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The nonequilibrium properties of strongly coupled plasmas are investigated taking into 
account reaction and diffusion processes. The starting point is quantum kinetic equations for 
systems with chemical reactions involving many-body effects like screening, self-energy, 
and medium-dependent scattering. The influence of these effects on the kinetics of reaction and 
diffusion processes is discussed. Generalized expressions for the coefficients of impact 
ionization and diffusion are derived exhibiting a strong density dependence due to the many- 
body effects. Solving the reaction-diffusion equation (RDE) for a dense hydrogen 
plasma, nonlinear phenomena such as bistability, running ionization fronts, and droplet 
formation are obtained. 

I. INTRODUCTION 

Dense nonideal plasmas are of interest from the theo- 
retical point of view as well as from that of experimental 
investigations, e.g., in shock wave or laser compression.14 
In this paper, we consider the nonequilibrium properties of 
nonideal plasmas. We are especially interested in the influ- 
ence of nonideality effects on the ionization kinetics and on 
diffusion. 

Let us start our consideration with the following ques- 
tion: What is a nonideal plasma and which special effects 
may be expected in such a system? The behavior and the 
properties of a nonideal plasma are determined by the Cou- 
lomb interaction and the degeneracy. We have to account 
for degeneracy effects if the electron number density n, and 
the thermal wavelength A, fulfill the condition 

n&l, &= @G@ZQ&? 

The Coulomb interaction is important in the “corner of 
correlation” which can be seen in Fig. 1. This area is en- 
closed by the parameter lines 

nJ3= 1, r,= 1. 

Here I=e2/(kBT) is the Landau length and rS=d/aB is the 
Brueckner parameter with the mean particle distance d 
and the Bohr radius ag. In the corner of strong correlations 
many-particle effects may be expected, such as dynamical 
screening of the Coulomb interaction, dynamical self- 
energy, Pauli blocking, formation of bound states, and 
pressure ionization (Mott effect) .5*6 

All these effects influence the equilibrium and nonequi- 
Iibrium properties of a plasma. Of special interest are 
reaction-diffusion processes, which means formation and 
decay of bound states in connection with diffusion. From 
the phenomenological point of view, such processes are 
described by coupled reaction-diffusion equations: 

an, 
z+Vj,= W,(n, >...I q-1, a= 62 ,..., f, (1) 

with j,= - DaVn, being the diffusion current and 
WJn,,..., n,-) the source function describing the ionization 

kinetics. Reaction-diffusion equations are of general inter- 

est because they can serve as basic models for the descrip- 
tion of evolution processes and structure formation in 
physics, chemistry, biology, and even for social sciences.7-9 
Therefore, the foundation of such reaction-diffusion equa- 
tions from the fundamental equations of nonequilibrium 
statistical mechanics is an essential problem of the theory. 
Usually, the kinetic properties of many-particle systems are 
given by Boltzmann-like kinetic equations. But these equa- 
tions can be applied to dilute systems only neglecting the 
nonideality effects mentioned above. 

In order to describe the nonequilibrium properties of 
nonideal plasmas we have to start from generalized kinetic 
equations. As we will show, reaction-diffusion equations 
can be derived then with generalized expressions for the 
reaction rate and diffusion coefficients. Because of the 
nonideality, especially the diffusion coefficients Da as well 
as the source function of the chemical reactions W, be- 
come density dependent in a complicated nonlinear way. 
Therefore, nonlinear macroscopic phenomena like ioniza- 
tion fronts, phase separation, etc., can be expected. 

The paper is organized as follows. In the first part 
(Sec. II), we present the generalized kinetic equations for 
chemically reacting systems which are applied then to 
nonideal plasmas. Using the hydrodynamic approxima- 
tions, we derive reaction-diffusion equations and obtain mi- 
croscopically founded expressions for the source function 
and the diffusion coefficient including nonideality effects in 
Sec. III. Finally, the influence of these many-body effects 
on the macroscopic behavior of dense plasmas is consid- 
ered and nonlinear phenomena like nonlinear diffusion, bi- 
stability, running ionization fronts, and droplet growth are 
discussed (Sets. IV and V) . 

II. KINETIC EQUATIONS FOR NONIDEAL MANY- 
PARTICLE SYSTEMS WITH CHEMICAL REACTIONS 

Kinetic equations which take into account the forma- 
tion and the decay of bound states are given in papers by 
Peletminski,” Lowry and Snider,” Klimontovich and 
Kremp,‘*“3 McLennan,14 and others. But these equations 
have to be generalized for the case of nonideal reactive 
systems where many-body effects must be taken into ac- 
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nondegenerate 

FIG. 1. Density-temperature plane showing three regions of qualitatively 
different behavior of plasmas. The area of strongly coupled plasma (so- 
called corner of correlations) is enclosed by the parameter lines r,= 1 and 
tfP=l. 

count. This rather complicated problem was solved15-‘7 
using the method of nonequilibrium real-time Green’s 
functions. 

The result is the following kinetic equation for the 
Wigner distribution function f II of the free particles of spe- 
cies a 

I 

a aE,a aE, a ,~ .~- 
at+-& a,Iarap fAprt) 

= 1 I&(p,r,t) + c Iabc(p,r9ti:.e (2) 
b bc 

The single-particle energies on the left-hand side (lhs) are 
given by the dispersion relation 

2 
-KAprt) =&-+Re Zf (port) I A~=.E,(~~~) , 

II 
(3) 

where 2: (pwt) is the retarded self-energy function. The 
latter gives the shift of the energy of an isolated particle 
due to the influence of the surrounding particles and there- 
fore accounts for many-body effects in the kinetic equation. 
The energy shift can be calculated from a cluster expansion 
of the causal self-energy function. In a diagrammatic rep- 
resentation, it can be written in the form 

D 
LlIx-21 =f j +I, - L-l (4) 

where the first term represents the two-particle ladder con- 
tribution and the second term accounts for the three- 
particle processes. 

On the right-hand side (rhs) of-the kinetic equation 
(2), the collisions between quasiparticles are taken into 
account. In the case that the free particles are Fermions, 
the quantum mechanical Boltzmann collision integral Iclb is 
given by _ _- 

, 

1 
&?b(&r,t) z~v J- 

d3Pb 6 d3h 
(2&)3 (z&)3 (2&f I(Pnpb1T,bI~~b)b)2271.6(E,b-~bb)[~~b(l--f,)(l-fb) 

-(l-~a)(l-J‘b)fa.fd 

The three-particle collision integral can be written as 

(5) 

Iabc(pa,r~t)=~& F s d3pb d3pc 3 d(K$j (j$&‘&JcI c&IKE> 122?rs(E,--~)(~~~--~f~fbf~!.. 
m7m’ (2&l 

+& 1 c j- (;;;I d(W I (P P a b&c [ T:fc 1 Kc) 1 %-a (4 --&I (.?,J%*-&f ,F,,) * 
“be x 

-- = 
I ca .A~ 

I 

The integrals I& contain all the possible three-body scat- 
tering processes with free and bound particles. Especially, 
breakup and formation reactions are taken into account. In 
order to classify the different collision processes, we have 
applied the notation of multichannel scattering theory 
which is explained in Table I. 

411 processes are included by the sum over the channel 
numbers K where sd(Kcx) stands for the integration over 
the dynamical variables of the corresponding channel state 

tions normalized with respect to the number densities of 
free and bound particles, respectively, 

The dynamics of the- scattering pro&esses enter the col- 
lision integrals via two- and three-particle T matrices. The 
two-particle T matrix is determined by the. generalized 
Lippmann-Schwinger equation 

To&‘) = v,b+ Vab 
(I-fa-fb) -y 

ff 
z--Heab 

ub 2 

I K(Y). Here, Ip) and 1 jP) are single-particle states and 
two-particle bound states, respectively, f == f Jp,r,t) and 

where H$ is an effective Hamiltonian 

Fj=Fj(P,r,t) denote the corresponding distribution func- 
IT ~=b=E,+Eb+(l-fd-fb>v~b.. 
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TABLE I. Reaction channels, asymptotic scattering states, channel energies, distribution functions, and phase space occupation factors for the 
three-body scattering processes contained in the integral IOk 

tf channel 

0 a+b+c 
1 a+ (bSC) 
2 b+ (a-kc) 
3 cc (a-l-b) 

Id EK 

E,-tEt.+E, 
47 + &Pk 
E6.f J%P, 

Ed- -4,~~~ 

f# 

f,fbf, 

s:: 

f cFn,b 

N, 

(I--f,)(l--fb)(l--fr) 
(1 - f,)(l + F”,) 
(1 - fb)(l + Fi,,,) 
(1 - fJC 1 -I- F”,,, 

One can show that (7) corresponds to an effective wave be done replacing the Coulomb potential by a screened one 
equation which is given by which can be written as 

(E,+&,-Z)~,(P&‘&) + I1 -f&w-J) -f&wJ) 1 

%btqwt) =$$$j. , (12) s d3jQ d3& 
X (2d)3 vtPa-~a)~tp-~)\v~t~~~b,rt). (9) 
This wave equation determines the two-particle states 

\I/,(p,& = (PJ+, 1 VP) taking into account medium effects. 
There are the following types of solutions: 

bound states, 

scattering states, 

where P=p,+pb andp= (m~a-m~b)/(m,+mb) are the 
total and relative momenta, respectively. The three-particle 
collision processes are described by the T operators 

Iv 
T$= c&i2 ?ibc z-p 8:; ~0 r”’ abet (10) 

abc abc abc 

which determine the transition probabilities between the 
initial and the final three-body scattering channels. Here 
B$$ denotes the Hamiltonian of three free quasiparticles 
with the single-particle energies given by (3). Further, we 
have in first order, with respect to phase space occupation, 

~bc=(l+fc)&b+(l+fb)vac+(l+fa)vbc, (11) 

In addition to the kinetic equation (2)) an equation can be 
derived for the distribution functions Fi of the bound par- 
ticles. On the lhs of this equation, the quasiparticle energies 
of the bound states appear, and the rhs accounts for the 
collisions between the bound and the free particles. The 
explicit expression for the three-particle collision term, be- 
ing similar to that of (6), can be found in.‘* 

111. MANY-BODY EFFECTS IN DENSE PLASMAS 

In the following, we consider a strongly coupled 
plasma consisting of electrons, singly charged ions, and 
atoms in the state 1 j), where j denotes the set of internal 
quantum numbers. The number densities are n, nj, and np 
respectively. It is well known that the properties of 
strongly coupled plasmas are essentially determined by 
those many-body effects that were discussed in the previ- 
ous section. Additionally, the screening of the long-ranged 
Coulomb interaction must be taken into account. This can 

Here V ob=4~e2/q2 is the Coulomb potential, and c(qz,rt) 
is the dielectric function 

e(qz,rt) = I- C V,,Ltqz,rt). 
a 

(13) 

The latter is given in terms of the polarization function 
Il,,(qz,rt), which can be determined using the techniques 
of quantum statistical theory of charged particle systems. 

In the Vs approximation and if local equilibrium is 
assumed, the single-particle energy shift in ( 3) is given by6 

Re z%mrt) = s $ Vaa( f,(p+Wl 

s 

- do 
+p _ o. 21~ Im e-‘tqwt) 

X 
1- f,(p+q,rt) -n&m) 

1 z-w-&(p+q,rt) ’ (14) 

with nB(o)=($3”-1)-l. 
To work with the energy shifts given by (14) is diffi- 

cult. A possible approximation is to use thermally averaged 
shifts in the framework of the “rigid shift” approxi- 
mation.” In this case, the energy shift is replaced by a 
momentum-independent shift reproducing the correct nor- 
malization (the correct density n,). If local equilibrium is 
assumed, we have 

A,tr,d = 
Sd3p Re zftp,r,t) (d/d,u~)fa(p,r,t) 

.fd3p(a/a&) f&r,t) ’ 
(15) 

It can be shown that the thermally averaged shift is related 
to the chemical potential by 

(16) 

that means, A, is equal to the interaction part of the chem- 
ical potential. In the nondegenerate case and if we assume 
in (14) the static approximation, we obtain in lowest order 
(a=e,i) 
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-2.5 

-3.6 

FIG. 2. Isotherms of the plasma chemical potential pe+pP for hydrogen 
versus free electron density. The expressions for the correlation contribu- 
tions of the electron and proton’ chemical potentials are given in the 
Appendix. The temperatures are (a) T= 14 000 K, (b) 17 000 K, and 
(c) 20 000 K. 

.- -“, 

2 
&2, d= 

4~&(n,e2 
k T , -- -i_ 

B : . (17) 

This is the Debye shift which represents the limiting law 
for systems with Coulomb interactions. In a first approxi- 
mation, it describes the influence of the plasma medium on 
the single-particle properties. 

In general, one has to carry out quantum statistical 
calculations in order to obtain better results for the-one- 
particle shifts. We have applied the two-fluid model which 
results in an electron and an ion gas contribution including 
the Hartree-Fock and Montroll-Ward terms in the ex- 
change correlation part of the plasma chemical potential. 
In Fig. 2, the chemical potential of the free charged parti- 
cles for a hydrogen plasma is shown that was calculated on 
the basis of Padi interpolation formulas (cf., e.g., Ref. 20) 
given in the Appendix. An interesting feature is the ‘-‘van 
der Waals loop” which is, in equilibrium, connected with 
the plasma phase transition.2’Y22 As we will show, this 
property has important consequences in nonequilibrium 
situations, too. 

The main result of the many-body effects in dense plas- 
mas is the lowering of the ionization energy of the two- 
particle bound states. Therefore, the properties of the two- 
particle states in plasmas are of special importance in order 
to describe the macroscopic behavior of dense nonideal 
plasmas. An effective wave equation for the two-particle 
states in a dense plasma can be derived on the basis of 
Green’s function techniques. In v” approximation, one ob- 
tains instead of (9)23-25 

._ _ _ 
[&a(~,) +Eb(pd +A:;(pa& -z]‘Y(~~~) 

_ : 
,. -1 

- [ 1 -fak?) -fb(Pb) 1 

X 
s 

v”ff(papbqz)~(p,+q,pb-q>~3q=o, (18) 

where I, =pz/2m,, a=e,i. 
.*- .,I.. 

- . -7 
One can see.that, in comparison with the Schrodinger 

equation of an -isolated pair of particles, there are some 
differences arising from the inclusion of many-body effects. 
The latter are condensed in the self-energy corrections, 
Pauli blocking, and in the effective potential.“,The modifi- 
cations, in comparison with the effective wave equation (9) 
given in the previous section, are based on the inclusion of 
special plasma effects like dynamical screening. If.we,con- 
sider the nondegenerate case, the dynamically screened ef- 
fective potential is given by 

C3PQPbqZ) - v&(q) * ‘i - 

. i. 
-- __. ‘I 

~n~(w)+l I.. , ,I 

Z----E&,) -&b-q) ;“-; .I-.- 
-’ ‘“‘-7 75.7 

f iB(m) + 1 
+ 

z--w---a,(p,+G) -Eb(pb) 
(19) 

and we obtain for the dynamical self-energy I ~* ’ .“‘“. 

A:f(papt,d= s 
d3q : .: 

m [ tbd%&- vab(q) 1. 

+.,..Lf. . -*I (20) f. 2 
:. .:. ..I -I, _~ ._ _ 

In the static limit, the effective potential,simplifies to ‘z~ 
_x .. _,. ; .: ..‘,. 1 

; I*,, .j 

. . .-i,_ :- . i. 
which is the statically screened Debye potential. For the 
thermally averaged. two-particle, energy shifts, .we. obtain 
with (17) - .>..~ ., ‘>:*:i-‘; 

,- .?I _. ; Ti (g-5 ~ 1 

A:;=A,+&,= -tce2. 

Two problems can be solved with the effective. wave 
equation (18):.Pirst, the two-particle bound and scattering 
states can be determined accounting for the influence of 
many-body effects. Furthermore, the influence of the sur- 
rounding plasma on the two-particle energy spectrum is 
described. In order to show that, we apply perturbation .._. _. 
theory as a first step. The wave equation ( 18) &written for 
this purpose in the following form: 
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I 
continuum 

ground state 

I n-------c ’ I 

FIG. 3. Density dependence of the continuum edge and the ground state 
level for hydrogen (qualitatively). Here I;” denotes the effective ioniza- 
tion energy vanishing at the crossing point (Mott density). 

(@ab-&P) 1 ap> = -ff$(&‘) 1 aP>, (21) 

where eb is the Hamiltonian of the isolated two-particle 
problem and @ , includes all the many-body effects dis- 
cussed above. The explicit expression for H$, follows from 
(18) with ( 19) and (20). In first-order perturbation the- 
ory with respect to H$,, we find for the discrete two- 
particle energies 

Eip=~p+W.PI&,(~) IP), 

and for the scattering energies 

where mab denotes the reduced mass. The result of the 
numerical evaluation for the case of the ground state en- 
ergy ( j= 1) of atomic hydrogen is given in Fig. 3. 

(i) We observe a lowering of the ionization energy 
Gff = I El ( - A$ + Al with increasing plasma density 
which follows mainly from the lowering of the continuum 
edge. 

(ii) There is a crossover of the continuum edge and the 
ground state energy at high densities that defines the so- 
called Mott density. Bound states do not exist above this 
density. The disappearance of bound states is referred to as 
the Mott effect. 

IV. THE COEFFICIENTS OF lONlZATlON AND 
RECOMBINATION 

Now we apply the kinetic equations given in Sec. II to 
a strongly coupled plasma including the many-body effects 
discussed above. As in the previous section, we consider 
the plasma consisting of electrons, ions, and atoms in the 
state 1 j}. 

In order to describe the macroscopic properties of the 
plasma, we introduce macroscopic observables in the usual 
way. We define the number density of species a by fb(r,f) = s (2dij3 f,(wJ). (22) 

The diffusion current jf(r,t) can be written in the form 

jf=nawa=na(u,-u), (23) 

where the mean velocity u, is given by 

n,(r,~)u,(r,f) = s d3p a&C iw) 
(27~993 ap 

f,(~,r,r) (24) 

and the mass average velocity u by 

u=; CPa%r 
a 

with p=Z,p, and pa= n,m, being the mass density of spe- 
cies a. For the free charged particles, the species index is 
a=e,i and for the atoms in the state I j) we write a=). 

Equations governing the evolution of the number den- 
sities in space and time can be obtained by integrating the 
kinetic equations with respect to the corresponding mo- 
mentum. The result is 

in,(r,i) +div jf(r,t) = WJr,t) -div[n,(r,t)u(r,r)], 

(25) 
where IV, is the source function that describes the change 
of n,(r,t) because of ionization and recombination pro- 
cesses in the plasma. The explicit form of II’, follows from 
the rhs of the kinetic equations, especially from the reac- 
tion terms in the three-particle collision integrals. In Eq. 
(25), for the electron density, the source function can be 
written in the form 

We= C C (a~~~j-~~~~~i), (26) 
c=e,i j 

and it follows We= Wi= -XjWi 
In (26), we have introduced the coefficients of impact 

ionization and three-body recombination of the atomic 
level j. If degeneracy effects are neglected, one 
obtains12’26-28 

,*3 2?~6(&~-&) 1 (jp( &I T ::3(E~23+je) li$) 18%) t2$ :. , 
= ’ (27) 

3 d3F d3fi d”f& 
- - - 
fafe fi 

fljz$v .Fei j- (;;)3 (f-&3 C2fi..3w3 (2nJij32~@23-&3) I (.iPl @=I T::3(E:23+iE) IF=> t@+)I’, n, G’ 

(281 
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Let us now consider the problem of the calculation of these 
rate coefficients. A considerable simplification is possible if 
we take into account that there are different time scales 
during the approach to thermodynamic equilibrium. First, 
the system comes into equilibrium with respect to the 
translational degrees of freedom and then with respect to 
those of internal ones. At the latest stage, the chemical 
equilibrium is established. In the following, we will assume 
that local equilibrium has been reached already, so that the 
results being valid for equilibrium situations can be used. 
In the nondegenerate case, we have for the distribution 
functions of the free charged particles 

&p,r,t) =ewC---P[EJp,r,Q -pArJ> II (29) 

and for the bound particles in the state Ii) 

FO(P,r,t)=exP{--p[Ej(P,r,t)-ruj(r,t) II. (30) 

Here, E,(p,r,t) and E&P,r,t) are the quasiparticle ener- 
gies, and p,( r,t) and pjLli( r,t) are the chemical potentials of 
the free and bound particles, respectively. We keep in mind 
that ionization equilibrium has not been established yet, 
that means 

p&> +/Ji(r7t)#~j(r,t>. 

In the approximation of thermally averaged shifts ( 15), it 
is easy to derive the following simple relation between the 
rate coefficients: 

pj=~jA~ exp[ -($+A-/-A,-Ai)/ksT]. (31) 

In the case of ionization equilibrium, we arrive, therefore, 
at 

ni/npi=Aa exp[ - (g,+Aj-A=-Ai)/ksT]. (32) 

This is the well-known Saha equation for a nonideal 
plasma. The nonideality is contained in the energy shifts of 
the particles leading to a lowering of the ionization energy 
AIj given by 

qff= [$/I -N/1 AIj=Aj-A,-Ai. (33) 

Let us come back to situations where chemical equi- 
librium has not been reached yet. Because of (3 1 ), it is 
sufficient to calculate explicitly only one of the rate coeffi- 
cients. In the nondegenerate case, the ionization coefficient 
for electron impact can be written in the following form: 

Srm, 

s 

2 

“j= (2?rm&BT)3/Z 
m  d.s mjon(&)e-BE, ~=k, 

f E 
3 

(34) 

where u$‘” is the impact ionization cross section from the 
atomic state Ii) which reads, in statically screened first 
Born approximation, 

c+y=g ~mard~~zdCtF~qdg, V&)p,(q) 12. 
e 0 4min 

(35) 

Here fiq=p,-& denotes the momentum transfer of the 
projectile, and 

L,, = (pf - 2mP9 ‘12, 

Fe = (pi - 2mzff-F2) ‘I2 7 

%nin=Pe-Fe 9 

klmx=P,+F~ 9 

follow from energy conservation. The effective ionization 
energy $r is given by (33 ). With Pjpp we denote the atomic 
form factor 

P,(q) = s d3r Yf(r)Y~(r)ecf’fi)q’r. (36) 

The two-particle wave functions \Uj(r) for the atomic 
bound states and Y$ (r) for the scattering states have to be 
determined from the effective wave equation (18). 

The simplest approximation for oj follows if we restrict 
ourselves to ground state ionization (j= 1) and if we use 
for v”$ the Coulomb potential and for the wave functions 
the Coulombic ones. In this case, many-body effects are 
taken into account by energy shifts only. Then, the follow- 
ing modified Bethe formula is a good approximation:26y27 

~-A,---h~+h~ 

Pll * 
Inserting (37) in (34), the following interesting and sim- 
ple expression can be derived: 

id (A,-A,-A,,,)/kBT al=al e , 

a:d= 107&i 

W-m&,7) 3/2Ei (38) 

with Ei(x) = Jr, (et/t)dt. 
Expression (38) for the ionization coefficient repre- 

sents a generalization to a strongly coupled plasma. We 
have the usual ideal part and an additional contribution in 
terms of energy shifts following from the inclusion of the 
many-particle effects in the plasma. Using (38) in (3 1 ), we 
obtain for the recombination coefficient 

That means p remains density independent in this first 
approximation. More general results for the impact ioniza- 
tion and three-body recombination coefficient are given in 
Ref. 18 taking into account energy shifts, effective poten- 
tials, and Pauli-blocking. 

In Fig. 4, the results for a1 are shown following from 
(38) for a hydrogen plasma. The most important result is 
the strong nonlinear density dependence of the ionization 
coefficient which is a direct consequence of the nonideality 
effects condensed in the quasiparticle energy shifts. 

V. NONLINEAR DIFFUSION 

In order to obtain a closed system of equations for the 
number densities, we have to determine the diffusion cur- 
rent density given by (23). For this purpose, we multiply 
each of the kinetic equations (2) by the corresponding 
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FIG. 4. Ionization coefficient of a nonideal hydrogen plasma. For the 
energy shifts of the free and bound particles, the correlation parts of the 
chemical potential given in the Appendix were used. The values of the 
density of atoms nH are (in cme3): (1) Id’, (2) 5~ ld’, (3) IOz3, and 
(4) 2x 1023. 

momentum and integrate with respect to the latter. We 
obtain the following equation of motion for the mean 
velocity:28-30 

PO z* uoi-$, P&&:u,j+ $, II&j= S,i 
J J 

(39) 

with 

The rhs accounts for the influence of collisions on the mo- 
mentum balance of species a. It is given by 

Sa=Ra-uamaWo 

with 
3 

R,(w) = T s (f:p pd,dp,,r,d 

The pressure tensor on the lhs of (39) is defined by the 
relation 

s 

d3p, 8% 
@G#pai~jfa 

+ s (.f;)S % .f&ij* (4.0) 

The pressure tensor for the bound states follows if the 
binding energies Ej are used and if the distribution func- 
tions f, are replaced by the Fis. It should be mentioned 
again that the E,=EJp,,r,t) are quasiparticle energies 

Vp,(r,t) =VpF(r,r) -tn,VA,W). (45) 

It should be mentioned here that the p. cannot be consid- 
ered as pure partial pressures because of the interaction 
between the different plasma components taken into ac- 
count in the shifts A,. 

Equation (43) connects the thermodynamic forces of 
the nonideal plasma with the momentum transfer due to 
the collision processes. In a first step, we will restrict our- 
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given by (3). Therefore, the expression (40) is an impor- 
tant generalization of the ideal gas result because it con- 
tains nonideality contributions in terms of energy shifts. 

The equation of motion for the mass-averaged velocity 
can be obtained from (39) by summation over the species: 

D a 
a x Jl@ij=O P Fr “i-6 P”iuj+Tj n (41) 

with 

Da a 
Fr=$"j &: 

J 

In the following, the system is assumed to be in a stage 
where local equilibrium is established only for each plasma 
species. In the approximation of thermally averaged shifts 
and assuming 

w&v~= (k,T/m,) ‘12, 

the distribution function can be used in the form3’ 

f&q 1 +g), ca=Pa-mau (42) 

with the notation 

fi(p,,r,r) = n& exp 
i 

- (~~0~~~ ‘). 

A similar expression follows for the distribution function 
Fj of the bound states. 

Neglecting contributions nonlinear in M, we simplify 
(41) to 

a 
pT&uz-VP. 

Inserting this result in the equation of motion (39), we 
obtain 

VP,--: VP=R,-m,u,W,=S,, 

where we can write 

(43) 

$, naij=VPBij - 
J 

According to (40) and using momentum-independent 
shifts, the pressure gradients are given by 

VP(r,t) =V CpoW, 
D 

(44) 
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selves to elastic scattering contributions (S, = Rf 9. The rhs 
of Eqs. (39) and (43) can be expressed then in terms of the 
diffusion currents 

(469 

where n is the total number density. In (469, the binary 
diffusion coefficients were introduced: 

SGLn $ (z!$J)‘” Jam z%-~Q~(z9dz* (479 

Here we have .z?= (pa-pb)‘/2mab, mab=mamd(m,+mb) 
is the reduced mass, and Q$ is the. transport cross section 
given by 

Q~=2?i~~~d0sinO(1TcosO)~=, -;(48) 
<L* - i. 

with a&, being the differential scattering cross section. 
Equation (43) with expression (46) for the diffusion 

currents can be solved in the standard way. The result is 

j,f=-& ~-‘Qi(iQb-;vP)~ 
a 

(499 .~ 

where B,Rf = 0 and &m&f=0 was used; Dab are the mul- 
ticomponent diffusion coefficients that can be expressed in 
terms of the binary diffusion coethcients. 

-In the following, the atoms in the plasma -are assumed 
to be in the ground state only (j= 1). Then we have a 
three-component plasma, and the Dab can be written as 

nc[gac(m~mb) -gob1 

nag~b+nb~&ncgab 
(509 

Inserting (49) into the balance equation (25) for the num- 
ber density, we find for the free charged particles _ 
3. 
~n,+dWw9 fdiv vpB-;vp)] 

L C (OZ&il~-&Zp~i) 
c=e,i 

and for the atoms 

(519 

a 
at nl +div(niu) +div )I : 

(529 

These equations represent a system of reaction-diffusion 
equations for a nonideal plasma. Many-body effects are 
included in the diffusion terms as well as in the ionization 
and recombination rates. The latter were discussed in the 
previous section. 

Before we turn to further investigation of Eqs. (5 1) 
and (529, we have to make sure that our theory (with all 
assumptions made) leads to results that are thermodynam- 
ically consistent. As it was shown, nonideality is taken into 
account in the quasiparticle picture by energy shifts ac- 
cording to (3). Approximating the latter by momentum- 

independent energy shifts, we cannot, of course, reproduce 
completely the nonequilibrium properties. But in .our case 
it is sufficient to calculate density, chemical potential, and 
the gradients of the scalar pressures in a consistent way. 
This is indeed possible. The definition of the shifts A, in 
( 15) and. ( 16) leads to a correct result for the number 
density n, and provides the chemical potential with & 
= A,. Let us consider the definition of the pressure tensor. 
The first term on the rhs of (40) gives the ideal pressure, 
the second one the nonideality corrections. The result for 
the pressure gradient was given above by (44) and (45). 
The basic thermodynamic equation we have to deal with is 
the Gibbs-Duhem relation: 
i_ 

dP= c n, dpa, for T =const. ., (539 
a -/ 

Of course it is fulfilled for the ideal parts of pressure and 
chemical potential. If (45) is inserted in (449, the second 
term has to coincide with 

c It, d,uy, 
a -~-_ 

what in fact is the case because of the connection ( 16) 
between chemical potential and thermally averaged energy 
shift, 

Let us now study in more detail the diffusion process in 
a nonideal three-component plasma. If, in the diffusion 
process, electrons and ions separate, an electrical field will 
be set up acting like an additional thermodynamic force. 
This leads to a steady state with charge neutrality and 
equal electron -and ion number fluxes (ambipolar diffu- 
sion) 

fZ,(r9t) =ni(r;t>p JieDir9t9 =j~‘(r,t>. 

Further we suppose Vp SO. With II ~0, we have 
n = n;+ nl =const, and the system of reaction-diffusion 
equations (51) and (52) reduces to only one equation 
which reads 

$,rrit) +div jf(r,t) = c (&,$i-&$$i). 
c=e,i 

(549 

The diffusion current density can be written as ., * ~ 

j,“= - DiM (559 

where Do AMB is the usual ambipolar diffusion coefficient28P32 

DO 
n miD,,imA DiALt. m,Di@A DeA - iiZ,DiJniDei 

AMB=- 
P m,DiL+ miDei 

. (569 

In deriving (55 9 the interaction between charged and neu- 
tral particles was neglected in the energy shifts A, and A, 
In this approximation, the shifts ‘depend on the charged 
particle density only. We can interpret the total prefactor 
of Vn, in (55) as a nonideal ambipolar diffusion coefficient 

‘. - D’-D” n, 
AMB- A”f.kBT (579 
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FIG. 5. Ambipolar diffusion coefficient for hydrogen versus the degree of 
ionization c=n/(n,+n,,) for different temperature values: (a) T 
= 10 000 K, (b) 14 000 K, and (c) 18 Ooo K. The total density is con- 
stant 12=5X 102’ cmb3. 

A density-dependent diffusion coefficient can be introduced 
formally in this way which describes nonlinear diffusion 
due to many-body effects. 

For demonstration, we again consider a hydrogen 
plasma. The calculation of the binary diffusion coefficients 
(47) entering the coefficients Dab first requires one to de- 
termine the corresponding transport cross sections given 
by (48). In the case of the electron-proton collisions, the 
scattering phase shifts were calculated by numerical solu- 
tion of Schrodinger’s equation adopting the statically 
screened Debye potential. The elastic scattering of elec- 
trons on hydrogen atoms in the ground state was treated 
using the adiabatic exchange model taking into account a 
statically screened polarization potential. The cross section 
of the proton-atom scattering was calculated classically. 
The result for the usual ambipolar diffusion coefficient 
DO AMB is that the prot’on-atom scattering gives the domi- 
nating contribution for arbitrary plasma composition in 
the whole density range,32 that means 

Do -9 AMB- pfi. 

Then, the ambipolar diffusion coefficient for the nonideal 
hydrogen plasma can be written as 

D 
4 

AMB=apH CT 

where the chemical potentials are given by (a=e,p) 

For ,u?, we used the same expressions (cf. the Appendix) 
as presented in Fig. 2. The isotherms of the nonideal am- 
bipolar diffusion coefficient DAMB are shown in Fig. 5. The 
classical result DAMB = 2Bzr, occurs only for electron den- 
sities below 10” cm-j. For higher densities, the many- 
body effects cause a minimum and, below T= 17 000 K, 
even negative values of DAMB are a direct consequence of 
the “van der Waals loop” in the plasma chemical potential 
(cf. Fig. 2). 

Obviously, the diffusion of particles in a region of high 
electron density will differ from that at low concentration. 
This can be seen considering the nonlinear diffusion equa- 

the density- FIG. 6. Solution of the nonlinear diffusion equation with 
dependent diffusion coefficient D A~B( c) (58) for Dirichlet boundary con- 
ditions, T= 18 000 K, n=3~ 10z3 cm-‘. Here x is the dimensionless 
length, scaled by the system length L. The straight line is the initial 
profile, the steplike one represents the asymptotic (stationary) distribu- 
tion. The inner curves correspond to the dimensionless time 0.006 and 
0.0156, respectively. The time unit is f,,= Lz/i&,,. 

tion neglecting for a moment the reaction term in (54). 
The stationary solution in the one-dimensional case can be 
written immediately (c=n/n), x being a dimensionless 
length (OGCG~): 

x(c) = ~~~o$?wdC’~~~~)dc’ 
I .f~~o;&&VW-)dC ’ 

For DAMB > 0, the profile is always monotonous. However, 
the curvature can the because 
d2x(c)/dc2-dD 

change sign 
AMB/dc. Because of the minimum of 

DAMB, the stationary profile is of steplike shape. This can 
be seen from Fig. 6 where the nonlinear diffusion equation 
was solved numerically starting with a linear concentration 
profile [Dirichlet boundary conditions c (0) = cl, c( 1) = e2] 
which is the stationary solution in the case of constant 
diffusion DAMa=const. If we could “switch on” the non- 
linearity in the diffusion coefficient at t=O, we would see 
exactly the evolution shown in Fig. 6.32 

Vi. NONIDEALITY AND NONLINEAR IONlZATlON 
KINETICS IN DENSE PLASMAS 

Because of nonideality, the source function in the 
reaction-diffusion equation depends on the density in a 
complicated nonlinear manner. Therefore, well-known 
nonlinear phenomena can be expected in dense nonideal 
plasmas, such as ionization fronts, nonequilibrium phase 
separation, dissipative structures, etc. 

Let us study the effect of nonideality, which means the 
influence of many-particle effects on the ionization kinetics 
in a dense hydrogen plasma. Our starting point is the 
reaction-diffusion equation (54) with the ionization and 
recombination coefficients (38) and (31) and the diffusion 
coefficient (57). It is convenient to use dimensionless vari- 
ables for density, time, and length. We introduce a char- 
acteristic time to= (aidn) - ’ and a characteristic length 
(diffusion length) /O = dD=i. Typical values, e.g., for 
T=16000 K and PZ=IO*~ cmMS are to-lo-” set and 
lo- 10F9 m. The dimensionless variables are now defined 
according to 
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FIG. 7. Isotherms of the degree of ionization for (a) T= 10 OUO K, (b) 
12 OCtl K, (c) 14 OLW K. The insert shows the density interval [n,,n,] 
inside of which bistability occurs. 

4 t c=-, 
n 

--St, 
to 

Then we can transform the one-dimensional RDE into 

ac d% d% dU 
-g-z+ W(c,n,T) =z+z (59) 

with the hydrogen source function 
with 

W(c,n,t)=c{(l-c)exp[-(A,+AP-AH)/kBT] (61) 

-A’? exp( - EI/kBT)} 

and the’potential U defined by W=dU/dc. The density 
dependence of the diffusion term gives only a minor effect 
and will be considered below. 

The integral of motion E has to be determined from 
the boundary conditions, using the relation 

Obviously, the behavior of the solutions of this equa- 
tion is essentially determined by the zeros c,(n,T) of the 
source function. Especially, the c, determine the proper- 
ties of the stationary solutions of the RDE. First we find 
the trivial zero c,~=O corresponding to the atomic gas state 
which is always unstable. Further zeros have to be ob- 
tained from 

s J2) 1 
um = ,(1) 

/2[E-- 
dc, (62) 

%I-- 1 F=A~ exp[ ( -E1+AH-A,-AJ/ksT]. 
m 

where L(E) =x2--x1 is the length of the system. For ex- 
ample, we have, for Dirichlet boundary conditions 
c(x*) =c(l) and c(x2) =c(*), a unique relation between L, 
the boundary values c(l), cC2), and the constant E. 

- Let us now consider a plasma inside of the region of 
bistability under the following special boundary condi- 
tions: 

(60) 4x*)=c1, c(xz)=c3, (63) 

This is just the Saha equation of the ionization equilibrium 
in a nonideal dense hydrogen plasma. The solutions of 
(60) are well investigated.33*5’6 In Fig. 7, the isotherms 
c,( n,T) are shown which are the solutions of (60). A 
well-known property33 of these isotherms is the following: 
For T < T,,, and nI( T) <n < nIl( T), we obtain three-ze- 
ros: cl < c2 < c3, where cl and c3 correspond to stable sta- 
tionary states while c, represents an unstable one. That 
means we observe a transition from monostable to bistable 
behavior in a density-temperature region which is shown 
in Fig. 8. 

with W(c, ) = W(c3) =0 and 

awcc,j am,) 
-<O* -x-<oy ac 

with cl and c3 being the stable zeros of W and, therefore, 
local maxima of the potential U(c,> =max, q(c3) =max. 
Furthermore, the system is considered to be closed, 

aw 
ax 

acw =- 
ax x=x 

=o. 
X-Xl 2 

(64) 

The bistable behavior has a number of interesting con- 
sequences. Let us first consider the stationary reaction- 
diffusion equation 

In this special case, (i) the boundary conditions (63) and 
(64) may be fullfilled only under the condition 

E= U(q) =U(c,), 

28 
1 
L 
i2 1 

, 9 I 

00 13 400 14100 
- T,K 

FIG. 8. Region of bistability in the density-temperature plane. The 
dashed line marks equal stability of the states c, and c3 by the Maxwell 
construction. Above this line c3 is more stable than c,. 

$y--W(c,n,T)=- 
dU(c n T) 

ic . 

The solution to this equation is known due to the obvious 
analogy with the Newton equation of motion for a particle 
of mass m = 1 in the potential U(c,n,T). We find for the 
density profile 

.- c dF 
x(c) = 
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FIG. 9. Numerical solution of the RDE starting from a smooth profile 
and approaching a stationary kink, D= 1, T=13 500 K, n-n, 
=2.895x 1O23 cm-‘. The number of time steps are shown, the time unit 
is &,=6X lo-” set, the diffusion length /,=7x lo-’ m. 

I.e., 

s 
c3 W(c)dc, 
c2 (65) 

which corresponds to a Maxwell construction, c2 being the 
unstable zero of W, (ii) condition (65) is fulfilled along a 
line n,(T) marking equal stability of the stationary con- 
centrations cl and c3 (dashed line in Fig. 8);34 (iii) the 
Iength L of the system must be infinite [expand U(c) 
around cE with U(c,) =E]; (iv) one can even use a finite 
length L=x,--xl if L$i,. Here 1, is very small in our case, 
indeed (see above). 

Such a special solution is shown in Fig. 9, it is known 
as the “kink solution.” Here, the kink describes a spatial 
phase separation between phases of different degrees of ion- 
ization cl and c3. For stationary solutions with arbitrary 
boundary conditions, the constant E and the boundary val- 
ues c( 1) and c( 2) have to be determined self-consistently 
from (61) and (62). 

Let us consider now the time-dependent solution of 
(59). If we leave the line n,(T), changing density and 
temperature, the phase separation boundary is no longer at 
rest but starts moving with a velocity increasing drastically 
on approaching the edge of the bistability region (Fig. 8). 
Above this line, i.e., for n > n,( T), the state c3 is more 
stable than cl, and the phase boundary is moving toward 
the phase of c, superseding it by the concentration c3, and 
vice versa below the line. This can be seen in Fig. 10. This 
picture resembles an ionization front of the form 

c(x,t) =c(x-vt) 

describing the propagation of a density profile without de- 
formation. Introducing this ansatz into (59), we come to a 
well-studied eigenvalue problem (in the mechanical anal- 
ogy, the velocity term corresponds to a friction contribu- 
tion) 

a 
c” $ UC’ = --a~ U, v=const. (66) 

(a) 

0,2 
C 

I 

@I 
11 

\ \ 

7 I 8 9 lo 

-X 

FIG. 10. Numerical solution of the RDE for T= 13 500 K and 
n = 2.9 X ld3 cm-$ > Y,~, (spherical symmetry, vanishing particle fluxes at 
the boundaries). The nntial profile is the (unstable) atomic gas with an 
undercritical fluctuation with respect to the stable state c,. Part (a) shows 
droplet growth of the metastable state c,, forming a spherical front. In 
part (b) an overcritical fluctuation is switched on generating a second 
much faster front. In the stationary state the plasma reaches a homoge- 
neous profile cf r) = cp The time interval is always the same A =400 steps, 
units same as in Fig. 9. 

In general, Eq. (66) cannot be solved analytically, 
even for constant diffusion. Only for a few types of reaction 
functions exact results are known, e.g., for certain polyno- 
mials of integer or half-integer powers. For nonideal plas- 
mas, a polynomial fit for the source function like the one 
used in Ref. 34 applies only within a narrow vicinity of the 
critical point. 

We solved the time-dependent RDE (59) numerically 
for various initial distributions and boundary conditions. 
We present two of these calculations in Figs. 9 and 10 
covering the most typical situations. Figure 9 shows a 
smooth initial profile with the concentration varying over a 
distance comparable with the total system length. No front 
solutions are possible in this case, and one observes a con- 
tinuous approach of the asymptotic step profile. Fronts are 
observed only for a peaklike initial density distribution 
(with a width much less than the system length), as shown 
in Fig. IO(b). The time evolution consists of three stages. 
First, the automodal profile forms rather quickly, moving 
then a long time with a nearly constant velocity without 
deformation until it deforms into the stationary shape near 
the boundary. 

An interesting property of the source function for hy- 
drogen is that it has faur zeros. This gives the possibility of 
three different types of running fronts choosing two of the 
three concentrations co=O, cl and c3 as boundary 
values.34*35 If one fixes the concentration to be co (atomic 
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gas) at one side of the system and to be,cX at the other, the 
propagation of even two fronts becomes possible running 
one after another. This can be seen in Fig. 10(b) where the 
front superseding co is followed by a second one which 
replaces cl by c3. Choosing the parameters (density and 
temperature) appropriately, one can change the velocity 
and even the direction of the second front nearly arbi- 
trarily. 

Another phenomenon in bistable reaction-diffusion 
systems, however, in the two or three-dimensional case, is 
droplet. growth. :In one-dimensional systems, the replace- 
ment of one phase by another more stable one is proceed- 
ing spontaneously, whereas in higher. dimensions it-is im- 
peded by surface effects. Indeed, diffusion acts to minimize 
the surface or more precisely the curvature of a density 
profile. It is dominating on small scales supressing small 
fluctuations. The. well-known consequence is that thereSex: 
ists a critical droplet size (e.g., a critical radius for spher: 
ical droplets). Fluctuations of the more stable phase*h.ave 
to exceed this critical size in order to supersede the meta- 
stable phase. The critical droplet radius and the growth 
velocity can be estimated with the help of the formulas 
(k=2 for cylindrically and k = 3 for spherically symmet- 
rical nuclei, respectively) -- 

Jpc/ar)dc > 
Rc,=--(k-l). J~J,7(c,n,J-)dc? ‘.I (67) 

g=(k-l)(&-&). wm 1 (68) 

The results hold for droplets with very thin transition re- 
gion compared with the radius A(R, i.e., for density pro- 
files of the shape36 

r’ .~ 
cl, r<R(t)-A/2, 

~3, .‘r>R(t)+MA 

if ci is the stable and c3 the metastable phase (in the op- 
posite situation one has to substitute c,=c,). This strong 
approximation tits very well for the nonideal plasma under 
consideration. 

It is clear from (68) that small droblets (r<R,,) Will 
vanish, but supercrjtjcal ones (I> $,,) will grow further. 
The solution of (68) gives the growth law 

RZr 
t== (69) 

For small times there is a linear connection : ’ ’ ,’ 

k-l R(O)--R,, 
R(t)zR,+tR. 

CT R(O)’ - -. 
(701 

After a transition time, the asymptoticgrowth of supercrit- 
ical nuclei is again linear, however faster, since surface 
effects are of less importance: .. _ 

k-l 
R(t)zR(0)+rR.. 

CT 
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*The dynamics ,of subcritical droplets is, at the first 
stage, given by (70)) too; after this, the shrinkage acceler; 
ates and cannot be described within this model. In Fig. 10, 
a numerical run is given showing droplet growth. .The pa, 
rameters are chosen above the line ~l,~( T), i.e., the state cl 
is metastable, cs is stable. The initial profile [Fig. 10(a)] 
corresponds to atomic hydrogen with a single density fluc- 
tuation being undercritical with respect.to c3. Therefore, a 
spherical hroplet of phase cr is growing first with a nearly 
constant velocity. In Fig. lO( b), we f‘switch on” a ne,w but 
supercritical. fluctuation, ,and a new spherical droplet 
(spherical front) starts growing running after the first one. 

Now let us remember that, due to nonideality, the real 
diffusion coefficient DAMB is not a constant but a nonlinear 
function. of density.?yith” a.minimum. Now even the. sta- 
tionary one-dimensional problem cannot be integrated, 

_- dD d.. 
DC”+ z (c”)+-~ u, (72) 

since it is-speaking again in the ,meclianical picture- 
dissipative with the friction coefficient dD/dc.’ ’ 

As shown in Fig. 5, the diffusion coefficient can be- 
come negative indicating a mechanical instability- and a 
phase transition. A peculiarity of: hydrogen is, at least 
within our model, that bistability of the source finction is 
always.accompanied by-negative values of DAMB. However, 
the diffusion terms on the lhs of (72) are smailer than the 
reaction terms’ (rhs) by several orders of magnitude (ab- 
solute values). The effect is the following: The evolution of 
the density profile in time proceeds on the first stage like 
one with’ D=const > 0 forming a kink (see above). Only 
when the ‘step has become steep enough, the diffusion con- 
tribution is going to be of the same order as the reaction 
terms. The result is -a rapid increase of fluctuations until 
the density has reached the values cl or c3 being stabilized 
by the reactions. _ 

VII. CONCLUSIONS 

Quantum statistical theory has &own the possibility of 
bistable ionization-recombination reactions as well as neg- 
ative diffusion in a strongly coupled hydrogen plasma. 
These results have been obtained starting from kinetic 
equations which account for the formation and the decay 
of bound states as well as many-body effects. Generalized 
expressions could be derived for the coefficients of ioniza- 
tion and diffusion exhibiting an additional density depen- 
dence due to the influence of the surrounding plasma. The 
evolution of the number densities of the plasma species in 
space and time was then described by a reaction-diffusion 
equation that is valid for strongly coupled plasmas, too. It 
turns out that many-body effects are the reason for inter- 
esting nonlinear phenomena like front propagation, phase 
separation, and droplet growth. These phenomena are non- 
equilibrium counterparts of the equilibriums plasma phase 
transition: However; a strong theoretical description of the 
kinetics of this phase transition is still lacking since it can- 
not be found within the model of closed reaction-diffusion 
equations presented in this paper. Especially, we have to 
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drop the assumption of homogeneous pressure. A further 
problem is to take into account the spatial and temporal 
evolution of temperature, what will be done in a forthcom- 
ing paper. 

/$D= -; - 2.1605(%“)*‘*, 

PMC -= - 1.19281’+3.53821?‘~4-0.5012 ln( F) 
kBT 
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For the interaction contribution of the atomic chemi- 
cal potential, the model of effective hard spheres with 
temperature-dependent diameters dH( T) according to 
Carnahan and Starling38 was used: 

APPENDIX: THE CHEMICAL POTENTIALS FOR 
HYDROGEN 

& 8-?v+3$ -- 
k,T-Y (1 -J’)3 (A3) 

In this appendix, the interpolation formulas that were 
used for the calculation of the chemical potentials in a 
hydrogen plasma are given. 

with the packing fraction parametery= (r/6)nH[dH( T)J3. 
The diameters dH were determined following Barker- 
Henderson theory.39 

All formulas are written in Rydberg units: 

$2, r?p;, fi=l, p+ 
0 B 

The chemical potentials were split into ideal and interac- 
tion contributions pn = $ + pit. The ideal parts are deter- 
mined according to the standard expressions. 

For the correlation parts of electrons and protons, we 
have made use of Pad& formulas of Ebeling and Richer-t 
(cf., e.g., Ref. 20) given in an explicit form in.37 

For the correlation contribution of the electron gas, 
the following Padi formula is a good approximation: 

with the abbreviations: 
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