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Abstract 

Reaction and diffusion processes in dense plasmas are investigated on the basis of quantum 

Many particle effects lead to nonlinear expressions for reaction and diffusion coefficients. 
In  the case of ambipolar diffusion and isobarity the plasma is described by only one reaction- 

diffusion equation. Travelling front solutions and droplet formation are investigated in the appro- 
ximation of constant diffusion. The influence of nonlinearity of the diffusion on these solutions as 
well as the possibility of phase separation via spinodal decompoisition and the formation of stable 
droplets are discussed. 

statistical theory. 

Introduction 

In  this paper we would like to consider kinetic equations for reacting nonideal plasmas 
and the influence of the nonideality in a reaction-diffusion plasma. Of course the be- 
havioiir and the properties of a nonideal plasma are essentially determined by the Cou- 
lomb interaction. In  many interesting systems the formation and the decay of, bound 
states, that means reaction in connection with diffusion processes, can be observed. The 
simultaneous occurrence of these properties can be observed in many fields of science 
[I, 21, in physics especially in plasma physics as well as in chemistry and biology. From 
the phenomenological point of view such a reaction-diffusion system in the simplest 
cases can be described by a reaction-diffusion equation of the following type 

an, - at + vj, = WA(ni.*.n,) 

where Wa(nj ... n,) is the source function which describes the chemical reactions and j A  
the particle current given in simple situations (ambipolar diffusion) by j, = DAVnA 
where D,., is the diffusion coefficient. 

A very important problem is the quantum-statistical foundation of reaction-diffusion 
equations (r.d.eq.). This problem is connected with the derivation of a kinetic equation 
in which chemical reactions and nonideality effects [3-61 are included. 

In  the first part of this paper we will consider such a kinetic equation and explain the 
reaction term and the nonideality effects. In  the second part we will derive the r.d.eq. 
Due to  nonideality W,  and Da are dependent on the density in nonlinear way. Therefore 
nonlinear phenomena like 
- nonlinear diffusion and diffusion instability (phase separation) 
- ionization fronts 
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- dissipative structures 
- solitons 
and other effects may be expected [7]. 

I. Kinetic Equations for Nonideal Reacting Many Particle Systems 

Usually the nonequilibrium properties of a many-particle system can be described by 
the Boltzmann equation. But in the case of a nonideal reacting plasma this equation 
must be generalizedin many directions. Such generalizations can be found in many papers. 
Kinetic equations with chemical reactions are derived in papers of KLIMONTOVICH, 
KREMP [3], KLIDIONTOVICH, KRAEFT, KREMP [4], MCLENNAN [6]. Nonideality contribu- 
tions are taken into account in papers from SCHLANGES, BORNATH, KREWP [5, 81. In  the 
latter papers the powerful method of nonequilibrium Green's function is used in order to 
take into consideration many particle effects like [9] 

- self energy; 
- screening; 
- Pauli blocking; 
- influence of the plasma on the two particles spectrum (Mott effect) 

function f,(pRT) of the free particles 
The result of this consideration is the following kinetic equation for the distribution 

Here EA is the quasiparticle energy which is to be determined from the dispersion relation 

Z(poRT) is the nonequilibrium self energy. On the right hand side of (1) we have the 
collision integrals. IAB is the well known two particle quantum Boltzmann collision term 
given by 

with E,, = E, + Eg.  IABC are the three-particle collision integrals containing the re- 
action terms. With the atomic distribution function Fn(PAB) (naB internal quantum 
number, PA, center of mass momentum) this contribution has the form 

Here (pk )  are the asymptotic three-particle states. By the channel number k a classifi- 
cation of the states with respect to the asymptotic initial states (channel) is given. The 
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other observables which determine the three-particle state are denoted by p .  Further 
explanations are given in the following table : 

k (channel) IkP) E k  f k  Nn 
~ ~ ~ _ _  ~ ~ 

0 A + B + C / P A )  I P B )  Ipc) EA + EB f Ec f ~ f ~ f c  (1 f / A )  (1 f f ~ )  (1 f. f c )  

1 A f ( B  f c) / P A )  InBCPBC) EA f EnBCPBC fApnBC (l  j .4)  ( l  Ik pnBC) 

2 B + (A  + c) (pB) I n A C p A C )  E B  + EnACpAC faFn,, Z k  f B )  Z!Z 

3 f ( A  + B) IpC) 1 n A B p A B )  EC f E n A B p A B  fCFnAB f f C )  f FnAB) 

In  order to discuss the properties of (4) is it useful to split up I,,, into two parts 

I A B C  = [‘ABCII f [‘ASCl2 

where the first part [ I A B C ] l  is given by the terms with k = 0, 1 which means that we 
have bound states only between the particles BC and the following reactions 

A + B + C + A + B + C  

A + (BC) + A  + B + C 

A + B + C --f A + (BC) 

A + (BC) - + A  + (BC) 
In  all these processes the density nA of particles of type A does not change. Therefore 
the collision integral has the important property 

{ d p A [ J A ( p A >  t)ll = O .  
Let us now consider [IABCl2. We have the following reactions 

A + B + C - +  B + (AC)  

A + (BC) + B + (AC) 
A + B + C + C  + ( A B )  

A + (BC) -+ C + ( A B ) .  

As can be seen the four processes change the density of the free particles of species A .  
That means we have 

d P A [ I A B C ] 2  = FVA * 0 .  

I$. Nonideality Contribution in the Kinetic Equation 

Now we would like to explain the many-particle effects in the kinetic equation. The 
quasiparticle energy may be obtained from the dispersion relation (2). In  order to deter- 
mine E A ( p A ,  R, T )  we use the more simple concept of “rigid shift approximation” (see 
Zimmermann [IS]). The quasiparticle energy is in this approximation given by a 
shift d A  which does not depend on the momentum 
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If we assume local equilibrium A l  has to be determined from the condition 

E = A A  - pA = pAid 

I n  first order with respect to Re z* follows 

and for the chemical potential 

But also in this simple approximation an analytical evaluation of (7) is possible only in 
the nondegenerate and strong degenerate case [9, 111. In  general situations numerical 
calculations are necessary 112). Using the results for the limiting cases and the numerical 
results EBELING and RICHERT have found a Pade approximation [13] for the chemical 
potential and the quasiparticle shifts. 

In  Fig. 1 are shown the isotherms of the chemical potential of free electrons and pro- 
tons in hydrogen p a  + pup. An important property of this isotherms is the van-der-Waals- 
loop. That means a region with 

occurs. 2+%<() 3P 
an, an, -- 

In the case of thermodynamic equilibrium the system is unstable in this region and a 
special phase transition is indicated. This plasma phase transition in H-plasmas was 
discussed in papers [14, 11, 13, 15). The consequence for nonequilibrium systems will be 
investigated below. 

-0.5 1 

-7 ci : 
L.., 

:019 . loz1 7oz4 7OZ5 
ne ( c m 3  - 

Fig. 1. Isotherms of chemical potential of electrons and protons in hydrogen pe + pup, 
Pad6 approximation [13] in a version of [lq T = 8000 K (l), 1OOOO K (Z), 12000 K 
(3), 14000 K (4), 16000 K (5). Dashed line - boundary of the region of negative 
diffusion 
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The second many particle effect is the influence of the plasma on the two and three 
particle problem. We cannot explain here the conplicated quantum statistical theory of 
this problem [16]. But the result is the following. We have to replace the Hamiltonian of 
the isolated two and three particle system by an effective two and three particle Hamil- 
tonian H given by 

H 1 2  = '12 f dl + + A ,  + N l , V E m  

and 

Here N,, and NlZ3 are the Pauli blocking factors given by the distribution function f A  

in the following way 

N 1 ,  = 1 - fl  - f 2 ;  N123 = 1 - fl  - /Z - f 3 .  

The particle spectrum then follows from an effective wave equation 

H12Id') = E,pld'). 

We obtain a shift of the continuum edge given by A ,  + A,, that means the continuum 
edge moves down rapidly. The bound state energy shifts downwards only slightly. In  
this way the ionization energy I = El + A ,  - A l  - A ,  vanishes a t  the Mott density 
I ( n M O T T ,  T Y O T T ) =  0 and bound states are not possible, cf. Fig. 2 .  The next problem is the 
determination of the scattering quantities. We obtain for T A B  the effective Lippman- 
Schwinger equation [5, 81 

and for the many channel T-operator 

T k k '  - J7k + i 2 V k  Q V k '  N123 
123 - 123 123 123 123, '123 = - - HEHF' 

123 

It is important to remark that now the scattering quantities are dependent on the distri- 
bution functions f A  and have to be determined self-consistently with the kinetic equation 
[5,81. 

- 1  

-5 -4 -3 
Lg no; - 

Fig. 2. Lowering of the ionization gap in a dense plasma (qualitatively). 
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111. Reaction-Diffusion Equation. Rate Coefficients 

Let us now consider the macroscopic consequences of the kinetic equation [17]. We 
introduce macroscopic observables. The density is given by 

and the mean velocity uA by 

We obtain an equation for nA(RT) by integration of the kinetic equation with respect 
to P A  

(10) 
an, - + F' nA(RT) uA(RT) 1 WA aT 

where W ,  is the source function given by [3, 4, 161 

For purpose of simplification we consider a three-component system A ,  B, AB and 
assume that bound states are possible only between different species. Furthermore we 
neglect all exchange reactions. Then the source function can be written as 

with the rate coefficients 

and 

Eq. (10) is not closed. In  addition we must derive an equation of motion for the diffusion 
current j A D  = ? z A ( u A  - u) where u = lie u A @ A  is the mass average velocity. By 

standard methods, that means: Grad method in first approximation, and taking into 
account only elastic collisions we obtain neglecting pressure gradients in the nondegene- 
rate limit [ 171 

A 

where by DAc are denoted the multicomponent diffusion coefficients given by the elastic 
collision integrals (3). 
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Let us now again consider the ionization and recombination coefficients. For their 
calculation according to (13) and (14) we assume local equilibrium distribution functions 
given by 

Using the energy conservation expressed by the &function we obtain the following re- 
lation between a and p [18] 

A, denotes the thermal wavelength. 

therefore 
It is interesting to consider the thermodynamic equilibrium case, then W A  = 0 and 

(17) is just the mass action law for a nonideal system with reaction A + B -+ (AB) and 
the effective ionization energy 

PFF = lEnl - do + dA + dB 

This behaviour is consistent with the picture for the two particle spectrum explained in 
Fig. 2. 

V. Nonideality Effects on Ambipolar Diffusion 

We consider a partially ionized plasma consisting of electrons, ions and atoms with 
the densities ne, ni and nA, respectively. We shall neglect the formation of molecules [15] 
as well as multiple charged ions [19]. 

We will study reaction and diffusion processes affected by nonideality (due to particle 
interactions) which leads to density dependence of the reaction and diffusion coefficients. 
We focus on ionization and recombination reactions in the ambipolar diffusion regime. 

As we have shown from kinetic theory a system of coupled reaction-diffusion equations 
(10) can be derived. 

For the source functions of electrons, ions and atoms follows 

we = wi = - 1 V A  w .  
In  the case of electroneutrality, i.e. ambipolar diffusion regime ne(r ,  t )  = ni(r ,  t )  and 
j e D  = j iD  for the diffusion currents j c D  = nC(uc - u) one obtains neglecting pressure 
gradients (for details cf. [ZO]) 

13 Contrib. Plasma Phys. 29 (1989) 1/5 
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Another result is the Gibbs-Duhem relation, cf. [21] 

z n c - V n c  a P C  = O .  
c an, 

are complicated functions of the densities depending on the collision integrals. 
Only under very restrictive conditions they are constants and connected only with the 
ion-atom diffusion coefficient. 

Splitting up the chemical potentials again in an ideal and an interaction part (7), 
one can simplify (19) for the case of nondegenerate plasma with p C r D  = kBT In A,%, 

Of course, for given n, the density nA can be found from (19). If the plasma is non- 
degenerate and nonideality can be neglected the shifts in (20) vanish and the Gibbs- 
Duhem relation gives a simple connection between the densities: 

2n6(r,  t )  + nA(r, t )  = const. (21) 

As an example we consider a hydrogen plasma. The chemical potential of electrons 
and protons was shown in Fig. 1. Due to interaction effects the diffusion coefficients 
D$A,,,, are highly nonlinear functions of the densities. This leads to  new effects in com- 
parison with the case of constant diffusion (neglecting for a moment chemical reactions) : 
1. Stationary density profile (e.g. in the case of fixed boundary concentrations and 

constant diffusion coefficient it is a straight line) remains monotonous, however it 
deforms in such a way that the diffusion coefficient in each point is as great as 
possible. 

2. Propagation of diffusion fronts becomes possible even if there are no chemical re- 
actions going on [22]. Using an automodal-ansatz n, = n,(r - tv) one obtains the 
profil of such fronts, which can propagate if special time-dependent boundary condi- 
tions depending on the diffusion coefficient are satisfied. In  the case of linear diffusion 
fronts are not possible (velocity goes to  infinity). 

3. Negative diffusion (cf. also [21]). Fig. 1 shows the electron density region of negative 
derivative of the free particle chemical potential, i.e. of negative diffusion coefficient : 
Dd,oNrD N a/an,(pe + p i )  < 0. The boundary of this region (the spinodal curve, cf. 
1231) is marked with the dashed line. In  Fig. 3 it is shown once more, however in the 
density-temperature plane. Inside the spinodal curve, below a critical temperature 
TCR - 17500 K the diffusion coefficient becomes negative. 

Let us discuss the meaning of negative diffusion. If the system is in thermodynamic 
equilibrium this effect cannot occure because it is equivalent to mechanical instability 
(if &,/an > 0) : 

In  the nonequilibrium situation states with D < 0 are of course unstable too. They lead 
to  rapid increase of density fluctuations until free electron densities below or beyond 
the spinodal curve are reached. That means phase separation (spinodal decomposition), 
formation of droplets of high electron concentration in a weakly ionized background 
plasma or vice versa. So we think that eqs. (18, 19, 20) can help to  find a quantum 
kinetic description of the dynamics of those phase transitions in a nonideal plasma. 
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V. Nonideality Effects in Ionization and Recombination Processes 

The changes of the particle concentrations due to chemical reactions (the source 
function W )  have been derived from kinetic equations above. Taking into account 
only three particle interactions like e + i + e + A  + e one obtains in the case of 
electroneutrality from (12) 

W(n,, nA, T) = menA - pne3 (22) 
The expressions for the rate coefficients (13, 14) for hydrogen in the nondegenerate limit 
are [ 171 

a = exp [ ( A ,  + Ai - J A )  I/k,T (23) 

B = exp (El/kBT) (24) 
L Y ~ D  = lOn~8~(2nmkBT)-'/~E1Ei(-1E1I/kBT) 

Here El is the ground state energy of the atom, uB the Bohr radius, Ac N ,uCINT the one 
particle shifts (6, 7) .  In  an ideal plasma LY = arD, however with increasing density due to 
increasing screening effects the esponential factor in (24) becomes important (see 
above). 

Let us discuss the most simple case - Debye approximation for the screening effects: 

A - A . - -  - , - xe2/2, A A  m 0 [91 
with x the inverse Debye radius. 

Introducing dimensionless time and concentration variables 

t = t / t , ,  c = n,/n,, CA = nA/no, to = (alDno)-l  (25) 
no = V-l] n d r ,  c ( r ,  t )  + cA(r ,  t )  = %/no, = c T ,  n = n, + nA 

the source function reads 

13* 
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625 
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where 
y = 2e3(kBT)-l ( 2 m ~ / k ~ T ) ~ / ~ ,  1 = Ae3no exp (E,/k,T) 

/ \  - 

/ 
/ 

/ - 
-7 
/ 

--A 
~----. 

1 I 

In the homogeneous case of course n(r, t)  = no. 

c -  

Fig. 4. Source function of hydrogen in Debye approximation. 
T = 20500 K, n = 7.35 . 1021 cm4 (Dashed line) and the corresponding potential 
U (full line). The horizontal line corresponds to zero. 

I n  Fig. 4 the source function is drawn for T = 20500 K and n = 7.35.  lo2' ~ m - ~ .  
The zeros of W are the stationary electron concentrations: 

1. co = 0 
corresponds to an atomic gas, this state is always unstable 

2. cM2(1 - cM)-l = 1-1 exp [ y  KM] (27) 
is the Saha equation (17) (mass action law) for a nonideal plasma. 

Fig. 4 shows that for certain values of temperature and density the Saha equation 
obeys 3 solutions c1 5 c2 5 c3. Linear stability analysis shows that c1 and c3 are stable 
( d W / d c ( ~ ~ , ~ )  < 0) with respect to small fluctuations and c2 is unstable. Hence bistable 
behaviour can be observed. This is a well known phenomenon in chemical kinetics [l, 21, 
however in our case i t  does not as usual come from complicated many particle reactions 
but from microscopic interaction in a nonideal plasma. 

In  Fig. 5 the bifurcation diagram cM(n) is given. For n,(T) < n < nIl(T) we observe 
bistability. The stationary degrees of ionization are the zeroes of the source function 
(Fig. 4). The values nI(T) and nII(T) are defined by 

(28) 
dW 
dc W(c, nI,I17 = - ( c,  n I , I I ,  T) = 0 

The critical point (TCR, ncR) satisfies the equations 

Only for T < TCR bistability is possible. 
Fig. 6 shows the corresponding region in the n - T plane. In Fig. 7 is drawn the bi- 

stability region corresponding to the Pad6 approximation for the chemical potentials, 
(cf. Fig. 1).  
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0 6  0 7  0 8  0 9  I0 

n icrn-3 - 
Fig. 6. Isotherm of the degree of ionization in the bistability region 
T = 20500 K (Approximation like Fig. 4). 
Dashed line corresponds with the zeroes of the source function from Fig. 4. 

5 3 0  1- I 

" 
4000 9000 14 000 19 000 24000 

TIKelv in l  - 
Fig. 6. Bistability region of hydrogen in Debye approximation. Dashed line corre 
sponds with density-temperature values satisfying (38). T,, = 23886 K. 

VI. Reaction and Diffusion in a Nonideal Plasma 

Taking into account (lo), (18) and (19) we can now write down the reaction-diffusion 
equations for a nonideal plasma in the approximation of electroneutrality, ne(R, t )  
= ni(R,  t )  in the isobar situation 

In addition to the dimensionless parameters (25) we introduced a dimensionless length 
x = R/lo, lo2 = D,,/to is the diffusion length. 

W = C ( C T  - C) &(c, 72) T) - exp [hue + pi - P A ) / ~ B T I ~  (31) 
pa = parD + Aa, a = e, i, A 
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5 000 8 750 12 500 

T(KeLvin1 - 
Fig. 7. Bistability region of hydrogen in Pad6 approximation for the chemical PO- 
tentials [13] in a version of [15]. 
T C R  = 13800 K. 

The key quantities in (30) are the chemical potentials, indeed diffusion coefficient and 
rate coefficients have to be determined simultaneously. 

If we account for j e  = - j A  then (30) has an  integral - the total electron density: 
n(r, t )  = n(r, 0). 

Let us investigate a simple situation where the diffusion coefficient is constant and the 
total electron density is approximately homogeneous. After it we will discuss the influ- 
ence of nonlinear diffusion on the results. 

From (25) then follows D H o N I D  = 1 and CT = 1 

dc 
d t  
- = AC + W(C, TZ, T) 

This equation can be derived from a variational principle : 

sj- L(c, 6 )  dx = 0 

with 

The potential U is drawn in Fig. 4. 
1. Stationary states 

Time independent solutions follow from 

d2c au 
dx2 ac 
- = -- 

(We focus on the 1-dimensional case: a 5 x 5 6 )  
Eq. (34) is well known from classical mechanics: substituting c -+ r, the coordinate, 
and x -+ t, the time, i t  describes the movement of a particle with mass equal to  1 in 
the potential U [24]. (34) has a first integral - the “energy”: 

(35) 
1 -(dc/dx)2 + U(c) = E = const. 
2 
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Integrating (35) one obtains the inverse function of the stationary density profile 
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Z(C) = 1 [2(E - U(C))]-’’~ dc. (36) 

This solution of course essentially depends on the boundary conditions. A stability 
analysis shows [24] that monotonous solutions or in special cases those with a single 
extremum are stable. Of special interest are profils which can be formed in an isolated 
system, when the boundary conditions have to coincide with the stable concentrated 
values of the spatially homogeneous system : 

c(a) = c1, c(b) = c3. (37) 

Under these conditions the volume is separated into two parts with the degree of ioni- 
zation equal to  c1 and c3, respectively. 

In  an infinite system one obtains the so called kink solutions, when 

. dc 
2-*a, dx 

lim - = 0 .  

These special solutions are possible only if U(c,) = U(c3) or, in terms of the source 
function 

2. Ionization fronts 

Front solutions of reaction-diffusion-like equations were first investigated by KOLMO- 
GOROFF et al. [25]. Introducing an automodal-ansatz c(z) = c(x - V t )  in (32) one comes 
to an eigenvalue equation for the profile of an ionization front c(z) and the velocity V .  
Analytical results can be found if the source function is approximated by a polynomial 
with the same zeroes [7, 261 

0 < c 5 1 ,  A > 0 (39) W(c ,  n, T) = -A(c - cl) (c - c2) (c - 4, 
c(-w) =c1, c ( w )  = c 3 .  

The result is well known : 

c(x - V t )  = ce tanh {T c3 - c1 
2 

v = (A/2)”2 (cl + c3 - 2c,) 

Indeed for V = 0 one comes back to the stationary solution discussed above. 
In  a plasma in the assumed approximations standing fronts are possible only for 

certain values of total electron density and temperature for which (38) is satisfied. The 
corresponding line lies inside the bistability region near its lower edge. For the Debye 
approximation it is marked in Fig. 6 with a dashed line. 

Above this line the state c3 is more stable than cl, e.g. if c(-co) = cl, and c(m) = c3 
the ionization fronts move against the x-axis, else they move in opposite direction. 

Of course, ionization fronts are possible for arbitrary boundary values of the concen- 
trations, e.g. if a t  one boundary we have an atomic gas (c = 0 ) ,  then ionization fronts 
always propagate towards this boundary. In  particulary two fronts can follow one an- 
other, the first leading to a homogeneous state with c = cl, the second with c = c3 [7]. 
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3. Nucleation 

In a bistable reaction-diffusion system (plasma) with a certain stable degree of ioni- 
zation local electron density fluctuations can lead to the formation of droplets of the 
other stable concentration. This droplets are unstable if their radius is less than a critical 
value. If we assume droplets of constant density, i.e. density changes only in a thin 
boundary layer, much smaller than the radius, approximate results can be found [27]. 
We consider a spherical droplet: c(0, r )  = c3, c(m, t) = cl, c(R(z)) = cg with cl, c3 
being the stable zeros and c2 the unstable one of the source function and R the dimen- 
sionless droplet radius. The temporal growth then is governed by 

with the critical radius 
00 GI 

RcR = 2 $ (dc/dx)2 dz I $  W(C) dc 
0 C1 

cf. [28]. Only droplets with R > RcR are overcritical and grow further. Spherical fluc- 
tuations less than RCR decay. If the condition for standing fronts (38) is fulfilled we ob- 
tain stationary droplets. However they are structurally unstable. 

Using the same polynomial approximation for the source function (39) one obtains 
Xontroll’s solution for plane wave fronts [29] 

45,  r )  = c, + (c3 - c,) (1  + exp [B(Z - W)J}-] 
with 

B = (c3 - c,) (A/2)1/’, R C R  = 2A-1le(c, + ~1 - 2 4 - l .  

Sow we shall summarize the influence of nonlinear diffusion on the discussed effects. 
In  (32) another term occurs: 

i) Eq. (41) is “dissipative”, there exists no potential which it can be derived from, 

ii) The condition of standing fronts changes. Depending on DNONID the front profile 
can become steeper or smoother. The front velocity changes too (see below). 

jii) The growth velocity of droplets and the critical radius change essentially, cf. (40) 

cf. (33). 

0 

(40) follows for D = 1. 
iv) The case of negative diffusion has been discussed above. In  the presence of chemical 

reactions it again is connected with phase transitions via spinodal decomposition. 
Moreover, as it can be seen from (42) negative diffusion can lead to the formation of 
stable droplets. 
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