the 
helium phase transitions survive, and we, therefore, will call them hydrogen-like and 
helium-like plasma phase transition, respectively. There even exists an interval of mixing 
parameters, where both transitions can occur for the same temperature. The corresponding 
pressure isotherms exihibit two Van der Waals loops, cf. Fig. (6). Consequently, there are 
now two coexistence lines, shown in Fig. (7). The critical data for the H-like and He-like 
phase transitions are listed in Tab. 2. With increasing He fraction we observe a strong 
decrease of the critical temperature and an increase of critical density and pressure of the 
“H-like” phase transition. Similarly, for the “He-like’’ transition the critical temperature 
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Fig. 6. Pressure isotherms for mixtures of hy- 
drogen and helium with y = 0.95 (a), 0.9 (b), 0.85 
(c) and 0.8 (d) as a function of the total ion 
density for T = 7000 K. 
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Fig. 7. Coexistence pressure for H -He mixtures for different values of the mixing parameter, for the 
hydrogen-like plasma phase transition and for the helium-like plasma phase transition. 

decreases with growing hydrogen fraction. The critical density increases too, however the 
critical pressure is decreasing. This behavior is due to the change of the degree of 
ionization if one varies the mixing parameter at constant total ion density. The degree of 
ionization a, at the critical point of the H-like transition decreases with growing helium 
fraction, starting with LY, = 0.25 in the case of pure hydrogen. This is due to the fact that 
at the critical point the helium component is in the atomic phase. For the He-like transition, 
a, is increasing with growing hydrogen fraction (for pure helium a, = 0.11). The critical 
temperatures of the two phase transitions are of major interest and are, therefore, plotted 
in Fig. (8) vs. the mixing parameter. One clearly sees the strong decrease of T,, if one departs 
from the one-component situation. The crossing of both curves occures at T,(y) z 9OOO K 
and y x 0.872. For a given temperature below this value, both phase transitions can be 
observed, as already discussed in Fig. (6). At the crossing point, the degree of ionization is 
LY, = 0.07 and a, = 0.28 for the H-like and He-like transitions, respectively. 
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In view of the rather simplified treatment of the neutrals in our model, we checked the 
influence of the chosen parameters on our final results. It turned out, in particular, that 
variations of the effective hard sphere diameters within substantial range, has only little 
impact on the critical temperatures of the plasma phase transitions. This confirms the 
mentioned in the introduction expectation, that the critical temperature of the PPT is 
determined mainly by the Coulomb interaction. On the other hand we found that variations 
of the hard sphere diameters significantly influences the critical pressure as well as the form 
of the coexistence line. Therefore, an improved treatment of the neutrals will certainly affect 
these results. However, we expect that the critical temperatures will not change drastically 
compared to the results from our model. 

As a concluding remark we want to notice that Fig. (8) reminds the behavior of a classical 
binary liquid alloy if one considers its freezing temperature versus the mixing parameter. 

Acknowledgements 

The authors are grateful to D. KREMP, T. BORNATH, W. D. KRAEFT and H. E. DEWITT for 
discussions and stimulating comments on the manuscript. M. BONITZ acknowledges 
discussions with A. FORSTER and financial support from the German Academic Exchange 
Service (DAAD). 

References 

[ I ]  STEVENSON, D. J., Ann. Rev. Earth Planet. Sci. 10 (1982) 257. 
[2] STEVENSON, D. J., Phys. Rev. B12 (1975) 3999. 
[3] HUBBARD, W. B., DEWITT, H. E., Astrophys. J., 290 (1985) 388. 
[4] NORMAN, G. E., STAROSTIN, A. N., TEPLOFIZ. Vys. Temp. 6 (1968) 410 (Russ.); 8 (1970) 413 (Russ.). 
[5] EBELING, W., KRAEFT, W. D., KREMP, D., Theory of Bound States and Ionization Equilibrium 

[6] SCHLANGES, M., KREMP, D., Ann. Physik (Leipzig) 39 (1982) 69. 
[7] EBELING, W., RICHERT, W., Ann. Physik (Leipzig) 39 (1982) 362. 
[8] ROBNIK, M., KUNDT, W., Astron. Astrophys., 120 (1983) 227. 
[9] KRAEFT, W. D., KREMP, D., EBELING, W., ROPKE, G., Quantum Statistics of Charged Particle 

in Plasmas and Solids, (Akademie-Verlag, Berlin, 1976). 

‘Systems, (Plenum London, New York, 1986). 
[lo] HARONSKA, P., KREMP, D., SCHLANGES, M., Wiss. Z. Universitat Rostock 98 (1987) 1. 
[ l  I] ‘DAPPEN, W., MIHALAS, D., HUMMER, D. G., MIHALAS, B. W. 332 (1988) 261. 
[12] HUMMER, D. G., MIHALAS, D., Astrophys. J., 331 (1988) 794. 
[13] MIHALAS, D., DAPPEN, W., HUMMER, D. G., Astrophys. J. 331 (1988) 815. 
[14] SAUMON, D., CHABRIER, G., Phys. Rev. Lett. 62 (1989) 2397. 
[15] SAUMON, D., CHABRIER, G., Phys. Rev. A44 (1991) 5122; A46 (1992) 2084. 
[16] YAN, X., TSAI, S., ICHIMARU, S., Phys. Rev. A43 (1991) 3057. 
[17] JEFFRIES, K. D. and KELDISH, L. V. (Eds.), Electron-Hole Droplets in Semiconductors North 

[18] REDMER, R., ROPKE, G., Physica 130A (1985) 523. 
[19] ROGERS, F. J., DEWITT, H. E., Phys. Rev. AS (1973) 1061. 
[20] ROGERS, F. J., Phys. Rev. A10 (1974) 2441. 
1211 EBELING, W., RICHERT, W., Phys. Lett. lO8A 80 (1985). 
[22] TANAKA, S., MITAKE, S., ICHIMARU, S., Phys. Rev. A32 (1985) 1896. 
[23] AVIRAM, I., GOSHEN, S., THIEBERGER, R., J. Chem. Phys. 62 (1975) 425. 
[24] FORSTER, A., KAHLBAUM, T., EBELING, W., High Pressure Research 7 (1991) 375. 
[25] SCHLANGES, M., BONITZ, M., TSCHITSCHJAN, A,, in “Strongly coupled plasma physics” (Eds. 

[26] FORSTER, A., EBELING, W., in “Strongly coupled plasma physics” (Eds. H. M. VAN HORN and 

[27] KORTBECK, P. J., SCHOUTEN, J. A,, J. Chem. Phys. 95 (1991) 4519. 
[28] KLEPEIS, J. E., SCHAFER, K. J., BARBEE, T. W., Ross, M., preprint UCRL-JC-107995 (1991). 

Holland Publ. Co. 1988. 

H. M. VAN HORN and s. ~ H I M A R U )  University of Rochester Press (1993) p. 77. 

S. ICHIMARU) University of Rochester Press (1993) p. 347. 



M. SCHLANGES, M. BONITZ, A. TSCHTTSCHJAN, Plasma Phase Transition 125 

[29] KADANOFF, L. P., BAYM, G., “Quantum Statistical Mechanics” (BENJAMIN, w. A,, Inc., Menlo 

[30] KREMP, D., KRAEFT, W. D., LAMBERT, A. J.  D., Physica 127A (1984) 72. 
[3L] SCHLANGES, M., Ph. D. thesis (Rostock University, 1985). 
[32] KREMP, D., SCHLANGES, M., BONITZ, M., BORNATH, T., Phys. Fluids B5 (1993) 216. 
[33] KREMP, D., SCHLANGES, M., BORNATH, Th., J. Stat. Phys. 41 (1985) 661. 
[34] KREMP, D., KRAEFT, W. D., SCHLANGES, M., Contrib. to Plasma Phys. 33 (1993) 567. 
[35] KREMP, D., KILIMANN, K., STOLZ, H., ZIMMERMANN, R., Physica 127A (1984) 646. 
[36] ZIMMERMANN, R., STOLZ, H., phys. stat. sol. (b) 131 (1985) 151. 
[37] ZIMMERMANN, R., Many particle Theory of Highly Excited Semiconductors, (Teubner, Leipzig, 

[38] BOLLE’, D., Ann. Phys. (NY) 121 (1979) 131. 
[39] ZIMMERMANN, R., KREMP, D. (unpublished). 
[40] ROGERS, F., Astrophys. J. 310 (1986) 723. 
[41] MANSOORI, G. A,, CARNAHAN, N. F., STARLING, K. E., LELAND, T. W., J. Chem. Phys. 54 (1971) 

[42] DEWITT, H. E., SCHLANGES, M., SAKAKURA, A. Y., KRAEFT, W. D., Phys. Lett. A 197 (1995) 326. 

Park, California 1962). 

1988). 

1523. 

Received:August 3. 1994: 
revised manuscript received November 10. 1994 




