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Abstract 

Collective excitations in degenerate one-, two- and three-dimensional plasmas inclu- 
ding quantum confinement effects are discussed within the random phase approxima- 
tion (RPA). The results of the analytic continuation of the retarded dielectric function 
for these systems are presented. 

1. Introduction 

The fabrication of low-dimensional semiconductor microstructures (quantum wells, 
quantum wires, quantum dots, superlattices etc.), renewed the interest in the study of 
collective excitations in quantum plasmas. Measurements of plasmon spectra can be 
done with high accuracy, allowing quantitative comparison with the theoretical results. 
Moreover, compared to plasmas in ionized gases, these semiconductor systems exhibit 
a number of additional new features which are based on quantum confinement effects. 
Confining the wavefunctions basically, to a plane (quantum well) or line (quantum 
wire), both the single-particle as well as the many-particle properties of the plasma 
are significantly changed [I]. The reduction of dimensionality leads to 

drastic changes of the density of states: the energy dependence changes from 
El/* (3D), to Eo (2D) to E-'/* (1D); 

reduction of the pair continuum; 

essential lowering of carrier scattering rates; 

strongly reduced screening; 

increased binding energies of bound states (excitons etc.); 
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weakening of the wavevector dependence of the Coulomb potential from q-2 
(3D), to q-l  (2D) to lnq ( lD,  ) [2]. 

All these modifications provide a strong motivation to investigate how the reduction 
of the dimensionality and the increased quantum confinement affect the properties of 
collective excitations. In this contribution we analyze collective plasma excitations 
in low dimensional systems. For better comparison with other quantum plasmas, we 
neglect band structure effects and we consider only longitudinal intrasubband excita- 
tions. The dielectric function is calculated within the random phase approximation. 

2. Analytic Continuation of t h e  Dielectric Function 

The longitudinal plasmon spectrum follows from the zeroes of the dielectric function. 
It is common to solve this dispersion relation approximately, using a small damping 
expansion. According to this scheme one solves Ree(q ,w)  = 0 with w being the real 
part of the complex frequency for zero imaginary part. This is correct for undamped 
plasmons (e.g. optical plasmon at T = 0). However, this approximate solution scheme 
can lead to essential errors, e.g. for the damping rates in a plasma at elevated tempe- 
ratures. In many cases damped plasmons exist although Ree(q ,w)  has no zeroes with 
I m w  = 0. Moreover, in the nonequilibrium situation, the generation of undamped or 
unstable modes and the splitting of modes cannot be described correctly. 

In order to obtain a more general analysis we consider the analytic continuation of 
the dielectric function into the complex frequency plane: 

where II is the polarization function and the plasmon damping is 7 = -Im w. The ana- 
lytic continuation of the dielectric function for (effectively) one-dimensional plasmas 
was accomplished by Landau by appropriate deformation of the integration contour 
in the expression for the Vlasov dielectric function. This method was applied to 1D 
quantum plasmas in [5,7]. However, in order to find the analytic continuation for 
cylindrically and spherically symmetric plasmas as well as for other symmetries, it is 
more convenient to use the general spectral representation for the polarization function 
(2 = w - 27) [3] 

Here, I I (q ,z)  defines two functions TI3 which are analytic in the upper and lower 

z-half-plane, respectively. For l Ip  exist well-known diagrammatic expansions. The 
spectral function f I (q ,w)  is given by the discontinuity at the branch cut along the axis 
I m w  = 0: 

f I ( q , w ) =  n ' ( q , W + ; ' ) - ~ < ( q , w - i E ) .  (3) 
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In the RPA and the quasiparticle picture Eq.(2) yields the analytic continuation of 
the Lindhard polarization [3], and Eq.(3) gives [4] (ti = 1) 

(4) 
f i ( q 7 4  = 2 / m  d p  { f [ E ( P ) l  - f P ( P  + 4) 

x 2 4 w  + - E(P + dl 
The analytic continuation of Eq.(4) allows to continue the dielectric function. 

3. Results for Ib, 2D and 3D quantum plasmas 

The differences between lD, 2D and 3D plasmas arise from the different angle depen- 
dencies in the Lindhard polarization and in the integral of Eq. (4). The result for the 
analytic continuation of the polarization is 

where we defined pk = 
reduced mass). 

[w - ir k E ( k ) ]  and E ( k )  = 5, (rn is given in units of the 

The corresponding result for the spectral function is 

with p: = 2 Iw - E ( k ) l .  
Together with Eq.(l) Eqs.(5 and 6) define the retarded dielectric function on the 

whole complex frequency plane. The results are valid for arbitrary distribution func- 
tions, including those for nonequilibrium states. For several classes of distribution 
functions (including the case T = 0) analytic results can be given. Furthermore, 
known results can be generalized to the case of arbitrary finite damping. A detailed 
discussion of the properties of the retarded dielectric function in the complex fre- 
quency plane and the corresponding plasmon dispersion and damping/growth rates is 
presented elsewhere (7,8]. 
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Here, we only summarize only the basic properties of collective excitations in lD, 

2D and 3D quantum plasmas. 

0 The optical plasmon in two and three-dimensional plasmas vanishes when it 
enters the pair continuum. In 1D it exists for arbitrary wavenumbers. 

0 In contradiction to 3D the frequency of the optical plasmon in one- and two- 
dimensional systems has a vanishing long wavelength limit. 

0 The analytic continuation of the retarded dielectric function has a second com- 
plex zero at the upper edge of the pair continuum [5,7,8]. 

0 The second (acoustic) mode in a two-component plasma at T = 0 is always 
damped in 2D and 3D, but can be undamped in 1D (in a certain interval of 
wavenumbers) [5,7]. 

a Plasmon instabilities are not possible in 3D sytems (like in classical plasmas), 
but they are possible in 2D [6] and, even stronger, in 1D systems [5,6]. 

a Quantum confinement leads to a decrease of plasmon damping or growth, redu- 
cing the energy transfer between fast carriers and plasma oscillations. 

0 Variation of the sample size modifies the Coulomb potential and thus allows to 
change the growth rates and the instability conditions [5] .  
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