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The behaviour of entropy (Shannon-information) and renormalized entropy (based on 
the S-theorem [3]) is investigated for systems with an exponential stationary probability 
distribution function (1). Analytical results for the derivatives with respect to the control 
parameters are derived. One class of systems (3) is separated for which the renormalized 
entropy is a monotonously decreasing function of the control parameters. 

1. Introduction 

At the present moment two criteria for the relative 
degree of order or the contents of information respec- 
tively of stationary states in selforganizing systems 
[1, 2] are proposed. 

One is based on the S-theorem which was stated 
first for the generation of self-sustained oscillations 
in a Van der Pol system [3] and for the transition 
from a laminar to a turbulent flow [4]. The advantage 
of this approach was then demonstrated for a number 
of other examples in [5-14]. In [15] the S-theorem 
was presented in a more general form. 

The second criterion was offered in recent papers 
by H. Haken [16, 17J. He used the S-information. 

The origin of the letter "S" in "S- theorem" and 
"S-information" is different. In the first it symbolizes 
the role of selforganization and synergetics, however 
in the second case it is a regard for one of the pioneers 
of information theory C. Shannon. 

In the present paper we provide some further re- 
sults for the approach to the degree of order of sta- 
tionary states in synergetics that uses the S-theorem. 
We focus on a class of systems (1), that can be simply 
analyzed with analytical methods. We compare the 
results for the degree of order provided by both criter- 
ia. 

For  a concrete example of a selforganizing system 
with two control parameters we show that in the pres- 
ence of a second parameter the system can reach more 
ordered states, i.e. states with lower entropy. 

2. Exponential Stationary Probability 
Distribution Function 

Let us study stationary probability distribution func- 
tions (S.p.d.f.) of the following form [18]: 

f(X, a) = exp ( (F (a ) -  H(X, a))/Do) , 

f(X, a) dX = 1. (1) 

Here Do is the constant intensity of a noise source 
or the temperature in a thermostat system respective- 
ly. X is a set of order parameters or a complete set 
of phase variables respectively, a = (al . . . . .  a,) are the 
control parameters characterizing external forces. We 
always can define them so, that they vanish in equilib- 
rium, i.e. in the state without external excitation (cf. 
[18]). F(a) is the normalization constant. From 
H(X, a) we separate the effective hamiltonian, i.e. the 
equilibrium part : 

H(X, a) = H o ( X  ) -  U(X, a), Ho(X)=H(X, 0). (2) 

Stationary probability distribution functions of 
the form (1) play a very important  role in statistical 
physics, e.g. Gibbs-distributions in equilibrium, local 
Gibbs-distributions in the nonequilibrium situation 
[19], but also in the theory of selforganization, e.g. 
stationary solutions of Fokker-Planck equations in 
the case of detailed balance and so on. 

In the following we investigate how the function 
(I) and the mean values of certain quantities, especial- 
ly the S-information change if the control parameters 
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alter (Sects. 3 and 4). In Sects. 5 and 6 we study the 
behaviour of the entropy of states which are renor- 
malized to a given constant value of the mean effective 
energy. We find general formulae which we shall ana- 
lyze in more detail for one widespread case: 

U(X, a)= L g~(ai) vi(X). (3) 
i = 1  

3. The Case of a Single Control Parameter 

We can study the control parameter dependence of 
the function (1) by differentiation with respect to " a ' :  

8 X a 1 F'(a))f(X, a). 
~aaf(  ' )---D00(~ U(X,a)+ (4) 

Using the normalization condition F'(a) can be ex- 
pressed by U(X, a): 

The brackets denote the averaging over the function 
(1). Now we can write (4) in the form (5): 

c~ f (X, a)= f (X, a) A ~a U (X, a). (5) 

The symbol "A"  denotes the deviation from the mean 
value (fluctuation): 

U -  A 7a t J=~a  U~ U �9 

We now consider an arbitrary function A(X). 

d 8 
(A)  = ~ A(X) ~a f (X, a) dX. 

d~ 

Making use of (5) we can write 

d ' /  
d~ (A)=Do AA ~a " (6) 

Of special interest is the sign of this expression. It 
depends on the character of the external excitation, 
i.e. on U(X, a). We demonstrate this on the simplest 
example. 

Let f and A be functions of a single positive vari- 
able (amplitude, energy, concentration and so on), 
0 < E ~ oo. If A(E) is a monotonous function, there 
exists a simple condition for the sign of (6): 

d Z d~ (A)  A > 0  (<0) (7) 

if with increasing " a "  the function f (E,  a) shifts to 
the right (left). The latter means in mathematical 
terms, that there exists a value E=E1, that for all 

E>E,:  ~ a f ( E ,  a)>O (<__0). 

The condition (7) holds also for certain nonmono- 
tonous functions A (E) (see Appendix). 

4. The Behaviour of the S-Information (Entropy) 

We start from Shannon-information 

S(a) = - ~ f (X, a) ln f (X,  a) dX. 

Differentiation with respect to the control parameter 
provides 

A S(a) = -- I (1 + l n f ( X ,  a)) ~ f (X ,  a) dX. 
da  u ~ t  

We take into account (5) and also: 

A ln f (X,  a) = (A U (X, a ) -  A H o (X))/Do, 

O o1( '/ UA ~ a ] + ~ - ~  HoA . (8) 

Let us first apply (8) to an example, which had 
been studied recently by Haken [16]: 

f(q) = N exp (ct qZ _ fl q4). (9) 

(9) is the order parameter distribution function under- 
going a second order nonequilibrium phase transition 
(at e=0)  from a monostable to a bistable state, fl 
is positive, a we divide into two positive parts - ~  
= 7 - a p ,  7 is a system constant, ap is the control pa- 
rameter (pumping). The value of "ap" defines the de- 
viation from equilibrium (in equilibrium the pumping 
vanishes). Then (9) has the form (1, 2), where Ho(q) 
=Tq2 + flq 4, U(q, ap)=apq 2, Do = 1. Introducing Ho, 
U, Do into (8) we find promptly 

d S d 
da---; s 

= -- o~ (q4) + c~ (qa)2 + fl (q6) _ fl (q2) (q4) 

----- -- aaq22 + fl (A q2 A q4) (10) 

o -2 denotes the variance: 2 aq~ = ((A q2)2) (10) agrees 
with the result of [16]. 

Using the criterion (7) we can define the sign of 
the correlator: 
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(A q2 A q4) = (qa A q4) > 0. 

The first term in (10) is positive in the monostable 
state (e < 0) and negative in the bistable (c~ > 0). The 
S-information has a single maximum near the transi- 
tion point [17]. However it is doubtful, if this hump 
is caused by critical fluctuations that are typical for 
phase transitions. 

It is enough to look at another nonequilibrium 
phase transition [18] : 

f(E) = g exp (-- (TE-- a v E + b/2 E2)/Do), 

7, av, bo >0, Ho(E)=TE+b/2E2, 

U(E, ap)=avE. (11) 

The system (11) is undergoing a Hopf-bifurcation at 
ap=7, e.g. onset of selfsustained oscillations and so 
on. It is interesting that the S-information is in this 
case a monotonously increasing function of the feed- 
back "ap" in the whole region, cf. [20, 21]. 

Let us come back to the general formula (8) which 
can be expressed in another form 

d S d ~ o  d 
d~  =daa $1+ d a  ( H ~  

1 
S, =S--D o ( H o )  = - - - -  qS, (12) 

Do 

is the nonequilibrium analogue of the free energy. 
In equilibrium, i.e. U = 0  we have Fo=Ho+D o lnfo,  
cf. (1, 2). 

S~ is connected with the information gain 

K = I d X f  lnf/ fo = (r --Fo)/Do, 

dad S t = - - I / D ~  dda r  UA 0 U " (13) 

In selforganization processes in systems (1, 2), as a 
rule, we expect an increase of the mean effective ener- 

d 
gy, i.e. daa ( H ~  >0,  if " a "  measures the distance from 

equilibrium. The entropy $1 is monotonously decreas- 
ing with increasing absolute values of the pumping 
if the condition (3) is fulfilled: 

d 1 S l (a )=  - - ~  g(a)g'(a)a2=<0, 
/)5 

d 
if d~a gZ(a)>O" (13") 

Thus in this case the S-information is a monotonously 
increasing function of the control parameter for nega- 
tive or small positive values of "a" .  The sign of the 

entropy derivative for higher values of " a "  depends 
on the competition of the two terms in (12). 

5. Renormalization of the Entropy 

The entropy can serve for measuring the order (or 
chaoticy) in open systems only if it is calculated at 
fixed mean energy values of the states [11-15, 18]. 

In the following we study the behaviour of entropy 
under an additional condition ( W )  = Wo = const. Let 
W be an arbitrary quantity of state, which later will 
be replaced by the effective hamiltonian Ho(X). Its 
mean value shall depend on system parameters 7 
=71 . . . . .  7,,, on one control parameter " a "  and on 
the intensity of external noise Do. Of course, in gener- 

al, 7a  (W)  4=0. 

Then the condition ( W )  (7, a, Do) = Wo = const 
can be understood as an equation for an implicite 
function /3=I5(7, a, Wo). The renormalized noise in- 
tensity (or the temperature if we deal with a system 
in a thermostat respectively) has to be real and posi- 
tive. Moreover it should guarantee that the renormal- 
ized s.p.d.f. (see below) can also be normalized [11]. 
General conditions of the existence and uniqueness 
of such functions are, however, still unknown. There 
exist two approaches to the renormalization: 

First way [3, 8, 9, 18, 20-22]. 
We replace Do with/5(7, a, Wo) in the s.p.d.f. (1, 2), 

(below we will drop the arguments 7 and W 0 in 15) 

f (X, a, Wo)=f (X, a)h,o-X,~.~ 
= exp ((ff (a) -- H o (X) + U (X, a))//3 (a)). (14) 

The function (14) fulfills two conditions: 

f Y(x, a, Wo)dX 
= I f ( X ,  0, W o ) d X = I f o ( X ) d X =  1, (15) 

I W(X) ~(X, a, Wo) d X  

= f W(X)fo(X) dX = Wo = const. (16) 

Thus we find the entropy of states at the condition 
( W )  =const :  

S(a)l<w>=wo=S(a, Wo) 

= -- I y(X,  a, Wo) lny(X,  a, W0) dX. 

Naturally, ( W )  can also be fixed on any other level. 

Second way [11, 12, 15]. 
Of course, we can renormalize the equilibrium 

p.d.f. (1, 2, with U = 0 )  instead of the nonequilibrium 
function: 
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fo(X, a) =fo (X)loo -* b~,)= exp ((iV(a) -- Ho(X))/D(a)). 
(17) 

Here the additional conditions are the following: 

y fo(X, a) dX  = ~ U(X, a) dX  = I fo(X) dX  = 1, 

W(X) fo(X, a) dX  = ~ W(X) f (X ,  a) dX  = (W)(a). 

( W )  is not a constant with respect to the control 
parameter�9 Instead of this we trim the mean value 
of W of the reference state, i.e. of the equilibrium to 
the actual nonequilibrium level. Hence of interest in 
this case is only the entropy difference 

So(a)--S(a) = - ~ fo(X, a) In fo(X, a) dX 

+ ~f(X,  a) ln f (X,  a)dX. 

Of course both approaches are equivalent. In this 
paper we will make use only of the first one, because 
it is simplier for analytical investigations. 

6. Behaviour of the Renormalized Entropy 

The solution of (15, 16) is the pair of functions if(a), 
/3(a). It is not possible to find them explicitely, but 
we can derive expressions for the derivatives i ' (a) ,  
/3'(a). Differentiation of the normalization condition 
(15) with respect to the control parameter provides 

i ' (a )  ~ /3'(a). (i8) 

Here and below the average has to be taken over 
the function (14). We will drop the symbol " ~ "  over 
the brackets if on the 1.h.s. of the equation stands 
a renormalized quantity. Differentiating equation (16) 
we find 

if' (a) + 0/~ a U (X, a) 
0 = S d X f ( X ,  a, Wo) W(X) /3 (a) 

_F(a)--Ho(X)+ U(X, a) /3'(a). 
~(a) 

Substituting ff'(a) from (18) we obtain 

/3']<w>(a)= --/3(a) (W(X)  A c3/Oa U) . (19) 
(W(X)  A (Ho-- U)) 

(19) can be introduced into (18): 

a ) (WA3/OaU) 
F' l<w>(a)=-  ~a U +S(a)/3(a) ( W A ( H o _ U ) ) .  

With the expressions for/3'(a) and i ' (a )  we find the 
derivative of the function~ cf. (14) 

~-~ /(x,  a, Wo) = 
y(x, a, Wo) 

/3(a) 

O (WAO/OaU) 
�9 A ~a  t : -  a (14o-  U) 

(20) 
d 

From (20) it is easy to see, that in fact daa ( I Y ) = 0  

for any value of "a" .  Using formula (20) we now are 
able to differentiate the entropy 

d 
da ~[<w>=w~ ~ d X  

1 ~ U) 

-.~Ho-~ (wA(no- V))J" (21) 

Here we denoted 

2 2 2 (AHoAU) .  r - U) = r "[- flU 

depends on the control parameter and the noise 
intensity: 

~l<w>=wo=~(a, /3(a), Wo) 

therefore 

d ~ _ 0 S  0{ 0/3 

d~ <w>=w~ ~ + 0 / 3 ,  �9 ~3a (w)=wo" 
(22) 

Comparing (21) and (22) we easily obtain, that the 
first term on the r.h.s, of (21) is the S-information 
derivative (cf. (8)), where /3(a) has to be substituted 
for D o . The second term in (21) is also immediately 
identified. Indeed, taking into account (19) we get 

g ~ a -  1 
/33 (a) O'ffH0 - U)" 

We now shall study in more detail the case 
W(X) = Ho(X)�9 First we have to replace (19) by (23) 

(Ho(X) A 3/Oa U(X, a)) (23) /3'l<Uo>(a) = --/3(a) 
<Ho(X) ,t (no(X)- -  U(X, a))) 

As we have mentioned, we are interested only in real 
and positive functions/3 (a). That means that in some 
situations the scope of this renormalization method 
in the control parameter space will be limited. If, for 

d 
example ~ a  a ( H o ) > 0 ,  the denominator of (23), being 
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positive near equilibrium (lal ~ t) can change its sign 
at some value ao(Do) of the parameter. If we however 
increase the external noise intensity Do, lao[ is increas- 
ing too. 

The question of the solubility of (23) needs further 
investigation. In this paper we assume that we always 
can increase the noise intensity and therefore 
( H  o A ( H o -  U)) > 0 in the interesting parameter 
range. Note, that the second renormalization method 

( ___d ( H o ) > 0 ) .  works for arbitrary values D o \if-d-- ~ 

Let us write (23) in another form: 

d 1 d 
d--a -~=da (Ho)lo~ (Ho A(Ho-- U)) - 1. (24) 

For small absolute values of "a" ~ f ,  therefore 

/~'(a)~ a2--- ~ ~ a2 ~ d a ( H o ) .  

malized entropy g decrease monotonously with in- 
creasing control parameter for one class of systems: 

d Sl(a)<=O andi f  d 
d--a daa gl<no> (a) < 0; 

U(X, a)=g(a) v(X); 

d g2(a)>O ( " =  " only for a=0).  
da  

(27) 

Finishing this section we give the results for the 
entropy derivatives for Haken's example (9): 

d 
d~  $1 = --ap a~_-< 0, 

d 

2 2 _ av flz crg= % .  (1 -- rq~,/:/4) /~ _ , ;~+/~ ,+ /~(~_~) .  (~q~ aq,)__<0. 

We see that near equilibrium the derivatives of /5 
and (H0)  have opposite signs. Moreover, using the 
idea of the "local equilibrium" [15] this fact can be 
generalized for all values of the control parameter. 
If one would use the second renormalization method 
(cf. Sect. 5) he could obtain the same sign for /5'(a) 

2 1  

5 ( H ~  for arbitrary values of a. and for 

Now we write down the entropy derivative, substi- 
tuting in (21) Ho(X) for W(X) 

da St~o>(a)=-N-(~ V~ ~a V 

c~ <(Ho -- U) A U) -(Ho~ Ta U) 
<(Ho - U) A Ho)] 

(25) 

In the special case (3) we find the simplier result 

d - g(a) g'(a) a~ z a~o 1 -- r~ro, o 
d~ Sl<n~ /)2 (a) ( (Ho-U)AHo)  

(26) 

r~o, ~ is the normalized correlation coefficient: 

(AHoAv)  irno,~l<l. 
FHo, v -  ~ 

GHo fly 

As we have underlined the denominator in (26) is 
positive, hence the entropy derivative is negative if 

d ~  g2(a)>0. 
da  

So we can summarize the main results of the one 
parameter case: Both the entropy $1 and the renor- 

7. The Case of  Several  Control  Parameters 

All results remain valid here too, we only have to 
d 0 

substitute a ~ a = ( a  1 . . . . .  a,), d--a ~ 0a~ For instance 

we find for the S-information, cf. (8) 

~ S(a)= 1 ( U(x 'a)A ~ ) Oa--  v(x,a) 

In the validity of condition (3) we obtain for the firm 
term" 

Oa---~ $1 (a)= - D-~o gi(a,) g}(ag) a~, 

g;(aj) ~ g~(aj) (A v i A v j). D 2 j.z (28) 

In the case of two or more control parameters there 
do not exist such general conditions for the negativity 
of the derivative of S 1 like for a single parameter 
(27), because the signs of the correlators (A vi A v j) 
depend on the concrete system. 

If, for example, both v~ and vj are monotonous 
functions of one single and positive variable E we 
find (see Appendix) 

sign ((A v i A v~)) 

= sign (v'i (E). v)(E)), 0 _< E _< oo. (29) 
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The expressions for the renormalized quantities re- 
main valid too. So we can write for the noise intensity 

C ~ ( H  o d ~/~a i U> 
aal/3(a)J<~~ = - / 3 ( a )  . (30) 

<H o A (Ho-- U)> 

For  large enough Do the denominator is positive 
again. It is interesting to study the location of the 
lines ( H o ) = c o n s t  and /3(a)[<Ho>---const. Along the 
line (Ho)=<Ho)(O) the noise intensity remains on 
the initial level /3=Do =const .  With increasing dis- 
tance from this line the angle between both lines 
( H o )  = const and /3  = const, in general, increases. 

The formula for the entropy derivatives ~ S(a) 
is the same as (25). 

8. Seifsustained Oscillations in a System 
with two Control Parameters 

As an example we study a Van der Pol oscillator with 
two feedbacks. Computer  results had been presented 
in another paper [18]. Here we like to give the corre- 
sponding analytical results, demonstrating the advan- 
tage of the general formulas derived above 

d x  

dt  

d 2 2 4 4 2 ~v+(a+-~bv  +5cv )V+moX=V~ y(t), 

(y(t)> =0,  <y(t), y(t')> =26(t- t ' ) ,  

D = Do = const (31) 

a= 7--av, b = b o - b  v, ~,, bo, ap, b v, c > O. The control 
parameters (feedbacks) are a v and b v. Focussing on 
quasiharmonic oscillations we can derive a Fokker- 
Planck equation with a stationary solution of the 
form (1, 2): 

f (E) = exp ((F-- Ho + U)/Do), 

H~ + ~  E2 +3 E3, 

U (E, a v, bp)=avE + ~ ff E 2 , 

E = (COo z x 2 + v2)/2, m = 1. 

With the help of formula (6) we obtain the deriva- 
tives of the mean effective energy, which are positive 
because the condition (7) holds. 

- -  (Ho> 

1 t 2 bo c ) 

a 
- -  (Ho>  b./2 

From (13") we find the derivatives of $1, which are 
negative (cf. (7)) 

s, = _ 1  a , , 4 _ 1  <AEaE > <_O ' 
aap Dg D 2 2 - 

1 bp 2 1 ap<AEAE2)<O" (33) 
ebp/-~2 S '=  D 2 2 PaE~--D--~o 

From (32) and (33) we obtain for the S-information 
(cf. (12)) 

aa. og 

O S = ~ ( a ( A E A E Z ) + b a ~ +  3 (AE2AE3>). 
b J2 

The partial derivatives of the S-information can 
change their sign. In dependence on the relation be- 
tween a, b and e the S-information is a monotonously 
increasing function of the pumpings or exhibits one 
maximum. 

Finally, we obtain the expressions for the renor- 
malized entropy (26). Because they are rather compli- 
cated we confine here to the case c = 0. 

~ =  l b  

(1 -- r~. ~2) (ae bo/2- 7 b J2) 
7 a (r2 + bo/2 b/2 ~ + (7 b/2 + a bo/2) <A E A E 2 ) '  

c~ bp/2 /320 (rE= 

(1 --  rE, E2) (au bo/2  - 7 b . / 2 )  

~, a a~ + bo/2 b/2 a22 + (T b/2 + abo/2) < A E dE2) " 
(34) 

Within the scope of the renormalized method the de- 
nominator  is positive. 

It is interesting to study the gradient of entropy 
in the control parameter plane: 



Y.L. Klimontovich and M. Bonitz: Entropy of Stationary States 247 

grad ~ = { ~ a p  ' ;  ~@p/2 S } " 

For  the angle between the gradient and the axis a s 
in an arbitrary point we can write 

( / tanc~ ap, 2] ~?bs/2 ~ ~ = - 2  7-as  
bo-  bp " 

This formula describes a family of concentric circles 
with the center (7, bo/2) �9 The equientropy curvatores 
are straight lines starting from this point. The line 
of maximum entropy is bp = bo ap/7, along it the par- 
tial derivatives vanish (34). In the point (7, b0/2) the 
s.p.d.f, is not normalizable, this state cannot be 
reached. Indeed, in the effective hamiltonian are al- 
ways higher nonlinearities than in U(X, a), e.g. c ~:0. 
Therefore in real systems one will not find such ex- 
traordinary points. If c :t: 0 both the partial derivatives 
of entropy are negative. Thus, for arbitrary positive 
" c "  there exist ranges in which the second control 
parameter allows us to diminish the entropy further. 
So we come to a complete agreement with the com- 
puter results [18]. 

9. Weakly Nonlinear Systems 

In some papers [3, 12, 20-22] the entropy for a system 
given by a Langevin equation was calculated with 
fixing ( E )  instead of (H0) .  In the case of oscillators 
E is the oscillation energy (cf. Sect. 8). Of course the 
results for the entropy derivatives change. This can 
be seen from the general formula (21). 

Let us divide the effective hamiltonian into a linear 
and a nonlinear part:  Ho (E) = 7 E + H~ t (E). If the sec- 
ond term is small, naturally (Ho} ~ (E}. 

The entropy derivatives for the oscillator with two 
pumpings, studied in Sect. 8 had been derived in 
works of Ebeling, Engel-Herbert and co-workers [20- 
22]. This results can be easily found making use of 
the general formula (21), where E has to be substituted 
for W. We provide them for sake of completness: 

~a~ ;~I<E> = - - ~ -  tr~ z a~v 

2 1 --rE,  w 

aa~ +b/2 (AE AE2)+c/3(AE AE3) ' 

t7 E O'Ea tTy O" z 

rE,  y " rEz ,  z - -  rE ,  E 2 " ry ,  z 

a~r~ + b/2 ( AE AE 2) +c/3 ( AE AE 3) 

E c where we denoted W=H"J- E 2,  y=a + 3 E 3 ,  Z 

b E 2  + c E 3 "  For  the case bp c = 0 i t  was shown 
2 

explicitely, that the denominator  (it is D~ * ~ ~a~ap S, cf. 

(8)) is positive. 

10. Discussion 

As we have shown the information entropy (S-infor- 
mation) is in general a nonmonotonous  function of 
the distance from equilibrium in open systems, be- 
cause it depends on the mean energy. There may be 
various approaches to calculate the entropy of states 
at constant values of the mean energy. 

One method is a renormalization of temperature 
or intensity of external noise respectively. Of course, 
this leads to a deformation of the s.p.d.f. The question 
is, in which situations this deformation is relevant 
and in which not. For  a special class of functions 
(1) changes of temperature or noise respectively do 
not change the features of the system qualitatively, 
particular the location and the type of the extrema 
of the s.p.d.f., i.e. the location and stability of station- 
ary states, and so on. 

If we increase the noise (provided that (Ho)(0)  
< (Ho)(a)) in the equilibrium distribution function 
(second way), its maximum remains on the original 
position. The height of the maximum decreases but 
the function is broadening. Of course, this procedure 
can be continued. However if we use the first way 
we have to diminish the noise intensity in the non- 
equilibrium p.d.f. That  means that all maxima will 
rise in hight but squeeze more and more. Indeed this 
procedure may break down if the renormalized noise 
vanishes. In the opposite case ( (H0) (0 )>  (Ho)(a)) it 
is the first renormalization method that can be used 
for all parameter values. 

The situation changes if we study stationary prob- 
ability distribution functions with a noise dependent 
effective hamiltonian, e.g. multiplicative noise. In this 
case the features of the state (see above) depend on 
the noise intensity too. Here we have to restrict our- 
selves to a local approach [15]: We consider only 
a small surroundings of the state we are interested 
in, so that within this range the renormalized noise 
intensity does not change very much. 

As we have seen for the renormalization method 
the choice of the quantity to be fixed is important. 
We think that the effective hamiltonian (2) should 
be preferred because it coincides with the Hamilton 
function if we deal with a thermostat-system [18]. 

Let us summarize the main properties of the en- 
tropy calculated at ( H 0 ) = c o n s t :  
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1. S']<no> is maximal in equilibrium, i.e. if U = 0  
(Gibbs theorem, cf. [15, 18]). 

2. The entropy is decreasing monotonously if the 
intensity of the pumping is increased (case (3)). In 
the case of one control parameter it has been shown 
analytically, cf. (27), for two parameters we base on 
numerical results. 

3. The results depend only on the s.p.d.f, but not 
on the nature of the particular system. 

The entropy S]<no> can be used in a constructive 
way [11, 14, 15, 18]: The decrease of entropy can 
serve as a necessary condition for a selforganization 
process. Moreover, the difference S(a = 0 ) -  ~[(no> (a) 
can be used as a measure of the distance from equilib- 
rium, i.e. of the degree of order. 

Appendix. Proof of Condition (8) 

Therefore 

d A(E1) dEA ~a U.f=O (<). 
d~ (A) > Do o 

If A(E) is a monotonously decreasing function the 
sign of the derivative (II) changes, hence we obtain 
(7). 

This proof  remains valid for the following func- 
tions too: 

d 
- -  A(E)>=O (= )  if E>E 1 
dE 

and 

A(E)<A(E1) (__>) if E<E,. 

Integration of (5) over E from 0 to 0o gives References 

; ~af(E, a)dE 
0 

= - -  U -  c? 
Do o ~a ~a f(E, a ) d E = 0 .  (I) 

We presume that there exists a value El :  For  all E 

>El ~2f(E, a)>O (<0). Ej is the maximum solu- 
u ~ t  

tion of the equation ~aa U(a, E)=  ~-a U . Then we 
obtain from (I) 

f (E,a)dE=-- o~ ~a f(E'a)dE<=O (>=0). 
E1 

Using this result we can write for the derivative of 
the average of any monotonously increasing function 
A (E), cf. (7) 

d ___1 E1 0 
da (A)=Do f dEA(E)A ~a U . f  

0 

1 0 +N l d A(E)  7a Cr.f. (n) 
E 1  

For  continuous functions A(E), f(E, a) we can write 

~' 0 U ' f  0>= ~ dEA(E)A ~a 
0 

v, ~3 U. f  (<) ~ A ( E 1 )  S dEA ~a 
0 

oo a ~o a 
I dEA(E)A ~a U'f>=A(EO IdEA Oa U.f>O 

E1 E1 

(<__). 
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