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A b s t r a c t .  Selforganization processes controlled by two pumping parameters are studied. The 
qucstion of thermodynamic equilibrium in nonlinear pumped systems is investigated. Using the en- 
tropy statement formulated in a recent paper the degree of order of steady states is defined. It is 
shown that  those systems can be optimated following various principles. For illustration, selfoscil- 
lations of nonlincar oscillators with two pumping parameters arc studied. 

Zur Bestimmung des Ordnungsgrades bei Selbstorganisationsprozessen 
I n h a l  ts i ibers icht .  Es wcrden Selbstorganisationsprozesse betrachtet, die durch zwci Para- 

meter gcsteuert werdcn. Die Lagc des thermodynamischen Gleichgewichts in nichtlinearen gepump- 
ten Systemen wird untersucht. Zur Bestimmung des Ordnungsgrades stationtircr Zustinde wird 
der in einer vorhergchenden Arbeit formulierte Entropiesatz verwendet. Es wird gezeigt, daI3 der- 
artigc Systeme nach vcrschiedenen Kritericn optimicrt werden kiinnen. Als Illustration dienen selbst- 
crregte niehtlineare Oszillatoren mit zwei Steuerparametern. 

1. Introduction 
The investigation of selforganization processes in many systems makes it indispen- 

sable to define the degree of order of a sequence of states corresponding to  different 
values of the control parameters. 

Of course, one can estimate the order or disorder following various criteria [I]. A 
recent paper [ 21 used the BOLTZMANN-GIBBS entropy and formulated the following 
statement called the S-theorem : With increasing distance from equilibrium the entropy- 
values of steady states renormalized to a fixed value of the “mean energy” decrease. 

The S-theorem as well as the H-theorem cannot be proved in a general form. However 
the h”5’theorem can serve as an “measuring instrument” in the selforganization theory. 
The validity of the 8-theorem was proved for VAX DER POL oscillators of the THOMSON 
type [2], for generators with an inertial nonlinearity 131, for generalized VAX DER POL 
oscillators with a sequence of limit cycles [4], for the transition from laminar to turbulent 
flows [5]. The latter example confirmed the point of view stated in 161 that turbulent 
structures are more ordered or more highly organized than laminar. This point of view 
has been strengthened also in [7, 81 as well as in “31 which compared the entropy pro- 
duction of a turbulent and a mental laminar flow in channels a t  fixed tension at  the 
wall. In  all of these examples selforganization processes are controlled by one parameter 
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only: In  generators i t  is the feedback, in flows the REYNOLDS number. In  the present 
paper we investigate two examples in which selforganization is regulated by two control 
parameters 

1. We will consider a’ VAN DER POL oscillator with hard or weak excitation (depend- 
ing on the values of the linear and the first nonlinear friction coefficients). We will 
choose two control parameters which can be called coefficients of linear and nonlinear 
feedback, respectively. 

2. As the second example we will study a VAN DER POL oscillator with weak excita- 
tion influenced by a resonance force. In  this case the control parameters will be the 
linear feedback and, for instance, the amplitude of the external force. 
Naturally, in the presence of two pumping parameters selforganization processes become 
more complicate. A number of new questions arises, we try to answer some of them 
in this paper. The first question consists in the choice of the equilibrium state which 
serves as the origin of the level of chaos. I n  the following the state corresponding to 
zero values of the chosen control parameters will be identified with the “equilibrium”. 
The second question is connected with finding new possibilities for the increase of the 
degree of order using two control parameters in comparison with a one-parameter sys- 
tem. As we will show, there are various approaches for solving this problem. 

2. VAN DER POLS Oscillators with Two Control Parameters 
2.1. Oscillator with Two Types of Feedback 

Our first system may be discribed by the LANGEVIN equations 

y and 6, are the linear and the first nonlinear friction coefficients respectively, up and 
b, the linear and the nonlinear feedback. For mathematical simplicity we consider only 
GAUSSIAN white noise with energy-dependent intensity and only generators of the THOM- 
SON type. We introduce slow variables x, v by the transformation 

2, IL: = G cos root + - sin coo t ,  V = v cos coot - ool: sin coot. 
COO 

Using an averaging over the oscillation period 2n/00 we get 

dE 1 aD -+ (a + bE + cE2)E  = l / D y E ( t )  f T E -  
dt aE’ 

Of coursc:, E = i. &re obtain the corresponding FOKKER-PLANCK-eqUatiOn (FPE) 
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It is interesting to note that (2) and (3) are approximations for (l), however they are 
exact equations for the following system [4] : 

There are two types of noise intensity: 
(i) The noise is given a priori, i. e. it does not depend on the deterministic characte- 

ristics of the actual system. Here we will consider additive noise only, D = Do = const. 
(ii) The noise is natural [4]. Natural we will call any noise that is “synchronized” 

with the system in the following way: If all feedbacks vanish the natural noise should 
guarantee that the stationary probability distribution coincides with the equilibric 
BOLTZMANN-GIBBS function (5) 

f ( E )  = - Y exp (- @), Do = y k T ,  ( E )  = kl’. 
DO DO 

This means that the natural noise satisfies a generalized EINSTEIN-formula (6). Such a 
generalization is valid for systems with a nonlinearity of dissipative type [lo]. Substi- 
tuting f ( E )  in the stationary FPE (3) for (5) we obtain in general 

D(E)  = 2eaElkT Y P o ( E ‘ )  dE’, D(0) > 0 .  
E 

In  our special case Po(E) = y + boE + cE2.  
In  a linear system with Po = y one obtains the well known EIIiSTEIN-formula Do = 

y k l ’ .  We emphasize that as a result of the kinetic theory we use the same PPE (3) for 
given noise (additive or multiplicative) as well as for natural noise. Therefore we included 
in the LANGEVIN equations (1) and (4) the terms with the derivatives of the noise 
intensity. 

Let us now solve the stationary PPE (3). 
( i )  Considering given noise we obtain [ c 

1 f ( E )  =-exp - 
2 

There is another convenient form 

p - H ( E )  + U,(E) 
DO 

i ( E )  = exp [ 
F = -Do In Z may be called the “effective free energy”, 

(7) 1. 

(7*) 

C I€ = yE + 5 E2 + - E3 the “effective Hamiltonian” because of the analogy of 

(7*) and the canonical GIBBS distribution. 

U ,  = a,E + 

Z 3 

b 
z E2 is a function of the pumping parameters which defines the deviation 

from the “canonical” distribution. 
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(ii) Now N-e consider natural noise and obtain 

343 

N 

f ( E )  = - 1 e--E/kT exp [,r" Pp(E' )  dE'],  f ( E )  dE = 1. z kT Po@') 0 

In  our special system is P O ( E )  = y + b,E + cE2, P J E )  = ap + bpE, Po(0) = y > 0, 
Po(0) - PJ0) = y - ap > 0, 

2.2. Oscillator with a Resonance Force 
Our second example is given by the equations 

1 - a D  
(9) 

(y(t)> = 0, (Y(t), Y(l ')> = 26(t - t ' ) ,  a = y - a p .  

We obtain the corresponding FPE (10) for (9) in the case of quasiharmonical oscillations 
as well as for the system with symmetric dissipation terms (in analogy to (4)). 

It has the following stationary solution in the case of given noise [ aE+?*r- VX 

f(x, v) = - z 1 exp - 1, -[f(x,v)dzdv = 1. (11) 

We introlduce again 

and ( t l )  can be written again in the form (7*). 

3. Thermodynamic Equilibrium in Nonlinear Systems 
It is natural to choose as the origin of the degree of order the state of maximal 

chaos - the equilibrium. From thermodynamics it is well known that the equilibrium 
probability distribution depends essentially on the influence of the surroundings on the 
system. For instance, a system in a thermostat is discribed in equilibrium by the cano- 
nical GIBBS function. A BRowNian particle iu a medium or an oscillator are examples 
for this situation. 

In  nonlinear open systems, however, the situation is more difficult. If the systeni is 
pumped by flows of energy, particles a. o., there can be nonequilibrium steady states too. 
Nevertheless, under certain conditions these systems also show equilibrium-like beha- 
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viour (we will speak about “equilibrium” state). Let us sum up the conditions: First, 
all the feedbacks have to vanish, i.e. all the pumping parameters have to go to zero, the 
probability distribution is the “canonical” (7*), with U = 0. “Equilibrium” means that 
the system will relax to  the state of rest. For systems with given noise this condition 
can be satisfied only for definite parameter ranges. We demonstrate this on our exam- 
ples (7) and (11). The system (11) is closed if ap = % = 0. The nonequilibrium steady 

state (a limit cycle with the energy Eo = - - = - is vanishing if y > 0. Only for 

b, > 0 the distribution function can be normalized. Hence for all positive y our system re- 
laxes to the “equilibrium” (Figs. 1, 2). In system (7) the feedbacks vanish if ap = b, = 0. 

There can be two limit cycles with the energies db2 - 4uc] = 

- -!- [”& / b i  - 47.1. They vanish if - b0 > -2  (c, we assume y > 0 and 

c > 0. Hence with all of these y and 6, the system ( 7 )  relaxes to the state of rest 
(Figs. 3, 4). 
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Fig. 3. Equilibrium and nonequilibrium steady 
states of (l), (4) 

Fig. 4. Parameter range of (l), (4), in which 
“equilibrium” is possible 



Yu. L. KLIMONTOVICR and M. BONITZ, Order in Selforganization 346 

4. The GIBES-theorem for Open Systems and the S-theorem 

tions, first t.he canonical GIBBS function 
Let us recall the well known GIBss-theorem [6]. We consider two distribution func- 

1. a, T )  - H ( x ,  a )  / o m  = exp [F‘ kT 

X is a complete set of coordinates and momenta, “a’) is a parameter set, H is the Hamil- 
tonian and F the free energy. Any second distribution function can be represented in 
the form (7*) introducing a control parameter function U ,  

F(a,  T )  - H ( X ,  a )  $- U,(X,  A]. [ kT fl(4 = exp 

I n  t8he validity of two conditions, the normalization (13) and the constance of the mean 
energy (14) 

J d X  fO(X) = j” d X  f , ( X )  = 1, 
J d X  H ( X )  f o ( X )  = J d X  H ( X )  fl(x) 

(13) 
(14) uo, 

the theorern states that the entropy has its maximum in the equilibrium and that 8, = S, 
only for f l  I= f,, where the BOLTZMANN-GIBBS entropy is defined by S = --k j” dX In f . f .  
In  the case of open systems however, the mean energy does not remain on the equili- 
brium level. That means that the condition (14), as a rule, is not holding. On the other 
hand, if one wants to  compare the entropy of states corresponding to different values 
of the control parameters, one a t  the same time has to fix the mean energy. This can be 
achieved by corresponding changes of one or several external non-pumping parameters. 
In  recent papers this approach has been demonstrated for oscillators [ a ]  and also for 
hydrodynamic flows [5, 81, where the intensity of given noise and temperature, respec- 
tively, were changed. Using this idea we can present the condition (14) in the form (14*). 

(1.4*) 

the functional ?[ U,(X)]  is the solution of (14*), and we obtain 

J d X  H ( X )  f o ( X )  = J dX H ( X )  f l ( X )  = U,, 

there is i, = f l  

the more general st’atement 

1 
T-T 

so 2 i, = --k j” ax i n j l .  j,. 
The proof follows exactly the classical GIBBS proof [6]. 

It is necessary to stress that the theorem holds for any function H ,  even if it is not a 
Hamiltonian. In  systems with several control parameters the choice of the “effective 
HAMILTON function” i s  closely connected with the definition of the “equilibrium”. 

For open systems, however, the 8-theorem makes a stronger st,atement, since it 
asserts that the entropy of nonequilibrium states decreases monotonously with increas- 
ing distance from the “equilibrium”, (here and in the following we mean tlhe entropy B1). 
As we have mentioned the #-theorem was proved for several systems with one control 
parameter. However, in the case of two parameters it is not always clear how to define 
and to measure the distance from “equilibrium”. In  this situation we will “employ” 
the 8-theorem as a “measuring instrument”, we will take the entropy as a measure of 
the distaace from “equilibriuni”. This approach seems to be justified since in classical 
statistical physics entropy is the best and most general measure of order we know. 
Naturally, that means that the S-theorem becomes our basic hypothesis. But in the 
present moment there is no reason for doubts about its general validity. 

- 
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Of course, for any concrete system other more specific measures of the distance from equilibrium 
may be found. For instance, for our oscillators one can propose the following approaches: 

(i) the norm of the function U,  which expresses the deviation from the “equilibrium” probability 
distribution ; 
(ii) the mean energy of the oscillations; 
(iii) the renormalized intensity of the given noise which is the solution of (14*) in this special case. 

Both the latter functions are increasing monotonously with increasing excitation in the case of 
only one pumping parameter. 

5. Selforganization in Systems with Two Control Parameters 
Selforganization processes are often considered as a sequence of nonequilibrium phase 

transitions induced by external flows. In  this process the control parameters change 
continuously. However one should not forget that real systems permit such change only 
in certain parameter ranges. 

In  the case of one pumping parameter the evolution can go in one direction only. 
But in the presence of a second one the system can “choose” its evolution-path in the 
parameter space in the permitted range. However, in any case the most advantageous 
state is the state with the highest order, hence with the minimal entropy. The change 
of entropy depends only on the starting and the final point, but not on the pathway 
between them. Choosing a certain path in the parameter space the evolution process 
can satisfy some additional conditions. There may be, for instance, conditions on the 
behaviour of the entropy between both fixed states as well as on the behaviour of some 
other variables. 

Of special interest is the possibility to control the evolution artificially by means of 
regulating the pumping parameters. This allows to optimate the structure of the system 
according to one or another criterion. Let us consider an example. 

On Fig. 5 a1 and a2 are control parameters, r i s  the boundary of the parameter range. 
“0” is the starting point, for instance the “equilibrium”, the family of curves marl; con- 
stant entropy values. We assume that the entropy has its minimum at  the boundary, 

I 
Fig. 6.  Range in which the control parameters a, and a, can change continously. “P” corresponds 
to minimal entropy, dashed lines to certain evolution pathways 
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in the point P and does not have any local extremum inside the range. Then we can 
propose the following criteria for the pathway of the evolution starting from “0” inside 
the range : 

(u,, u,) &ZZ(L) into minimum that means 

a minimization of the path-length under the condition that the system prefers the ranges 
of lower entropy. 

2. The pathway 1, is directed by the gradient of entropy. Its direction in the starting 
point follows the maximum concentration of isoentropy curves. The boundary is not 
reached in “I”’. Further evolution to “P” is possible along the boundary. 

3. The path I, coincides with the gradient of entropy too, it starts in “O”, however, 
in such a direction that the boundary is reached in “P”. 

4. The system comes to the boundary again in “P”, but the path is defined by the 
condition of minimal energy expenditure of the pumping source. 

5. The choice of the final point is concerned with extremal conditions on certain other 
variables, for instance the amplitude of the selfoscillations. 
As we hape mentioned the proposed approaches should only illustrate the varity of 
possibilities. Since there IS not any experimental data in this field we studied the ap- 
proaches t - 3  for the siniplest dissipative structure with two control parameters, VAN 
DER POL oscillators. 

P 
1. The path L turns the integral I = 

0 

6. Results of the Computer Calculations 

(15) and the entropy (16) 
For the systems (1), (4) as well as (9) for given noise we calculated the “mean energy” 

( H )  = / dx dv H ( x ,  W )  f (x ,  TI ) ,  (15) 

g / k  = - / d r  dv In f ix,  v) . fix, v), = f lnL-s, ( I  6) 
i)[U,] is the solution of the equation ( H )  [V,] lDs,ij = const. 

The distributiori functions and the “effective Hamiltonian” are defined in (7*) and 
(12). Figs. 6 and 7 show the results for the oscillator with a resonance force, Figs. 8-1 1 
for the oscillator with linear and nonlinear feedbacks. In  Figs. 6, 8, 10 the results are 
given for the lowering of the entropy from t’he “equilibric” level as a function of t’he 
two parameters. The bifurcation lines a = 0 or respectively u = b2/4c are also given. 
Dashed lines mark, qualitatively only, the paths of selforganization corresponding t’o 
the first three approaches. The point of the minimal entropy “P” was chosen arbitrarly, 
since the boundaries of the parameter ranges are defined by the concrete system. 
Figs. 7, 9, 11 show the lines of constant “mean energy” values. We obtained the fol- 
lowing : 

1. Entropy changes rather weakly. The “equilibrium” value S,/k is of the order of 
one. In  all cases the entropy has its maximum in “equilibrium”, in “0” (GIBBS theorem). 
The isoentropy lines lie around “0”. Moving away from “0” in any direction where one 
paramet,er is constant, the entropy is decreasing monotonously (S-theorem for the one 
parameter case). By va,riations of the second parameter one has the opportunity of 
further decreasing the entropy of the system. 

2 .  Tho “mean energy” has no extrema inside the range. It also shows 1nonotonous 
behaviour along any isoparametric line. 

3. The figs. 8 and 9 correspond to the systems (I) and (4) with c = 0. The behnviorir 
of the entropy differs essentially from all other studied situations. Most likely, one 
uitnnot disregard t’he presence of the higher nonlinearities. 
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- 
Fig. G .  Entropy lowcring lo3 6 >/k for (9). ap is the linear feedback, X the amplitude of the resonance 
forcc. y = 2, 6, = 0.2, 6 X = So - S 

I I 

Fig. 7. 
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I 

Fig. 8. Entropy loarring 103 r )  Rjk for (1). ( I - ) .  n,,, 0, line,ir ,ind nonlinear ftxcdbnck reilpectively 
^J - 2, h, = 0.6, c = 0 

Fig. 9. “l\/lenn energy” (13) for ( I ) ,  (1). y - 2, b, = (I.(;, c : 0 

7. Discussion 
The subject of this paper is dissipative structures with two control parameters. We 

investigated the question of the equilibrium state o f  those systems. We called “equi- 
libriixm” the state of zero values of all pumping parameters. We introduced natural 
noise, in the presence of it a closed systeni relaxes to the ROLTZMANN-GIBES distribution 
function (5). In  the cast: o f  any other noise the systeni evolutes to some tlistribution 
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- 
Fig. 10. Entropy lowering lo3 6 X/k for (1), (4). y = 2, b, = 0.6, c = 0.1 

Fig. 11. “Mean energy” (15) for (l), (4). y = 2, b, = 0.6, c = 0 

with a single maximum which is in zero. We defined the distance from “equilibrium” 
by the entropy, calculated a t  fixed “mean energy”, more precisely, by the lowering 
of this entropy from the “equilibrium” level. Hence the degree of order in pumped 
nonequilibrium systems is defined in the same way as is usual for systems a t  fixed energy 
since the work of BOLTZMANN. Of course, for special examples there may be other special 
measures. For VAN DER POL oscillators we compared two measures, entropy and “mean 
energy”. We obtained that they agree well only for high absolute values fo the control 
parameters. 
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Our investigation of selforganization processes in systems with two control para- 
meters was based on the statement that for any pumped system the most advantageous 
state is the state of minimal entropy. In  the case of several pumping parameters the 
system can already “choose” its path of selforganization in the parameter space. Assum- 
ing special criteria there follow various results : Modifying the final state of evolution 
one can optimate the stmcture, symmetry and other properties. Furthermore, varying 
the pathway between both the starting and the final points, one can optimate the condi- 
tions under which the final state is reached. 

Undoubtely this has practical application also. Many technical and, in particular 
chemical processes today need very large plants which cannot be expanded very much 
further. It is necessary tJo increase the efficiency of these processes on the microscopic 
level. On the other hand there are a lot of striking illustrations of coherence and syn- 
chronism in the behaviour of the particles in dissipative as well as in turbulent structures. 
It leads to exceptionally effective processes on the macroscopic level. Therefore we are 
sure that both dissipative and turbulent structures will be widely adopted in practice. 
At that time the optimization of st,ructures according to certain criteria can increase 
the efficiency of technical processes. 
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Notes added in proof 
Since we wrote this article a series of papers on this topic has been published. The 

behaviour of entropy in systems with two control parameters was investigated also by 
Ebeling, Engel-Herbert and co-workers (see, e.g., [A]) and in other papers of the authors 
[B-D]. Certain differences in the results are concerned with different approaches in 
the entropy renormalizat,ion. This problem was studied in detail in [D] (see also the re- 
ferences). In  [B] the entropy-statement was applied to a simple model which shows 
intermittend chaos. Similar problems will be studied in subsequent papers. 
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